
UNIVERSIDAD AUTÓNOMA DE MADRID

ESCUELA POLITÉCNICA SUPERIOR

Master Thesis

Network traffic footprint analysis in the RedIRIS

academic network

Author:
Felipe Mata Marcos

Telecommunication Engineer

Supervisor:
Prof. Javier Aracil Rico

Madrid, 2009

MASTER THESIS: Network traffic footprint analysis in the
RedIRIS academic network

AUTHOR: Felipe Mata Marcos

SUPERVISOR: Prof. Javier Aracil Rico

The committee for the defense of this master thesis is composed by:

PRESIDENT: Prof. Javier Aracil

VOCALS: Dr. Jorge López de Vergara

Dr. José Alberto Hernández

Contents

Tables of Contents iii
Contents . iii
List of Figures . v
List of Tables . vii

Summary ix

Resumen xi

Acknowledgments xiii

Acronyms xv

1 Introduction 1

2 Network Measurements 3
2.1 Packet Captures . 3
2.2 NetFlow Records . 4
2.3 MRTG Records . 5

3 Flow Classification Based on Measurable Parameters 7
3.1 State of the Art . 7

3.1.1 Classic Traffic Classification Techniques . 7
3.1.2 Alternative Classification Methods . 9

3.2 Contribution . 13
3.2.1 Description of the Contribution . 13
3.2.2 Description of the Packet Traces . 14
3.2.3 Results of the Traffic Classification Through Clustering Techniques 15
3.2.4 Results of the Traffic Classification Focused on the Most Contributing Flows 17

3.3 Summary and Conclusions . 18

4 Throughput Analysis 19
4.1 Histograms and CDFs of the Throughput . 19
4.2 Confidence Intervals for the Mean Values of the

Throughput . 22
4.3 Time Series Analysis of the Throughput . 26
4.4 Summary and Conclusions . 27

5 Multivariate Normal Model for Daily Traffic 31
5.1 Description of the MRTG Measurements . 31
5.2 Analysis of the Day-Night pattern of the Traffic Rates 32
5.3 Description of the Multivariate Normal Model . 36
5.4 Validation of the Model . 37

iii

iv Contents

5.4.1 Univariate Normality Tests . 37
5.4.2 Multivariate Normality Tests . 39

5.5 Summary and Conclusions . 42

6 Online Load Change Detection Algorithm 43
6.1 Related Work . 43
6.2 Description of the Algorithm . 44
6.3 Validation of the Algorithm’s Performance . 45

6.3.1 Datasets with no changes . 45
6.3.2 Datasets with staggered increments . 47

6.4 Analysis of the Validation Results at Fixed Significance Level 49
6.4.1 Datasets with no changes . 49
6.4.2 Datasets with staggered increments . 49

6.5 Change Point Analysis with Real Network Measurements 53
6.6 Summary and Conclusions . 57

7 Conclusions and Future Work 59

Bibliography 61

A k-means 67

B Sample & Hold 69

C Univariate Normality Tests 71
C.1 Kolmogorov-Smirnov Test and Lilliefors’ Correction 71
C.2 Jarque-Bera Test . 72

D Multivariate Behrens-Fisher Problem 73

E Analysis of the Hotelling’s T Square Statistic 75

Index 77

List of Figures

2.1 RedIRIS Points of Presence. 5

2.2 Sample one-day MRTG monitoring. 5

3.1 Scatter plot of flow duration versus mean packet size. 16

3.2 Scatter plot of flow duration versus mean packet size focused on flows with mean
packet length smaller than 1500 bytes. 16

3.3 Three dimensional scatter plot of flow duration, mean packet size and packet rate
focused on flows with mean packet size smaller than 1500 bytes and packet rate
smaller than 5000 packets per second. 17

3.4 Three dimensional scatter plot of flow duration, mean packet size and packet rate
focused on flows with mean packet size smaller than 1500 bytes after applying SH. 18

4.1 Histogram of the mean value of the throughput for TCP and UDP flows, represent-
ing flows with more than 50 packets and average throughput smaller than 2.6 · 104
bps. 20

4.2 Histogram of the mean value of the throughput for TCP flows, representing flows
with more than 50 packets and average throughput smaller than 2.6 · 104 bps. . . . 21

4.3 Histogram of the mean value of the throughput for UDP flows, representing flows
with more than 50 packets and average throughput smaller than 2.6 · 104 bps. . . . 21

4.4 ECDF of the mean value of the throughput for the aggregate of all the traffic
within the analyzed day, representing flows with more than 50 packets and average
throughput smaller than 106 bps. 22

4.5 Histogram of the mean value of the throughput for TCP flows, representing flows
with more than 50 packets and average throughput smaller than 2.6 · 104 bps for
the time interval 10:00-11:00. 23

4.6 Histogram of the mean value of the throughput for UDP flows, representing flows
with more than 50 packets and average throughput smaller than 2.6 · 104 bps for
the time interval 10:00-11:00. 23

4.7 Histogram of the mean value of the throughput both for TCP and UDP flows,
representing flows with more than 50 packets and average throughput smaller than
2.6 · 104 bps for the time interval 10:00-11:00. 24

4.8 Hourly confidence intervals for the mean of the mean value of throughput for both
TCP and UDP flows. 25

4.9 Time Series representation of the throughput of a flow with predictable behavior. . 26

4.10 Time Series representation of the throughput of a flow which throughput decreases
after a growing period. 27

4.11 Time Series representation of the throughput of a flow with decreasing behavior. . 28

4.12 Time Series representation of the throughput of a flow with growing behavior. . . . 28

4.13 Time Series representation of the throuhgput of a flow with several transitions
between growing and decreasing periods. 29

v

vi List of Figures

5.1 Time Series representation of the utilization of a RedIRIS link for several consecutive
Mondays. 32

5.2 Time Series representation of the utilization of a RedIRIS link for several consecutive
Tuesdays. 33

5.3 Time Series representation of the utilization of a RedIRIS link for several consecutive
Wednesdays. 34

5.4 Time Series representation of the utilization of a RedIRIS link for several consecutive
Saturdays. 34

5.5 Time Series representation of the utilization of a RedIRIS link for several consecutive
Sundays. 35

5.6 Time Series representation of the utilization of a RedIRIS link for a whole week. . 35
5.7 Q-Q plot for variable 12 in the incoming direction. 40
5.8 Q-Q plot for variable 6 in the outgoing direction. 40
5.9 χ2 plot for the incoming direction. 41
5.10 χ2 plot for the outgoing direction. 41

6.1 Flux diagram of the online algorithm. 45
6.2 False positives ratio in datasets with no changes. 46
6.3 Detected changes in Monthly Increments dataset. 48
6.4 Detected changes in Quarterly Increments dataset. 48
6.5 Time Series representation of the change free regions for the first 300 samples of

the 1st vector component of the AE dataset. 50
6.6 Time Series representation of the change free regions for the first 300 samples of

the 2nd vector component of the AE dataset. 50
6.7 Zoom to the first 120 samples of the 1st vector component of the MI dataset with

delimitation lines for the theoretical change points. 51
6.8 Zoom to the first 900 samples of the 1st vector component of the QI dataset. . . . 52
6.9 Change points found by the online algorithm in the incoming direction of university

link U1 on the time interval 12:00-13:30. 54
6.10 Change points found by the online algorithm in the outgoing direction of university

link U1 on the time interval 12:00-13:30. 55
6.11 Change points found by the online algorithm in the outgoing direction of university

link U1 on the time interval 12:00-13:30. 55

B.1 Example of SH algorithm. The first time a flow is sampled a new entry in the Flow
memory is created (solid lines). Then, the counter is updated for the remaining
packets belonging to that flow (dashed lines). This figure was taken from [EV02]. . 70

B.2 Differences between NetFlow (top) and SH (bottom). This figure was taken from [EV02]. 70

List of Tables

2.1 Sample statistics for the input and output of the target 6

3.1 Packet and connection level statistics used for flow classification 14

5.1 Equivalence in time of the variables. 37
5.2 Percentage of rejections of the normality assumption per variable in the incoming

direction. 38
5.3 Percentage of rejections of the normality assumption per variable in the outgoing

direction. 39

6.1 Datasets generated with no changes. 46
6.2 Results of the online algorithm. 53
6.3 Percentage of rejections of the normality assumption per variable in the incoming

direction for the clusters reported by the online algorithm. 56
6.4 Percentage of rejections of the normality assumption per variable in the outgoing

direction for the clusters reported by the online algorithm. 56

E.1 Rejecting values for the quotient between the square of the change in one vector
component and its variance. 76

vii

Summary

This master thesis covers the first two years of the researching work with network measurements of

the author. This researching has focused on the search of network invariants in such measurements,

hoping that these invariants may help to obtain relevant information about the network status.

The organization of this document faithfully follows the researching temporal line during these

two years.

In the first part, the analysis with packet traces is described. Such packet traces were down-

loaded from public repositories like CAIDA, and were processed at the flow level, obtaining the

more relevant statistics at packet and connection level. These statistics were then applied to traffic

classification by means of clustering techniques. The target of such classification was to determine

the applications that produce the traffic, so the quality of service requirements for each kind of

traffic could be assessed. Another study using the same dataset was the analysis of the throughput

of the flows. We carry-out an study of the distribution of the mean value of the throughput, and

statistical techniques to compute its confidence intervals were applied. Our hypothesis supposes

that, under optimal working conditions, these confidence intervals must overlap amongst them

because the majority of the flows would reach a similar value for the mean throughput.

However, we observed that such confidence intervals do not overlap, but instead they followed

a daily pattern opposite to the well-known traffic daily pattern. This motivated us to analyze the

daily traffic pattern, using real measurements from the Spanish National Research and Education

Network RedIRIS. The main finding of this study was that the RedIRIS daily traffic pattern was

close to other ones published from other networks, but only for working days. Therefore, we use

the invariance of the daily traffic pattern of the RedIRIS network to design a multivariate normal

model for the measurements over one day. Such model was validated by means of normality tests,

showing very good results.

Finally, we applied this model to develop an online algorithm for automatically detecting change

points in the links’ load. We first assessed the performance of the algorithm with synthetically

generated datasets, and then we applied our algorithm to the RedIRIS network measurements.

The results show that our algorithm can be useful to reduce the operational expenditures of a

network operator, given that the output of our algorithm (in the form of alerts when a change

is detected) can prevent the network manager to visually inspect all the time series generated

through the network monitors of the operator.

ix

Resumen

La presente tesis de máster comprende el trabajo de dos años de investigación con medidas de red.

Esta investigación se ha enfocado a la búsqueda de invariantes en dichas medidas, que permitan

obtener información relevante del estado de la red. La organización de este documento sigue

fielmente la ĺınea temporal de la investigación realizada.

En la primera parte, se describe el análisis de trazas de paquetes, descargadas de repositorios

públicos como CAIDA, las cuales fueron procesadas a nivel de flujo, obteniéndose las estad́ısticas

más relevantes a nivel de paquete y conexión. Estas estad́ısticas fueron utilizadas para realizar

clasificación de tráfico, mediante la aplicación de técnicas de agrupamiento (clustering en inglés).

El objetivo de esta clasificación era determinar las aplicaciones que produćıan el tráfico, de man-

era que se pudieran aplicar medidas de calidad de servicio espećıficas a cada tipo de tráfico para

determinar el estado del enlace. Otra opción explorada partiendo del mismo conjunto de datos,

fue el análisis de la tasa de transmisión de los flujos presentes en el enlace analizado. Sobre esta

tasa se estudió la distribución de su valor medio, aplicándose técnicas estad́ısticas para determinar

intervalos de confianza alrededor de ese valor medio. Nuestra hipótesis supońıa que, bajo condi-

ciones óptimas de funcionamiento, los intervalos de confianza deb́ıan solaparse, ya que la mayoŕıa

de los flujos obtendŕıan un valor medio de la tasa similar.

Sin embargo, observamos que los intervalos de confianza segúıan un patrón de comportamiento

diario opuesto al patrón observado en el tráfico de red. Esto nos llevó a analizar el patrón diario del

tráfico, tomando como datos medidas de la red académica española RedIRIS. El principal hallazgo

de este estudio fue que el patrón diario de tráfico de RedIRIS es similar a otros publicados sobre

otras redes, pero solo para los d́ıas laborables. Por tanto, aprovechamos la invariancia del patrón

de tráfico de RedIRIS para diseñar un modelo normal multivariante para las medidas de un d́ıa.

Este modelo ha sido validado con tests de normalidad, mostrando buenos resultados.

Finalmente, hemos aplicado este modelo para diseñar un algoritmo para la detección au-

tomática de cambios en la carga de un enlace, cuyo rendimiento ha sido evaluado con datos

sintéticamente generados. Una vez comprobado su validez, se ha aplicado el algoritmo a medidas

reales de la red RedIRIS, graficándose los resultados obtenidos. Estos resultados demuestran que

nuestro algoritmo puede ser útil para reducir costes de operación de un operador de red, puesto

que el uso de nuestro algoritmo evita la necesidad de monitorizar continuamente los resultados

de las medidas realizadas, siendo únicamente necesario supervisar los enlaces en caso de que el

algoritmo genere alguna alerta.

xi

Acknowledgments

It is difficult to write technical papers clear and concisely (moreover if you have to write them in

English!), but it is more difficult to properly write and acknowledgment, being fair with all the

people that helped you, either by directly working side by side, or by supporting and understanding

your situation externally. Therefore, I would like to explicitly thank those people, whose help has

mainly impacted my researching career, especially in this hard early stage, apologizing to those

ones not mentioned. This work is dedicated to all of them.

Firstly, I would like to thank my family for their support and understanding every time,

although I have not been able to spend as much time with them as I desire. Their protection

and upbringing have made up the man that I am nowadays (well, not completely, they are only

responsible for those good things sometimes I do).

Although my friends’ contribution to this work is arguable (sorry dudes, but you are better

for wasting time ;-]!), they also merit to be acknowledged, because taking the most of the spare

time helps to be productive during working hours. Maybe since I started the PhD my free time is

reduced and I am not able to see you frequently, but it does not mean our relationship is worse, it

just changed. Nobody could snatch me the memories of the good moments we have spent together.

A special acknowledgment is dedicated to my supervisor, Javier Aracil, for his close collabo-

ration and advises, the fruitfulness of this work and the forthcoming ones is mainly your duty.

Thank you for allowing me to start my researching career here. In the same way, I would like

to thank my colleagues from the Networking Research Group: José Luis Garćıa, Vı́ctor López,

Jorge López de Vergara, Sergio López, Iván González, Alfredo Salvador, Bas Huiszoon, Luis de

Pedro, Javier Ramos, Pedro Santiago, Jaime Garnica, and those that are no longer here: José

Alberto Hernández and Walter Fuertes. Thank you for all this time at the laboratory and for

making the lab a nice place to work. This also definitely includes my other colleagues from the

laboratory Gustavo Sutter, Eĺıas Todorovich, Juan González and Eduardo Boemo. All my work

would not have been possible without the support of the Universidad Autónoma de Madrid and

the Departamento de Informática of the Escuela Politécnica Superior.

In addition, I would also like to express my gratitude to RedIRIS for providing us with the traffic

measurements that have been fundamental to this thesis, to the Spanish Ministry of Education

and Science that has funded this research under the F.P.U. fellowship program, and the project

TRAMMS that has helped me to grow as a researcher.

Last, but not the least, Cristina, I would like to dedicate this work to you. Your company,

support and understanding are invaluable. Thank you for being by my side, we have to celebrate

this! ;)

xiii

Acronyms

AC Autonomous Community.

AE All Equal.

AM Ante Meridiem.

API Application Programming Interface.

ARIMA Auto Regressive Integrated Moving Average.

BLINC BLINd Classification.

bps bytes per second.

CAIDA The Cooperative Association for Internet Data Analysis.

CDDP CD Database Protocol.

CDF Cumulative Distribution Function.

CEST Central European Summer Time.

CLT Central Limit Theorem.

CoS Class of Service.

DITL Day in the Life of the Internet.

DNS Domain Name System.

DoS Denial of Service.

DPI Deep Packet Inspection.

DRAM Dynamic Random Access Memory.

ECDF Empirical Cumulative Distribution Function.

EM Expectation Maximization.

FP False Positives.

xv

xvi Acronyms

FPR False Positives Ratio.

FTP File Transfer Protocol.

GB Gigabyte.

GMM Gaussian Mixture Model.

GPL General Public License.

HMM Hidden Markov Model.

HTML HyperText Markup Language.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

IANA Internet Assigned Numbers Authority.

IP Internet Protocol.

ISP Internet Service Provider.

IXP Internet eXchange Point.

JB Jarque-Bera.

KE Kernel Estimation.

KS Kolmogorov-Smirnov.

LDA Linear Discriminant Analysis.

MBFP Multivariate Behrens-Fisher Problem.

Mbps Megabits per second.

MI Monthly Increments.

MIB Management Information Base.

MRTG Multi Router Traffic Grapher.

MTU Maximum Transmission Unit.

NBC Näıve Bayesian Classifier.

NBKE Näıve Bayes Kernel Estimation.

NN Nearest Neighbors.

NREN National Research and Education Network.

Acronyms xvii

OC Optical Carrier.

OID Object IDentifier.

OPEX Operational Expenditure.

P2P Peer to Peer.

pcap Packet Capture.

POP Point of Presence.

PPS Packets Per Second.

Q-Q Quantile-Quantile.

QI Quarterly Increments.

QoS Quality of Service.

R&E Research and Education.

RFC Request For Comments.

RMS Root Mean Square.

S&H Sample & Hold.

SCTP Stream Control Transmission Protocol.

SMTP Simple Mail Transfer Protocol.

SNMP Simple Network Management Protocol.

SRAM Static Random Access Memory.

TCP Transmission Control Protocol.

ToS Type of Service.

UAM Universidad Autónoma de Madrid.

UDP User Datagram Protocol.

US United States.

UTC Coordinated Universal Time.

WWW World Wide Web.

Chapter 1

Introduction

Network operators have always been aware of the importance of having detailed descriptions

about what is happening in their networks. For this reason, there are a lot of measurement

techniques existing in the literature (active and passive), most of them being implemented by

network managers that allow them to tackle incidences in the network. For instance, network

operators can track malicious traffic to prevent their users of being target of security attacks,

assess Quality of Service (QoS) [vdBMvdM+06, MPM05] or bill high consuming clients [EV02].

This increasing interest on network measurements by network operators has been reflected in the

research community. There have been a lot of contributions involving network measurements to

characterize the Internet traffic [BM01, BC02, DPV06, NAR+04, RK96], or even to characterize

specific applications [SFKT06, BS06, PGDM07, PM07, ZSGK08].

All these studies demonstrate the importance of network measurements for network research,

however, collecting accurate network measurements have became an arduous task because links’

speeds have increased at a larger rate than memory accesses’ speeds [Rob00], making it unfea-

sible to monitor all the network traffic. This misfortune has motivated the development of new

techniques to substitute the previously used ones, such as the application of sampling to network

measurement [CPB93, Coc97, LG08]. Sampling allows longer measurement campaigns; however, it

entails a reduction of the available information. Therefore, the applications of statistical inference

and digital signal processing techniques have gained importance, allowing to obtain information

of interest. One of the most common ways of obtaining this information is by extracting patterns

or footprints that are easily detectable and characterize in an accurate manner the measured traf-

fic [MC00], even measuring these footprints at different time resolutions [PTZD05]. Once the foot-

prints are detected, statistical methodologies are applied to corroborate whether the conclusions

obtained from them can be extrapolated or they are just a particular case of the study [KN02].

This master thesis presents the study of different measurement datasets captured with dif-

ferent measurement techniques, as described in Chapter 2, searching for invariants that can be

considered as footprints. In a first step, we tried traffic classification based on packet and con-

nection level statistics as footprints. A description of the state of the art in traffic classification

and our contribution using parsimonious statistics is presented in Chapter 3. The results were

not conclusive, so other approaches were investigated. These are described in Chapter 4, and

involve the study of the throughput at the individual user and at the link’s aggregation levels.

1

2 Chapter 1. Introduction

The throughput analysis conducted us to the concept of utilization, which is the percentage of

the link’s capacity that it is being used. The utilization showed invariant properties at the level

of weeks, mainly due to the well-known daily and weekly pattern behaviors. This invariability

allows us to take the utilization over one week without anomalies as a reference footprint that

permits comparison to determine the status of a link, i.e. normal behavior or abnormal behavior

requiring attendance. An in-depth study of these utilization footprints led us to a new model for

the network traffic in an Internet link, using a multivariate normal distribution to represent the

traffic of one day. This model is detailed in Chapter 5, jointly with a assessment of its validity.

An application of this model is the development of an algorithm for detection of changes in the

load of the Internet links (Chapter 6). This algorithm assumes the normality of the samples and

applies a powerful statistical procedure to assess the validity of the changes detected by clustering

techniques. Finally, Chapter 7 concludes this master thesis and outlines future steps continuing

the work presented in Chapters 5 and 6.

Chapter 2

Network Measurements

Network managers are in charge, within other tasks, of keeping network performance under rea-

sonable levels. For this reason, production networks are being monitored continuously, exporting

the obtained measurements for further processing. However, the amount of network traffic is hu-

mongous, so it is very challenging to handle it in an efficient way. These challenges appear since

traffic traversing network links at ever-increasing speeds has to be monitored in a timely fashion.

For this reason, different kinds of network traffic monitors have been developed. In this chapter we

describe the most common network monitoring tools and the characteristics of the measurement

data that are obtained. These measurement data has been deeply analyzed in this study, so it

is strongly necessary to understand their advantages and their drawbacks, e.g. the information

that can or cannot be extracted from them, their computational costs, etc. The remaining of the

chapter is structured as follows. Section 2.1 describe packet captures measurements. Following,

the NetFlow records and the definition of flow are presented in Section 2.2. Finally, Section 2.3

describes the information available in Multi Router Traffic Grapher (MRTG) records, and how it

is obtained.

2.1 Packet Captures

Packet capture is the process where each packet traversing a link is copied in output files, which

are commonly referred as packet traces. This measurement process reproduces exactly the status

of the link within the measurement period. The most common format for these packet traces is

the one obtained through the Packet Capture (pcap) [JLM93] Application Programming Interface

(API), which is used and supported by a variety of network sniffers and packet analyzers.

The advantage of packet captures is that all the available network information is included in the

packet traces, i.e. both the payloads and headers. This, however, leads to an important drawback

regarding storage requirements. As packet traces contain all the information within a packet, this

means that the packet trace size will be equal to the number of bytes of the captured packets.

As the speeds of networks are continuously increasing [Rob00], the size of the packet traces is

growing at the same rate for a fixed measurement period. This fact makes long packet capture

measurement campaigns unfeasible, and it is common to have them split in one hour intervals

within one day.

3

4 Chapter 2. Network Measurements

Another negative aspect of packet traces is that packet traces of production networks are

very hard to find. The reason for this is related to privacy concerns regarding the personal

information that is sent and received in the Internet Protocol (IP) packets, including the IP

addresses. Techniques to circumvent these legal aspects are mainly based on anonymization of IP

addresses and removal of packet payloads. With these limitations included, there are few packet

traces publicly available in the Internet. The anonymized traces used in this study are distributed

under request by The Cooperative Association for Internet Data Analysis (CAIDA)1 and come

from Optical Carrier (OC)12 and OC48 Internet Backbone and Exchange Point Data links in the

United States.

2.2 NetFlow Records

A flow is defined as a sequence of packets that share the same source and destination IP addresses,

port numbers and transport protocol identification. The information that NetFlow stores for each

flow entry in its memory includes traffic volume (in bytes and packets), port numbers, source

and destination IP addresses, Type of Service (ToS), input and output interfaces indexes (as per

Simple Network Management Protocol (SNMP) Management Information Base (MIB)), together

with timestamps for the flow beginning and end (see [Cla04] for more detailed description of

NetFlow records). All these flow summaries are gathered in a central repository located at the

Universidad Autónoma de Madrid (UAM) campus, with an average input rate of 2 Megabits per

second (Mbps).

NetFlow is a proprietary format developed by Cisco Systems that runs in their routers and it

is implemented by other vendors as well. This protocol is used to monitor the traffic that traverses

a router and to keep performance statistics. Cisco defines a flow as a unidirectional sequence of

packets sharing all the following 7 values, commonly referred as 7-tuple: Source and Destination IP

addresses, IP protocol, Source and Destination ports in case that the IP protocol is Transmission

Control Protocol (TCP) or User Datagram Protocol (UDP), Ingress interface and IP ToS.

NetFlow updates the NetFlow record for a flow when a new packet belonging to that flow is

sampled, until a timeout counter expires, i.e. when no packets belonging to that flow are sampled

for more than “timeout” units of time, or when it samples a packet that finalizes a TCP session,

i.e. it samples a packet with either the FIN flag or the RST flag set. The NetFlow sampling

method is a deterministic sampling method, i.e., for every N packets it sees, NetFlow samples the

first packet and does nothing with the remaining ones.

The NetFlow record contains a wide variety of statistics about the flow, where the most impor-

tant ones are the timestamps for the flow start and finishing times, number of bytes and packets

observed in the flow (that are actually estimations of the real value by taking into account the sam-

pling ratio), as well as the 7-tuple (see [Cla04] for more detailed description of NetFlow records).

Each router with NetFlow capabilities generates NetFlow records, which are exported from

the router using UDP or Stream Control Transmission Protocol (SCTP) packets to a NetFlow

collector. In the RedIRIS scenario of Figure 2.1, the autonomic routers are routers with NetFlow

capabilities that export the NetFlow records to the NetFlow collector located at UAM’s premises.

1http://www.caida.org

2.3. MRTG Records 5

1
2

3

Processing
system

Data
repository

Flow Collector

Monitoring
system

Figure 2.1: RedIRIS Points of Presence.

2.3 MRTG Records

MRTG [OR98] is a software tool distributed under GNU General Public License (GPL) freely

available from the MRTG web page2. In its origins it was developed as a software to monitor

and measure traffic load on network links, graphing the information and showing statistics as

maximum, minimum and mean values, but it has evolved to allow the user to visualize almost any

kind of information. It is written in Perl, and is available for several operating systems, including

Windows, Linux and Mac.

It uses SNMP to send requests to the monitored device. SNMP is an application layer protocol

that facilitates the exchange of information between network devices (where a SNMP agent must

be running) using MIBs to define hierarchically what information is available to be monitored.

Figure 2.2: Sample one-day MRTG monitoring.

The requests that MRTG sends to a device contain the Object IDentifier (OID) of the resource

that it wants to get information about. The SNMP agent of the device looks up the OID in its MIB

2http://oss.oetiker.ch/mrtg

6 Chapter 2. Network Measurements

and response the MRTG with the corresponding data encapsulated in SNMP protocol. MRTG

then gathers all the information received in an incremental database and creates a HyperText

Markup Language (HTML) document containing graphs of the received information, as shown in

Figure 2.2.

MRTG measures two values per target, the input value and the output value. The input value

is plotted as a solid green area and the output one as a blue line, as can be seen in the figure. It

collects the data every five minutes for daily graphs, and greater time spans for weekly, monthly

and yearly graphs. Furthermroe, MRTG features automatic scaling of the Y-axis to fit the graph

to the information area and it also reports the maximum, average and current values for both

input and output data, as is shown in Table 2.1.

Table 2.1: Sample statistics for the input and output of the target
Max Average Current

In 2233.0 kb/s (22.3%) 1230.8 kb/s (12.3%) 1894.8 kb/s (18.9%)
Out 880.0 b/s (0.0%) 16.0 b/s (0.0%) 312.0 b/s (0.0%)

Chapter 3

Flow Classification Based on

Measurable Parameters

There is a lot of effort from the networking research community in traffic classification. Traffic

classification aims to match a measured flow to the application that has produced it by means

of packet and flow-level information. The motivations for traffic classification are mainly related

with QoS objectives or capacity planning tasks. Thus, either the traffic classification is used to

differentiate traffic with different QoS priorities (i.e. with a different Class of Service (CoS))or

instead traffic is classified according to bandwidth consumption and flow duration. In the former

case, different QoS metrics and thresholds based on their quality requirements are applied, whereas

in the latter, the user behavior is characterized to foresee the trends in link usage, on attempts to

overtake possible shortages due to congestions issues that may force the network to drop packets

and increase the delays in packet delivering. In what follows, a description of the state of the art

concerning traffic classification is summarized in Section 3.1. A deeper study on this techniques

is available in [MA08]. Next, our contribution to traffic classification is described in Section 3.2.

Finally, Section 3.3 concludes the chapter.

3.1 State of the Art

The state of the art in traffic classification can be divided into classic traffic classification techniques

and innovative traffic classification techniques, as follows.

3.1.1 Classic Traffic Classification Techniques

Classic traffic classification techniques make use of flow and packet level information to characterize

different kinds of traffic. The resulting classification is coarse and can be commonly applied on-line.

Flow-level Statistics

Flow-level classification aggregates packets traversing a link by the 5-tuple that describes its

headers (as described in Section 2.2 of Chapter 2) and computes statistics of the aggregates as flow

duration, bandwidth consumption, transferred bytes, number of packets per flow, the means and

7

8 Chapter 3. Flow Classification Based on Measurable Parameters

the variances of these metrics, etc. This is no more than the available information from NetFlow

records. A limitation is that flow-collection may sometimes aggregate packets that belong to

multiple application-level connections into a single flow, which distorts the flow-level features.

Dragonflies and tortoises The classification of traffic into dragonflies and tortoises is based on

the duration of the flows. This classification was first introduced by Brownlee & Claffy in [BC02],

where they defined dragonflies as very short duration flows, lasting up to 2 seconds, and tortoises

as long-running flows, being active for more than 15 minutes. A flow is considered to time out

once a TCP RST packet or a pair of TCP FIN packets is seen through the link. This assumption

only works for TCP flows and can fail due to packet loss or asymmetric routes. For this reason,

a timeout interval is set so that if no packets are observed for that dynamically specified timeout

interval, the flow is considered to be timed out (the same criteria is used by NetFlow).

Mice and Elephants Another flow-level classification study classifies network traffic into the

categories of mice and elephants. This classification arises from the observation that a very

small percentage of flows consumes the majority of the available bandwidth, what is commonly

referred as “the elephants and mice phenomena”. The classification assigns large flows (i.e. with

a large amount of bytes) to the elephant class, and small flows to the mice class. Commonly, the

classification schemes are based on a separation threshold that elephants have to exceed [PTB+02].

Packet-level Statistics

Packet-level classification keeps statistics of packets that are not related with aggregation based

on parameters of theirs headers. Features in this level are simple to compute and packet-level

sampling, which is widely used in network data collection, has little impact on them. They offer a

characterization of the application that is independent of the notion of flows, connections or other

higher level aggregations. Examples of this statistics are mean packet size or time series of this

data, from which can be derived a number of features, as correlations over time of this values.

Port Based Classification Packet-level header inspection has been used to associate network

traffic with the application that produces it based on TCP or UDP port numbers. The port

numbers are divided into three ranges: the Well Known Ports (0-1.023), the Registered Ports

(1.024-49.151) and the Dynamic Ports (49.152-65.535). All the packets sent within either a TCP

connection or UDP session use the same pair of ports to identify the client and server sides.

Therefore, theoretically, TCP or UDP server port numbers can be used to identify higher layer

applications, by simply identifying which port is the server port and mapping this port to an appli-

cation using the Internet Assigned Numbers Authority (IANA)1 list of registered ports. However,

port-based application classification has limitations. First, the mapping from ports to applications

is not always well defined. For instance from [RSSD04], it turns out that

• Many TCP implementations use client ports in the registered port range. This might mis-

takenly classify the connection as belonging to the application associated with this port.

Similarly, some applications use port numbers from the well-known ports to identify the

client site of a session.
1http://www.iana.org/assignments/portnumbers

3.1. State of the Art 9

• An application may use ports other than its well-known ports to circumvent operating system

access control restrictions, e.g., non-privileged users often run World Wide Web (WWW)

servers on ports other than port 80, which is restricted to privileged users on most operating

systems.

• There are some ambiguities in the port registrations, e.g. port 888 is used for CD Database

Protocol (CDDP) and access-builder.

• In some cases, server ports are dynamically allocated as needed. For example, File Transfer

Protocol (FTP) allows the dynamic negotiation of the server port used for the data transfer.

This server port is negotiated on an initial TCP connection which is established using the

well-known FTP control port.

• Trojans and other security (e.g. Denial of Service (DoS)) attacks generate large volume of

bogus traffic which should not be associated with the applications of the port numbers those

attacks use.

• The use of traffic control techniques, like firewalls to block unauthorized and/or unknown

applications from using a network, has spawned many work-arounds which make port-based

application authentication harder. For example port 80 is being used by a variety of non-

web applications to circumvent firewalls which do not filter port 80 traffic. In fact, available

implementations of IP over Hypertext Transfer Protocol (HTTP) allow the tunneling of all

applications through TCP port 80.

• Ports are not defined by IANA for all applications, e.g. Peer to Peer (P2P) applications such

as eMule or BitTorrent.

Intra-flow/connection Features

There are very interesting features that network monitors might wish to collect, which are based

on the notion of a flow or TCP connection, but require statistics about the packets within each

flow. One example is the statistics of the inter-arrival times between packets in flows, e.g. this

requires data collected at a packet level, but then grouped into flows. Other statistics included in

this group are loss rates, latencies, packet size distribution for a given application, etc.

The authors of [DPV06] use intra-flow/connection statistics to characterize HTTP and Simple

Mail Transfer Protocol (SMTP) traffic. They collect all the packets destined to and sent from ports

80 (HTTP) and 25 (SMTP) and compute packets, bytes and inter-arrival times distributions in

both directions (from client to server and from server to client). They show that characterizations

at this level for this protocol have invariant properties, in terms of spatial, i.e. same behavior at

different links, and temporal, i.e. same behavior at different observation instants.

3.1.2 Alternative Classification Methods

In this section we describe innovative techniques applied to traffic classification. Such techniques

are well-known methods, as for example Bayesian analysis techniques or Hidden Markov Model

(HMM), which have been widely uses in other areas but not in Internet traffic classification, or

new developed ideas that work well when applied to traffic classification.

10 Chapter 3. Flow Classification Based on Measurable Parameters

Well-known Methods Applied to Traffic Classification

We start describing well known methods that have been applied to classify traffic. The classification

techniques that we will describe make use of HMM, Bayesian analysis, Nearest Neighbors (NN)

and Linear Discriminant Analysis (LDA).

Hidden Markov Model traffic classification In [OSST04] the authors use a two state (high

mean state and low mean state) HMM approach similar to those used nowadays in speech recog-

nition systems to classify Internet traffic. In each state j; j ∈ {1, . . . , N}, flow rate is assumed to

follow a Gaussian distribution N (µj , σj) with mean µj and variance σj . The transition matrix Γ

between the Markov chain states is given by pn,m, i.e. the probability of stay in state m when in

the previous instant it was in state n.

The parameters of the model (µj , σj , pn,m; j, n,m ∈ {1, . . . , N}) are chosen using a maximum

likelihood criteria, i.e. the parameters are chosen to maximize the probability that the observed

sequence came out of a HMM with these parameters, using the Expectation Maximization (EM)

algorithm.

The first step in the classification is to extract features for each flow i over a time window t of

size l. The second step is to classify the flows based on the features extracted in the previous step.

For this purpose [OSST04] assumes that the features are distributed following a Gaussian Mixture

Model (GMM) of dimension l with a predetermined number of classes K. Once the GMM is

calibrated, the membership probabilities πt
ik, i.e. the probability that a given flow i characterized

by a feature vector belongs to the class k, can be derived. They use these probabilities to classify

flows into two and three classes.

The two classes’ classification was not able to give meaningful results. Classes are mixed

together and there is no clear separation between the two classes. In the three classes’ classification,

flows that have a very low probability of remaining in the high state (dragonflies) are separated

from those that have large value of high state mean value and high probability of remaining in

the high state (elephants) and the ones that are in the middle (mice).

Bayesian Analysis Traffic Classification The authors of [MZ05] use Bayesian analysis tech-

niques to classify traffic in ten different classes. These classes and an example of each class are the

following: BULK (ftp), DATABASE (oracle), INTERACTIVE (ssh), MAIL (smtp), SERVICES

(dns, ntp), WWW (http), P2P (KaZaA), ATTACK (worms), GAMES (Counter-Strike) and MUL-

TIMEDIA (Real player). The discriminators they use as input parameters are for example flow

duration, TCP port, packet inter-arrival time and its moments, payload size and its moments,

Fourier transform of the packet inter-arrival time, etc.

They propose two different algorithms, a simpler one named Näıve Bayesian Classifier (NBC),

and an improved version with kernel estimation. The NBC tries to calculate the probability of

belonging to a class cj ; j ∈ {1, . . . ,M} given an observation of the discriminators for a flow y.

This probability is denoted by p(cj | y), and is computed by applying the Bayes Rule:

p(cj | y) =
p(cj)f(y | cj)∑
cj
p(cj)f(y | cj)

, (3.1.1)

3.1. State of the Art 11

where p(cj) denotes the probability of obtaining class cj independently of the observed data

(prior distribution), f(y | cj) is the distribution function (or the probability of y given cj) and the

denominator acts as a normalizing constant. To estimate f(y | cj), j = 1, . . . , k, a training set x

is used, assuming that the discriminators are independent with a Gaussian behavior.

The Näıve Bayes Kernel Estimation (NBKE) is similar to the Näıve Bayes method algorith-

mically. The only difference is that the estimate of the real density f(· | cj) is given by

f̂(t | cj) =
1

ncjh

∑
xi : C(xi)=cj

K(
t− xi

h
), (3.1.2)

where h is called the kernel bandwidth and K(t) is any kernel, where kernel is defined as any

non-negative function such that
∫∞
−∞ K(t)dt = 1.

Despite NBKE shows to behave better than the simple NBC, it has greater computational costs

that can make the simple NBC more appealing. The results presented by [MZ05] on the application

of these methods to traffic classification show that NBC has a poor accuracy (about 65%), but

the use of Kernel Estimation (KE) and other improvements (preprocessing to remove redundant

and irrelevant variables) raise this accuracy to more than 90%. The accuracy was defined as the

ratio between the number of flows that were classified correctly and the total number of flows.

They also computed a per-class measure of trust that indicates how much reliable is the classifi-

cation. With this measure, [MZ05] shows that MAIL and WWW categories are very well classified,

having a trust measure greater than 90% in the NBC, but the remaining applications were not

classified satisfactorily. With the enhancement of KE, as well as the MAIL and WWW, SER-

VICES and DATABASE categories were successfully classified, and BULK and MULTIMEDIA

categories obtained an acceptable trust level (about 77%).

Nearest Neighbor and Linear Discriminant Analysis Traffic Classification This sub-

section is devoted to describe the work presented in [RSSD04]. They search for discriminators that

can characterize applications, so a clustering algorithm can be done based on these discriminators

to classify flows in different classes. They define four different classes which are Interactive, which

contains traffic that is required by a user to perform multiple real-time interactions with a remote

system (e.g. remote login sessions); Bulk data transfer, which contains traffic that is required

to transfer large data volumes over the network without any real time constraints (e.g. FTP);

Streaming, which contains multimedia traffic with real-time constraints (e.g. video conferencing);

and Transactional, which contains traffic that is used in a small number of request response pairs

which can be combined to represent a transaction (e.g. Domain Name System (DNS)).

To test the goodness of the proposed method, [RSSD04] goes one step further than [MZ05]

and, instead of classifying traces manually, they classify a few representative applications for each

class, so all the applications not selected as representative are clustered with the representative

with closer features. The reference selected applications are the following: Telnet for Interactive

class; FTP-data and Kazaa for Bulk data transfer; RealMedia streaming for Streaming class; and

DNS and Hypertext Transfer Protocol Secure (HTTPS) for transactional class.

The methods proposed by [RSSD04] are simple, but commonly used for classification: NN and

LDA. The NN method is based on the assumption that the class of a new data point is the class of

the point which is closest using the Euclidean distance. This method can be generalized to k-NN

12 Chapter 3. Flow Classification Based on Measurable Parameters

to enhance it robustness, where the k nearest neighbors ‘vote’ on the class of the observation.

k-NN work well with low-dimensional data, but are less effective on high-dimensional samples.

The LDA method uses the posterior probability of belonging to class n, using the Bayes rule and

assuming that each class g has a Gaussian distribution with a given mean µg and with the same

intra-class covariance Σ for each class. With these assumptions, the log of the ratio between the

probabilities of belonging to two different classes can be simplified to a linear function which is

called the linear discriminant functions.

To apply these methods, [RSSD04] evaluated the following easily obtainable features: the

average packet size, flow duration, bytes per flow, packets per flow, and Root Mean Square (RMS)

packet size. Of these, the most valuable pair was the average packet size and flow duration,

and [RSSD04] considers such characteristics to classify the reference applications mentioned above.

The results show that the classification does not separate Streaming and Bulk data transfer

classes adequately, so a new feature to distinguish these classes is introduced. This feature is

referred as the inter-arrival variability metric and is the mean of the ratio between the variance

and the mean of the inter-arrival times for the packets belonging to a flow. It was also found

by the authors that some streaming traffic ended up with a long gap followed by a few packets.

This behavior makes it worse the ability to separate classes of the presented methods, so to avoid

it [RSSD04] proposes to ignore the final 10 packets from each flow. The use of this metric jointly

with the average packet size gives a product space where these two classes are linearly separated.

Innovative Traffic Classification Techniques

In this section an innovative method presented in [KPF05] is described, namely BLINd Classifica-

tion (BLINC). It has been selected due to the relevance of the ideas presented in it. This method

relies on the observation and identification of patterns of host behavior.

BLINC BLINC [KPF05] uses a multilevel approach to traffic classification where the patterns

of host behavior are analyzed at three levels of increasing detail: (i) the social, (ii) the functional

and (iii) the application level. BLINC has no access to packet payload and port numbers neither

has additional information other than what current flow collectors provide.

Firstly, packet traces are gathered to test the BLINC classifier. These traces are deep packet

inspected to classify all the applications, so the goodness of the BLINC technique can be evaluated.

This payload-based classification looks for specific bit strings and inspects well-known ports. These

bit strings are identified either from Request For Comments (RFC) and public documents in case

of well-documented protocols or by reverse engineering. Finally, the payload is searched for this

bit strings and initial protocol handshakes that allow classifying by application type. An IP, port

number table that contains all the flows already identified is used to speed up the classification.

With these assumptions, [KPF05] classifies more than 50% of the flows in their traces. The flows

that were not classified corresponded to non-payload and unknown flows.

The non-payload flows account for almost one third of all flows in the traces, however as they

had not payload, they only account for a small percentage of the bytes (about 2%). These flows

seem to be failed TCP connections from worms that tried to attack hosts. The unknown could be

due to new applications that were not taken into account in the bit string creation, but this will

3.2. Contribution 13

be one of the strengths of BLINC, that it may be able to classify new applications into categories

that fit with their characteristics.

The main differences between BLINC and classical approaches to traffic classification are that

BLINC does not treat each flow as a distinct entity, but it focuses on the source and destination

hosts of the flows; it operates on flow records and requires no information about the timing or the

size of individual packets; and it is insensitive to network dynamics such as congestion or path

changes, that can potentially affect statistical methodologies which rely on inter-arrival times

between the packets in a flow.

BLINC gathers host-related information reflecting transport layer behavior and then they

associate the host behavior with one or more application types therefore classifying the flows. The

host behavior is studied across three levels: at the social level, the popularity of a host is defined

as the number of other hosts it communicates with; at the functional level, the behavior of a host

in terms of its functional role in the network is captured, i.e. whether it is a provider or consumer

of a service, or whether it participates in collaborative communications; finally, at the application

level, transport layer interactions between hosts are captured with the intention of identifying the

origin application.

The classification results of [KPF05] are presented with two different metrics. The first metric

is the completeness, which measures the percentage of the traffic classified by BLINC. This ratio

is computed at flow level and at byte level. The completeness over the three traces used to test

BLINC lay between 80-95%. The other metric to test the goodness is the accuracy, which measures

the percentage of the classified traffic by BLINC that is correctly labeled. BLINC results show

that it has a high accuracy, being it higher than 95%.

3.2 Contribution

This section is devoted to describe our contribution to traffic classification. We performed appli-

cation classification based on packet level and intra-flow/connection statistics through clustering

techniques. A brief description of the objectives of the classification and the statistics of interest

is presented in Section 3.2.1. Our method obtained such statistics from packet captures publicly

available without payload from CAIDA. These datasets are described in Section 3.2.2. Next, Sec-

tion 3.2.3 presents the results obtained through the clustering technique. Finally, Section 3.2.4

shows the results of the same clustering technique after applying the Sample & Hold (S&H) tech-

nique [EV03] to focus on the most contributing flows.

3.2.1 Description of the Contribution

Our contribution aims to classify traffic according to two main different groups in order to use

this membership information and then apply specific QoS measurements. Such groups are Real

Time interactive applications, like Skype [Lim], which have stringent QoS requirements, and Bulk

data transfer applications, like FTP, whose QoS requirements are not so demanding. We follow an

approach similar to that of [RSSD04], but started with only two applications groups to facilitate

the classification paradigm. We assume that all the packets sent and received within a flow as

defined in Section 2.2 belong to the same application. Therefore, we measure in the traffic traces

14 Chapter 3. Flow Classification Based on Measurable Parameters

described in Section 3.2.2 six packet and connection level statistics for each flow. Such statistics

are described in Table 3.1. As a flow is a bidirectional transaction of packets, we take different

statistics from each direction, as there may be relevant differences between them depending on

which end started the communication.

Table 3.1: Packet and connection level statistics used for flow classification
Statistic Description

Mean packet Average packet size for all the
size packets sharing the same flow descriptor

Flow duration
Difference between the timestamp of the last

packet and the first packet belonging to the same flow.
Flow ending conditions are the same used by NetFlow

Number of packets Total number of packets sent within the flow
Flow size Total number of bytes sent within the flow

Mean packet Average time between arrival of
inter-arrival time contiguous packets within the same flow

Packet rate Number of packets per second sent within the flow

Our contribution then groups flows according to distances between the obtained statistics using

k-means. We briefly describe the k-means procedure in Appendix A. The main reason not to

select NN as clustering technique, following the method presented in [RSSD04], is that NN needs

a dataset labeled in advance, from which the representatives of the classes are obtained. This

dataset should therefore have been manually inspected and classified. This is a very challenging

task, moreover if the dataset has no payload, as are the datasets used in our study. The unfeasibility

to manually classify a packet trace prevented us from applying NN, therefore selecting k-means,

which does not need a train set classified beforehand.

3.2.2 Description of the Packet Traces

For the extraction of the statistics described in Section 3.2.1 we analyzed two data collections

publicly available from CAIDA. These data collections were captured in different points and time

instants. Following we describe each of the collections.

CAIDA OC48 Traces

CAIDA made available three collections of traces captured within 2002 and 2003. From these

collections, we selected the most recent one that was captured in Apr 24, 2003 at 9 Ante Meri-

diem (AM) Central European Summer Time (CEST) on an OC482 link and lasted for an hour.

This collection was composed by 12 anonymized packet header traces of 5 minutes long for each

direction. The monitored link is a west coast peering link for a large Internet Service Provider

(ISP). These traces consist of packet headers found in the first 48 bytes of packets, with IP ad-

dresses anonymized with the prefix-preserving Crypto-PAn [FXAM04] library. These traces do

not include non-IPv4 traffic. Packet timestamps are likely precise to the microsecond. The size of

the traces for both directions is 13 Gigabytes (GBs) and contains 203 million of packets.

2up to 2488.32 Mbps

3.2. Contribution 15

AMPATH OC12 Traces

One of the kinds of applications that we wanted to classify with our clustering technique was

these with stringent QoS requirements, namely real time applications. One of such applications is

Skype [Lim], whose classification has attracted a lot of researchers due to its complexity ([EP06,

PGDM07, PM07, RMM08, SFKT06]) and its broad utilization. However, the publication date

of Skype software was August 2003, i.e. after the capturing time of CAIDA OC48 traces. This

motivated us to stop analyzing the CAIDA OC48 traces and focus on newly traces, although the

information from the CAIDA OC48 traces was still valuable to classify the remaining class of

applications of interest.

We found newly traces available from CAIDA again, captured on 2007. This collection con-

tains anonymized pcap packet header traces collected on both directions of an OC123 link at the

AMPATH International Internet eXchange Point (IXP) in Miami, Florida. This OC12 link carries

traffic between United States (US) Research and Education (R&E) networks and R&E networks

in South and Central America. These traces were collected as part of the Day in the Life of the

Internet (DITL) project [Cla06]. They cover the full 2 days of DITL-2007-01-09 which started

midnight 2007-01-09 Coordinated Universal Time (UTC) and ended midnight 2007-01-11 UTC,

and consist of over 850 million IPv4 packet headers in hourly files.

3.2.3 Results of the Traffic Classification Through Clustering Tech-

niques

In this section we present the results of our contribution. These results are in the form of scatter

plots of two and three dimensions, being these dimensions some of the statistics of Table 3.1 and

each plotted marker an analyzed flow from the packet traces. We performed a visual inspection

of the results, starting by graphing the statistics by pairs. Figure 3.1 is an example of these

graphs, where we have represented the duration of the flows versus the mean packet length of

theirs packets. These statistics were measured from most loaded hour trace of the AMPATH

OC12 traces (therefore, the maximum duration of the flows is 3600 seconds, which explains the

accumulation of flows in that duration). We represent TCP flows with a red × and UDP flows

with a blue ◦.
As can be seen in the figure, there is a concentration of flows with small mean packet length.

This length is around 1500 bytes, and explains the concentration above it because it is the value

for the Maximum Transmission Unit (MTU) of Ethernet V2 [MD90] and nearly all the implemen-

tations of IP over Ethernet use this frame format. As the amount of flows under this mean packet

length is very large, we zoom in this region in Figure 3.2.

The number of flows in Figure 3.2 is humongous and highly dense in short durations, thus

preventing us from obtaining meaningful clusters. The situation throughout the remaining com-

bination pairs of statistics is quite similar, being also difficult to obtain clusters on them. For that

reason, we graphed the statistics by trios (Figure 3.3).

In that figure, we have removed flows with mean packet size greater than 1500 bytes and packet

rates that exceed 5000 Packets Per Second (PPS) for the same reason as in Figure 3.1. There

we can see an agglomeration of flows with of short duration, small mean packet size but very

3up to 622.08 Mbps

16 Chapter 3. Flow Classification Based on Measurable Parameters

Figure 3.1: Scatter plot of flow duration versus mean packet size.

Figure 3.2: Scatter plot of flow duration versus mean packet size focused on flows with mean
packet length smaller than 1500 bytes.

3.2. Contribution 17

Figure 3.3: Three dimensional scatter plot of flow duration, mean packet size and packet rate
focused on flows with mean packet size smaller than 1500 bytes and packet rate smaller than 5000
packets per second.

large packet rate (the column around the origin in Figure 3.3). These agglomeration could be

thought as a cluster, but it is not of interest for our objective, as the huge amount of flows in

that region entails an application mix that hampers the classification into the classes defined in

Section 3.2.1. In addition, the classification of these flows has little attractiveness, because you

cannot take actions to improve those flows QoS in a timely fashion, i.e. before the flows finish.

3.2.4 Results of the Traffic Classification Focused on the Most Con-

tributing Flows

The reasons described at the end of the previous section motivated us to apply the S&H method-

ology (see Appendix B for a description of the technique) to focus on the most contributing flows,

i.e. those with more than 0.01% of the capacity of the link4. In addition, we also remove the

short lived flows during less than 120 seconds although S&H did not remove them (note that S&H

results are not exact neither deterministic), due to its lack of importance. We show these results

in Figure 3.4.

As can be seen in the figure, S&H has removed the column of short lived with high packet rate

flows concentrated around the origin, and now there are not flows with packet rates greater than

800 PPS (in this figure we have not focused on this region, just there are not flows with higher

rates). Although the amount of flows removed from the S&H technique is very large, we still do

not find any remarkable cluster where applications of the same class are concentrated.

4As we are analyzing hour length traces, the capacity is the OC12 link speed multiplied by length of the traces:
Capacity = 622.08 Mpbs x 3600 sec ≈ 2 Tb.

18 Chapter 3. Flow Classification Based on Measurable Parameters

0

2000

4000

0

500

1000

1500
0

200

400

600

800

Flow duration (seconds)Mean packet size (bytes)

P
ac

ke
t r

at
e

(P
P

S
)

TCP
UDP

Figure 3.4: Three dimensional scatter plot of flow duration, mean packet size and packet rate
focused on flows with mean packet size smaller than 1500 bytes after applying SH.

3.3 Summary and Conclusions

We have presented in this chapter a summary of the state of the art in traffic classification. This

research field is receiving a lot of attention from the research community, but the approaches

they are taken are moving to Deep Packet Inspection (DPI), where the payload of the captured

packets is inspected on attempts to find certain bit sequences commonly referred as signatures.

Although DPI techniques have shown to obtain better results than non-DPI methodologies, the

DPI approach is very demanding in terms of hardware requirements, and its online application is

very challenging. However, a traffic classification approach based on packet and connection level

parameters is less demanding and can be easily deployed online. Unfortunately, the results of our

approach showed in this chapter are not sufficiently promising to justify continuing with this line

of research.

Chapter 4

Throughput Analysis

In our search for traffic footprints, we decided to analyze the throughput of the flows. Throughput

is defined as the average rate of successful packet delivery over a communication network, i.e. the

speed at which the receiving end of a communication is getting error-free packets. At first glance,

the throughputs of the flows traversing a link seem to be a reasonable statistic to determine the

links’ status, as they might reveal low values where there are anomalies or the link is under-

dimensioned, or in the contrary they should reach a high stable value maintained during most of

the flow duration. Therefore, we proceeded to analyze the throughput of the flows contained in

the packet traces described in Section 3.2.2.

First of all, we analyzed the mean throughput of the flows and graphed their histograms and

CDFs. The results of this analysis are presented in Section 4.1. The distribution of the throughput

does not resemble any common distribution, but it seems to be a mixture of distributions. As

making inference with this underlying distribution is very challenging, we decided to assume nor-

mality and compute hourly confidence intervals for the mean value of the throughput. The results

and motivations for the computation of these confidence intervals are presented in Section 4.2.

These results were not as expected, so we computed instantaneous values for the throughput and

moved to a time series analysis of these values (Section 4.3). Finally, we summarize the throughput

analysis presented in this section with the conclusions obtained from the results in Section 4.4.

4.1 Histograms and CDFs of the Throughput

We have computed for each flow observed in the analyzed packet traces its average throughput

during its lifetime. This analysis was performed on an hourly basis (e.g. taking only into account

the flows active between 12:00-13:00 to obtain the corresponding histograms for that hour interval,

therefore computing the throughput of the flow during that hour in case the flow is longer than

one hour) and in a daily basis (i.e. taking into account all the flows observed in the whole day).

We treat the mean value of the throughput for each flow as a realization, and compute the

corresponding histograms and empirical CDFs. We remove from this sample all the flows with

less than 50 packets, in order to remove small flows that are not of interest for QoS actions and

can introduce a bias in the distribution, and make a distinction whether the protocol is TCP or

UDP, then making three different plots for each study (one for TCP, other for UDP and another

19

20 Chapter 4. Throughput Analysis

one without making the distinction, hereafter total).

We represented the results for the total when measuring the whole day, however, in that

representation we can only distinguish a huge first bin, whereas the frequencies of the remaining

bins are nearly negligible. This happen because there are little flows with a high mean throughput,

whereas the majority of the flows have small throughput values compared with the observed

maximum. Therefore, we remove those flows with high value and represent again the histograms.

Those are depicted in Figure 4.1, Figure 4.2 and Figure 4.3 respectively for total, TCP and UDP.

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Throughput (bps)

F
re

cu
en

cy

Histogram of total throughput

Figure 4.1: Histogram of the mean value of the throughput for TCP and UDP flows, representing
flows with more than 50 packets and average throughput smaller than 2.6 · 104 bps.

As can be seen in the figures, the distribution of the mean throughput is quite similar between

TCP and UDP (therefore also for its combination), but unfortunately it does not resemble any

well-known distribution. This can be also confirmed with the Cumulative Distribution Function

(CDF) of the total traffic shown in Figure 4.4 (we do not present the analogous figures for only

TCP and UDP traffic as they are close similar to Figure 4.4).

The analysis of the mean throughput on an hourly basis evidenced two remarkable results. On

the one hand, the histograms for the two protocols are quite different, as shown in Figure 4.5 and

Figure 4.6 for TCP and UDP, respectively. We have selected the analysis interval 10:00-11:00 as

we found it representative of the whole analysis by hour intervals. The great disparity between

those figures is quite surprising, because this was not reflected when we analyzed the whole day

(compare with Figure 4.2 and Figure 4.3). This disparity makes clear the differences between both

protocols, where in TCP, due to slow start and other congestion avoidance mechanism [Ste97], a

great number of the flows have low mean throughput values, thus having high density in the first

bin of the histogram (16%). These mechanisms are not used in UDP, so the main peak in the

histogram is found at greater mean throughput values (around 175 bytes per second (bps)) and

4.1. Histograms and CDFs of the Throughput 21

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Throughput (bps)

F
re

cu
en

cy
Histogram of TCP throughput

Figure 4.2: Histogram of the mean value of the throughput for TCP flows, representing flows with
more than 50 packets and average throughput smaller than 2.6 · 104 bps.

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

Throughput (bps)

F
re

cu
en

cy

Histogram of UDP throughput

Figure 4.3: Histogram of the mean value of the throughput for UDP flows, representing flows with
more than 50 packets and average throughput smaller than 2.6 · 104 bps.

22 Chapter 4. Throughput Analysis

0 2 4 6 8 10

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput (bps)

C
um

m
ul

at
iv

e
P

ro
ba

bi
lit

y

Figure 4.4: ECDF of the mean value of the throughput for the aggregate of all the traffic within
the analyzed day, representing flows with more than 50 packets and average throughput smaller
than 106 bps.

has lower density (10%). In addition, as the number of UDP flows is considerably smaller than

the number of TCP flows, we found in the UDP histogram empty bins, meaning that there are

not flows with that mean throughput value.

On the other hand, we found that the TCP histogram shapes the histogram of the total traffic

within the link (Figure 4.7). This behavior could be hinted in the histograms for the whole day

(Figures ?? and 4.1), although the hourly analysis sheds light on this fact and removes any possible

doubt.

The graphs for the remaining hours not presented here, in addition to videos representing the

evolution of the hourly Empirical Cumulative Distribution Functions (ECDFs) can be found in

the following link

http://www.eps.uam.es/~fmata/Publications/Files/throughput%20analysis.rar.

4.2 Confidence Intervals for the Mean Values of the

Throughput

The understanding of the shapes of the distribution of the mean values of the throughput let us

analyze further the obtained results. If the results would have evidenced that the mean value of

the throughput follows some of the well-known distributions, we could have applied specific statis-

tic inference (after testing that the mean value of the throughput actually follows that supposed

distribution). However, from the analysis of the previous section, we cannot conclude that the

mean value of the throughput follows any well know distribution. Thus, we have to suppose a

http://www.eps.uam.es/~fmata/Publications/Files/throughput%20analysis.rar

4.2. Confidence Intervals for the Mean Values of the
Throughput 23

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Throughput (bps)

F
re

cu
en

cy
Histogram of TCP throughput n >50 Hour:10

Figure 4.5: Histogram of the mean value of the throughput for TCP flows, representing flows
with more than 50 packets and average throughput smaller than 2.6 · 104 bps for the time interval
10:00-11:00.

0 500 1000 1500 2000 2500
0

0.02

0.04

0.06

0.08

0.1

0.12

Throughput (bps)

F
re

cu
en

cy

Histogram of UDP throughput n >50 Hour:10

Figure 4.6: Histogram of the mean value of the throughput for UDP flows, representing flows
with more than 50 packets and average throughput smaller than 2.6 · 104 bps for the time interval
10:00-11:00.

24 Chapter 4. Throughput Analysis

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Throughput (bps)

F
re

cu
en

cy

Histogram of total throughput n >50 Hour:10

Figure 4.7: Histogram of the mean value of the throughput both for TCP and UDP flows, repre-
senting flows with more than 50 packets and average throughput smaller than 2.6 · 104 bps for the
time interval 10:00-11:00.

reasonable distribution for the mean value of the throughput, and then apply inference assuming

such distribution. Therefore, we supposed a normal distribution for the mean value of the through-

put, and applied the corresponding calculation of confidence intervals for the mean assuming this

distribution. The normality supposition is reasonable because the throughput may be caused to

many independent effects: congestions control, packet loss, number of packets per flow, etc. In

addition, the mean value is a weighted sum of the instantaneous values of the throughput. Such

instantaneous values of the throughput can be assumed to follow the same (unknown) distribu-

tion. Therefore, applying the Central Limit Theorem (CLT), we can conclude that in the limit

this weighted sum will converge in distribution to a normal distribution. As we are only taken a

small realization, we cannot rigorously apply the CLT. However, the knowledge that in the limit

the mean values of the throughput will follow a normal distribution let us assume reasonably the

normality assumption and apply the confidence interval computation assuming this distribution.

The 1− α confidence interval I1−α for the mean of a normal distribution when its variance is

unknown is given by the following equation

I1−α = (x̄∓ tn−1;α/2
s√
n
), (4.2.1)

where x̄ is the sample mean of the observations, s is the square root of the sample variance, n

is the number of observations and tn−1;α/2 is the 1 − α/2 percentile of a Student’s t-distribution

with n− 1 degrees of freedom.

We applied equation to our hourly based analysis of the throughput and computed the hourly

confidence interval for the mean of the mean values of the throughput. The obtained results are

4.2. Confidence Intervals for the Mean Values of the
Throughput 25

presented in Figure 4.8 for both TCP and UDP flows. We have plot the throughput in the x

axis and the hour in the y axis. The hour -1 is equivalent to the time interval 23:00-00:00 of the

previous day, the hour 0 is equivalent to the time interval 00:00-01:00 of the analyzed day, and so

forth.

0 1 2 3 4 5 6 7

x 10
5

−5

0

5

10

15

20

25

Throughput (bps)

H
ou

r

Total

Figure 4.8: Hourly confidence intervals for the mean of the mean value of throughput for both
TCP and UDP flows.

The analysis of the hourly confidence intervals was motivated by the following reasoning. If

there are no problems in the link, the flows that are sending information will reach high stable

values for its throughput, and these high stable values under good performance will be similar

between different flows. Therefore, if we compute confidence intervals for the means values they

should overlap because all of them should contain the high stable value of throughput, which

should have been reached by the majority of the flows due to the good performance of the link.

However, as can be seen in the figure, these confidence intervals do not overlap. The confidence

intervals during the night-time are centered at larger values of the throughput than during the

daytime. Some studies have shown that there is a clear traffic pattern within the duration of a day,

where the traffic load of a link starts growing at 08:00 and decays after 18:00 [TMW97]. With both

results in mind, we can conclude that during daytime there is a huge number of users, which share

the link’s capacity and therefore their communications achieve lower throughput values. On the

contrary, during night-time the number of users is reduced dramatically, because they send smaller

amounts of traffic at higher rates. This leads to think that when there are fewer flows in the link,

they achieve a higher value of the throughput because there is less competition for the resources

and the congestion avoidance mechanisms do not apply. In conclusion, the abovementioned high

stable value for the throughput is not reached in all the hour time intervals, or at least it is not

the same value. Therefore, our approach for assessing link performance based on mean value of

26 Chapter 4. Throughput Analysis

the throughput for all the flows failed to obtain acceptable results.

4.3 Time Series Analysis of the Throughput

The results of the previous section were not conclusive enough to infer the QoS status of the links.

The problem was that the overall behavior of the flows was not invariant (i.e. its behavior does

not change with time) so the conclusions over a time interval cannot be extrapolated to other

intervals. Therefore, we decided to inspect the flows individually, expecting that under good link’s

conditions its behavior is predictable (i.e. there is a slow start transient period where the rate is

increasing and finally stabilizes at a high value).

To perform this analysis, we compute the instant throughput values every time a packet is

received as the size of the packet divided by the inter-arrival time. Then, we remove the initial

transient period because it masks the rest of the time series. Finally, we depict the corresponding

time series, being the time axis the number of packets received instead of the time elapsed since

the first received packet (thus we make all the time series plots comparable). In Figure 4.9 we

show what we have defined as predictable behavior.

0 1 2 3 4 5 6 7

x 10
5

2.25

2.26

2.27

2.28

2.29

2.3

2.31

2.32

2.33

2.34

Number of packet arrivals

In
st

an
t t

hr
ou

gh
pu

t (
K

bp
s)

Figure 4.9: Time Series representation of the throughput of a flow with predictable behavior.

Unfortunately, this is not the usual behavior through the analyzed flows. There are flows

that begin with a growing period, after which the throughput decreases drastically (Figure 4.10).

Other flows never have a growing period, and their instant values of the throughput are always

decreasing (Figure 4.11). On the contrary, there are some flows which throughput is always

growing, meaning that they never reach a stable limit for the rate (Figure 4.12). Other kind of

flows that never reach a stable limit for their rates is shown in Figure 4.13, where we can see

that its throughput have several growing and decreasing periods with an overall growing trend.

4.4. Summary and Conclusions 27

Therefore, our initial assumption about predictable behavior is not satisfied by the majority of

the flows, and we cannot use it to infer the link under analysis status.

0 1 2 3 4 5 6 7

x 10
5

40

60

80

100

120

140

160

Number of packet arrivals

In
st

an
t t

hr
ou

gh
pu

t (
K

bp
s)

Figure 4.10: Time Series representation of the throughput of a flow which throughput decreases
after a growing period.

4.4 Summary and Conclusions

In this chapter we have presented an analysis of the throughput for the flows in the AMPATH

OC12 packet trace. First of all we analyzed the distributions of the mean value of the throughput

at different time scales (one for the whole day and 24 for each hour of the day). We were unable

to determine a well-known distribution to fit the obtained empirical ones. However, we present a

reasoning based on the CLT to apply confidence intervals inference assuming a normal distribution.

Unfortunately, the results were not as expected, and we could not infer the performance level of

the link based on the obtained confidence intervals. Therefore, we decided to analyze individually

the instantaneous values time series of the throughput, in hopes that a predictable behavior (i.e. a

transient growing period after which the rate stabilizes) was achieved by the majority of the flows.

However, the results shown that this predictable behavior is rarely obtained, being the common

situation different combinations of growing and decreasing periods without reaching a stable value.

28 Chapter 4. Throughput Analysis

0 1 2 3 4 5 6 7

x 10
5

28

29

30

31

32

33

34

35

36

37

38

Number of packet arrivals

In
st

an
t t

hr
ou

gh
pu

t (
K

bp
s)

Figure 4.11: Time Series representation of the throughput of a flow with decreasing behavior.

0 1 2 3 4 5 6 7

x 10
5

3.78

3.79

3.8

3.81

3.82

3.83

3.84

3.85

3.86

3.87

Number of packet arrivals

In
st

an
t t

hr
ou

gh
pu

t (
K

bp
s)

Figure 4.12: Time Series representation of the throughput of a flow with growing behavior.

4.4. Summary and Conclusions 29

0 1 2 3 4 5 6 7

x 10
5

24.1

24.15

24.2

24.25

24.3

24.35

Number of packet arrivals

In
st

an
t t

hr
ou

gh
pu

t (
K

bp
s)

Figure 4.13: Time Series representation of the throuhgput of a flow with several transitions between
growing and decreasing periods.

Chapter 5

Multivariate Normal Model for

Daily Traffic

The results of the throughput analysis were not conclusive, so we were not able to apply them in

order to detect anomalies or misbehavior in the network links. However, when we inspected the

confidence intervals we observed that the center of the intervals follows a clear day-night pattern

as the bandwidth consumption [TMW97]. Contrary to what could be expectable, the day-night

pattern of the throughput has its peaks when the day-night pattern of the bandwidth has its

off-peaks hours and vice versa. This led us to think that the day-night pattern was indeed an

invariant, because there have been several reports using different datasets but obtaining similar

day-night patterns, and therefore it was a suitable measure to obtain footprints. Motivated by

this reasoning, we analyzed the utilization day-night pattern of MRTG RedIRIS measurements

(described in Section 5.1). Note that the utilization is just the consumed bandwidth scaled by

the total bandwidth. The results of this study are presented in Section 5.2. These results were

conclusive enough, showing that the day-night pattern of different working days was similar,

whereas it was very different when compared with the day-night pattern of the holidays (note that

RedIRIS is an academic network) that actually were similar amongst themselves. Therefore, we

developed a network traffic model bearing this in mind. This model divides the 24 hour period

of a day into disjoint intervals, and obtains the average of the transfer rate within each interval.

All the measures from one day are treated as a multivariate sample from a multivariate normal

distribution. The details of the model are presented in Section 5.3. Finally, a validation of the

model is presented in Section 5.4, after which Section 5.5 summarizes and concludes the chapter.

5.1 Description of the MRTG Measurements

The data used in this study are MRTG [OR98] records of different links within the Spanish

National Research and Education Network (NREN) RedIRIS. There are MRTG records for the

traffic traversing the incoming and outgoing interfaces of several Point of Presences (POPs) and the

access routers of some universities within the RedIRIS network. In total, there are measurements

for 23 different network devices that we treat as different links. The MRTG records are extracted

31

32 Chapter 5. Multivariate Normal Model for Daily Traffic

with a granularity of 5 minutes, i.e. every five minutes a new record is output. Each record has

five different values. The first one is the UNIX time of the measurements, that will be used in the

preprocessing step described in Section 5.3. The next ones are the average and maximum transfer

rates, in bps since the last record, for both interfaces. As we know the values for the link capacities

for all the measured links, we transform these measurements into utilization values, just dividing

each record by the capacity in bps. With this time granularity, we have 288 records per day and

direction. Our measurements span from the 2nd of February 2007 to the 31st of May 2008, which

leads to 485 days worth of data per link.

5.2 Analysis of the Day-Night pattern of the Traffic Rates

In this section we analyze the MRTG measurements described in the previous section, graphing

the values of selected days, in order to better understand the behavior of the daily and weekly

patterns in the RedIRIS network. We first graphed the same day of the week for different weeks,

hoping that the day-night pattern is more or less the same in all the days. The following graphs

confirm our intuition. Figure 5.1 shows the incoming traffic for 6 consecutive Mondays (being each

line a different day). As can be seen in the figure, the peak and off-peak pattern is close similar to

the one described in [TMW97]. We see in addition that there are some days with bursty values.

This could be due to measurement errors, so an averaging process is encouraged in order to reduce

the impact of these peaks.

0 5 10 15 20 25
0

0.005

0.01

0.015

0.02

0.025

0.03

Hour of the day

U
til

iz
at

io
n

(d
im

en
si

on
le

ss
)

Incoming traffic

Figure 5.1: Time Series representation of the utilization of a RedIRIS link for several consecutive
Mondays.

We repeated this representation for other working days (Figure 5.2 for outgoing traffic of

Tuesdays and Figure 5.3 for outgoing Wednesdays) and non-working days (Figure 5.4 for incoming

5.2. Analysis of the Day-Night pattern of the Traffic Rates 33

traffic of Saturdays and Figure 5.5 for incoming traffic of Sundays). The other days or directions

not shown in this document are available upon request to the author.

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Hour of the day

U
til

iz
at

io
n

(d
im

en
si

on
le

ss
)

Outgoing traffic

Figure 5.2: Time Series representation of the utilization of a RedIRIS link for several consecutive
Tuesdays.

The figures for the working days are similar amongst them. All of them show the day-night

pattern, having the peak and off-peak periods in the same intervals. On the contrary, the non-

working days show a very different pattern. The utilization is almost flat during the whole day,

although the bursty behavior is also obvious during the weekend. The differences are better shown

in Figure 5.6, where we have graphed a whole week.

We can see in this figure that the utilization during the weekend (the bottom two time series)

is considerably lower than the utilization during working hours in working days (the five top

time series), but is nearly the same during the night-time in all the weekdays. This leads us

to think that the traffic during night-time corresponds to applications that are left running and

generating traffic without user interaction. We have also repeated this procedure but selecting

days of different weeks, in order to avoid any possible correlation between days of the same week.

The obtained results are close similar to those of Figure 5.6, and are not presented here for the

sake of brevity. We therefore can conclude that the day-night pattern is similar between working

days, but that there is no day-night pattern during weekends, where the traffic is nearly flat. This

conclusion will be applied in the following section, where we present our model for the network

traffic.

34 Chapter 5. Multivariate Normal Model for Daily Traffic

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Hour of the day

U
til

iz
at

io
n

(d
im

en
si

on
le

ss
)

Outgoing traffic

Figure 5.3: Time Series representation of the utilization of a RedIRIS link for several consecutive
Wednesdays.

0 5 10 15 20 25
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Hour of the day

U
til

iz
at

io
n

(d
im

en
si

on
le

ss
)

Incoming traffic

Figure 5.4: Time Series representation of the utilization of a RedIRIS link for several consecutive
Saturdays.

5.2. Analysis of the Day-Night pattern of the Traffic Rates 35

0 5 10 15 20 25
0

0.005

0.01

0.015

0.02

0.025

0.03

Hour of the day

U
til

iz
at

io
n

(d
im

en
si

on
le

ss
)

Incoming traffic

Figure 5.5: Time Series representation of the utilization of a RedIRIS link for several consecutive
Sundays.

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

Hour of the day

U
til

iz
at

io
n

(d
im

en
si

on
le

ss
)

Outgoing traffic

Figure 5.6: Time Series representation of the utilization of a RedIRIS link for a whole week.

36 Chapter 5. Multivariate Normal Model for Daily Traffic

5.3 Description of the Multivariate Normal Model

We describe in this section a new model for network traffic. This model takes into account the

observed day-night pattern in the previous section, as follows. As we have shown that the day-night

pattern of working days is close similar between them, both in shape and values, we decided to use

a multivariate distribution to model the samples obtained from the MRTG records for each day

(remember that each day corresponds to 1440 samples per direction). Therefore, the realizations

during different days at the same time can be considered to follow the same (unknown) distribution.

However, a 1440-variate distribution is not an adequate model, because its high dimensionality

makes it difficult to work with.

In order to make the model more manageable, we average the MRTG values in 16 disjoint

intervals of 90 minutes. The reasons to choose 90 minutes as the averaging period are manifold:

first, there is a slim chance of missing data in the five minutes timescale, which is filtered out by

averaging in 90 minute periods; second, the time of the measurements may not be the same in the

different POPs due to clock synchronization issues. A timescale of 90 minutes is coarse enough

to circumvent this problem (this reason is also pointed out by [PTZD05]); thirds, the averaging

process prevents outliers and measurement errors to bias the results; last, but not the least, the

assumption of normality for Internet traffic holds when there is enough temporal aggregation of the

measurements [KN02, vdMMP06] (this normality is also reinforced by the averaging period thanks

to the CLT). Therefore, in addition to simplifying the model, we obtain a reasonable distribution

for the averaged samples.

However, as we have seen in the previous section, this model cannot be applied to working

days and weekends at the same time, because their day-night pattern differs a lot. Therefore, we

focus on working days, as their day-night pattern is of higher interest, and remove weekends from

our sample. In addition, we remove potential abnormal data because we do not pursue to detect

measurement anomalies. We summarize in what follows the data that is removed from our data

set:

• The day to which the measurements are referred was Saturday or Sunday. We remove these

days because the day-night pattern is very different to that of the working days.

• At least one of the 90 minutes intervals have no measurements. If so, we have no value for

this period, and the day-sample will have missing values. In order to circumvent the possible

problems that these missing values can produce in latter analysis, we remove the entire day

from the data.

• Summer & Christmas Holidays. During summer and Christmas holidays the pattern of

usage of the network resources is comparable to the pattern of weekends. Therefore, we also

remove these days from the data. Summer holidays are considered since the 1st of June till

the 30th of September. Christmas holidays are considered since 22th of December till 7th of

January.

• National & Autonomous Community (AC) Holidays. The national holidays are removed

from the data for all the links because those days the centers are closed. If there is network

usage during those days, it comes from applications that people let running when they are

5.4. Validation of the Model 37

not present in their workplace, so they are meaningless for capacity planning tasks. For AC

Holidays, those days are removed but only for the links that connect centers from that AC

to the RedIRIS network, or links that aggregate traffic from any of those ACs. In contrast,

for the links that aggregate traffic for all the ACs, these days are kept (for instance links

connecting RedIRIS with the Internet).

• Exams periods. As we are mainly using traffic from universities, exams periods can affect

the traffic patterns, because students do not use the network as they do when they have no

exams. For this reason we remove as summer holidays the months of June and September.

It is not clear what to do about February; the exams in this month do not usually take place

in the same periods of time in our university, and we have no clue about how is this carried

in other universities. By the time of writing these days are kept in the data.

After the preprocessing step, the data set contains more than 200 samples, each being a day

that we model with a p-variate normal distribution, where p = 16. Note that this preprocessing

step can be done in an online fashion because these days are known in advance. Finally, to facilitate

the understanding of the relation of the number of the variable with the time period of the day to

which it refers, these associations are presented in Table 5.1.

Table 5.1: Equivalence in time of the variables.
Number of the variable Time interval Number of the variable Time interval

1 00.00-01:30 9 12:00-13:30
2 01:30-03:00 10 13:30-15:00
3 03.00-04:30 11 15:00-16:30
4 04:30-06:00 12 16:30-18:00
5 06.00-07:30 13 18:00-19:30
6 07:30-09:00 14 19:30-21:00
7 09.00-10:30 15 21:00-22:30
8 10:30-12:00 16 22:30-00:00

5.4 Validation of the Model

In order to validate the model, we have performed several verifications of the normality assumption

for the 16 variables of our model. Therefore, we have applied several univariate normality tests.

In addition to this, we have tested for multivariate normality. This is necessary because the fact

that several variables have univariate normal distributions does not imply that its tuple has joint

normal distribution [JW92]. In what follows, we present the normality tests applied for both

univariate and p-variate distributions and the obtained results.

5.4.1 Univariate Normality Tests

We have applied three tests that are available in the statistic toolbox of Matlab for testing uni-

variate normality. These tests are the Kolmogorov-Smirnov (KS), Lilliefors and the Jarque-Bera

(JB) tests. A brief description of these tests is presented in Appendix C. We applied these tests

independently to samples of the outgoing and incoming directions. First of all, we tested the

38 Chapter 5. Multivariate Normal Model for Daily Traffic

overall dataset for univariate normality. The conclusion for both directions in all the links tested

is that the null hypothesis of normality must be rejected. This does not necessary mean that the

normality assumption is not valid. The normality rejection can be due to variations with time of

the distribution parameters. This possibility motivated us to perform the change point detection

analysis that is presented in Chapter 6.

To circumvent the possibility that the normality assumption is rejected because its parameters

are changing with time, we divide the whole dataset in disjoint subsets of contiguous day-samples,

and perform the normality tests to these day-samples. The duration of these subsets is sufficiently

large to perform the normality tests but smaller enough to avoid significant changes in the distri-

bution’s parameters. In total, we performed more than 300 normality tests per direction, and the

percentages of rejections of the assumption of normality with a confidence level α = 0.01 for each

variable are presented in Table 5.2 for the incoming direction and in Table 5.3 for the outgoing

direction.

Table 5.2: Percentage of rejections of the normality assumption per variable in the incoming
direction.

Number of the variable KS Test Lilliefors Test JB Test

1 0.66 18.42 16.78
2 1.32 26.64 20.07
3 3.29 30.26 21.71
4 3.95 31.25 23.36
5 3.95 30.26 24.67
6 3.62 21.05 21.05
7 0.66 18.75 18.09
8 0.33 15.46 19.08
9 0.66 17.76 18.75
10 0.66 18.42 21.38
11 0.66 17.76 12.5
12 0.99 16.78 13.49
13 0 18.09 13.49
14 1.32 16.12 16.45
15 0.66 19.08 15.79
16 0 15.13 16.45

The results of the KS tests are very good. However, as it is described in Appendix C.1, when

the parameters are estimated from the sample, the results of the KS test tends to be conservative.

Therefore, we should focus on the results from the Lilliefors and the JB tests. These are quite

similar for all the variables, and its maximum value is near 30%. This means that for that variable,

30% of the times the test was performed, the null hypothesis of normality was rejected. As we

are treating with real world measurements, it is expectable to have deviations from normality of

some samples that are detected by the normality tests. Therefore, a rate of acceptance greater to

70% is a value large enough to assume the model is appropriate.

In addition to the normality tests, we have also inspected the normality visually. To do this,

Quantile-Quantile (Q-Q) plots are commonly used. Q-Q plots are plots were the quantiles of the

sample data are plotted versus the quantiles of the distribution the data are supposed to come

from (i.e. a normal distribution). If the assumption of normality holds, the quantiles are nearly

5.4. Validation of the Model 39

Table 5.3: Percentage of rejections of the normality assumption per variable in the outgoing
direction.

Number of the variable KS Test Lilliefors Test JB Test

1 0.33 18.57 20.52
2 1.63 22.80 21.17
3 1.95 23.13 21.50
4 2.28 25.73 24.76
5 2.61 23.45 28.01
6 0.65 17.26 20.52
7 0.65 11.73 18.24
8 0.65 18.24 20.52
9 1.30 16.94 23.45
10 0.98 19.22 22.48
11 0 15.96 15.64
12 0.98 15.64 12.70
13 1.30 18.24 14.98
14 0.65 16.61 14.98
15 1.30 21.5 22.15
16 2.28 23.13 25.73

aligned in a straight line, although in the tails of a Q-Q plot small deviations from the line can

be accepted. We present in Figure 5.7 and Figure 5.8 the Q-Q plots for two different variables of

different directions from the same link where the normality assumption is doubtless exhibited.

5.4.2 Multivariate Normality Tests

Testing multivariate normality is harder than testing univariate normality. There are few ana-

lytical procedures for testing multivariate normality and usually the results are obtained through

simulations and approximations. However, we can test for normality graphically, in a similar

way as was done with the Q-Q plots. To do so, the Mahalanobis distance [Mah36] given by

equation (5.4.1) is used.

D2
j = (xj − x̄)tS−1(xj − x̄) (5.4.1)

In equation (5.4.1), xj is the j-th sample of the population, x̄ is its sample mean and S its sample

covariance matrix. If the sample comes from a normal distribution, the Mahalanobis distances

follow a χ2 distribution with degrees of freedom equal to the sample size n. Therefore, we can

make Q-Q plots of these distances, which are referred as χ2 plots [JW92]. If the points of this χ2

plot follow a straight line with slope one through the origin the normality assumption cannot be

rejected. We present in Figure 5.9 and Figure 5.10 the χ2 plots for the incoming and outgoing

directions, respectively, of the same link.

These plots evidence that also multivariate can be assumed from the samples of the model.

However, we see that the normality assumption is better held by the samples in the incoming

direction. This is reasonable, because the amount of traffic in the incoming direction is bigger

than in the outgoing one. Therefore, there is more aggregation of traffic in the incoming direction

and the normality assumption is better satisfied.

40 Chapter 5. Multivariate Normal Model for Daily Traffic

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

Q−Q plot of variable 12 (16:30−18:00)

Figure 5.7: Q-Q plot for variable 12 in the incoming direction.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

4

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

Q−Q Plot of Variable 6 (7:30−9:00)

Figure 5.8: Q-Q plot for variable 6 in the outgoing direction.

5.4. Validation of the Model 41

5 10 15 20 25 30 35
5

10

15

20

25

30

35
Chi Square Plot

Figure 5.9: χ2 plot for the incoming direction.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35
Chi Square Plot

Figure 5.10: χ2 plot for the outgoing direction.

42 Chapter 5. Multivariate Normal Model for Daily Traffic

5.5 Summary and Conclusions

In this chapter we have used a multivariate normal distribution to model the daily traffic. We

have used 16 dimensions for our multivariate distribution as we have found this number to be a

good compromise between simplicity and detail. The multidimensional nature of the model keeps

track of the well-known daily patterns of traffic [TMW97]. We present the reasons that lead us

to select a normal distribution for the model, which are based on formerly studies of normality

of traffic [vdMMP06, KN02]. Then, we have performed an exhaustive validation of the model,

testing for the multivariate normality assumption. However, testing for multivariate normality

is not straightforward, and several procedures must be followed. First, univariate normality for

all the dimensions should be tested independently. As these tests are applied to independent

samples, there is no need to apply corrections for the significances of the test (like the Bonferroni

correction). We have performed three different analytic tests for normality, and also assessed it

by graphical methods. Once the univariate normality assumption is verified (see Table 5.2 and

Table 5.3) it is necessary to test for joint normality, because the univariate normality does not

imply joint multivariate normality. Therefore, we computed the Mahalanobis distances for the

samples and performed χ2 plots, that confirmed the multivariate normality assumption. Thus, we

have a multivariate normal model which validity has been assessed with powerful and well-known

statistical tests. The next step is therefore to apply this model to real network traffic, in order

to obtain relevant information from network measurements. This application is described in the

following chapter.

Chapter 6

Online Load Change Detection

Algorithm

As was pointed out in the validation of the multivariate model, the fact that our hole dataset does

not follow a normal distribution can be due changes in the parameters of the distribution. This

intuition was reinforced with the univariate normality tests to subgroups of the datasets. This

motivated us to develop an algorithm to automatically detect the change points in the datasets,

so the results of the algorithm could be applied to network managing. This chapter is devoted

to present this online load change detection algorithm, aimed to identify changes in traffic loads

when monitoring Internet links. This online change detector was first introduced in [MAGD09] and

produces an alert when a sustained and statistically significant change has been detected. Then,

the network manager verifies the change and takes action if the change is truly relevant. First,

the related works on automated change detection are reviewed in Section 6.1. The algorithm

description is presented in Section 6.2. Then, we validate that the behavior of the algorithm

with synthetically generated time series, showing the results in Section 6.3 and Section 6.4. This

work appears in [MA10]. Following, we apply this algorithm to real network measurements in

Section 6.5. Finally, Section 6.6 concludes the chapter.

6.1 Related Work

Change points are defined as the time positions in the original time series where the local trend

is disrupted. Mostly, the problem of detecting change points has been tackled by segmenting

the original time series data into portions where the parameters of the chosen model remain

unchanged. The most näıve models used in segmentation of time series are linear models. With

these segmentation models, the time series are divided into piecewise linear segments, and the

change points are located in the time instants where the slope of the linear segment approximations

changes. However, this kind of approach usually lacks in either good performance or scalability

(i.e. it needs all the data in order to find the segments). In [KCHP01] a survey of the different

approaches for piecewise linear segmenting is presented, analyzing the aforementioned drawbacks.

In addition, the authors present a new algorithm that obtains good performance yet being online

43

44 Chapter 6. Online Load Change Detection Algorithm

(i.e., not needing all the time series to obtain results). To circumvent this weakness, Guralnik et al.

present in [GS99] an algorithm that not only reports changes when the parameters of the model are

no longer the same, but also when there is another model more suitable to fit the data (selected

from the set of all algebraic polynomials). In addition, more complex models have been also

applied to change point detection. For instance, Sharifzadeh et al. [SAS05] use wavelet footprints

to detect change points with the same underlying idea of using a polynomial basis, although this

approach has the advantage of scaling well to large datasets because of the compression property

of wavelets.

However, these fitted polynomial algorithms (and also other model/parameter change detectors

such as [PK02]) do not use any knowledge of the process that generate the time series. This means

that the performance of change detectors can be enhanced for specific applications by properly

applying domain knowledge. Therefore, we apply this domain knowledge modeling the samples

with a p-variate normal distribution and focusing on changes in the mean, which are the most

significant changes for capacity planning tasks of Internet links. Another main difference between

our solution and other existing solutions in the literature is that the Behrens-Fisher procedure,

which is applied in our algorithm to verify the change points, is equivalent to inspect for change

points in p time series at one time (one for each variable), thus enhancing the change point

detection.

6.2 Description of the Algorithm

Our online load change detection algorithm aims to identify sustained and statistically significant

change points in network load measurements. Once detected, the change points are reported to

the network manager, allowing him to be aware of potential anomalies. The network measure-

ments of interest for the algorithm are load measurements, which can be easily obtained from

MRTG [OR98]. We preprocess the measurements in order to obtain day-samples according to the

multivariate model presented in Chapter 5.

Our methodology then applies k-means (with k = 2) and the Multivariate Behrens-Fisher

Problem (MBFP) statistical test in an online fashion, as follows. Every time a one-day measure-

ment is available, it is added to the sample set S. If the cardinal of our sample set is large enough

we apply k-means in order to obtain two suitable clusters, i.e. each one with at least 17 samples

(we note that we are looking for sustained changes, defining it as change free regions larger than

16 days, so we need ♯S ≥ 34). When we find two suitable clusters, we apply the MBFP statis-

tical hypothesis testing procedure after testing for normality. The MBFP procedure addresses

the statistical problem of testing whether the means of two normally distributed populations are

the same (null hypothesis H0), for the case of unknown covariance matrices (more details on the

MBFP are presented in Appendix D). When the normality assumption does not hold (i.e. the

normality tests reject the null hypothesis) the algorithm still goes on to the following step, and

applies the MBFP test to the populations. However, the network manager is warned about this

fact in order to not blindly trust the results of the algorithm. Finally, if the MBFP test rejects the

null hypothesis, an alert is placed to the network manager that indicates a potential change point,

and the oldest cluster is removed from the sample set. The flux diagram of Figure 6.1 summarizes

the description of the algorithm.

6.3. Validation of the Algorithm’s Performance 45

Measurement

of a new day

Are there

enough

samples?

NO

Apply

clustering

techniques

Have the two

clusters enough

instances?

NO

Apply the

Behrens-

Fisher test

YES

Can the null

hypothesis be

rejected?

Remove the

oldest cluster

and place an

alert

YES

NO

YES

Are the

populations

normally

distributed?

YES

Warn the

supervisor

NO

Figure 6.1: Flux diagram of the online algorithm.

6.3 Validation of the Algorithm’s Performance

In order to assess the performance of the load change detection algorithm, we have tested it with

synthetic data. These synthetic data allow us to verify whether the algorithm is detecting the

changes properly. We can do so because we know beforehand where the changes are located.

The synthetic datasets generated to test the algorithm can be classified into two different groups,

depending on whether they have changes or not. In what follows we describe the datasets generated

and show the results of the algorithm performance evaluation. The datasets are N 16-dimensional

normal distributed vectors1, with N = 9000, which is large enough to assess the validity of the

obtained results (note that a sample of N = 9000 is equivalent to analyzing approximately 25

years of data in our algorithm).

6.3.1 Datasets with no changes

We have generated four datasets with no changes, i.e. having all the samples within the dataset

the same mean vector. Even in this case, there is always the chance of detecting a change anyway,

thus having False Positives (FP) alarms. These FP can be controlled with the significance level α,

which is the probability of rejecting the null hypothesis (that is, detecting a change) even though

there is no change in the data (Type I Error). The purpose of these datasets is to evaluate the

FP rate under no changes, which asymptotically must approach the probability of Type I Error.

P(Type I Error) = P(reject H0|H0 is true) = α

= lim
M→∞

of rejections

M
, (6.3.1)

where M is the total number of tests performed with datasets that fulfill H0.

1all the vector components are independent of each other

46 Chapter 6. Online Load Change Detection Algorithm

Table 6.1: Datasets generated with no changes.
Dataset Description

All Equal (AE)
All vector components have the

same mean and variance

Means (M)
Each vector component has a

different mean, but their
variances are the same

Variances (V)
Each vector component has the same

mean, but different variance

Means Variances (MV)
Each vector component has different

mean and variance

Description of the datasets

The four datasets generated without changes in their means are obtained through four different

affine transformations on four different random samples of N realizations distributed according to

a standard 16-variate normal distribution. The applied transformations have been chosen in order

to obtain four datasets with the characteristics that are summarized in Table 6.1.

Results

0 0.02 0.04 0.06 0.08 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

significance level α

fa
ls

e
po

si
tiv

es
 (

ra
tio

)

Performance of Load change Detector Algorithm

AE

M

V

MV

Theoretical

Figure 6.2: False positives ratio in datasets with no changes.

We have measured the False Positives Ratio (FPR) given by (6.3.1) for different significance

levels α. The results are presented in Figure 6.2, which shows the FPR of each dataset versus the

significance level used in the tests, also with the theoretical FPR (that equals α). The FPR remains

almost negligible for significance levels smaller than α = 0.06. Thus, we have a large interval of

6.3. Validation of the Algorithm’s Performance 47

possible significance levels with good performance. Significance levels above 0.06 experiment an

increment in the FPR, but also in this region the FPR of the algorithm when applied to these

datasets is smaller than the theoretical one. The differences in the performance of the algorithm

for the four different datasets are not relevant, because these differences are mainly due to random

number generation issues (we have confirmed this by applying different transformations to the

same random generated sample).

6.3.2 Datasets with staggered increments

As the aim of the algorithm is to detect changes in the load, after confirming that there is a low

ratio of FPs, a validation with controlled changes follows. Thus, we have generated two different

datasets with staggered increments of duration one and three months, i.e. the distribution of the

samples remain the same for one (three) month(s), and after that, the mean is increased. We

note that this kind of growth is the most significant for the capacity planning task, because linear

increments are easily tracked by classical time series analysis, so a forecast of upgrading times when

the changes are linear is straightforward. This is accomplished by fitting a time series model to

the data (for instance an Auto Regressive Integrated Moving Average (ARIMA) model [PTZD05])

and then predicting when the time series will be above a given threshold ([BD91]) where the QoS

of the link might be compromised. Therefore, detecting staggered increments in a timely fashion

is crucial for network operators, because the reduction in QoS delivered to its customers adversely

affects the operator’s reputation.

Description of the datasets

The growth rate for the monthly staggers is chosen such that effective annual growth is around 90%,

which is in accordance with popular reports about the Internet traffic growth ([Odl03]). Thus, the

monthly growth is approximately 6%. The quarterly growth has also been set to approximately

6%, on attempts to make the obtained results comparable, i.e. we have longer periods without

changes in the quarterly growth dataset, but the size of the staggers (which are the relevant facts

to detect changes) are the same in both time series. Finally, the theoretical number of changes

that should be detected with the algorithm in the Monthly Increments (MI) dataset is 300 and in

the Quarterly Increments (QI) dataset is 100.

Results

In Figure 6.3 we show the number of detected changes on the MI data as a function of the

significance level of the performed tests. This figure shows very promising results. The number of

detected changes is in the range 295-300, while the correct value is 300. In addition, the number

of false negatives is small for all the significances tested.

Figure 6.4 presents the same information but for the QI data. Here the performance has been

reduced. There is no significance level at which we detect exactly the same number of changes that

are theoretically in the dataset. In addition, the false positives have enlarged, being now greater

than 50. Above significance values greater than 0.06 we detect more than 300 changes, meaning

that every theoretical change we alert for 3 detected changes. We will shed light on the causes of

this misidentification in Section 6.4 by inspecting the results at a fixed significance level.

48 Chapter 6. Online Load Change Detection Algorithm

0 0.02 0.04 0.06 0.08 0.1
295

300

305

310

Significance level α

N
o.

 o
f D

et
ec

te
d

C
ha

ng
es

Monthly increments

Detected

Theoretical

Figure 6.3: Detected changes in Monthly Increments dataset.

0 0.02 0.04 0.06 0.08 0.1

100

150

200

250

300

350

Significance level α

N
o.

 o
f D

et
ec

te
d

C
ha

ng
es

Quarterly increments

Detected

ideal

Figure 6.4: Detected changes in Quarterly Increments dataset.

6.4. Analysis of the Validation Results at Fixed Significance Level 49

6.4 Analysis of the Validation Results at Fixed Significance

Level

In this section, we further inspect the synthetic data presented in the previous section, but with a

fixed value for the significance level. The value selected for the significance level is α = 0.05, as it

is the most commonly used value. By making the significance level fixed we can apply analysis of

the Hotelling’s T 2 statistic presented in Appendix E. In addition, we can present graph plots of

the clusters found and inspect the reported change points. On those graphs, we plot the values of

the projection in one vector component, using different color-marker schemes to differentiate the

change free regions according to the results of the algorithm. In addition, we mark with a straight

line the mean of all the values within a change free region, making it easier to judge the validity

of the reported change points. As the amount of points generated for each vector component is

humongous, we will focus on certain regions of the plots that we have found to be relevant for the

validation.

6.4.1 Datasets with no changes

This subsection is devoted to inspect the datasets generated with no changes. In what follows, we

focus on the All Equal (AE) dataset, as we have found it to be representative of all the datasets

generated with no changes.

In Figure 6.5, we show the change free regions found by the algorithm in the first 300 samples

of the AE dataset. Although the samples are concentrated around the true mean (100), the

algorithm detected some change points. This happens because we are applying a statistical test,

whose confidence level can be interpreted as the rate of false positives in the limit. Therefore,

although a perfect algorithm would have detected no changes in this dataset, it is a normal

situation when applying statistical tests to have some FPs due to the confidence level.

The change points reported by the algorithm in this dataset can be due to the following reasons:

• The algorithm found one cluster with mean above the theoretical followed by a cluster with

mean under the theoretical (or vice versa). This can be easily seen between the first two

change free regions in Figure 6.5.

• The weighted sum of the differences in all the vector components is above F 1−α
p,N−p (Ap-

pendix E). To illustrate this fact, we present in Figure 6.6 the same zoom area for vector

component 2. The differences between the last two change free regions on Figure 6.5 and

Figure 6.6 (the dots (·) around sample 200 and the circles (◦) on its right) are very small,

but the addition of these differences through all the variables motivates reporting a change

point.

6.4.2 Datasets with staggered increments

As was described in Section 6.3.2, these datasets are designed to be invariant both in mean and

variance for a fixed period of time after which the value of the mean is increased. Thus, in these

regions without changes we are in the same case as in the AE dataset. We therefore inspect each

stair of the dataset from the point of view used in Section 6.4.1.

50 Chapter 6. Online Load Change Detection Algorithm

0 50 100 150 200 250 300
92

94

96

98

100

102

104

106

108
Time Series of AE vector component 1

Samples

V
al

ue

Figure 6.5: Time Series representation of the change free regions for the first 300 samples of the
1st vector component of the AE dataset.

0 50 100 150 200 250 300
90

95

100

105

110

115
Time Series of AE vector component 2

Samples

V
al

ue

Figure 6.6: Time Series representation of the change free regions for the first 300 samples of the
2nd vector component of the AE dataset.

6.4. Analysis of the Validation Results at Fixed Significance Level 51

Monthly increments dataset

The clusters in the final samples of this dataset (sample 8000 and above) are easily identified by

the algorithm, as the differences between those clusters are big enough due to the increment by

percentages in each theoretical change point. Thus, we will zoom in the beginning of the dataset

and focus on the first samples (sample 120 and under). This region is depicted in Figure 6.7,

where we have placed vertical lines in the time instants where the theoretical change points are

located.

0 30 60 90 120
40

50

60

70

80
Time Series of MI variable 1

Samples

V
al

ue

Figure 6.7: Zoom to the first 120 samples of the 1st vector component of the MI dataset with
delimitation lines for the theoretical change points.

As can be seen in the figure, the variance of the sample is big enough to make samples in

different theoretical change free regions (therefore with different means) to be indistinguishable in

some cases. For instance, take a look in the first change free region (under sample 30). The circle

(◦) samples in this region are generated with the same mean as the dot (·) ones. However, these

circle samples resemble more to those circle samples in the second change free region (between

samples 30 and 60) than to the dot ones with the same theoretical mean. This is detected by the

algorithm through the clustering technique, which divides the first region before the theoretical

change. As the difference between the means is truly significant, the MBFP procedure detects

it and a change point is reported between these clusters. That is what makes the algorithm to

misinterpret the true change point between those regions, which we have confirmed to happen

also in other instants of the dataset. This rationale explains all the false positives detected by the

algorithm, that under small variance samples or with a more restrictive significance value would

not have been detected. However, if we pay attention to the second change free region, we find

that there are not significant differences between the two clusters found by the algorithm when

52 Chapter 6. Online Load Change Detection Algorithm

inspecting them visually. Remember form Section 6.4.1 that the detected change point between

these two clusters is also due to the differences in the means of the remaining vector components,

although apparently in this component there is no change.

Quarterly increments

In this section, we deal with the staggered synthetic data whose increments happen every three

months (90 samples). For the same reason that in the MI dataset, we will zoom in to the first

samples, because there the samples are more concentrated and it is difficult to assess the validity

of the algorithm without this zoom. In Figure 6.8 we have zoomed in to the first 360 samples, and

represented the change free regions found by the algorithm in conjunction with their means and

the theoretical change points.

0 90 180 270 360
40

45

50

55

60

65

70
Time Series of QI variable 1

Samples

V
al

ue

Figure 6.8: Zoom to the first 900 samples of the 1st vector component of the QI dataset.

In that figure it can be easily seen that in each theoretical change free region, our algorithm

reported several change points. The reason for the detection of these extra change points is the

same pointed out in Section 6.4.1, as the extra change points are detected within a theoretical

change free region, where the mean and the variance remain constant (same as AE dataset). On the

other hand, there are some theoretical change points not reported by the algorithm (for instance

the one in sample 270). The reason for the misidentification of some theoretical change points

was described in the previous subsection for the MI dataset. As the samples have a relatively

large variance (compared to their mean) in this region, this leads to samples of one theoretical

change free region that resemble more to those of adjacent regions than to the samples on its own

region. This similarity is detected by the clustering algorithm, and the fact that there is actually

a difference between them is finally confirmed by the statistical procedure.

6.5. Change Point Analysis with Real Network Measurements 53

6.5 Change Point Analysis with Real Network Measure-

ments

n this section we present the results of applying our methodology to real network measurements

obtained in the RedIRIS network. These measurements follow the description given in Section 5.1,

although in this case the measurement period is larger. We have now measurements from 18 links

that spans from the 6th of February of 2007 to the 10th of March of 2009. Table 6.2 summarizes the

number of tests performed and alerts generated by our algorithm when applied to this dataset.

The second and fourth columns show the number of times the MBFP testing methodology is

applied. This is the number of times that the clustering algorithm was able to form two clusters

with enough size to apply the test. The third and fifth columns show the number of times an alert

is generated, i.e. the null hypothesis of equality of means is not verified.

Table 6.2: Results of the online algorithm.

University
Incoming direction Outgoing direction

link
Number Number Number Number
of tests of alerts of tests of alerts

U1 68 13 76 11
U2 68 12 130 9
U3 62 13 75 11
U4 86 10 57 11
U5 64 11 84 11
U6 56 11 76 12
U7 85 11 89 10
U8 112 10 75 12
U9 79 10 59 12
U10 65 11 102 12
U11 67 11 67 12
U12 103 9 75 11
U13 73 10 84 10
U14 108 10 61 11
U15 98 8 85 9
U16 59 12 57 11
U17 123 10 88 11
U18 82 11 94 13

Average 80.94 10.72 79.67 11.06

As can be seen in Table 6.2, the advantage of our online algorithm to network load detection

is that it decreases the Operational Expenditure (OPEX) by reducing the human supervision. We

remark that our algorithm produces an alert only in case a stationary change in the load happens.

The rest of the time the link is considered normal and no intervention from the network manager

is required. Regarding the time span of the measurements, our algorithm placed less than 13

potential network load changes requiring human supervision in a period of more than 750 days

(including holidays). That means a potential load change nearly every two months.

To illustrate these results, we present in the following figures the obtained clusters using differ-

ent color-markers to differentiate them. Figure 6.9 shows the obtained clusters for the incoming

direction of university link U1 for the time interval 12:00-13:30 (variable 9) and Figure 6.10 shows

54 Chapter 6. Online Load Change Detection Algorithm

the clusters obtained for the outgoing direction of the same university link and the same time

interval.

0 50 100 150 200 250 300 350
800

1000

1200

1400

1600

1800

2000

2200

2400
Time Series of variable9

Days

Lo
ad

 (
M

bp
s)

Figure 6.9: Change points found by the online algorithm in the incoming direction of university
link U1 on the time interval 12:00-13:30.

Almost all the clusters obtained by the algorithm are reasonable. However, there are some

reported clusters that do not seem to have been properly detected. For instance, the change point

reported between samples 100 and 150 seems to be a FP. Here is worth remembering the reasoning

followed in the validation of the algorithm in Section 6.4. There, it was pointed out that a reported

change point can be due to differences in other variables different than the one shown. This is

evidenced when comparing Figure 6.10 with Figure 6.11, where we have plotted the same clusters

but for the time interval 21:00-22:30 (variable 15). In variable 15 there is actually a noticeably

change point between those clusters, which motivates the reported change point by the algorithm

although in variable 9 there was not a change point.

Finally, we have used the reported clusters to cross-validate the network model presented in

Chapter 5. Thus, we have repeated the univariate normality tests performed in Section 5.4.1 but

for the clusters reported by the algorithm. The results are shown in Table for the incoming

direction and in Table for the outgoing one.

As can be seen in the tables, the results of the univariate normality tests are slightly worse

than when they were applied to fixed length subgroups of the datasets. The reasons to obtain

worse results are twofold. First, we are applying now the univariate normality tests to larger

populations. Therefore, the normality tests are more powerful, and some cases that were before

dubious but finally accepted are now rejected. On the other hand, our algorithm tests whether

the means have change or not, but without making any assumption about the variances. However,

if the variances are also changing within the reported clusters, the normality tests reject the null

hypothesis although the mean remains constant. We plan to enhance our online algorithm by also

6.5. Change Point Analysis with Real Network Measurements 55

0 50 100 150 200 250 300 350
1500

2000

2500

3000

3500

4000
Time Series of variable9

Days

Lo
ad

 (
M

bp
s)

Figure 6.10: Change points found by the online algorithm in the outgoing direction of university
link U1 on the time interval 12:00-13:30.

0 50 100 150 200 250 300 350
1000

1500

2000

2500

3000

3500

4000
Time Series of variable15

Days

Lo
ad

 (
M

bp
s)

Figure 6.11: Change points found by the online algorithm in the outgoing direction of university
link U1 on the time interval 12:00-13:30.

56 Chapter 6. Online Load Change Detection Algorithm

Table 6.3: Percentage of rejections of the normality assumption per variable in the incoming
direction for the clusters reported by the online algorithm.

Number of the variable KS Test Lilliefors Test JB Test

1 1.47 25.49 23.53
2 3.92 34.80 26.96
3 6.86 34.80 28.92
4 8.33 34.31 26.96
5 7.35 37.25 29.41
6 5.39 31.37 31.37
7 1.96 25.98 30.88
8 0.98 22.06 24.02
9 0.98 25.49 25.98
10 2.45 21.08 23.53
11 2.45 21.08 19.61
12 1.96 21.57 19.61
13 0.49 22.55 24.51
14 2.45 21.57 22.06
15 1.47 23.04 22.55
16 2.45 19.61 23.04

Table 6.4: Percentage of rejections of the normality assumption per variable in the outgoing
direction for the clusters reported by the online algorithm.

Number of the variable KS Test Lilliefors Test JB Test

1 0.48 23.44 26.32
2 3.35 27.27 25.36
3 4.31 27.75 26.32
4 4.31 31.10 30.14
5 5.74 32.54 31.58
6 2.39 16.75 24.88
7 1.91 17.70 24.40
8 2.39 21.05 26.32
9 2.39 22.49 28.71
10 2.39 22.49 29.19
11 0.96 22.49 18.66
12 1.44 20.10 18.18
13 1.91 21.05 19.14
14 1.91 17.22 17.22
15 5.26 26.79 28.23
16 3.83 24.88 27.75

6.6. Summary and Conclusions 57

detecting change points taking into account variations in the variance.

6.6 Summary and Conclusions

In this chapter we have presented an online change load detection algorithm aimed to automat-

ically detect change points in the load of the Internet links. This algorithm was first introduced

in [MAGD09] and validated in [MA10]. Our algorithm makes use of powerful and well-known

statistical tests procedures in order to assess the validity of the clusters obtained by k-means. The

results of the algorithm when applied to real network measurements are very promising, as shown

in the figures in Section 6.5, and allow a network operator to reduce the OPEX by preventing the

network manager to visually inspect continually the time series of the links. The future work will

cover the analysis of the obtained change points, in order to model them to allow prediction of

future change points.

Chapter 7

Conclusions and Future Work

This master thesis covers the early stages of research work for almost two years. The described

contributions follow the investigation of network invariants that could be applied for inference.

This research began with the analysis of packet and connection level statistics that were applied to

classification of flows by the generating application. This unfruitful classification method moved

us to analyze the throughput in a per flow basis. We started analyzing the distribution of the

mean values of the throughput, making a distinction whether the protocol under use was TCP or

UDP. This distribution did not resemble any well-known distribution, so we decided to suppose

normality (that was assumable thanks to the CLT) and compute confidence intervals for the

throughput mean value. The underlying reasoning was the assumption that, under adequate link

conditions, these confidence intervals must overlap because the mean throughput value is more or

less the same. Unfortunately, the results showed that the mean value of the throughput follows a

day-night pattern opposite to traffic pattern. When the traffic of the link has a peak, the mean

value of the throughput has an off-peak, and vice versa.

This finding motivated us to analyze the day-night traffic pattern, because it is easier to measure

and their values can be directly applied to capacity planning tasks. We started by analyzing the

day-night traffic pattern of the RedIRIS’ network. The conclusions were that this day-night pattern

was an invariant during working days. However, weekends do not exhibit the same day-night

patter. Instead, the day-night pattern of the weekends was nearly flat. As the amount of traffic

during working days is considerably larger than during weekends, we developed a model taking into

account only the traffic during working days, ignoring the weekends’ traffic. The presented model

keeps track of the day-night pattern, averaging measurements in disjoint intervals, thus obtaining

a multivariate model for the daily traffic. Based on previous research [vdMMP06, KN02] we fit the

distribution of the model to a normal distribution. However, we did not only rely on those works,

and tested for multivariate normality real network measurements preprocessed according to our

multivariate model. The results of the multivariate normality test show promising, moreover taking

into account that they are applied to real world values. Nevertheless, the normality assumption

held only when grouping the samples in populations of small size, being always rejected when

applied to the whole dataset. We envisaged that this phenomenon was motivated by a change

of the normal parameters with time. Thus, we developed an online algorithm for tracking these

changes in the parameters, focusing on the mean value of the traffic load.

59

60 Chapter 7. Conclusions and Future Work

We presented our algorithm in [MAGD09]. This algorithm uses the previously defined model,

and applies powerful machine learning and statistical testing procedures to, respectively, find the

changes and determine its significance. The validation of the algorithm [MA10] showed that,

under input following the assumptions of the algorithm, our algorithm manages to properly detect

the significant change points in a dataset. The application of our algorithm to real network

measurements from the Spanish NREN RedIRIS evidences that the network operators can reduce

considerably their OPEX, by preventing the network managers to continuously inspecting visually

the network time series measurements.

As future work, we plan to further analyze the change points reported by our online algorithm.

We find useful to characterize the distribution of the change points, and the correlation of the

change points between the incoming and outgoing directions of the same university. We also plan

to develop a software application for traffic prediction in hourly intervals.

Bibliography

[And58] T. W. Anderson, An introduction to multivariate statistical analysis, Wiley New

York, 1958.

[BC02] N. Brownlee and K. C. Claffy, Understanding Internet traffic streams: dragonflies

and tortoises, IEEE Communications Magazine 40 (2002), no. 10, 110–117.

[BD91] P. J. Brockwell and R. A. Davis, Time series: theory and methods, Springer

Series in Statistics, Springer, 1991.

[BM01] N. Brownlee and M. Murray, Streams, Flows and Torrents, PAMWorkshop, 2001.

[BS06] S. A. Baset and H. Schulzrinne, An Analysis of the Skype Peer-to-Peer Internel

Telephony Protocol, IEEE Infocom, 2006.

[Cla04] B. Claise, RFC 3954: Cisco Systems NetFlow Services Export Version 9, 2004.

[Cla06] K. C. Claffy, “A Day in the Life of the Internet”: Proposed community-wide

experiment, ACM Computer Communication Review 36 (2006), no. 5, 39–40.

[Coc97] W. G. Cochran, Sampling techniques, Wiley and Sons, NY, 1997.

[CPB93] K. C. Claffy, G. C. Polyzos, and H. W. Braun, Application of sampling method-

ologies to network traffic characterization, ACM SIGCOMM, vol. 23, ACM Press

New York, NY, USA, 1993, pp. 194–203.

[DHS01] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification, Wiley New York,

2001.

[DPV06] A. Dainotti, A. Pescape, and G. Ventre, A Packet-level Characterization of Net-

work Traffic, 11th Intenational Workshop on Computer-Aided Modeling Analysis

and Design of Communication Links and Networks, 2006, pp. 38–45.

[EP06] S. Ehlert and S. Petgang, Analysis and Signature of Skype VoIP Session Traffic,

Proceedings of the Fourth IASTED International Conference on Communica-

tions, Internet, and Information Technology, 2006, pp. 83–89.

[EV02] C. Estan and G. Varghese, New directions in traffic measurement and accounting,

ACM SIGCOMM , 2002, pp. 323–336.

61

62 Bibliography

[EV03] , New Directions in Traffic Measurement and Accounting: Focusing on

the Elephants, Ignoring the Mice, ACM Transactions on Computer Systems 21

(2003), no. 3, 270–313.

[FXAM04] J. Fan, J. Xu, M. H. Ammar, and S. B. Moon, Prefix-preserving IP address

anonymization: measurement-based security evaluation and a new cryptography-

based scheme, Computer Networks 46 (2004), no. 2, 253–272.

[GS99] V. Guralnik and J. Srivastava, Event detection from time series data, Proceedings

of the fifth ACM SIGKDD international conference on Knowledge discovery and

data mining, 1999, pp. 33–42.

[JB80] C. M. Jarque and A. K. Bera, Efficient tests for normality, homoscedasticity and

serial independence of regression residuals, Economics Letters 6 (1980), no. 3,

255–259.

[JLM93] V. Jacobson, C. Leres, and S. McCanne, pcap-Packet Capture library, 1993.

[JW92] R. A. Johnson and D. W. Wichern, Applied multivariate statistical analysis,

Prentice-Hall International Editions, 1992.

[KCHP01] E. Keogh, S. Chu, D. Hart, and M. Pazzani, An online algorithm for segmenting

time series, Proceedings of IEEE International Conference on Data Mining, 2001,

pp. 289–296.

[KN02] J. Kilpi and I. Norros, Testing the Gaussian approximation of aggregate traffic,

Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurment

(2002), 49–61.

[KPF05] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, BLINC: multilevel traffic

classification in the dark, Proceedings of the 2005 conference on Applications,

technologies, architectures, and protocols for computer communications (New

York, NY, USA), vol. 35, ACM, 2005, pp. 229–240.

[LG08] W. J. Liu and J. Gong, Double sampling for flow measurement on high speed

links, Computer Networks 52 (2008), no. 11, 2221–2226.

[Lil67] H. W. Lilliefors, On the Kolmogorov-Smirnov test for normality with mean and

variance unknown, Journal of the American Statistical Association 62 (1967),

no. 318, 399–402.

[Lim] S. Limited, Skype, http://www.skype.com.

[MA08] F. Mata and J. Aracil, Traffic Classification, Tech. report, Univer-

sidad Autónoma de Madrid, 2008, http://arantxa.ii.uam.es/~fmata/

Publications/TechReports/TrafficClassification.pdf.

[MA10] , Performance Evaluation of an Online Load Change Detection Algorithm,

Accepted for its publication in the Second International Conference on Computer

and Automation Engineering, vol. 1, 2010.

http://www.skype.com
http://arantxa.ii.uam.es/~fmata/Publications/TechReports/TrafficClassification.pdf
http://arantxa.ii.uam.es/~fmata/Publications/TechReports/TrafficClassification.pdf

Bibliography 63

[MAGD09] F. Mata, J. Aracil, and J. L. Garćıa-Dorado, Automated Detection of Load

Changes in Large-Scale Networks, Proceedings of First International TMA Work-

shop (Aachen, Germany), May 2009, pp. 34–41.

[Mah36] P. C. Mahalanobis, On the generalized distance in statistics, Proceedings of the

National Institute of Science, vol. 12, 1936, p. 49.

[MC00] S. McCreary and K. C. Claffy, Trends in Wide Area IP Traffic Patterns, Tech.

report, The Cooperative Association for Internet Data Analysis (CAIDA), 2000.

[MD90] J. C. Mogul and S. E. Deering, RFC 1191: Path MTU Discovery, 1990.

[MPM05] G. M. Muntean, P. Perry, and L. Murphy, Objective and Subjective Evaluation

of QOAS Video Streaming over Broadband Networks, IEEE eTransactions on

Network and Service Management 2 (2005), no. 1, 19–28.

[MZ05] A. W. Moore and D. Zuev, Internet traffic classification using bayesian analysis

techniques, Proceedings of the 2005 ACM SIGMETRICS international conference

on Measurement and modeling of computer systems (New York, NY, USA), 2005,

pp. 50–60.

[NAR+04] H. T. M. Neto, J. M. Almeida, L. C. D. Rocha, W. Meira, P. H. C. Guerra,

and V. A. F. Almeida, A characterization of broadband user behavior and their

e-business activities, ACM SIGMETRICS Performance Evaluation Review 32

(2004), no. 3, 3–13.

[Odl03] A. M. Odlyzko, Internet traffic growth: sources and implications, Proceedings of

SPIE 5247 (2003), 1–15.

[OR98] T. Oetiker and D. Rand, MRTG: The Multi Router Traffic Grapher, Proceedings

of the 12th USENIX conference on System administration (1998), 141–148.

[OSST04] A. Oveissian, K. Salamatian, A. Soule, and N. Taft, Fast flow classification over

Internet, Second Annual Conference on Communication Networks and Services

Research, May 2004, pp. 235–242.

[PGDM07] M. Perenyi, A. Gefferth, T. D. Dang, and S. Molnar, Skype Traffic Identification,

IEEE Global Telecommunications Conference, 2007, pp. 399–404.

[PK02] V. Puttagunta and K. Kalpakis, Adaptive methods for activity monitoring of

streaming data, Proceedings of the International Conferences on Machine Learn-

ing and Applications, 2002, pp. 197–203.

[PM07] M. Perenyi and S. Molnar, Enhanced Skype traffic identification, Proceedings of

the 2nd international conference on Performance evaluation methodologies and

tools, 2007.

[PTB+02] K. Papagiannaki, N. Taft, S. Bhattacharyya, P. Thiran, K. Salamatian, and

C. Diot, A pragmatic definition of elephants in internet backbone traffic, Pro-

ceedings of the 2nd ACM SIGCOMM Workshop on Internet measurment (New

York, NY, USA), 2002, pp. 175–176.

64 Bibliography

[PTZD05] K. Papagiannaki, N. Taft, Z. Zhang, and C. Diot, Long-term forecasting of In-

ternet backbone traffic, IEEE Transactions on Neural Networks 16 (2005), no. 5,

1110–1124.

[RK96] A. Rueda and W. Kinsner, A survey of traffic characterization techniques in

telecommunication networks, Canadian Conference on Electrical and Computer

Engineering (Calgary, Alta., Canada), vol. 2, May 1996, pp. 830–833.

[RMM08] D. Rossi, M. Mellia, and M. Meo, Following skype signaling footsteps, Proceedings

of the 4th International Telecommunication Networking WorkShop on QoS in

Multiservice IP Networks, 2008, pp. 248–253.

[Rob00] L. G. Roberts, Beyond Moore’s Law: Internet Growth Trends, Computer 33

(2000), no. 1, 117–119.

[RS94] F. J. Rohlf and R. R. Sokal, Statistical tables, WH Freeman, 1994.

[RSSD04] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, Class-of-service mapping for

QoS: a statistical signature-based approach to IP traffic classification, Proceedings

of the 4th ACM SIGCOMM conference on Internet measurement (New York, NY,

USA), 2004, pp. 135–148.

[SAS05] M. Sharifzadeh, F. Azmoodeh, and C. Shahabi, Change detection in time series

data using wavelet footprints, Lecture Notes in Computer Science 3633 (2005),

127.

[SFKT06] K. Suh, D. R. Figueiredo, J. Kurose, and D. Towsley, Characterizing and Detect-

ing Skype-Relayed Traffic, Proceedings of the 25th IEEE International Conference

on Computer Communications, April 2006, pp. 1–12.

[She04] D. Sheskin, Handbook of parametric and nonparametric statistical procedures,

CRC Press, 2004.

[Ste74] M. A. Stephens, EDF statistics for goodness of fit and some comparisons, Journal

of the American Statistical Association 69 (1974), no. 347, 730–737.

[Ste97] W. Stevens, RFC 2001: TCP Slow Start, Congestion Avoidance, Fast Retrans-

mit, and Fast Recovery Algorithms, 1997.

[TMW97] K. Thompson, G. J. Miller, and R. Wilder, Wide-area Internet traffic patterns

and characteristics, IEEE Network 11 (1997), no. 6, 10–23.

[vdBMvdM+06] H. van den Berg, M. Mandjes, R. van de Meent, A. Pras, F. Roijers, and P. Ven-

emans, QoS-aware bandwidth provisioning for IP network links, Computer Net-

works 50 (2006), no. 5, 631–647.

[vdMMP06] R. van de Meent, M. Mandjes, and A. Pras, Gaussian traffic everywhere?, IEEE

International Conference on Communications, vol. 2, 2006.

Bibliography 65

[ZSGK08] M. Zink, K. Suh, Y. Gu, and J. Kurose, Watch global, cache local: YouTube net-

work traffic at a campus network: measurements and implications, Proceedings

of SPIE 6818 (2008), 681805.

Appendix A

k-means

Throughout the master thesis work we have applied several time clustering techniques in our

algorithms. The clustering algorithm selected for this task has been k-means [DHS01]. We present

in this appendix a brief description of the k-means algorithm for the sake of completeness.

k-means is a two-step iterative algorithm that finds the clusters that minimize the sum of the

squared distances from each instance belonging to the cluster to a representative of it, namely

centroid. The algorithm needs as input the number k of clusters expected or actually existing

in the dataset. It starts by selecting k random instances from the data as the original centroids.

Then, it computes the distances from each instance in the data to every centroid, and assigns the

instance to the cluster represented by the centroid to which the distance is the smallest. After

that, the means step consists of computing the new representatives for each cluster, which are

the means of the instances belonging to each cluster. The algorithm then iterates repeating these

steps until the new computed centroids are the same that were computed in the previous one.

67

Appendix B

Sample & Hold

S&H was first introduced in [EV02]. Later, a more comprehensive version was published [EV03].

The objective of the technique is to monitor the traffic of a link, measuring accurately the amount

of traffic sent by the “heavy hitters”, i.e. the most contributing flows. The results of S&H can

then be applied to usage-based pricing, where the most active users are charged proportionally to

the amount of the resources consumed, whereas the remaining users just pay a fixed fee. However,

as link speeds and the number of flows increase, keeping a counter for each flow is too expensive

(using Static Random Access Memory (SRAM)) or slow (using Dynamic Random Access Memory

(DRAM)). Therefore, sampling methods should be applied.

S&H use ordinary random sampling, same as NetFlow (see Section 2.2 of Chapter 2), sampling

each packet with a probability that depends on its length, but once a packet from a flow is sampled,

the following packets belonging to the same flow are also sampled, as follows. If a packet is sampled

but the flow it belongs to has not been sampled yet, a new memory entry is created for that flow

containing the statistics of the sampled packet. Afterwards, every time that a new packet of the

same flow is sent, the memory entry is updated with the corresponding statistics. This procedure

is exemplified in Figure B.1.

Searching the memory each time a packet is seen and updating the corresponding counters may

lead to overflow resulting in packets not inspected thus reducing the accuracy of the methodology.

However, the authors show that S&H has reduced memory requirements that allows the flow

memory to be in SRAM instead of in a slow DRAM, allowing scaling the methodology with line

speeds.

If we want to detect the flows that send more than t% of the link capacity in a measurement

interval C, there can be at most 100/t of such flows. Therefore, the flow memory should be

dimensioned to allow the allocation of 100/t ∗ o + S flows, where o is an oversampling factor to

prevent false positives which may occupy all the positions intended for the most contributing flows

and S is some extra memory entries to ensure the flow memory is not filled completely. In order

to sample 100/t ∗ o flows in average, we should set the bit sampling probability to p = 100
t · o

C .

With these parameters, the authors showed that the false negative probability (i.e. the probability

of not detecting one of the large flows of interest) is very close to e−o, that for an oversampling

factor o = 100 is in the order of 10−44.

S&H has the benefits of being easy to implement and that it generates small reports compared

69

70 Appendix B. Sample & Hold

F3 2

F1 3

F1 F1 F2 F3 F2 F4 F1 F3 F1

Entry updated

Sampled packet (probability=1/3)

Entry created

Transmitted packets

Flow memory

!!!
!!!
!!!
!!!
!!!
!!!

!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!

!!
!!
!!
!!
!!

!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!

!!!
!!!
!!!
!!!
!!!
!!!

!!!!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!

!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!

Figure B.1: Example of SH algorithm. The first time a flow is sampled a new entry in the Flow
memory is created (solid lines). Then, the counter is updated for the remaining packets belonging
to that flow (dashed lines). This figure was taken from [EV02].

to NetFlow. The main differences between both techniques are illustrated in Figure B.2.

All

packets

Every xth
Update entry or

create a new one

Large flow
packet

Large reports to

management station

Sampled NetFlow

Sample and hold

memory

Yes

No

Update existing entry

Create

Small flow

p ~ size

Pass with
probability

management station

Small reports to

new entry

memory
All packets

Has entry?

!!!
!!!
!!!
!!!
!!!
!!!

!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!

!!
!!
!!
!!
!!

!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!

!!!
!!!
!!!
!!!
!!!
!!!

!!!!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!
!!!!!!!!!!!!!

!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!

Figure B.2: Differences between NetFlow (top) and SH (bottom). This figure was taken
from [EV02].

Appendix C

Univariate Normality Tests

C.1 Kolmogorov-Smirnov Test and Lilliefors’ Correction

The KS test is a quite general test to determine the equality of one-dimensional probability dis-

tributions. It can be used to compare two samples (two-sample KS test) or to compare a sample

with a reference continuous probability distribution (one-sample KS test). In our study we have

used the one-sample KS test variant to compare our sample with the normal distribution. The

hypothesis of the test is that the sample X = x1, x2, . . . , xn comes from a continuous probability

distribution given by F (x). To proceed with the test the following three steps are needed.

1. Order sample values x(1), x(2), . . . , x(n).

2. Compute the ECDF Fn(x) as follows

Fn(x) =

0 if x < x(1)

r
n if x(r) ≤ x < x(r+1)

1 if x ≥ x(n)

3. Compute the maximum discrepancy between the ECDF Fn(x) and the theoretical one F (x)

with the statistic

Dn = max|Fn(x)− F (x)| (C.1.1)

which distribution, under the null hypothesis, has been tabulated [RS94]. If once fixed α,

the computed Dn is greater than the tabulated value, the null hypothesis is rejected.

However, if the theoretical distribution function F (x) is computed by estimating the parameters

from the sample, the distribution of Dn is only an approximation, thus the power of the test

is reduced [Ste74], and the results of the test are very conservative. The Lilliefors test arises

when correcting for this bias. So, Lilliefors [Lil67] computed the distribution of Dn when the

parameters of the normal distribution (µ, σ2) are estimated through the sample parameters (x̄, ŝ2)

and tabulated them [She04].

71

72 Appendix C. Univariate Normality Tests

C.2 Jarque-Bera Test

The JB test [JB80] tests the deviation from normality using the skewness and kurtosis of the

sample. The JB statistic is as follows

JBS =
n

6

(
S2 +

(K − 3)2

4

)
(C.2.1)

where n is the sample size. S is the sample skewness and K is the sample kurtosis given by

S =
µ̂3

(σ̂2)3/2
=

1
n

∑n
i=1(xi − x̄)3

(1n
∑n

i=1(xi − x̄)2)3/2
(C.2.2)

and

K =
µ̂4

σ̂4
=

1
n

∑n
i=1(xi − x̄)4

(1n
∑n

i=1(xi − x̄)2)4
. (C.2.3)

This statistic has asymptotically a χ2 distribution with 2 degrees of freedom under the null hy-

pothesis of normality. This null hypothesis is a joint hypothesis of skewness and excess kurtosis

being both zero.

Appendix D

Multivariate Behrens-Fisher

Problem

The Behrens-Fisher problem is a statistical problem of testing whether the means of two normally

distributed populations (X(1), X(2)) are the same (null hypothesis H0) or not (alternative hypoth-

esis H1) when the variances of the populations are unknown. The generalization of this problem to

multivariate data is known as the MBFP [And58] that is the one we use here. The assumptions are

that X(i) ∼ Np(µ
(i),Σ(i)), i = 1, 2; i.e. the samples of population i come from a p-variate normal

distribution with mean µ(i) and covariance matrix Σ(i), where in our case p = 16. To solve this

problem the Hotelling’s T 2 statistic is used, and two different cases arise depending on the sizes of

the populations. If both populations have the same number of samples N , and the numbering of

the samples does not depend on the samples themselves, the procedure is to form a new random

variable Y that is the difference of the initial populations, i.e. yj = x
(1)
j −x

(2)
j , j = 1, 2, . . . , N . For

this new random variable (that under the null hypothesis has zero mean) the sample mean vector

Ȳ and the sample covariance matrix Sy are computed. The T 2-statistic in this case is as follows:

T 2 = N
Ȳ S−1

y Ȳ t

N − 1

N − p

p
, (D.0.1)

where Ȳ t denotes the transpose vector of Ȳ . It can be shown (see chapter 5 of [And58]) that under

the null hypothesis T 2 follows a noncentral F distribution with p and N − p degrees of freedom

and noncentrality parameter

ν = (µ(1) − µ(2))Σ−1
y (µ(1) − µ(2))t. (D.0.2)

Under the null hypothesis, µ1 = µ2, so ν = 0. As the noncentrality parameter is zero, the

distribution of equation (D.0.1) turns out to be a Snedecor’s F distribution.

On the other hand, when the sizes of the populations are not equal, a transformation is needed

before computing the T 2-statistic. If the sizes of X(1) and X(2) are respectively N1 and N2,

assuming that N1 < N2 without loss of generality, we obtain a new random variable Q through

73

74 Appendix D. Multivariate Behrens-Fisher Problem

the following transformation, as follows:

qj = x
(1)
j −

√
N1

N2
x
(2)
j +

1√
N1N2

N1∑
k=1

x
(2)
k − 1

N2

N2∑
l=1

x
(2)
l , j = 1, · · · , N1, (D.0.3)

where x
(1)
n , n = 1, 2, · · · , N1, are the samples of X(1) and x

(2)
m , m = 1, 2, · · · , N2, are the samples

of X(2). As shown by [And58] this new random variable has a mean vector equal to the difference

of the mean vectors of the two populations, and the covariance matrix is given by the following

equation:

Cov(qn, qm) = E[qn − E[qn]] · E[qm − E[qm]] = δn,m(Σ1 +
N1

N2
Σ2), (D.0.4)

where δn,m is the Dirac delta function evaluated in n−m and E is the Expectation Operator. The

T 2-statistic in this case is as follows:

T 2 = N1

Q̄S−1
q Q̄t

N1 − 1

N1 − p

p
. (D.0.5)

As in the previous case, equation (D.0.5) is distributed under the null hypothesis as a Snedecor’s

F distribution with p and N1 − p degrees of freedom.

Once the T 2 statistic is computed taking into account the case that applies of the above

described, the statistical test at level α proceeds by comparing the obtained T 2 value with the

1 − α percentile of the Snedecor’s F distribution with the appropriate degrees of freedom. If the

degrees of freedom are p and m, we denote this percentile by F 1−α
p,m . Then, the null hypothesis is

rejected if T 2 > F 1−α
p,m .

Appendix E

Analysis of the Hotelling’s T

Square Statistic

Let us further analyze the T 2 statistic presented in equation (D.0.1) of Appendix D (we suppose

that the two populations have the same size N). The term Ȳ S−1
y Ȳ t is a quadratic form of the p

vector components of the random vector Ȳ . As we are using synthetic data, we can approximate

with the true covariance matrix (the one used to generate the samples in Section 6.3.1) in what

follows. This matrix has been chosen to be diagonal, in order to have all the vector components

being independent. This implies that the quadratic form defined by the covariance matrix is the

weighted sum of the square of all the vector components (being the weights given by the elements

of the diagonal covariance matrix).

We now have a look at the simplest case. In this case, all the vector components have the

same variance, so the covariance matrix is a multiple of the identity matrix. Then, as the vector

components of Ȳ are the differences in the means of the two populations, the quadratic form

defined by (D.0.1) is the square of the L2 norm with the usual metric on R16 of the vector Ȳ ,

scaled by the variance and other factors that take into account the dimensions of the data and

the sample. If we fix the significance value α (for instance, α = 0.05) we are comparing the value

obtained from (D.0.1) with a value that is a function of N , given that the dimension of the random

vector p is fixed. This function is the 1-α percentile of the F distribution with p and N −p degrees

of freedom (F 1−α
p,N−p). We reject H0 if the T 2 statistic value is greater than the value of the function

evaluated in that N . This function decreases with N , which means that when we increase the

number of samples N , we are stricter with the value of the T 2 statistic (we have more samples so

we have better estimations and then we have the same confidence rejecting at lower values of the

statistic). So, the maximum value of the function is obtained with the minimum N that it can

take. This N is equal to p + 1, because if N ≤ p the estimate of the covariance matrix can be a

noninvertible matrix. This means that the maximum value is the 95th percentile of the Snedecor’s

F distribution with p and 1 degrees of freedom. With the value of p used in our synthetic data

(p = 16), that gives us a maximum value for the function of 231.9660. Assuming all the vector

components of Ȳ equal, this gives us

75

76 Appendix E. Analysis of the Hotelling’s T Square Statistic

T 2 = N
Ȳ S−1

y Ȳ t

N − 1

N − p

p
≈ N

Ȳ 1
σ2 IpȲ t

N − 1

N − p

p
=

=
N

N − 1

N − p

p

p∑
i=1

ȳ2i
σ2

≈ N

N − 1

N − p

p

pȳ2

σ2
=

= N
N − p

N − 1

ȳ2

σ2
. (E.0.1)

As we reject the equality of means if the T 2 statistic is greater than the 95th percentile of the

F distribution with the corresponding degrees of freedom, this is equivalent to

ȳ2

σ2
>

F 1−α
p,N−p

N

N − 1

N − p
(E.0.2)

For the case stated above (N − p = 1), we will reject the equality of means if ȳ2

σ2 > 231.9660.

In Table E.1 we summarize the rejecting values under the hypothesis of equality of variances and

equality of change in all the vector components for the first ten suitable values of N .

Table E.1: Rejecting values for the quotient between the square of the change in one vector
component and its variance.

N N − p Critical value

17 1 231.9660
18 2 9.1768
19 3 2.7449
20 4 1.3880
21 5 0.8769
22 6 0.6240
23 7 0.4775
24 8 0.3835
25 9 0.3188
26 10 0.2719

It can be observed that these values decrease with N . If we study the critical value as N tends

to infinity, this critical value will tend to 0. This means that in the limit we will reject the equality

of means unless their difference equals zero. However, with typical values of N this would not

happen. These results will be used in the following section when inspecting at fixed significance

level the changes reported by the algorithm under the datasets fulfilling the simplifications made

in this analysis.

Index

CAIDA, 4

pcap, 3

Anonymized, 14

Bayes Rule, 11

Capacity Planning, 44

Central Limit Theorem, 24, 36

Change Free Region, 49, 51, 52

Change Point Detection, 43, 44, 49, 51

Online Algorithm, 43, 44

Alert Generation, 44

Performance Assessment, 45

Results, 53

Sustained changes, 44

Theoretical Change Point, 51, 52

Clustering

k-means, 14, 44, 67

Nearest Neighbors, 14

Confidence interval, 24

Day-Night traffic pattern, 25, 32, 36

Dragonflies, 8, 10

Elephants, 8, 10

False Positive, 45, 47, 49

Ratio, 46

Flow, 4, 19, 25, 26

Predictable throughput behavior, 26

Flow-level statistics, 8

Hotelling’s T 2 Statistic, 49, 73, 75

Inter-arrival time, 26

Intra-flow/connection statistics, 9, 14

Link’s utilization, 32, 33

Mahalanobis distance, 39

Mice, 8, 10

Monitoring tools, 3

MRTG, 5, 31, 32, 44

record, 6, 31, 36

Multivariate Behrens-Fisher Problem, 44, 51,

53, 73

Multivariate Network Traffic Model, 36

Assumptions, 36

Validation, 37

Variables, 37

Multivariate Normality Tests

Graphical

χ2 plots, 39

NetFlow, 4, 69, 70

record, 4

sampling technique, 4

Network measurements, 3

Normal Distribution, 24, 43–45, 73

Covariance Matrix, 73, 75

Equality of Means, 44, 76

Unknown Variances, 44

Mean, 73

Confidence interval, 24

Sample mean, 24

Variance

Sample variance, 24

Normality of Internet traffic, 36

Optical Carrier

OC12, 15

OC48, 14

Packet captures, 3

Packet traces, 3, 14, 15, 19

Packet-level statistics, 8, 14

77

78 Index

Percentile, 24, 74–76

Port classification, 8

Quality of Service, 1, 7, 13, 15, 17, 19, 26, 47

Sample & Hold, 17, 69

Sampling

Random sampling, 69

Significance Level, 38, 45–47, 49, 74, 75

Skype, 13, 15

Snedecor’s F distribution, 73–75

Student’s t-distribution, 24

Synthetic Datasets

Staggered Increments, 47, 49

Growth Rate, 47

Monthly Increments, 47, 51

Quarterly Increments, 47, 52

Without Changes, 45, 46, 49

TCP, 19, 25

Congestion avoidance, 20

Slow start, 20, 26

Throughput, 19

CDF, 19

Distribution, 20, 22

Histogram, 19

Instant value, 26

Mean value, 19

Time Series, 26

ARIMA model, 47

Prediction, 47

Segmentation, 43

Tortoises, 8

Traffic Classification, 7, 13

Bayesian analysis, 11

results, 11

BLINC, 12

results, 13

Contribution

Description, 13

Results, 15

Results with Sample & Hold, 17

Hidden Markov Model, 10

results, 10

Nearest Neighbors, 12

results, 12

UDP, 19, 25

Univariate Normality Tests, 37, 43, 54, 71

Analytical, 71

Jarque-Bera Test, 37, 72

Kolmogorov-Smirnov Test, 37, 71

Lilliefors Test, 37, 71

Results, 38

Graphical

Q-Q plots, 38

Results, 39

Wavelets, 44

	Tables of Contents
	Contents
	List of Figures
	List of Tables

	Summary
	Resumen
	Acknowledgments
	Acronyms
	1 Introduction
	2 Network Measurements
	2.1 Packet Captures
	2.2 NetFlow Records
	2.3 MRTG Records

	3 Flow Classification Based on Measurable Parameters
	3.1 State of the Art
	3.1.1 Classic Traffic Classification Techniques
	3.1.2 Alternative Classification Methods

	3.2 Contribution
	3.2.1 Description of the Contribution
	3.2.2 Description of the Packet Traces
	3.2.3 Results of the Traffic Classification Through Clustering Techniques
	3.2.4 Results of the Traffic Classification Focused on the Most Contributing Flows

	3.3 Summary and Conclusions

	4 Throughput Analysis
	4.1 Histograms and CDFs of the Throughput
	4.2 Confidence Intervals for the Mean Values of the Throughput
	4.3 Time Series Analysis of the Throughput
	4.4 Summary and Conclusions

	5 Multivariate Normal Model for Daily Traffic
	5.1 Description of the MRTG Measurements
	5.2 Analysis of the Day-Night pattern of the Traffic Rates
	5.3 Description of the Multivariate Normal Model
	5.4 Validation of the Model
	5.4.1 Univariate Normality Tests
	5.4.2 Multivariate Normality Tests

	5.5 Summary and Conclusions

	6 Online Load Change Detection Algorithm
	6.1 Related Work
	6.2 Description of the Algorithm
	6.3 Validation of the Algorithm's Performance
	6.3.1 Datasets with no changes
	6.3.2 Datasets with staggered increments

	6.4 Analysis of the Validation Results at Fixed Significance Level
	6.4.1 Datasets with no changes
	6.4.2 Datasets with staggered increments

	6.5 Change Point Analysis with Real Network Measurements
	6.6 Summary and Conclusions

	7 Conclusions and Future Work
	Bibliography
	A k-means
	B Sample & Hold
	C Univariate Normality Tests
	C.1 Kolmogorov-Smirnov Test and Lilliefors' Correction
	C.2 Jarque-Bera Test

	D Multivariate Behrens-Fisher Problem
	E Analysis of the Hotelling's T Square Statistic
	Index

