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Summary

This master thesis covers the first two years of the researching work with network measurements of
the author. This researching has focused on the search of network invariants in such measurements,
hoping that these invariants may help to obtain relevant information about the network status.
The organization of this document faithfully follows the researching temporal line during these
two years.

In the first part, the analysis with packet traces is described. Such packet traces were down-
loaded from public repositories like CAIDA, and were processed at the flow level, obtaining the
more relevant statistics at packet and connection level. These statistics were then applied to traffic
classification by means of clustering techniques. The target of such classification was to determine
the applications that produce the traffic, so the quality of service requirements for each kind of
traffic could be assessed. Another study using the same dataset was the analysis of the throughput
of the flows. We carry-out an study of the distribution of the mean value of the throughput, and
statistical techniques to compute its confidence intervals were applied. Our hypothesis supposes
that, under optimal working conditions, these confidence intervals must overlap amongst them
because the majority of the flows would reach a similar value for the mean throughput.

However, we observed that such confidence intervals do not overlap, but instead they followed
a daily pattern opposite to the well-known traffic daily pattern. This motivated us to analyze the
daily traffic pattern, using real measurements from the Spanish National Research and Education
Network RedIRIS. The main finding of this study was that the RedIRIS daily traffic pattern was
close to other ones published from other networks, but only for working days. Therefore, we use
the invariance of the daily traffic pattern of the RedIRIS network to design a multivariate normal
model for the measurements over one day. Such model was validated by means of normality tests,
showing very good results.

Finally, we applied this model to develop an online algorithm for automatically detecting change
points in the links’ load. We first assessed the performance of the algorithm with synthetically
generated datasets, and then we applied our algorithm to the RedIRIS network measurements.
The results show that our algorithm can be useful to reduce the operational expenditures of a
network operator, given that the output of our algorithm (in the form of alerts when a change
is detected) can prevent the network manager to visually inspect all the time series generated

through the network monitors of the operator.
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Resumen

La presente tesis de master comprende el trabajo de dos anos de investigacién con medidas de red.
Esta investigacién se ha enfocado a la bisqueda de invariantes en dichas medidas, que permitan
obtener informacion relevante del estado de la red. La organizaciéon de este documento sigue
fielmente la linea temporal de la investigacién realizada.

En la primera parte, se describe el andlisis de trazas de paquetes, descargadas de repositorios
publicos como CAIDA, las cuales fueron procesadas a nivel de flujo, obteniéndose las estadisticas
més relevantes a nivel de paquete y conexién. Estas estadisticas fueron utilizadas para realizar
clasificacién de tréfico, mediante la aplicacién de técnicas de agrupamiento (clustering en inglés).
El objetivo de esta clasificacién era determinar las aplicaciones que producian el trafico, de man-
era que se pudieran aplicar medidas de calidad de servicio especificas a cada tipo de trafico para
determinar el estado del enlace. Otra opcién explorada partiendo del mismo conjunto de datos,
fue el andlisis de la tasa de transmisién de los flujos presentes en el enlace analizado. Sobre esta
tasa se estudié la distribucién de su valor medio, aplicAndose técnicas estadisticas para determinar
intervalos de confianza alrededor de ese valor medio. Nuestra hipdtesis suponia que, bajo condi-
ciones 6ptimas de funcionamiento, los intervalos de confianza debian solaparse, ya que la mayoria
de los flujos obtendrian un valor medio de la tasa similar.

Sin embargo, observamos que los intervalos de confianza seguian un patrén de comportamiento
diario opuesto al patrén observado en el trafico de red. Esto nos llevé a analizar el patron diario del
trafico, tomando como datos medidas de la red académica espanola RedIRIS. El principal hallazgo
de este estudio fue que el patrén diario de trafico de RedIRIS es similar a otros publicados sobre
otras redes, pero solo para los dias laborables. Por tanto, aprovechamos la invariancia del patrén
de trafico de RedIRIS para disenar un modelo normal multivariante para las medidas de un dia.
Este modelo ha sido validado con tests de normalidad, mostrando buenos resultados.

Finalmente, hemos aplicado este modelo para disenar un algoritmo para la deteccién au-
tomatica de cambios en la carga de un enlace, cuyo rendimiento ha sido evaluado con datos
sintéticamente generados. Una vez comprobado su validez, se ha aplicado el algoritmo a medidas
reales de la red RedIRIS, graficindose los resultados obtenidos. Estos resultados demuestran que
nuestro algoritmo puede ser util para reducir costes de operaciéon de un operador de red, puesto
que el uso de nuestro algoritmo evita la necesidad de monitorizar continuamente los resultados
de las medidas realizadas, siendo tinicamente necesario supervisar los enlaces en caso de que el

algoritmo genere alguna alerta.
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Chapter 1

Introduction

Network operators have always been aware of the importance of having detailed descriptions
about what is happening in their networks. For this reason, there are a lot of measurement
techniques existing in the literature (active and passive), most of them being implemented by
network managers that allow them to tackle incidences in the network. For instance, network
operators can track malicious traffic to prevent their users of being target of security attacks,
assess [Quality of Service (QoS) [vdBMvdMT06, MPMO5] or bill high consuming clients [FEVOZ].

This increasing interest on network measurements by network operators has been reflected in the

research community. There have been a lot of contributions involving network measurements to
characterize the Internet traffic [BMOI, BC0O2, DPV0O6, NART04, RKY6G], or even to characterize
Speciﬁc applications [SH'K'I‘UG’ HSUG, PGI)\\/IU?7 PNIO7, /ASGKU?S],

All these studies demonstrate the importance of network measurements for network research,
however, collecting accurate network measurements have became an arduous task because links’
speeds have increased at a larger rate than memory accesses’ speeds [Rob0], making it unfea-
sible to monitor all the network traffic. This misfortune has motivated the development of new
techniques to substitute the previously used ones, such as the application of sampling to network
measurement [CPBY3, Cocd7, LGOY]. Sampling allows longer measurement campaigns; however, it
entails a reduction of the available information. Therefore, the applications of statistical inference
and digital signal processing techniques have gained importance, allowing to obtain information
of interest. One of the most common ways of obtaining this information is by extracting patterns
or footprints that are easily detectable and characterize in an accurate manner the measured traf-
fic [MCD0], even measuring these footprints at different time resolutions [PTZD05]. Once the foot-
prints are detected, statistical methodologies are applied to corroborate whether the conclusions
obtained from them can be extrapolated or they are just a particular case of the study [KINOZ].

This master thesis presents the study of different measurement datasets captured with dif-
ferent measurement techniques, as described in Chapter B, searching for invariants that can be
considered as footprints. In a first step, we tried traffic classification based on packet and con-
nection level statistics as footprints. A description of the state of the art in traffic classification
and our contribution using parsimonious statistics is presented in Chapter B. The results were
not conclusive, so other approaches were investigated. These are described in Chapter @, and

involve the study of the throughput at the individual user and at the link’s aggregation levels.



2 Chapter 1. Introduction

The throughput analysis conducted us to the concept of utilization, which is the percentage of
the link’s capacity that it is being used. The utilization showed invariant properties at the level
of weeks, mainly due to the well-known daily and weekly pattern behaviors. This invariability
allows us to take the utilization over one week without anomalies as a reference footprint that
permits comparison to determine the status of a link, i.e. normal behavior or abnormal behavior
requiring attendance. An in-depth study of these utilization footprints led us to a new model for
the network traffic in an Internet link, using a multivariate normal distribution to represent the
traffic of one day. This model is detailed in Chapter B, jointly with a assessment of its validity.
An application of this model is the development of an algorithm for detection of changes in the
load of the Internet links (Chapter B). This algorithm assumes the normality of the samples and
applies a powerful statistical procedure to assess the validity of the changes detected by clustering
techniques. Finally, Chapter @ concludes this master thesis and outlines future steps continuing

the work presented in Chapters B and B.



Chapter 2

Network Measurements

Network managers are in charge, within other tasks, of keeping network performance under rea-
sonable levels. For this reason, production networks are being monitored continuously, exporting
the obtained measurements for further processing. However, the amount of network traffic is hu-
mongous, so it is very challenging to handle it in an efficient way. These challenges appear since
traffic traversing network links at ever-increasing speeds has to be monitored in a timely fashion.
For this reason, different kinds of network traffic monitors have been developed. In this chapter we
describe the most common network monitoring tools and the characteristics of the measurement
data that are obtained. These measurement data has been deeply analyzed in this study, so it
is strongly necessary to understand their advantages and their drawbacks, e.g. the information
that can or cannot be extracted from them, their computational costs, etc. The remaining of the
chapter is structured as follows. Section EI describe packet captures measurements. Following,

the NetFlow records and the definition of flow are presented in Section EZ. Finally, Section =3

describes the information available in [Multi Router Traffic Grapher (MRTG] records, and how it

is obtained.

2.1 Packet Captures

Packet capture is the process where each packet traversing a link is copied in output files, which
are commonly referred as packet traces. This measurement process reproduces exactly the status
of the link within the measurement period. The most common format for these packet traces is

the one obtained through the Packet Capture (pcap] [ILMYI3] Application Programming Interfacd
[APT], which is used and supported by a variety of network sniffers and packet analyzers.

The advantage of packet captures is that all the available network information is included in the
packet traces, i.e. both the payloads and headers. This, however, leads to an important drawback
regarding storage requirements. As packet traces contain all the information within a packet, this
means that the packet trace size will be equal to the number of bytes of the captured packets.
As the speeds of networks are continuously increasing [Rob00], the size of the packet traces is
growing at the same rate for a fixed measurement period. This fact makes long packet capture
measurement campaigns unfeasible, and it is common to have them split in one hour intervals

within one day.



4 Chapter 2. Network Measurements

Another negative aspect of packet traces is that packet traces of production networks are

very hard to find. The reason for this is related to privacy concerns regarding the personal

information that is sent and received in the [nfernet Profocol (IP] packets, including the [P

addresses. Techniques to circumvent these legal aspects are mainly based on anonymization of [
addresses and removal of packet payloads. With these limitations included, there are few packet

traces publicly available in the Internet. The anonymized traces used in this study are distributed

under request by [The Cooperative Association for Internet Data Analysis (CAIDAJ® and come
from Optical Carrier (OCJ12 and 0048 Internet Backbone and Exchange Point Data links in the
United States.

2.2 NetFlow Records

A flow is defined as a sequence of packets that share the same source and destination [P addresses,
port numbers and transport protocol identification. The information that NetFlow stores for each

flow entry in its memory includes traffic volume (in bytes and packets), port numbers, source

and destination A addresses, [I'ype of Service (105], input and output interfaces indexes (as per

Fimple Network Management Protocol (SNMP)] Management Information Base (MIB]), together

with timestamps for the flow beginning and end (see [CIa04] for more detailed description of
NetFlow records). All these flow summaries are gathered in a central repository located at the
[Universidad Auténoma de Madrid (UAM] campus, with an average input rate of 2
second (Mbps).

NetFlow is a proprietary format developed by Cisco Systems that runs in their routers and it

is implemented by other vendors as well. This protocol is used to monitor the traffic that traverses
a router and to keep performance statistics. Cisco defines a flow as a unidirectional sequence of
packets sharing all the following 7 values, commonly referred as 7-tuple: Source and Destination [P
addresses, [P protocol, Source and Destination ports in case that the [B protocol is Mransmission
[Control Protocol (TCP] or [User Datagram Protocol (UDP], Ingress interface and [B OGS,

NetFlow updates the NetFlow record for a flow when a new packet belonging to that flow is

sampled, until a timeout counter expires, i.e. when no packets belonging to that flow are sampled
for more than “timeout” units of time, or when it samples a packet that finalizes a ICH session,
i.e. it samples a packet with either the FIN flag or the RST flag set. The NetFlow sampling
method is a deterministic sampling method, i.e., for every N packets it sees, NetFlow samples the
first packet and does nothing with the remaining ones.

The NetFlow record contains a wide variety of statistics about the flow, where the most impor-
tant ones are the timestamps for the flow start and finishing times, number of bytes and packets
observed in the flow (that are actually estimations of the real value by taking into account the sam-

pling ratio), as well as the 7-tuple (see [Clald] for more detailed description of NetFlow records).

Each router with NetFlow capabilities generates NetFlow records, which are exported from

the router using IDP or Stream Control Transmission Protocol (SCTP] packets to a NetFlow

collector. In the RedIRIS scenario of Figure I, the autonomic routers are routers with NetFlow

capabilities that export the NetFlow records to the NetFlow collector located at [IAM’s premises.

Lhttp://www.caida.org
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Figure 2.1: RedIRIS Points of Presence.

2.3 MRTG Records

MRETG [ORYY] is a software tool distributed under GNU [General Public License (GPL] freely

available from the MBITQ web page?. In its origins it was developed as a software to monitor

and measure traffic load on network links, graphing the information and showing statistics as
maximum, minimum and mean values, but it has evolved to allow the user to visualize almost any
kind of information. It is written in Perl, and is available for several operating systems, including
Windows, Linux and Mac.

It uses ENMP to send requests to the monitored device. ENMP is an application layer protocol
that facilitates the exchange of information between network devices (where a ENIMP agent must

be running) using MIBS to define hierarchically what information is available to be monitored.
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Figure 2.2: Sample one-day MRTG monitoring.

The requests that METG sends to a device contain the [Dbject TDentifier (OID] of the resource
that it wants to get information about. The ENNMH agent of the device looks up the I in its MIR

2http://oss.oetiker.ch/mrtg
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and response the MRTG with the corresponding data encapsulated in ENMP protocol. MBTG
then gathers all the information received in an incremental database and creates a

Markup Language (HTML] document containing graphs of the received information, as shown in

Figure 22.

MEBTA measures two values per target, the input value and the output value. The input value

is plotted as a solid green area and the output one as a blue line, as can be seen in the figure. It

collects the data every five minutes for daily graphs, and greater time spans for weekly, monthly

and yearly graphs. Furthermroe, MRTQ features automatic scaling of the Y-axis to fit the graph

to the information area and it also reports the maximum, average and current values for both

input and output data, as is shown in Table 2.

Table 2.1: Sample statistics for the input and output of the target

|

Max

|

Average

|

Current

|

In

2233.0 kb/s (22.3%)

1230.8 kb/s (12.3%)

1894.8 kb/s (18.9%)

Out

880.0 b/s (0.0%)

16.0 b/s (0.0%)

312.0 b/s (0.0%)




Chapter 3

Flow Classification Based on

Measurable Parameters

There is a lot of effort from the networking research community in traffic classification. Traffic
classification aims to match a measured flow to the application that has produced it by means
of packet and flow-level information. The motivations for traffic classification are mainly related
with objectives or capacity planning tasks. Thus, either the traffic classification is used to
differentiate traffic with different priorities (i.e. with a different [Class ol Service (CoSJ)or

instead traffic is classified according to bandwidth consumption and flow duration. In the former

case, different metrics and thresholds based on their quality requirements are applied, whereas
in the latter, the user behavior is characterized to foresee the trends in link usage, on attempts to
overtake possible shortages due to congestions issues that may force the network to drop packets
and increase the delays in packet delivering. In what follows, a description of the state of the art
concerning traffic classification is summarized in Section BOl. A deeper study on this techniques
is available in [MATR]. Next, our contribution to traffic classification is described in Section B3.

Finally, Section B=3 concludes the chapter.

3.1 State of the Art

The state of the art in traffic classification can be divided into classic traffic classification techniques

and innovative traffic classification techniques, as follows.

3.1.1 Classic Traffic Classification Techniques

Classic traffic classification techniques make use of flow and packet level information to characterize
different kinds of traffic. The resulting classification is coarse and can be commonly applied on-line.
Flow-level Statistics

Flow-level classification aggregates packets traversing a link by the 5-tuple that describes its
headers (as described in Section B2 of Chapter B) and computes statistics of the aggregates as flow

duration, bandwidth consumption, transferred bytes, number of packets per flow, the means and
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the variances of these metrics, etc. This is no more than the available information from NetFlow
records. A limitation is that flow-collection may sometimes aggregate packets that belong to

multiple application-level connections into a single flow, which distorts the flow-level features.

Dragonflies and tortoises The classification of traffic into dragonflies and tortoises is based on
the duration of the flows. This classification was first introduced by Brownlee & Claffy in [BCO2],
where they defined dragonflies as very short duration flows, lasting up to 2 seconds, and tortoises
as long-running flows, being active for more than 15 minutes. A flow is considered to time out
once a MTCH RST packet or a pair of TCH FIN packets is seen through the link. This assumption
only works for TCH flows and can fail due to packet loss or asymmetric routes. For this reason,
a timeout interval is set so that if no packets are observed for that dynamically specified timeout

interval, the flow is considered to be timed out (the same criteria is used by NetFlow).

Mice and Elephants Another flow-level classification study classifies network traffic into the
categories of mice and elephants. This classification arises from the observation that a very
small percentage of flows consumes the majority of the available bandwidth, what is commonly
referred as “the elephants and mice phenomena”. The classification assigns large flows (i.e. with
a large amount of bytes) to the elephant class, and small flows to the mice class. Commonly, the

classification schemes are based on a separation threshold that elephants have to exceed [PTBT02].

Packet-level Statistics

Packet-level classification keeps statistics of packets that are not related with aggregation based
on parameters of theirs headers. Features in this level are simple to compute and packet-level
sampling, which is widely used in network data collection, has little impact on them. They offer a
characterization of the application that is independent of the notion of flows, connections or other
higher level aggregations. Examples of this statistics are mean packet size or time series of this

data, from which can be derived a number of features, as correlations over time of this values.

Port Based Classification Packet-level header inspection has been used to associate network
traffic with the application that produces it based on ICH or DR port numbers. The port
numbers are divided into three ranges: the Well Known Ports (0-1.023), the Registered Ports
(1.024-49.151) and the Dynamic Ports (49.152-65.535). All the packets sent within either a ITCH
connection or IIH session use the same pair of ports to identify the client and server sides.
Therefore, theoretically, TCH or IIOH server port numbers can be used to identify higher layer
applications, by simply identifying which port is the server port and mapping this port to an appli-

cation using the [nfernet Assigned Numbers Authority JTANAJ® list of registered ports. However,

port-based application classification has limitations. First, the mapping from ports to applications

is not always well defined. For instance from [RSSD04], it turns out that

e Many ICH implementations use client ports in the registered port range. This might mis-
takenly classify the connection as belonging to the application associated with this port.
Similarly, some applications use port numbers from the well-known ports to identify the

client site of a session.

Lhttp://www.iana.org/assignments/portnumbers
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e An application may use ports other than its well-known ports to circumvent operating system

access control restrictions, e.g., non-privileged users often run World Wide Web (WWW7

servers on ports other than port 80, which is restricted to privileged users on most operating

systems.

e There are some ambiguities in the port registrations, e.g. port 888 is used for CII Dafahasd
[Protocol (CDDPY and access-builder.

e In some cases, server ports are dynamically allocated as needed. For example, Eile Transfed
Protocol (FTP] allows the dynamic negotiation of the server port used for the data transfer.
This server port is negotiated on an initial MCH connection which is established using the

well-known [ETTH control port.

e Trojans and other security (e.g. Denial of Service (DoS]) attacks generate large volume of

bogus traffic which should not be associated with the applications of the port numbers those

attacks use.

e The use of traffic control techniques, like firewalls to block unauthorized and/or unknown
applications from using a network, has spawned many work-arounds which make port-based
application authentication harder. For example port 80 is being used by a variety of non-

web applications to circumvent firewalls which do not filter port 80 traffic. In fact, available

implementations of [B over Hypertext Transfer Protocol (HTTP] allow the tunneling of all
applications through MCH port 80.

e Ports are not defined by [ANAI for all applications, e.g. [Peer to Peer (P2P] applications such

as eMule or BitTorrent.

Intra-flow/connection Features

There are very interesting features that network monitors might wish to collect, which are based
on the notion of a flow or MCH connection, but require statistics about the packets within each
flow. One example is the statistics of the inter-arrival times between packets in flows, e.g. this
requires data collected at a packet level, but then grouped into flows. Other statistics included in
this group are loss rates, latencies, packet size distribution for a given application, etc.

The authors of [DPVO6] use intra-flow /connection statistics to characterize HTTH and
Mail Transfer Protocol (SMTP] traffic. They collect all the packets destined to and sent from ports
80 (HITH) and 25 (SEMTH) and compute packets, bytes and inter-arrival times distributions in

both directions (from client to server and from server to client). They show that characterizations

at this level for this protocol have invariant properties, in terms of spatial, i.e. same behavior at

different links, and temporal, i.e. same behavior at different observation instants.

3.1.2 Alternative Classification Methods

In this section we describe innovative techniques applied to traffic classification. Such techniques

are well-known methods, as for example Bayesian analysis techniques or Hidden Markov Model
[HMM], which have been widely uses in other areas but not in Internet traffic classification, or

new developed ideas that work well when applied to traffic classification.
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Well-known Methods Applied to Traffic Classification

We start describing well known methods that have been applied to classify traffic. The classification

techniques that we will describe make use of HMM, Bayesian analysis, Nearest Neighbors (NN]

and [Linear Discriminant Analysis (LDAYJ.

Hidden Markov Model traffic classification In [OSST04] the authors use a two state (high
mean state and low mean state) HMM approach similar to those used nowadays in speech recog-
nition systems to classify Internet traffic. In each state j;5 € {1,..., N}, flow rate is assumed to
follow a Gaussian distribution N (x;,0;) with mean p; and variance o;. The transition matrix I’
between the Markov chain states is given by py, m, i.e. the probability of stay in state m when in
the previous instant it was in state n.

The parameters of the model (p;,0;,pn,m;j,n,m € {1,..., N}) are chosen using a maximum

likelihood criteria, i.e. the parameters are chosen to maximize the probability that the observed

sequence came out of a HMM with these parameters, using the [Expectation Maximization (EM]

algorithm.

The first step in the classification is to extract features for each flow i over a time window t of
size [. The second step is to classify the flows based on the features extracted in the previous step.
For this purpose [OSST04] assumes that the features are distributed following a [Gaissian Mixturd
Model (GMM] of dimension ! with a predetermined number of classes K. Once the GMM is

calibrated, the membership probabilities 7}, , i.e. the probability that a given flow ¢ characterized

by a feature vector belongs to the class k, can be derived. They use these probabilities to classify
flows into two and three classes.

The two classes’ classification was not able to give meaningful results. Classes are mixed
together and there is no clear separation between the two classes. In the three classes’ classification,
flows that have a very low probability of remaining in the high state (dragonflies) are separated
from those that have large value of high state mean value and high probability of remaining in

the high state (elephants) and the ones that are in the middle (mice).

Bayesian Analysis Traffic Classification The authors of [MZ05] use Bayesian analysis tech-
niques to classify traffic in ten different classes. These classes and an example of each class are the
following: BULK (ftp), DATABASE (oracle), INTERACTIVE (ssh), MAIL (smtp), SERVICES
(dns, ntp), MWW (http), P2B (KaZaA), ATTACK (worms), GAMES (Counter-Strike) and MUL-
TIMEDIA (Real player). The discriminators they use as input parameters are for example flow
duration, CH port, packet inter-arrival time and its moments, payload size and its moments,

Fourier transform of the packet inter-arrival time, etc.

They propose two different algorithms, a simpler one named Nailve Bayesian Classifier (NBC],

and an improved version with kernel estimation. The INBO tries to calculate the probability of
belonging to a class ¢;;5 € {1,..., M} given an observation of the discriminators for a flow y.

This probability is denoted by p(c; | ¥), and is computed by applying the Bayes Rule:

o) = Py le)
P )= S e fl | )

(3.1.1)
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where p(c;j) denotes the probability of obtaining class ¢; independently of the observed data
(prior distribution), f(y | ¢;) is the distribution function (or the probability of y given ¢;) and the
denominator acts as a normalizing constant. To estimate f(y | ¢;), j = 1,...,k, a training set x

is used, assuming that the discriminators are independent with a Gaussian behavior.

The Naive Bayes Kernel Estimation (NBKE] is similar to the Naive Bayes method algorith-

mically. The only difference is that the estimate of the real density f(- | ¢;) is given by

fley=—r Y m(SD, (312)

Ne,
z; : C(xi)=cj

where h is called the kernel bandwidth and K(t) is any kernel, where kernel is defined as any
non-negative function such that [*°_ K(t)dt = 1.

Despite NBKH shows to behave better than the simple NEQ, it has greater computational costs
that can make the simple NBO more appealing. The results presented by [MZ05] on the application
of these methods to traffic classification show that NBO has a poor accuracy (about 65%), but

the use of [Kernel Estimation (KE] and other improvements (preprocessing to remove redundant

and irrelevant variables) raise this accuracy to more than 90%. The accuracy was defined as the
ratio between the number of flows that were classified correctly and the total number of flows.
They also computed a per-class measure of trust that indicates how much reliable is the classifi-
cation. With this measure, [MZU5] shows that MAIL and categories are very well classified,
having a trust measure greater than 90% in the NEQ, but the remaining applications were not
classified satisfactorily. With the enhancement of [KH, as well as the MAIL and BAOASM, SER-
VICES and DATABASE categories were successfully classified, and BULK and MULTIMEDIA

categories obtained an acceptable trust level (about 77%).

Nearest Neighbor and Linear Discriminant Analysis Traffic Classification This sub-
section is devoted to describe the work presented in [RSSD04]. They search for discriminators that
can characterize applications, so a clustering algorithm can be done based on these discriminators
to classify flows in different classes. They define four different classes which are Interactive, which
contains traffic that is required by a user to perform multiple real-time interactions with a remote
system (e.g. remote login sessions); Bulk data transfer, which contains traffic that is required
to transfer large data volumes over the network without any real time constraints (e.g. ETH);
Streaming, which contains multimedia traffic with real-time constraints (e.g. video conferencing);

and Transactional, which contains traffic that is used in a small number of request response pairs

which can be combined to represent a transaction (e.g. Domain Name System (DNSJ).

To test the goodness of the proposed method, [RSSD04] goes one step further than [MZ05]
and, instead of classifying traces manually, they classify a few representative applications for each
class, so all the applications not selected as representative are clustered with the representative
with closer features. The reference selected applications are the following: Telnet for Interactive

class; ETHP-data and Kazaa for Bulk data transfer; RealMedia streaming for Streaming class; and

DONS and Hypertext Transfer Protocol Secure (HTTPS) for transactional class.

The methods proposed by [RSSD04] are simple, but commonly used for classification: NN and
CDA. The NN method is based on the assumption that the class of a new data point is the class of
the point which is closest using the Euclidean distance. This method can be generalized to k-NN
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to enhance it robustness, where the k nearest neighbors ‘vote’ on the class of the observation.
k-NN work well with low-dimensional data, but are less effective on high-dimensional samples.
The CDA method uses the posterior probability of belonging to class n, using the Bayes rule and
assuming that each class g has a Gaussian distribution with a given mean p, and with the same
intra-class covariance X for each class. With these assumptions, the log of the ratio between the
probabilities of belonging to two different classes can be simplified to a linear function which is
called the linear discriminant functions.

To apply these methods, [RSSD04] evaluated the following easily obtainable features: the

average packet size, flow duration, bytes per flow, packets per flow, and Root Mean Square (RMS]

packet size. Of these, the most valuable pair was the average packet size and flow duration,
and [RSSD04] considers such characteristics to classify the reference applications mentioned above.

The results show that the classification does not separate Streaming and Bulk data transfer
classes adequately, so a new feature to distinguish these classes is introduced. This feature is
referred as the inter-arrival variability metric and is the mean of the ratio between the variance
and the mean of the inter-arrival times for the packets belonging to a flow. It was also found
by the authors that some streaming traffic ended up with a long gap followed by a few packets.
This behavior makes it worse the ability to separate classes of the presented methods, so to avoid
it [RSSD04] proposes to ignore the final 10 packets from each flow. The use of this metric jointly

with the average packet size gives a product space where these two classes are linearly separated.

Innovative Traffic Classification Techniques

In this section an innovative method presented in [KPE(QH] is described, namely BLINd Classificad
fion (BLINC]. It has been selected due to the relevance of the ideas presented in it. This method

relies on the observation and identification of patterns of host behavior.

BLINC BLING [KPEUH] uses a multilevel approach to traffic classification where the patterns
of host behavior are analyzed at three levels of increasing detail: (7) the social, (i7) the functional
and (i7i) the application level. BLING has no access to packet payload and port numbers neither
has additional information other than what current flow collectors provide.

Firstly, packet traces are gathered to test the BLINT classifier. These traces are deep packet
inspected to classify all the applications, so the goodness of the BLING technique can be evaluated.

This payload-based classification looks for specific bit strings and inspects well-known ports. These

bit strings are identified either from Request For Comments (RFC) and public documents in case

of well-documented protocols or by reverse engineering. Finally, the payload is searched for this
bit strings and initial protocol handshakes that allow classifying by application type. An [B, port
number table that contains all the flows already identified is used to speed up the classification.
With these assumptions, [KPFO5] classifies more than 50% of the flows in their traces. The flows
that were not classified corresponded to non-payload and unknown flows.

The non-payload flows account for almost one third of all flows in the traces, however as they
had not payload, they only account for a small percentage of the bytes (about 2%). These flows
seem to be failed TCH connections from worms that tried to attack hosts. The unknown could be

due to new applications that were not taken into account in the bit string creation, but this will
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be one of the strengths of BLING, that it may be able to classify new applications into categories
that fit with their characteristics.

The main differences between BLING and classical approaches to traffic classification are that
BLINT does not treat each flow as a distinct entity, but it focuses on the source and destination
hosts of the flows; it operates on flow records and requires no information about the timing or the
size of individual packets; and it is insensitive to network dynamics such as congestion or path
changes, that can potentially affect statistical methodologies which rely on inter-arrival times
between the packets in a flow.

BLINO gathers host-related information reflecting transport layer behavior and then they
associate the host behavior with one or more application types therefore classifying the flows. The
host behavior is studied across three levels: at the social level, the popularity of a host is defined
as the number of other hosts it communicates with; at the functional level, the behavior of a host
in terms of its functional role in the network is captured, i.e. whether it is a provider or consumer
of a service, or whether it participates in collaborative communications; finally, at the application
level, transport layer interactions between hosts are captured with the intention of identifying the
origin application.

The classification results of [KPFEUH] are presented with two different metrics. The first metric
is the completeness, which measures the percentage of the traffic classified by BCING. This ratio
is computed at flow level and at byte level. The completeness over the three traces used to test
BLING lay between 80-95%. The other metric to test the goodness is the accuracy, which measures
the percentage of the classified traffic by BLINT that is correctly labeled. BLINT results show
that it has a high accuracy, being it higher than 95%.

3.2 Contribution

This section is devoted to describe our contribution to traffic classification. We performed appli-
cation classification based on packet level and intra-flow/connection statistics through clustering
techniques. A brief description of the objectives of the classification and the statistics of interest
is presented in Section B=Z. Our method obtained such statistics from packet captures publicly
available without payload from CATIIAL These datasets are described in Section BZZ2. Next, Sec-
tion B=23 presents the results obtained through the clustering technique. Finally, Section B=24

shows the results of the same clustering technique after applying the Sample & Hold (S&H] tech-

nique [EV03] to focus on the most contributing flows.

3.2.1 Description of the Contribution

Our contribution aims to classify traffic according to two main different groups in order to use
this membership information and then apply specific measurements. Such groups are Real
Time interactive applications, like Skype [Cind], which have stringent requirements, and Bulk
data transfer applications, like ETH, whose requirements are not so demanding. We follow an
approach similar to that of [RSSD04], but started with only two applications groups to facilitate
the classification paradigm. We assume that all the packets sent and received within a flow as

defined in Section 22 belong to the same application. Therefore, we measure in the traffic traces
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described in Section BZ23 six packet and connection level statistics for each flow. Such statistics
are described in Table Bl. As a flow is a bidirectional transaction of packets, we take different
statistics from each direction, as there may be relevant differences between them depending on

which end started the communication.

Table 3.1: Packet and connection level statistics used for flow classification

’ Statistic \ Description
Mean packet Average packet size for all the
size packets sharing the same flow descriptor

Difference between the timestamp of the last
Flow duration packet and the first packet belonging to the same flow.
Flow ending conditions are the same used by NetFlow

Number of packets Total number of packets sent within the flow
Flow size Total number of bytes sent within the flow
Mean packet Average time between arrival of
inter-arrival time contiguous packets within the same flow
Packet rate Number of packets per second sent within the flow

Our contribution then groups flows according to distances between the obtained statistics using
k-means. We briefly describe the k-means procedure in Appendix Bl The main reason not to
select NN as clustering technique, following the method presented in [RSSD04], is that NN needs
a dataset labeled in advance, from which the representatives of the classes are obtained. This
dataset should therefore have been manually inspected and classified. This is a very challenging
task, moreover if the dataset has no payload, as are the datasets used in our study. The unfeasibility
to manually classify a packet trace prevented us from applying NN, therefore selecting k-means,

which does not need a train set classified beforehand.

3.2.2 Description of the Packet Traces

For the extraction of the statistics described in Section BZZ1 we analyzed two data collections
publicly available from CATIIAL These data collections were captured in different points and time

instants. Following we describe each of the collections.

CAIDA OC48 Traces

CATDOA made available three collections of traces captured within 2002 and 2003. From these
collections, we selected the most recent one that was captured in Apr 24, 2003 at 9 Bnfe Merid
fiem (AM] [Central European Summer Time (CEST) on an 482 link and lasted for an hour.
This collection was composed by 12 anonymized packet header traces of 5 minutes long for each
direction. The monitored link is a west coast peering link for a large mfernef Service Pravidel
[ISP). These traces consist of packet headers found in the first 48 bytes of packets, with [ ad-
dresses anonymized with the prefix-preserving Crypto-PAn [EXANMO4] library. These traces do

not include non-IPv4 traffic. Packet timestamps are likely precise to the microsecond. The size of

the traces for both directions is 13 [Gigabytes (GBs)] and contains 203 million of packets.

2up to 2488.32 Mbpg
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AMPATH OC12 Traces

One of the kinds of applications that we wanted to classify with our clustering technique was
these with stringent requirements, namely real time applications. One of such applications is
Skype [LCim], whose classification has attracted a lot of researchers due to its complexity ([EPO6,
PGDMO7, PMO7, RMNMOS, SEKT06]) and its broad utilization. However, the publication date
of Skype software was August 2003, i.e. after the capturing time of CATIIA 0048 traces. This
motivated us to stop analyzing the CATDA 48 traces and focus on newly traces, although the
information from the CATDA D048 traces was still valuable to classify the remaining class of
applications of interest.

We found newly traces available from CATDAl again, captured on 2007. This collection con-
tains anonymized pcap packet header traces collected on both directions of an X12® link at the
AMPATH International [nternet eXchange Point (IXP] in Miami, Florida. This 012 link carries
traffic between [United States (US) Research and Education (R&EY) networks and B&E networks
in South and Central America. These traces were collected as part of the [Day i the Life of thd
project [CIa0f]. They cover the full 2 days of DITTT-2007-01-09 which started
midnight 2007-01-09 [Coordinated Universal Time (UTC] and ended midnight 2007-01-11 [T,

and consist of over 850 million IPv4 packet headers in hourly files.

3.2.3 Results of the Traffic Classification Through Clustering Tech-

niques

In this section we present the results of our contribution. These results are in the form of scatter
plots of two and three dimensions, being these dimensions some of the statistics of Table Bl and
each plotted marker an analyzed flow from the packet traces. We performed a visual inspection
of the results, starting by graphing the statistics by pairs. Figure Bl is an example of these
graphs, where we have represented the duration of the flows versus the mean packet length of
theirs packets. These statistics were measured from most loaded hour trace of the AMPATH
0012 traces (therefore, the maximum duration of the flows is 3600 seconds, which explains the
accumulation of flows in that duration). We represent MCH flows with a red x and IIH flows
with a blue o.

As can be seen in the figure, there is a concentration of flows with small mean packet length.
This length is around 1500 bytes, and explains the concentration above it because it is the value
for the Maximum Transmission Unit (MTU]) of Ethernet V2 [MDY0] and nearly all the implemen-

tations of [A over Ethernet use this frame format. As the amount of flows under this mean packet

length is very large, we zoom in this region in Figure B2

The number of flows in Figure B2 is humongous and highly dense in short durations, thus
preventing us from obtaining meaningful clusters. The situation throughout the remaining com-
bination pairs of statistics is quite similar, being also difficult to obtain clusters on them. For that
reason, we graphed the statistics by trios (Figure B3).

In that figure, we have removed flows with mean packet size greater than 1500 bytes and packet
rates that exceed 5000 [Packets Per Second (PPS] for the same reason as in Figure Bl There

we can see an agglomeration of flows with of short duration, small mean packet size but very

Sup to 622.08 [Mbpd
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Figure 3.1: Scatter plot of flow duration versus mean packet size.
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Figure 3.2: Scatter plot of flow duration versus mean packet size focused on flows with mean
packet length smaller than 1500 bytes.
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Figure 3.3: Three dimensional scatter plot of flow duration, mean packet size and packet rate
focused on flows with mean packet size smaller than 1500 bytes and packet rate smaller than 5000
packets per second.

large packet rate (the column around the origin in Figure B33). These agglomeration could be
thought as a cluster, but it is not of interest for our objective, as the huge amount of flows in
that region entails an application mix that hampers the classification into the classes defined in
Section BZZ. In addition, the classification of these flows has little attractiveness, because you

cannot take actions to improve those flows in a timely fashion, i.e. before the flows finish.

3.2.4 Results of the Traffic Classification Focused on the Most Con-
tributing Flows

The reasons described at the end of the previous section motivated us to apply the S&H method-
ology (see Appendix B for a description of the technique) to focus on the most contributing flows,
i.e. those with more than 0.01% of the capacity of the link®. In addition, we also remove the
short lived flows during less than 120 seconds although B&H did not remove them (note that S&H
results are not exact neither deterministic), due to its lack of importance. We show these results
in Figure B4.

As can be seen in the figure, B&H has removed the column of short lived with high packet rate
flows concentrated around the origin, and now there are not flows with packet rates greater than
800 BPH (in this figure we have not focused on this region, just there are not flows with higher
rates). Although the amount of flows removed from the E&H technique is very large, we still do

not find any remarkable cluster where applications of the same class are concentrated.

4As we are analyzing hour length traces, the capacity is the [IJ12 link speed multiplied by length of the traces:
Capacity = 622.08 Mpbs x 3600 sec ~ 2 Tb.
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Figure 3.4: Three dimensional scatter plot of flow duration, mean packet size and packet rate
focused on flows with mean packet size smaller than 1500 bytes after applying SH.

3.3 Summary and Conclusions

We have presented in this chapter a summary of the state of the art in traffic classification. This
research field is receiving a lot of attention from the research community, but the approaches
they are taken are moving to [Deep Packet Inspection (DPT], where the payload of the captured
packets is inspected on attempts to find certain bit sequences commonly referred as signatures.

Although DPI techniques have shown to obtain better results than non-DP1 methodologies, the

[OP1 approach is very demanding in terms of hardware requirements, and its online application is
very challenging. However, a traffic classification approach based on packet and connection level
parameters is less demanding and can be easily deployed online. Unfortunately, the results of our

approach showed in this chapter are not sufficiently promising to justify continuing with this line
of research.



Chapter 4

Throughput Analysis

In our search for traffic footprints, we decided to analyze the throughput of the flows. Throughput
is defined as the average rate of successful packet delivery over a communication network, i.e. the
speed at which the receiving end of a communication is getting error-free packets. At first glance,
the throughputs of the flows traversing a link seem to be a reasonable statistic to determine the
links’ status, as they might reveal low values where there are anomalies or the link is under-
dimensioned, or in the contrary they should reach a high stable value maintained during most of
the flow duration. Therefore, we proceeded to analyze the throughput of the flows contained in
the packet traces described in Section BZZ2.

First of all, we analyzed the mean throughput of the flows and graphed their histograms and
CDFs. The results of this analysis are presented in Section ET. The distribution of the throughput
does not resemble any common distribution, but it seems to be a mixture of distributions. As
making inference with this underlying distribution is very challenging, we decided to assume nor-
mality and compute hourly confidence intervals for the mean value of the throughput. The results
and motivations for the computation of these confidence intervals are presented in Section B
These results were not as expected, so we computed instantaneous values for the throughput and
moved to a time series analysis of these values (Section E=3). Finally, we summarize the throughput

analysis presented in this section with the conclusions obtained from the results in Section B2

4.1 Histograms and CDF's of the Throughput

We have computed for each flow observed in the analyzed packet traces its average throughput
during its lifetime. This analysis was performed on an hourly basis (e.g. taking only into account
the flows active between 12:00-13:00 to obtain the corresponding histograms for that hour interval,
therefore computing the throughput of the flow during that hour in case the flow is longer than
one hour) and in a daily basis (i.e. taking into account all the flows observed in the whole day).
We treat the mean value of the throughput for each flow as a realization, and compute the
corresponding histograms and empirical CDFs. We remove from this sample all the flows with
less than 50 packets, in order to remove small flows that are not of interest for actions and
can introduce a bias in the distribution, and make a distinction whether the protocol is TCH or
[ODA, then making three different plots for each study (one for MCH, other for IIIH and another
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one without making the distinction, hereafter total).

We represented the results for the total when measuring the whole day, however, in that
representation we can only distinguish a huge first bin, whereas the frequencies of the remaining
bins are nearly negligible. This happen because there are little flows with a high mean throughput,
whereas the majority of the flows have small throughput values compared with the observed
maximum. Therefore, we remove those flows with high value and represent again the histograms.
Those are depicted in Figure BT, Figure B2 and Figure E=3 respectively for total, TCH and [IH.

Histogram of total throughput
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Figure 4.1: Histogram of the mean value of the throughput for TCP and UDP flows, representing
flows with more than 50 packets and average throughput smaller than 2.6 - 10* bps.

As can be seen in the figures, the distribution of the mean throughput is quite similar between
CCH and ODOA (therefore also for its combination), but unfortunately it does not resemble any
well-known distribution. This can be also confirmed with the Cumulafive Thistribufion Function
[CDE] of the total traffic shown in Figure B4 (we do not present the analogous figures for only
[CCH and DM traffic as they are close similar to Figure B4).

The analysis of the mean throughput on an hourly basis evidenced two remarkable results. On

the one hand, the histograms for the two protocols are quite different, as shown in Figure 23 and
Figure B0 for MCPH and DA, respectively. We have selected the analysis interval 10:00-11:00 as
we found it representative of the whole analysis by hour intervals. The great disparity between
those figures is quite surprising, because this was not reflected when we analyzed the whole day
(compare with Figure B2 and Figure B23). This disparity makes clear the differences between both
protocols, where in [CH, due to slow start and other congestion avoidance mechanism [Ste97], a
great number of the flows have low mean throughput values, thus having high density in the first

bin of the histogram (16%). These mechanisms are not used in DM, so the main peak in the

histogram is found at greater mean throughput values (around 175 pytes per second (bps]) and
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Histogram of TCP throughput
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Figure 4.2: Histogram of the mean value of the throughput for TCP flows, representing flows with
more than 50 packets and average throughput smaller than 2.6 - 10* bps.

Histogram of UDP throughput
0.12 T T T T T

0.1

0.08

0.06

Frecuency

0.04

0.02

0 0.5 1 15 2 2.5 3

Throughput (bps) « 104

Figure 4.3: Histogram of the mean value of the throughput for UDP flows, representing flows with
more than 50 packets and average throughput smaller than 2.6 - 10* bps.
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Figure 4.4: ECDF of the mean value of the throughput for the aggregate of all the traffic within
the analyzed day, representing flows with more than 50 packets and average throughput smaller
than 105 bps.

has lower density (10%). In addition, as the number of IDH flows is considerably smaller than
the number of MCH flows, we found in the DA histogram empty bins, meaning that there are
not flows with that mean throughput value.

On the other hand, we found that the TP histogram shapes the histogram of the total traffic
within the link (Figure B74). This behavior could be hinted in the histograms for the whole day
(Figures 77 and B0, although the hourly analysis sheds light on this fact and removes any possible
doubt.

The graphs for the remaining hours not presented here, in addition to videos representing the

evolution of the hourly Empirical Cumulative Distribution Functions (ECDF5s] can be found in

the following link
http://www.eps.uam.es/~fmata/Publications/Files/throughput’%20analysis.rar.

4.2 Confidence Intervals for the Mean Values of the
Throughput

The understanding of the shapes of the distribution of the mean values of the throughput let us
analyze further the obtained results. If the results would have evidenced that the mean value of
the throughput follows some of the well-known distributions, we could have applied specific statis-
tic inference (after testing that the mean value of the throughput actually follows that supposed
distribution). However, from the analysis of the previous section, we cannot conclude that the

mean value of the throughput follows any well know distribution. Thus, we have to suppose a


http://www.eps.uam.es/~fmata/Publications/Files/throughput%20analysis.rar

4.2. Confidence Intervals for the Mean Values of the
Throughput 23
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Figure 4.5: Histogram of the mean value of the throughput for TCP flows, representing flows
with more than 50 packets and average throughput smaller than 2.6 - 10* bps for the time interval
10:00-11:00.

Histogram of UDP throughput n >50 Hour:10
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Figure 4.6: Histogram of the mean value of the throughput for UDP flows, representing flows
with more than 50 packets and average throughput smaller than 2.6 - 10* bps for the time interval
10:00-11:00.
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Histogram of total throughput n >50 Hour:10
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Figure 4.7: Histogram of the mean value of the throughput both for TCP and UDP flows, repre-
senting flows with more than 50 packets and average throughput smaller than 2.6 - 10* bps for the
time interval 10:00-11:00.

reasonable distribution for the mean value of the throughput, and then apply inference assuming
such distribution. Therefore, we supposed a normal distribution for the mean value of the through-
put, and applied the corresponding calculation of confidence intervals for the mean assuming this
distribution. The normality supposition is reasonable because the throughput may be caused to
many independent effects: congestions control, packet loss, number of packets per flow, etc. In
addition, the mean value is a weighted sum of the instantaneous values of the throughput. Such

instantaneous values of the throughput can be assumed to follow the same (unknown) distribu-

tion. Therefore, applying the [Central Limit Theorem (CLT], we can conclude that in the limit

this weighted sum will converge in distribution to a normal distribution. As we are only taken a
small realization, we cannot rigorously apply the CLTI. However, the knowledge that in the limit
the mean values of the throughput will follow a normal distribution let us assume reasonably the
normality assumption and apply the confidence interval computation assuming this distribution.
The 1 — « confidence interval I;_, for the mean of a normal distribution when its variance is
unknown is given by the following equation
N0 = (ZF ty_ti0/2—=), (4.2.1)
Vn
where Z is the sample mean of the observations, s is the square root of the sample variance, n
is the number of observations and t,,_1,,/2 is the 1 — a/2 percentile of a Student’s ¢-distribution
with n — 1 degrees of freedom.
We applied equation to our hourly based analysis of the throughput and computed the hourly

confidence interval for the mean of the mean values of the throughput. The obtained results are
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presented in Figure B8 for both MTH and DA flows. We have plot the throughput in the x
axis and the hour in the y axis. The hour -1 is equivalent to the time interval 23:00-00:00 of the
previous day, the hour 0 is equivalent to the time interval 00:00-01:00 of the analyzed day, and so
forth.
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Figure 4.8: Hourly confidence intervals for the mean of the mean value of throughput for both
TCP and UDP flows.

The analysis of the hourly confidence intervals was motivated by the following reasoning. If
there are no problems in the link, the flows that are sending information will reach high stable
values for its throughput, and these high stable values under good performance will be similar
between different flows. Therefore, if we compute confidence intervals for the means values they
should overlap because all of them should contain the high stable value of throughput, which
should have been reached by the majority of the flows due to the good performance of the link.

However, as can be seen in the figure, these confidence intervals do not overlap. The confidence
intervals during the night-time are centered at larger values of the throughput than during the
daytime. Some studies have shown that there is a clear traffic pattern within the duration of a day,
where the traffic load of a link starts growing at 08:00 and decays after 18:00 [TMWU7]. With both
results in mind, we can conclude that during daytime there is a huge number of users, which share
the link’s capacity and therefore their communications achieve lower throughput values. On the
contrary, during night-time the number of users is reduced dramatically, because they send smaller
amounts of traffic at higher rates. This leads to think that when there are fewer flows in the link,
they achieve a higher value of the throughput because there is less competition for the resources
and the congestion avoidance mechanisms do not apply. In conclusion, the abovementioned high
stable value for the throughput is not reached in all the hour time intervals, or at least it is not

the same value. Therefore, our approach for assessing link performance based on mean value of
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the throughput for all the flows failed to obtain acceptable results.

4.3 Time Series Analysis of the Throughput

The results of the previous section were not conclusive enough to infer the status of the links.
The problem was that the overall behavior of the flows was not invariant (i.e. its behavior does
not change with time) so the conclusions over a time interval cannot be extrapolated to other
intervals. Therefore, we decided to inspect the flows individually, expecting that under good link’s
conditions its behavior is predictable (i.e. there is a slow start transient period where the rate is
increasing and finally stabilizes at a high value).

To perform this analysis, we compute the instant throughput values every time a packet is
received as the size of the packet divided by the inter-arrival time. Then, we remove the initial
transient period because it masks the rest of the time series. Finally, we depict the corresponding
time series, being the time axis the number of packets received instead of the time elapsed since
the first received packet (thus we make all the time series plots comparable). In Figure B9 we

show what we have defined as predictable behavior.
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Figure 4.9: Time Series representation of the throughput of a flow with predictable behavior.

Unfortunately, this is not the usual behavior through the analyzed flows. There are flows
that begin with a growing period, after which the throughput decreases drastically (Figure B10).
Other flows never have a growing period, and their instant values of the throughput are always
decreasing (Figure EIT). On the contrary, there are some flows which throughput is always
growing, meaning that they never reach a stable limit for the rate (Figure EI2). Other kind of
flows that never reach a stable limit for their rates is shown in Figure EI3, where we can see

that its throughput have several growing and decreasing periods with an overall growing trend.
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Therefore, our initial assumption about predictable behavior is not satisfied by the majority of

the flows, and we cannot use it to infer the link under analysis status.
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Figure 4.10: Time Series representation of the throughput of a flow which throughput decreases
after a growing period.

4.4 Summary and Conclusions

In this chapter we have presented an analysis of the throughput for the flows in the AMPATH
0012 packet trace. First of all we analyzed the distributions of the mean value of the throughput
at different time scales (one for the whole day and 24 for each hour of the day). We were unable
to determine a well-known distribution to fit the obtained empirical ones. However, we present a
reasoning based on the CT to apply confidence intervals inference assuming a normal distribution.
Unfortunately, the results were not as expected, and we could not infer the performance level of
the link based on the obtained confidence intervals. Therefore, we decided to analyze individually
the instantaneous values time series of the throughput, in hopes that a predictable behavior (i.e. a
transient growing period after which the rate stabilizes) was achieved by the majority of the flows.
However, the results shown that this predictable behavior is rarely obtained, being the common

situation different combinations of growing and decreasing periods without reaching a stable value.
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Figure 4.11: Time Series representation of the throughput of a flow with decreasing behavior.
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Figure 4.13: Time Series representation of the throuhgput of a flow with several transitions between
growing and decreasing periods.






Chapter 5

Multivariate Normal Model for
Daily Traffic

The results of the throughput analysis were not conclusive, so we were not able to apply them in
order to detect anomalies or misbehavior in the network links. However, when we inspected the
confidence intervals we observed that the center of the intervals follows a clear day-night pattern
as the bandwidth consumption [ITMWY7]. Contrary to what could be expectable, the day-night
pattern of the throughput has its peaks when the day-night pattern of the bandwidth has its
off-peaks hours and vice versa. This led us to think that the day-night pattern was indeed an
invariant, because there have been several reports using different datasets but obtaining similar
day-night patterns, and therefore it was a suitable measure to obtain footprints. Motivated by
this reasoning, we analyzed the utilization day-night pattern of MRTW RedIRIS measurements
(described in Section B). Note that the utilization is just the consumed bandwidth scaled by
the total bandwidth. The results of this study are presented in Section B. These results were
conclusive enough, showing that the day-night pattern of different working days was similar,
whereas it was very different when compared with the day-night pattern of the holidays (note that
RedIRIS is an academic network) that actually were similar amongst themselves. Therefore, we
developed a network traffic model bearing this in mind. This model divides the 24 hour period
of a day into disjoint intervals, and obtains the average of the transfer rate within each interval.
All the measures from one day are treated as a multivariate sample from a multivariate normal
distribution. The details of the model are presented in Section B3. Finally, a validation of the

model is presented in Section B4, after which Section B2 summarizes and concludes the chapter.

5.1 Description of the MRTG Measurements

The data used in this study are MRTG [ORYR] records of different links within the Spanish
National Research and Education Network (NREN) RedIRIS. There are MEBTG records for the

traffic traversing the incoming and outgoing interfaces of several [Point of Presences (POPs] and the

access routers of some universities within the RedIRIS network. In total, there are measurements
for 23 different network devices that we treat as different links. The MEBTG records are extracted
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with a granularity of 5 minutes, i.e. every five minutes a new record is output. Each record has
five different values. The first one is the UNIX time of the measurements, that will be used in the
preprocessing step described in Section 653. The next ones are the average and maximum transfer
rates, in bpd since the last record, for both interfaces. As we know the values for the link capacities
for all the measured links, we transform these measurements into utilization values, just dividing
each record by the capacity in ppg. With this time granularity, we have 288 records per day and
direction. Our measurements span from the 2"¢ of February 2007 to the 31%¢ of May 2008, which
leads to 485 days worth of data per link.

5.2 Analysis of the Day-Night pattern of the Traffic Rates

In this section we analyze the MBTG measurements described in the previous section, graphing
the values of selected days, in order to better understand the behavior of the daily and weekly
patterns in the RedIRIS network. We first graphed the same day of the week for different weeks,
hoping that the day-night pattern is more or less the same in all the days. The following graphs
confirm our intuition. Figure B0 shows the incoming traffic for 6 consecutive Mondays (being each
line a different day). As can be seen in the figure, the peak and off-peak pattern is close similar to
the one described in [ITMWY97]. We see in addition that there are some days with bursty values.
This could be due to measurement errors, so an averaging process is encouraged in order to reduce

the impact of these peaks.
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Figure 5.1: Time Series representation of the utilization of a RedIRIS link for several consecutive
Mondays.

We repeated this representation for other working days (Figure B2 for outgoing traffic of
Tuesdays and Figure B3 for outgoing Wednesdays) and non-working days (Figure 64 for incoming
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traffic of Saturdays and Figure B3 for incoming traffic of Sundays). The other days or directions

not shown in this document are available upon request to the author.
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Figure 5.2: Time Series representation of the utilization of a RedIRIS link for several consecutive
Tuesdays.

The figures for the working days are similar amongst them. All of them show the day-night
pattern, having the peak and off-peak periods in the same intervals. On the contrary, the non-
working days show a very different pattern. The utilization is almost flat during the whole day,
although the bursty behavior is also obvious during the weekend. The differences are better shown

in Figure b8, where we have graphed a whole week.

We can see in this figure that the utilization during the weekend (the bottom two time series)
is considerably lower than the utilization during working hours in working days (the five top
time series), but is nearly the same during the night-time in all the weekdays. This leads us
to think that the traffic during night-time corresponds to applications that are left running and
generating traffic without user interaction. We have also repeated this procedure but selecting
days of different weeks, in order to avoid any possible correlation between days of the same week.
The obtained results are close similar to those of Figure 68, and are not presented here for the
sake of brevity. We therefore can conclude that the day-night pattern is similar between working
days, but that there is no day-night pattern during weekends, where the traffic is nearly flat. This
conclusion will be applied in the following section, where we present our model for the network
traffic.
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Figure 5.3: Time Series representation of the utilization of a RedIRIS link for several consecutive
Wednesdays.
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Figure 5.4: Time Series representation of the utilization of a RedIRIS link for several consecutive
Saturdays.
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Figure 5.5: Time Series representation of the utilization of a RedIRIS link for several consecutive
Sundays.
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Figure 5.6: Time Series representation of the utilization of a RedIRIS link for a whole week.
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5.3 Description of the Multivariate Normal Model

We describe in this section a new model for network traffic. This model takes into account the
observed day-night pattern in the previous section, as follows. As we have shown that the day-night
pattern of working days is close similar between them, both in shape and values, we decided to use
a multivariate distribution to model the samples obtained from the MRBTQ records for each day
(remember that each day corresponds to 1440 samples per direction). Therefore, the realizations
during different days at the same time can be considered to follow the same (unknown) distribution.
However, a 1440-variate distribution is not an adequate model, because its high dimensionality
makes it difficult to work with.

In order to make the model more manageable, we average the MRTG values in 16 disjoint
intervals of 90 minutes. The reasons to choose 90 minutes as the averaging period are manifold:
first, there is a slim chance of missing data in the five minutes timescale, which is filtered out by
averaging in 90 minute periods; second, the time of the measurements may not be the same in the
different POPY due to clock synchronization issues. A timescale of 90 minutes is coarse enough
to circumvent this problem (this reason is also pointed out by [PTZDU&]); thirds, the averaging
process prevents outliers and measurement errors to bias the results; last, but not the least, the
assumption of normality for Internet traffic holds when there is enough temporal aggregation of the
measurements [KNO2, kdMMPQU6] (this normality is also reinforced by the averaging period thanks
to the CLT). Therefore, in addition to simplifying the model, we obtain a reasonable distribution
for the averaged samples.

However, as we have seen in the previous section, this model cannot be applied to working
days and weekends at the same time, because their day-night pattern differs a lot. Therefore, we
focus on working days, as their day-night pattern is of higher interest, and remove weekends from
our sample. In addition, we remove potential abnormal data because we do not pursue to detect
measurement anomalies. We summarize in what follows the data that is removed from our data

set:

e The day to which the measurements are referred was Saturday or Sunday. We remove these

days because the day-night pattern is very different to that of the working days.

e At least one of the 90 minutes intervals have no measurements. If so, we have no value for
this period, and the day-sample will have missing values. In order to circumvent the possible
problems that these missing values can produce in latter analysis, we remove the entire day
from the data.

e Summer & Christmas Holidays. During summer and Christmas holidays the pattern of
usage of the network resources is comparable to the pattern of weekends. Therefore, we also
remove these days from the data. Summer holidays are considered since the 1%¢ of June till
the 30" of September. Christmas holidays are considered since 22" of December till 7" of

January.

e National & [Autonomous Community (AC] Holidays. The national holidays are removed

from the data for all the links because those days the centers are closed. If there is network

usage during those days, it comes from applications that people let running when they are
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not present in their workplace, so they are meaningless for capacity planning tasks. For BO
Holidays, those days are removed but only for the links that connect centers from that BQ
to the RedIRIS network, or links that aggregate traffic from any of those ACs. In contrast,
for the links that aggregate traffic for all the ACs, these days are kept (for instance links
connecting RedIRIS with the Internet).

e Exams periods. As we are mainly using traffic from universities, exams periods can affect
the traffic patterns, because students do not use the network as they do when they have no
exams. For this reason we remove as summer holidays the months of June and September.
It is not clear what to do about February; the exams in this month do not usually take place
in the same periods of time in our university, and we have no clue about how is this carried

in other universities. By the time of writing these days are kept in the data.

After the preprocessing step, the data set contains more than 200 samples, each being a day
that we model with a p-variate normal distribution, where p = 16. Note that this preprocessing
step can be done in an online fashion because these days are known in advance. Finally, to facilitate
the understanding of the relation of the number of the variable with the time period of the day to

which it refers, these associations are presented in Table Bl

Table 5.1: Equivalence in time of the variables.
’ Number of the variable \ Time interval H Number of the variable | Time interval

1 00.00-01:30 9 12:00-13:30
2 01:30-03:00 10 13:30-15:00
3 03.00-04:30 11 15:00-16:30
4 04:30-06:00 12 16:30-18:00
) 06.00-07:30 13 18:00-19:30
6 07:30-09:00 14 19:30-21:00
7 09.00-10:30 15 21:00-22:30
8 10:30-12:00 16 22:30-00:00

5.4 Validation of the Model

In order to validate the model, we have performed several verifications of the normality assumption
for the 16 variables of our model. Therefore, we have applied several univariate normality tests.
In addition to this, we have tested for multivariate normality. This is necessary because the fact
that several variables have univariate normal distributions does not imply that its tuple has joint
normal distribution [IWY2]. In what follows, we present the normality tests applied for both

univariate and p-variate distributions and the obtained results.

5.4.1 Univariate Normality Tests

We have applied three tests that are available in the statistic toolbox of Matlab for testing uni-
variate normality. These tests are the [Kolmogorov-Smirnov (KS]J, Lilliefors and the
[JB] tests. A brief description of these tests is presented in Appendix 0. We applied these tests

independently to samples of the outgoing and incoming directions. First of all, we tested the
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overall dataset for univariate normality. The conclusion for both directions in all the links tested
is that the null hypothesis of normality must be rejected. This does not necessary mean that the
normality assumption is not valid. The normality rejection can be due to variations with time of
the distribution parameters. This possibility motivated us to perform the change point detection
analysis that is presented in Chapter B.

To circumvent the possibility that the normality assumption is rejected because its parameters
are changing with time, we divide the whole dataset in disjoint subsets of contiguous day-samples,
and perform the normality tests to these day-samples. The duration of these subsets is sufficiently
large to perform the normality tests but smaller enough to avoid significant changes in the distri-
bution’s parameters. In total, we performed more than 300 normality tests per direction, and the
percentages of rejections of the assumption of normality with a confidence level a = 0.01 for each
variable are presented in Table B2 for the incoming direction and in Table B3 for the outgoing

direction.

Table 5.2: Percentage of rejections of the normality assumption per variable in the incoming
direction.

’ Number of the variable \ S Test \ Lilliefors Test \ I8 Test ‘

1 0.66 18.42 16.78
2 1.32 26.64 20.07
3 3.29 30.26 21.71
4 3.95 31.25 23.36
) 3.95 30.26 24.67
6 3.62 21.05 21.05
7 0.66 18.75 18.09
8 0.33 15.46 19.08
9 0.66 17.76 18.75
10 0.66 18.42 21.38
11 0.66 17.76 12.5
12 0.99 16.78 13.49
13 0 18.09 13.49
14 1.32 16.12 16.45
15 0.66 19.08 15.79
16 0 15.13 16.45

The results of the KS tests are very good. However, as it is described in Appendix Cl, when
the parameters are estimated from the sample, the results of the KS test tends to be conservative.
Therefore, we should focus on the results from the Lilliefors and the B tests. These are quite
similar for all the variables, and its maximum value is near 30%. This means that for that variable,
30% of the times the test was performed, the null hypothesis of normality was rejected. As we
are treating with real world measurements, it is expectable to have deviations from normality of
some samples that are detected by the normality tests. Therefore, a rate of acceptance greater to

70% is a value large enough to assume the model is appropriate.

In addition to the normality tests, we have also inspected the normality visually. To do this,

Quantile-Quantile {Q-Q] plots are commonly used. plots are plots were the quantiles of the

sample data are plotted versus the quantiles of the distribution the data are supposed to come

from (i.e. a normal distribution). If the assumption of normality holds, the quantiles are nearly
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Table 5.3: Percentage of rejections of the normality assumption per variable in the outgoing
direction.

’ Number of the variable \ [KS Test \ Lilliefors Test \ I8 Test ‘

1 0.33 18.57 20.52
2 1.63 22.80 21.17
3 1.95 23.13 21.50
4 2.28 25.73 24.76
) 2.61 23.45 28.01
6 0.65 17.26 20.52
7 0.65 11.73 18.24
8 0.65 18.24 20.52
9 1.30 16.94 23.45
10 0.98 19.22 22.48
11 0 15.96 15.64
12 0.98 15.64 12.70
13 1.30 18.24 14.98
14 0.65 16.61 14.98
15 1.30 21.5 22.15
16 2.28 23.13 25.73

aligned in a straight line, although in the tails of a [@=Q plot small deviations from the line can
be accepted. We present in Figure b= and Figure B8 the [@-Q) plots for two different variables of

different directions from the same link where the normality assumption is doubtless exhibited.

5.4.2 Multivariate Normality Tests

Testing multivariate normality is harder than testing univariate normality. There are few ana-
lytical procedures for testing multivariate normality and usually the results are obtained through
simulations and approximations. However, we can test for normality graphically, in a similar
way as was done with the plots. To do so, the Mahalanobis distance [Mah36] given by
equation (BZ) is used.

D? = (z; —2)'S Ya; — 7) (5.4.1)

J

In equation (BZ), x; is the j-th sample of the population, Z is its sample mean and S its sample
covariance matrix. If the sample comes from a normal distribution, the Mahalanobis distances
follow a x? distribution with degrees of freedom equal to the sample size n. Therefore, we can
make [J=Q) plots of these distances, which are referred as x? plots [ITW92]. If the points of this x?
plot follow a straight line with slope one through the origin the normality assumption cannot be
rejected. We present in Figure 59 and Figure 510 the 2 plots for the incoming and outgoing
directions, respectively, of the same link.

These plots evidence that also multivariate can be assumed from the samples of the model.
However, we see that the normality assumption is better held by the samples in the incoming
direction. This is reasonable, because the amount of traffic in the incoming direction is bigger
than in the outgoing one. Therefore, there is more aggregation of traffic in the incoming direction

and the normality assumption is better satisfied.
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Figure 5.7: Q-Q plot for variable 12 in the incoming direction.
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5.5 Summary and Conclusions

In this chapter we have used a multivariate normal distribution to model the daily traffic. We
have used 16 dimensions for our multivariate distribution as we have found this number to be a
good compromise between simplicity and detail. The multidimensional nature of the model keeps
track of the well-known daily patterns of traffic [ITMWUY7]. We present the reasons that lead us
to select a normal distribution for the model, which are based on formerly studies of normality
of traffic [wdMNMPU6, KNOZ]. Then, we have performed an exhaustive validation of the model,
testing for the multivariate normality assumption. However, testing for multivariate normality
is not straightforward, and several procedures must be followed. First, univariate normality for
all the dimensions should be tested independently. As these tests are applied to independent
samples, there is no need to apply corrections for the significances of the test (like the Bonferroni
correction). We have performed three different analytic tests for normality, and also assessed it
by graphical methods. Once the univariate normality assumption is verified (see Table B2 and
Table B3) it is necessary to test for joint normality, because the univariate normality does not
imply joint multivariate normality. Therefore, we computed the Mahalanobis distances for the
samples and performed x?2 plots, that confirmed the multivariate normality assumption. Thus, we
have a multivariate normal model which validity has been assessed with powerful and well-known
statistical tests. The next step is therefore to apply this model to real network traffic, in order
to obtain relevant information from network measurements. This application is described in the

following chapter.



Chapter 6

Online Load Change Detection
Algorithm

As was pointed out in the validation of the multivariate model, the fact that our hole dataset does
not follow a normal distribution can be due changes in the parameters of the distribution. This
intuition was reinforced with the univariate normality tests to subgroups of the datasets. This
motivated us to develop an algorithm to automatically detect the change points in the datasets,
so the results of the algorithm could be applied to network managing. This chapter is devoted
to present this online load change detection algorithm, aimed to identify changes in traffic loads
when monitoring Internet links. This online change detector was first introduced in [MAGD0Y] and
produces an alert when a sustained and statistically significant change has been detected. Then,
the network manager verifies the change and takes action if the change is truly relevant. First,
the related works on automated change detection are reviewed in Section Bl The algorithm
description is presented in Section 2. Then, we validate that the behavior of the algorithm
with synthetically generated time series, showing the results in Section B3 and Section Bz. This
work appears in [MAT(]. Following, we apply this algorithm to real network measurements in

Section B3. Finally, Section B8 concludes the chapter.

6.1 Related Work

Change points are defined as the time positions in the original time series where the local trend
is disrupted. Mostly, the problem of detecting change points has been tackled by segmenting
the original time series data into portions where the parameters of the chosen model remain
unchanged. The most naive models used in segmentation of time series are linear models. With
these segmentation models, the time series are divided into piecewise linear segments, and the
change points are located in the time instants where the slope of the linear segment approximations
changes. However, this kind of approach usually lacks in either good performance or scalability
(i.e. it needs all the data in order to find the segments). In [KCHPUI] a survey of the different
approaches for piecewise linear segmenting is presented, analyzing the aforementioned drawbacks.

In addition, the authors present a new algorithm that obtains good performance yet being online

43
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(i.e., not needing all the time series to obtain results). To circumvent this weakness, Guralnik et al.
present in [GSYY] an algorithm that not only reports changes when the parameters of the model are
no longer the same, but also when there is another model more suitable to fit the data (selected
from the set of all algebraic polynomials). In addition, more complex models have been also
applied to change point detection. For instance, Sharifzadeh et al. [SASD5] use wavelet footprints
to detect change points with the same underlying idea of using a polynomial basis, although this
approach has the advantage of scaling well to large datasets because of the compression property
of wavelets.

However, these fitted polynomial algorithms (and also other model/parameter change detectors
such as [PK(2]) do not use any knowledge of the process that generate the time series. This means
that the performance of change detectors can be enhanced for specific applications by properly
applying domain knowledge. Therefore, we apply this domain knowledge modeling the samples
with a p-variate normal distribution and focusing on changes in the mean, which are the most
significant changes for capacity planning tasks of Internet links. Another main difference between
our solution and other existing solutions in the literature is that the Behrens-Fisher procedure,
which is applied in our algorithm to verify the change points, is equivalent to inspect for change
points in p time series at one time (one for each variable), thus enhancing the change point

detection.

6.2 Description of the Algorithm

Our online load change detection algorithm aims to identify sustained and statistically significant
change points in network load measurements. Once detected, the change points are reported to
the network manager, allowing him to be aware of potential anomalies. The network measure-
ments of interest for the algorithm are load measurements, which can be easily obtained from
MEBTG [ORY8]. We preprocess the measurements in order to obtain day-samples according to the

multivariate model presented in Chapter B.

Our methodology then applies k-means (with & = 2) and the Muliivariafe Behrens-Fished

Problem (MBFP] statistical test in an online fashion, as follows. Every time a one-day measure-

ment is available, it is added to the sample set S. If the cardinal of our sample set is large enough
we apply k-means in order to obtain two suitable clusters, i.e. each one with at least 17 samples
(we note that we are looking for sustained changes, defining it as change free regions larger than
16 days, so we need S > 34). When we find two suitable clusters, we apply the MBEP statis-
tical hypothesis testing procedure after testing for normality. The MBEP procedure addresses
the statistical problem of testing whether the means of two normally distributed populations are
the same (null hypothesis Hp), for the case of unknown covariance matrices (more details on the
MBEP are presented in Appendix O). When the normality assumption does not hold (i.e. the
normality tests reject the null hypothesis) the algorithm still goes on to the following step, and
applies the MBEH test to the populations. However, the network manager is warned about this
fact in order to not blindly trust the results of the algorithm. Finally, if the MBEP test rejects the
null hypothesis, an alert is placed to the network manager that indicates a potential change point,
and the oldest cluster is removed from the sample set. The flux diagram of Figure Bl summarizes

the description of the algorithm.
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Figure 6.1: Flux diagram of the online algorithm.

6.3 Validation of the Algorithm’s Performance

In order to assess the performance of the load change detection algorithm, we have tested it with
synthetic data. These synthetic data allow us to verify whether the algorithm is detecting the
changes properly. We can do so because we know beforehand where the changes are located.
The synthetic datasets generated to test the algorithm can be classified into two different groups,
depending on whether they have changes or not. In what follows we describe the datasets generated
and show the results of the algorithm performance evaluation. The datasets are N 16-dimensional
normal distributed vectors?, with N = 9000, which is large enough to assess the validity of the
obtained results (note that a sample of N = 9000 is equivalent to analyzing approximately 25

years of data in our algorithm).

6.3.1 Datasets with no changes

We have generated four datasets with no changes, i.e. having all the samples within the dataset

the same mean vector. Even in this case, there is always the chance of detecting a change anyway,

thus having [False Positives (FP] alarms. These [ER can be controlled with the significance level «,

which is the probability of rejecting the null hypothesis (that is, detecting a change) even though
there is no change in the data (Type I Error). The purpose of these datasets is to evaluate the
[P rate under no changes, which asymptotically must approach the probability of Type I Error.

P(Type I Error) = P(reject Ho|Hy is true) = «
. # of rejections
= lim —————

Jim 7 : (6.3.1)

where M is the total number of tests performed with datasets that fulfill Hy.

1all the vector components are independent of each other
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Table 6.1: Datasets generated with no changes.

] Dataset

\ Description \

All Equal (AE)

All vector components have the
same mean and variance

Means (M)

Each vector component has a
different mean, but their
variances are the same

Variances (V)

Each vector component has the same
mean, but different variance

Means Variances (MV)

Each vector component has different
mean and variance

Description of the datasets

The four datasets generated without changes in their means are obtained through four different

affine transformations on four different random samples of N realizations distributed according to

a standard 16-variate normal distribution. The applied transformations have been chosen in order

to obtain four datasets with the characteristics that are summarized in Table G.

Results
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Figure 6.2: False positives ratio in datasets with no changes.

We have measured the [False Positives Ratio (FPR] given by (B23) for different significance
levels . The results are presented in Figure B2, which shows the of each dataset versus the

significance level used in the tests, also with the theoretical (that equals a). The remains

almost negligible for significance levels smaller than o = 0.06. Thus, we have a large interval of
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possible significance levels with good performance. Significance levels above 0.06 experiment an
increment in the EPR], but also in this region the of the algorithm when applied to these
datasets is smaller than the theoretical one. The differences in the performance of the algorithm
for the four different datasets are not relevant, because these differences are mainly due to random
number generation issues (we have confirmed this by applying different transformations to the

same random generated sample).

6.3.2 Datasets with staggered increments

As the aim of the algorithm is to detect changes in the load, after confirming that there is a low
ratio of EPS, a validation with controlled changes follows. Thus, we have generated two different
datasets with staggered increments of duration one and three months, i.e. the distribution of the
samples remain the same for one (three) month(s), and after that, the mean is increased. We
note that this kind of growth is the most significant for the capacity planning task, because linear
increments are easily tracked by classical time series analysis, so a forecast of upgrading times when
the changes are linear is straightforward. This is accomplished by fitting a time series model to
the data (for instance an [Auto Regressive Integrated Moving Average (ARIMA] model [PTZDUA])
and then predicting when the time series will be above a given threshold ([BDYI]) where the

of the link might be compromised. Therefore, detecting staggered increments in a timely fashion

is crucial for network operators, because the reduction in delivered to its customers adversely

affects the operator’s reputation.

Description of the datasets

The growth rate for the monthly staggers is chosen such that effective annual growth is around 90%,
which is in accordance with popular reports about the Internet traffic growth ([OdI03]). Thus, the
monthly growth is approximately 6%. The quarterly growth has also been set to approximately
6%, on attempts to make the obtained results comparable, i.e. we have longer periods without
changes in the quarterly growth dataset, but the size of the staggers (which are the relevant facts
to detect changes) are the same in both time series. Finally, the theoretical number of changes
that should be detected with the algorithm in the Monthly Increments (MI] dataset is 300 and in
the Quarterly Increments (QI] dataset is 100.

Results

In Figure B23 we show the number of detected changes on the DMI data as a function of the
significance level of the performed tests. This figure shows very promising results. The number of
detected changes is in the range 295-300, while the correct value is 300. In addition, the number
of false negatives is small for all the significances tested.

Figure 64 presents the same information but for the data. Here the performance has been
reduced. There is no significance level at which we detect exactly the same number of changes that
are theoretically in the dataset. In addition, the false positives have enlarged, being now greater
than 50. Above significance values greater than 0.06 we detect more than 300 changes, meaning
that every theoretical change we alert for 3 detected changes. We will shed light on the causes of

this misidentification in Section B4 by inspecting the results at a fixed significance level.
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6.4 Analysis of the Validation Results at Fixed Significance

Level

In this section, we further inspect the synthetic data presented in the previous section, but with a
fixed value for the significance level. The value selected for the significance level is a = 0.05, as it
is the most commonly used value. By making the significance level fixed we can apply analysis of
the Hotelling’s T2 statistic presented in Appendix [E. In addition, we can present graph plots of
the clusters found and inspect the reported change points. On those graphs, we plot the values of
the projection in one vector component, using different color-marker schemes to differentiate the
change free regions according to the results of the algorithm. In addition, we mark with a straight
line the mean of all the values within a change free region, making it easier to judge the validity
of the reported change points. As the amount of points generated for each vector component is
humongous, we will focus on certain regions of the plots that we have found to be relevant for the

validation.

6.4.1 Datasets with no changes

This subsection is devoted to inspect the datasets generated with no changes. In what follows, we
focus on the dataset, as we have found it to be representative of all the datasets
generated with no changes.

In Figure B3, we show the change free regions found by the algorithm in the first 300 samples
of the BH dataset. Although the samples are concentrated around the true mean (100), the
algorithm detected some change points. This happens because we are applying a statistical test,
whose confidence level can be interpreted as the rate of false positives in the limit. Therefore,
although a perfect algorithm would have detected no changes in this dataset, it is a normal
situation when applying statistical tests to have some EPd due to the confidence level.

The change points reported by the algorithm in this dataset can be due to the following reasons:

e The algorithm found one cluster with mean above the theoretical followed by a cluster with
mean under the theoretical (or vice versa). This can be easily seen between the first two

change free regions in Figure 63.

e The weighted sum of the differences in all the vector components is above F;jv‘ip (Ap-
pendix B). To illustrate this fact, we present in Figure B8 the same zoom area for vector
component 2. The differences between the last two change free regions on Figure B3 and
Figure 68 (the dots (-) around sample 200 and the circles (o) on its right) are very small,
but the addition of these differences through all the variables motivates reporting a change

point.

6.4.2 Datasets with staggered increments

As was described in Section B232, these datasets are designed to be invariant both in mean and
variance for a fixed period of time after which the value of the mean is increased. Thus, in these
regions without changes we are in the same case as in the AH dataset. We therefore inspect each

stair of the dataset from the point of view used in Section BG27.
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Figure 6.5: Time Series representation of the change free regions for the first 300 samples of the
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Monthly increments dataset

The clusters in the final samples of this dataset (sample 8000 and above) are easily identified by
the algorithm, as the differences between those clusters are big enough due to the increment by
percentages in each theoretical change point. Thus, we will zoom in the beginning of the dataset
and focus on the first samples (sample 120 and under). This region is depicted in Figure G2,
where we have placed vertical lines in the time instants where the theoretical change points are

located.
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Figure 6.7: Zoom to the first 120 samples of the 1% vector component of the MI dataset with
delimitation lines for the theoretical change points.

As can be seen in the figure, the variance of the sample is big enough to make samples in
different theoretical change free regions (therefore with different means) to be indistinguishable in
some cases. For instance, take a look in the first change free region (under sample 30). The circle
(o) samples in this region are generated with the same mean as the dot (-) ones. However, these
circle samples resemble more to those circle samples in the second change free region (between
samples 30 and 60) than to the dot ones with the same theoretical mean. This is detected by the
algorithm through the clustering technique, which divides the first region before the theoretical
change. As the difference between the means is truly significant, the MBEP procedure detects
it and a change point is reported between these clusters. That is what makes the algorithm to
misinterpret the true change point between those regions, which we have confirmed to happen
also in other instants of the dataset. This rationale explains all the false positives detected by the
algorithm, that under small variance samples or with a more restrictive significance value would
not have been detected. However, if we pay attention to the second change free region, we find

that there are not significant differences between the two clusters found by the algorithm when
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inspecting them visually. Remember form Section G271 that the detected change point between
these two clusters is also due to the differences in the means of the remaining vector components,

although apparently in this component there is no change.

Quarterly increments

In this section, we deal with the staggered synthetic data whose increments happen every three
months (90 samples). For the same reason that in the K dataset, we will zoom in to the first
samples, because there the samples are more concentrated and it is difficult to assess the validity
of the algorithm without this zoom. In Figure B8 we have zoomed in to the first 360 samples, and
represented the change free regions found by the algorithm in conjunction with their means and

the theoretical change points.
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Figure 6.8: Zoom to the first 900 samples of the 1%¢ vector component of the QI dataset.

In that figure it can be easily seen that in each theoretical change free region, our algorithm
reported several change points. The reason for the detection of these extra change points is the
same pointed out in Section B2, as the extra change points are detected within a theoretical
change free region, where the mean and the variance remain constant (same as BH dataset). On the
other hand, there are some theoretical change points not reported by the algorithm (for instance
the one in sample 270). The reason for the misidentification of some theoretical change points
was described in the previous subsection for the M dataset. As the samples have a relatively
large variance (compared to their mean) in this region, this leads to samples of one theoretical
change free region that resemble more to those of adjacent regions than to the samples on its own
region. This similarity is detected by the clustering algorithm, and the fact that there is actually

a difference between them is finally confirmed by the statistical procedure.
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6.5 Change Point Analysis with Real Network Measure-

ments

n this section we present the results of applying our methodology to real network measurements
obtained in the RedIRIS network. These measurements follow the description given in Section B,
although in this case the measurement period is larger. We have now measurements from 18 links
that spans from the 6" of February of 2007 to the 10*" of March of 2009. Table B2 summarizes the
number of tests performed and alerts generated by our algorithm when applied to this dataset.
The second and fourth columns show the number of times the MBEP testing methodology is
applied. This is the number of times that the clustering algorithm was able to form two clusters
with enough size to apply the test. The third and fifth columns show the number of times an alert

is generated, i.e. the null hypothesis of equality of means is not verified.

Table 6.2: Results of the online algorithm.

University Incoming direction || Outgoing direction

link Number | Number || Number | Number

of tests | of alerts || of tests | of alerts
U1l 68 13 76 11
U2 68 12 130 9
U3 62 13 75 11
U4 86 10 57 11
U5 64 11 84 11
U6 56 11 76 12
u7 85 11 89 10
U8 112 10 75 12
U9 79 10 59 12
U10 65 11 102 12
Ul1 67 11 67 12
U12 103 9 75 11
U13 73 10 84 10
U14 108 10 61 11
Ul15 98 8 85 9
Ul16 59 12 57 11
uU17 123 10 88 11
U18 82 11 94 13

[ Average || 80.94 | 10.72 [ 79.67 | 11.06 |

As can be seen in Table B3, the advantage of our online algorithm to network load detection

is that it decreases the Operational Expenditure (OPEX] by reducing the human supervision. We

remark that our algorithm produces an alert only in case a stationary change in the load happens.
The rest of the time the link is considered normal and no intervention from the network manager
is required. Regarding the time span of the measurements, our algorithm placed less than 13
potential network load changes requiring human supervision in a period of more than 750 days
(including holidays). That means a potential load change nearly every two months.

To illustrate these results, we present in the following figures the obtained clusters using differ-
ent color-markers to differentiate them. Figure B9 shows the obtained clusters for the incoming
direction of university link U1 for the time interval 12:00-13:30 (variable 9) and Figure 610 shows
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the clusters obtained for the outgoing direction of the same university link and the same time

interval.
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Figure 6.9: Change points found by the online algorithm in the incoming direction of university
link Ul on the time interval 12:00-13:30.

Almost all the clusters obtained by the algorithm are reasonable. However, there are some
reported clusters that do not seem to have been properly detected. For instance, the change point
reported between samples 100 and 150 seems to be a [EP. Here is worth remembering the reasoning
followed in the validation of the algorithm in Section B4. There, it was pointed out that a reported
change point can be due to differences in other variables different than the one shown. This is
evidenced when comparing Figure 10 with Figure B1], where we have plotted the same clusters
but for the time interval 21:00-22:30 (variable 15). In variable 15 there is actually a noticeably
change point between those clusters, which motivates the reported change point by the algorithm
although in variable 9 there was not a change point.

Finally, we have used the reported clusters to cross-validate the network model presented in
Chapter B. Thus, we have repeated the univariate normality tests performed in Section B2 but
for the clusters reported by the algorithm. The results are shown in Table for the incoming
direction and in Table for the outgoing one.

As can be seen in the tables, the results of the univariate normality tests are slightly worse
than when they were applied to fixed length subgroups of the datasets. The reasons to obtain
worse results are twofold. First, we are applying now the univariate normality tests to larger
populations. Therefore, the normality tests are more powerful, and some cases that were before
dubious but finally accepted are now rejected. On the other hand, our algorithm tests whether
the means have change or not, but without making any assumption about the variances. However,
if the variances are also changing within the reported clusters, the normality tests reject the null

hypothesis although the mean remains constant. We plan to enhance our online algorithm by also
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Figure 6.10: Change points found by the online algorithm in the outgoing direction of university
link Ul on the time interval 12:00-13:30.
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Figure 6.11: Change points found by the online algorithm in the outgoing direction of university
link Ul on the time interval 12:00-13:30.
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Table 6.3: Percentage of rejections of the normality assumption per variable in the incoming

direction for the clusters reported by the online algorithm.
’ Number of the variable \ K3 Test \ Lilliefors Test | IR Test

1 1.47 25.49 23.53
2 3.92 34.80 26.96
3 6.86 34.80 28.92
4 8.33 34.31 26.96
5 7.35 37.25 29.41
6 5.39 31.37 31.37
7 1.96 25.98 30.88
8 0.98 22.06 24.02
9 0.98 25.49 25.98
10 2.45 21.08 23.53
11 2.45 21.08 19.61
12 1.96 21.57 19.61
13 0.49 22.55 24.51
14 2.45 21.57 22.06
15 1.47 23.04 22.55
16 2.45 19.61 23.04

Table 6.4: Percentage of rejections of the normality assumption per variable in the outgoing
direction for the clusters reported by the online algorithm.
’ Number of the variable \ [KS Test \ Lilliefors Test \ 0B Test ‘

1 0.48 23.44 26.32
2 3.35 27.27 25.36
3 4.31 27.75 26.32
4 4.31 31.10 30.14
) 5.74 32.54 31.58
6 2.39 16.75 24.88
7 1.91 17.70 24.40
8 2.39 21.05 26.32
9 2.39 22.49 28.71
10 2.39 22.49 29.19
11 0.96 22.49 18.66
12 1.44 20.10 18.18
13 1.91 21.05 19.14
14 1.91 17.22 17.22
15 5.26 26.79 28.23
16 3.83 24.88 27.75
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detecting change points taking into account variations in the variance.

6.6 Summary and Conclusions

In this chapter we have presented an online change load detection algorithm aimed to automat-
ically detect change points in the load of the Internet links. This algorithm was first introduced
in [MAGD0OY] and validated in [MATJ]. Our algorithm makes use of powerful and well-known
statistical tests procedures in order to assess the validity of the clusters obtained by k-means. The
results of the algorithm when applied to real network measurements are very promising, as shown
in the figures in Section B33, and allow a network operator to reduce the PEXI by preventing the
network manager to visually inspect continually the time series of the links. The future work will
cover the analysis of the obtained change points, in order to model them to allow prediction of

future change points.






Chapter 7

Conclusions and Future Work

This master thesis covers the early stages of research work for almost two years. The described
contributions follow the investigation of network invariants that could be applied for inference.
This research began with the analysis of packet and connection level statistics that were applied to
classification of flows by the generating application. This unfruitful classification method moved
us to analyze the throughput in a per flow basis. We started analyzing the distribution of the
mean values of the throughput, making a distinction whether the protocol under use was ITCH or
[0DP. This distribution did not resemble any well-known distribution, so we decided to suppose
normality (that was assumable thanks to the L) and compute confidence intervals for the
throughput mean value. The underlying reasoning was the assumption that, under adequate link
conditions, these confidence intervals must overlap because the mean throughput value is more or
less the same. Unfortunately, the results showed that the mean value of the throughput follows a
day-night pattern opposite to traffic pattern. When the traffic of the link has a peak, the mean
value of the throughput has an off-peak, and vice versa.

This finding motivated us to analyze the day-night traffic pattern, because it is easier to measure
and their values can be directly applied to capacity planning tasks. We started by analyzing the
day-night traffic pattern of the RedIRIS’ network. The conclusions were that this day-night pattern
was an invariant during working days. However, weekends do not exhibit the same day-night
patter. Instead, the day-night pattern of the weekends was nearly flat. As the amount of traffic
during working days is considerably larger than during weekends, we developed a model taking into
account only the traffic during working days, ignoring the weekends’ traffic. The presented model
keeps track of the day-night pattern, averaging measurements in disjoint intervals, thus obtaining
a multivariate model for the daily traffic. Based on previous research [vdMMPOG, KNUZ] we fit the
distribution of the model to a normal distribution. However, we did not only rely on those works,
and tested for multivariate normality real network measurements preprocessed according to our
multivariate model. The results of the multivariate normality test show promising, moreover taking
into account that they are applied to real world values. Nevertheless, the normality assumption
held only when grouping the samples in populations of small size, being always rejected when
applied to the whole dataset. We envisaged that this phenomenon was motivated by a change
of the normal parameters with time. Thus, we developed an online algorithm for tracking these

changes in the parameters, focusing on the mean value of the traffic load.
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We presented our algorithm in [MAGD0Y]. This algorithm uses the previously defined model,
and applies powerful machine learning and statistical testing procedures to, respectively, find the
changes and determine its significance. The validation of the algorithm [MAT0] showed that,
under input following the assumptions of the algorithm, our algorithm manages to properly detect
the significant change points in a dataset. The application of our algorithm to real network
measurements from the Spanish NEEN RedIRIS evidences that the network operators can reduce
considerably their OPEXI, by preventing the network managers to continuously inspecting visually
the network time series measurements.

As future work, we plan to further analyze the change points reported by our online algorithm.
We find useful to characterize the distribution of the change points, and the correlation of the
change points between the incoming and outgoing directions of the same university. We also plan

to develop a software application for traffic prediction in hourly intervals.
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Appendix A

k-means

Throughout the master thesis work we have applied several time clustering techniques in our
algorithms. The clustering algorithm selected for this task has been k-means [DHSUT]. We present
in this appendix a brief description of the k-means algorithm for the sake of completeness.
k-means is a two-step iterative algorithm that finds the clusters that minimize the sum of the
squared distances from each instance belonging to the cluster to a representative of it, namely
centroid. The algorithm needs as input the number k of clusters expected or actually existing
in the dataset. It starts by selecting k random instances from the data as the original centroids.
Then, it computes the distances from each instance in the data to every centroid, and assigns the
instance to the cluster represented by the centroid to which the distance is the smallest. After
that, the means step consists of computing the new representatives for each cluster, which are
the means of the instances belonging to each cluster. The algorithm then iterates repeating these

steps until the new computed centroids are the same that were computed in the previous one.
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Appendix B

Sample & Hold

B&H was first introduced in [EV02]. Later, a more comprehensive version was published [EVO3].
The objective of the technique is to monitor the traffic of a link, measuring accurately the amount
of traffic sent by the “heavy hitters”, i.e. the most contributing flows. The results of B&H can
then be applied to usage-based pricing, where the most active users are charged proportionally to
the amount of the resources consumed, whereas the remaining users just pay a fixed fee. However,
as link speeds and the number of flows increase, keeping a counter for each flow is too expensive
(using Ftatic Random Access Memory (SRAM]) or slow (using Dynamic Random Access Memory
[DRAM]). Therefore, sampling methods should be applied.

BXH use ordinary random sampling, same as NetFlow (see Section 22 of Chapter B), sampling

each packet with a probability that depends on its length, but once a packet from a flow is sampled,
the following packets belonging to the same flow are also sampled, as follows. If a packet is sampled
but the flow it belongs to has not been sampled yet, a new memory entry is created for that flow
containing the statistics of the sampled packet. Afterwards, every time that a new packet of the
same flow is sent, the memory entry is updated with the corresponding statistics. This procedure
is exemplified in Figure B

Searching the memory each time a packet is seen and updating the corresponding counters may
lead to overflow resulting in packets not inspected thus reducing the accuracy of the methodology.
However, the authors show that EX&H has reduced memory requirements that allows the flow
memory to be in ERAM instead of in a slow DRAM, allowing scaling the methodology with line
speeds.

If we want to detect the flows that send more than t% of the link capacity in a measurement
interval C, there can be at most 100/t of such flows. Therefore, the flow memory should be
dimensioned to allow the allocation of 100/t * 0 + S flows, where o is an oversampling factor to
prevent false positives which may occupy all the positions intended for the most contributing flows
and S is some extra memory entries to ensure the flow memory is not filled completely. In order
to sample 100/t % o flows in average, we should set the bit sampling probability to p = 1% ‘&
With these parameters, the authors showed that the false negative probability (i.e. the probability
of not detecting one of the large flows of interest) is very close to e~°, that for an oversampling
factor o = 100 is in the order of 1044,

E&H has the benefits of being easy to implement and that it generates small reports compared
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8 Sampled packet (probability=1/3) Flow memory
— Entry created
- Entry updated F13
F3 2

F1| |F1| |F2| |F3| |F2| |F4 |F1| |F3| |F1
4 4 4

Transmitted packets

Figure B.1: Example of SH algorithm. The first time a flow is sampled a new entry in the Flow
memory is created (solid lines). Then, the counter is updated for the remaining packets belonging
to that flow (dashed lines). This figure was taken from [EV0Z].

to NetFlow. The main differences between both techniques are illustrated in Figure B=2.

Sampled NetFlow
Und Large reports to
All Ever )t(th lpdate entry or Largeflow |, ., . ........| —
packe memory
packets create a new one management station
Sample and hold
Update existing entry
Yes

Small reports to

No Pass with
—=( Has entry probability S,,Tg#,g?yw ------------
All packets p ~ size Create management station

Figure B.2: Differences between NetFlow (top) and SH (bottom). This figure was taken
from [EV(2].



Appendix C

Univariate Normality Tests

C.1 Kolmogorov-Smirnov Test and Lilliefors’ Correction

The KS test is a quite general test to determine the equality of one-dimensional probability dis-
tributions. It can be used to compare two samples (two-sample K3 test) or to compare a sample
with a reference continuous probability distribution (one-sample K3 test). In our study we have
used the one-sample K3 test variant to compare our sample with the normal distribution. The
hypothesis of the test is that the sample X = z1,x5,...,x, comes from a continuous probability
distribution given by F(x). To proceed with the test the following three steps are needed.

1. Order sample values (1), Z(2); - - -, T(n)-

2. Compute the ECDH F, (x) as follows

0 ifx <z
Fn((ﬂ) = if T(r) <z< T(r41)

1 ifz>x(n)

3. Compute the maximum discrepancy between the ECIOH F,, (x) and the theoretical one F(z)
with the statistic
D,, = maz|F,(x) — F(z)| (C.1.1)

which distribution, under the null hypothesis, has been tabulated [RS94]. If once fixed a,

the computed D, is greater than the tabulated value, the null hypothesis is rejected.

However, if the theoretical distribution function F(x) is computed by estimating the parameters
from the sample, the distribution of D,, is only an approximation, thus the power of the test
is reduced [Sfe74], and the results of the test are very conservative. The Lilliefors test arises
when correcting for this bias. So, Lilliefors [Lil67]) computed the distribution of D,, when the
parameters of the normal distribution (u, 0?) are estimated through the sample parameters (7, §?)
and tabulated them [She04].
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C.2 Jarque-Bera Test

The OB test [IBR0] tests the deviation from normality using the skewness and kurtosis of the

sample. The [IB statistic is as follows

JBS = %(52 + @) (C.2.1)

where n is the sample size. S is the sample skewness and K is the sample kurtosis given by

. % Sy (xi —7)°
o= (&5)33/2 IS (wi—1)2)32 (C.2.2)
and N lzn (:Efj)zl
K== (C.2.3)

ot (5 it (zi - 1))t
This statistic has asymptotically a x? distribution with 2 degrees of freedom under the null hy-
pothesis of normality. This null hypothesis is a joint hypothesis of skewness and excess kurtosis

being both zero.



Appendix D

Multivariate Behrens-Fisher
Problem

The Behrens-Fisher problem is a statistical problem of testing whether the means of two normally
distributed populations (X1, X(?)) are the same (null hypothesis Hy) or not (alternative hypoth-
esis H1) when the variances of the populations are unknown. The generalization of this problem to
multivariate data is known as the MIBEP [And58] that is the one we use here. The assumptions are
that X ~ Np(u(i), E(i)),i = 1,2; i.e. the samples of population i come from a p-variate normal
distribution with mean p(¥ and covariance matrix (), where in our case p = 16. To solve this
problem the Hotelling’s T2 statistic is used, and two different cases arise depending on the sizes of
the populations. If both populations have the same number of samples N, and the numbering of
the samples does not depend on the samples themselves, the procedure is to form a new random
variable Y that is the difference of the initial populations, i.e. y; = mél) - xf),j =1,2,...,N. For
this new random variable (that under the null hypothesis has zero mean) the sample mean vector

Y and the sample covariance matrix S, are computed. The T2-statistic in this case is as follows:

VS, N —p
N -1 p

T? =N (D.0.1)

where Y denotes the transpose vector of Y. It can be shown (see chapter 5 of [And58]) that under
the null hypothesis T2 follows a noncentral F distribution with p and N — p degrees of freedom

and noncentrality parameter
v= (1 — @)= (W — u @Y, (D.02)

Under the null hypothesis, pu3 = p2, so v = 0. As the noncentrality parameter is zero, the

distribution of equation (IDTIl) turns out to be a Snedecor’s F distribution.

On the other hand, when the sizes of the populations are not equal, a transformation is needed
before computing the T2-statistic. If the sizes of X() and X are respectively N; and Na,

assuming that N7 < Ny without loss of generality, we obtain a new random variable @) through
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the following transformation, as follows:

N RE 1 &

_ .. 1.2 (2) (2) .

g =z — A Y — 7, =1,---,Nq, D.0.3
7T N7 NN, kz::l LA l; v J ! (D-0-3)
where ;c%”, n=1,2,---,Ni, are the samples of X(!) and m§2), m =1,2,---, No, are the samples

of X, As shown by [And58] this new random variable has a mean vector equal to the difference
of the mean vectors of the two populations, and the covariance matrix is given by the following
equation:
Ny
COU(an Qm) = E[Qn - E[qfl” ' ]E[Qm - ]E[qm]] = 5n,m(21 + EEQ)v (DO4)
where 0y, ,,, is the Dirac delta function evaluated in n —m and E is the Expectation Operator. The

T2-statistic in this case is as follows:

T2:N qu_thNl_p
1N1—1 P '

(D.0.5)

As in the previous case, equation (D) is distributed under the null hypothesis as a Snedecor’s
F distribution with p and N7 — p degrees of freedom.

Once the T? statistic is computed taking into account the case that applies of the above
described, the statistical test at level a@ proceeds by comparing the obtained T2 value with the
1 — « percentile of the Snedecor’s F distribution with the appropriate degrees of freedom. If the
degrees of freedom are p and m, we denote this percentile by Fpl;f. Then, the null hypothesis is
rejected if T2 > F) @



Appendix E

Analysis of the Hotelling’s T

Square Statistic

Let us further analyze the T? statistic presented in equation (DTI1) of Appendix O (we suppose
that the two populations have the same size N). The term YSy_ 1Yt is a quadratic form of the p
vector components of the random vector Y. As we are using synthetic data, we can approximate
with the true covariance matrix (the one used to generate the samples in Section B23) in what
follows. This matrix has been chosen to be diagonal, in order to have all the vector components
being independent. This implies that the quadratic form defined by the covariance matrix is the
weighted sum of the square of all the vector components (being the weights given by the elements

of the diagonal covariance matrix).

We now have a look at the simplest case. In this case, all the vector components have the
same variance, so the covariance matrix is a multiple of the identity matrix. Then, as the vector
components of Y are the differences in the means of the two populations, the quadratic form
defined by (D) is the square of the Ly norm with the usual metric on R of the vector Y,
scaled by the variance and other factors that take into account the dimensions of the data and
the sample. If we fix the significance value « (for instance, a = 0.05) we are comparing the value
obtained from (ID0) with a value that is a function of N, given that the dimension of the random
vector p is fixed. This function is the 1-« percentile of the F distribution with p and N — p degrees
of freedom (F ;jva_p). We reject Hy if the T2 statistic value is greater than the value of the function
evaluated in that N. This function decreases with IV, which means that when we increase the
number of samples NV, we are stricter with the value of the T2 statistic (we have more samples so
we have better estimations and then we have the same confidence rejecting at lower values of the
statistic). So, the maximum value of the function is obtained with the minimum N that it can
take. This N is equal to p 4+ 1, because if N < p the estimate of the covariance matrix can be a

noninvertible matrix. This means that the maximum value is the 95"

percentile of the Snedecor’s
F distribution with p and 1 degrees of freedom. With the value of p used in our synthetic data
(p = 16), that gives us a maximum value for the function of 231.9660. Assuming all the vector

components of Y equal, this gives us

(0]
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YS,\V'N —p  VELVIN-p
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N -1 p N -1 P

N N—pz”:373~ N N-ppj*
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5th

As we reject the equality of means if the T2 statistic is greater than the 95t percentile of the

F distribution with the corresponding degrees of freedom, this is equivalent to

_ 1—
7 Foy,N—1

o2 N N-p

(E.0.2)

For the case stated above (N — p = 1), we will reject the equality of means if g—z > 231.9660.
In Table El we summarize the rejecting values under the hypothesis of equality of variances and

equality of change in all the vector components for the first ten suitable values of V.

Table E.1: Rejecting values for the quotient between the square of the change in one vector
component and its variance.

’ N \ N-—p \ Critical value ‘

17 1 231.9660
18 2 9.1768
19 3 2.7449
20 4 1.3880
21 ) 0.8769
22 6 0.6240
23 7 0.4775
24 8 0.3835
25 9 0.3188
26 10 0.2719

It can be observed that these values decrease with V. If we study the critical value as N tends
to infinity, this critical value will tend to 0. This means that in the limit we will reject the equality
of means unless their difference equals zero. However, with typical values of N this would not
happen. These results will be used in the following section when inspecting at fixed significance
level the changes reported by the algorithm under the datasets fulfilling the simplifications made

in this analysis.
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