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1. Supramolecular approaches to catalysis. 

 

1.1 General introduction. 

  

 Supramolecular chemistry1 is nowadays one of the most 

interdisciplinary areas of chemistry since it strongly overlaps with different 

sciences, such as physics and biology among others.2 Applications of 

supramolecular chemistry in synthetic organic chemistry, and more 

particularly in catalysis, are constantly rising (Fig. 1.1).  Interactions 

involved in supramolecular chemistry are indeed found in most enzymatic 

systems at the biological level. The amazing efficiency of enzymes as 

chemical reactors in terms of conversion, regioselectivity and 

enantioselectivity led the chemical community to design systems able to 

mimic their activity, according to the principles of molecular recognition 

and self-assembly. This rising interest for supramolecular catalysis, 

especially in the new century, is reflected by the number of publications 

concerning this topic over the past four decades, as shown in figure 1. 

Enzymes are indeed the best catalysts so far since they perform chemical 

transformations in a very selective way at physiological pH and in water, 

which makes them the most sustainable catalysts ever. 

                                                 

1 Term introduced by Jean-Marie Lehn Science 1985, 227, 849. 
2 a) Self-assembled nanostructures are widely used in new materials sciences due to their 

physical properties: Zhang, J. Z.; Wang, Z.-L.; Liu, J.; Chen, S.; Liu, G.-Y. Self-Assembled 

Nanostructured Materials 2003, Kluwer Academic/Plenum Publisher: New York. b) 

Supramolecular chemistry is involved in the structure of biological systems: Quinkert, G.; 

Wallmeier, H.; Windhab, N.; Reichert, D. Chemical Biology  2007, 1, 3. 
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Fig. 1.1: Scientific publications in supramolecular catalysis over time.  

 

 Enzymes’ conformation is maintained at physiological conditions by 

supramolecular interactions, such as π-stacking, hydrophobic forces and 

hydrogen bonds. In the active site, cooperativity between the participating 

groups leads to the observed efficiency. Enzymes form a more stable 

complex with the transition state of a reaction than with the substrate thanks 

to additional binding interactions.3 Enzymes are also known for enabling a 

full delivery of the reaction product, due to its lower affinity with the 

binding site. Substrate conformation and motion in the active site are also 

fixed thanks to well placed interactions: substrate is desolvated and placed 

in a microenvironment that favors the reaction.4 Enzymes therefore 

represent a key inspiration for chemists in the design of supramolecular 

                                                 

3 Pauling, L. Chem. Eng. News 1946, 24, 1375. 
4 a) Dewar, M. S. J.; Storch, D. M. Proc. Nat. Ac. Sci. U. S. A. 1985, 82, 2225. b) Zhang, 

X.; Houk, K. N. Acc. Chem. Res. 2005, 38, 379. c) Gao, J.; Ma, S.; Major, D. T.; Nam, K.; 

Pu, J.; Truhlar, D. G. Chem. Rev. 2006, 106, 3188. 
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catalytic systems (artificial enzymes).5 Supramolecular approaches to 

catalysis therefore represent a powerful way to translate these principles to 

usual chemical systems, for which molecular recognition and cooperativity 

might give rise to new selectivity in well designed systems. Currently, three 

main strategies are employed for the elaboration of supramolecular 

catalysts: 

 

1) Transition state analogue-selection approach: construction of a system 

able to recognize a structure analog to the one of the transition state of 

the target reaction (catalytic antibodies,6 molecularly imprinted 

polymers,7 bioimprinting…) 

2) Catalytic activity-selection approach: use of combinatorial synthetic 

tools and high-throughput screening methods for the selection of the 

best catalyst from a prepared library (combinatorial chemistry of 

polymers8 and peptides,9 directed evolution of artificial enzymes).10 

                                                 

5 For examples, see: a) Kirby, A. J. Angew. Chem. Int. Ed. Engl. 1996, 35, 707. b) Sanders, 

J. K. M. Chem. Eur. J. 1998, 4, 1378. c) Motherwell, W. B., Bingham, M. J., Six, Y. 

Tetrahedron 2001, 57, 4663.  
6 a) Tramontano, A.; Janda, K. D.; Lerner, R. A. Science 1986, 234, 1566. b) Pollack, S. J.; 

Jacobs, J. W.; Schultz, P. G. Science 1986, 234, 1570. c) Li, T.; Janda, K. D.; Ashley, J. 

A.; Lerner, R. A. Science 1994, 264, 1289. d) Li, T.; Janda, K. D.; Lerner, R. A. Nature 

1996, 379, 326. 
7 a) Wulff, G. Angew. Chem. Int. Ed. Engl. 1995, 34, 1812. b) Takeuchi, T.; Matsuji, J. 

Acta Polymer 1996, 47, 471. c) Cormack, P. A. G.; Mosbach, K. Reac. and Func. 

Polymers 1999, 41, 115. d) Whitcombe, M. J.; Alexander. C.; Vulfson, E. N. Synlett 2000, 

911. e) Liu, X.-C.; Mosbach, K. Macromol. Rapad. Commun. 1997, 18, 609. 
8 a) Menger, F. M.; Eliseev, A. V.; Mingulin, V. A. J. Org. Chem. 1995, 60, 6666.               
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3) Rational design approach: use of supramolecular interactions for 

substrate recognition (functionalized cavities for catalysis or catalyst 

encapsulation, self-assembled micelles and polymersomes11, 

biomacromolecular assemblies, capsids, dendrimeric catalysts…). 

 

 Some relevant examples of the rational design approach will be 

briefly presented in the next section (biomacromolecular assemblies, 

micelles, dendrimers and polymersomes will not be treated here). Emphasis 

will be laid on examples involving cavities (covalent and non-covalent), 

encapsulated active sites and self-assembled ligands. 

 

1.2 Space confined supramolecular catalysis. 

 

1.2.1  Covalent macrocyclic catalysts. 

 

Since 1987, some synthetic macrocycles and covalent systems have 

been reported as potential supramolecular catalysts by the groups of Cram 

                                                                                                                           

b) Menger, F. M.; West, C. A.; Ding, J. J. Chem. Soc., Chem. Commun. 1997, 633.  
9 a) Kuntz, K. W.; Snapper, M. L.; Hoveyda, A. H. Current Opinion in Chemical Biology 

1999, 3, 313. b) Jandeleit, B.; Schaefer, D. J.; Powers, T. S.; Turner, H. W.; Weinberg, W. 

H. Angew. Chem. Int. Ed. 1999, 38, 2494. 
10 For some reviews, see: a) Reetz, M. T. Tetrahedron 2002, 58, 6595. b) Reetz, M. T. 

Advances in catalysis 2006, 49, 1. 
11 For a complete review on self-assembled macromolecular nanoreactors: Vriezema, D. 

M.; Aragonès, M. C.; Elemans, J. A. A. W.; Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, 

R. J. M. Chem. Rev. 2005, 105, 1445. 
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and Lehn (Nobel Prize laureates for their pioneering work in 

supramolecular chemistry). Lehn et al. indeed reported functionalized 

cryptands able to catalyze the aminolysis of ATP to ADP. The substrate 

was first recognized by the catalyst thanks to electrostatic and H-bonding

interactions and then hydrolyzed due to functionalization at an appropriate 

position of the cryptand.12 At neutral pH, the catalyst is partially protonated, 

thus permitting both substrate recognition (coulombic interactions with 

ammonium groups) and catalysis (free amines). A 500-fold rate 

acceleration was obtained in presence of the catalyst.  Addition of an 

aromatic residue to the free amine afforded some additional π-stacking 

interactions, resulting in improved selectivity for ATP (Fig. 1.2).12c This is 

an early example of catalysis assisted by substrate recognition. 

 

 Cyclodextrins, the cyclic oligomers of glucose with a conical shape 

and hydrophobic interiors, were also used as potential catalysts in water.13 

Their use as catalysts in selective ester hydrolysis,14 enzyme mimics 
                                                 

12 Phosphoryl transfer reactions: a) Hosseini, M. W.; Lehn, J.-M. J. Am. Chem. Soc. 1987, 

109, 537. ATP hydrolysis: b) Hosseini, M. W.; Lehn, J.-M.; Jones, K. C.; Plute, K. E.; 

Mertes, K. B.; Mertes, M. P. J. Am. Chem. Soc. 1989, 111, 6330. c) Hosseini, M. W.; 

Blacker, A. J.; Lehn, J.-M. J. Am. Chem. Soc. 1990, 112, 3896. Additional examples of 

catalysis mediated by cryptands: d) Cram, D. J. Angew. Chem. Int. Ed. Engl. 1988, 27, 

1009. e) Pedersen, C. J. Angew. Chem. Int. Ed. Engl. 1988, 27, 1021. f) Cacciapaglia, R.; 

Di Stefano, S., Kelderman, E.; Mandolini, L. Angew. Chem. Int. Ed. 1999, 38, 348. 
13 For reviews, see: a) Breslow, R.; Dong, S. D. Chem. Rev. 1998, 98, 1997. b) Takahashi, 

K. Chem. Rev. 1998, 98, 2013.  
14 a) Breslow, R.; Schmuck, C. J. Am. Chem. Soc. 1996, 118, 6601. b) Zhang, B. L.; 

Breslow, R. J. Am. Chem. Soc. 1997, 119, 1676. c) Liu, S.; Luo, Z.; Hamilton, A. D. 
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(ribonuclease A),13a, 15 Diels-Alder reactions,16 or intramolecular aldol 

reactions17 is well documented. Many other examples can be found, where 

cyclodextrins were functionalized with ligand-transition metal complexes 

for catalysis of various processes: ester hydrolysis,18 a tryptophan synthase 

mimic,19 oxidation reactions (metalloporphyrin based systems)20 and 

phosphodiester hydrolysis.21 

                                                                                                                           

Angew. Chem. Int. Ed. Engl. 1997, 36, 2678. d) Barr, L.; Easton, C. J.; Lee, K.; Lincoln, S. 

F.; Simpson, J. S. Tetrahedron Lett. 2002, 42, 7797. 
15 Breslow, R.; Anslyn, E. J. Am. Chem. Soc. 1989, 111, 8931. 
16 a) Rideout, D. C.; Breslow, R. J. Am. Chem. Soc. 1980, 102, 7817. b) Schneider, H.-J.; 

Sangwan, N. K. J. Chem. Soc., Chem. Commun. 1986, 1787. c) Schneider, H.-J.; Sangwan, 

N. K. Angew. Chem., Int. Ed. Engl. 1987, 26, 896. d) Breslow, R.; Guo, T. J. Am. Chem. 

Soc. 1988, 110, 5613. 
17 a) Desper, J. M.; Breslow, R. J. Am. Chem. Soc. 1994, 116, 12081 b) Breslow, R.; 

Desper, J.; Huang, Y. Tetrahedron Lett. 1996, 37, 2541. 
18 Breslow, R. Enzyme Models Related to Inclusion Compounds in Inclusion Compounds; 

Atwood, J. L., Davies, J. E., Eds.; Academic Press: Orlando, FL, 1984; Vol. 3, pp 473-508. 
19 Weiner, W.; Winkler, J.; Zimmerman, S. C.; Czarnik, A.W.; Breslow, R. J. Am. Chem. 

Soc. 1985, 107, 4093. 
20 a) Kuroda, Y.; Hiroshige, T.; Sera, T.; Shiroiwa, Y.; Tanaka, H.; Ogoshi, H. J. Am. 

Chem. Soc. 1989, 111, 1912. b) Kuroda, Y.; Hiroshige, T.; Sera, T.; Ogoshi, H. 

Carbohydr. Res. 1989, 192, 347. c) Kuroda, Y.; Hiroshige, T.; Ogoshi, H. J. Chem. Soc., 

Chem. Commun. 1990, 1594. d) Kuroda, Y.; Egawa, Y.; Seshimo, H.; Ogoshi, H. Chem. 

Lett. 1994, 2361. e) Breslow, R.; Huang, Y.; Zhang, X.; Yang, J. Proc. Natl. Acad. Sci. 

U.S.A. 1997, 94, 11156. 
21 a) Breslow, R.; Zhang, B. J. Am. Chem. Soc. 1992, 114, 5882. b) Breslow, R.; Zhang, B. 

J. Am. Chem. Soc. 1994, 116, 7893. c)  Zhang, B.; Breslow, R. J. Am. Chem. Soc. 1997, 

119, 1676. 
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a) 

 

 

b) 

 
Fig. 1.2: a) Proposed catalytic cycle for the action of the polyamine 

cryptand prepared by Lehn et al. for the hydrolysis of ATP to ADP. 11c  
b) Modified catalyst and its interaction with the substrate. 

  

 Breslow et al. showed that a stilbene disubstituted steroid derivative 

could be selectively oxidized at the 6-CH2 position of the steroid skeleton, 

thanks to adequate positioning of the metal oxide with respect to the steroid 

skeleton (stilbene encapsulation leads to the observed regioselectivity, see 
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Fig. 1.3).22 

 

 

 
 

Fig. 1.3: Regioselective oxidation of steroid skeleton catalyzed by a 
metalloporphyrin-cyclodextrin conjugate. 

 

 Similarly, the family of cucurbiturils corresponds to the cyclic penta- to 

decamers of glycoluril and therefore present close characteristics to 

cyclodextrins (polar exterior and hydrophobic interior).23 High electronic 

density found at cucurbiturils’ portal renders them good receptors for 

organic cations. This lead Mock et al. to develop a catalytic procedure for 

1,3-dipolar cycloadditions of azidoammonium to ammoniumalkynes.24 

                                                 

22 Breslow, R.; Zhang, X.; Xu, R.; Maletic, M.; Merger, R. J. Am. Chem. Soc. 1996, 118, 

11678. 
23 For recent reviews on cucurbiturils, see: a) Kim, K. Chem. Soc. Rev. 2002, 31, 96. b) 

Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. Angew. Chem. Int. Ed. 2005, 44,  

4844. c) Kim, K.; Selvapalam, N.; Ko, Y. H.; Park, K. M.; Kim, D.; Kim, J. Chem. Soc. 

Rev. 2007, 36, 267. 
24 Mock, W. L.; Irra, T. A.; Wepsiec, J. P.; Manimaran, T. L. J. Org. Chem. 1983, 48, 

3619. 
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Inclusion of both reaction substrates in a close to straight line in 

cucurbit[6]uril gave rise to the exclusive formation of the 1,4 adduct and 

reaction occurred 55,000 times faster than in absence of the catalyst (Fig. 

1.4).25 Steinke et al. took then benefit of this efficient procedure to 

successfully generate polyrotaxanes and oligotriazoles from diazides and 

diacetylenes.26  

 

 

 

 
Fig. 1.4: 1,3-Dipolar cycloaddition catalyzed by a cucurbit[6]uril 

derivative. 
 

 The power of rational design was remarkably illustrated by Sanders et 

al. who reported a macrocyclic catalyst made of Zn-porphyrin subunits for 

the Diels-Alder addition of pyridyl substituted substrates (Fig. 1.5).27 The 

                                                 

25 1/1 mixture of 1,4 and 1,5 adducts is obtained without the catalyst 
26 a) Tuncel, D.; Steinke, J. H. G. Chem. Commun. 1999, 1509. b) Krasia, T. C.; Steinke, J. 

H. G. Chem. Commun. 2002, 22. 
27 a) Walter, C. J.; Anderson, H. L.; Sanders, J. K. M. J. Chem. Soc., Chem. Commun. 

1993, 458. b) Clyde-Watson, Z.; Vidal-Ferran, A.; Twyman, L. J.; Walter, C. J.; Mc 

Callien, D. W. J.; Fanni, S.; Bampos, N.; Wylie, R. S.; Sanders, J. K. M. New J. Chem. 

1998, 493. c) Marty, M.; Clyde-Watson, Z.; Twyman, L. J.; Nakash, M.; Sanders, J. K. M. 

Chem. Commun. 1998, 2265. d) Nakash, M.; Clyde-Watson, Z.; Feeder, N.; Davies, J. E.; 

Teat, S. J.; Sanders, J. K. M. J. Am. Chem. Soc. 2000, 122, 5286. e) Nakash, M.; Sanders, 

J. K. M. J. Org. Chem. 2000, 65, 7266. 
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dienophile (maleimide) and the diene (furan) are preorganized inside the 

cavity by coordination to the metal of the pyridyl substituents, which results 

in selectivity: binding enthalpic gain helps in overcoming the high entropic 

activation cost. 200-fold rate acceleration with respect to the uncatalyzed 

process was reported. However, product inhibition was observed: the 

product binds better to the catalyst than substrates. True catalysis could 

nevertheless be obtained for the transacylation reaction of 4-

(hydroxymethyl) pyridine by N-acetylimidazole. 28 

 

 
n Formed 

product 
1 endo 

2 exo 

Fig. 1.5: Porphyrin macrocycle for Diels-alder catalysis  

 

As a last example of macrocyclic covalent catalysts, deep cavitands 

such as calixarene and resorcinarene derivatives are able to form strong 

inclusion complexes in organic media with various cationic and 

hydrophobic residues.29 In 2000, Mandolini and de Mendoza reported a 

                                                 

28 Mackay, L. G.; Wylie, R. S.; Sanders, J. K. M. J. Am. Chem. Soc. 1994, 116, 3141. 
29 For a review on host-guest chemistry of resorcinarenes, see: a) Purse, B. W., Rebek, J. 

Jr. Proc. Nat. Ac. Sci. U. S. A.  2005, 102, 10777. b) Biros, S. M.; Rebek, J. Jr. Chem. Soc. 

Rev., 2007, 36, 93. 
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calix[6]arene derivative functionalized with a bicyclic guanidinium 

(catalytic site) able to catalyze the methanolysis of carbonates, as shown on 

figure 1.6.30 The fixed cone conformation of the cavitand (enhanced 

substrate encapsulation) enables 149-fold rate acceleration to be observed. 

A positive cooperative effect between guanidinium and calixarene was also 

shown. 

 

Fig. 1.6: Reported cavitand derivatives as acetylcholinesterase mimics. 

  

 The same reaction was studied four years later by Rebek et al., using an 

alternative resorcinarene derivative functionalized with a zinc-salphen 

ligand.31 Lewis acid activation renders this catalyst quite efficient in the 

                                                 

30 a) Magrans, J. O.; Ortiz, A. R.; Molins, A.; Lebouille, P. H. P.; Sánchez-Quesada, J.; 

Prados, P.; Pons, M.; Gago, F.; de Mendoza, J. Angew. Chem. Int. Ed. Engl. 1996, 35, 

1712. b) Cuevas, F.; di Stefano, S.; Magrans, J. O., Prados, P.; Mandolini, L.; de Mendoza, 

J. Chem. Eur. J. 2000, 6, 3228. 
31 Richeter, S.; Rebek, J. Jr. J. Am. Chem.  Soc. 2004, 126, 16280. 
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methanolysis of the studied carbonate (Fig. 1.6 shows a computed model of 

substrate binding to the catalyst, in which the frontal cavity wall was 

removed for clarity). However, as in many cases, the turnover frequency 

(TOF) mainly depends on the guest exchange rate of the resorcinarene. 

Calixarenes have also been used as containers for transition metals for 

Wacker oxidations32 and other applications.33  

 

 In catalysis inside a macrocyclic reactor, encapsulation of the substrate 

is thermodynamically driven (entropic source: the release of solvent 

molecules) but depends on size, shape, and guest-cavity surface chemical 

complementarities. The turnover is in most cases guaranteed by the 

reversible release of the guest molecule from the cavity34 (vide infra). 

Encapsulation creates a microenvironment that differs from the bulk by 

alteration of the motion and solvation of the guest (cavity effects). A traffic 

problem however subsists and kinetics of catalysis in capsules most often 

depend on the guest exchange rate (nature usually uses open cavities such 

as channels or pores). Covalent macrocycles therefore represent promising 

potential supramolecular catalysts, though they often require a tedious 

multi-step preparation. For this reason, a large number of systems based on 

the same principles are prepared by self-assembly. 

                                                 

32 Maksimov, A. L.; Sakharov, D. A.; Filippova, T. Y.; Zhuchkova, A. Y.; Karakhanov, E. 

A. Ind. Eng. Chem. Res. 2005, 44, 8644. 
33 Capsule containing diphosphine for transition metal complexation: Koblenz, T. S.; 

Dekker, H. L.; de Koster, C. G.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Chem. 

Commun. 2006, 1700. 
34 Pluth, M. D.; Raymond, K. N. Chem. Soc. Rev. 2007, 36, 161. 
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1.2.2 Self-assembled nanoreactors. 11, 35 

  

 Self-assembly indeed appears as a promising way in successful designs, 

yet control in the size and geometry of the self-assembled species can be 

achieved. Suitable programming of the binding functionalities and size and 

shape complementarities of the building blocks enable a better optimization 

of the catalytic site(s). Furthermore, the reversibility and directionality of 

the used interactions for the self-assembly process usually enables the 

formation of a discrete and thermodynamically stable entity.36 In numerous 

cases, guest templation is however necessary for capsule amplification.37 

 H-bonded self-assembled capsules as catalysts were first reported by 

Rebek et al. Hydrogen bonds are usually rather weak interactions but are 

highly directional, which makes them suitable enough for self-assembly 

purposes. Capsule stability can then be tuned by a variation of the number 

of hydrogen bonds in the binding array. A resorcin[4]arene derivative 

substituted with imide functionalities at the upper rim gives rise to a self-

                                                 

35 For a review, see: Koblenz, T. S.; Wassenaar, J.; Reek, J. N. H. Chem. Soc. Rev. 2008, 

37, 247.  
36 For a review on self assembled capsules, see: a) MacGillivray, L. R.; Atwood, J. L. 

Angew. Chem. Int. Ed. 1998, 38, 1018. b) Hof, F.; Craig, S. L.; Nuckolls, C.; Rebek, J. Jr. 

Angew. Chem. Int. Ed. 2002, 41, 1488. (host-guest chemistry of self-assembled capsules) 

c) Amijs, C. H. M.; van Klink, G. P. M., van Koten, G. Dalton Trans. 2006, 308. 

(metallasupramolecular architectures and applications). 
37 For a review on metal templation, see: Linton, B.; Hamilton, A. D. Chem. Rev. 1997, 97, 

1669. For reviews on anion templation, see: a) Gimeno, N.; Vilar, R. Coord. Chem. Rev. 

2006, 250 , 3161. b) Lankshear, M. D.; Beer, P. D. Acc. Chem. Res. 2007, 40, 657. 
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assembled capsule by formation of an array made of 16 H-bonds (Fig. 

1.7a).  The capsule was shown to be large enough (425 Å3) to encapsulate 

two different substrates (though it was also shown that optimal occupation 

of the capsule lies around 55%).38Based on the same principles, a “soft ball” 

was prepared thanks to the assembly of glycoluril moieties placed at the 

ends of a spacing group of suitable rigidity and curvature to allow the 

capsule formation with 16 hydrogen bonds (Fig. 1.7b).39 Capsule opening 

proceeds through a gating mechanism by removal of one interaction 

between two of the glycoluril subunits. The capsule A was then used in 

regioselective 1,3-dipolar cycloadditions between two aromatic substrates 

(phenylacetylene and phenylazide).40 Substrates encapsulate and react in a 

few days to give the 1,4-adduct selectiviely (without catalyst, hardly no 

reaction is observed). As shown in Fig. 1.8, reaction rate is also dependent 

on the distribution of the included species (guest exchange rate). Finally, 

the capsule showed a rather high affinity for the product of the reaction, 

which produced some product inhibition (no true catalysis was observed). 

                                                 

38 a) Palmer, L. C.; Rebek, J. Jr. Org. Biomol. Chem. 2004, 2, 3051. b) Rebek, J. Jr Angew. 

Chem. Int. Ed. 2005, 44, 2068 and references therein. 
39 a) Meissner, R. S.; Rebek, J., Jr.; de Mendoza, J. Science. 1995, 270, 1485. b) Rebek, J. 

Jr. Chem. Soc. Rev. 1996, 25, 255. c) Conn, M.; Rebek, J. Jr. Chem. Rev. 1997, 97, 1647. 

d) Rebek, J. Jr. Acc. Chem. Res. 1999, 32, 278. e) Hof, F.; Rebek, J. Jr. Proc. Nat. Ac. Sci. 

U. S. A.  2002, 99, 4775. 
40 a) Heinz, T.; Rudkevich, D. M.; Rebek, J. Jr. Nature 1998, 394, 764. b) Chen, J.; Rebek, 

J. Jr. Org. Lett. 2002, 4, 327. 
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a) 

 

 
b) 

Fig. 1.7: H-bonded capsules for catalysis applications: a) Capsule A. b) 
Soft ball. 

  

 

 

 
a) b) 

Fig. 1.8: 1,3-Dipolar cycloaddition catalyzed by capsule A: 
 a) Inclusion complex with two toluene molecules. b) Species distribution. 

 

 The same trouble was found for the Diels-Alder addition of p-

benzoquinone and cyclohexadiene catalyzed by the previously described 

“soft ball”, though a 170-fold rate acceleration with respect to the bulk 

reaction was observed (Fig. 1.9).41 This means that the reaction is slower 

                                                 

41 a) Kang, J.; Rebek, J. Jr. Nature 1997, 385, 50. b) Kang, J.; Hilmersson, G.; Santamaría, 

J.; Rebek, J. Jr. J. Am. Chem. Soc. 1998, 120, 3650. c) Kang, J.; Santamaría, J.; 
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than the exchange of substrates within the cavities. True catalysis could 

however be obtained using a thiophene dioxide derivative as shown below. 

Since a higher affinity of the capsule for two benzoquinone molecules than 

for the product was observed, it is likely that the inclusion of the two 

cycloaddition components would also be favored, so that turnover could be 

promoted. Cavity effects are therefore controlled by the opening rates of the 

capsules and the differences between reaction rates inside and outside the 

capsule. 

 

 
Fig. 1.9: Diels-Alder reaction catalyzed by the “soft ball”. 

 

 Some capsules were also obtained by self-assembly using hydrophobic 

forces and π−π stacking interactions by Gibb and co-workers. However, 

formation of the capsule required a hydrophobic template (a rigid steroid or 

small alkanes).42 The resulting water-soluble capsule was then used as a 

catalyst for an aqueous phase photo-oxidation process.43 Addition of one 

equivalent of 1-methylcyclohexene to one equivalent of cavitand resulted in 
                                                                                                                           

Hilmersson, G.; Rebek, J. Jr. J. Am. Chem. Soc. 1998, 120, 7389. 
42 Gibb, C. L. D.; Gibb, B. C. J. Am. Chem. Soc. 2004, 126, 11408. 
43 a) Natarajan, A.; Kaanumalle, L. S.; Jockush, S.; Gibb, C. L. D.; Gibb, B. C.; Turro, N. 

J.; Ramamurthy, V. J. Am. Chem. Soc. 2007, 129, 4132. b) Greer, A. Nature 2007, 447, 

273. 
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the formation of a capsule filled with two alkene substrates. Preferential 

conformation and restricted motion of substrates inside the capsule led to 

the observed remarkable regioselectivity (Fig. 1.10). 

 

 
 

 
Fig. 1.10: Photooxidation catalyzed by a self-assembled capsule in water. 

 

 Another approach for the preparation of self-assembled cavities is to use 

transition metal-ligand interactions.44 These strong interactions are highly 

directional and define a precise angle between the interacting species. In 

most cases, fast ligand exchange enables a quick equilibration of the 

possible aggregates and the obtention of a discrete one (thermodynamic 
                                                 

44 a) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853. b) Holliday, B. 

A.; Mirkin, C. A. Angew. Chem., Int. Ed. 2001, 40, 2022. c) Seidel, S. R.; Stang, P. J. Acc. 

Chem. Res. 2002, 35, 972.  d) Sun, W.-Y.; Yoshizawa, M.; Kusukawa, T.; Fujita, M. Curr. 

Opin. Chem. Biol. 2002, 6, 757. e) Pinalli, R.; Cristini, V.; Sottili, V.; Geremia, S.; 

Campagnolo, M.; Caneschi, A.; Dalcanale, E. J. Am. Chem. Soc. 2004, 126, 6516. 
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control). The advantage of this approach is that the spacer can be linearly 

rigid, since the angle provided by the metal coordination creates the 

curvature required for the cavity to form. Exchange between the inside and 

the outside of the capsule usually takes place without full disruption of the 

aggregate and is attributed to the expansion of the cage windows.34 

 

 Based on these principles, Fujita et al. designed well-defined cages of 

various shapes by multi-component transition metal mediated self-assembly 

processes for use as reaction chambers. The designs were based on a 

triangular rigid heterocyclic ligand and the forced cis square planar 

geometry of Pd(II) and Pt(II) for the production of octahedral capsules of 

general formula M6L4 (metals occupy the corners of the octahedron, 

whereas ligands correspond to some of the faces).45 The cis coordination 

mode to the transition metal was forced by using a bidentate ligand such as 

ethylenediamine and 2,2’-bipyridine (Fig. 1.11).46 

                                                 

45 a) Fujita, M. Chem. Soc. Rev. 1998, 27, 417. b) Fujita, M.; Tominaga, M.; Hori, A.; 

Therrien, B. Acc. Chem. Res. 2005, 38, 371.  
46 a) Fujita, M.; Oguro, D.; Miyazawa, M.; Oka, H.; Yamaguchi, K.; Ogura, K. Nature 

1995, 378, 469. b) Kusukawa, T.; Fujita, M. Angew. Chem., Int. Ed. 1998, 37, 3142. c) 

Kusukawa, T.; Fujita, M. J. Am. Chem. Soc. 1999, 121, 1397. d) Kusukawa, T.; Fujita, M. 

Angew. Chem., Int. Ed. 2001, 40, 1879. e) Kusukawa, T.; Fujita, M. J. Am. Chem. Soc. 

2002, 124, 13576. 
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Fig. 1.11: [M6L4]12+ Octahedral cage reported by Fujita. 

  

 This octahedral cage encapsulates up to four organic molecules in 

aqueous media (depending on the guest sizes) thanks to its 500 Å3 cavity 

volume. This capsule was first thought as a potential phase-transfer catalyst 

because of its water solubility. Indeed, the Wacker oxidation of styrene to 

acetophenone was catalyzed by the cage (Fig. 1.12).47 The same octahedral 

cage was used in Diels-Alder cycloadditions48 and homo- and hetero- 

photodimerization of olefins49, showing outstanding selectivities and 

enhanced reactivities. The same cavity was used for the controlled 

trimerization of trialkoxysilanes to give a chair-like derivative that is 

stabilized by the capsule (kinetically unstable in its absence).50 

                                                 

47 Ito, H.; Kusukawa, T.; Fujita, M. Chem. Lett. 2000, 598. 
48 Yoshizawa, M.; Tamura, M.; Fujita, M. Science 2006, 312, 251. 
49 a) Yoshizawa, M.; Takeyama, Y.; Kusukawa, T.; Fujita, M. Angew. Chem., Int. Ed. 

2002, 41, 1347. b) Yoshizawa, M.; Takeyama, Y.; Okano, T.; Fujita, M. J. Am. Chem. Soc. 

2003, 125, 3243. 
50 Yoshizawa, M.; Kusukawa, T.; Fujita, M.; Sakamoto, S.; Yamaguchi, K. J. Am. Chem. 

Soc. 2001, 123, 10454. 
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Catalyst yield %

Pd(en)(NO3)2 4 

metallocage 82 

Poisoned 
metallocage 

3 

 

 
Fig. 1.12: Wacker oxidation of styrene to acetophenone catalyzed by 

[M6L4]12. 
  

 Raymond and co-workers reported another tetrahedral cage obtained by 

the self-assembly of a bis-bidentate catechol amide with four metal ions 

(Al3+, Ga3+, In3+, Fe3+, Ti4+, Ge4+).51 This chiral negatively charged capsule 

is soluble in water and presents a cavity of 300-500 Å3 suitable for 

encapsulation of cationic guests such as ammonium salts and inorganic 

species. Metals occupy the corners of the tetrahedron, whereas the bis-

catechol derivatives span the edges of the tetrahedron (see Fig. 1.13, metal 

is represented in red and guest in blue).  

                                                 

51 a) Caulder, D. L.; Raymond, K. N. Acc. Chem. Res. 1999, 32, 975. b) Caulder, D. L.; 

Brückner, C.; Powers, R. E.; König, S.; Parac, T. N.; Leary, J. A.; Raymond, K. N. J. Am. 

Chem. Soc. 2001, 123, 8923. c) Terpin, A. J.; Ziegler, M.; Johnson, D. W.; Raymond, K. 

N. Angew. Chem. Int. Ed. 2001, 40, 157. d) Ziegler, M.; Davis, A. V.; Johnson, D. W.; 

Raymond, K. N. Angew. Chem. Int. Ed. 2003, 42, 665. e) Fiedler, D.; Leung, D. H.; 

Bergman, R. G.; Raymond, K. N. Acc. Chem. Res. 2005, 38, 349. 
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a)                         b) 

Fig. 1.13: a) Model of tetraethylammonium encapsulated in a catechol cage 
formed with Fe3+. b) Schematic representation of the cage. 

 

 The water soluble M4L6 assembly was shown to catalyze the 3-aza 

Cope rearrangement (up to 850-fold acceleration),52 and the acidic 

hydrolysis of orthoformates in basic media.53 The high affinity of the 

tetrahedral cage for cationic species indeed facilitates the protonation of the 

orthoformate, even in basic solution. This acid hydrolysis works efficiently 

for small molecules (tripentylorthoformate and higher substrates do not 

react) at pH 11 in presence of 1 mol% catalyst. 890-fold rate acceleration 

was obtained in the case of triisopropyl orthoformate. The kinetics of the 

process obeyed Michaelis-Menten equation, a characteristic of enzymatic 

systems. 

 

                                                 

52 Fiedler, D.; van Halbeek, H.; Bergman, R. G., Raymond, K. N. J. Am. Chem. Soc. 2006, 

128, 10240. 
53 a) Pluth, M. D.; Bergman, R. G.; Raymond, K. N. Science 2007, 316, 85. b) Pluth, M. 

D.; Bergman, R. G.; Raymond, K. N. Angew. Chem. Int. Ed. 2007, 46, 8587. 
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Fig. 1.14: Mechanism of the catalytic hydrolysis of orthoformates  

  

 The mechanism involves encapsulation of the neutral orthoformate 

driven by hydrophobic forces, followed by protonation of the substrate by a 

water molecule (encapsulation complex thus increases stability). Two 

successive hydrolysis steps (in the cavity) lead to the release of two alcohol 

molecules. The protonated formate ester in the capsule is then released in 

the basic medium and hydrolyzed (Fig. 1.14). This example clearly reflects 

the differences in acidity that can be reached upon creation of 

microenvironments. This macrocyclic catalyst has also been used for the 

encapsulation of catalytically active inorganic species.  
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1.2.3 Active site encapsulation. 

 

 The self-assembled capsule prepared by Raymond et al. was then used 

for the encapsulation of a metal-ligand complex, rendering the catalyst size-

selective via substrate encapsulation. This approach is however only 

successful when host-guest exchange is slower than the reaction itself, 

otherwise the “cavity effect” is lost. The M4L6 assembly can indeed 

acomodate Ir(III) complexes. C-H bond activation of aldehydes and ethers 

was then studied and high selectivity (substrate size and shape) was 

observed. However, product inhibition prevented true catalysis from being 

effective.54  

 The isomerization of allylic alcohol catalyzed by an encapsulated 

cationic rhodium(I) complex proved to be more successful.55 

[(PMe3)2Rh(COD)]+ was successfully encapsulated in the tetrahedral M4L6 

assembly and activated in situ upon hydrogenation. Isomerization of allylic 

alcohols was the only possible application for reasons related to the stability 

of the active catalyst inside the metallocage. Substrate encapsulation and 

therefore reaction were selective in terms of size and shape as shown in Fig. 

1.15. Allyl alcohol was isomerized successfully to propanal by the 

encapsulated catalyst and the non encapsulated one (95% yield), whereas 

substituted allylic alcohols only reacted in absence of the capsule (size and 

shape selection). 

 

                                                 

54 Leung, D. H.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2006, 128, 9781.  
55 Leung, D. H.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2007, 129, 2746. 
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Fig. 1.15: Isomerization of allylic alcohols catalyzed by an encapsulated 
Rh(I) complex. 

  

 Encapsulation may provide also catalyst immunity towards poisoning. 

Nguyen and Hupp reported a molecular square made of four zinc porphyrin 

(square’s faces) units linked through their pyridyl ligand by coordination to 

four Re(I) atoms (corners).56 This molecular square accommodates a 

Mn(III) porphyrin through zinc coordination (Ka=106 M-1) (Fig. 1.16). 

 

Fig. 1.16: Encapsulation of Mn porphyrin into a molecular square. 

  

 Epoxidation of olefins catalyzed by Mn(III) porphyrin derivatives is 

well described but catalyst usually deactivates rapidly through dimerization 

(µ-oxo-bridges), therefore giving rise to low turnover numbers (TONs) 
                                                 

56 a) Merlau, M.; Del Pilar Mejia, M.; Nguyen, S. T.; Hupp, J. T. Angew. Chem., Int. Ed. 

2001, 40, 4239. b) Slone, R. V.; Hupp, J. T. Inorg. Chem. 1997, 36, 5422. 
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(around 500). Encapsulation of a manganese (III) porphyrin in this self-

assembled molecular square enables to epoxidize a wide range of olefins 

(large and open cavity) and to protect the catalyst from deactivation:  TONs 

as high as 21,000 were obtained in some cases. Some selectivity could also 

be observed, since substrate size is still determinant for reaction rate. 

 

 Ligand-template directed assembly for catalyst encapsulation where the 

ligand itself templates the capsule formation is also still conceptually 

promising.57 Ligand complexation inside the capsule by the transition metal 

gives rise to the encapsulated (pre)-catalyst. Reek and co-workers reported 

a tripyridylphosphine that can coordinate to three zinc porphyrins or three 

zinc salens and therefore give rise to an encapsulated ligand.58 Apart from 

being protected in some extent from oxidation by encapsulation, 

coordination chemistry of the ligand is modified due to its high space 

occupancy (presence of the cavity): addition of zinc porphyrin to 

Pd(P(pyridyl)3)4 gave rise to the monophosphane complex, as a result of 

steric congestion brought by the coordination to the zinc porphyrins. This 

resulted in a catalyst with an enhanced reactivity for the Heck reaction of 

iodobenzene with styrene when Pd(P(pyridyl)3)4 proved to be inactive as a 

catalyst. This approach also offers the possibility to vary the studied metal 

and therefore enlarges the scope of possible catalytic applications. 

                                                 

57 For a conceptual review, see: Kleij, A. W.; Reek, J. N. H. Chem. Eur. J. 2006, 12, 4218. 
58 Slagt, V. F.; Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Angew. Chem. 

Int. Ed. 2001, 40, 4271. 
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Fig. 1.17: Ligand-template directed assembly for catalyst encapsulation. 

 

 The rhodium complex of the encapsulated ligand (see Fig. 1.17) 

catalyzes the hydroformylation of 1-octene (10-fold rate acceleration) and 

reverses the obtained selectivity for the non encapsulated catalyst (l/b 

without Zn-porphyrins: 74/26; l/b with Zn-porphyrins: 28/62).59 

 All the examples described above report the use of capsules as confined 

reaction chambers in which at least two reactive species are bound, or as 

phase-transfer catalysts. However, other applications were described for 

such molecular containers that were used as inducers of chemical 

amplification and selection by the groups of Rebek60 and Sanders (Dynamic 

Combinatorial Libraries).61  

 

 
                                                 

59 Slagt, V. F.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. J. Am. Chem. 

Soc. 2004, 126, 1526. 
60 Chen, J.; Körner, S.; Craig, S. L.; Rudkevich, D. M.; Rebek, J., Jr. Nature 2002, 415, 

385. 
61 Otto, S.; Furlan, R. L. E.; Sanders, J. K. M. Science 2002, 297, 590. 
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1.3 Self-assembly as a tool for ligand construction. 

  

 Supramolecular construction of bidentate ligands from monodentate 

ones for the stabilization of organometallic catalysts has also been reported.

A library of potential catalysts can then be studied with a minimum of 

effort, using high throughput screening methods.62 The rational design of 

such systems also enables the ligand to adopt the ideal bite angle (catalyst 

optimization).63 This approach looks promising since a wide family of N,N, 

N,P and P,P bidentate ligands can be easily screened from a library of 

monodentate ligands.  

 

 Reek and co-workers reported a diphenyl(pyridyl)phosphine derivative 

that was connected to a bis Zn-porphyrin.64 Pyridyl coordination to the zinc 

atoms provided a bidentate ligand that was complexed with rhodium for 

hydroformylation applications (Fig. 1.18). In the presence of the chiral 

phosphite ligand and the bis-porphyrin template, hydroformylation of 1-

octene took place with a decreased catalyst activity but a higher selectivity 

for the linear product (94%). When zinc tetraphenylporphyrin was used 

instead of the bis-porphyrin derivative, a 83% linear selectivity was 

observed. Higher enantioselectivites were also obtained in the branched 

selective hydroformylation of styrene (33% ee vs. 7% for the rhodium 
                                                 

62 a) Wilkinson, M. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Org. Biomol. Chem. 

2005,  3, 2371. b) Sandee, A. J.; Reek, J. N. H. Dalton Trans. 2006, 3385. 
63 Van Leeuwen, P. W. N. M.; Kamer, P. C. J.; Reek, J. N. H.; Dierkes, P. Chem. Rev. 

2000, 100, 2741. 
64 Slagt, V. F.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Chem. Commun. 2003, 2474. 
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complex prepared from monodentate phosphite). The surprising selectivity 

and activity arise from the use of a template that preorganizes the system in 

terms of optimized bite angle and increased steric bulk. 

 

 

 
 

 Fig. 1.18: a) Studied ligands and templates assemblies. b) Metal 
coordination within the template of the assembled bidentate ligand.  

 

 In a similar way, Takacs and co-workers reported a bisoxazoline (box) 

ligand substituted with one phosphite linked to a tether that could form 

heterodimers in a selective fashion upon coordination with Zn(II) (Fig. 

1.19).65 A library of 13 phosphite box derivatives giving rise to 50 potential 

bidentate ligands upon zinc coordination was screened for the Pd(II) 

catalyzed amination of allylic esters. At equal conversions, enantiomeric 

                                                 

65 Takacs, J. M.; Reddy, D. S.; Moteki, S. A.; Wu, D.; Palencia, H. J. Am. Chem. Soc. 

2004, 126, 4494. 
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excesses varied from 20 to about 98% (48% ee in a control experiment). 

This proves that good selectivities can be reached for a specific reaction 

following this “combinatorial catalysis” approach. More recently, the same 

library of ligands was used for the rhodium (I) catalyzed asymmetric 

hydroboration of ortho substituted styrenes.66 This confirmed the high 

substrate dependence of the catalyst efficiency. 

 

 
Fig. 1.19: Phosphite functionalized bisoxazolines for catalysts library and 

their performance in asymmetric allylic amination. 
 

 Another approach inspired by the base pairing observed in DNA was 

brought by Breit et al (Fig. 1.20). Adenine (A) and thymine (T) are indeed 

                                                 

66 Moteki, S. A.; Takacs, J. M. Angew. Chem. Int. Ed. 2008, 47, 894. 



1.3 Self-assembly as a tool for ligand construction 
__________________________________________________________________ 

 30 

bound through hydrogen bonds in the DNA core. Monodentate phosphines 

bearing heterocyclic units for intermolecular H-bonding were thus prepared 

and investigated in hydroformylation reactions.67 This combinatorial 

approach also enables to screen a wide family of catalysts thanks to the 

easy formation of the bidentate ligand.  

 

 

 
 

Fig. 1.20: Concept of the H-bonding driven bidentate ligand formation 
inspired by DNA base-pairing. 

 

 A wide family of substituted phosphines were prepared and screened in 

the hydroformylation reaction. Upon assembly, thiazole and azaindole 

based phosphines induced a 99% selectivity for the linear product in the 

hydroformylation of 1-octene (Fig. 1.21). If the azaindole is replaced by an 

isoquinolone, the dimer survives in methanol and catalyzes the reaction 

with similar selectivities. The selectivity of the reaction thus depends on the 

strength of the hydrogen bonds: the stronger the interactions, the higher the 

selectivity. Assemblies of this kind were also used for the rhodium 

catalyzed asymmetric hydrogenation of olefins under hydrogen atmosphere 

                                                 

67 a) Seiche, W.; Breit, B. J. Am. Chem. Soc. 2003, 125, 6608. b) Seiche, W.; Breit, B. 

Angew. Chem. Int. Ed. 2005, 44, 1640. c) Waloch, C.; Wieland, J.; Keller, M.; Breit, B. 

Angew. Chem. Int. Ed. 2007, 46, 3037. 
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(phosphine and chiral phosphite linked to complementary heterocycles).68 

Finally, these assemblies were also found to play an important role in the 

hydration of alkynes and nitriles catalyzed by ruthenium complexes.69 

 

 

 
 

Fig. 1.21: Hydroformylation of 1-octene in the presence of an H-bonded 
ligand. 

 

 H-Bonding driven self-assembly has also been used by Ding and co-

workers to make polymeric heterogeneous inorganic catalysts. 

Polymerization was ensured by stable ureidopyrimidinone quadruple H-

bonding arrays. Homogeneous inorganic catalyst then turned heterogeneous 

thanks to this H-bonding driven polymerization (easier catalyst recovery) 

(Fig. 1.22). Asymmetric hydrogenation of dehydro α-aminoacid and 

enamides occurred with ees lying between 91 and 96% (>99% conversion) 

in presence of the catalyst.70 This strategy also proved successful for 

                                                 

68 a) Weis, M.; Waloch, C.; Seiche, W.; Breit, B. J. Am. Chem. Soc. 2006, 128, 4188. b) 

Birkholz, M.-N.; Dubrovina, N. V.; Jiao, H.; Michalik, D.; Holz, J.; Paciello, R.; Breit, B.; 

Börner, A. Chem. Eur. J. 2007, 13, 5896. 
69 a) Chevallier, F.; Breit, B. Angew. Chem. Int. Ed. 2006, 45, 1599. b) Šmejkal, T.; Breit, 

B. Organometallics 2007, 26 (9), 2461. 
70 Shi, L.; Wang, X.; Sandoval, C. A.; Li, M.; Qi, Q.; Li, Z.; Ding, K. Angew. Chem. Int. 
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aromatic ketone hydrogenation when a rigid spacer replaced the hydrogen 

bonds.71 

 

 

 

 

Fig. 1.22: Self-assembly driven catalyst immobilization. 

 These examples show that supramolecular catalytic systems constitute a 

promising and solid approach to enzyme mimics and sustainable chemical 

processes, which nowadays represents a key issue, given the constantly 

increasing mankind’s demand for chemicals and the need for sustainibility.  

                                                                                                                           

Ed. 2006, 45, 4108. 
71 a) Wang, X.; Ding, K. J. Am. Chem. Soc. 2004, 126, 10524. b) Liang, Y.; Li, X.; Shi, L.; 

Ding, K. J. Am. Chem. Soc. 2005, 127, 7694. 
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1.4 Objectives. 

 

 Guanidinium groups are known to stabilize negatively charged 

transition states in Michael addition to unsaturated lactones.72 The 

guanidinium group is indeed well known for its ability to form highly stable 

hydrogen bonds with oxoanions, thanks to ion pairing and favoured crossed 

dipolar interactions.73 This project mainly aims at developping a 

conceptually new approach to asymmetric homogeneous catalysis based on 

the principles of self-assembly for catalyst formation and anion recognition 

for transition state stabilization. A general design is shown on Fig. 1.23: 

 

 
 

Fig. 1.23: A new approach to asymmetric homogeneous catalysis using 
self-assembly and anion recognition. 

 
                                                 

72 a) Alcazar, V.; Morán, J. R.; de Mendoza, J. Tetrahedron Lett. 1995, 36, 3941. b) 

Martin-Portugués, M.; Alcazar, V.; Prados, P.; de Mendoza, J. Tetrahedron 2002, 58, 

2951. 
73 a) Best, M. D.; Tobey, S. L.; Anslyn, E. V. Coord. Chem. Rev. 2003, 240, 3 and 

references therein. b) Schug, K. A.; Lindner, W. Chem. Rev. 2005, 105, 67. 
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 The design involves an H-bonding moiety (urea, thiourea or 

guanidinium) connected to a transition metal through a heterocyclic spacer 

for the stabilization of a negatively charged transition state 

(organocatalysis)74 and/or substrate fixation via molecular recognition (H-

bonding). Catalyst’s chirality is expected to arise from a “standard” chiral 

exogenous ligand. Coordination of the H-bonding and chiral ligand to a 

suitable transition metal is expected to give rise to the heteroleptic complex. 

The choice of the appropriate metal is therefore critical, since it dictates 

catalyst’s geometry and stability. This new approach also offers the 

possibility to work in a combinatorial fashion from a ligand library (tuning 

of the catalyst). Nevertheless, three different situations are to be considered: 

 

Situation 1: The metal is catalytically inactive and the H-bonding moiety 

might be used as organocatalyst, whereas metal is present as a structural 

element responsible for asymmetric induction thanks to the chiral ligand. 

 

Situation 2: The metal is catalytically active and the H-bonding moiety 

might be used as a substrate fixation agent, placing the substrate at a given 

distance from the active site, which might result in regioselectivity 

induction. 

 
                                                 

74 For a review on organocatalysis see: a) Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 

2004, 43, 5138. Thiourea mediated organocatalysis: b) Okino, T., Hoashi Y., Furukawa, 

T., Xu, X., Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119. c) Hoashi, Y., Yabuta, T., 

Takemoto, Y. Tetrahedron Lett. 2004, 45, 9185. d) Takemoto, Y. Org. Biomol. Chem. 

2005, 4299. 
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Situation 3: The metal is catalytically active and the H-bonding moiety 

might activate the substrate in a cooperative fashion along with the 

transition metal.  

  

 Aiming at establishing some guidelines for the construction and study 

of such systems, a stepwise approach to the project has been adopted: 

 

a) Influence of the acidity of guanidinium cation on the binding strength 

with oxoanions and its catalytic activity. 

 

 Chapter 2 of this Thesis reports on the synthesis and the oxoanion 

binding study of guanidinium derivatives of different acidic strength. 

Isothermal Titration Calorimetry (ITC) and 1H NMR techniques were used 

for these binding studies. Finally, the potential of these compounds as 

organocatalysts for the 1,4-addition of pyrrolidine to 2-(5H)-furanone was 

studied (Fig. 1.24). These studies aim at giving tips about which 

guanidinium scaffold is most suitable for the situations 1 and 2 described 

above (optimization of substrate binding and organocatalyst character). 

 

 

 
Fig. 1.24: Studied 1,4-addition of pyrrolidine to 2-(5H)-furanone. 
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b) Cooperativity study of metal-substrate and H-bonding interactions 

in model catalytic systems. 

 

Cooperative working fashion of metal-substrate and H-bonding 

interactions in a model system, where both activating moieties are 

connected covalently in order to force cooperativity (situation 3), will 

be studied in Chapter 3.  

 

 
Fig. 1.25: Metalloporphyrins as catalysts for hetero-Michael additions. 

 

Cooperativity between a metal catalyst and an organocatalyst is then 

studied for the 1,4-addition of pyrrolidine to 2-(5H)-furanone (Fig.1.24). In 

summary, three porphyrin derivatives functionalized with various H-

bonding moieties were prepared (urea, thiourea, guanidinium, see Fig. 

1.25). Metal screening experiments as well as a complete cooperativity 

study are reported. 
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c) Functionalized ligands for substrate binding in catalysis. 

 

 Chapter 4 reports on the preparation of a small library of heterocycles 

functionalized with a urea, a thiourea or a guanidinium, as well as on the 

synthesis of chiral ligands. Monodentate (pyridine, isoquinoline…) and 

bidentate (dipyrromethene, bipyridine) heterocyclic cores were 

investigated. Formation of the desired heteroleptic complex has also been 

studied with Cu(I), Zn(II) and Ru(II), taking into account both the 

geometries of the metals and their affinities for nitrogen-containing ligands. 

C-H activation reactions of fatty acids were then targeted. On the one hand, 

efforts towards Cu(I) catalyzed cyclopropanation and aziridination of 

unsaturated acids are reported. Finally, the Ru(IV) catalyzed regioselective 

asymmetric epoxidation of unsaturated fatty acids was targeted. Catalysis 

and control experiments performed to achieve this goal are herein 

described.  

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 2 

 

 

INFLUENCE OF THE ACIDITY OF 

GUANIDINIUM CATIONS ON BINDING 
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2.  Influence of the acidity of guanidinium cations on binding and 

catalysis. 

 

2.1 Introduction. 

 

2.1.1 The guanidinium group. 

 

 Nature frequently uses the guanidinium group to bind oxoanions in 

enzymatic active sites and protein recognition domains. Present in the side 

chain of the amino acid arginine, the guanidinium group forms strong ion 

pairs with oxoanions such as carboxylates and phosphates of enzymes and 

antibodies, and also takes part in the stabilization of tertiary protein 

structures via internal salt bridging. Most artificial receptors for oxoanions 

such as carboxylates and phosphates are therefore based on guanidines.1           

The geometrical Y-shape of the three heteroatoms enables the formation of 

parallel, highly directional hydrogen bonds and its high basicity makes it 

protonated over a broad pH range (pKa = 12-13). The positive charge is 

delocalized between the three nitrogen atoms, which gives this cation its 

remarkable stability. 

 

 From the point of view of energy, oxoanion binding is driven by the 

high directionality of hydrogen bonds, the ion pairing electrostatic 

                                                 

1 a) Best, M. D.; Tobey, S. L.; Anslyn, E. V. Coord. Chem. Rev. 2003, 240, 3. b) For a 

recent review on the topic, see: Blondeau, P.; Segura, M.; Pérez-Fernandez, R.; de 

Mendoza, J. Chem. Soc. Rev. 2007, 36, 198.  
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interaction and the presence of favorable dipolar crossed interactions (Fig. 

2.1a). The guanidinium/carboxylate ion pair is expected to be more stable 

than the guanidine/carboxylic acid pair, since guanidinium cation and 

acetate are nine pKa units apart in water. Thus, transprotonation is unlikely, 

also because it would lead to loss of the ion pairing electrostatic interaction 

and of the attractive crossed dipolar interactions.2 The objective of this 

chapter is to explore the frontiers of guanidine’s basicity and study the 

consequences on oxoanion binding affinity and catalysis. 

 

 

 

 

a) Crossed dipolar interactions. b) Conformational interconversion 
and ways to prevent it. 

 

Fig.2.1: Basics of the guanidinium-carboxylate recognition 

 

 In the case of N-alkylguanidines, fast interconversion between the syn 

and the more stable but unproductive (in terms of H-bonded ion-pairing) 

                                                 

2 Jorgensen, W. L.; Pranata, J. J. Am. Chem. Soc. 1990, 112, 2008. 
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anti conformers causes anion binding to be weaker (Fig. 2.1b). This issue 

can be efficiently overcome by introduction of the guanidinium cation in a 

bicyclic decaline system3 or by the use of intramolecular H-bonding 

(acylguanidinium cations) in monocyclic systems. Over the last two 

decades, our group investigated the molecular recognition of relevant 

anions (chiral recognition and transport of biologically relevant anions, 

construction of supramolecular architectures) by functionalized bicyclic 

chiral guanidinium salts.4  

 

                                                 

3 a) Echavarren, A. M.; Galán, A.; de Mendoza, J.; Salmerón, A.; Lehn, J.-M. Helv. Chim. 

Acta 1988, 71, 685. b) Kurzmeier, H.; Schmidtchen, F. P. J. Org. Chem. 1990, 55, 3749. 
4 Amino acid recognition: a) Echavarren, A.; Galán, A.; Lehn, J.-M.; de Mendoza, J. J. Am. 

Chem. Soc. 1989, 111, 4994. b) Galán, A.; Andreu, D.; Echavarren, A. M.; Prados, P.; de 

Mendoza, J. J. Am. Chem. Soc. 1992, 114, 1511. c) Breccia, P.; Van Gool, M.; Pérez-

Fernández, R.; Martín-Santamaría, S.; Gago, F.; Prados, P.; de Mendoza, J. J. Am. Chem. 

Soc. 2003, 125, 8270. Molecular recognition of oligonucleotides: d) Galán, A.; Pueyo, E.; 

Salmerón, A.; de Mendoza, J. Tetrahedron. Lett. 1991, 32, 1827. e) Galán, A.; de 

Mendoza, J.; Toiron, C.; Bruix, M.; Deslongchamps, G.; Rebek, J. Jr. J. Am. Chem. Soc. 

1991, 113, 9424. f) Andreu, C.; Galán, A.; Kobiro, K.; de Mendoza, J.; Park, T. K.; Rebek 

J. Jr.; Salmerón, A.; Usman, N. J. Am. Chem. Soc. 1994, 116, 5501. Protein surface 

recognition by a tetraguanidinium oligomer: g) Peczuh, M. W.; Hamilton, A. D.; Sánchez-

Quesada, J.; de Mendoza, J.; Haack, T.; Giralt, E. J. Am. Chem. Soc. 1997, 119, 9327. h) 

Haack, T.; Peczuh, M.; Salvatella, X.; Sánchez-Quesada, J.; de Mendoza, J.; Hamilton, A. 

D.; Giralt, E. J. Am. Chem. Soc. 1999, 121, 11813. Tetraguanidinium as a cell 

internalization vector: i) Fernández-Carneado, J.; Van Gool, M.; Martos, V.; Castel, S.; 

Prados, P.; de Mendoza, J.; Giralt, E. J. Am. Chem. Soc. 2005, 127, 869. Guanidinium 

based macrocycles for selective anion recognition: j) Alcázar, V.; Segura, M.; Prados, P.; 

de Mendoza, J. Tetrahedron. Lett. 1998, 39, 1033.  
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2.1.2 Anion binding versus transprotonation. 

 

 Ammonium ions, amides, ureas, thioureas and guanidinium cations 

have been commonly used for anion recognition. Upon their introduction 

into a given scaffold, they can give rise to a wide range of affinities for 

specific anions through hydrogen bonding. This is mainly attributed to 

geometrical factors, but also to electronic ones. Nevertheless, most of these 

receptors proved efficient only in non competitive, aprotic solvents. To 

increase anion affinity in more polar or protic solvents, further polarization 

of the H-bond donor must be introduced using either positively charged 

groups or vicinal electron withdrawing ones, although overpolarization may 

ultimately lead to proton transfer, especially in the presence of highly basic 

anion partners.5 H-bonding between an A-H donor and a B acceptor has 

therefore to be regarded as a frozen proton transfer from A to B. 

Consequently, high association constants are obtained when charge transfer 

between A and B is favored, but not to a too high extent.6 This concept was 

illustrated by Licchelli and co-workers who reported a urea derivative 

substituted with electron withdrawing groups (I) (Fig. 2.2), which was 

shown to coordinate acetate with a high binding constant (4.1 × 106 M-1 in 

acetonitrile, UV-Vis titration).7  

                                                 

5 Amendola, V.; Esteban-Gómez, D.; Fabbrizzi, L.; Licchelli, M. Acc. Chem. Res. 2006, 

39, 343.  
6 Steiner, T. Angew. Chem. Int. Ed. 2002, 41, 48. 
7 Boiocchi, M.; Del Boca, L.; Gomez, D. E.; Fabbrizzi, L.; Licchelli, M.; Monzani, E. J. 

Am. Chem. Soc. 2004, 126, 16507. 
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Fig. 2.2: Structure of urea I and the X-Ray structure of I (AcO-). 

 

 This strong binding constant was attributed to the high acidity of the 

urea NHs. Various oxoanions were studied under identical conditions and a 

good correlation between Ks and the computed partial charge on the 

oxoanion was found (related to anion’s basicity). However, upon addition 

of the highly basic fluoride anion, I shows a different behavior in 

acetonitrile (Fig. 2.3): After addition of one equivalent of 

tetrabutylammonium fluoride (TBAF), the anion was fully complexed by 

the urea (orange solution), but addition of a second equivalent caused the 

highly stable HF2
- anion (self-complex) to form by deprotonation of the 

urea (dark red solution), and binding was cancelled. The differences in the 

measured binding constant explain the sequential behavior of the system 

(K2 < K1).8  

                                                 

8 For receptors with K2 > K1, direct receptor deprotonation should be expected.  
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Fig. 2.3: Equilibria accounting for deprotonation of I by fluoride (MeCN). 

 

 The acidity of the receptor was then increased by replacing a 4-

nitrophenyl substitutent for a 5-nitrobenzofurazan one: a crystal structure of 

the deprotonated receptor II, stabilized by its mesomeric forms, was 

obtained (Fig. 2.4).  

 

 

 

     a)            b) 
 

Fig. 2.4: a) Resonance forms of the deprotonated receptor II.  b) X-ray 
crystal structure of deprotonated II, in the presence of an excess F-. 

 

 The most acidic proton was taken by fluoride.9 Interestingly, upon 

addition of acetate and dihydrogen phosphate salts to a solution of II, 

deprotonation and formation of the [HX2]- species was observed, 

                                                 

9 Boiocchi, M.; Del Boca, L.; Esteban-Gómez, D.; Fabbrizzi, L.; Licchelli, M.; Monzani, 

E. Chem. Eur. J. 2005, 11, 3097. 
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highlighting the importance of the acidity on anion binding (Fig. 2.5). 

 

 

 
 

Fig. 2.5: Juxtaposition of acidity scales of I and II and stability scale of 
HX2

- (deprotonation takes place above the dashed line). 
  

 Other systems presenting a similar behavior have been reported and 

explored as specific anion sensors.10 

 

                                                 

10 a) Camiolo, S.; Gale, P. A.; Hursthouse, M. B.; Light, M. E. Org. Biomol. Chem. 2003, 

1, 741. b) Gunnlaugsson, T.; Kruger, P. E.; Jensen, P.; Pfeffer, F. M.; Hussey, G. M. 

Tetrahedron Lett. 2003, 44, 8909. c) Esteban-Gómez, D.; Fabbrizzi, L.; Licchelli, M. J. 

Org. Chem. 2005, 70, 5717. d) Gunnlaugsson, T.; Kruger, P. E.; Jensen, P.; Tierney, J.; 

Paduka Ali, H. D.; Hussey, G. M. J. Org. Chem. 2005, 70, 10875. e) Pfeffer, F. M.; 

Gunnlaugsson, T.; Jensen, P.; Kruger, P. E. Org. Lett. 2005, 7, 5357. f) Evans, L. S.; Gale, 

P. E.; Light, M. E.; Quesada, R. Chem. Commun. 2006, 965. g) Kim, Y.-J.; Kwak, H.; Lee, 

S. J.; Lee, J. S.; Kwon, H. J.; Nam, S. H.; Lee, K.; Kim, C. Tetrahedron 2006, 62, 9635. h) 

Gunnlaugsson, T.; Glynn, M.; Tocci, G. M.; Kruger, P. E.; Pfeffer, F. M. Coord. Chem. 

Rev. 2006, 250, 3094. i) Lin, C.; Simov, V.; Drueckhammer, D. G. J. Org. Chem. 2007, 

72, 1742. 
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2.1.3 Guanidinium cations as organocatalysts. 

 

Guanidinium cations have also been studied as potential 

organocatalysts. Their binding ability suggests that negatively charged 

oxygenated transition states may be strongly stabilized by guanidinium 

derivatives. Indeed, de Mendoza and co-workers first reported that 

guanidinium significantly accelerates the 1,4-addition of pyrrolidine to 2-

(5H)-furanone.11 A chiral bicyclic guanidine was subsequently endowed 

with bulky groups in order to induce asymmetry but the stereogenic centers 

were located too far away from the binding pocket to allow any chiral 

induction to take place (Fig. 2.6).  

 

. 

Fig. 2.6: Guanidinium-catalyzed conjugate addition. 

 

 Other catalytic application of the bicyclic chiral guanidine implies its 

use as an organobase, its high pKa enabling the possible deprotonation of 

organic substrates. In this field, Casas and de Mendoza studied a guanidine-

                                                 

11 a) Alcázar, V.; Morán, J. R.; de Mendoza, J. Tetrahedron. Lett. 1995, 36, 3941. b) 

Martín-Portugués, M.; Alcázar, V.; Prados, P.; de Mendoza, J. Tetrahedron 2002, 58, 

2951. 
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catalyzed procedure for the preparation of amino acids with a quaternary 

carbon.12 Guanidine was used as a base for the deprotonation of an 

azlactone that was then trapped with an electrophile (ethyl acrylate) to give, 

after hydrolysis, the quaternized amino acid, obtained in reasonable yields 

and good enantioselectivities (Fig. 2.7). Other guanidines have also been 

reported as organocatalysts for nitroaldol13 and transfer reactions 

(phosphoryl, acyl).14 

 

 
 

Fig. 2.7: Guanidine as an organobase: chiral amino acids with a quaternary 
carbon.   

                                                 

12 Casas, J.; Nonell-Canals, A.; Maseras, F.; de Mendoza, J. to be submitted. 
13 a) Chinchilla, R.; Nájera, C.; Sánchez-Agallo, P. Tetrahedron: Asymmetry 1994, 5, 

1393. b) Bernardi, L.; Bonini, B. F.; Capitò, E.; Dessole, G.; Comes-Franchini, M.; Fochi, 

M.; Ricci, A. J. Org. Chem. 2004, 69, 8168. c) Sohtome, Y.; Hashimoto, Y.; Nagasawa, K. 

Adv. Synth. Catal. 2005, 347, 1643. d) Sohtome, Y.; Nagasawa, K. ; Hashimoto, Y. Eur. J. 

Org. Chem. 2006, 2894. e) Sohtome, Y.; Takemura, N.; Takada, K.; Takagi, R.; Iguchi, T.; 

Nagasawa, K. Chem. Asian J. 2007, 2, 1150.  
14 a) Piątek, A. M.; Gray, M.; Anslyn, E. V. J. Am. Chem. Soc. 2004, 126, 9878. b) Pratt, 

R. C.; Lohmeijer, B. G. G.; Long, D. A.; Waymouth, R. M.; Hedrick, J. L. J. Am. Chem. 

Soc. 2006, 128, 4556. 
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2.2 Synthesis of model guanidinium cations. 

 

 The acidity of our bicyclic guanidinium cations was modified by 

insertion of one or two adjacent aromatic rings. Coplanarity of the final 

structure allows electron delocalization through the aromatic rings and 

results in a pronounced increase in the acidic character (Fig. 2.8). 

 

 

 
Fig. 2.8: Structures of the studied guanidinium cations. 

 

2.2.1 Bicyclic chiral guanidinium cation 1. 

 

The synthesis of bicyclic chiral guanidinium cations was described 

independently in the late 1980’s by the groups of de Mendoza and 

Schmidtchen.3a This convergent eight-step synthesis involves 

enantiomerically pure amino acids as starting materials (all four possible 

diastereomers can be prepared). The key step of the large scale synthesis is 

a double cyclization process that converts thiourea 9 in a protected 

guanidine (Fig. 2.9). Recently, we scaled up the synthesis of the thiourea 

precursors 6 and 8 at the pilot plant scale (about 500 g each).15 The 

remaining steps were then performed according to usual procedures (at a 80 

g scale).  
                                                 

15 Frédéric Ratel, Tesis de Licenciatura 2005, Universidad Autónoma de Madrid.  
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Fig. 2.9: Synthesis of the bicyclic chiral guanidinium salt 1. 

 

 This procedure is well known in our laboratory since 1 is a common 

starting material for various applications in oxoanion recognition. The pKa 

value of 1 was then evaluated by a UV-Vis measurement in MeCN:H2O 

(1:1)16 as 12.8 ± 0.3 (Fig. 2.10).  

 

                                                 

16 By measuring the absorbance at different pH values. Equations for acid-base equilibria 

in water were used as an approximation. 
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pKa determination
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Fig. 2.10: UV-Vis monitored pKa determination of 1 (at 204 nm). 

 

2.2.2 Chiral benzoguanidinium cation 2. 

 

 Following a similar synthetic route, the double cyclization step applied 

to thiourea 11 might lead directly to 2 (Fig. 2.11).  Regioselective formation 

of 11 was anticipated to occur without the need of amine protection (as a 

sulfonamide), because the benzylic amine is likely more nucleophilic than 

the aromatic one.  

 

 
Fig. 2.11: Retrosynthetic approach for chiral benzoguanidinium cation 2. 

 

A screening of reaction conditions for the exclusive formation of 11 

was performed and the concentration of reactants optimized.15 11 could 

thus be obtained in a 77% yield after column chromatography. Upon 

treatment with methyl trifluoromethane sulfonate in basic medium, 11 was 
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converted into 2, which was isolated by precipitation of its hydrochloride 

salt in diethyl ether (29% yield). The low yield could be attributed to the 

precipitation step, but no attempts to optimize the purification procedure 

were performed (Fig. 2.12).  

 

 
 

Fig. 2.12: Synthesis of chiral benzoguanidinium cation 2 (Cl-). 

 

This new straightforward synthetic procedure enables to introduce 

chirality as well as rigidity into benzoguanidines, thus paving the way for 

new applications. As for 1, the pKa of 2 was measured by UV-Vis 

measurements, and a value of 12.3 ± 0.2 was estimated (Fig. 2.13). The pKa 

difference between 1 and 2 is in accordance with the one observed for 

acetic acid (pKa = 4.76) and benzoic acid (pKa = 4.20). The more acidic 

character of benzoguanidinium cation 2 is due to delocalization of the 

positive charge through the aromatic ring, therefore rendering the positive 

charge distribution non symmetric (the two NHs should have different pKa 

values). This was reflected in the NMR chemical shifts of both guanidinium 

protons: the proton adjacent to the aromatic ring resonates at 11.67 ppm 

whereas the more distal one appears at 9.35 ppm.  
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Chiral benzoguanidine
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Fig. 2.13: a) UV-Vis monitored pKA determination of 2 (196 nm). b) Ortep 
plot of the X-ray structure of 2 (Cl-) (MeCN/Et2O). 

 

In agreement with the different acidities, the NH····Cl- distances in the 

X-ray structure of 2 are significantly different (3.08 vs. 3.493 Å), the 

counterion being significantly closer to the more acidic proton of the 

guanidinium group.  
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2.2.3 Dibenzoguanidinium cation 3. 

 

 Preparation of 3 was achieved following a synthetic route previously 

reported by our group (Fig. 2.14).17 Anthranilonitrile was hydrogenated in 

the presence of rhodium18 to yield the secondary amine 12 (37% yield) 

which was converted to thiourea 13 upon treatment with 

thiocarbonyldiimidazole (65% yield). Intramolecular cyclization took place 

by activation of the thiourea with methyl iodide at room temperature for 

two weeks (yield not determined, lit. 97%).17 

 

 

 
 

Fig. 2.14: Synthesis of dibenzoguanidinium cation 3. 

 

                                                 

17 Chicharro, J. L.; Prados, P.; de Mendoza, J. Chem. Commun. 1994, 1193. 
18 Galán, A.; de Mendoza, J.; Prados, P.; Rojo, J.; Echavarren, A. E. J. Org. Chem. 1991, 

56, 452. 
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The increased acidity of the guanidinium cation was again reflected in 

the NMR chemical shift of the NH protons at 11.45 ppm (CDCl3). As for 1 

and 2, a pKa value lying between 11.7 and 12.2 was estimated by UV-Vis, 

which is consistent with the observed general trend. Finally, crystals of 3 

could be grown in acetonitrile (Fig. 2.15), which confirmed the structure 

(poor resolution). 

 

 

 

 

 

Fig. 2.15 X-ray structure of 3 (MeCN)

 

2.3 Binding studies. 

 

2.3.1 1H NMR experiments. 

 

The complexation of 1 (Cl- and PF6
-) with acetate has been reported19 

and exhibits a 1:1 stoichiometry. Job plots display a bell shaped curve, 

accounting for a 1:1 complex, as expected. However, 1H NMR binding 

studies of 2 (Cl- or PF6
-) with acetate did not give rise to the expected bell-

shaped curve (Job Plot). Below one equivalent of acetate added, signals of 2 

do not shift significantly (CDCl3). With one equivalent, NH signals are 

strongly shifted (∆δ = 0.8 ppm) and further acetate addition does not alter 

                                                 

19 Blondeau, P.; Benet-Buchholz, J.; de Mendoza, J. New J. Chem. 2007, 31, 736. 
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the chemical shifts of the species in equilibrium. This suggests a 1:1 

stoichiometry along with an “all-or-nothing” behavior for the complexation 

of 2 with acetate. Thus, the complex equilibria indicate that 1H NMR is not 

a suitable and simple method for the study of the binding of 2 with acetate. 

For the same reason, experiments with 3 were not carried out. Similar NMR 

experiments were then performed with 2 (Cl-) and benzoate (pKa = 4.2), 4-

nitrobenzoate (pKa = 3.44), 3,5-dinitrobenzoate (pKa = 2.8), as well as with 

2 (PF6
-) and chloride (pKa = -5) in order to study the effects of anion 

basicity on binding. Bell shaped curves for the Job experiments were 

expected for poorly basic anions, for which transprotonation with 2 is 

unlikely (Fig. 2.16). However, similar results were obtained, suggesting that 

no transprotonation was taking place.  
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Fig. 2.16: Job plots determined by 1H NMR (CDCl3) for: a) 1 (PF6
-) with Cl-.  

b) 2 (PF6
-) with Cl-. c) 2 (Cl-) with acetate. d) 2 (Cl-) with p-nitrobenzoate. 
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2.3.2 Isothermal titration calorimetry (ITC). 

 

This technique is based on a titration experiment where a solution of the 

guest is added dropwise to a solution of the host in an adiabatic cell. 

Measurement of the heat transfered during the addition (related to the 

electric energy received by the apparatus to bring the solution back to a 

constant temperature) enables the determination of the stoichiometry of the 

binding and its thermodynamic components (∆G, ∆H and ∆S).  

 

Binding with poorly basic anions was first studied (Table 2.1, Fig. 

2.17).20 Hexafluorophosphate salts of 1, 2 and 3 were complexed with 

tetrabutylammonium chloride (TBACl), which enabled to exclude anion-

induced transprotonation. The results clearly show that the binding affinity 

for chloride is higher for the most acidic guanidinium cations: 1 < 2 < 3. As 

a result, difference in Gibb’s binding free energy is about 1 kcal.mol-1 

between 3 and 2, as well as between 2 and 1 (binding constants roughly 

differ in one order of magnitude). The shapes of the titration curves also 

reflect this tendency. In both studied solvents, binding is mainly 

entropically driven, which is related to the release of solvent molecules and 

the voluminous anion (PF6
-) from the binding pocket. In a more competitive 

solvent, such as DMSO, the enthalpic term decreases significantly and 

becomes slightly positive (endothermal process due to solvent competition).  

                                                 

20 For ITC studies of guanidinium cations see: a) Wiseman, T.; Willinston, A. S.; Brandts, 

J. F.; Lin, L.-N. Anal. Biochem. 1989, 179, 131. b) Berger, M.; Schmidtchen, F. P. Angew. 

Chem. Int. Ed. 1998, 37, 2694. c) Linton, B.; Hamilton, A. D. Tetrahedron 1999, 55, 6027.  
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Table 2.1: Thermodynamics of the binding of 1-3 (PF6
-) with TBACl. 

Ka in L.mol-1, ∆G and ∆H in kcal.mol-1, ∆S in cal.mol-1.K-1, errors < 10% 
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Fig. 2.17: ITC curves at 30 ºC in MeCN of: a) 1 (PF6
-) with TBACl. b) 2 

(PF6
-) with TBACl. c) 3 (PF6

-) with TBACl. 

 MeCN DMSO 

Ka (103) 4.58 0.549 
∆G -5.07 -3.81 
∆H -1.164 0.068 

1 (PF6
-) 

∆S 12.9 12.8 
Ka (103) 21.6 0.686 

∆G -6 -3.94 
∆H -1.495 0.215 

2 (PF6
-) 

∆S 14.9 13.7 
Ka (103) 119 n.m. 

∆G -7.03 - 
∆H -1.368 - 

3 (PF6
-) 

∆S 18.7 - 
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In less competitive solvents, the enthalpic component is expected to 

increase. In general, the association displays enthalpy/entropy 

compensation. Therefore, for poorly basic anions (for which host 

deprotonation is unlikely), hydrogen bonding strength depends on 

receptor’s acidity: the more acidic the guanidinium is, the higher the 

binding is observed. 

 

Acetate complexation with these receptors was also studied by ITC in 

MeCN and DMSO at 30 ºC, all binding data showing a neat 1:1 

stoichiometry (Table 2.2, Fig. 2.18): 

 

Table 2.2: Thermodynamic parameters of binding of guanidinium cations 
with tetrabutylammonium acetate in MeCN and DMSO at 30 ºC 

(errors<10%) 
 

 1 
(Cl-) 

1 
(PF6

-) 
2 

(Cl-) 
2 

 (PF6
-) 

3  
(Cl-) 

3  
(PF6

-) 
Ks (103) 136 440 1260 3400 113 443 

∆G -7.1 -7.85 -8.46 -9.04 -7 -7.83 
∆H -3.47 -4.7 -4.79 -6.21 -4.36 -4.936 

MeCN 

∆S 12 10.4 12.1 9.35 8.73 9.55 
Ks (103) 10.2 11.4 82.1 120 n.m. n.m. 

∆G -5.55 -5.62 -6.8 -7.04 - - 
∆H -2.31 -2.5 -2.41 -2.4 - - 

DMSO 

∆S 10.7 10.3 14.5 15.3 - - 
Ks expressed in L.mol-1, ∆G and ∆H in kcal.mol-1, ∆S in cal.mol-1.K-1  

 

As observed in the case of chloride, 2 binds better to acetate than 1 

because of its higher acidity. Remarkably, 3 shows lower affinity for 
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acetate than 1 (3 ≤ 1 < 2). In a general manner, use of competitive 

counterions such as chloride tends to lower the association constant (if 

compared with hexafluorophosphate). Benzoguanidinium cation 2 gives 

higher binding constants because of an increased enthalpic term, which can 

be attributed to the formation of strong hydrogen bonds with the more 

acidic NHs. In acetonitrile, the energy difference between 1 and 2 is solely 

due to the enthalpic contribution, whereas in DMSO, both enthalpy and 

entropy differ (entropy/enthalpy compensation). Furthermore, complexation 

of 2 (PF6
-) with the less basic 3,5-dinitrobenzoate in acetonitrile gives an 

association constant of 6 × 103 M-1 for an enthalpically driven binding (Ka = 

3.4 × 106 M-1 for acetate), which also illustrates the pKa dependence of 

association strength of both host and guest. 

  a)         b)    c)  

 

 

 

 

 

 

 

 

 

Fig. 2.18: Titration curves in MeCN for: a) 1 (PF6
-) with AcO-. b) 2 (PF6) 

with AcO-. c) 3 (PF6
-) with AcO-. 
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possible dimer formation in competition with the 1:1 complex.21 The lower 

affinity observed for 3, despite its high acidity, was then attributed to 

transprotonation, giving rise to the less stable guanidine/acetic acid pair 

(non favored dipolar crossed interactions), likely to compete with the 

formation of the guanidine dimer. To check this hypothesis, a 

thermodynamic cycle was considered (Fig. 2.19), taking only into account 

the enthalpic component of the binding (the entropic terms would not 

compensate in the cycle because of the release of salts upon complexation); 

ITC experiments performed in acetonitrile were taken into account.  

 

 

 
a ∆H1 ∆H2 ∆H3 ∆H1- ∆H2- ∆H3 

1 -4700 -1164 -3470 -66 (43) 

2 -6210 -1495 -4790 75 (21) 

3 -4936 -1368 -4360 792 (76) 
a ∆H expressed in cal.mol-1, numbers in parenthesis refer to accepted error 

from ITC experiments in MeCN 
 

Fig. 2.19: Thermodynamic cycle for anions binding to 1-3. 

                                                 

21 The corresponding points of the titration were removed for data fitting. 

∆H1=∆H2+∆H3 
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 Experimental results fit rather well the thermodynamic cycle for 1 and 

2, since the deviation is rather low (though it is higher than the accepted 

experimental error), indicating the absence of competing processes. For 1 

and 2, the error is less than 1.4% of the ∆H1 value, which is remarkable.22 

However, in the case of 3, a 16% error was observed, suggesting the 

existence of a competing process, likely to be transprotonation between 

acetate and guanidinium. All these observations can be taken as evidences 

for transprotonation and show that binding should be higher as the acidity 

of the H-bond donors increases provided that transprotonation between host 

and guest is avoided.  

 

 Finally, 1-3 (AcO-) salts were prepared23 and studied by IR 

spectroscopy in the solid state, to check the differences in their aggregation 

states. Detailed hydrogen bonding studies by IR usually require use of 

solutions, as well as different concentrations to distinguish intramolecular 

(chelation) from intermolecular hydrogen bonds, but we were here just 

interested in seeing the differences between the spectra. The results (Fig. 

2.20) confirmed that compound 3 behaves differently from 1 and 2. For 1 

and 2, broad peaks were seen above 3000 cm-1 (low intensity) and sharp 

ones between 2800 and 300 cm-1 (strong), corresponding respectively to 

non-bonded and bonded NHs of the guanidine, a common feature of 

guanidinium salts. The IR spectrum for 1,5,7-triazabicyclo[4.4.0]dec-5-

                                                 

22 Errors were estimated as the ratio of ∆H1- ∆H2- ∆H3 over ∆H1. 
23 A solution of 1-3 (PF6

-) in CH2Cl2 was wahed with NH4OAc. The organic phase was 

dried and the solvent eliminated under vacuum. 
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ene (bicyclic guanidine) exhibits broad peaks in the 2800-3000 cm-1 area. 

However, for 3, a broad peak can be observed between 2200 and 2800 cm-1 

and two sharp ones of low intensity between 2800 and 3000 cm-1 (see fig. 

2.20). Furthermore, the spectrum of 3 (PF6
-) exhibits a sharp and intense 

band at 3392 cm-1, attributed to the NHs, which is absent in 3 (AcO-). This 

provides additional support for a transprotonation process between 3 and 

acetate. 

 
Fig. 2.20: IR Spectra of 1-3 (AcO-). 

 

2.4 Catalysis. 

 

2.4.1 General. 

 

Bicyclic guanidinium cations derived from 1 were previously shown to 

stabilize the oxoanionic transition state of the 1,4-addition of pyrrolidine to 

2-(5H)-furanone11 (Fig. 2.7). The influence of the acidity of the 

guanidinium scaffold on its catalytic activity was however not reported. For 
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this reason, 1-3 were investigated as potential catalysts for this reaction, 

which can be easily monitored by 1H NMR (Fig. 2.21), therefore enabling 

the construction of its kinetic profile by signal integration.  

 

 

  
V = k0 [2-(5H)-furanone] [pyrrolidine]2 

 
Fig. 2.21: Uncatalyzed reaction monitored by 1H NMR spectroscopy. 

 

The reaction displays third-order kinetics, as was previously shown in 

our group.24 The second partial order for pyrrolidine is attributed to its 

participation in the deprotonation of the zwitterionic transition state; the 

resulting pyrrolidinium cation then deprotonates upon proton transfer to 

enolate, thus regenerating the pyrrolidine. Therefore, the reaction might 

also be catalyzed by water (protonation of the enolate and/or deprotonation 

                                                 

24 Martín-Portugués, M. Tesis de Licenciatura 1996, Universidad Autónoma de Madrid. 
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of the pyrrolinium moiety by water) (Fig. 2.22), though it is difficult to 

determine which of these two steps is faster under the reaction conditions. 

The role of water in the reaction made it difficult to reproduce the previous 

results, for which half-time of the reaction was reached after 180 minutes.  

 

 
Fig. 2.22: Proposed mechanism of the reaction and water catalysis. 

 

When commercially available reagents and no catalyst were used, half 

completion was reached after only 90 minutes (t1/2). However, careful 

distillation of the reagents in a glass oven, afforded a t1/2 of 192 minutes, 

close to the previously published results. Finally, after distillation of 

pyrrolidine over calcium hydride, half completion of reaction was obtained 

after 235 minutes. This clearly shows that water has to be strictly avoided in 

these experiments to obtain reliable and reproducible data. In the case of 

guanidinium cations, dried pyrrolidine and distilled 2-(5H)-furanone were 

used, whereas in the case of porphyrins (see Chapter 3), distilled substrates 

were used. 

 

 

 



2. Influence of the acidity of guanidinium cations on binding and catalysis 
__________________________________________________________________ 

 67

2.4.2 Catalysis experiments. 

 

Similar kinetic measurements were then performed in the presence of 

catalytic amounts of 1-3. In order to reproduce the previously obtained 

results, experiments with 10 mol % catalyst were performed with 1 (Cl-) 

and 2 (Cl-) (Fig. 2.23).  The results were rather positive, since 2 proved to 

be an excellent catalyst for the reaction and half completion was reached 

after only 10 minutes [vs. 235 minutes for the blank reaction and 75 

minutes with 10 mol% of 1 (Cl-)].25 
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Fig. 2.23: Kinetic measurements performed with 10 mol % 1-2. 

 

In the presence of 10 mol% of 2 (Cl-), a 23.5 fold-rate acceleration was 

observed, whereas with 1 (Cl-), 3.1 fold-rate acceleration was observed. 

These high differences are in agreement with the acetate binding studies 

performed previously. Anionic transition state of the reaction is indeed 

                                                 

25 Literature results are significantly different (t1/2 = 22 minutes for 1 (Cl-)),11probably due 

to the use of wet reactants in the experiments. 



2.4 Catalysis 
__________________________________________________________________ 

 68 

likely to have a higher binding constant with 2 than with 1 (increased 

guanidinium acidity). 1H NMR titrations of these two guanidinium cations 

(chloride) with 2-(5H)-furanone were then performed but binding constants 

could not be calculated: signal shifts were not significant enough, especially 

for 2. This evidences our design hypothesis, namely that affinity with the 

transition state is essential for catalytic activity (lowering of activation 

energy by enhanced transition state stabilization). Furthermore, the negative 

charge in the zwitterionic transition state of the reaction is not distributed 

symmetrically between the two oxygens, as is the case of the guanidinium 

positive charge in 2, which might also enable to explain the observed 

results (better electronic fit). However, the reaction catalyzed by the 

benzoguanidinium cation is much too fast to allow an accurate 

determination of the reaction half-time. For this reason, a set of experiments 

was performed at a lower catalyst loading (1 mol %). Results of the 

experiments are summarized in Fig. 2.24. As expected, at low catalyst 

loading, the activity decreases but can nevertheless be detected. 2 (Cl-) 

proves to be the best catalyst for the reaction since a 4.12 fold-rate 

acceleration is obtained in presence of just 1 mol% catalyst. No direct 

correlation can however be made between the pKa of the catalyst and its 

catalytic efficiency and it seems that a similar phenomenon as the one 

described for anion binding is taking place: for a given guanidinium pKa, 

there is a drop in the catalyst efficiency: more acidic guanidinium 3 and 14 

are worst catalysts than 2. Actually, 14 might act as a bifunctional catalyst, 

for which the carboxyguanidinium would activate the lactone (likely 

product inhibition could appear) and the pyridyl residue would participate 

in the transition state deprotonation (as usually does the pyrrolidine).  
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Fig. 2.24: Kinetic measurements performed with 1 mol % 1, 2, 3 and 14.26 

 

It was previously reported that catalytic activity was enhanced for non 

competitive counterions due to easier binding of the oxoanionic transition 

state11. Differences observed between 2 (PF6
-) and 2 (Cl-) however tend to 

show the contrary, which is unexpected. This might however be explained 

by the high sensitivity of the reaction to water and the obtained results may 

                                                 

26 The synthesis of 14 will be described in the last chapter of this manuscript.  
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therefore belong to the same range (within experimental error).27 The effect 

of the counterion was here not studied systematically and no clear 

conclusion can be drawn. Furthermore, guanidinium cations are Brönsted 

acids, so transprotonation with the transition state is likely. However, an 

enolate-like transition state might protonate in various competitive fashions. 

Hypothetically, acidity of the catalyst may determine which proton 

exchange processes are faster.  

 

 

 
 

Fig. 2.25: Proposed equilibria for the protonation/deprotonation of the 
zwitterionic transition state (among others). 

 

On the one hand, deprotonation of the zwitterionic transition state can 

occur following an intramolecular proton transfer mechanism (blue arrows, 
                                                 

27 Experiments were performed only once from the same mother solutions of substrates, to 

keep the water content as constant as possible.  



2. Influence of the acidity of guanidinium cations on binding and catalysis 
__________________________________________________________________ 

 71

Fig. 2.25) or by participation of a pyrrolidine molecule (green arrows). 

However, kinetics of the uncatalyzed reaction suggest that intramolecular 

proton transfer is unlikely: the mechanism involves a second pyrrolidine 

molecule (second partial order for pyrrolidine). On the other hand, Brönsted 

acidity of guanidinium cations also suggests that oxoanionic transition state 

is likely to deprotonate the guanidinium cation (red and orange arrows) to 

yield the free guanidine that is likely to protonate with the cationic moiety 

of the transition state or the pyrrolidinium cation (pKa = 11.27).28 

Surprisingly, the catalytic activity of 2 might therefore arise from adequate 

balance of acidity and basicity for the protonation and deprotonation of the 

zwitterionic transition state. 

To check this hypothesis, a deprotonated sample of 2 (Cl-) was 

deuterated with DCl. If transprotonation takes place, use of a stoichiometric 

amount of deuterated 2 would result in deuteration of the product. The 1H 

NMR spectrum of the catalyst was recorded prior to its use and deuteration, 

though not complete, was evidenced. The reaction was then performed with 

a stoichiometric amount of 2D (Cl-) and the Michael adduct analyzed after 

column chromatography (Fig. 2.26).  

In the product from the deuterated experiment (spectrum (a)), a new 

broad signal appears at 3.17 ppm with respect to the experiment performed 

with non-labelled catalyst. The splitted signal corresponds to the α-proton 

of the carbonyl (acidic position), where deuteration is expected to take 

place (this was confirmed by a 2D COSY NMR experiment). Though some 

deuteration of the Michael adduct could be observed, it is difficult to assess 

                                                 

28 Hall, H. K. Jr. J. Am. Chem. Soc. 1957, 79, 5441. 
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whether the labelling is caused by transprotonation or by fast intermolecular 

proton exchange. As a last remark, for each experiment involving a chiral 

catalyst, optical rotation of the reaction product was measured and appeared 

to be close to 0, as previously observed when derivatives of 1 were used.  

 

 

 
 

 

 

 

 

 

 
(a) 1H NMR spectrum of product (labelled 
catalyst experiment) 
(b) 1H NMR spectrum of product (recorded at 
half completion of reaction) 
(c) 1H NMR spectrum of labelled catalyst 

 

 

 

 

 

 

Fig. 2.26: Results of the D-labelled guanidinium catalyzed experiment. 

 

These studies show that acidity of the catalyst mainly influences the rate 

of proton transfers, which is decisive for catalyst efficiency and observation 

of high turnover frequencies in the studied case.  
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2.5 Conclusions. 

 

In this chapter, a series of guanidinium cations (1-3) bearing different 

acidities by attachment of aromatic rings to the bicyclic guanidinium core 

were prepared. Their anion binding affinity as a function of acidity was 

then investigated by ITC. It was shown that, for acetate, high association 

constants attributed to enthalpic binding terms (related to hydrogen bonding 

strength) could be obtained for benzoguanidinium cations such as 2. For 

highly acidic guanidinium cations, anion protonation is likely, which causes 

a drop in the association constant (binding of 3 with AcO-). A direct 

correlation between H-bonding strength and receptor’s acidity could also be 

evidenced.  

The acidity of H-bond donors also has consequences on their behavior 

as catalysts for the Michael addition of pyrrolidine to 2-(5H)-furanone. 

Rates of proton transfer steps were altered by catalyst’s acidity, which was 

decisive for the definition of catalyst’s efficiency. This study renders 

benzoguanidinium cations catalysts of choice for anion binding and 

organocatalysis applications. 

 

2.6 Experimental part. 

 

a) General procedures. 

 

Synthesis. All commercially available reagents (Aldrich, Fluka, Acros, 

Novabiochem, and Panreac) were used without any further purification, 

unless otherwise stated. Solvents were dried with a Solvent Purification 
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System for deoxygenation and drying of solvents. All reactions were 

performed under argon atmosphere and anhydrous conditions unless 

otherwise stated.  

Chromatography.  Thin Layer Chromatography (TLC) was performed 

on glass supported Alugram Sil G/UV 254 (Macherey-Nagel). Column 

chromatography was done using silica gel by SDS (Chromagel 60 ACC, 

40-60 µm mesh) following the previously reported procedure.29 

Analysis. NMR spectra were recorded on a Bruker Avance 400 

Ultrashield NMR spectrometer using the residual solvent peak as internal 

standard. Melting points were recorded on a Büchi B-540 apparatus. 

Optical rotations [α]20
D were determined on a Perkin-Elmer 241 MC 

polarimeter (NaD 589 nm). Mass spectra were recorded on a Waters LCT 

Premier spectrometer using ESI technique or on a Bruker Autoflex 

MALDI-TOF instrument. Crystal structures were determined on a Bruker-

Nonius diffractometer equipped with a APPEX 2 4K CCD area detector, a 

FR591 rotating anode with MoKalpha radiation, Montel mirrors as 

monochromator and a Kryoflex low temperature device (T = 100 K). UV-

Vis measurements were performed on a Shimadzu UV-2401PC with a 

thermostated (7-60  ºC) sample holder.  

 Job plot experiments. 0.01M standard solutions of 1-2 and 

tetrabutylammonium acetate (or other anion) in CDCl3 were mixed in a 

NMR tube in order to get solutions with various known compositions. 1H 

NMR spectra were then recorded (400 MHz).  

ITC titrations. ITC titrations were performed using an isothermal 

                                                 

29 Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923. 
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titration Microcal VP-ITC calorimeter. All measurements were performed 

at 303 K and reproduced three times at least. Host solution (1 mM in 

MeCN, 5 mM in DMSO) was filled in the ITC cell and guest solutions (8 

mM in MeCN, 50 mM in DMSO) were added through the syringe. Control 

experiments for guest dilution were also performed and heat evolution was 

found to be negligible. Solvent was previously degassed by sonication 

during 15 minutes. Analysis and data fitting was done using Origin 7 

software. Samples were weighted in a Mettler Toledo MX5 microbalance. 

Tetrabutylammonium acetate and chloride salts were weighted in a dry box. 

Kinetic measurements. 2-(5H)-furanone and pyrrolidine were 

previously distilled in a Büchi glass oven B580 under vacuum unless 

otherwise stated. Then, 0.3 M stock solutions of each substrate were 

prepared in deuterated chloroform. The catalyst was weighed on a Mettler 

Toledo MX5 microbalance. 0.5 mL of each solution and the catalyst were 

placed in a NMR tube and the 1H NMR spectra were recorded every 10 

minutes under the automation mode on a Bruker Avance 500 Ultrashield 

spectrometer. 

 

b) Synthesis. 

 

The characterization of the synthetic intermediates of 1 has been 

extensively reported in previous accounts of our group and will not be 

described in this manuscript. The large scale synthesis of 6 and 8 is 

however reported here. Preparation of 9, 10 and 1 was performed according 

to well known procedures at the usual scales. 
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(2R)-N-p-Toluenesulphonylasparagine (7). 

 

 

 
Procedure 

In a 10 L reactor D-asparagine (400 g, 2.66 mol) was dissolved in 4.8 L of a 

0.8N aqueous solution of NaOH. Then p-toluenesulfonyl chloride (672 g, 

3.34 mol) was added within two hours. 5N NaOH (700 mL) was added so 

that the pH of the mixture remains above the value of 10. The reaction 

mixture was stirred at room temperature for 24 h and filtered. The aqueous 

phase was placed in the reactor and acidified with 37% HCl (290 mL) to 

reach pH 1.5. The reaction mixture was stirred at room temperature for 1 h 

at 5 ºC and the resulting precipitate was filtered, washed with water and 

dried in the oven at 50 ºC, to afford 7 (603.18 g, 73%). 

 

(2R)-N-[2-(4-Amino-1-hydroxybutyl)]-p-toluenesulphonamide (8). 

 

 

 
Procedure 

In a 10 L reactor, equipped with a reflux condenser and an addition funnel, 

a lithium borohydride solution (2M in THF, 3.13 L, 6.26 mol) was diluted 

in anhydrous THF (1.33 L) and the mixture was flushed with nitrogen. 

TMSCl (1.58 L, 12.5 mol) was added dropwise and the reaction mixture 
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was cooled at 0 ºC. Compound 7 (553.18 g, 1.33 mol) was then slowly 

added as a fine powder. Once the addition over, the reaction mixture was 

stirred at room temperature for 1 h and then refluxed overnight. Methanol 

(2.5 L) was then carefully added and the solvent was eliminated in vacuo. 

The resulting residue was dissolved in water (2.5 L) and the solvent was 

once again eliminated. The solid was then dissolved in water (1.8 L) and 

the solution was basified to pH 11 by adding a 5N aq solution of NaOH, 

thus allowing the product to precipitate at 4 ºC overnight. The product was 

filtered off and recrystallized in water (3.3 L), yielding 8 (433 g, 87%). 

 

(2R)-Amino-5-thia-1-hexanol (4). 

 

 

 
Procedure 

In a 10 L reactor D-methionine (275 g, 1.82 mol) was dissolved in 

anhydrous THF (4.62 L) at room temperature. Borane-dimethylsulfide 

complex (370 mL, 3.7 mol) was then added and the reaction mixture was 

stirred at room temperature for 1 h and then refluxed overnight. A solution 

of 10% HCl in MeOH (1.33 L) was added at -2 ºC, and the reaction mixture 

was refluxed for 1 h. The mixture was cooled to room temperature and 

concentrated at reduced pressure to yield a colorless oil that was dissolved 

in water (320 mL). The aqueous phase was basified with 4N NaOH (650 

mL) and extracted with CH2Cl2 (11 × 2 L). The combined organic phases 
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were dried (Na2SO4) and concentrated to dryness to yield 4 (192.56 g, 

78%). 

 

(2R)-Amino-1-(tert-butyldiphenylsilyloxy)-5-thiahexane (5). 

 

 

 
 

Procedure 

In a 3 L reactor compound 4 (192.56 g, 1.46 mol) was dissolved in 

acetonitrile (1.5 L) under inert atmosphere and a solution of imidazole 

(134.16 g, 2.85 mol) and tert-butyldiphenylsilyl chloride (503.48 g, 1.85 

mol) in acetonitrile (280 mL) was added at room temperature. The reaction 

mixture was stirred at room temperature for 44 h (lit. 12 h), the solvent was 

eliminated at reduced pressure and the resulting orange oil was then placed 

in a 10 L reactor and distributed at 50 ºC between 1N NaOH (4.5 L) and 

hexane (3.75 L). The aqueous phase was extracted with hexane (2 × 2 L) 

and the combined organic phases were washed with water (3 × 1.5 L) and 

with a mixture of H2O/MeCN/AcOH (30:20:1, 1 × 3 L then 3 × 700 mL). 

The combined aqueous phases were then washed with hexane (6 × 1 L) and 

basified with solid sodium carbonate (180 g). The acetonitrile was 

eliminated at reduced pressure until formation of an emulsion that was 

extracted with diethyl ether (2 × 2 L). The combined organic phases were 

dried (Na2SO4) and concentrated to dryness to afford 5 (437.12 g, 82%) as a 
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yellow oil. 

 

(2R)-1-(tert-Butyldiphenylsilyloxy)-5-thia-2-hexyl isothiocyanate (6). 

 

 
 

Procedure 

To a solution of 5 (437.11 g, 1.26 mol) in CH2Cl2 (2.05 L) a solution of 

sodium carbonate (653.7 g) in water (3.46 L) was added. The mixture was 

then vigorously stirred at room temperature and a solution of thiophosgene 

(102.6 mL, 1.46 mol) in CH2Cl2 (1.26 L) was added dropwise. The reaction 

mixture was stirred at room temperature for 2 h, the organic phase was 

washed with water (4 × 1.5 L) and brine (1 ×1.5 L), dried (Na2SO4) and 

concentrated to dryness to yield 6 (468.57 g, 83%) as a red oil. 

 

(R)-1-(2-Aminobenzyl)-3-(1-(tert-butyldiphenylsilyloxy)-4-(methylthio) 

butan-2-yl) thiourea (11). 

 

 
Procedure 

A solution of 6 (2.14 g, 5.1 mmol) and 2-aminobenzylamine (680 mg, 6.2 
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mmol) in acetonitrile (10 mL) was stirred two days at room temperature 

After this time, solvent was eliminated in vacuo and the crude reaction 

mixture was directly purified via column chromatography using a 30% to 

45% diethyl ether/hexane as an elution mixture. 2.1017 g of the desired 

thiourea were isolated after elimination of the solvents (77% yield). 1H 

NMR (400 MHz, CDCl3): δ ppm 7.63-7.59 (m, 4H, Ph-Si), 7.45-7.35 (m, 

6H, Ph-Si), 7.1 (td, 1H, J = 8.0, 1.6 Hz), 7.02 (d, 1H, J = 7.4 Hz), 6.67 (t, 

1H, J = 7.6 Hz), 6.63 (d, 1H, J = 8.0 Hz), 6.40-5.95 (m, 3H, NH thiourea, 

NH2 ar), 4.82 (broad s, 1H, NH thiourea), 4.52 (dd, 1H, J = 14.0, 3.2 Hz, 

CH α), 4.14 (broad s, 2H, benzyl CH2), 3.69 (m, 2H, CH2-OSi ), 2.4 (t, 2H, 

J = 6.8 Hz, CH2 γ), 2-1.75 (m, 5H, SMe, and CH2 β), 1.06 (s, 9H, 

SiC(CH3)3); 13C NMR (100 MHz, CDCl3): δ ppm 180.3 (C=S); 144.6 (CAr-

NH2); 134.6, 131.8, 129.5, 129.0, 128.4, 126.9, 119.7 (C-Si), 116.9, 114.8 

(C arom.), 64.5 (CH2-O), 53.3 (CH α), 46.3 (Ph-CH2-NH), 29.6 (CH2 β, γ ), 

25.9 (CH3 tert-butyl), 18.2 (tert-butyl), 14.11 (SCH3). 

 

2,3,4,6-Tetrahydro-2-(tert-butyldiphenylsilyloxymethyl)-1H-pyrimido 

[2,1-b]quinazoline hydrochloride (2 (Cl-)). 
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Procedure 

To a solution of 11 (537.9 mg, 1 mmol) in dry dichloromethane were added 

diisopropylethylamine (10 µL) and methyl trifluoromethanesulfonate 

(distilled in a vacuum oven at 40 ºC (7 mbar), 234 µL, 2.07 mmol) at 0 ºC 

and under argon. The obtained mixture was stirred two hours at room 

temperature and more diisopropylethylamine (1.45 mL, > 8 mmol) was 

added dropwise. The obtained mixture was then heated to reflux for 12 

hours. Solvents were then eliminated in vacuo and the residue distributed 

between NaOH 1N (5 mL) and diethyl ether (10 mL). The organic phase 

was washed with NaOH 1N (50 mL), followed by water (50 mL). The 

organic phase was then collected in a flask and NH4Cl 1N was added. 2 

(Cl-) was obtained by filtration of the precipitate (89.9 mg, 29%). M.p.: 

165-166 ºC. 1H NMR (400 MHz, CDCl3): δ ppm 11.67 (broad s, 1H, Ph-

NH gu), 9.35 (broad s, 1H, NH gu), 7.67-7.62 (m, 4H, Ph-Si), 7.47-7.36 (m, 

6H, Ph-Si), 7.22 (d, 1H, J = 7.6 Hz, Hd), 7.10 (d, 1H, J = 8.0 Hz, Ha), 7.03 

(t, 1H, J = 8.0 Hz, Hb), 6.97 (d, 1H, J = 7.6 Hz, Hc), 4.40 (dd, 2H, J = 17.6, 

14.4 Hz, Ph-CH2-N), 3.91-3.85 (m, 1H, CHα), 3.75-3.61 (m, 2H, CH2O), 

3.36-3.21 (m, 2H, CH2 γ), 2.21-2.01 (m, 2H, CH2 β), 1.06 (s, 9H, 

SiC(CH3)3); 13C NMR (100 MHz, CDCl3): δ ppm 149.7 (C guan.), 135.5, 

135.4, 132.5, 132.4, 129.9, 128.9, 127.8, 125.3, 123.8, 115.6, 115.5 (C 

arom.), 65.1 (CH2O); 49.6 (PhCH2N); 49.2 (CH α); 44.4 (CH2 γ); 26.8 (tert-

Bu); 22.5 (CH2β); 19.0 (CtBu-Si). MS (ESI+): [M+] calcd. for 

C28H34ClN3OSi 491.22; found 491.22; [α]20
D: -56.6 (c=0.6, CH2Cl2). 
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Crystal structure determination32.  

 

Compound 2 (Cl-) crystallizes in the chiral space group P212121. The 

elementary cell contains two independent molecules of the same compound 

with different conformations (Fig. 2.27). The absolute configuration with 

R(C1) could also be confirmed (Flack 0.04(4)). The shortest distances from 

the chloride atoms to the molecules are: Cl1···N2: 3.070 Å; Cl1···N1: 3.493 

Å; Cl1B···N2B: 3.080 Å and Cl1B···N2B: 3.426 Å. The elementary cell 

contains additionally one molecule of water. The hydrogen atoms of the 

water molecule could not be localized. 

 

 
Fig. 2.27: Crystal elementary cell of 2 (Cl-). 

 

 

                                                 

32 J. Benet Buchholz and E. Escudero (ICIQ X-ray diffraction unit) are acknowledged. 
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Bis-(2-aminobenzyl)amine (12). 

 

 
Procedure 

To a solution of anthranilonitrile (413.6 mg, 3.5 mmol) in dry methanol (10 

mL), 5% rhodium on alumina (450.3 mg) was added and the solution was 

bubbled with hydrogen for 15 min. The mixture was then stirred at RT for 

24 hours under a hydrogen atmosphere. The mixture was filtered over celite 

and the solvent was eliminated in vacuo. The residue was dissolved in 

CH2Cl2 and the resulting organic phase was washed with 5% aqueous HCl. 

The organic phase was dried with Na2SO4, filtered and the solvent was then 

eliminated under vacuum. The resulting yellow oil was purified by silica 

gel column chromatography (CH2Cl2/MeOH 3%) to yield 12 as a slightly 

yellow oil (146 mg, 37%). 1H NMR (CDCl3, 400 MHz): δ ppm 7.11 (dt, 

2H, J = 7.3 Hz, J = 0.9 Hz), 7.09 (d, 2H, J = 7.3 Hz), 6.72 (dt, 2H, J = 7.2, 

0.9 Hz), 6.67 (d, 2H, J = 7.66 Hz), 3.80 (s, 4H, CH2); 13C NMR (CDCl3, 

100 MHz): δ ppm 145.9, 130.1, 128.5, 123.6, 118.1, 115.8, 51.7. 

 

3-(2-Aminobenzyl)-3,4-dihydro-(1H)-2-quinazolinethione (13). 
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Procedure 

To a solution of 12 (130 mg, 572 µmol) in chloroform (27 mL), 

thiocarbonyldiimidazole (122.3 mg, 686 µmol) was added and the resulting 

mixture was stirred at room temperature for three days. The solvent was 

then eliminated under vacuum and the residue was purified by silica gel 

column chromatography (AcOEt:Hexane 1:2), yielding 13 as a white solid 

(100 mg, 65%). M.p: 236.9  ºC. 1H NMR (CDCl3, 400 MHz): δ ppm 8.35 

(s, 1H), 7.16 (t, 1H, J = 5.9 Hz), 7.14 (d, 2H, J = 7.1 Hz), 6.95 (t, 2H, J = 

6.5 Hz), 6.72 (t, 1H, J = 6.5 Hz), 6.71 (d, 2H, J = 7.6 Hz), 5.22 (s, 2H), 4.35 

(s, 2H). 

 

11,12 Dihydro-(5H)-5,6,11a-triazanaphthacene hydrochloride (3 (Cl-)). 

 

 

 
 

Procedure 

To a solution of 13 (100 mg, 371 µmol) in dry THF (50 mL) was added 

methyl iodide (321 µL, 5.15 mmol) at room temperature. The reaction 

mixture was stirred under argon for two weeks. The solvent was then 

eliminated in vacuo and the residue was dissolved in dichloromethane. The 

resulting organic phase was then washed with HCl 1N, dried with Na2SO4, 

filtered and the solvent was eliminated in vacuo to yield 3 (Cl-) as an air 
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sensitive yellow solid. A white solid was obatined after recrystallisation in 

acetonitrile (yield not measured, lit. 97%).17 1H NMR (CDCl3, 400 MHz): δ 

ppm 11.45 (s, 2H), 7.27-7.12 (m, 2H), 7.06 (d, 4H, J = 4.3 Hz), 6.96 (d, 2H, 

J = 7.7 Hz), 4.7 (s, 4 H); 13C NMR (CDCl3, 100 MHz): δ ppm 131.2, 

129.2, 125.6, 125.1, 115.8, 115.4, 49.5; MS (ESI+): [M-Cl+] calc. for 

C15H14N3 236.12; found 236.11. 

 

General procedures for anion exchange. 

 

1) A solution of 1-3 (Cl-) in CH2Cl2 was successively washed with 2N 

KOH and 0.1 N NH4PF6 (3 times each). The organic phase was then 

dried over anhydrous sodium sulfate, filtered and the solvent eliminated 

under vacuum to yield the corresponding hexafluorophosphate 

guanidinium salt.  

2) A methanol solution of 1-3 was passed through an anion exchange resin 

(Dowex®) for hexafluorophosphate. Elution was performed with 1:1 

MeOH:H2O. The guanidinium salt was recovered by evaporation of the 

eluate. 

 

1 (PF6
-): 1H NMR (400 MHz, CDCl3): δ ppm 7.59-7.54 (m, 4H), 7.37-7.28 

(m, 6H), 6.09 (s, 1H, NH), 6.07 (s, 1H, NH), 3.62-3.55 (m, 3H), 3.55-3.50 

(m, 1H), 3.49-3.44 (m, 1H), 3.43-3.36 (m, 1H), 3.36-3.28 (m, 1H), 3.26-

3.21 (m, 3H), 2.05 (s, 6H), 2.0-1.85 (m, 2H), 1.84-1.72 (m, 2H), 0.98 (s, 

9H), 0.81 (s, 9H). 

 

2 (PF6
-): 1H NMR (400 MHz, CDCl3): δ ppm 8.29 (broad s, 1H, Ph-NH 
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gu), 7.67-7.62 (m, 4H, Ph-Si), 7.47-7.36 (m, 6H, Ph-Si), 7.22 (d, 1H, J = 

7.6 Hz, Hd), 7.10 (d, 1H, J = 8.0 Hz, Ha), 7.03 (t, 1H, J = 8.0 Hz, Hb), 6.97 

(d, 1H, J = 7.6 Hz, Hc), 6.71 (broad s, 1H, NH gu), 4.40 (dd, 2H, J = 17.6, 

14.4 Hz, Ph-CH2-N), 3.91-3.85 (m, 1H, CHα), 3.75-3.61 (m, 2H, CH2O), 

3.36-3.21 (m, 2H, CH2 γ), 2.21-2.01 (m, 2H, CH2 β), 1.06 (s, 9H, 

SiC(CH3)3); 13C NMR (100 MHz, CDCl3): δ ppm 149.7 (C guan.), 135.5, 

135.4, 132.5, 132.4, 129.9, 128.9, 127.8, 125.3, 123.8, 115.6, 115.5 (C 

arom.), 65.1 (CH2O), 49.6 (PhCH2N), 49.2 (CH α), 44.4 (CH2 γ), 26.8 (tert-

Bu), 22.5 (CH2β), 19.0 (C-Si). 

 

3 (PF6
-): 1H NMR (400 MHz, CDCl3): δ ppm 7.17 (t, 2H, J = 7.8 Hz), 

7.015 (d, 2H, J = 7.2 Hz), 6.95 (t, 2H, J = 7.5 Hz), 6.88 (d, 2H, J = 7.8 Hz), 

4.51 (s, 4H). 
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3.  Functionalized metalloporphyrins as cooperative catalysts. 

 

3.1 Introduction. 

 

 This chapter aims at studying the efficiency of multifunctional catalysts, 

for which metal activation and hydrogen bonding are expected to work in a 

cooperative fashion (dual activation). Metal-substrate interactions and 

hydrogen bonding are known to give rise to cooperativity in enzymatic 

systems such as staphylococcal nuclease (SNase).1 In nature, 

phosphodiester hydrolysis (DNA, RNA) is indeed guaranteed by 

cooperation between metal centers and amino acid residues which act as 

general acid/base catalysts. Positively charged residues of lysine, arginine 

and histidine are thought to stabilize the phosphorane-like transition states 

by electrostatic interactions, hydrogen bonding and/or proton transfer. A 

few systems able to reproduce this observed cooperativity have been 

reported so far and, in most cases, emphasis was put on enzyme mimics. 

One of the most representative examples is RNA phosphodiesterase mimic. 

Phosphodiester hydrolysis was previously shown to be catalyzed by both 

mono- and dinuclear metal complexes and hydrogen bond donors (such as 

ammonium and guanidinium),2 independently. Multifunctional catalysts for 

                                                 

1 a) Serpersu, E. H.; Shortle, D.; Mildvan, A. S. Biochemistry 1987, 26, 1289. b) Wilcox, 

D. E. Chem. Rev. 1996, 96, 2435. c) Perreault, D. M.; Anslyn, E. V. Angew. Chem. Int. Ed. 

Engl. 1997, 36, 432. 
2 a) Jubian, V.; Dixon, R. P.; Hamilton, A. D. J. Am. Chem. Soc. 1992, 114, 1120. b) 

Smith, J.; Ariga, K.; Anslyn, E. V. J. Am. Chem. Soc. 1993, 115, 362. c) Muche, M.-S.; 

Kamalaprija, P.; Gobel, M. W. Tetrahedron Lett. 1997, 38, 2923. 
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RNA cleavage have therefore been designed, as shown in Fig. 3.1.  

 

 
Fig. 3.1: Reported cooperative catalysts for phosphodiester hydrolysis. 

 

 In the first step of hydrolysis of RNA, transesterification of the 

phosphodiester by the 2’-OH group takes place to give rise to a 2’,3’-cyclic 

phosphodiester that is hydrolyzed in the second step (nucleophilic attack of 

a water molecule) (Fig. 3.2). This process takes place in the enzyme active 

site where phosphodiester is bound to two guanidiniums of arginine 

residues and one calcium cation fixed to aspartate residues. A water 

molecule is activated as nucleophile by the carboxylate residue of glutamate 

while calcium and guanidinium cations stabilize the phosphorane-like 

transition state; proton transfer from guanidinium cation to phosphorane is 

likely.3 

                                                 

3 Perreault, D. M.; Cabell, L. A.; Anslyn, E. V. Bioorg. Med. Chem. 1997, 5, 1209. 
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a) 

 

 
b) 

 

 
 

Fig. 3.2: a) Simplified mechanism of phosphodiester hydrolysis;  
b) Schematic representation of the active site of SNase. 

 

 Breslow et al. pioneered work on an artificial bifunctional catalyst able 

to reproduce the cooperativity observed between a base and a metal in 

enzymatic systems.4 I indeed bears an imidazole functionality and a Zn 

binding site, located at suitable distances through a rigid enough spacer 

(avoided catalyst collapsing), which enable the cyclization via 

transesterification of VII (Fig. 3.3). The metal ion is then responsible for 

the activation of the phosphodiester as electrophile and imidazole for the 

activation of the hydroxyl group as a nucleophile (OH deprotonation). p-

                                                 

4 Breslow, R.; Berger, D.; Huang, D.-L.  J. Am. Chem. Soc. 1990, 112, 3686. 



3.1 Introduction 
__________________________________________________________________ 

 92 

nitrophenol is often used as a good leaving group in these model reactions 

due to its high acidity. 20-fold rate acceleration with respect to the reaction 

catalyzed by a imidazole free Zn(II) complex could be achieved, showing 

the cooperative effect brought by the imidazole. 

 

 
 

Fig. 3.3: Intramolecular cyclization of VII by I-catalyzed 
transesterification. 

 

 Five years later, Kimura and co-workers reported a functionalized Zn-

cyclen able to cleave phosphodiesters, thus elucidating part of the action 

mechanism of alkaline phosphatase.5 System II however could not be used 

as a catalyst, since it could not be reactivated, but did prove that the 

simultaneous action of the metal and a hydroxy residue (from Ser102 in the 

natural enzyme) is at the origin of the enzymatic activity. These studies also 

proved the essential role of pH in such reactions. A phosphoryl intermediate 

II’ is created upon attack of the hydroxy group that is deprotonated in 

physiological conditions and is then hydrolyzed by the Zn-OH intermediate 

that only forms in alkaline media (Fig. 3.4).  

                                                 

5 Kimura, E.; Kodama, Y.; Koike, T.; Shiro, M. J. Am. Chem. Soc. 1995, 117, 8304. 
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Fig. 3.4: Mechanism of phosphodiester hydrolysis by II. 

 

 In 1996, Krämer and Kövári reported a catalyst made of a bipyridine 

core substituted with two amine groups for the hydrolysis of VIII.6 An 

impressive 4 × 107 fold rate acceleration for the hydrolysis of VIII could be 

obtained (Fig. 3.5). 

 

 

 
Fig. 3.5: Proposed mechanism for the hydrolysis of VIII by III. 

                                                 

6 Kövári, E.; Krämer, R. J. Am. Chem. Soc. 1996, 118, 12704. 
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 This unpreceeded efficiency was attributed to the presence of the 

ammonium groups which form hydrogen bonds with the metal coordinated 

phosphodiester and thus provide an additional electrostatic activation. 

Hydrolysis begins by the nucleophilic attack of the metal hydroxide to the 

phosphorus, thus releasing an alcoholate. 

 

 Linkletter and Chin reported in 1999 the first artificial cooperative 

catalyst for the cleavage of RNA. IV was indeed shown to induce a 109-fold 

rate acceleration with respect to the copper(II) hydroxide catalyzed 

experiment for the hydrolysis of 2’,3’-cyclic adenosine monophosphate 

(Fig. 3.6).7 The amino groups present in IV were shown to lower the pKa of 

the water molecules coordinated to Cu(II), showing the existence of 

hydrogen bonds between the amine groups and the water molecules 

coordinated to the metal ion. These hydrogen bonds were also shown to 

play an important role in the reaction mechanism, since nucleophilicity of 

metal-hydroxide is significantly modified by the hydrogen bonding, 

therefore facilitating the hydrolysis process of 2’,3’c-AMP.  

            IV 
Fig. 3.6: Proposed mechanism of 2’,3’c-AMP hydrolysis catalyzed by IV. 

                                                 

7 Wall, M.; Linkletter, B.; Williams, D.; Lebuis, A.-M.; Hynes, R. C.; Chin, J. J. Am. 

Chem. Soc. 1999, 121, 4710. 
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 Inspired by these results, Anslyn and co-workers reported catalyst V in 

2002, for which high cooperativity between the Zn(II) cation and the 

guanidinium groups was observed for the hydrolysis of phosphodiesters.8 

The mechanism is similar to the one described by Chin, that is to say that 

guanidinium groups not only help in activating the metal hydroxide (pKa 

lowering) but also form strong hydrogen bonds with the transition state of 

the reaction (Fig. 3.7). A 3300-fold rate enhancement was obtained for the 

hydrolysis of 2’,3’c-AMP with respect to an experiment performed with a 

guanidine free analog of V. This catalyst was however used in 

supstoichiometric amounts, which means that no turnover was possible.  

 

 
 

Fig. 3.7: Cooperative working fashion of metal and hydrogen bonds in 
phosphodiester hydrolysis. 

 

 This cooperative behaviour was then translated to molecularly 

imprinted polymers by Wulff et al.. Polymer VI is indeed functionalized 

with an amidinium group linked to a Cu(II) coordinating group and is 
                                                 

8 Aït-Haddou, H.; Sumaoka, J.; Wiskur, S. L.; Folmer-Andersen, J. F.; Anslyn, E. V. 

Angew. Chem. Int. Ed. 2002, 41, 4013. 
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formed in presence of a template. This polymer was used for the hydrolysis 

of carbonates and proved highly efficient since a 110000-fold rate 

enhancement could be obtained with respect to the uncatalyzed process in 

the hydrolysis of model substates.9 

 At the biological level as in supramolecular chemistry, cooperativity 

describes how the binding of one ligand can influence the receptor’s 

affinity towards further binding interactions (allosteric effects).10 Positive 

cooperativity implies increased further binding affinity upon ligand 

binding, while, on the contrary, negative cooperativity refers to decreased 

binding affinity. Non-cooperativity therefore refers to identical binding 

affinity for further ligand. The best known example in a biological system 

is the allosteric oxygenation of hemoglobin.11 This tetrameric protein binds 

four individual oxygen molecules with increasing affinity until all four 

binding sites are occupied in a positively cooperative manner. In the 

catalysis field, cooperativity refers to dual activation of electrophile and/or 

nucleophile, which often leads to higher reactivities and/or selectivities.12 

Most organocatalysts are also based on bifunctionality for dual activation 

(e.g. proline and functionalized thioureas).13 

                                                 

9 Liu, J. Q.; Wulff, G. J. Am. Chem. Soc. 2006, 126, 7452. 
10 a) Ercolani, G. J. Am. Chem. Soc. 2003, 125, 16097. b) Badjić, J. D.; Nelson, A.; 

Cantrill, S. J.; Turnbull, W. B.; Stoddart, J. F. Acc. Chem. Res. 2005, 38, 723. 
11 Eaton, W. A.; Henry, E. R.; Hofrichter, J.; Mozzarelli, A. Nat. Struct. Biol. 1999, 6, 351. 
12 For a complete review on bimetallic dual activation see: Cahard, D.; Ma, J.-A. Angew. 

Chem. Int. Ed. 2004, 43, 4566. 
13 Reviews on organocatalysis: a) Dalko, P. I., Moisan, L. Angew. Chem. Int. Ed. 2004, 43, 

5138. b) Takemoto, Y. Org. Biomol. Chem. 2005, 4299. 
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In order to study the dual activation of 2-(5H)-furanone in its 

pyrrolidine Michael addition by metal-substrate and hydrogen bonding 

interactions, scaffolds 14a-c were chosen because of the known ability of 

porphyrins to accommodate a wide range of metals and their easy 

functionalization.  

 

 
Fig. 3.8: Designed systems 14a-c (M = metal) and expected dual activation. 

 

 On the one hand, this scaffold enables metal screening experiments 

since porphyrins can easily be metallated with a wide range of metals. The 

porphyrin skeleton can also be functionalized with hydrogen bond donor 

groups such as urea, thiourea14 and guanidinium, allowing for screening the 

H-bond donor abilities. Lactone activation is then expected to take place in 

                                                 

14 Urea and thiourea porphyrins in carbohydrate recognition: a) Kim, Y.-H.; Hong, J. 

Angew. Chem. Int. Ed. 2002, 41, 2947. b) Ladomenou, K.; Bonar-Law, R. P. Chem. 

Commun. 2002, 2108. c) Rusin, O.; Hub, M.; Král, V. Materials Science & Engineering 

2001, C18, 135.  
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a cooperative way thanks to both interactions. 

 

3.2 Results and discussion. 

 

3.2.1 Synthesis of functionalized porphyrin derivatives 14aH-14cH. 

 

Retrosynthetic analysis of the designed compounds was performed in 

collaboration with Dr. P. Ballester’s group†,15. Following known procedures, 

the formation of H-bonding groups is expected to take place from amine 15, 

easily accessible from the nitro porphyrin derivative 16 (Fig. 3.9). 

 

 

 
Fig. 3.9: Retrosynthetic analysis of porphyrins 14aH-14cH. 

                                                 

† Institut Català d’Investigació Química (ICIQ), Tarragona. 
15 Gomila Ribas, R. PhD Thesis, Universitat de les Illes Balears, 2004. 
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Fig. 3.10: Synthesis of porphyrins 14aH-14cH. 

 

Compound 16 was obtained following a statistical porphyrin synthesis 

from 2-nitrobenzaldehyde, pyrrole and 4-pentylbenzaldehyde, leading to 

the mono-nitroporphyrin derivative 16 isolated in 7% yield from a mixture 
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of compounds after column chromatography (Fig. 3.10). Tetra 4-

pentylphenylporphyrin TPPP was also isolated in 15% yield; and 

regioisomers of dinitroporphyrins and trinitroporphyrin were detected but 

not isolated. The nitro group of 16 was then reduced in acidic medium by 

tin (II) chloride to the corresponding aminoporphyrin 15 (a key 

intermediate), isolated in 74% yield after chromatography. This amine 

derivative was treated with butylisocyanate in a sealed tube for three days 

to form the resulting ureidoporphyrin 14aH, isolated in 63% yield after 

column chromatography.  

 

Remarkably, treatment of 15 with excess butylisothiocyanate in a sealed 

tube or under microwave irradiation leads to recovery of unreacted 15. The 

lack of reactivity was attributed to the tendency of porphyrins to aggregate 

in solution (crowded amino group). This issue was overcome by formation 

of isothiocyanatoporphyrin 17 by treatment of 15 with thiophosgene (93% 

yield after column chromatography). Thiourea 14bH was then obtained in 

nearly quantitative yield by treatment of 17 with butylamine in absence of 

solvent. Preparation of 14cH proved only efficient upon activation of 

thiourea 14bH with methyl trifluoromethanesulfonate followed by 

treatment with butylamine under microwave irradiation. Several strategies 

for the direct guanidylation of 15 proved unsuccessful (Fig. 3.11).16  

                                                 

16 a) Feichtinger, K.; Zapf, C.; Sings, H. L.; Goodman, M. J. Org. Chem. 1998, 63, 3804. 

b) Mundla, S. R.; Wilson, L. J.; Klopfenstein, S. R.; Seibel, W.; Nikolaides, N. N. 

Tetrahedron Lett. 2000, 41, 6563. 



3. Functionalized metalloporphyrins as cooperative catalysts 
__________________________________________________________________ 

 101

 

 
Fig. 3.11: Attempts for direct guanidylation of 15. 

 

In order to compare the efficiency of the prepared covalent derivatives 

with equivalent systems for which the H-bonding moiety and 

metalloporphyrin are not covalently linked, model compounds were also 

prepared, as shown on Fig. 3.12. This aimed at studying the cooperativity of 

the prepared bifunctional catalysts. The urea derivative 19 was obtained by 

treatment of aniline with butylisocyanate in a sealed tube in 84% yield after 

column chromatography (as performed for 14aH). Following the same 

route as for 14bH, phenylisothiocyanate was obtained by treatment of 

aniline with thiophosgene. Treatment of the resulting isothiocyanate in neat 

butylamine afforded thiourea 18 in 83% overall yield after column 

chromatography. Compound 2, described in the previous chapter, was used 

for comparisons with 14cH. 
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Fig.3.12: Synthesis of model compounds for cooperativity study. 

 

3.2.2 Metallation of porphyrin derivatives 14aH-14cH. 

 

Treatment of free base porphyrin derivatives with an appropriate metal 

salt leads to the formation of the corresponding metalloporphyrin 

derivative. Zinc(II), nickel(II), magnesium(II) and tin(IV) porphyrin 

derivatives were thus prepared, as shown in Table 3.1, according to known 

procedures.17  

 

Table 3.1: Metallation of studied porphyrin derivatives. 
 

 

                                                 

17 Procedures for preparation of Zn(II), Ni(II), and Mg(II) porphyrins: a) Strohmeier, M.; 

Orendt, A. M.; Facelli, J. C.; Solum, M. S.; Pugmire, R. J.; Parry, R. W.; Grant, D. M. J. 

Am. Chem. Soc. 1997, 119, 7114. Procedure for preparation of Sn(IV) porphyrins: b) 

Crossley, M. J.; Thordarson, P., Wu, R. A.-S. J. Chem. Soc., Perkin Trans. 1 2001, 2294. 
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R1 
 

R2 
 

conditions 
 

M 
 

L 
 

yield (%) 
 

C5H11 H (a) Zn(II) - 90 
ZnTPPP 

H 
 

N
H

N
H

O
C4H9 (a) Zn(II) - 81 

14aZn 

C5H11 H (b) Ni(II) - 78 
NiTPPP 

C5H11 H (c) Mg(II) 
 

 

98 
MgPy2TPPP 

C5H11 
 

H 
 

(d) 
 

Mg(II) 
 

- 
 

decomposition 
MgTPPP 

C5H11 H (e) Sn(IV) Cl 91 
SnCl2TPPP 

C5H11 H (f) Sn(IV) OH 100  
Sn(OH)2TPPP 

H 
 

N
H

N
H

O
C4H9 (e) Sn(IV) Cl 85 

14aSnCl2 

H 
 

N
H

N
H

S
C4H9 (e) Sn(IV) Cl 93 

14bSnCl2 

H 

 

(e) Sn(IV) Cl n.m. 
14cSnCl2 

(a) Zn(OAc)2, CH2Cl2, MeOH, room temperature; (b) Ni (OAc)2, CH2Cl2, MeOH reflux; 
(c) MgClO4, Pyridine, reflux; (d) ∆∆, high vacuum (from MgPy2TPPP); (e) SnCl2, 
Pyridine; (f) K2CO3, THF, H2O (from SnCl2TPPP) 
 

 

The metal was selected by its known affinity for oxygen ligands, its 

hardness and the ease of porphyrin metallation. Zinc porphyrins are readily 

available and highly stable, which makes them potential catalysts of choice. 

However, upon insertion of Zn(II) to 14aH, unexpected conformational 
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changes take place. 1H NMR monitoring of the aromatic proton adjacent to 

the urea (Ho) in 14aH and 14aZn indicates that urea’s oxygen is 

coordinated intramolecularly to the metal center. As shown in Fig. 3.13, the 

signal of Ho is upfield shifted upon metal insertion, indicating that the 

carbonyl group of the urea is no longer close to Ho in 14aZn as it was in 

14aH. Additionnally, the downfield shift observed for the NHs in 14aZn 

reveals that the urea is close to an electron withdrawing group. The likely 

conformation of 14aZn was confirmed by 2D NMR experiments (COSY, 

NOESY).  

 

                                                                          

 

 

 

 

 

 

1H NMR spectrum of 14aH (CDCl3, 500 MHz) 
1H NMR spectrum of 14aZn (CDCl3, 500 MHz) 

 

 

Fig. 3.13: Intramolecular metal coordination in 14aZn. 

 

This undesired coordination is likely to compete with substrate 

coordination in catalysis experiments. Competition experiments with 

acetate as a guest were performed to see if the addition of an external 

coordinating agent would remove the intramolecular coordination. Indeed, 
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addition of acetate18 partially removed the intramolecular coordination (Fig. 

3.14). Several complexes of various stoichiometries are however expected 

to form at equilibrium, which might explain the complexity of some signals 

in the 1H NMR spectrum. 

a) 

 

 

 

 
 

b) 

 

 
Fig. 3.14: a) Binding of 14aZn with acetate: 1H NMR spectra (CDCl3, 500 

MHz) of free 14aZn (blue) and with 10 eq. of acetate (red); b) Possible 
conformations of a 1:1 14aZn-TBA.AcO- complex.  

 

Various binding experiments with some reaction substrates were also 

performed in order to screen the optimal metals. A suitable metal for 

catalysis is expected to shown higher affinity for 2-(5H)-furanone than for 

pyrrolidine. 1H NMR titrations, ITC and UV-Vis experiments were run, but 

no direct conclusion could be drawn. However, a UV-Vis titration of 

                                                 

18 10 equivalents were used to reproduce the conditions of the catalysis experiments where 

10 mol% of catalyst would be used. 



3.2 Results and discussion 
__________________________________________________________________ 

 106 

ZnTPPP with pyrrolidine revealed an association constant of 4 × 104 M-1 

(Fig. 3.15). 19 

 

 

 
 Fig. 3.15: UV-Vis monitored titration of ZnTPPP with pyrrolidine. 

 

 Given the difficulty to accurately measure the binding constants 

between our metalloporphyrins and the substrates of the reaction, it was 

decided to perform catalysis experiments for metal screening. 

 

3.2.3 Metal screening experiments. 

 

Kinetic measurements of the 1,4-addition of pyrrolidine to 2-(5H)-

furanone in the presence of 10 mol% of the metalloporphyrin derivative 

                                                 

19 Zn(II)-porphyrins are well known for their axial coordination of nitrogen bases, typically 

pyridine, DABCO... A similar experiment performed with 2-(5H)-furanone gave no optical 

response. 
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were monitored by 1H NMR as described in the previous chapter. Stock 

solutions of distilled substrates20 were used in order to ensure 

reproducibility of results (same water content in all experiments) and 

measurements were performed in the minimal interval of time. 

 

3.2.3.1 Zinc(II) porphyrins. 

 

Instead of a catalyst, 14aZn proved to be a strong inhibitor of the 

reaction, as shown on Fig. 3.16. Intramolecular coordination of urea’s 

oxygen to the zinc efficiently competes with the coordination of the 

substrates and favors exclusively the coordination of pyrrolidine, resulting 

in a decreased effective concentration, thus leading to the observed reaction 

slowering. Indeed, an experiment performed in the presence of catalytic 

amounts of ZnTPPP shows a kinetic profile similar to uncatalyzed 

experiment, which suggests that the activation of 2-(5H)-furanone is 

cancelled by coordination of the pyrrolidine to the metal. As expected, 

quinuclidine (pKa = 11.3) also catalyzes the reaction21, since a 1.27-fold rate 

acceleration is observed. It was also expected that, in the presence of 

ZnTPPP and a tertiary amine such as quinuclidine (competitive metal 

binding), the amount of metal-bound pyrrolidine would decrease, giving 

rise to an enhanced catalytic activity. The results show, however, that 

quinuclidine does not displace the coordinated pyrrolidine to a significant 

                                                 

20 Distillation was performed in an oven glass and substrates were not dried. Experimental 

methods and water sensitivity of the reaction were discussed in the previous chapter. 
21 Participation of bases in the mechanism was discussed in Chapter 2. 
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extent, since an intermediary reaction half-time is observed (1.17-fold 

acceleration). Given the results obtained with quinuclidine, it was not 

surprising to observe a 1.67-fold rate acceleration in the presence of TPPP.  
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ZnTPPP+quinuclidine 128 1.17 

14aH 118 1.27 

TPPP 90 1.67 

quinuclidine 118 1.27 

 
Fig. 3.16: Kinetic measurements and control experiments for Zn(II)-

porphyrins. 
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This rate acceleration was attributed to the basicity of the inner nitrogen 

atoms of the porphyrin (pKa around 16) that might enter in the base assisted 

mechanism of the reaction. In the presence of 14aH, a moderate rate 

enhancement was observed (1.27-fold), which might be attributed to the 

steric congestion caused by the urea and/or to alteration of the pKa of the 

free base porphyrin by the urea group. These results show however that 

zinc is not a suitable metal. 

 

3.2.3.2 Nickel(II) porphyrins. 

 

Similar to ZnTPPP, the kinetic profile in the presence of a 10 mol% 

amount of NiTPPP overlays the one of the uncatalyzed reaction, which 

either indicates that no activation takes place or that lactone activation is 

cancelled by the binding of pyrrolidine to the metal, as for Zn(II). Although 

axial coordination to nickel(II) porphyrins is known22, coordination of 

reaction substrates could not be demonstrated by spectroscopic methods. 

 

3.2.3.3 Magnesium(II) porphyrins. 

 

Results reveal that MgPy2TPPP tends to slower significantly the 

reaction, which is attributed to a fast ligand exchange of the axially 
                                                 

22 a) Retsek, J. L.; Drain, C. M.; Kirmaier, C.; Nurco, D. J.; Medforth, C. J.; Smith, K. M.; 

Sazanovich, I. V.; Chirvony, V. S.; Fajer, J.; Holten, D. J. Am. Chem. Soc. 2003, 125, 

9787. b) Song, Y.; Haddad, R. E.; Jia, S.-L.; Hok, S.; Olmstead, M. M.; Nurco, D. J.; 

Schore, N. E.; Zhang, J.; Ma, J.-G.; Smith, K. M.; Gazeau, S.; Pécaut, J.; Marchon, J.-C.; 

Medforth, C. J.; Shelnutt, J. A. J. Am. Chem. Soc. 2005, 127, 1179. 
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coordinating pyridine with pyrrolidine, while 2-(5H)-furanone does not 

exchange with pyridine or exchange more slowly. A control experiment 

performed in presence of 20 mol% pyridine (maximal pyridine amount 

released upon axial substrate coordination) shows that pyridine (pKa = 5.14) 

also catalyzes the reaction, though its lower basicity makes it a worse 

catalyst than pyrrolidine (hence the observed inhibition with MgPy2TPPP) 

(Figs. 3.17 and 3.18). 
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Fig. 3.17: Kinetic measurements and control experiments for Mg(II) 
porphyrin derivatives. 
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Fig. 3.18: Proposed equilibria for ligand exchange of MgPy2TPPP. 

 

Since magnesium is a rather hard metal, MgTPPP is expected to 

significantly accelerate the reaction. Mg (II)-porphyrins however tend to 

accomodate axial ligands: preparation of MgTPPP was indeed poorly 

reproducible and decomposition was observed after heating of 

MgPy2TPPP under vacuum (removal of pyridine axial ligands). Axially 

uncoordinated Mg(II)-porphyrins proved to be unstable catalysts and easy 

to get contaminated by moisture, which produces unaccurate results since 

water is also a catalyst for the reaction (experiments were not reproducible). 

 

3.2.3.4 Tin(IV) porphyrins. 

 

Sn(IV) being a highly oxophilic transition metal, a significant lactone 
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activation was expected.23 Tin(IV) porphyrins are readily available and air 

stable species, which also makes them candidates of choice.  
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SnCl2TPPP 21 7.14 

Sn(OH)2TPPP 74 2.03 

 

Fig. 3.19: Kinetic measurements performed with tin(IV) porphyrins. 

 

As expected, tin porphyrins significantly increase the rate of the studied 

Michael addition. Up to 7.14-fold rate accelerations could be obtained in 
                                                 

23 Tin(IV) porphyrin catalysts were described for: Ring opening of epoxides: Moghadam, 

M.; Tangestaninejad, S.; Mirkhani, V.; Shaibani, R. Tetrahedron 2004, 60, 6105. Alcohol 

acetylation: Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Mohammadpour-Baltork, 

I.; Shaibani, R. J. Mol. Cat. A 2004, 219, 73. 
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the case of dichlorotin(IV) tetraarylporphyrin, which is a good example of 

catalysis. The observed differences between dichloro and dihydroxo 

derivatives are attributed to the rate of ligand exchange between the 

metalloporphyrin and the lactone. Ligand exchange is much faster for the 

dichloro tin porphyrin than for the dihydroxo one, which is directly related 

to the respective affinity of tin(IV) for these anions: the Sn···OH bond is 

stronger than Sn···Cl one. Tin was then chosen for the metallation of 14aH-

14cH (see Table 3.1) and for the study of the cooperative action of the 

catalysts, since high turnover and activation were observed with this metal. 

 

3.2.4 Cooperativity studies. 

 

The catalytic activities of 14aSnCl2-14cSnCl2 were measured following 

the same protocol as for metal screening experiments, except that the 

catalyst loading was lowered to 1 mol% in order to slower the reaction and 

enable a more accurate comparison of results. The results for 14aSnCl2-

14cSnCl2 were then systematically compared with catalysis experiments 

performed in the presence of 1 mol% SnCl2TPPP and 18, 19, and 2, which 

gives information about the benefits of the covalent linkage between the 

Lewis acid and the H-bonding moiety. The results are sumarized in Fig. 

3.20. In the presence of 1 mol% SnCl2TPPP, a 3-fold rate acceleration is 

observed, whereas in the presence of 1 mol% of a tin(IV) porphyrin 

substituted with a H-bonding moiety (14aSnCl2-14cSnCl2), 3.26 to 3.33-

fold rate accelerations were observed. This suggests that Lewis acid and H-

bonding activation modes work in a cooperative fashion in the lactone 

activation in the studied cases.  
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Fig. 3.20: Results of the kinetic measurements for cooperativity study 
of 14aSnCl2-14cSnCl2 

 

Remarkably, the kinetic profiles for 14aSnCl2-14cSnCl2 are quite 
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similar and almost superimpose, showing that little discrimination of the H-

bonding moiety is performed during the catalysis, probably due to the high 

participation of the Lewis acid in the substrate activation. Our results 

indicate that 14aSnCl2 is a slightly better catalyst than thiourea 14bSnCl2 

or guanidinium cation 14cSnCl2. The reason for this is probably steric, 

since the H-bonding moiety is not fully coplanar, as required for an ideal 

orientation of the H-bonded hydrogens towards the metal bound lactone. As 

shown on Fig. 3.21, the twisting degree actually reflects the relative 

performances of the series: 14aSnCl2 < 14bSnCl2 ≤ 14cSnCl2. 

 

 

N
H

N
H

X

X=O, S; +NHMe  

 

 

 

 

 
14aSnCl2 14bSnCl2 14cSnCl2 

 
Fig. 3.21: Lateral views of the modelled H-bonding moieties 

(ChemBio3D, MMFF94).24 

 

Surprisingly, when using the activating moieties as independent 

molecules, the general trend is to observe that the bimolecular catalytic 
                                                 

24 n-Butyl chains were replaced by methyl groups in the calculations for simplicity. 
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system (SnCl2TPPP+18, 19, or 2) is significantly more efficient than the 

covalent system (14aSnCl2-14cSnCl2), revealing that the position of the 

substituent in the covalently linked systems is not optimal and an improved 

design is necessary. Bimolecular system might also offer a higher turnover 

frequency (substrates might not bind so tightly to SnCl2TPPP than to the 

bifunctional catalysts). In that case, it is observed that the catalysis 

performance follows the trend 19 < 18 < 2, probably for reasons related to 

acidity of the H-bond donor. 

 

3.3 Conclusions. 

 

Tetraarylporphyrins functionalized with various H-bonding moieties 

(urea, thiourea, guanidine) were successfully prepared following standard 

procedures of porphyrin chemistry. Unfunctionalized TPPP was then 

successfully metallated with Zn(II), Ni(II), Mg(II) and Sn(IV). Metal 

screening experiments were performed by kinetic measurements of the 1,4-

addition of pyrrolidine to 2-(5H)-furanone in the presence of a 10 mol% of 

the metalloporphyrin derivative. Tin(IV) porphyrins appeared as candidates 

of choice for catalysis of the studied reaction, since up to 7.14-fold rate 

acceleration was observed in presence of 10 mol% catalyst. After 

stannylation of the functionalized porphyrins 14aH-14cH, kinetic 

measurements were performed in the presence of a 1 mol% catalyst and 

compared with similar bimolecular catalytic systems. Cooperativity of the 

H-bonding moiety and the Lewis acid subunit was demonstrated, although 

the metal was shown to be responsible for most of the activation. 

Bimolecular systems also proved more efficient than the covalent systems, 
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which was attributed to entropic factors related to the distance between the 

H-bond donor and the metal center and the conformation of the H-bonding 

moieties in the covalent systems.  

 

3.4 Experimental part. 

 

a) General procedures. 

 

The general procedures for synthesis, chromatography, analysis and 

kinetic measurements were described in Chapter 2.  

 

UV-Vis titration. Two standard solutions were prepared in 

dichloromethane, one for ZnTPPP ([ZnTPPP] = 1 × 10-6 M) and another 

one for both pyrrolidine and ZnTPPP ([ZnTPPP] = 1 × 10-6 M, 

[pyrrolidine] = 2 × 10-5 M). The titration was performed placing in the 

cuvette 2 mL of the solution of ZnTPPP and adding an increasing amount 

of standard solution of pyrrolidine (10 µL = 0.1 eq). After each addition, 

the absorbance at 400-450 nm was registered and its variation at λ = 423 

nm was plotted against the concentration of pyrrolidine. Data fitting was 

performed using SPECFIT® software. 
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b) Synthesis. 

 

5-(2-Nitrophenyl)-10,15,20-tris(4-pentylphenyl)-21H,23H-porphyrin 

(16).  

 

 

Procedure 

A mixture of freshly distilled pyrrole (1.39 mL, 20.00 mmol), o-

nitrobenzaldehyde (1.21 g, 8.00 mmol) and p-pentylaldehyde (2.11 g, 12 

mmol) was dissolved in anhydrous ethanol (13 mL) and dry CH2Cl2 (1000 

mL) and the solution was degassed by bubbling with argon for 10 min. and 

protected from light. BF3.Et2O (1 mL, 6.6 mmol) was then added and the 

reaction was stirred at room temperature for one hour. Then 2,3-dicycano-

5,6-dichloro-1,4-benzoquinone (DDQ) (4.54 g, 20 mmol) was added and 

the mixture was stirred at room temperature for 90 min. Triethylamine (6 

mL) was added to quench the reaction. Solvent was eliminated under 

reduced pressure and the resulting black residue was extracted overnight 

with methanol in a Soxhlet device. The remaining solid was then dissolved 

in CH2Cl2 and passed through a Florisil bed (hexane/CH2Cl2, 1:1). After 
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solvent elimination in vacuo, crude was preadsorbed on silica and purified 

by column chromatography on silica gel (80 g SiO2, CH2Cl2/hexane, 1:2). 

The first product to come out from the column was the tetraalkylporphyrin 

derivative TPPP (15% yield), followed by 16 (511.6 mg, 7.6%) as violet 

solids that can be recrystallized from CH2Cl2/MeOH.  

 

16: M.p. 199-201 ºC; 1H NMR (400 MHz, CDCl3): δ ppm 8.88 (d, 2H, J = 

7.0 Hz, H β-pyrr), 8.86 (s, 4H, H β-pyrr), 8.64 (d, 2H, J = 7.0 Hz, H β-

pyrr), 8.45 (d, 1H, J = 7.0 Hz), 8.24 (d, 1H, J = 7.0 Hz), 8.10 (m, 6H), 7.95 

(m, 2H), 7.50 (d, 6H, J = 7.0 Hz), 2.94 (t, 6H, J = 7.0 Hz, CH2), 1.95 (m, 

6H, CH2), 1.50 (m, 12H, CH2), 1.05 (t, 9H, J = 7.0 Hz, CH3), -2.72 (s, 2H, 

NH); FAB-MS: m/z 870.0 [M+]  

TPPP: 1H NMR (400 MHz, CDCl3): δ ppm 8.77 (s, 8H), 8.03 (d, 8H, J = 

7.8 Hz), 7.46 (d, 8H, J = 7.8 Hz), 2.86 (t, 8H, J = 7.6 Hz), 1.90-1.75 (m, 

8H), 1.50-1.35 (m, 16H), 0.94 (t, 12H, J = 7.0 Hz), -2.82 (broad s, 2H). 

 

5-(2-Aminophenyl)-10,15,20-tris(4-pentylphenyl)-21H,23H-porphyrin 

(15). 
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Procedure 

To a solution of 16 (230 mg, 0.264 mmol) in 1,4-dioxane (50 mL), tin(II) 

chloride dihydrate (690 mg, 3.06 mmol) and 37% HCl (80 mL) were added. 

The reaction was protected from light and heated to 70 ºC for 1 h. The 

mixture was then basified with concentrated ammonia. Mixture was then 

allowed to cool to room temperature and extracted with ethyl acetate (3 × 

50 mL). The combined organic phases were washed with water, dried over 

Na2SO4 and the solvent eliminated in vacuo. The resulting residue was 

purified by column chromatography on silica gel (hexane/CH2Cl2, 1:4), 

affording 15 (164 mg, 74%) as a violet solid, after recrystallization from a 

CH2Cl2/MeOH mixture. M.p. 169-171  ºC; 1H NMR (400 MHz, CDCl3): δ 

ppm 8.80 (s, 8H, H β-pyrr), 8.86 (s, 4H, H β-pyrr), 8.05 (m, 6H), 7.84 (d, 

1H, J = 7.0 Hz), 7.53 (t, 1H, J = 7.0 Hz), 7.50 (d, 6H, J = 7.0 Hz), 7.25 (t, 

1H, J = 7.0 Hz), 7.10 (d, 1H, J = 7.0 Hz), 3.50 (s, 2H, NH2), 2.94 (t, 6H, J = 

7.0 Hz, ArCH2), 1.95 (m, 6H, CH2), 1.50 (m, 12H, CH2), 1.05 (t, 9H, J = 

7.0 Hz, CH3), -2.8 (s, 2H, NH); FAB-MS: m/z 840.0 [M+]. 

 

5-(2-(3-Butylureido)-phenyl)-10,15,20-tris(4-pentylphenyl)-21H,23H-

porphyrin (14aH). 
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Procedure 

To a solution of 15 (100 mg, 0.12 mmol) in dry dichloromethane (4 mL) 

placed in a sealed tube was added butyl isocyanate (1.2 mL, 9 eq). The 

reaction mixture was stirred for three days at 40  ºC. After this time, 

reaction was stopped and solvent eliminated in vacuo. The crude mixture 

was purified by column chromatography (CH2Cl2/hexane) to afford the 

corresponding urea porphyrin derivative 14aH as a violet solid (70 mg, 

63% yield). M.p. 164-166 ºC; 1H NMR (500 MHz, CDCl3): δ ppm 8.90 (s, 

6H, H β-pyrr), 8.76 (d, 2H, J = 5.0 Hz, H β-pyrr), 8.40 (m, 1H, Ha), 8.15-

8.01 (m, 6H, He), 7.98 (d, 1H, J = 5.6 Hz, Hd), 7.75 (t, 1H, J = 6.4 Hz, Hb), 

7.57-7.53 (m, 6H, Hf), 7.40 (t, 1H, J = 6.0 Hz, Hc), 5.70 (s, 1H, NHurea), 

3.37 (s, 1H, NHurea), 2.97 (t, 6H, J = 6.0 Hz, CH2), 2.34 (m, 2H, CH2 Bu), 

1.95 (m, 6H, CH2), 1.56 (m, 12H, 2CH2), 1.01 (m, 9H, CH3), 0.66 (broad s, 

4H, 2 CH2), 0.38 (broad s, 3H, CH3), -2.72 (s, 2H, NH); HR-MS (ESI+): 

m/z calc. for C64H71N6O 939.5689, obt. 939.566 [M+]; IR: ν(CO) = 1812.5 

cm-1, ν(NH) = 3316.0 cm-1 (free), ν(NH) = 2954.0 cm-1 (associated). 
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5-(2-Isothiocyanatophenyl)-10,15,20-tris(4-pentylphenyl)-21H,23H-

porphyrin (17). 

 

 
Procedure 

To a solution of 15 (393.7 mg, 0.47 mmol) in CH2Cl2 (40 mL) were added a 

solution of sodium carbonate (263.2 mg, 2.48 mmol) in 80 mL of water and 

thiophosgene (80 µL, 1.03 mmol). The mixture was protected from light 

and stirred at room temperature for 3 h. The organic phase was washed with 

water (4 × 50 mL) and brine (50 mL), dried (Na2SO4), and concentrated to 

dryness. The resulting residue was purified by column chromatography on 

silica gel (40% CH2Cl2/hexane), yielding 17 as a violet solid (386 mg, 

93%). 1H NMR (400 MHz, CDCl3): δ ppm 8.95- 8.85 (s, 6H, H β-pyrr), 

8.71 (d, 2H, J = 4.8 Hz, H β-pyrr), 8.20-8.10 (m, 7H, He, Ha), 7.80 (dt, 1H, 

J = 8.6, 1.2 Hz, Hb), 7.70-7.62 (m, 2H, Hc, Hd), 7.60-7.50 (d, 6H, J = 6.8 

Hz, Hf), 2.96 (t, 6H, J = 8.0 Hz, CH2), 2.00-1.90 (m, 6H, CH2), 1.60-1.45 

(m, 12H, CH2), 1.30-1.20 (m, 6H, CH2), 1.04 (t, 9H, J = 6.4 Hz, CH3), -2.7 

(s, 2H, NH); HR-MS (ESI+): m/z calc. for C60H60N5S 882.4569, obt. 

882.4567 [M+]. 
 



3. Functionalized metalloporphyrins as cooperative catalysts 
__________________________________________________________________ 

 123

5-(2-(3-Butylthioureido)-phenyl)-10,15,20-tris(4-pentylphenyl)-

21H,23H-porphyrin (14bH). 

 

 
Procedure 

Isothiocyanate 17 (264 mg, 0.3 mmol) was dissolved at room temperature 

in butylamine (3 mL), previously flushed with argon for 10 minutes. The 

mixture was protected from light and stirred at room temperature for 30 min 

under argon. The solvent was concentrated to dryness and the residue was 

dried on a vacuum line to eliminate the excess of butylamine. The residue 

was purified by column chromatography on basic alumina (50 to 70% 

CH2Cl2/hexane), affording 14bH (276 mg, 99%) as a violet solid. 1H NMR 

(400 MHz, CDCl3): δ ppm 8.90- 8.80 (m, 6H, Hβ-pyrr), 8.70 (d, 2H, J = 

4.0 Hz, Hβ-pyrr), 8.20-8.00 (m, 8H, He, Ha, Hd), 7.85 (dt, 1H, J = 8.0, 1.6 

Hz, Hb), 7.70-7.62 (dt, 1H, J = 8.0, 1.6 Hz, Hc), 7.60-7.50 (m, 6H, Hf), 

7.06 (s, 1H, NH thiourea), 5.90 (broad s, 1H, NH thiourea), 2.95 (t, 8H, J = 

8.0 Hz, CH2), 2.00-1.80 (m, 8H, CH2), 1.60-1.45 (m, 14H, CH2), 1.04 (t, 

12H, J = 7.0 Hz, CH3), -2.70 (s, 2H, NH); HR-MS (ESI+): m/z calc. for 

C64H71N6S 955.5461, obt. 955.5418 [M+]. 
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5-(2-(3,3’-Dibutyltguanidinio)-phenyl)-10,15,20-tris(4-pentylphenyl)-

21H,23H-porphyrin (14cH). 

 

 
 

Procedure 

To a solution of 14bH (97 mg, 0.10 mmol) in dry toluene (6 mL) and under 

argon was added methyl trifluoromethane sulfonate (23 µL, 0.20 mmol) 

and butylamine (40 µL, 0.4 mmol). The reaction mixture was protected 

from light and stirred at room temperature for 20 hours. The solvent was 

eliminated in vacuo and replaced by butylamine (3 mL). The resulting 

reaction mixture was then treated in the microwave at 80 ºC during 60 min. 

After elimination of the excess butylamine under vacuum, the residue was 

distributed between NaOH 1N (10 mL) and diethyl ether (10 mL) and the 

organic phase was washed with water, HPF6 0.1N and finally water. After 

drying the organic phase (Na2SO4) and elimination of the solvents, the 

crude compound was adsorbed on silica gel and purified by column 

chromatography (elution from neat CH2Cl2 to 10% AcOEt/CH2Cl2) to 

afford 14cH (50.6 mg, 44% yield) as a violet solid. 1H NMR (400 MHz, 

CDCl3): δ ppm 8.89 (d, 2H, J = 4.8 Hz, H β-pyrr), 8.83 (m, 4H, H β-pyrr), 
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8.62 (d, 2H, J = 4.8 Hz, H β-pyrr), 8.32 (d, 1H, J = 6.8 Hz, Ha), 8.10-7.80 

(m, 6H, He), 7.89 (t, 1H, J = 7.2 Hz, Hb), 7.79 (t, 1H, J = 7.2 Hz, Hc), 7.69 

(d, 1H, J = 8.0 Hz, Hd), 7.55-7.49 (m, 6H, Hf), 6.4 (s, 1H, NHgu), 5.2 

(broad s, 2H, NHgu), 2.9 (t, 6H, J = 7.2 Hz, CH2), 2.2 (s, 4H, CH2), 1.9-1.8 

(m, 6H, CH2), 1.6-1.4 (m, 14H, CH2), 1.1-0.95 (m, 9H, CH3), 0.6-0.1 (m, 

8H, CH2), 0.1- -0.2 (m, 4H, CH2), -2.78 (s, 2H, NH); HR-MS (ESI+): m/z 

calc. for C68H80N7
+994.6470, obt. 994.6255 [(M+H)+].  

 

1-Butyl-3-phenyl-thiourea (18). 

 

 

 
 

Procedure 

To a biphasic system made from a solution of aniline (0.2 mL, 2.20 mmol) 

in CH2Cl2 (25 mL) and a solution of sodium carbonate (1.233 g, 11.63 

mmol) in water (50 mL), was added thiophosgene (0.37 mL, 4.83 mmol). 

The resulting mixture was stirred for 2 hours at room temperature, and then 

the organic phase was washed four times with water. The solvent was then 

eliminated under vacuum after drying with anhydrous sodium sulfate. To 

the crude residue excess butylamine (2 mL) was added under argon and the 

mixture was stirred at room temperature for 15 min. The excess amine was 

then eliminated in vacuo and the residue was dried on the vacuum line to 

yield 18, that was purified by silica gel column chromatography (378.2 mg, 
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83%). 1H NMR (CDCl3, 400 MHz): δ ppm 7.36-7.29 (m, 3H, HAr), 7.22-

7.15 (m, 2H, HAr), 6.28 (s, 1H, NH), 3.58-3.49 (m, 2H, CH2), 1.53-1.41 (m, 

2H, CH2), 1.33-1.20 (m, 2H, CH2), 0.85 (t, 3H, J = 7.9 Hz, CH3); 13C NMR 

(CDCl3, 100 MHz): δ (ppm) 180.2, 136.8, 129.9, 126.7, 124.9, 44.8, 30.9, 

20.1, 13.7. 

 

1-Butyl-3-phenylurea (19). 

 

 

 
 

Procedure 

To a solution of aniline (0.10 mL, 1.10 mmol) in dry CH2Cl2 (25 mL) was 

added butylisocyanate (0.13 mL, 1.15 mmol) at room temperature and 

under argon. The reaction mixture was stirred at reflux during two days. 

The solvent was then eliminated in vacuo after cooling down the vessel. 

The residue was dissolved in ethyl acetate (20 mL) and the resulting 

organic phase was washed with HCl 1N (to remove unreacted aniline) and 

then with water. The organic phase was dried with anhydrous sodium 

sulfate and the solvent was eliminated under vacuum to yield 19 (177.6 mg, 

84% yield). 1H NMR (CDCl3, 400 MHz): δ ppm 7.32-7.27 (m, 4H, HAr), 

7.12-7.05 (m, 2H, HAr + NH), 5.15 (t, 1H, J = 5.3 Hz, NH), 3.3-3.21 (m, 

2H, CH2), 1.59-1.45 (m, 2H, CH2), 1.41-1.31 (m, 2H, CH2), 1.27 (t, 3H, J = 

7.0 Hz, CH3); 13C NMR (CDCl3, 100 MHz): δ ppm 156.5 (CO), 138.8, 
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129.5, 124.0, 121.2, 40.3 (CH2), 32.2 (CH2), 20.1 (CH2), 13.9 (CH3). 

 

The preparation of benzoguanidinium derivative 2 is reported in Chapter 2. 

 

General procedure for the preparation of zinc(II) porphyrins. 

 

 

 
 

Procedure 

To a solution of the porphyrin derivative (1 eq.) in a dichloromethane-

methanol mixture ([porphyrin] = 10-6 M) was added zinc(II) acetate (10 eq) 

and the resulting mixture was stirred at room temperature for one hour. 

Solvents were then eliminated under vacuum and the crude compound was 

filtered on silica gel. After elimination of the solvents in vacuo, the 

metallated porphyrin derivative was obtained in high yields.  

 

14aZn: 81% yield; 1H NMR (500 MHz, CDCl3):  δ ppm 8.90 (s, 4H, H β-

pyrr), 8.80 (d, 2H, J = 4.5 Hz, H β-pyrr), 8.45 (d, 2H, J = 4.5 Hz, H β-pyrr), 

8.07 (d, 1H, J = 7.5 Hz, Ha), 7.97 (t, 5H, J = 8.1 Hz, He), 7.90 (d, 1H, J = 

7.0 Hz, Hd), 7.50-7.40 (m, 7H, Hf and Hb), 7.37 (t, 1H, J = 7.5 Hz, Hc), 6.86 
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(s, 1H, NHurea), 4.40 (s, 1H, NHurea), 2.94 (t, 6H, J = 8.0 Hz, CH2), 1.96-

1.91 (m, 6H, CH2), 1.69 (broad s, 2H, CH2 Bu), 1.59-1.30 (m, 12H, 2 CH2), 

1.30-1.26 (m, 5H, CH3 and CH2 Bu), 1.06-1.02 (m, 9H, CH3), 0.90 (m, 2H, 

CH2 Bu), 0.06 (s, 2H, NH). HR-MS (ESI+): m/z calc. for C64H69N6OZn 

1001.4824, obt. 1001.4874 [M+]. 

 

ZnTPPP: 90% yield. 1H NMR (CDCl3, 400 MHz): δ ppm 8.97 (s, 8H, pyrr 

H), 8.12 (d, 8H, J = 7.6 Hz, He), 7.55 (d, 8H, J = 7.6 Hz, Hf), 2.96 (t, 8H, J 

= 7.6 Hz, CH2), 1.94 (q, 8H, J = 7.6 Hz, CH2), 1.60-1.40 (m, 16H, CH2), 

1.03 (t, 12H, J = 7.2 Hz, CH3). X-ray Structure was confirmed by X-ray 

diffraction, though definition of the alkyl chains was not optimal (Fig. 

3.22). Packing of the crystal is achieved by parallel Zn(II)-porphyrin units 

interacting through π-stacking interactions between the aryl residues with 

an additional porphyrin ring that connects the two parallel strands, thus 

forming an angle between the porphyrins. Hydrophobic interactions 

between the alkyl chains are also involved in packing determination. 
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Fig. 3.22: X-ray structure and crystal packing of ZnTPPP. 

 

Tetra-(4-pentylphenyl)porphyrinato nickel(II) NiTPPP. 

 

 

 
 

Procedure 

To a solution of TPPP (50 mg, 55 µmol) in dichloromethane (10 mL) was 
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added a solution of nickel(II) acetate (153 mg, 0.61 mmol) in methanol (5 

mL) and the resulting mixture was stirred at reflux during 5 days. The 

reaction mixture was then evaporated under vacuum and the residue was 

purified by alumina supported column chromatography using 10% 

CH2Cl2/hexane as elution system. After evaporation of the fractions, a 

slight blue to red solid is obtained (41.5 mg, 78% yield). 1H NMR (CDCl3, 

400 MHz): δ ppm 8.76 (s, 8H, H β-pyrr), 7.91 (d, 8H, J = 7.6 Hz, He), 7.47 

(d, 8H, J = 7.6 Hz, Hf), 2.90 (t, 8H, J = 7.6 Hz, CH2), 1.87 (q, 8H, J = 7.6 

Hz, CH2), 1.60-1.40 (m, 16H, CH2), 1.05 (t, 12H, J = 7.2 Hz, CH3).  

 

Dipyridino(5,10,15,20-tetra-(4-pentylphenyl)porphyrinato) 

magnesium(II) MgPy2TPPP. 

 

 

 
Procedure 

TPPP (100 mg, 0.12 mmol) was dissolved in pyridine (13 mL) and 

magnesium perchlorate (623 mg, 2.79 mmol) was added. The reaction 

mixture was then refluxed overnight and then allowed to cool at room 

temperature. After cooling, the reaction mixture was filtered and solid 

washed with diethyl ether until obtention of a colorless filtrate. The 
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resulting organic phase was washed three times with water and dried with 

Na2SO4. After filtration and evaporation of the solvent, Mg(Py)2TPPP was 

obtained as purple to blue needles (118 mg, 98% yield). 1H NMR (400 

MHz, CDCl3): δ ppm 8.98 (s, 8H, H β-pyrr), 8.16 (d, 8H, J = 7.7 Hz, HAr), 

7.58 (d, 8H, J = 7.7 Hz, HAr), 7.02 (tt, 2H, J = 7.6, 1.7 Hz, HPy),  6.46-6.41 

(m, 4H, HPy), 5.78-5.74 (m, 4H, HPy), 3.02 (t, 8H, J = 7.7 Hz, CH2), 2.05-

1.95 (m, 8H, CH2), 1.67-1.53 (m, 16H, CH2), 1.10 (t, J = 7.0 Hz, CH3); 

HR-MS (MALDI): m/z: calc. for C64H68MgN4 916.6138, obt. 916.514 [(M-

2 Py)+]. 

 

General procedure for the preparation of dichlorotin(IV) porphyrins. 

 

 

 
 

Procedure 

To a solution of the porphyrin derivative (1 eq.) dissolved in dry pyridine 

([porphyrin] = 4 × 10-3 M) was added tin(II) chloride dehydrate (20 eq.) and 

the resulting reaction mixture was refluxed for three hours. After cooling 

down at room temperature, water was added to the mixture and the 

resulting precipitate was collected by filtration. The resulting solid was 
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dissolved in dichloromethane and the organic phase was washed with 

water, HCl 1N solution, and again with water. After drying with anhydrous 

sodium sulfate, filtration and elimination of the solvents in vacuo, the 

dichlorotin(IV) porphyrin derivative were obtained as blue/red solids.  

 

SnCl2TPPP: 91% yield. 1H NMR (400 MHz, CDCl3): δ ppm: 9.26 (s, 8H, 

H β-pyrr), 8.25 (d, 8H, J = 8.0 Hz, HAr), 7.65 (d, 8H, J = 8.0 Hz, HAr), 3.02 

(t, 8H, J = 7.6 Hz, CH2), 2.03-1.96 (m, 8H, CH2), 1.66-1.51 (m, 16H, CH2), 

1.08 (t, J = 7.1 Hz, CH3); HR-MS (MALDI): m/z calc. for C64H68ClN4Sn 

1047.4164, obt. 1047.4139 [(M-Cl)+] (120Sn isotope detected). 

 

14aSnCl2: 85% yield. 1H NMR (CDCl3, 400 MHz): δ ppm 9.30-9.18 (m, 

6H, H β-pyrr, satellites), 9.12 (d, 2H, J = 5.0 Hz, H β-pyrr), 8.51 (dd, 1H, J 

= 1.7, 7.5 Hz), 8.27-8.14 (m, 6H), 8.06 (dd, 1H, J = 7.5, 1.4 Hz), 7.81 (td, 

1H, J = 8.0 Hz, 1.5Hz), 7.67-7.60 (m, 6H), 7.57 (td, 1H, J = 7.7, 1.3 Hz), 

2.98 (t, 6H, J = 7.8 Hz, CH2), 2.00-1.90 (m, 6H, CH2), 1.61-1.46 (m, 14H, 

CH2), 1.03 (t, 9H, J = 7.1 Hz, CH3), 0.91-0.81 (m, 3H, CH3), 0.49-0.37 (m, 

2H, CH2), 0.29 (t, 2H, J = 6.4 Hz, CH2); HR-MS (MALDI): m/z calc. for 

C64H68ClN6OSn 1091.3803, obt. 1091.4178 [(M-Cl)+] (120Sn isotope 

detected). 

 

14bSnCl2: 93% yield. 1H NMR (CDCl3, 400 MHz): δ ppm 9.30-9.16 (m, 

8H, H β-pyrr, satellites), 8.78 (d, 1H, J = 5.7 Hz), 8.26-8.17 (m, 6H), 8.09 

(dd, 1H, J = 7.6, 1.6 Hz), 7.84-7.77 (m, 1H), 7.68-7.62 (m, 6H), 7.13 (dd, 

1H, J = 8.2, 0.9 Hz), 2.99 (t, 6H, J = 7.6 Hz, CH2), 2-1.9 (m, 6H, CH2), 

1.70-1.40 (m, 14H, CH2), 1.30-1.25 (m, 2H, CH2), 1.05 (t, 9H, J = 7.0 Hz, 



3. Functionalized metalloporphyrins as cooperative catalysts 
__________________________________________________________________ 

 133

CH3), 0.99-0.91 (m, 3H, CH3), 0.10-0.07 (m, 2H, CH2). 

 

14cSnCl2 (Cl-): Yield not measured. 1H NMR (CDCl3, 400 MHz): δ ppm 

9.40-9.30 (broad s, 2H, H β-pyrr), 9.29-9.21 (m, 4H, H β-pyrr, satellites), 

8.80 (broad s, 2H, H β-pyrr), 8.62 (s, 1H, NH), 8.55 (d, 1H, J = 6.8 Hz); 

8.27-8.12 (m, 6H), 8.08-7.80 (m, 3H), 7.70-7.55 (m, 8H, 6H arom., 2 NHs), 

3.00 (t, 6H, J = 7.7 Hz, CH2), 2.00-1.90 (m, 6H, CH2), 1.77-1.75 (m, 4H, 

CH2), 1.64-1.48 (m, 14H, CH2), 1.08-1.02 (m, 9H, CH3), 0.60-0.44 (m, 6H, 

CH2), 0.40-0.32 (m, 9H, CH3); HR-MS (MALDI): m/z calc. for 

C68H78ClN7OSn+ 1147.5, obt. 1146.5 (M-2Cl)+] (120Sn isotope detected). 

 

Dihydroxo(5, 10, 15, 20-tetra-p-(pentyl)phenylporphyrinato)tin(IV) 

(Sn(OH)2TPPP). 

 

 
Procedure 

A mixture of Sn(Cl)2TPPP (50 mg, 46 µmol) and potassium carbonate 

(262 mg, 1.9 mmol) in a mixture of THF/water (50/12.5 mL) was refluxed 

for one hour. After cooling the reaction mixture at room temperature, the 

solvent was eliminated in vacuo and the residue was distributed between 
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dichloromethane and water. The organic phase was washed with additional 

water, dried with anhydrous sodium sulfate, filtered and the solvent was 

finally eliminated under vacuum to yield Sn(OH)2TPPP (54.8 mg, 

quantitative) as a blue-purple solid. 1H NMR (CDCl3, 400 MHz): δ ppm 

9.17 (s, 8H), 8.25 (d, 8H, J = 7.8 Hz), 7.64 (d, 8H, J = 7.8 Hz), 3.01 (t, 8H, 

J = 7.6 Hz), 2.10-1.90 (m, 8H), 1.67-1.47 (m, 16H), 1.07 (t, 12H, J = 7 Hz). 

HR-MS (MALDI): m/z calc. for C64H71N4O2Sn 1047.4599, obt. 1047.4598 

(120Sn isotope detected) [(M+H)+].25 

                                                 

25 Mass peaks for the loss of one or two axial hydroxo ligands are also seen at 1029.4896 

and 1012.5040 g.mol-1, respectively. 
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4. Functionalized ligands for substrate binding in catalysis. 

 

4.1 Introduction. 

 

The outstanding regioselectivity observed in enzymatic catalysis is 

mainly attributed to substrate fixation in the enzyme active site to fix the 

substrate in an optimal way and to restrict its molecular motions. 

Translation of these principles to homogeneous catalysis is therefore one of 

the longstanding goals of supramolecular chemistry. Surprisingly, the 

combination of molecular recognition with catalytically active metal centers 

in artificial systems has not been deeply investigated although some 

successful examples have been recently described.  

 

 Crabtree and co-workers reported in 2006 a terpyridyl ligand substituted 

with a Kemp’s acid subunit able to fix a carboxylic acid substrate at a given 

distance of a metal binding site (Fig. 4.1), which resulted in remarkable 

selectivites in the C-H oxidation of ibuprofen (µ-oxo manganese dimer 

catalyzed C-H oxidation assisted by oxone).1 Use of the Kemp acid 

provides the catalyst with a U-shaped geometry that enables suitable 

substrate orientation, while the phenylene linker provides some spacing 

between the remote recognition unit and the catalytic active site. The 

terpyridyl residue is used for metal binding. 

 

                                                 

1 a) Das, S.; Incarvito, C. D.; Crabtree, R. H.; Brudvig, G. W. Science 2006, 312, 1941. b) 

Das, S.; Brudvig, G. W.; Crabtree, R. H. J. Am. Chem. Soc. 2008, 130, 1628. 
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Fig. 4.1: a) Catalytic system for regioselective C-H oxidation of carboxylic 
acid derivatives developed by Crabtree and Brudvig. b) Regioselective C-H 

oxidation of carboxylic acids. 
 

 Control experiments with non functionalized terpyridine ligands were 

not regioselective. In the presence of 0.1 mol% catalyst and five equivalents 

of oxone, the regioselective oxidation product could be observed in 96.5% 

selectivity with a remarkable turnover of 710 (in CD3CN). Inhibition of the 

reaction was then evidenced by the addition of p-tert-butylbenzoic acid, 

which sterically blocks the active site by formation of the carboxylic acid 
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heterodimer without oxidizing. This inhibition is totally reversed by 

addition of acetic acid, which competes in binding with the inhibitor and, 

thanks to its small size, frees to some extent the catalytic active site, thus 

regenerating the catalyst. 

 

 Recently, Breit and co-workers reported a catalyst for the regioselective 

hydroformylation reaction of unsaturated carboxylic acids.2 In that case, 

molecular recognition was based on a carboxyguanidinium/carboxylate ion 

pair (Fig. 4.2). The pyridyl core of the ligand fixes the desired conformation 

of the carboxyguanidine group by increasing the rotation barrier of the 

carbonyl group (lone pairs electronic repulsion). A rhodium(I) complex was 

tested in hydroformylation reactions of unsaturated carboxylic acids 

(unconjugated), with remarkable selectivities (linear over branched product, 

expressed as l/b ratio) and turnover frequencies (TOF of 250 h-1) relative to 

usual systems (xantphos, triphenylphosphine) or to the equivalent free 

system (PPh3+III: TOF: 12 h-1; l/b: 1.5). The role of the guanidine moiety 

in the molecular recognition event was established by competition 

experiments (addition of non reacting acid such as AcOH), for which 

inhibition and decreased selectivity were observed. Substrate selectivity of 

the process for β,γ-unsaturated carboxylic acids in competition experiments 

with non acidic olefinic substrates was also observed. 

 

 

 

                                                 

2 Šmejkal, T.; Breit, B. Angew. Chem. Int. Ed. 2008, 47, 311. 
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a) 

 

 
b) 

 

 
 

Fig. 4.2: Functionalized ligand for highly regioselective hydroformylations. 
 

 A substrate bearing two reactive sites (double bonds) was then 

investigated (Fig. 4.2b) and ligand II was shown to induce a high 

regioselectivity in the reaction (the red pathway was ten times faster than 

the blue one), the linear aldehyde obtained from the red pathway being 

isolated in 75% yield (among the five possible products of mono- and 

dihydroformylation).  

 

 Surprisingly, when α,β unsaturated acids were used as substrates for the 

reaction, some decarboxylation was observed, resulting in the 

corresponding aliphatic aldehyde, whereas when PPh3 was used as a ligand, 

hydrogenation of the double bond was observed.3 In the presence of ligand 

II, hydroformylation is preferred to olefin hydrogenation, the formed 
                                                 

3 Šmejkal, T.; Breit, B. Angew. Chem. Int. Ed. 2008, 47, 3946. 
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product then undergoing decarboxylation (Fig. 4.3). A supramolecular 

interaction between substrate and ligand might therefore provide 

remarkable levels of selectivity and activity in transition metal catalyzed 

processes. 

 

 

 
Fig. 4.3: Proposed mechanism for the formation of aliphatic aldehydes 

from α,β-unsaturated carboxylic acids. 
 

 This chapter deals with the synthesis of a library of readily accessible 

ligands functionalized with H-bond donating groups such as urea, thiourea 

and guanidine and their formation of heteroleptic metal complexes with a 

second library of chiral ligands, in order to create and screen a wide library 

of chiral catalysts with molecular recognition of the substrate, which might 

result in regioselective asymmetric catalysis. Such a combinatorial 

approach was previously illustrated by Ding and co-workers, as 
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summarized in Fig. 4.4.4  

 

 

 
 

Fig. 4.4: Conceptual approach for combinatorial catalyst engineering and 
screening. 

 

 This approach was used in tandem hetero Diels-Alder reactions and 

diethylzinc additions on formylbenzaldehyde derivatives with a single 

catalyst (IV), giving rise to high yields and stereoselectivities in a one-pot 

sequence (Fig. 4.5).5 Catalyst IV showed asymmetric induction for both 

reactions when performed separately, which enabled the construction of a 

tandem procedure (>94% ee for each isolated step). 
                                                 

4 Ding, K.; Du, H.; Yuan, Y.; Long, J. Chem. Eur. J. 2004, 10, 2872. 
5 Du, H.; Ding, K. Org. Lett. 2003, 5, 1091. 
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Fig. 4.5: Tandem enantioselective hetero Diels-Alder and diethylzinc 
addition reactions performed by a screened catalyst from a library. 

 

 Given the relevance of the combinatorial approach to catalysis and of 

the use of substrate specific molecular recognition sites on the ligands, 

combination of both concepts might lead to highly selective homogeneous 

catalysis in terms of regioselectivity and enantioselectivity. 

 

 For this reason, we designed a library of mono- and bidentate achiral 

ligands functionalized with hydrogen bonds donating groups, as well as a 

library of chiral ligands (Fig. 4.6). Upon coordination with a suitable 

transition metal and formation of the heteroleptic ligand, this approach 

offers the possibility to screen a broad family of catalysts and study a wide 

scope of applications. 
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Fig. 4.6: a) Schematic representation of the concept of our 
combinatorial supramolecular approach to catalysis; b) Studied ligand 

libraries. 
 

 Regarding the library of hydrogen bonding achiral ligands (Library 1, 

L1), a series of monodentate and bidentate ligands were designed with 

various spacing groups (2-pyridyl, 8-isoquinolyl, dipyrromethenes) in order 

to study the influence of the distance between the metal and the H-bonding 

moiety on the catalytic activity and the formation of the heteroleptic 

complex. However, at this initial proof-of-concept step, the study was 

limited to N-heterocyclic ligands (phosphines, alcohols, phosphites, etc 

were excluded). The 2-pyridyl spacer was selected because of the easy 

synthetic accessibility of the corresponding ligands 20a-20c. Furthermore, 

the 8-isoquinolyl spacing group was found in the literature to form 

cooperative anion binding when complexed with a metal and was therefore 

considered as a potential spacer (21a-21e).6 The carboxyguanidine derived 

from nicotinic acid 21c was expected to be readily accessible and to present 

a conformation similar to the one obtained with the 8-isoquinolyl spacer, 

                                                 

6 Bondy, C. R.; Gale, P. A.; Loeb, S. J. J. Am. Chem. Soc. 2004, 5030. 
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though rotation of the carbonyl group is possible. Regarding the bidentate 

ligand series, dipyrromethenes 22a-22c were also studied, given the 

encouraging results described in the previous chapter. For the same reasons, 

the 3-(pyridin-2-yl)-isoquinolyl spacer (23a-23b, 24a-24d) was designed 

and studied. Urea, thiourea and guanidinium derivatives were also 

systematically studied in order to screen the H-bonding moiety. Finally, in 

order to obtain a planar ligand and thus enhance both binding affinity and 

catalyst’s efficiency (as discussed in the previous chapters), designs include 

the use of intramolecular hydrogen bonds (when possible) between the H-

bonding moiety and the heterocycle, which is expected to favour the planar 

conformation (20a, 20c, 21c, 21d, 24a-24d). 

 

 Chiral ligands (Library 2, L2) were chosen according to their versatility, 

valency, chiral environment and ease of preparation, though this list is 

obviously not exhaustive. In the following sections, the synthesis of 

libraries L1 and L2, the attempts of formation of the heteroleptic complex 

and some trials of catalysis will be presented. 

 

4.2 Synthesis of ligands.  

 

4.2.1 Synthesis of chiral ligands (L2). 

 

 (R)-BINOL was used as delivered by commercial sources without any 

further purification. The general procedure for the preparation of oxazoline 

derivatives involves the formation of an amide from a carboxylic acid and a 

chiral aminoalcohol (obtained by reduction of aminoacids), followed by the 
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cyclization of the amidoalcohol derivative to the corresponding oxazoline 

by activation of the alcohol as a leaving group (Fig. 4.7). 

Oxazoline derivatives were prepared as reported in the literature.7 

 

 
Fig. 4.7: Synthesis of oxazoline derivatives. 

 

 As described on Fig. 4.7, two pathways were followed for the synthesis 

                                                 

7 a) Nishiyama, H.; Yamaguchi, S.; Kondo, M.; Itoh, K. J. Org. Chem. 1992, 57, 4306. b) 

Lundgren, S.; Lutsenko, S.; Jönsson, C.; Moberg, C. Org. Lett. 2003, 20, 3663. 
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of the diamidoalcohol intermediates from the dicarboxylic acid derivatives. 

A diacid chloride was formed upon treatment of the diacid, either with 

phosphorous pentachloride, or with thionyl chloride. In the case of Ph-box 

and iPr-Pybox, the resulting acid chloride was treated with the 

aminoalcohol to form the diamide derivatives 27 and 28 in 56 and 91% 

yields, respectively. Alternatively, the diacid chloride was treated with 

methanol to form the corresponding diester. Treatment of the diester with 

the aminoalcohol (valinol, phenylglycinol) at high temperature in a sealed 

tube readily afforded the diamides in almost quantitative yields. Cyclization 

of the diamidoalcohol to the oxazoline derivatives proceeded through 

alcohol activation, either by tosylation (TsCl) or by chlorination (thionyl 

chloride) and through the action of a strong base for amide deprotonation 

(DMAP or sodium hydride). Pybox derivatives were then obtained in 

reasonable overall yields after recrystallization in ethanol (from 38 to 57% 

yield). Ph-box was however isolated by silica gel column chromatography 

(36% overall yield).  

 

4.2.2 Synthesis of functionalized ligands (L1). 

 

4.2.2.1 Synthesis of 20a-20c. 

 

 The ureidobenzimidazole derivative 20a precipitated upon treatment of 

2-aminobenzimidazole with butylisocyanate in dichloromethane and was 

obtained in 87% yield (Fig 4.8). Similarly, treatment of 2-aminopyridine 

with butylisothiocyanate afforded 2-thioureidopyridine 20b in 46% yield. 

The rather low yield was due to non completion of the reaction, attributed 



4. Functionalized ligands for substrate binding in catalysis 
 

__________________________________________________________________ 

 149

to the low reactivity of the substrates and the harsh reaction conditions 

(unstability of butylisothiocyanate).  

 

 

 
Fig. 4.8: Synthesis of 20a-20c. 

 

 As described in the literature for its pyridyl analogue,8 preparation of 

20c was expected to take place by activation of thiourea 29 followed by 

nucleophilic substitution with 1,3-diaminopropane. Preparation of thiourea 

29 proceeded by reaction of benzoylisothiocyanate with 2-aminopyrimidine 

to yield a protected thiourea that was debenzoylated in basic medium to 

yield 29 in a poor 13% overall yield. Thiourea 29 was then treated with 

methyl iodide for activation as the thiouronium salt 30, which was heated in 
                                                 

8 a) Rasmussen, C. S.; Villani, F. J. Jr.; Weaner, L. E.; Reynolds, B. E.; Hood, A. R.; 

Hecker, L. R.; Nortey, S. O.; Hanslin, A.; Costanzo, M. J.; Powell, E. T.; Molinari, A. J. 

Synthesis 1988, 456. b) Zafar, A.; Melendez, R.; Geib, S. J.; Hamilton, A. D. Tetrahedron  

2002, 58, 683. 
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the presence of 1,3-diaminopropane. The isolated compound was 

unfortunately poorly soluble in common organic solvents and purification 

was therefore tedious, resulting in low yields. For this reason, 20c was not 

studied for metal complexation and catalysis experiments.  

 

4.2.2.2 Synthetic studies for 21a-21e. 

 

 

 
 

Fig. 4.9: Synthesis of 21a-21b. 

 

 Compound 21a was prepared as described in a previous work published 

by Gale and co-workers.6 Isoquinoline was first monobrominated at the 5-



4. Functionalized ligands for substrate binding in catalysis 
 

__________________________________________________________________ 

 151

position by electrophilic aromatic substitution and nitration was then 

performed regioselectively at the 8-position of the isoquinoline ring. 5-

bromo-8-nitroisoquinoline 31 was thus obtained in 44% yield after 

recrystallization in methanol (Fig. 4.9). This step could be performed easily 

on multigram scale. Palladium catalyzed hydrogenation of the resulting 

compound under high pressure yielded the 8-aminoisoquinoline 32, a key 

intermediate for the preparation of 21a-b, in 78% yield. Treatment of 32 

with butylisocyanate for five days at room temperature afforded urea 21a in 

68% yield after precipitation in hexanes. Preparation of 21b1 and 21b2 

proceeded through the synthesis of 8-isothiocyanatoisoquiniline 33 that 

could be obtained upon treatment of 32 with 1,1’-thiocarbonyldiimidazole 

at room temperature for one day. Alternatively, obtention of 8-

isocyanatoisoquinoline for further derivatization of the urea series by 

treatment of 32 with 1,1’-carbonyldiimidazole provided compound 34 as a 

major product (18% isolated yield in non optimized conditions), due to the 

nucleophilicity of 32. Finally, thiourea 21b3 was obtained in 40% yield by 

treatment of 32 with 1-isothiocyanato-3,5-bis(trifluoromethyl)benzene in 

diethyl ether.  

 

 A conformational analysis of this compound was then performed by 1H 

NMR bidimensional experiments (NOESY) at various temperatures. The 

most stable conformer is shown in Fig. 4.10. 
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Fig. 4.10: MM2 model of 21b3 (Chem 3D)® and the most stable conformer 

as seen by NMR experiments. 
 

 The guanidinium 21d was expected to be prepared by amination of 1-

chloro-2,7-naphthyridine and further derivatization with guanidylation 

agents or by a similar synthetic route as for 20c (Fig. 4.11).  

 

 

 
Fig. 4.11: Retrosynthetic analysis for 21d. 

 

 1-Hydroxy-2,7-naphthyridine was prepared by intramolecular 

cyclization of the cyanoenamine derivative 38 following a described 

procedure.9 On the other hand, 1-chloro-2,7-naphthyridine 36 was 
                                                 

9 a) Baldwin, J. J.; Mensler, K.; Ponticello, G. S. J. Org. Chem. 1978, 43, 4878. b) Van den 

Haak, H. J. W.; Van der Plas, H. C.; Van Veldhuisen, B. J. Heterocycl. Chem. 1981, 18, 

1349. 
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quantitatively prepared by treatment of 1-hydroxy-2,7-naphthyridine with 

phosphorous oxychloride (Fig. 4.12a). Compound 36 was then treated with 

sodium amide in THF in an attempt to substitute the chlorine atom for an 

amine function. Unfortunately, a mixture of products of the Chichibabin 

reaction was obtained and could hardly be separated (Fig. 4.12b).  

a) 

 

b) 

 

c) 

 
Fig. 4.12: a) Synthesis of 1-chloro-2,7-naphthyridine 36; b) Attempts of 

amination of 36; c) Evidence for the azide/tetrazole equilibrium. 
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 Surprisingly, in DMF, this reaction gave rise to only one product, 

namely the 1-dimethylamino-2,7-naphthyridine 41 (obtained in 64% yield 

after column chromatography), resulting from the nucleophilic attack of 

sodium dimethylamide, product of the fast transamidation reaction between 

sodium amide and N,N-dimethylformamide. Gabriel’s amine synthesis was 

also investigated but substitution of the chlorine atom with phthalimide by 

reflux in DMF gave rise to a complex mixture of products. Substitution of 

the chlorine atom by an azido group was also attempted, but the obtained 

product (67% yield) appeared to be the tautomeric tetrazole (Fig. 4.12c). 

Evidence for this process was the absence of the characteristic azide 

absorption band on the IR spectrum of 41, and the hydrogenation of the 

aromatic naphthyridine core instead of reduction of the azide by catalytic 

hydrogenation or by reaction with lithium aluminium hydride.  

 As a last trial, a direct nucleophilic aromatic substitution between the 

monocyclic guanidine 42 and 36 was attempted (Fig. 4.13). Compound 42 

was prepared according to described procedures from 1,2-diaminoethane 

and dimethylcyanamide.10 1,2-diaminoethane was first transformed into the 

monotosylate ammonium salt by p-toluenesulfonic acid in quantitative 

yield. The resulting salt was heated at 120 ºC in a sealed tube in 

dimethylcyanamide to give the corresponding guanidinium tosylate in 53% 

yield after recrystallization in ethanol. The anion was then exchanged to 

hydroxide by an ion exchange resin to yield the corresponding hydrate. 

Aromatic nucleophilic substitution of the chlorine atom of 36 by 42 was 

                                                 

10 Adcock, B.; Lawson, A.; Miles, D. H. J. Chem. Soc., 1961, 5120. 
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then investigated and the reaction was performed by heating a solution of 

the substrates in DMF (120 ºC). A white precipitate was formed and 

collected by filtration. Surprisingly, the product appeared to be the spiro 

derivative 43 arising from consecutive nucleophilic and electrophilic 

aromatic substitution reactions, which was evidenced by 13C NMR. The 

same compound was obtained when the reaction was repeated at room 

temperature. Preparation of 21d could therefore not be achieved. 

 

 

 
 
 

Fig. 4.13: a) Synthesis of monocyclic guanidine 42; b) Attempts of 
nucleophilic aromatic substitution between 42 and 36. 

 

 As an alternative, we decided to perform the synthesis of 

isoquinoliguanidinium 21e, following a similar route as for the 

benzoguanidinium derivative 2 (see Chapter 2). Synthesis therefore requires 

the preparation of diamine 44, which could be achieved by reduction of 7-

cyano-8-aminoisoquinoline 45, whose preparation from 31 involved the 
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transformation of nitroaryl derivatives to o-cyano-aminoaryl derivatives, 

following a known methodology.11 Since the synthesis of fluorescent chiral 

guanidines is also of high interest for our research group, control 

experiments for the synthesis of naphthoguanidine 46 were also performed 

(Fig. 4.14).  

 

 
 

Fig. 4.14: a) Retrosynthetic analysis of naphthoguanidine 46 and 
isoquinolinoguanidine 21e; b) Synthesis of compound 46. 

 

 1-Nitronaphthalene 49 was treated with ethylcyanoacetate in the 

presence of potassium hydroxide and potassium cyanide, followed by an 

                                                 

11 a) Tomioka, Y.; Ohkubo, K.; Yamazaki, M. Chem. Pharm. Bull. 1985, 33, 1360. b) 

Zhang, W.; Liu, R.; Cook, J. M. Heterocycles 1993, 36, 2229. 
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aqueous solution of sodium hydroxide to yield cyanoamine 48 in 69% yield 

after purification. Diamine 47 was obtained in 97% yield after reduction of 

the nitrile with boron hydride. After treatment with the isothiocyanate 

derived from methioninol in acetonitrile (see Chapter 2), thiourea 50 was 

isolated in 65% yield after column chromatography. The double cyclization 

was then performed as previously for the benzoguanidinium derivative. 

Unfortunately, the major compound was the N-methylguanidine 51 as 

revealed by mass spectrometry and 1H NMR in the reaction crude.12 This 

surprising outcome was attributed to the electron rich naphthalene ring that 

renders the amine (in position 1) more nucleophilic and prompt to both 

methylation and cyclization. The methodology proved thus suitable for the 

synthesis of aromatic guanidines from nitroaryl derivatives. For this reason, 

preparation of 21e was attempted by the same synthetic scheme. 

 Upon treatment of 31 (5-bromo-8-nitroisoquinoline) with ethyl 

cyanoacetate, potassium cyanide and potassium hydroxide in DMF, the 

unexpected major product 52 was obtained, likely as a result of nucleophilic 

aromatic substitution on the bromine atom, activated as a leaving group by 

the electron withdrawing nitro group, followed by decarboxylation in basic 

medium (Fig. 4.15). This side reaction could be avoided by a Stille reaction 

performed on 31 with tributyltin hydride in the presence of tetrakis-

(triphenylphosphino)palladium, which gave rise to 8-nitroisoquinoline 53 in 

99% yield after column chromatography (Fig. 4.16). The aminonitrile 45 

was then formed upon treatment of 8-nitroisoquinoline with 

ethylcyanoacetate in presence of potassium cyanide and potassium 

                                                 

12 The methylation site was not determined. 
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hydroxide. However, purification of 45 proved difficult by column 

chromatography because of its low solubility in chloroform, and, as a 

result, a low yield (not determined) was obtained. 

 

 

Fig. 4.15: Proposed mechanism for the formation of 52. 

 

 Reduction of nitrile 45 to amine 44 was then investigated with various 

reducing agents (boron hydride, catalytic hydrogenation with Ni Raney, 

Pd/C with hydrogen pressure). Surprisingly, the reaction gave rise to a 

mixture of products in all cases, as seen on the 1H NMR and mass spectra 

(ESI+) analysis of the crude mixtures. Overreduction of the aromatic 

scaffold was even detected in some cases (such as in palladium catalyzed 

hydrogenations under acidic medium). Since amine 44 could not be 

prepared successfully, the synthesis of 21e was not further investigated. 

 

 

 
Fig. 4.16: Synthetic efforts towards 21e. 
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 Given the difficulties encountered to prepare a guanidinium derivative 

with a spacing group equivalent to the one found in 21a-21b, we decided to 

prepare a more flexible, readily available ligand. Carboxyguanidines are 

easily accessible from carboxylic acids and therefore represent candidates 

of choice. A carboxyguanidine derived from nicotinic acid (21c) would 

allow to reproduce the conformations obtained with 21d and 21e, though 

some freedom is introduced. Synthesis of 21c was successfully achieved 

according to a procedure described by Schmuck et al.13  

 

 Treatment of guanidinium carbonate in alkaline medium with di-tert-

butyldicarbonate in 1,4-dioxane and water yielded the Boc-protected 

guanidine 55 in 88% yield.14 The peptidic coupling was then performed 

according to described procedures with Pybop® assisted acid activation. 

Boc-protected carboxyguanidine 56 could be isolated by precipitation in 

89% yield. Treatment of 56 in trifluoroacetic acid for 15 minutes at room 

temperature quantitatively afforded the diprotonated form of 21c (Fig 

4.17a). The x-ray structure of 21c was determined by addition of saturated 

picric acid, since the compound precipitated and was easily crystallized 

(Fig. 4.16b). Treatment of 21c (trifluoroacetate salt) on an anion exchange 

resin (chloride) in water afforded 21c (Cl-) as a white solid.  

 

 

                                                 

13 Schmuck, C.; Machon, U. Chem. Eur. J. 2005, 11, 1109. 
14 For synthesis, see: Abou-Jneid, R.; Ghoulami, S.; Martin, M.-T.; Dau, E.; Travert, N.; 

Al-Mourabit, A. Org. Lett. 2004, 6, 3933. 
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a) 

 

b) 

 
Fig. 4.17: a) Synthesis of 21c; b) X-ray structure of 21c (picrate). 

 

 

4.2.2.3 Synthetic studies for 22a-22c. 

 

 The cooperativity observed in the porphyrin systems studied in the 

previous chapter inspired the preparation of dipyrromethenes for the 

formation of heteroleptic chiral complexes. It was first anticipated that a 

similar synthetic route as the one used in the previous chapter could be used 

(from 2-nitrobenzaldehyde). Also, 2-chlorobenzaldehyde was investigated 

as a possible starting material. Dipyrromethenes were prepared according to 

known procedures, by treatment of an aromatic aldehyde with pyrrole in 
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TFA, to form the dipyrromethane.15 Dipyrromethanes were then oxidized 

with DDQ to the corresponding dipyrromethenes (Fig. 4.18).  

 

 The preparation of aminodipyrromethene 63 has been reported either by 

Pd-catalyzed hydrogenation or by tin (II) chloride reduction of 60.16 These 

procedures however proved unsuccessful for compound 57 and 60 since 

some reduction of the pyrrole ring was also observed in the case of catalytic 

hydrogenations. For practical reasons (stability, handling…), 60 was 

complexed with boron trifluoride etherate to give 64 in 86% yield, but 

application of both reduction methods on 64 failed to give the desired 

reduction product (Fig. 4.19a). The compound was nevertheless detected by 

mass spectrometry, but column chromatographies never afforded the pure 

desired product. Given these negative results, further synthesis was not 

                                                 

15 a) Yu, L.; Muthukumaran, K.; Sazanovich, I. V.; Kirmaier, C.; Hindin, E.; Diers, J. R.; 

Boyle, P. D.; Bocian, D. F.; Holten, D., Lindsey, J. S. Inorg. Chem. 2003, 42, 6629. b) 

Wood, T. E.; Berno, B.; Beshara, C. S.; Thompson, A. J. Org. Chem. 2006, 71, 2964. 
16 Ziessel, R.; Bonardi, L.; Retailleau, P.; Ulrich, G. J. Org. Chem. 2006, 71, 3093. 

 

 
X Y Yield 

step 1 
Yield 
step 2 

NO2 CH 72% 
(57) 

61% 
(60) 

Cl CH 94% 
(58) 

23% 
(61) 

Cl N 84% 
(59) 

30% 
(62) 

 
Fig. 4.18: Synthesis of dipyrromethenes. 
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pursued and emphasis was concentrated on the preparation of the more 

promising bidentate ligands 23a-b and 24a-d. The crystal structure of 64 is 

represented in Fig. 4.19b. 

 

 

 

a) b) 

Fig. 4.19: a) Synthetic efforts towards 63 and 65; b) ORTEP plot of the X-
ray structure of 64. 

 

4.2.2.4 Towards the preparation of 23a-b. 

 

The retrosynthetic scheme of these bidentate ligands was inspired by the 

synthetic route used for the monodentate ones (Fig. 4.20a). The key 

intermediate is amine 66, and the synthesis of isoquinolines 68 and 69 was 

based on the preparation of 3,3’-biisoquinoline reported by Sauvage and co-

workers.17 
                                                 

17 Durola, F.; Hanss, D.; Roesel, P.; Sauvage, J.-P.; Wenger, S. Eur. J. Org. Chem. 2007, 
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a) 

 

b) 

 

 
Fig. 4.20: a) Retrosynthetic analysis of the key intermediate 66;  

b) Synthesis of 3-hydroxyisoquinoline derivatives. 
 

Ethyl diethoxyacetate was first hydrolyzed in a basic aqueous medium 

to yield sodium diethoxyacetate in quantitative yield after lyophilization. 

Treatment of the carboxylate with thionyl chloride readily afforded the 

corresponding acid chloride, to which the benzylamine derivative was 

added to form the amide bond. In the case of 2-nitrobenzylamine derivative, 

amide 71 could be isolated in a 29% yield after column chromatography 

(unstable). In the case of benzylamine, 73 was obtained in a 62% yield after 
                                                                                                                           

125. 
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column chromatography. Curiously, cyclization of 71 to the 8-nitro-3-

hydroxy-isoquinoline 72 in sulfuric acid at room temperature was 

unsuccessful.18 3-hydroxyisoquinoline 74 was however isolated in 83% 

yield when amide 73 was treated under the same conditions (Fig. 4.20b). 

 

3-Hydroxyisoquinoline was then treated with trifluoromethanesulfonate 

anhydride in dry pyridine in order to activate the heterocycle for the 

following Negishi coupling, to afford compound 56 in a 78% yield after 

column chromatography. 

 

 
 

Fig. 4.21: Preparation of 3-(pyridin-2-yl)isoquinoline 76. 
 

Formation of the pyridine-isoquinoline C-C bond elaboration between 

the pyridine and the isoquinoline ring could then be achieved by a a Pd(0)-

catalyzed C-C coupling in 95% yield. The compound was isolated without 

chromatography and obtained as a single product after work-up (38% 

overall yield, 6 steps). Given that the isoquinoline functionalization proved 

efficient for the synthesis of 21a-b, selective bromination of 76 at position 

5 followed by nitration at position 8 was investigated. 76 was thus treated 

                                                 

18 Reaction was not investigated further, though gentle heating might favour the cyclization 

process. 



4. Functionalized ligands for substrate binding in catalysis 
 

__________________________________________________________________ 

 165

with N-bromosuccinimide in sulfuric acid at -10 ºC for one day, but no 

reaction could be observed after this time, which was attributed to the lower 

reactivity of 76 with respect to isoquinoline (the 2-pyridyl moiety behaving 

as an electron withdrawing substituent). At room temperature a mixture of 

76, 77, and 78 was obtained; which upon treatment with potassium nitrate 

(one pot) afforded the desired isoquinoline derivative 79 (Fig. 4.22). 

 

 
Fig. 4.22: Functionalization attempts of 76. 

 

The dibromo derivative 78 could be isolated by recrystallization in 

methanol and attempts to separate the mixture of products obtained from 

the reaction by column chromatography were unsuccessful. Compound 77 

is actually more reactive than 76, which results in a mixture of products. 

Therefore, these synthetic studies were abandoned and the synthesis of 

carboxyguanidines derived from 2,2’-bipyridines was undertaken. 

 

4.2.2.5 Synthesis of 24a-24d. 

 

As for compound 21c, carboxyguanidines were expected to be easily 
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prepared from the corresponding aromatic carboxylic acids. 5,5’-

dicarboxylic acid-2,2’-bipyridine 80 (for the synthesis of 24c-d), being 

commercially available, only the preparation of 2,2’-bipyridine-5-

carboxylic acid 81 was required. Negishi coupling between 2-bromo-5-

methylpyridine and 2-pyridyl zinc bromide afforded the corresponding 5-

methyl-2,2’-bipyridine 82 in 95% yield without column chromatography 

(Fig. 4.23a). 

a) 
 

 
 

b) 
 

 
R1 R2 R3 Yield  

CO2H H H 63% [24a (Cl-)] 

CO2H H C8H17 76% (24b) 

CO2H CO2H H 27% ª, b (24c) 

CO2H CO2H C8H17 n.m. ª (24d) 

ª The low solubility of the compounds in organic solvents caused low yields, though Boc 
deprotection is quantitative. b Isolated by centrifugation of a NaOH suspension. 
 

Fig. 4.23: a) Synthesis of acid 81; b) Synthesis of 24a-24d. 
 
 

The methyl group was then oxidized to carboxylic acid by potassium 

permanganate, affording acid 81 in 57% yield after precipitation. A 
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methodology previously described (peptide coupling with N-Boc guanidine 

followed by Boc deprotection) was then applied to the synthesis of 24a-d 

(Fig. 4.23b). 

 N-Boc octyl guanidine was prepared following a methodology reported 

by Feichtinger et al., offering the possibility to prepare a wide library of N-

Boc guanidines from primary amines.19 Guanidinium carbonate was first 

treated with benzoyl chloride in alkaline medium to yield N-Cbz guanidine 

83 in 75% yield. 83 was subsequently treated in the same conditions with 

di-tert-butyl dicarbonate to afford the diprotected guanidine 84 in 68% 

yield. The latter was then activated at low temperature with 

trifluoromethane sulfonic anhydride to yield the key intermediate 85 in 62% 

yield. Reaction of octylamine with 85 yielded the diprotected 

octylguanidine in 89% yield, which was hydrogenated in the presence of 

palladium over charcoal to yield N-Boc-N’-octylguanidine 87 in 100% 

yield (at 78% conversion). Alternatively, 87 could also be prepared in one 

single step by treatment of octylguanidinium hemisulfate with di-tert-butyl 

dicarbonate in alkaline medium (65% yield) (Fig. 4.24). Thus, this method 

offers the possibility to extend the family of studied carboxyguanidines 

(introduction of chirality might also be considered). Octyl group was 

introduced to enable full solubility of the product; unfortunately, 24b only 

proved soluble in dichloromethane. 

 

                                                 

19 a) Goodman, M.; Feichtinger, K.; Romoff, T.T. PCT Int. Appl. 1998, WO 9852917. b) 

Feichtinger, K.; Zapf, C.; Sings, H.L.; Goodman, M. J. Org. Chem. 1998, 63, 3804. 
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Fig. 4.24: Synthesis of N-Boc-N’-octylguanidine 87. 

 

4.3 Mixing the ligand libraries with metals.  

 

4.3.1 Monodentate functionalized ligands. 

 

4.3.1.1 Complexation studies for 20a-c. 

 

 Since 20a and 20c are poorly soluble in common organic solvents, 

complexation experiments were mainly performed with 2-thioureidopyridyl 

derivative 20b, also because thiourea derivatives are widely used in 

organocatalysis.20 Complexes were prepared by mixing stoichiometric 

amounts of 20b, the chiral ligand, and metal salt. Fast ligand exchange at 

the NMR time scale prevented to assess for the exclusive formation of the 

desired heteroleptic complex. In a first series of experiments, complexation 

                                                 

20 Connon, S. J. Chem. Eur. J. 2006, 12, 5419. 
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of 20b and iPr-Pybox with ZnCl2 was studied. Up to three species were 

likely to form, given the versatile coordination sphere of Zn(II). First, an 

entropically favored complex made of two tridentate iPr-Pybox ligands 

surrounding the hexacoordinated metal was expected. On the other hand, 

20b is also likely to act as a bidentate ligand since the soft sulfur atom is an 

excellent transition metal binder. 20b might therefore bind the metal 

through the heteroaromatic nitrogen and the sulfur atom (enthalpically 

favored), giving rise to either a tetracoordinated (ZnCl2(20b)2) or a 

pentacoordinated (ZnCl2(20b)(iPr-Pybox)) metal center. 

 

 

 

  

Fig. 4.25: 1H NMR complexation experiment of 20b, iPr-Pybox and ZnCl2 

 

(a)
 
 
 
(b)
 
 
(c)
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 As shown above, every signal of each ligand was shifted upon addition 

of the metal salt (downfield shifts were observed in most cases), suggesting 

that both 20b and iPr-Pybox are bound to the metal. However, no specific 

contacts between these two species were detected by 2D NMR experiments 

(COSY, NOESY). 

 

 Since the chloride anion was expected to form hydrogen bonds with the 

thiourea group, preparation of the complex with Zn(OAc)2 and Zn(BF4)2 

was also investigated. Indeed, structurally different, well defined species 

were obtained. However, in the case of tetrafluoroborate, broad peaks and 

undefined species were observed on the spectrum, probably due to the 

formation of a bridged dimeric zinc complex in the cases of metal binding 

anions (chloride, acetate). The NMR spectra would therefore correspond to 

a mixture of ZnX2(iPr-Pybox)2 and ZnCl2(20b)2 (both enthalpically and 

entropically favoured related to the desired ZnCl2(20b)(iPr-Pybox) 

complex) (Fig. 4.26). This hypothesis was further supported by the lack of 

catalytic activity of the system (see Section 4.4). 

 

 Similar experiments were then undertaken, replacing iPr-Pybox by (R)-

BINOL. Again, NMR signals of 20b varied siginificantly depending on the 

metal salt (acetate or tetrafluoroborate), suggesting that for acetate a 

bridged zinc dimer was likely. 
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a) 

 

 
b) 

 

 
Fig. 4.26: a) Influence of the counterion on complex formation; b) Potential 

mixtures of complexes with Zn(II). 
 

 Copper (I), bearing a tetrahedral environment, was subsequently 

studied. The NMR spectra in the presence of CuI were similar as for Zn(II), 

each ligand binding the metal. Upon addition of acetylacetonate, signals of 

20b did not change significantly, suggesting that the hydrogen bonding 

pocket was deactivated (Fig. 4.27). 

20b 
20b+iPr-Pybox+Zn(BF4)2 

 

 
20b+iPr-Pybox+ZnCl2 

 
 

20b+iPr-Pybox+Zn(OAc)2 

 

[ppm] 12  11  10  9  8 [ppm] 12  11  10  9  8 
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Fig. 4.27: Potential mixture of complexes with Cu(I). 
 

 In conclusion, Zn(II) and Cu(I) are not suitable metals for the formation 

of the desired heteroleptic complex. Additionally, these observations 

proved that a 2-pyridyl spacing group was not suitable for our purpose, 

since sulfur coordination to the metal was facilitated by the proximity of the 

pyridine lone pair. This coordination mode of 20b has been reported in the 

literature.21 For this reason, other functionalized ligands bearing longer 

spacers, such as isoquinoline, were evaluated. 

 

4.3.1.2 Complexation studies with 21a-b. 

 

 Complexation of 21a and Ph-Pybox with Cu(MeCN)4(PF6) was studied 

by 1H NMR. This Cu(I) source was chosen because of its non coordinating 

anion, to avoid formation of the anion bridged copper dimer previously 

observed with 20b. Addition of 21a or 21b to the mixture of Ph-Pybox and 

                                                 

21 Fan, Y.; Lu, H.; Hou, H.; Zhou, Z.; Zhao, Q.; Zhang, L.; Cheng, F. J. Coord. Chem. 

2000, 50, 65. 
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copper (I), resulted in a precipitate showing broad peaks in the 1H NMR 

spectrum belonging to Ph-Pybox, which means that Cu(Ph-Pybox)2(PF6) 

was formed. The following scheme was then considered (Fig. 4.28): 

 

 

 
 

Fig. 4.28: Proposed mixture of complexes obtained with Cu(MeCN4)(PF6), 
21a and Ph-Pybox. 

 

Similar experiments were undertaken with thioureas 21b1, 21b2, and 

21b3, without significant changes with respect to 21a. Equimolar amounts 

of Ph-Pybox and tetrakis-(acetonitrile)copper(I) hexafluorophosphate were 

mixed in dry CH2Cl2 at room temperature, and then one equivalent of tert-

butyl thiourea derivative 21b2 was added. A yellow precipitate was formed 

immediately, and its MS analysis suggested that both the nitrogen and 

sulfur atoms of 21b2 were bound to copper. The remaining brown solution 

was probably made of Cu(Ph-Pybox)2, (a Ph-pybox + sodium signal was 

observed in ESI+-MS). No changes were observed upon adition of another 

halide, such as bromide. When experiments were performed with 21b1 or 

21b3, identical results were observed (Fig. 4.29).  
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Precipitation of the Cu(21b)2(PF6) complex shifted all equilibria and 

Cu(Ph-Pybox)2(PF6) was obtained in the remaining solution, which also 

explains that addition of anions to the system (to prevent sulfur 

coordination by modifying the electronic properties of the thiourea ) caused 

no changes. In conclusion, O and S atoms of the H-bonding moiety were 

shown to mainly coordinate to the metal. Furthermore, a similar experiment 

with the parent isoquinoline heterocycle (iq) instead of 21b2 revealed 

(MALDI) the formation of Cu(Ph-Pybox)2(PF6) (Fig. 4.30).  

a) b) 

 

 

 
Fig. 4.29: Mixture of 21b2, Ph-Pybox and Cu(I): a) Proposed reaction 

sequence; b) MALDI (dtcb) spectrum of the precipitate. 
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Fig. 4.30: Control experiment with isoquinoline. 

 

This control experiment underlines another important challenge to deal 

with, namely the entropic cost of using a monodentate instead of a 

preorganized tridentate ligand. This is why the desired Cu(iq)(Ph-pybox) 

complex is not observed and the Cu(Ph-pybox)2 is formed instead, even in 

the presence of a competitive solvent. This set of experiments with Cu(I) 

revealed that this metal is not suitable for our goal with 21a-21b.  

 

Complexation experiments of 21a-21b and Ph-Pybox with Zn(II) were 

then performed, though the situation was identical as for Cu(I) (Fig. 4.31). 

Zn(II) was chosen for its known ability to coordinate between 4 and 6 

ligands, a versatile behavior that makes it quite attractive for our 

applications. The desired complex was actually formed with Zn(II) (entry 

2), but sulfur coordination is likely, according to the first experiment (entry 

1). Furthermore, formation of the pybox dimer is likely prevailing. 

 

 

 

NO

N N

O

Ph Ph

NO

N N

O

Ph Ph
Cu

Molecular Weight: 802,38

801.2 
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Entry X Conditions Results 

1 OAc 
MeCN, MeOH, 

1 eq. 21b2, 
1 eq Zn(OAc)2 

 
Zn(21b2)2: MALDI-MS (dtcb) 

m/z calc. 582.1; obt. 582.2  
 

2 OAc Ph-Pybox, MeOH, 
21b2 

 
Zn(21b2)(Ph-Pybox): MALDI-MS (dtcb) ª 

m/z calc. 693.2; obt. 691.3 
Zn(Ph-Pybox)2: MALDI-MS ª (dtcb) 

m/z calc.804.2; obt. 802.3  
 

3 Br TBABr*, 21b2, 
MeOH, Ph-Pybox 

Crystallization of pybox dimer (detected by 1H 
NMR): integrals of pybox signals decrease 

with time. 
ª Peaks of [M+] and [(M+OH) +] were obtained, data for [M+] are shown. 

Fig. 4.31: Summary of results for complexation of 21b2 and Ph-Pybox 
with Zn(II). 

 

  Finally, ruthenium (II) was evaluated, taking into account literature 

precedents with other N-heterocyclic ligands (a tridentate ligand and a 

monodentate one).22 This metal also opens the way to catalytic C-H 

activation reactions, such as epoxidations. 

 

A control experiment with isoquinoline was first performed, and 

formation of trans-RuCl2(iq)(Ph-Pybox), as well as isolation of the 

complex, was achieved in 77% yield. The mode of coordination, as 

determined by 1H NMR, was assigned to a C2 symmetry trans one reflected 

                                                 

22 Hua, X.; Shang, M., Lappin, G. A. Inorg. Chem. 1997, 36, 3735. 
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in the 1H NMR spectrum by a single set of signals for the Ph-pybox phenyl 

rings. In the alternative cis coordination, both phenyl rings are in different 

chemical environments and are therefore expected to give rise to different 

sets of signals (Fig. 4.32). The resulting complex proved to be easy to 

handle and stable enough to be purified by chromatography. 

a) 
 

 

b) c) 

  
 

Fig. 4.32: a) Synthesis of trans-RuCl2(iq)(Ph-Pybox); b) MM2 model 
(Chem3D) of the cis-RuCl2(iq)(Ph-pybox) complex; c) aromatic region of 

the 1H NMR spectrum of trans-RuCl2(iq)(Ph-Pybox). 
 

Such encouraging results prompted us to investigate the complexation 

with 21a-b, under various conditions (Fig. 4.33).  
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Entry Conditions MALDI-MS  

1 
21b3, Ph-Cl-Pybox, 

CH2Cl2, MeOH, 2 days, 
room temperature 

[Ru(21b3)(p-cymene)]+: 650 
[RuCl2(21b3)(Ph-Cl-Pybox)]+: 990 

[[RuCl(Ph-Cl-Pybox)]2(p-cymene)]+: 1216 

2 21b3, Ph-Cl-Pybox, 
THF, refl., overnight 

Complex mixture (12 peaks): 
[RuCl(21b3)(Ph-Cl-Pybox)]+: 954  

[Ru(21b3)(p-cymene)]+: 650 

3 21b2, Ph-Pybox, 
CH2Cl2, refl. 4 h 

HPLC-MS1: RuCl2(21b2)(Ph-Pybox) detected in a 
very low amount, [RuCl2(Ph-Pybox)2] as a major 

compound 

4 
21b2, Ph-Pybox, 

CH2Cl2, room 
temperature, 5 days 

[RuCl2(Ph-Pybox)2]+: 875.2 
[RuCl(Ph-Pybox)2]+: 840.2 

[RuCl2(21b2)(Ph-Pybox)]+:800.1 
[RuCl(21b2)(Ph-Pybox)]+:765.1 
[Ru(21b2)(Ph-Pybox)]+:729.2 

1092 (not identified) 

5 
21b2, Ph-Pybox, 

TBA.AcO-, CH2Cl2, 
room temperature, 1 h 

HPLC-MS: RuCl2(21b2)(Ph-Pybox) detected in a 
very low amount, [RuCl2(Ph-Pybox)2] as a major 

compound 

6 
21b2, Ph-Pybox, 

TBA.Cl-, CH2Cl2, room 
temperature, 5 days 

[RuCl2(Ph-Pybox)2]+: 875.2 
[RuCl(Ph-Pybox)2]+: 840.2 

[RuCl2(21b2)(Ph-Pybox)]+:800.1 
[RuCl(21b2)(Ph-Pybox)]+:765.1 
[Ru(21b2)(Ph-Pybox)]+:729.2 

7 
21a, Ph-Pybox, 
CH2Cl2, room 

temperature, 7 days 

[RuCl2(Ph-Pybox)2]+: 875.2 
[RuCl(Ph-Pybox)2]+: 839.2 

[RuCl2(21a)(Ph-Pybox)]+:784.2 
 

Fig. 4.33: Summary of results for complexation of 21a-b with Ru(II). 
 

Typically, stoichiometric amounts of ligands and the metal precursor 

were mixed and analyzed, after solvent elimination, either by mass 

spectrometry (MALDI, pyrene as a matrix) or by HPLC-MS techniques. In 
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most cases, formation of the desired heteroleptic complex RuCl2(21a-

b)(Ph-Pybox) was observed, though the RuCl2(Ph-Pybox)2 species was 

always formed too. Numerous attempts to purify these crude reaction 

mixtures by column chromatography were unsuccessful, however. 

Furthermore, HPLC analysis of the reaction mixtures after a few hours of 

reaction revealed that RuCl2(Ph-Pybox)2 forms quickly, and is therefore 

likely to be the kinetic product (larger reaction times do not allow the 

exclusive formation of RuCl2(21a-b)(Ph-Pybox). For these reasons, it was 

decided to explore new synthetic routes, preparing the complex in a 

stepwise fashion. 

 Initially, formation of RuCl2(21b2)(p-cymene) was attempted. It was 

indeed expected that this complex might lead to the desired heteroleptic 

complex upon treatment with Ph-Pybox (Fig. 4.34).  

 

 

 
Fig. 4.34: Preparation of RuCl2(21b2)(p-cymene).  
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The intermediate complex was easily formed as seen on the 1H NMR 

spectrum of the crude mixture and by MALDI-MS analysis. However, upon 

treatment with Ph-Pybox, a crude mixture of RuCl2(Ph-Pybox)2 and 

RuCl2(21b2)(Ph-Pybox) was obtained, indicating that a rapid equilibration 

was taking place. On the other hand, according to a literature precedent, the 

formation of RuCl2(Ph-Pybox)2 was expected to be inhibited by the 

trapping of Ph-Pybox in a complex formed in presence of carbon 

monoxide: RuCl2(Ph-Pybox)(CO).23 Treatment of this complex with 21a-b 

should lead to the desired complex. Unfortunately, although the RuCl2(Ph-

Pybox)(CO) complex was successfully formed, it could not be purified by 

chromatography. The procedure was also hardly reproducible (Fig. 4.35). 

 

 

 
Ligand MALDI-MS (g.mol-1) 

21a 

[RuCl2(Ph-Pybox)2]+: 875.2 
[RuCl(Ph-Pybox)2]+: 840.2 

[RuCl2(21a)(Ph-Pybox)]+: 784.6 
[RuCl(2a)(Ph-Pybox)]+ and [Ru(2a)(Ph-Pybox)]+ 

[RuCl2(Ph-Pybox)(p-cymene)]: 680.5 

21b2 [RuCl(21b2)(Ph-Pybox)]+:764.2 
[Ru(2b2)(Ph-Pybox)]+:729.2 

 
Fig. 4.35: Preparation of RuCl2(21a-b2)(Ph-Pybox) from RuCl2(Ph-

Pybox) (CO) 
                                                 

23 Nishiyama, H.; Itoh, Y.; Matsumoto, H.; Park, S.-B.; Itoh, K. J. Am. Chem. Soc. 1994, 

116, 2223. 
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Remarkably, this approach resulted in a significantly lower amount of 

RuCl2(Ph-Pybox)2 formed, according to peak intensities on mass spectra 

relative to previous experiments. However, during the course of the 

experiment performed with 21b2, a compound crystallized and appeared to 

be a metallo-macrocyclic dimer: [RuCl(21b2)(p-cymene)]2. This 

unexpected compound was actually also present on the mass spectrum of 

previous experiments ([M-2Cl]+: 1092 g.mol-1) (Fig. 4.36). 

a) 

 

 

 

b) 

 

 
 

Fig. 4.36: a) X-ray structure of the obtained metallo-macrocyclic dimer 
[RuCl2(21b2)(p-cymene)]2; b) Equilibria with Ru(II). 
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From this set of experiments with Ru(II), it must be concluded that the 

desired complex was successfully formed under some conditions but, due to 

entropic and enthalpic reasons, a mixture of ligands equilibrates to a 

mixture of complexes that could be described as a pybox dimer 

(entropically favored), and a thioureidoisoquinoline dimer. Isolation of the 

desired complexes could therefore not be achieved. It was then expected 

that guanidinium derivatives such as 21c would not give rise to 

coordination of the heteroatom of the H-bonding moiety to the metal (as 

observed for 21a-b) because of its positive charge. 

 

4.3.1.3 Complexation studies for 21c. 

 

 The poor solubility of 21c in common organic solvents did not enable 

us to check a wide range of complexes formation. As previously described 

with 20b and 21a-b, experiments with Zn(II), Pybox derivatives and 21b-c 

were performed. When compounds 21c (Cl-) and Ph-Cl-Pybox were mixed 

in the presence of a stoichiometric amount of zinc(II) tetrafluoroborate in 

dry methanol, some crystals of Zn(Ph-Cl-Pybox)2(BF4)2 developed, as 

shown below (Fig. 4.37a). This shows that carboxyguanidinium 21c is not a 

good enough ligand to overcome formation of this undesired side complex, 

which could be attributed to the electron withdrawing nature of the 

carboxyguanidinium group that lowers the donating ability of the pyridine 

ring of 21c. A similar experiment was then performed with CoCl2 as metal 

salt, and a dimer of the Pybox derivative was then crystallized, which 

confirmed that 21c is a poor ligand (Fig. 4.37). Under the same conditions, 

complexation with CuI was studied by 1H NMR and signals of 21c did not 
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suffer significant chemical shifts, suggesting that no coordination took 

place, and therefore CuI(Ph-Cl-Pybox) was formed. 

a) 

 

 
b) 

 

 
Fig. 4.37: Complexation experiments of 21c (Cl-) and Ph-Cl-Pybox and X-

ray structure of a) Zn(Ph-Cl-Pybox)2(BF4)2 ; b) CoCl2(Ph-Cl-Pybox)2.  
 

 Complexation experiments with Ru(II) were then investigated, as for 

21a-b. Different guanidinium counterions were studied and the crude 

mixtures were analyzed by HPLC-MS. When the reaction was performed 

with 21c (Cl-), up to 56% of [RuCl2(21c)(Ph-Cl-Pybox)]Cl- was formed 

(Fig. 4.38), whereas in the case of 21c (PF6
-), 48% of the crude mixture was 

made of the desired complex. However, purification of the complex by 

column chromatography proved difficult and could only be achieved once. 

The complex was characterized by 1H NMR and mass spectrometry. 

N

N
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O
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Fig. 4.38: Preparation of of [RuCl2(21c)(Ph-Cl-Pybox)]Cl-. 

 

 In order to simplify the procedure and the purification, preparation of 

the complex from [RuCl2(Ph-Pybox)(CO)] was investigated, under the 

same conditions as for 21a-b. MS-MALDI analysis of the crude reaction 

mixture showed that compound did form along with RuCl2(Ph-Pybox)2. 

The results observed with 21c reveal that no guanidinium coordination of 

the guanidine to the metal was detected. 

 

 The formation of this side product was in every case a real drawback 

since separation of the formed complexes could hardly be achieved. This 

side complex could arise from the binding of the heteroatom of the H-

bonding subunit (for 21a-b), the poor electron donating nature of 21c and 

thermodynamic factors: formation of RuCl2(Ph-Pybox)2 is favoured over 

the heteroleptic complex since Ph-Pybox is a tridentate ligand. For these 

reasons, it was decided to study bidentate ligands, which were expected to 

overcome some of the encountered difficulties. 
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4.3.2 Bidentate functionalized ligands 24a-d. 

 

 For these bidentate ligands, formation of Zn(II) and Ru(II) complexes 

was only studied. In a first series of experiments, complexation of 24b(Cl-) 

with Zn(II) salts in THF was studied by UV-Vis titrations. This bidentate 

ligand was highly soluble in common organic solvents, unlike with 24a, 

24c, and 24d. Job Plot experiments for the complexation of 24b(Cl-) with 

Zn(BF4)2 and Zn(OAc)2 nicely showed a 1:1 stoichiometry, though other 

stoichiometries were also expected. UV-Vis titrations were then performed 

in THF with different metal salts (Fig. 4.39).  
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ZnX2 K (M-1) 

Zn(BF4)2 4.04.104 

Zn(OAc)2 2.4.105 

ZnCl2 2.52.105 
 

e) ZnCl2 f) Binding constants 

 
Fig. 4.39: UV-Vis titrations of 24b(Cl-) with Zn(II) salts: a), b) Job Plots; 
c-f) Titration curves and binding constants for a 1:1 stoichiometry (fitting 

performed with SPECFIT®). 
 

 As shown above, the binding constant for the 1:1 complex depends on 

the counterion associated to the metal. For chloride and acetate, the 

constant is one order of magnitude higher than with non coordinating 

anions, such as tetrafluoroborate. With both acetate and chloride, binding 

constants were similar, likely by formation of a bridged dimer: 

Zn2(Cl)2(24b)2(X)2 (X = Cl or OAc). In the case of zinc tetrafluoroborate, 

this bridged dimer could also be formed, since 24b(Cl-) was also a source 

of chloride anions. In that case, however, a competitive binding of chloride 

between the guanidinium and the metal is favored (H-bonding), which 

might be at the origin of the observed differences in binding constants (Fig. 

4.40a). This was confirmed in the X-ray crystal structure of the 2:1 complex 

formed by 24b(Cl-) and Zn(BF4)2, for which such a bridged structure was 
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observed (Fig. 4.40b).24  

 

 
a) b) 

Fig. 4.40: a) Possible complex between 24b(Cl-) and ZnX2; b) Poorly 
resolved X-ray structure of Zn2Cl2(24b)4(BF4)2. 

 

Complexation experiments with Zn(II) were not pursued, since 

formation of the heteroleptic complex with a chiral ligand would also 

compete with the bridged dimer formation and the dimer of the chiral 

ligand, as previously observed with monodentate ligands.  

 

                                                 

24 Versatility of the coordination sphere of Zn(II) enables to construct complexes of 

various stoichiometries. This complex was obtained by mixing two equivalents of 24b(Cl-) 

with one equivalent of Zn(BF4)2. Crystals were grown in MeOD. Structure could not be 

fully resolved due to the high disorder brought by the octyl chain. 
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 As for monodentate ligands in the case of Ru(II), a control experiment 

was performed with 2,2’-bipyridine (bpy). After treatment of Ph-Pybox 

with [RuCl2(p-cymene)]2 in dichloromethane, a solution of bpy in ethanol 

was added and mixture was refluxed overnight, which afforded 

[RuCl(bpy)(Ph-Pybox)]PF6 in 69% yield after column chromatography, 

following a previously described procedure.22 The compound was fully 

characterized by 1H NMR and cyclic voltammetry. The Ru(III)/Ru(II) 

reduction potential was 0.71V in CH2Cl2. This compound was then treated 

with silver(I) trifluoromethanesulfonate in presence of water in order to 

replace the chloride by a water ligand, affording [Ru(H2O)(bpy)(Ph-

Pybox)](PF6)2 in 57% yield after recrystallization (Fig. 4.41).  

 

.
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Fig. 4.41: a) Synthesis of [Ru(H2O)(bpy)(Ph-Pybox)](PF6)2; b) Redox 
equation for [Ru(H2O)(bpy)(Ph-Pybox)](PF6)2. 

 

 This complex was used as a pre-catalyst in epoxidation reactions (see 

Section 4.4), and its redox behaviour was therefore studied, since this 

process involves a Ru(IV) oxo species. A study by cyclic voltammetry of 

the reduction potential for Ru(IV) to Ru(II) at neutral pH of the prepared 

complex surprisingly showed that the transitory Ru(III) species could not 

be detected, indicating that the process goes directly from Ru(II) to Ru(IV). 

The measured potential for that oxidation was 0.46V.  

 

  
 

 

 

 

 

 

 

 

 

Fig. 4.42: UV-Vis pKA determination of [Ru(H2O)(bpy)(Ph-
Pybox)](PF6)2 

 

pKA = 9.65 ± 0.06
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 The pKA of the water proton was then measured by UV-Vis 

spectroscopy by dissolving first the [Ru(H2O)(bpy)(Ph-pybox)](PF6)2 in a 

trifluoromethanesulfonic acid solution, followed by a slow addition of 

aqueous NaOH. The optical properties of the hydroxo complex differ from 

those of the aquo ones. This enables an accurate determination of the pKA 

of these protons (Fig. 4.42). With guanidinium functionalized ligands, 

intramolecular H-bonding between the guanidinium group and the water 

molecule is expected to modify significantly the value of this pKA. 

 

 Given the efficiency of this procedure for the control experiment, 

similar reaction conditions were investigated for the formation of the 

heteroleptic complex of 24a-d. However, as was observed for 21c, 

reactions with the functionalized ligands were not as clean as for the model 

experiments. Furthermore, with 24a-b (monofunctionalized bipyridyl 

derivatives), a mixture of stereoisomers was expected, since the 

guanidinium group could either face the Ru-coordinated chloride atom or 

be located at the other side of the complex, in a non-productive manner (in 

terms of a potential catalyst), as shown below (Fig. 4.43). 25 For this reason, 

difunctionalized bipyridyl derivatives 24c-d were prepared and 

investigated, since only one (productive) configuration can result. 

Unfortunately, difunctionalized compounds 24c and 24d were insoluble in 

the studied solvents, resulting in complex mixtures that could not be 

                                                 

25 Slow ligand exchange rate around Ru(II) center was expected to prevent the 

reorganization of the ligands and isolation of the thermodynamically most stable isomer.  
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purified, probably due to product degradation. The 1H NMR spectra of the 

crude reaction mixtures were too complex to allow identification of the 

formed species. Similarly, experiments performed with 24a-b (either 

protonated or not) gave rise to mixtures of products (as seen by TLC), 

which could not be separated by column chromatography. The desired 

complex could however be detected by mass spectrometry in the case of 

24b. Its isolation was unsuccessful. 

 

 

 
 

Fig. 4.43: Heteroleptic complexes and their possible stereoisomers. 
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4.4 Catalysis experiments (preliminary results). 

 

4.4.1 Monodentate ligands. 

 

 Though structures of the formed complexes could hardly be determined 

by spectroscopic methods, model catalysis experiments were performed in 

order to test the efficiency of these systems. Given the high efficiency of 

thiourea derivatives in terms of catalytic activity, emphasis was first laid on 

thiourea 1b, since transition state stabilization was expected.26 In a first 

attempt, inspired by the results described in the previous chapter, 1,4-

addition of pyrrolidine to 2-5H-furanone was investigated, in the presence 

of tin (IV), 1b and (R)-BINOL. H-bonding ligand and Lewis acid were 

chosen for cooperative transition state stabilization and substrate activation, 

whereas (R)-BINOL was used for asymmetry induction. Catalytic system 

was formed in situ. Results suggest that catalytic system does not take part 

in the reaction, since low yields and no ee are obtained.27 

 

 

 
 

                                                 

26 Example for the aza-Henry reaction: Xu, X.; Furukawa, T.; Okino, T.; Miyabe, H.; 

Takemoto, Y. Chem. Eur. J. 2006, 12, 466. 
27 Reactions were stopped after 2 hours, at less than 100% conversion and product was 

isolated by column chromatography, which accounts for the low yields. 
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(R)-BINOL 1b  SnCl4 yield (%) optical rotationª 

10 mol% 10 mol% 10 mol% 25 - 

20 mol% 10 mol% 10 mol% 20 - 

20 mol% - 10 mol% 35 - 

- - - n.m. - 

ª measured by polarimetry in CHCl3 (c = 5) after column chromatography. 
 

Fig. 4.44: Towards asymmetric hetero-Michael reactions. 
 

 This non catalyst activity might be due to some poisoning of the metal 

by 1b (sulfur coordination, as discussed previously), that deactivates both 

metal and H-bonding moiety, thus rendering the activation inefficient, 

which lead to no asymmetry induction. Formation of the desired 

heteroleptic complex therefore did not take place. This catalytic process 

was therefore not further investigated. Acidity of used tin(IV) chloride 

solution might also be in cause. 

  

 Baylis-Hillman reaction of benzaldehyde with methyl vinyl ketone was 

also investigated in presence of 10 mol% i-Pr-Pybox, 1b and a metal salt 

(Cu(I) or Zn(II)) and 20 mol% of a base (DMAP or DABCO). However, 

the process proved not to take place under the studied conditions for the 

same reasons (sulfur coordination to the metal is likely to take place and to 

poison the metal). Furthermore, catalytic base is also likely to bind the 

metal, which prevents the reaction from occurring. However with CuI and 

DMAP as a base, up to 10% yield could be obtained, though no ee could be 

detected by polarimetric measurements after product purification by column 

chromatography, which suggests that this conversion has to be attributed to 
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the sole action of the base (DMAP) as a background reaction. 

 

 

 
Fig. 4.45: Baylis-Hillman reaction. 

 

 These preliminary experiments performed with monodentate ligands 

suggest that some heteroatom coordination to the metal from the H-bonding 

moiety tended to poison the metal and to deactivate the catalytic system, 

which resulted in the non formation of the expected heteroleptic complex. 

For this reason, it was decided to investigate preorganized functionalized 

bidentate ligands in order to avoid this undesired heteroatom coordination 

(guanidinium is also expected not to bind the metal, as observed for 

thiourea derivatives). 

 

4.4.2 Bidentate ligands.  

 

 For solubility reasons, 24b was the only bidentate functionalized ligand 

suitable for catalysis experiments. Emphasis was concentrated on reactions 

on olefins (epoxidation,28 cyclopropanation,29 and aziridination30). 

                                                 

28 a) Tse, M. K.; Bhor, S.; Klawonn, M.; Anilkumar, G.; Jiao, H.; Doebler, C.; 

Spannenberg, A.; Maegerlein, W.; Hugl, H.; Beller, M. Chem. Eur. J. 2006, 12, 1855. b) 

Tse, M. K.; Bhor, S.; Klawonn, M.; Anilkumar, G.; Jiao, H.; Spannenberg, A.; Doebler, C.; 

Maegerlein, W.; Hugl, H.; Beller, M. Chem. Eur. J. 2006, 12, 1875. 
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Molecular recognition of carboxylic acids through the guanidinium group 

of the ligand might therefore enable to functionalize unsaturated fatty acids 

regioselectively, or even stereoselectively, which leads to interesting 

targets, such as chiral hydroxyacids, aminoacids and functionalized 

cyclopropanes. 

 

In collaboration with Prof. A Llobet’s group (ICIQ),31 epoxidation of 

olefins catalyzed by [Ru(H2O)(bpy)(Ph-Pybox)](PF6)2 was first studied. 

Initially, the efficiency of the catalyst was tested in a model reaction, 

namely the epoxidation of cis-β-methylstyrene in the presence of 

iodosobenzene diacetate (stoichiometric amount of PhI(OAc)2) as oxidizing 

agent to transform the Ru(II)(H2O) species into the catalytically active 

Ru(IV)(O). Cyclic voltammetry showed that this transformation does not 

go through a Ru(III)(OH) state (not observed), or that this state has a very 

short lifetime, which is quite unusual for this kind of complexes (Fig. 4.46). 

 

 

 

                                                                                                                           

29 a) Lyle, M. P. A.; Draper, N. D.; Wilson, P. D. Org. Biomol. Chem. 2006, 4, 877. b) 

Bouet, A.; Heller, B.; Papamicael, C.; Dupas, G.; Oudeyer, S.; Marsais, F.; Levacher, V. 

Org. Biomol. Chem. 2007, 5, 1397. 
30 Mohr, F.; Binfield, S. A.; Fettinger, J. C.; Vedernikov, A. N. J. Org. Chem. 2005, 70, 

4833. 
31 Dr. F. Bozoglian, Institut Català d’Investigació Química (ICIQ), Tarragona. 
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Fig. 4.46: GC-monitored model epoxidation of cis-β-methylstyrene 
catalyzed by [Ru(H2O)(bpy)(Ph-Pybox)](PF6)2. 

 

 This catalyst should lead to retention of the olefin configuration. Ru(III) 

complexes indeed present a d5 electron configuration and therefore have a 

non-filled orbital, giving rise to free rotation of the ligands in the metal 

coordination sphere, whereas Ru(II) (d6) and Ru(IV) (d4) present filled 

orbitals, thus preventing such rotation. However, after 24 hours, little 

conversion was achieved and a low turnover number (TON) of 15 could be 

obtained, which indicates that the catalyst is poorly active, though selective. 

Encouraged by these results, further model reactions were performed with 

guanidinium carboxylates of unsaturated acids, in order to check that the 

guanidinium group could resist the reaction conditions. For this purpose, 

compounds 88-90 were prepared, following a similar procedure as for 21c 

and 24a-d. Anion was exchanged through Dowex resins equilibrated for the 

studied carboxylates (Fig. 4.47).  

The substrates were then submitted to epoxidation, as for the model 
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reaction. After 24 hours, reaction mixtures were acidified with TFA and 

analyzed by GC-MS. As expected, no reaction took place (not detected by 

GC) in the case of butyrate 88 (negative control). In the cases of crotonate 

89 and vinyl acetate 90, small new peaks appear on the GC chromatograms 

(at 5.58 min and 5.98 min respectively), identified as the corresponding 

epoxides. TONs were not calculated (peaks quantification and calibration 

were not performed). Further experiments, currently ongoing, are required 

to check the results and to obtain more accurate data.  

 

a) 

 

b) 
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c) 
 

 

 

(i)  

 

(ii)

 

 

 

 

 

 

(iii)

 

 

 
Fig. 4.47: a) Synthesis of 88-90; b) Catalysis experiments performed on 88-

90; c) Chromatograms after acidification.  
 

  However, these preliminary results show that process is likely to work 

with functionalized ligands such as 24b, since the guanidinium group did 

not affect the reactivity (the corresponding complex could unfortunately not 

be prepared so far). 

O OH
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 Another reaction investigated was the copper(I) catalyzed 

cyclopropanation of unsaturated carboxylic acids. In the presence of Cu(I), 

ethyl diazoacetate forms a copper carbene complex, that is prompt to add to 

a double bond, giving rise to the corresponding cyclopropane. However, a 

side reaction of the metallocarbene with ethyl diazoacetate yields diethyl 

fumarate. This can be often prevented by slow addition (via syringe pump) 

of ethyl diazoacetate to a solution of the copper complex and the olefin 

substrate. cis-β-Methylstyrene was selected to optimize the conditions of 

reaction (Fig. 4.48).  

 

 

 
Ligand Cu(I) source yield (%) 

bpy Cu(OTf)2, 2,4-dinitrophenylhydrazine n.m. a 

bpy [Cu(MeCN)4]PF6 46 b 

24b [Cu(MeCN)4]PF6, phenylhydrazine n.m. c 

24b (PF6
-) [Cu(MeCN)4]PF6 n.m. d 

24b (Cl-) Cu(OTf)2, 2,4-dinitrophenylhydrazine 16 b 
a Product seen on the NMR and MS spectra of crude, b After isolation by 
column chromatography, c Product/starting material ratio = 0.05 in crude 
(NMR basis), d Product/starting material ratio = 0.22 in crude (NMR basis). 
 

Fig. 4.48: Optimization of the conditions of the cyclopropanation reaction 
of cis-β-methylstyrene with ethyldiazoacetate catalyzed by Cu(I) 

complexes. 
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 Though some control experiments were missing, our results showed 

that the carboxyguanidinium group of 24b does not interfere to a great 

extent the outcome of the reaction, since the product was detected in each 

case. This series of experiments proved actually that the choice of the Cu(I) 

source was essential. Indeed, use of Cu(II) and a reducing agent such as a 

phenylhydrazine derivative afforded poorly reproducible results. In all 

cases, oxidation of Cu(I) to Cu(II) was observed and the reaction proved 

sensitive to air and moisture. Unfortunately, overlapping of relevant signals 

on the 1H NMR spectra (entry 2) precluded to accurately determine the 

diastereoselectivity of the reaction, though the overall spectrum does not 

show splitted signals (which suggests at least a 95% diastereoselective 

process: retention of olefin configuration is likely). Thus, the process was 

investigated with unsaturated carboxylic acid salts (vinylacetic and crotonic 

acids) (Fig. 4.49).  

a) 

 

 
 

Ligand conditions yield 

24b (Cl-) Cu(OTf)2, 2,4-dinitrophenylhydrazine, slow addition 
of crotonic acid and ethyl diazoacetate (2/1 ratio) n.m. 

24b [Cu(MeCN)4]PF6, slow addition of crotonic acid and 
ethyl diazoacetate (2/1 ratio) 56 

24b slow addition of crotonic acid and ethyl diazoacetate 
(1/1 ratio) No reaction 

bpy [Cu(MeCN)4]PF6, slow addition of ethyl diazoacetate 
(2/1 ratio crotonic acid/ethyl diazoacetate) 60 

24b [Cu(MeCN)4]PF6, slow addition of 1 eq. crotonic acid 
to 1 eq. ethyl diazoacetate 

diethyl 
fumarateª 

ª result of the self-reaction of ethyl diazoacetate with Cu(I). 
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b) 

 

c) 

 

 
 
Fig. 4.49: Results for the cyclopropanation reaction of a) crotonic acid; b) 
vinylacetic acid; c) Proposed path for the observed esterification process. 

 

Since a strong interaction between the carboxylic acid substrates and the 

metal was expected, unsaturated carboxylates were also added via syringe 

pump in order not to destroy the [Cu(24b)] complex. It was however 

surprising to observe that, in the presence of Cu(I) and any 2,2’-bipyridyl 

ligand (whether functionalized or not), cyclopropanation did not take place 

and an esterification reaction was occurring instead. Likely, formation of 

copper carboxylate is faster than the metallocarbene complex formation 

(Fig. 4.49c). Up to 60% yield for the isolated ester could be obtained after 

column chromatography. Similar results were obtained with vinylacetate.  
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 In order to avoid these side-reactions (esterification and formation of 

diethyl fumarate), it was then decided to study the related Cu(I) catalyzed 

aziridination of unsaturated acids. Following a similar approach, reactivity 

of cis-β-methylstyrene was first studied, as shown in Fig. 4.50. 

 

 

 
Ligand Outcome 

bpy Oxidation to Cu(II) 

24b Product isolated by column chromatography but still impure (yield not 
measured) 

24b (PF6-) Product isolated by column chromatography but still impure (yield not 
measured) 

 
Fig. 4.50: Aziridination of cis-β-methylstyrene catalyzed by Cu(I). 

 
 Although the yield of the reaction was not measured, the product could 

be successfully isolated and identified by 1H NMR when the reaction was 

performed in the presence of 2 mol% of 24b. The procedure was then 

investigated with crotonic acid with and without slow addition of the 

substrate. In both cases, the starting material was recovered. When the acid 

was added slowly, a complex reaction mixture was obtained. Unfortunately, 

the products could not be identified by mass spectrometry, although the 

amidation product was detected (also seen on the 1H NMR spectrum of the 

crude) (Fig. 4.51).  
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Fig. 4.51: Aziridination of unsaturated carboxylic acids catalyzed by Cu(I). 

 

 This amide formation was attributed again to the presence of copper 

carboxylate prior to the formation of the nitrene, which leads to the 

formation of the amide bond by nucleophilic attack on PhINTs.  

 

 A possible way to tackle this issue would be to investigate less 

oxophilic metals such as ruthenium, which was shown to catalyze the 

cyclopropanation of olefins.32 More sterically hindered substrates might as 

well be investigated to slow down the esterification/amidification 

processes. 

                                                 

32 For cyclopropanation, see: a) Nishiyama, H. Topics in Organometallic Chemistry 2004, 

11, 81. For aziridination, see: b) Che, C.-M.; Yu, W.-Y. Pure & Appl. Chem 1999, 71, 281. 
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4.5 Conclusions. 

 

 Monodentate ligands for this combinatorial approach to supramolecular 

catalysis could be prepared in a rather straightforward way from cheap 

starting materials in good to moderate yields, although the molecular 

complexity of some of the designed ligands prevented their preparation. 

Functionalized 2,2’-bipyridines were the only bidentate ligands that could 

be prepared, since the synthesis of 22a-c and 23a-b did not work and 

require further investigation. In general, such a combinatorial approach 

requires the use of readily accessible ligands, which could be modulated 

after the screening of the catalysis experiments. Among the various 

transition metals that were investigated for the formation of the heteroleptic 

complexes, emphasis was laid on Cu(I), Zn(II) and Ru(II) due to their 

known ability to bind N-heterocyclic ligands in a suitable geometrical 

environment. However, our initial design was based exclusively on 

nitrogen-based ligands, which was in part responsible for the observed 

mixture of complexes. Use of other metal binding atoms (such as 

phosphorus or sulfur) should be evaluated to this aim. Finally, use of a 

wider diversity of ligands might also extend the scope of transition metals 

to be tested, as well as the scope of catalytic applications. 

 

4.6 Experimental part. 

 

a) General procedures. 

 

General procedures for synthesis, chromatography and analysis were 
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the same as in Chapters 2 and 3. HPLC-MS analysis was run on a Waters 

LCT Premier liquid chromatograph coupled to a time-of-flight mass 

spectrometer (HPLC/MS-TOF) with electrospray ionization (ESI) and 

atmospheric pressure chemical ionization (APCI) options. 

 

b) Synthesis. 

 

Dimethyl 4-chloropyridine-2,6-dicarboxylate (25a). 

 

 

 
 

Procedure 

A mixture of chelidamic acid (2.50 g, 12.43 mmol) and phosphorus 

pentachloride (10.35 g, 49.72 mmol) in carbon tetrachloride (12 mL) was 

stirred at reflux (78 ºC) for 4 hours. Methanol (dry, 8 mL) was added 

dropwise at room temperature and the mixture was further heated at reflux 

for one hour. The solvent was then eliminated in vacuo and the residue was 

placed in water (50 mL) and neutralized with sodium carbonate until pH 7. 

The resulting white solid was filtered and dried. The solid was then 

dissolved in chloroform and the resulting organic phase was washed with 

saturated sodium carbonate twice, followed by brine. After drying the 

organic phase and elimination of the solvents, 25a was obtained as a white 

solid (2.4 g, 87%). 1H NMR (CDCl3, 400 MHz): δ ppm 8.31 (s, 2H, HAr), 
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4.03 (s, 6H, CH3); 13C NMR (CDCl3, 100 MHz): δ ppm 164.2, 149.4, 

146.8, 128.3, 93.5. 

25b was obtained in a similar way replacing chelidamic acid by pyridine 

2,6-dicarboxylic acid (70% yield). 1H NMR (CDCl3, 400 MHz) δ ppm 8.25 

(d, 2H, J = 7.8 Hz), 7.98 (t, 1H, J = 7.8 Hz), 3.96 (s, 6H); 13C NMR 

(CDCl3, 100 MHz) δ ppm 165.1, 148.1, 138.5, 128.2, 53.2. 

 

4-Chloro-N2,N6-bis(2-hydroxy-1-phenylethyl)pyridine-2,6-

dicarboxamide (26). 

 

 
 

Procedure 

A mixture of L-phenylglycinol (1.15 g, 8.42 mmol) and 25a (0.97 g, 4.21 

mmol) was stirred overnight at 120 ºC without any solvent. After cooling 

down, the resulting solid was dissolved in 8 mL AcOEt and the solution 

was poured dropwise in hexane (150 mL). The precipitated white solid was 

then filtered and operation was repeated to yield 26 as a white solid (2.00 g, 

quantitative).1H NMR (CDCl3, 400 MHz): δ ppm 8.81 (s, 1H, NH), 8.79 (s, 

1H, NH), 8.14 (s, 2H, HAr), 7.37-7.21 (m, 10 H, Phenyl), 4.21 (ABX 

system, 2H, J = 12.7, 5.4 Hz, CH), 3.94 (d, 4H, J = 4.5 Hz, CH2); 13C NMR 

(CDCl3, 100 MHz): δ ppm 162.9, 150.3, 147.8, 138.8, 129, 128.1, 126.7, 

125.6, 65.6, 55.8. 
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The diamide precursor for the synthesis of Ph-Pybox was obtained 

following a similar route from 25b (quantitative). 1H NMR (CDCl3, 400 

MHz) δ ppm 8.80 (s, 1H), 8.79 (s, 1H), 8.14 (d, 2H, J = 7.8 Hz), 7.82 (t, 

1H, J = 7.8 Hz), 7.40-7.20 (m, 10H), 5.24-5.19 (m, 2H), 3.93 (d, 4H, J = 

5.0 Hz); 13C NMR (CDCl3, 100 MHz) δ ppm 163.8, 148.6, 139.0, 128.8, 

127.8, 126.7, 125, 65.8, 55.8. 

 

2,2'-(4-Chloropyridine-2,6-diyl)bis(4-phenyl-4,5-dihydrooxazole)     

(Ph-Cl-Pybox). 

 

 

 
 

Procedure 

A mixture of 26 (2.04 g, 4.65 mmol), p-toluenesulfonyl chloride (1.92 g, 

10.1 mmol) and triethylamine (6 mL) in dry CH2Cl2 (15 mL) was refluxed 

at 42 ºC during 24 h. The mixture was then diluted with CH2Cl2 and the 

resulting organic phase was washed with NaOH 1N. Aqueous phase was 

extracted 3 times with CH2Cl2 and the gathered organic phases were dried 

with sodium sulfate, filtered and evaporated in vacuo. The resulting brown 

solid was then recrystallized in ethanol to yield Ph-Cl-Pybox as a white 

solid that was filtered and washed with cold ethanol (951 mg, 51% yield). 
1H NMR (CDCl3, 400 MHz): δ ppm 8.38 (s, 2H, HAr), 7.43-7.29 (m, 10H, 

Ph), 5.48 (t, 2H, J = 8.0 Hz), 4.96 (t, 2H, J = 8.6 Hz), 4.46 (t, 2H, J = 9.3 



4.6 Experimental part 
__________________________________________________________________ 

 208 

Hz); 13C NMR (CDCl3, 100 MHz): δ ppm 162.7, 148.0, 145.6, 141.4, 

128.9, 127.9, 126.9, 126.5, 75.7, 70.4.  

Ph-Pybox was obtained following a similar treatment of the corresponding 

diamide precursor (54% yield). 1H NMR (CDCl3, 400 MHz) δ ppm 8.36 (d, 

2H, J = 7.8 Hz), 7.93 (t, 1H, J = 7.8 Hz), 7.45-7.25 (m, 10H), 5.48 (t, 2H, J 

= 9.4 Hz), 4.94 (t, 2H, J = 9.2 Hz), 4.44 (t, 2H, J = 8.6 Hz); 13C NMR 

(CDCl3, 100 MHz) δ ppm 163.5, 146.8, 141.7, 137.4, 128.8, 127.8, 126.9, 

126.4, 75.7, 70.4. 

 

2,2-Diethyl-N1,N3-bis((R)-2-hydroxy-1-phenylethyl)malonamide (27). 

 

 
Procedure 

A suspension of diethyl malonic acid (915 mg, 5.71 mmol) in thionyl 

chloride (4 mL) was heated at reflux for 3 hours. Solvent was then 

eliminated under vacuum. Into a flask placed under argon and at 0 ºC was 

dissolved triethylamine (3.97 mL) and (R)-phenylglycinol in 

dichloromethane (12 mL). A solution of the acid chloride in CH2Cl2 (5 mL) 

was then added dropwise while cold. The mixture was then left one hour at 

this temperature, time after which it was diluted with more 

dichloromethane. Organic phase was washed with HCl 1N followed by 

saturated aqueous NaHCO3 and brine. Each aqueous phase was then further 
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extracted with dichloromethane. Gathered organic phases were dried over 

sodium sulfate and solvent was eliminated under vacuum to yield 1.27 g of 

a white solid (56 % yield). The product was pure enough to be used in the 

further step. 

 

(4R,4'R)-2,2'-(Pentane-3,3-diyl)bis(4-phenyl-4,5-dihydrooxazole)      

(Ph-box). 

 

 
 

Procedure 

To a suspension of the bis amide 27 (1.00 g, 2.5 mmol) in CH2Cl2 (10 mL) 

was added 4-dimethylaminopyridine (31  mg, 0.25 mmol) and the 

triethylamine (2 mL, 14.3 mmol). A solution of p-toluenesulfonylchloride 

(957 mg, 5 mmol) in CH2Cl2 was then added dropwise at room temperature 

under argon and the resulting solution was stirred one day at RT. The 

mixture was diluted with CH2Cl2 and washed with saturated aqueous 

NH4Cl followed by 10% NaHCO3. After drying and elimination of the 

solvents, a thick yellow oil was obtained. Column chromatography was 

performed using neat CH2Cl2 to 20% Et2O/CH2Cl2. 579 mg of a translucid 

oil were obtained this way (Ph-box, 64% yield). 1H NMR (CDCl3, 400 

MHz): δ ppm 7.40-7.20 (m, 10 H), 5.30-5.25 (m, 2H), 4.71-4.64 (m, 2H), 
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4.14 (t, 2H, J = 8.2 Hz), 2.30-2.10 (m, 4H), 1.00 (t, 6H, J = 7.5 Hz); 13C 

NMR (CDCl3, 100 MHz): δ ppm 168.9, 142.2, 128.7, 127.5, 126.8, 75.0, 

69.6, 47.0, 25.7, 8.6. 

 

N2,N6-Bis((S)-1-chloro-3-methylbutan-2-yl)pyridine-2,6-dicarboxamide 

(28). 

 

 
 

Procedure 

To a solution of L-valinol (200 mg, 1.94 mmol) in dry CH2Cl2 (4 mL) 

placed at 0 ºC was added triethylamine (835 µL, 6 mmol) followed by a 

solution of the acid chloride (165 mg, 0.81 mmol) in 4 mL CH2Cl2. The 

resulting reaction mixture was then stirred at room temperature for three 

days. Thionyl chloride (3 mL) was added and resulting mixture was stirred 

at reflux overnight. The reaction mixture was then poured dropwise into 

ice-water and the organic phase was collected, washed with water, brine 

and dried with sodium sulfate. The solvent was then eliminated under 

vacuum after filtration to yield a black oil that was purified by column 

chromatography using CH2Cl2/Et2O 5% as elution system to yield 28 after 

evaporation of the fractions (275 mg, 91% yield). 1H NMR (CDCl3, 400 

MHz): δ ppm 8.37 (d, 2 H, J = 7.8 Hz), 8.08 (t, 1H, J = 7.8 Hz), 8.04 (s, 
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1H), 8.02 (s, 1H), 4.25-4.15 (m, 2H), 3.84 (qd, 4H, J = 11.4, 3.3 Hz),  2.10-

2.00 (m, 2H), 1.06 (dd, 12H, J = 11.6, 6.7 Hz); 13C NMR (CDCl3, 100 

MHz): δ ppm 163.0, 148.4, 139.3, 125.3, 54.9, 46.9, 29.6, 19.4, 18.8. MS 

(ESI+): m/z calcd. 396.1, obt. 396.1 [M+Na]+ 

 

2,6-Bis((S)-4-isopropyl-4,5-dihydrooxazol-2-yl)pyridine (iPr-Pybox). 

 

 

 
 

Procedure 

To a suspension of sodium hydride (53 mg, 2.2 mmol) in dry THF (2 mL) 

was added at room temperature and under argon a solution of the 

diamidopyridine derivative 28 (275 mg, 0.74 mmol)) in THF (3 mL). The 

resulting reaction mixture was stirred overnight at room temperature. The 

mixture was then filtered and concentrated on vacuum. The residue was 

extracted with diethyl ether, filtered and solvent was evaporated to yield a 

yellow solid (138 mg 63% yield). NMR data were found identical to the 

ones reported in the literature.33 

 

 

                                                 

33 Nishiyama, H.; Yamaguchi, S.; Kondo, M.; Itoh, K. J. Org. Chem. 1992, 57, 4306. 
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1-(1H-Benzo[d]imidazol-2-yl)-3-butylurea (20a). 

 

 
Procedure 

To a solution of 2-aminobenzimidazole (500 mg, 3.75 mmol) in CH2Cl2 (5 

mL) placed in a sealed tube was added butyl isocyanate (1.27 mL, 11.27 

mmol) and the resulting reaction mixture was stirred overnight at 50 ºC. 

The solvent was then eliminated in vacuo until the obtention of a solid 

residue. This white solid was triturated in hexane and filtered. After further 

drying under high vacuum, 20a was isolated as a white solid (759 mg, 87% 

yield). 1H NMR (MeOD, 400 MHz): δ ppm (NHs are seen as various 

signals accounting for the existence of conformers and are omitted here): 

7.54-7.46 (m, 2H, HAr), 7.16-7.08 (m, 2H, HAr), 3.38-3.30 (m, 2H, CH2), 

1.63-1.53 (m, 2H, CH2), 1.49-1.36 (m, 2H, CH2), 0.97 (t, 3H, J = 9 Hz, 

CH3). 

 

1-Butyl-3-(pyridin-2-yl)thiourea (20b). 
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Procedure 

To a solution of 2-aminopyridine (1.00 g, 10.6 mmol) in CH2Cl2 (2 mL) 

was added dropwise the butylisothiocyanate (1.36 mL, 11.16 mmol). The 

resulting mixture was stirred at room temperature for 3 days. Reaction was 

stopped and solvent eliminated under vacuum. Residue was dissolved in 

diethyl ether and the organic phase was washed intensively with NH4Cl 1N 

and brine. The organic phase was then dried with anhydrous sodium sulfate, 

filtered and solvent was eliminated under vacuum. 20b was obtained as a 

white solid (1.03 g, 46% yield, uncomplete reaction). 1H NMR (CDCl3, 400 

MHz): δ ppm: 11.74 (t, 1H, NH), 9.57 (s, 1H, NH), 8.09 (ddd, 1H, J = 5.0, 

1.8, 0.7 Hz), 7.56 (ddd, 1H, J = 9.1 , 7.3, 1.8 Hz), 6.93 (d, 1H, J = 8.5 Hz), 

6.88 (ddd, 1H, J = 7.1, 5.2, 1 Hz), 3.73-3.67 (m, 2H, CH2), 1.70-1.55 (m, 

2H, CH2), 1.45-1.35 (m, 2H, CH2), 0.92 (t, 3H, J = 7.9 Hz, CH3). 

 

N-(Pyrimidin-2-yl-thiocarbamoyl)benzamide  

 

 

 
 

Procedure 

To a refluxing solution of benzoylisothiocyanate (1.94 g, 11.9 mmol) in 

acetone (100 mL) was added dropwise an acetone solution of 2-

aminopyrimidine (1.13 g, 11.9 mmol) and the resulting reaction mixture 

was stirred at reflux during 90 mn. After cooling, reaction mixture was 

poured into crushed ice and precipitated solid was filtered, washed with 
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cold acetone and dried on the vacuum line (28% yield). M.p. 177-178 ºC; 

1H NMR (MeOD, 400 MHz): δ ppm 13.60 (s, 1H, NH-CO), 12.10 (s, 1H, 

NH-CS), 8.78 (d, 2H, J = 5.4 Hz, HAr), 8.06-7.94 (m, 2H, HAr), 7.70 (t, 1H, 

J = 7.2 Hz, HAr), 7.63-7.59 (m, 2H, HAr), 7.30 (t, 1H, J = 5.2 Hz, HAr); MS 

(ESI+): m/z: calc. 259.1, obt. 259.1 [(M+H)+], calc. 281.0, obt. 281.0 

[(M+Na)+]. 

 

1-(Pyrimidin-2-yl)thiourea (29). 

 

 

 
 

Procedure 

To a preheated stirred solution of NaOH/H2O 10% (12 mL) to 80 ºC was 

added in one portion the N-(pyrimidin-2-thiocarbamoyl)benzamide and 

resulting mixture was stirred 5 minutes. Reaction mixture was then poured 

into a mixture of ice and HCl 1N; resulting aqueous phase was then basified 

with NaHCO3 until pH 8-9. Product was then collected by gravity filtration, 

and resulting 29 (white solid, 48% yield) was washed with water and 

H2O/MeOH 1/1. M.p. 260-265 ºC; 1H NMR (MeOD, 400 MHz): δ ppm 

10.65 (wide s, 1H, NH, H-bounded), 10.28 (wide s, 1H, NH), 9.21 (wide s, 

1H, NH), 8.72 (d, 2H, J = 5.5 Hz, HAr), 7.22 (t, 1H, J = 5.5 Hz, HAr). 
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2-Methyl-1-(pyrimidin-2-yl)isothiouronium iodide (30). 

 

 

 
Procedure 

In a round bottom flask was placed a solution of 29 (479 mg, 3.1 mmol) in 

dry methanol (100 mL) and methyl iodide (290 µl, 4.7 mmol) was added 

carefully at room temperature. The reaction mixture was then heated to 80 

ºC overnight. The solvent was then eliminated under vacuum. Crude 

compound was used in the next step as obtained. M.p. 174-176 ºC. 

 

Preparation of 20c from 30 was investigated and afforded 20c in poor yield 

due to non optimized procedures not described here.  

 

5-Bromo-8-nitroisoquinoline (31). 

 

 

 
 

Procedure 

To a solution of isoquinoline (11.0 g, 85 mmol) in sulfuric acid (100 mL) 

was added at -10 ºC the N-bromosuccinimide (17.8 g, 100 mmol), and 
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resulting mixture was stirred at this temperature for 24 h. Potassium nitrate 

(11.0 g, 100 mmol) was then added and resulting mixture was stirred at 

room temperature for one hour. The mixture was then poured into crushed 

ice and neutralized with aqueous ammonia. The obtained precipitate was 

filtered off and washed with water. Solid was then dried and recrystallized 

with MeOH to yield 31 as a yellow-brown solid (8.12 g, 38% yield). 1H 

NMR (DMSO, 400 MHz): δ ppm 9.77 (s, 1H), 8.84 (d, 1H, J = 5.7 Hz), 

8.35 (m, 2H), 8.12 (d, 1H, J = 5.8 Hz); MS (ESI+): m/z 253.0 [(M+H)+].  

 

 8-Aminoisoquinoline (32). 

 

 

 
 

Procedure 

In a hydrogenation Parr apparatus was placed 5-bromo-8-nitroisoquinoline 

31 (4.0 g, 15.8 mmol) in dry DMF (90 mL) and triethylamine (2.4 mL) was 

added, followed by 10% palladium over activated carbon (272 mg). A 

hydrogen atmosphere (60 psi) was then applied to the reactor and reaction 

mixture was left one hour stirring at room temperature under hydrogen 

pressure. Reaction mixture was then filtered over celite and the solvent was 

eliminated under vacuum. Obtained residue was dissolved in water and 

resulting aqueous phase was extracted with diethyl ether. The gathered 

organic phases were dried over sodium sufate, filtered and solvent 
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eliminated under vacuum to yield 32 as a white solid (1.8 g, 78% yield). 1H 

NMR (CDCl3, 400 MHz): δ ppm 9.31 (s, 1H), 8.45 (d, 1H, J = 5.8 Hz), 

7.54 (d, 1H, J = 5.6 Hz), 7.45 (t, 1H, J = 7.9 Hz), 7.19 (d, 1H, J = 8.2 Hz), 

6.79 (dd, 1H, J = 7.6, 0.7 Hz), 4.24 (s, 2H). 

 

1-(3,5-Bis(trifluoromethyl)phenyl)-3-(isoquinolin-8-yl)thiourea (21b3). 

 

 

 
 

Procedure 

To a solution of 8-aminoisoquinoline 32 (55.5 mg, 0.385 mmol) in diethyl 

ether (12 mL) was added some 3,5-bis(trifluoromethyl)-

phenylisothiocyanate (70 µL, 0.385 mmol) and resulting mixture was 

stirred at room temperature for 2 days. 21b3 directly precipitated in the 

reaction mixture and was collected by filtration and washed with diethyl 

ether (38% yield, not optimized). 1H NMR (DMSO, 400 MHz): δ ppm 

10.56 (s, 1H, NH), 10.41 (s, 1H, NH), 9.39 (s, 1H), 8.55 (s, 1H), 8.31 (m, 

2H), 7.95-7.92 (m, 1H), 7.9-7.6 (m, 1H), 7.74-7.66 (m, 1H); HR-MS 

(ESI+):  m/z calc. for C18H12N3SF6 416.0656, obt. 416.0668 [(M+H)+]. 
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8-Isothiocyanatoisoquinoline (33). 

 

 

 
Procedure 

To a solution of 1,1’-thiocarbonyldiimidazole (322 mg, 1.80 mmol) in dry 

dichloromethane (20 mL) was added the 8-aminoisoquinoline 32 (217 mg, 

1.50 mmol) and the resulting mixture was stirred one day at room 

temperature. After elimination of solvent under reduced pressure, the crude 

compound was purified by silica gel column chromatography (25% 

AcOEt/DCM) to yield the 8-isothiocyanatoisoquinoline 33 in 68% yield. 
1H NMR (CDCl3, 400 MHz) δ ppm: 9.42 (s, 1H), 8.54 (d, 1H, J = 5.7 Hz), 

7.65 (d, 1H, J = 7.8 Hz), 7.60-7.50 (m, 2H), 7.38 (d, 1H, J = 7.8 Hz); 13C 

NMR (CDCl3, 100 MHz): δ ppm 147.9, 144.4, 138.5, 136.5, 130.2, 128.5, 

125.9, 124.8, 123.8, 120.3; MS (TOF-ESI+): m/z 187.1 [(M+H)+]; IR: 

ν(NCS)=2069 cm-1. 

 

1-Butyl-3-(isoquinolin-8-yl)thiourea (21b1) and (21b2). 
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Procedure 

A solution of 8-isothiocyanatoisoquinoline 33 was stirred at room 

temperature under argon atmosphere in butylamine (respectively tert-

butylamine, 0.6 M concentration) for 30 minutes. The solvent was then 

eliminated under reduced pressure and the crude compound was purified by 

silica gel column chromatography (1/1 AcOEt/DCM) to yield the 

corresponding thioureidoisoquinoline derivative in close to quantitative 

yield. 

 

1-Butyl-3-(isoquinolin-8-yl)thiourea (21b1). 
1H NMR (CDCl3, 400 MHz) δ ppm 9.37 (s, 1H), 8.89 (s, 1H, NH), 8.49 (d, 

1H, J = 5.6 Hz), 7.77 (d, 1H, J = 8.2 Hz), 7.68 (t, 1H, J = 7.8 Hz), 7.60 (d, 

1H, J = 5.7 Hz), 7.53 (d, 1H, J = 7.2 Hz), 6.10 (s, 1H, NH), 3.56-3.50 (m, 

2H), 1.45-1.41 (m, 2H), 1.22-1.17 (m, 2H), 0.80 (t, 3H, J = 7.4 Hz); 13C 

NMR (CDCl3, 100 MHz) δ ppm 181.8, 148.0, 143.8, 137.0, 133.4, 130.6, 

126.8, 126.1, 124.8, 120.5, 45.3, 30.9, 19.9, 13.7; MS (ESI+): m/z  calc. for 

C14H17N3NaS 282.1041; obt. 282.1031 [(M+Na) +]. 

 

1-tert-Butyl-3-(isoquinolin-8-yl)thiourea (21b2). 

1H NMR (CDCl3, 400 MHz) δ ppm 9.45 (s, 1H), 8.89 (s, 1H, NH), 7.79 (d, 

1H, J = 8.2 Hz), 7.72 (t, 1H, J = 7.5 Hz), 7.68 (d, 1H, J = 5.8 Hz), 7.54 (d, 

1H, J = 7.2 Hz), 5.95 (s, 1H, NH), 1.45 (s, 9H); 13C NMR (CDCl3, 100 

MHz) δ ppm 180.7, 148.1, 144.0, 137.1, 133.9, 130.7, 126.6, 125.9, 124.7, 

120.6, 54.3, 28.9. 

 

 



4.6 Experimental part 
__________________________________________________________________ 

 220 

1-Butyl-3-(isoquinolin-8-yl)urea (21a). 
 

 

 

 

Procedure 

A solution of 8-aminoisoquinoline 32 (0.50 g, 3.47 mmol) and 

butylisocyanate (1.93 mL, 17.34 mmol) in dry dichloromethane (20 mL) 

was stirred at room temperature for 5 days under argon. Hexane (200 mL) 

was then added dropwise to this mixture to allow the precipitation of 21a as 

a yellow solid that was isolated by filtration (577 mg, 68% yield). 1H NMR 

(CDCl3, 400 MHz) δ ppm 9.62 (s, 1H), 8.40 (d, 1H, J = 4.8 Hz, 1H), 8.28 

(s, 1H, NH), 7.98 (d, 1H, J = 7.6 Hz), 7.58 (t, 1H, J = 7.7 Hz), 7.43 (d, 1H, 

J = 8.2 Hz), 5.89 (s, 1H, NH), 3.30-3.20 (m, 2H), 1.51-1.43 (m, 2H), 1.34-

1.28 (m, 2H), 0.87 (t, 3H, J = 7.3 Hz). 

 

1,3-Di(isoquinolin-8-yl)urea (34). 
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Procedure 

To a solution of 1,1’-carbonyldiimidazole (506 mg, 3.51 mmol) in dry 

dichloromethane (20 mL) was added the 8-amino-isoquinoline 32 (217 mg, 

1.50 mmol) and the resulting mixture was stirred one day at room 

temperature under argon. The precipitate was then filtered to yield 34 in 

18% yield (202 mg). 1H NMR ([D6]-DMF, 400 MHz) δ ppm: 10.00 (s, 

2H), 9.89 (s, 2H), 8.59-8.57 (m, 2H), 8.36 (d, 2H, J = 7.2 Hz), 7.90-7.85 

(m, 2H), 7.84-7.77 (m, 2H), 7.75-7.7 (m, 2H); MS (TOF-ESI+): m/z 315.1 

[M+H]+; 337.1 [M+Na]+. 

 

4-(2-(Dimethylamino)vinyl)nicotinonitrile (38). 

 

 
Procedure 

A solution of 3-cyano-4-methylpyridine (2.00 g, 17.0 mmol) and N,N-

dimethylformamide dimethylacetal (2.37 mL, 17.7 mmol) in dry DMF (60 

mL) was stirred at reflux overnight. After the night, the reaction mixture 

was concentrated in vacuo and the residue was reparted between ethyl 

acetate and water. The organic phase was washed with water, brine and 

dried with sodium sulfate. After filtration, solvent was eliminated to yield 

38 (2.86 g., 98% yield) as a red solid. 1H NMR (CDCl3, 400 MHz): δ ppm 

8.48 (s, 1H, HAr), 8.23 (d, 1H, J = 6.0 Hz, HAr), 7.28 (d, 1H, J = 14.0 Hz, 

ArCH=C), 7.09 (d, 1H, J = 6.0 Hz, HAr), 5.23 (d, 1H, J = 14.0 Hz, 
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C=CHN), 2.98 (s, 6H, NMe); MS (ESI+): m/z 173 [M+],  158 [(M-Me)+], 

129 [(M-NMe2)+]. 

 

1-Hydroxy-2,7-naphthyridine (39). 

 

 
Procedure 

A stirred solution of 38 (2.13 g, 12.27 mmol) in 20 mL acetic acid was 

treated dropwise at 40 ºC with 40 mL 33% HBr in AcOH. The mixture was 

stirred at 57 ºC for two hours and the solvent was eliminated thanks to 

reduced pressure. The residue was diluted with ice cold water and basified 

with sodium carbonate. The resulting aqueous solution was extracted 

overnight with chloroform in a continuous liquid-liquid extractor. The 

organic phase was dried with anhydrous sodium sulfate, filtered and solvent 

was eliminated in vacuum. Crude residue was then purified by silica gel 

column chromatography (CH2Cl2/MeOH/NH3 95:5:1.25) to give product 39 

after trituration with isopropanol (285.6 mg, 16% yield). 1H NMR (MeOD, 

400 MHz): δ ppm 11.60 (s, 1H, OH), 9.30 (s, 1H), 8.67 (d, 1H, J = 4.9 Hz), 

7.56 (d, 1H, J = 4.3 Hz), 7.42 (d, 1H, J = 4.7 Hz); 13C NMR (MeOD, 100 

MHz): δ ppm 161.8, 151.2, 150.3, 143.6, 134.9, 119.8, 103.4; HR-MS 

(ESI+): m/z calc. for C8H6N2O 147.0558, obt. 147.0559 [(M+H)+].  
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1-Chloro-2,7-naphthyridine (36). 

 

 

 
 

Procedure 

A sealed tube, equipped with a magnetic stirrer, was charged with 1-

hydroxy-2,7-naphtyridine 39 (285 mg, 1.95 mmol) and phosphorus 

oxychloride was added (10 mL). The mixture was stirred overnight at 130 

ºC and the tube was opened after cooling. The solvent was then eliminated 

under reduced pressure and the residue was dissolved in saturated aqueous 

sodium carbonate. The resulting aqueous phase was extracted twice with 

chloroform and the resulting organic phase was washed with brine, dried 

with anhydrous Na2SO4, filtered and solvent was finally eliminated under 

vacuum to yield 36 (321 mg, quantitative). 1H NMR (CDCl3, 400 MHz): 

δ ppm 9.60 (s, 1H), 8.71 (d, 1H, J = 6.2 Hz), 8.35 (d, 1H, J = 6.2 Hz), 7.57 

(dd, 1H, J = 6.2, 1.0 Hz), 7.51 (dd, 1H, J = 6.2, 1.0 Hz); MS (ESI+): m/z 

164 [M+], 129 [M-Cl]+. 

 

Tetrazolo[5,1-a][2,7]naphthyridine (41). 

 

 

 



4.6 Experimental part 
__________________________________________________________________ 

 224 

Procedure 

To a mixture of naphthyridine chloride 36 (106 mg, 0.64 mmol) in dry 

DMF (5 mL) was added the sodium azide (167 mg, 2.57 mmol) at room 

temperature and under argon; the resulting mixture was then heated at 80 ºC 

overnight. Excess water (100 mL) was then added to the mixture. Aqueous 

phase was extracted with dichloromethane three times. The organic phase 

was then dried with anhydrous sodium sulfate, filtered and solvent was 

eliminated under vacuum to yield compound 41 in 67% yield. 1H NMR 

(CDCl3, 400 MHz): δ ppm 10.11 (s, 1H), 9.03 (d, 1H, J = 5.5 Hz), 8.77 (d, 

1H, J = 7.4 Hz), 7.82 (d, 1H, J = 5.2 Hz), 7.46 (d, 1H, J = 7.4 Hz); 13C 

NMR (CDCl3, 400 MHz): δ ppm 150.7, 148.4, 146.8, 136.4, 125.5, 120.2, 

115.9, 115.1. 

 

N,N-Dimethyl-2,7-naphthyridin-1-amine (40). 

 

 

 
 

Procedure 

A solution of 1-chloro-2,7-naphthyridin 36 (263 mg, 1.60 mmol) in dry 

DMF was added via canula to a flask containing sodium amide from the dry 

box (69 mg, 1.76 mmol), the mixture was then stirred at room temperature 

overnight . The solvent was then eliminated under vacuum and the residue 

was purified by column chromatography using DCM/MeOH 2% as elution 

system to yield 40 after evaporation of the fractions (148.1 mg, 54% yield). 
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1H NMR (CDCl3, 400 MHz): δ ppm 9.37 (s, 1H), 8.48 (d, 1H, J = 5.7 Hz), 

8.11 (d, 1H, J = 5.7 Hz), 7.38 (d, 1H, J = 5.7 Hz), 6.90 (d, 1H, J = 5.7 Hz), 

3.17 (s, 6H); 13C NMR (CDCl3, 400 MHz): δ ppm 161.0, 150.7, 146.1, 

144.9, 141.9, 119.2, 115.5, 111.2, 42.9. 

 

2-Amino-4,5-dihydro-1H-imidazol-3-ine hydrate (42). 

 

 

 
Procedure 

To a solution of 1,2-diaminoethane (3.0 mL, 44.43 mmol) in methanol (50 

mL) was added at room temperature the p-toluenesulfonic acid (8.45 g, 

44.43 mmol) and the mixture was stirred for 15 min., time after which 

solvent was eliminated under reduced pressure to yield a white solid. A 

sample of 2-aminoethanaminium tosylate (2.29 g, 8.89 mmol) was then 

placed in a sealed tube containing dimethylcyanamide (724 µL, 8.89 

mmol). Resulting mixture was then heated with a heat gun in order to 

initiate the reaction for a few seconds and then at 100 ºC for 3 hours. When 

left standing at room temperature, a crystalline residue was obtained; 

boiling ethanol (3 mL) was then added and the mixture was left 

crystallizing at room temperature to yield 1.20 g of 42 as a white solid 

(53% yield). An aliquot of 580 mg was passed through Dowex® resin for 

hydroxide with a water/methanol mixture (2:1) and solvent was eliminated 

under vacuum to yield a translucid oil that crystallised as a white solid. 
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2-Aminoethanaminium tosylate: white solid; 1H NMR (MeOD, 400 

MHz) δ ppm 6.13 (d, 2H, J = 8.2 Hz), 5.65 (d, 2H, J = 8.2 Hz), 1.33 (s, 

4H), 0.78 (s, 3H); 13C NMR (MeOD, 100 MHz) δ ppm 140.5, 138.9, 127.0, 

123.9, 99.9, 38.5, 18.4. 

 

2-Amino-4,5-dihydro-1H-imidazol-3-ium tosylate (42): white solid; 1H 

NMR (MeOD, 400 MHz) δ ppm 7.72 (d, 2H, J = 8.1 Hz), 7.25 (d, 2H, J = 

8.1 Hz), 3.68 (s, 4H), 2.40 (s, 3H); 13C NMR (MeOD, 100 MHz) δ ppm 

160.5, 142.0, 140.4, 128.5, 125.5, 42.6, 19.9. 

 

2-Amino-4,5-dihydro-1H-imidazol-3-ium hydroxide (42): white solid; 
1H NMR (MeOD, 400 MHz) δ ppm: 3.49 (s, 4H); 13C NMR (MeOD, 100 

MHz) δ ppm: 163.9, 46.3. 

 

1'H-Spiro[imidazolidine-2,2'-pyrrolo[2,3,4-ij][2,7]naphthyridine] (43). 

 

 
 

Procedure 

A solution of 1-chloro-2,7-naphthyridine 36 (100 mg, 0.6 mmol) and 23 (75 

mg, 0.73 mmol) in dry DMF (3 mL) was stirred at 120 ºC during 2 days in 

a sealed tube. The formed white precipitate was then filtered and dried 

under vacuum to yield compound 43 (yield not measured). A similar result 
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was obtained at room temperature. 1H NMR (D2O, 400 MHz) δ ppm: 7.60 

(d, 1H, J = 6.9 Hz), 7.47 (d, 1H, J = 6.9 Hz), 6.59 (d, 1H, J = 4.9 Hz), 6.49 

(d, 1H, J = 5.9 Hz), 3.67 (m, 4H); 13C NMR (D2O, 100 MHz) δ ppm: 

156.5, 156.4, 148.3, 148.0, 141.9, 141.8, 112.3, 110.0, 105.2, 43.4; MS 

(TOF-ESI+): m/z 212.1 [M+H] +.  

 

1-Amino-2-naphthonitrile (48). 

 

 

 
 

Procedure 

To a solution of ethyl cyanoacetate (1.85 mL, 17.33 mmol), potassium 

hydroxide (0.65 g, 11.55 mmol) and potassium cyanide (0.38 g, 5.77 mmol) 

in dry DMF (17 mL) was added at room temperature the 1-nitronaphthalene 

(1.0 g, 5.77 mmol). The resulting red mixture was stirred at 50 ºC during 24 

h. After this time, the reaction mixture was evaporated under vacuum and 

residue was refluxed in NaOH 5% for half an hour. The resulting aqueous 

phase was then extracted with CH2Cl2 and the organic phase was dried over 

sodium sulfate, filtered and the solvent was eliminated under vacuum to 

yield a black solid. Column chromatography was then performed with 20% 

ethyl acetate in hexane. A white solid could be obtained by evaporation of 

the fractions: 665 mg (69% yield). 1H NMR (CDCl3, 400 MHz): δ ppm 

7.81 (d, 1H, J = 8.3 Hz), 7.76 (d, 1H, J = 8 Hz), 7.59 (t, 1H, J = 6.9 Hz), 
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7.52 (t, 1H, J = 7.2 Hz), 7.31 (d, 1H, J = 8.6 Hz), 7.17 (d, 1H, J = 8.6 Hz), 

5.19 (s, 2H, NH2); 13C NMR (CDCl3, 400 MHz): δ ppm 148.5, 135.8, 

128.9, 128.9, 126.3, 126.2, 121.8, 121.3, 118.9, 118.4, 89.3; IR: 

ν (CN)=2204.63 cm-1; ν (NH2)=3440.35; 3357.07; 3251.1 cm-1. 

 

2-(Aminomethyl)naphthalen-1-amine (47). 

 

 

 
 

 

Procedure 

To a solution of 1-amino-2-naphthonitrile 48 (546 mg, 3.25 mmol) in dry 

THF (250 mL) was added at 0 ºC and under argon BH3.THF solution in a 

dropwise manner (11.4 mL, 11.4 mmol). The reaction mixture then turned 

yellow and was brought back at room temperature and then heated to reflux 

for 24 hours. Methanol was then added dropwise to the mixture at room 

temperature followed by HCl 1N. The mixture was then refluxed for 30 

minutes. Solvent was finally eliminated under vacuum until the obtention of 

an aqueous phase. The aqueous phase was washed with CH2Cl2 and then 

basified with aqueous ammonia. Further extractions with CH2Cl2 were then 

performed and the gathered organic phases were dried with sodium sulfate, 

filtered and evaporated under vacuum to yield 47 (543 mg, 97% yield). 1H 

NMR (CDCl3, 400 MHz): δ ppm 7.89-7.86 (m, 2H), 7.54-7.48 (m, 2H), 
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7.34 (d, 1H, J = 8.3 Hz), 7.27 (d, 1H, J = 8.3 Hz), 5.25 (wide s, NH2), 4.06 

(s, 2H), 1.51 (wide s, NH2);  13C NMR (CDCl3, 400 MHz): δ ppm 141.7, 

133.9, 128.5, 128.0, 125.5, 124.8, 123.7, 120.6, 119.7, 117.5. 

 

(R)-1-((1-Aminonaphthalen-2-yl)methyl)-3-(1-(tert-

butyldiphenylsilyloxy)-4-(methylthio)butan-2-yl)thiourea (50). 

 

 

 
Procedure 

To a solution of the O-silylated isothiocyanate derived from methioninol 23 

(1.18 g, 2.84 mmol) in acetonitrile (10 mL) and under argon was added the 

2-(aminomethyl)naphthalen-1-amine 47 (543 mg, 3.15 mmol) and the 

resulting mixture was left at room temperature for two days. The solvent 

was then eliminated thanks to vacuum and crude compound was purified by 

column chromatography using 10 to 35% Et2O/Hexane to yield the desired 

thiourea as a brown oil after evaporation of the fractions: 1.08 g (65% 

yield). 1H NMR (CDCl3, 400 MHz): δ ppm 7.75 (d, 2H, J = 7.4 Hz), 7.68 

(m, 4H), 7.5-7.35 (m, 6H), 7.22-7.13 (m, 2H), 6.80 (s, 1H), 6.39 (s, 1H), 

4.81 (m, 3H), 3.80-3.60 (m, 2H), 2.37 (m, 2H), 1.85 (m, 5H), 1.16 (s, 9H);  

13C NMR (CDCl3, 400 MHz): δ ppm 181.3, 135.7, 135.7, 134.2, 132.9, 

130.1, 124.5, 128.0, 126.0, 125.1, 123.4, 120.9, 117.7, 114.8, 65.6, 53.7, 
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46.7, 30.7, 27.1, 19.3, 15.2. 

 

(R)-11-((tert-Butyldiphenylsilyloxy)methyl)-13-methyl-9,10,11,12-

tetrahydro-7H-benzo[h]pyrimido[2,1-b]quinazolin-13-ium chloride 

(51). 

 

 
 

Procedure 

Following the same protocol described for the synthesis of the 

benzoguanidinium derivative reported in the second chapter of this 

manuscript on the scale of 1 g of thiourea 50 (1.84 mmol), compound 51 

could not be isolated, neither by column chromatography. Compound was 

however detected on 1H NMR and mass spectra of the reaction crude. MS 

(TOF-ESI+): m/z 520.3 [M-Cl] +. 
 

8-Nitroisoquinoline (54). 
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Procedure 

In anhydrous conditions was introduced the Pd(PPh3)4 (40 mg, 35 µmol) 

catalyst via canula (in 3 mL THF) into a flask containing the 5-bromo-8-

nitroisoquinoline 31 (250 mg, 0.99 mmol). Tributyltin hydride (322 µL, 1.2 

eq.) was then added and mixture was stirred at 50 ºC for 3 h. The reaction 

mixture was then poured into water and extraction with diethyl ether was 

performed. The organic phase was dried with anhydrous sodium sulphate, 

filtered and solvent eliminated under vacuum. Column chromatography was 

then performed using 1:1 Hexane/Et2O as elution system, which afforded 

54 as a colourless solid (170.2 mg, 99%). 1H NMR (CDCl3, 400 MHz): δ 

ppm 9.96 (s, 1H), 8.68 (d, 1H, J = 5.7 Hz), 8.31 (dd, 1H, J = 7.6, 0.8 Hz), 

8.10 (d, 1H, J = 8.3 Hz), 7.79-7.72 (m, 2H); 13C NMR (CDCl3, 100 

MHz): δ ppm 148.2, 146.12, 144.4, 136.6, 133.6, 128.8, 125.1, 120.3, 

120.1; HR-MS (ESI+): m/z calc. for C9H7N2O2 175.0508, obt. 175.0504 

[M+]. 

 

General procedure for the cyanoamination of nitroisoquinoline 

derivatives 52 and 45. 

 

To a solution of ethylcyanoacetate (3 eq.) in DMF (0.2 mM in 

nitroisoquinoline derivative) were successively added potassium hydroxide 

(2 eq.) and potassium cyanide (1 eq.). The resulting mixture was left at 

room temperature until complete dissolution of potassium hydroxide. 

Nitroisoquinoline derivative (1 eq.) was then added and resulting reaction 

mixture was stirred at room temperature for 24 h. The solvent was then 

eliminated under vacuum and residue was treated with HCl 1N at reflux for 
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3 hours. The aqueous phase was then brought back at room temperature and 

basified with aqueous ammonia to be extracted with dichloromethane. 

Gathered organic phases were then washed with brine, dried over 

anhydrous sodium sulfate, filtered and solvent was eliminated under 

reduced pressure. The crude compound was then purified by column 

chromatography (Al2O3, neutral, CHCl3) which enabled to isolate the 

following compounds: 

 

2-(8-Nitroisoquinolin-5-yl)acetonitrile (52 from 31): 46% yield, 1H NMR 

(CDCl3, 400 MHz): δ ppm 10.06 (s, 1H), 8.87 (d, 1H, J = 5.9 Hz), 8.34 (d, 

1H, J = 7.8 Hz), 8.00 (d, 1H, J = 7.8 Hz), 7.78 (d, 1H, J = 5.9 Hz), 4.25 (s, 

2H); HR-MS (ESI+): calc. 214.0572, obt. for C11H7N3O2 214.0612  

[(M+H)+]. 

8-Aminoisoquinoline-7-carbonitrile (45): yield not measured, 1H NMR 

(CDCl3, 400 MHz): δ ppm 9.33 (s, 1H), 8.64 (d, 1H, J = 5.6 Hz), 7.60 (d, 

1H, J = 5.6 Hz), 7.55 (d, 1H, J = 8.6 Hz), 7.17 (d, 1H, J = 8.6 Hz), 5.40 (s, 

2H, NHs). 

 

N-tert-Butylcarboxyguanidine (55). 

 

 
 

Procedure 

To a suspension of guanidinium carbonate (7.10 g, 39.4 mmol) in 1,4 
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dioxane (80 mL) was added at room temperature a solution of sodium 

hydroxide 4M (40 mL) and mixture was left till complete dissolution. Di-

tert-butyl dicarbonate (6.89 g, 31.5 mmol) was then added to the reaction 

mixture and resulting translucid reaction mixture was stirred at room 

temperature for 21 hours. The mixture was then evaporated under vacuum 

at 60 ºC and residue was triturated with water, unsoluble white solid was 

then filtered and dried under vacuum to yield the desired protected 

guanidine (4,43 g, 88% yield). 1H NMR (MeOD, 400 MHz): δ ppm 1.44 (s, 

9H, tert-butyl), 13C NMR (DMSO, 75.5 MHz): δ ppm 163.2, 162.7, 75.5, 

28.2; MS (ESI+): m/z 160 [M+H] +. 

 

N-(Amino(tert-butoxycarbonylamino)methylene)nicotinamide (56). 

 

 

 
 

Procedure 

To a solution of nicotinic acid (150 mg, 1.22 mmol), N-methylmorpholine 

(147 µL, 1.34 mmol, 1.1 eq) and Boc-guanidine 55 (194 mg, 1.22 mmol) in 

dry DMF (3 mL) was added at room temperature a solution of PyBop® (634 

mg, 1.22 mmol) and N-methylmorpholine (147 µL, 1.34 mmol, 1.1 eq) in 

dry DMF (3 mL). After one day of reaction, water was added dropwise to 

the mixture (18 mL) and a white solid precipitated. Solid was filtered and 

dried in vacuo to yield the desired protected carboxyguanidine 56 (279 mg, 
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89% yield). 1H NMR (DMSO, 400 MHz): δ ppm 10.95 (s, 1H, NH), 9.67 

(s, 1H, NH), 9.24 (s, 1H, NH), 8.68 (broad s, 2H), 8.35 (s, 1H), 7.48 (s, 

1H), 1.5 (s, 9H, CH3); HR-MS (ESI+): m/z calc. for C12H17N4O3 265.1301, 

obt. 265.1310 [M+H]+. 

 

3-(Guanidiniocarbonyl)-pyridine chloride (21c (Cl-)). 

 

 

 
 

Procedure 

A solution of 56 (150 mg, 0.57 mmol) in trifluoroacetic acid (11 mL) was 

stirred 20 minutes at room temperature, time after which excess TFA was 

removed by evaporation under vacuum. The residue was then triturated in 

THF and resulting white solid was isolated by filtration. The solid was 

dissolved in methanol and passed through an anion exchange resin for 

chloride (1:1 H2O:MeOH was used for elution). Elimination of the solvents 

in vacuo enabled to isolate quantitatively 21c (Cl-) as a white solid. 21c 

(PF6
-) could be isolated by addition of stoichiometric amount of silver 

hexafluorophosphate to a methanol solution of 21c (Cl-) and filtration of 

precipitated silver chloride. Alternatively, 21c (picrate)2 could be isolated 

by addition of a 1% picric acid solution to a 1:1 H2O:MeOH solution of the 

white solid obtained after trituration in THF, which enabled the obtention 

of crystals (Fig. 4.16). 1H NMR (DMSO, 400 MHz): δ ppm 11.42 (s, 1H, 
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NH), 9.10 (d, 1H, J = 1.9 Hz), 8.90 (dd, 1H, J = 4.9, 1.5 Hz), 8.60 (s, 4H, 

picrate), 8.37 (wide s, NH2), 8.32 (td, 1H, J = 8.1, 1.9 Hz), 8.24 (wide s, 

NH2), 7.72 (dd, 1H,  J = 8, 5.2 Hz). This set of signals was similar for each 

studied anion except for the picrate peaks. 

 

General procedure for the preparation of dipyrromethanes: example 

for 2,2'-((2-nitrophenyl)methylene)bis(1H-pyrrole) (57). 

 

 

 
 

Procedure 

Under argon and at room temperature was first degased a solution of o-

nitrobenzaldehyde (3.0 g, 19.85 mmol) in pyrrole (35 mL) and 

trifluoroacetic acid (0.196 mL, 1.98 mmol) was then added. The resulting 

mixture was then protected from light and stirred under argon for 5 

minutes. Then NaOH 0.1 N (50 mL) was added to quench the reaction 

followed by AcOEt. The organic layer was then washed with water and 

then dried with anhydrous sodium sulfate, filtered and solvent was 

eliminated under vacuum. The crude compound was then purified by 

column chromatography using hexane/ether as elution system (from 0% to 

30%; gradient may vary  depending on the used aldehyde) to isolate the 

desired compound (3.84 g, 72% yield, red oil). 
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2,2'-[(2-Nitrophenyl)methylene]bis(1H-pyrrole) (57). 

Yield: 72%. 1H NMR (CDCl3, 400 MHz): δ ppm 8.13 (wide s, 2H, NH), 

7.91 (dd, 1H, J = 8.1, 1.4 Hz), 7.54 (td, 1H, J = 7.6, 1.4 Hz), 7.41 (td, 1H, J 

= 8.1, 1.4 Hz), 7.30 (dd, 1H, J = 7.9, 1.4 Hz), 6.73-6.70 (m, 2H), 6.22 (s, 

1H), 6.19 (dd, 2H, J = 5.9, 2.8 Hz), 5.91-5.89 (m, 2H); 13C NMR (CDCl3, 

100 MHz): δ ppm 148.8, 137.3, 133.1, 131.0, 130.9, 127.9, 124.6, 117.8, 

108.62, 107.5, 39.0; MS (ESI+): m/z 290.1 [M+Na]+. 

 

2,2'-[(2-Chlorophenyl)methylene]bis(1H-pyrrole) (58). 

Yield: 94%. 1H NMR (CDCl3, 400 MHz): δ ppm 7.96 (wide s, 2H, NH), 

7.45-7.42 (m, 1H), 7.26-7.22 (m, 2H), 7.15-7.12 (m, 1H), 6.72 (dd, 2H, J = 

3.9, 2.4 Hz), 6.23-6.19 (m, 2H), 5.94-5.92 (m, 3H); 13C NMR (CDCl3, 100 

MHz): δ ppm 140.1, 133.7, 131.3, 129.8, 129.7, 128.2, 127.1, 117.4, 108.6, 

107.5, 40.8; HR-MS (ESI+): m/z calc. for C15H14N2Cl 257.0846, obt. 

257.0857 [M+H] +. 

 

2-Chloro-3-[di(1H-pyrrol-2-yl)methyl]pyridine (59). 

Yield: 84%. 1H NMR (CDCl3, 400 MHz): δ ppm 8.29 (dd, 1H, J = 4.8, 1.9 

Hz), 8.20 (broad s, 2H, NH), 7.44 (dd, 1H, J = 7.6, 1.8 Hz), 7.20 (dd, 1H, J 

= 7.9, 5.1 Hz), 6.80-6.70 (m, 2H, pyrrolic H), 6.19 (dd, 2H, J = 6.1, 2.9 

Hz), 5.88-5.84 (m, 3H); 13C NMR (CDCl3, 100 MHz): δ ppm 150.6, 147.7, 

139.2, 137.6, 130.5, 123.3, 118.1, 108.2, 107.9, 40.7; MS (ESI+): m/z calc. 

258.1, obt. 258.1 [M+H]+, calc. 280.1, obt. 280.1 [M+Na]+ , calc. 296.0, 

obt. 296.1 [M+K]+. 
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General procedure for the oxidation of dipyrromethanes to 

dipyrromethenes: example for 2-[(2-nitrophenyl)(2H-pyrrol-2-

ylidene)methyl]-1H-pyrrole (60). 

 

 

 
 

Procedure 

To a solution of dipyrromethane 57 (2.45 g, 9.19 mmol) in dry THF (30 

mL) was added in a dropwise fashion a solution of DDQ (2.09 g, 9.19 

mmol) in dry THF (30 mL). The reaction mixture was then stirred one hour 

at room temperature and was then poured into water. Extraction was then 

performed with CH2Cl2. The organic phase was dried with anhydrous 

sodium sulfate, filtered and solvent was eliminated under vacuum. Column 

chromatography was then performed using neat CH2Cl2 as elution system 

to isolate the dipyrromethene 60 (1.48 g, 61% yield).  

 

 

2-[(2-Nitrophenyl)(2H-pyrrol-2-ylidene)methyl]-1H-pyrrole (60). 

Yield: 61%. 1H NMR (CDCl3, 400 MHz): δ ppm 12.13 (wide s, 1H), 8.15 

(dd, 1H, J = 7.9, 1.3 Hz), 7.73-7.62 (m, 4H), 7.55 (dd, 1H, J = 7.4, 1.6 Hz), 

6.42-6.37 (m, 4H); 13C NMR (CDCl3, 100 MHz): δ ppm 149.5, 144.3, 
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140.1, 136.7, 133.0, 132.5, 132.0, 129.9, 126.8, 124.5, 118.4; HR-MS 

(ESI+): m/z calc. for C15H12N3O2 266.093, obt. 266.0922 [(M+H)+].  

 

2-[(2-Chlorophenyl)(2H-pyrrol-2-ylidene)methyl]-1H-pyrrole (61). 

Yield: 23%. 1H NMR (CDCl3, 400 MHz): δ ppm 7.66 (t, 2H, J = 1.1 Hz), 

7.54-7.50 (m, 1H), 7.46-7.40 (m, 2H), 7.39-7.34 (m, 1H), 6.44 (dd, 2H, J = 

4.2, 1.0 Hz), 6.39 (dd, 2H, J = 4.2, 1.4 Hz); 13C NMR (CDCl3, 100 MHz): 

δ ppm 141.1, 140.7, 137.8, 136.0, 133.9, 131.8, 129.8, 129.5, 127.9, 118.0. 

 

3-[(1H-Pyrrol-2-yl)(2H-pyrrol-2-ylidene)methyl]-2-chloropyridine (62). 

Yield: 30%. 1H NMR (CDCl3, 400 MHz): δ ppm 8.53 (dd, 1H, J = 4.8, 1.9 

Hz), 7.74 (dd, 1H, J = 7.5, 1.9 Hz), 7.66 (s, 2H), 7.37 (dd, 1H, J = 7.4, 4.8 

Hz), 6.41-6.38 (m, 4H), 13C NMR (CDCl3, 100 MHz): δ ppm 149.9, 144.7, 

140.4, 135.1, 132.5, 127.5,121.7, 118.5, 117.8. 

 

5,5-Difluoro-10-(2-nitrophenyl)-5H-dipyrrolo[1,2-c:1',2'-f][1,3,2] 

diazaborinin-4-ium-5-uide (64). 

 

 

 
 

Procedure 

To a solution of the dipyrromethene 60 (871 mg, 3.28 mmol) in dry CH2Cl2 
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(20 mL) was first added the triethylamine (2.74 mL, 19.70 mmol) followed 

by the 1.0 M solution of boron trifluoride etherate (26.26 mL, 26.26 mmol). 

The reaction mixture was then stirred 1 day at room temperature and under 

argon. The organic phase was then washed three times with saturated 

sodium hydrogen carbonate after neutralization with NaHCO3 sat. in an 

erlenmeyer. The solvent was then eliminated under vacuum and the residue 

was adsorbed on silica. Compound was purified by silica gel column 

chormatography using 80% DCM/Hexane as elution system. Compound 64 

was obtained as red crystals (882 mg, 86% yield). 1H NMR (CDCl3, 400 

MHz): δ ppm 8.23 (d, 1H, J = 6.0 Hz), 7.96 (s, 2H), 7.82-7.75 (m, 2H), 

7.58 (dd, 1H, J = 5.9, 1.0 Hz), 6.68 (d, 2H, J = 3.1 Hz), 6.52 (d, 2H, J = 2.9 

Hz); 13C NMR (CDCl3, 100 MHz): δ ppm 145.2, 142.6, 134.6, 133.1, 

132.3, 132.2, 131.2, 129.7, 128.3, 125.1, 119.2; MS (ESI+):  m/z  calc. for 

C15H10N3O2NaBF2 336.0732, obt. 336.0723 [(M+Na)+]; X-ray Crystals 

were grown in CDCl3 (see Fig. 4.18). 

 

Sodium 2,2-diethoxyacetate (70). 

 

 

 
 

Procedure 

To a solution of ethyl diethoxyacetate (20.3 mL, 114 mmol) in ethanol (50 

mL) was added a solution of sodium hydroxide (4.56 g, 114 mmol) in water 
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(25 mL), and the resulting mixture was heated at reflux for 5 hours. The 

mixture was evaporated to dryness, and the residue dried in vacuum to give 

a white solid (quantitative yield). Compound 70 was stored in the dry box. 
1H NMR (D2O, 400 MHz): δ ppm 3.62-3.52 (m, 4H), 1.15 (t, 6H, J = 8.0 

Hz) (one proton missing, probably overlapping with solvent signal), 13C 

NMR (D2O, 100 MHz): δ ppm 174.5, 99.2, 62.6, 14.3. 

 

N-Benzyl-2,2-diethoxyacetamide derivatives (71) and (73). 

 

 

 
 

Procedure 

To a suspension of sodium diethoxyacetate (1 eq.) in dry diethyl ether (1.2 

M solution) placed at 0 ºC was added some thionyl chloride (1 eq.) and 

mixture was brought to reflux for 30 min under argon. Once back at room 

temperature, a solution of the benzylamine derivative (1 eq.) in dry toluene 

and distilled pyridine (3 parts of toluene for 2 parts of pyridine, 1.2 M 

solution of benzylamine in the mixture of solvents) was added via canula 

under argon and with vigorous stirring. The reaction mixture was then 

further refluxed for 30 minutes under argon. The crude mixture was then 

poured into crushed ice and aqueous phase was further extracted with 

toluene. The gathered organic phases were then washed with HCl 2% and 

brine. The solvent was then eliminated under vacuum and resulting yellow 
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oil was purified by column chromatography using from 10% 

AcOEt/Hexane to 25% AcOEt/Hexane as elution system.  

  

N-Benzyl-2,2-diethoxyacetamide (73): yield: 62%. 1H NMR (CDCl3, 400 

MHz): δ ppm 7.41-7.25 (m, 5H), 6.92 (s, 1H, NH), 4.50 (d, 2H, J = 5.2 Hz), 

3.77-3.57 (m, 4H), 1.25-1.05 (m, 6H); 13C NMR (CDCl3, 100 MHz): δ ppm 

167.8, 137.9, 128.7, 127.8, 127.5, 98.5, 62.6, 43.0, 15.1; HR-MS (TOF-

ESI+): m/z calc. for C13H20NO3 238.1443, obt. 238.1445 [(M+H)+]. 

 

2,2-Diethoxy-N-(2-nitrobenzyl)acetamide (71): yield: 29%. 1H NMR 

(CDCl3, 400 MHz): δ ppm 8.05-7.90 (m, 1H), 7.65-7.50 (m, 2H), 7.45-7.30 

(m, 2H), 4.70-4.60 (m, 2H), 3.65-3.45 (m, 4H), 1.25-1.05 (m, 6H); 13C 

NMR (CDCl3, 100 MHz) δ ppm: 168.2, 134.0, 133.3, 128.7, 125.0, 98.5, 

62.6, 40.5, 15.0; HR-MS (ESI+): m/z calc. for C13H18N2O5Na 305.113, obt. 

305.1109 [M+]. 

 

3-Hydroxyisoquinoline (74). 

 

 
 

Procedure 

Sulfuric acid (10 mL) was cautiously added at 0 ºC to 73 (2.69 g, 11.36 

mmol) while stirring. The resulting mixture was stirred overnight at room 
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temperature. It was then poured into cracked ice and resulting aqueous 

phase was filtered, then basified with ammonium hydroxide and extracted 

with dichloromethane. The gathered organic phases were washed with 

brine, dried over sodium sulfate and the solvent was eliminated under 

vacuum. A yellow solid was isolated (1.37 g, 83% yield). 1H NMR (CDCl3, 

400 MHz): δ ppm 8.70 (s, 1H), 7.77 (d, 1H, J = 8.2 Hz), 7.60 (d, 1H, J = 

8.2 Hz), 7.55-7.50 (m, 1H), 7.26 (d, 1H, J = 7.6 Hz), 7.00 (s, 1H); 13C 

NMR (CDCl3, 100 MHz): δ ppm 161.8, 146.1, 141.4, 131.4, 128.0, 125.4, 

123.7, 122.6, 104.3; HR-MS (TOF-ESI+): m/z calc. for C9H8NO 146.0606, 

obt. 146.0604 [(M+H)+]. 

 

Isoquinolin-3-yl trifluoromethanesulfonate (75). 

 

 

 
 

Procedure 

To a solution of the 3-hydroxyisoquinoline 74 (1.37 g, 9.44 mmol) in dry 

pyridine (65 mL) cooled at 0 ºC was added trifluoromethane sulfonic 

anhydride (2.04 mL, 12.28 mmol). The mixture was then brought back at 

room temperature and stirred overnight. The solvent was then eliminated 

thanks to vacuum and residue adsorbed on silica gel. Column 

chromatography was then performed with 0-5% diethyl ether/hexane to 

yield 75 as a translucid oil (2.05 g, 78% yield). 1H NMR (CDCl3, 400 

MHz): δ ppm 9.10 (s, 1H), 8.08 (d, 1H, J = 8.2 Hz), 7.93 (d, 1H, J = 8.2 
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Hz), 7.82 (td, 1H, J = 5.0, 1.0 Hz), 7.72 (td, 1H, J = 7.5, 0.9 Hz), 7.60 (s, 

1H); 13C NMR (CDCl3, 100 MHz): δ ppm 152.3, 153.1, 138.4, 131.9, 

128.6, 128.4, 127.9, 126.9, 110.9; HR-MS (TOF-ESI+): m/z calc. for 

C10H7NO3SF3 278.099,  obt. 278.012 [M+]. 

 

3-(Pyridin-2-yl)isoquinoline (76). 

 

 

 
 

Procedure 

A solution of the triflate isoquinoline derivative 75 (1.23 g, 4.45 mmol) in 

dry THF (20 mL) was degased with argon at room temperature. 2-

Pyridylzinc bromide derivative (13.36 mL of 0.5 M THF commercial 

solution, 6.68 mmol) was then added via syringe followed by a THF (5 mL) 

solution of Pd(PPh3)4 (257 mg, 0.22 mmol) via canula. The reaction 

mixture was further bubbled with argon and then heated to reflux overnight. 

The resulting precipitate was then filtered, dried and dissolved in sulfuric 

acid with addition of crushed ice. The obtained solution was poured into 

more crushed ice and basified with ammonium hydroxide. The resulting 

aqueous phase was then extracted with dichloromethane and the gathered 

organic phases were washed with brine, dried over sodium sulfate, filtered 

and the solvent was eliminated under vacuum to yield 76 as a reddish solid 

(874 mg, 95% yield). 1H NMR (CDCl3, 400 MHz): δ ppm 9.22 (s, 1H), 
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8.70 (s, 1H), 8.66 (d, 1H, J = 4.2 Hz), 8.44 (d, 1H, J = 8.0 Hz), 7.84 (dd, 

2H, J = 8.0, 4.6 Hz), 7.73 (td, 1H, J = 7.7, 1.7 Hz), 7.56 (t, 1H, J = 6.9 Hz), 

7.45 (t, 1H, J = 7.4 Hz), 7.18 (dd, 1H, J = 6.6, 4.8 Hz); 13C NMR (CDCl3, 

100 MHz): δ ppm 156.3, 152.0, 146.9, 149.3, 137.0, 136.5, 130.5, 128.7, 

127.6, 127.6, 127.4, 123.4, 121.3, 117.8; HR-MS (TOF-ESI+): m/z calc. for 

C14H11N2 207.0922, obt. 207.0915 [M+H]+. 

 

N-CbZ-Guanidine (83). 

 

 
 

Procedure 

To a suspension of guanidinium carbonate (7.89 g, 43.8 mmol) in 1,4 

dioxane (90 mL) was added at room temperature a solution of sodium 

hydroxide 4 M (60 mL) and mixture was left until complete dissolution. 

Benzyl chloroformate (5 mL, 35 mmol) was then added to the reaction 

mixture and resulting reaction mixture was stirred at room temperature for 

21 hours. The mixture was then evaporated under vacuum at 60 ºC and the 

residue was triturated with water, unsoluble white solid was then filtered 

and dried under vacuum (5.10 g, 75% yield). 1H NMR (MeOD, 400 MHz): 

δ ppm 7.50-7.28 (m, 5H), 5.44-5.17 (m, 4H), 5.13 (s, 2H); 13C NMR 

(MeOD, 100 MHz): δ ppm 163.6, 163.3, 137.5, 128.1, 127.4, 65.9. 
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N-Boc-N’-Cbz-Guanidine (84). 

 

 

 
 

Procedure 

A solution of di-tert-butyl dicarbonate (2.93 g, 13.42 mmol) in acetone (10 

mL) was added at room temperature to a solution of N-Cbz-guanidine 83 

(2.88 g, 14.91 mmol) and triethylamine (2.07 mL, 14.91 mmol) in acetone 

(30 mL). The resulting mixture was stirred at room temperature for 48 

hours. The solvent was then eliminated under vacuum and residue was 

reparted between AcOEt (200 mL) and water. The organic layer was 

washed with 2 M NaHSO4, water and brine. The solvent was then 

eliminated under vacuum after drying with anhydrous sodium sulfate and 

filtration (2.66 g, 68% yield). 1H NMR (CDCl3, 400 MHz): δ ppm 8.86 

(wide s, 3H, NHs), 7.37-7.25 (m, 5H, HAr), 5.10 (s, 2H, CH2Ph), 1.44 (s, 

9H); 13C NMR (CDCl3, 100 MHz): δ ppm 161.9, 159.1, 154.4, 136.4, 

128.4, 127.9, 127.8, 82.8, 66.9, 27.9. 

 

N-Boc-N’-Cbz-N’’-Triflylguanidine (85). 

 

BocHN

NH

NHCbz BocHN

NTf

NHCbz

Tf2O,
CH2Cl2, NEt3
-78ºC to RT

62%

84 85  
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Procedure 

A solution of N-Cbz-N’-Boc-guanidine 84 (1.51 g, 5.14 mmol) and 

triethylamine (1.07 mL) in dry DCM (50 mL) was placed under argon and 

cooled at -78 ºC. Triflic anhydride (1.08 mL, 6.42 mmol) was then added in 

such a way that cold temperature could be maintained. The reaction mixture 

was then brought back slowly to room temperature along 4 hours. After this 

time, the mixture was poured into a separation funnel and washed with 2 M 

NaHSO4, water, and was finally dried with Na2SO4. The solvent was 

eliminated under vacuum. Column chromatography was then performed on 

silica gel using 75% DCM/Hexane as elution system to yield a white solid 

after fractions evaporation (1.36 g, 62% yield). 1H NMR (CDCl3, 400 

MHz): δ ppm 10.60 (s, 1H, NH), 9.89 (s, 1H, NH), 7.41 (s, 5H, HAr), 5.27 

(s, 2H, CH2Ph),  1.55 (s, 9H), 13C NMR (CDCl3, 100 MHz): δ ppm 151.3, 

149.5, 134.0, 129.1, 128.8, 120.9, 117.7, 86.8, 69.4, 27.9. 

 

N-Boc-N’-Cbz-N’’-Octylguanidine (86). 

 

 
 

Procedure 

Octylamine (0.34 mL, 2.07 mmol) was added to a solution of guanydilating 

agent 85 (0.80 g, 1.88 mmol) and triethylamine (0.29 mL, 2.07 mmol) in 

dry DCM (8 mL). The resulting mixture was stirred at room temperature. 

After one hour, mixture was diluted with DCM and washed with sodium 
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bisulfate 2 M, saturated sodium carbonate and brine. The organic layer was 

dried with anhydrous sodium sulfate, filtered and evaporated under 

vacuum. Residue was then purified by column chromatography (silica gel, 

DCM) to yield a translucid oil (676 mg, 89% yield). 1H NMR (CDCl3, 400 

MHz): δ ppm 8.40 (s, 1H, NH), 7.41 (t, 2H, J = 7.2 Hz), 7.36 (t, 2H, J = 7 

Hz), 7.29 (d, 1H, J = 7.1 Hz), 5.16 (s, 2H, CH2Ph), 3.43 (dd, 2H, J = 12.6, 

7.1 Hz),1.68-1.54 (m, 2H), 1.50 (s, 9H), 1.40-1.20 (m, 10H), 0.93-0.86 (m, 

3H); 13C NMR (CDCl3, 100 MHz): δ ppm 163.7, 156.4, 153.2, 137.1, 

128.7, 128.5, 128.4, 128.0, 127.8, 83.2, 67.0, 41.1, 31.8, 29.2, 29.1, 28.9, 

28.3, 28.0, 26.8, 14.1.  

 

N-Boc-N’-Octylguanidine (87). 

 

 

 
 

Procedure 

A solution of N-octyl-N'-Boc-N''-Cbz-guanidine 86 (658 mg, 1.62 mmol) 

and 10% palladium over carbon (17 mg, 0.016 mmol) in ethyl acetate (20 

mL) was placed at room temperature under an atmosphere of hydrogen by 

the mean of vacuum/hydrogen cycles. The resulting mixture was stirred at 

room temperature for 40 hours (75% conversion as seen on NMR spectrum 

of the crude). Column chromatography was then performed using CH2Cl2 

to 2% MeOH/AcOEt as elution systems. After evaporation of the fractions, 

a translucid oil that crystallized with time was obtained (344 mg, 78% 
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yield). 1H NMR (CDCl3, 400 MHz): δ ppm 3.11 (t, 2H, J = 7.1 Hz), 1.65-

1.54 (m, 2H), 1.47 (s, 9H), 1.40-1.20 (m, 10H), 0.93-0.83 (m, 3H); 13C 

NMR (CDCl3, 100 MHz): δ ppm 163.7, 161.4, 78.0, 41.3, 31.7, 29.0, 28.4, 

26.8, 22.6, 14.0. 

 

5-Methyl-2,2'-bipyridine (82). 

 

 
Procedure 

To a solution of 2-bromo-5-methyl pyridine (1.05 g, 6.10 mmol) in dry 

THF (25 mL) placed under argon was added at room temperature the 

Pd(PPh3)4 (352 mg, 0.30 mmol) followed by the commercial 0.5M 2-

pyridylzinc bromide solution (18.3 mL, 9.10 mmol). The reaction mixture 

was then refluxed for 24 hours. Once back at room temperature, obtained 

precipitate was filtered and dissolved in H2SO4 and crushed ice. The 

resulting aqueous phase (after dilution) was then basified with ammonia 

and extracted with dichloromethane (4 times). The organic layers were 

washed with brine, dried over sodium sulfate, filtered and solvent was 

eliminated thanks to vacuum to yield 82 as a red oil (996 mg, 96% yield). 
1H NMR (CDCl3, 400 MHz): δ ppm 8.70-8.65 (m, 1H), 8.54-8.50 (m, 1H), 

8.37 (d, 1H, J = 8.0 Hz), 8.30 (d, 1H, J = 8.0 Hz), 7.80 (td, 1H, J = 7.7, 1.8 

Hz), 7.64 (dd, 1H, J = 8.0, 1.6 Hz), 7.29 (ddd, 1H, J = 7.4, 4.8, 1.1 Hz), 

2.40 (s, 3H); 13C NMR (CDCl3, 100 MHz): δ ppm 156.2, 153.6, 149.6, 
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149.1, 137.5, 136.9, 133.5, 123.4, 120.9, 120.7, 18.4. 

 

5-Carboxylic acid-2,2’-bipyridine (81). 

 

 

 
 

Procedure 

A suspension of 5-methyl-2,2’-bipyridine (869 mg, 5.10 mmol) in water 

(10 mL) was heated to 70 ºC and potassium permanganate (1.61 g, 10.21 

mmol) was added in portions during 2 hours. A second portion of KMnO4 

(1.61 g, 10.21 mmol) was then added the same way at 90 ºC during 3 hours. 

The reaction mixture was left one further hour at 90 ºC and precipitated 

MnO2 was removed by filtration. The filtered solid was washed with hot 

water and the resulting gathered filtrates were concentrated in vacuo and 

slowly acidified to pH 4 with HCl 25% (dropwise addition at 0 ºC). The 

resulting suspension was finally placed in the freezer overnight. The white 

solid was then filtered and dried to yield the carboxylic acid derivative ( 

573 mg, 56% yield). 1H NMR (DMSO, 400 MHz): δ ppm 13.44 (s, 1H, 

CO2H), 9.16 (d, 1H, J = 1.4 Hz), 8.73 (dd, 1H,  J =4.7, 0.7 Hz), 8.50 (dd, 

1H, J = 8.3, 0.4 Hz), 8.45 (d, 1H, J = 7.9 Hz), 8.40 (dd, 1H, J = 8.2, 2.1 

Hz), 7.98 (td, 1H, J = 7.7, 1.7 Hz), 7.50 (ddd, 1H, J = 7.4, 4.8, 1.0 Hz); 13C 

NMR (DMSO, 100 MHz): δ ppm 166.6, 158.6, 154.5, 150.6, 149.8, 138.7, 

127.1, 125.7, 125.4, 121.9, 120.8. 
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General procedure for peptidic coupling between carboxylic acid 

bipyridine derivative and Boc protected guanidines (example for Boc 

24a) 

 

 

 
 

Procedure 

To a solution of 5-carboxylic acid-2,2’-bipyridine 81 (214 mg, 1.07 mmol), 

Boc guanidine (170 mg, 1.07 mmol) and N-methylmorpholine (129 µL, 

1.18 mmol) in dry DMF (2.5 mL) was added another solution of PyBOP® 

(556 mg, 1.07 mmol) and N-methylmorpholine (129 µL, 1.18 mmol) in dry 

DMF (2.5 mL). Resulting mixture was then stirred at room temperature for 

one day. After one day at room temperature, mixture was poured dropwise 

into 80 mL of water and a white precipitate formed. It was then filtered and 

dried under vacuum to yield Boc 24a as a white solid (310 mg, 85% yield). 
1H NMR (CDCl3, 400 MHz): δ ppm 9.72 (broad s, 2H), 9.43 (s, 1H), 8.70 

(m, 2H), 8.57-8.37 (m, 3H), 7.88-7.76 (m, 1H), 7.39-7.29 (m, 1H), 1.36 (s, 

9H); 13C NMR (CDCl3, 100 MHz): δ ppm 177.1, 159.7, 158.4, 155.5, 

153.3, 150.5, 149.4, 137.6, 137.0, 132.6, 124.2, 121.8, 120.5, 83.7, 28.0; 

HR-MS (TOF-ESI+): m/z calc. for C17H20N5O3 342.1566, obt. 342.155 

[M+]. 
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Boc 24b. 

At the end of the reaction, the solvent was eliminated under vacuum and 

residue was reparted between water and 1:2 Et2O/CH2Cl2. Organic phase 

was extensively washed with water, dried with anhydrous sodium sulfate 

and solvents were eliminated in vacuo. Column chromatography was then 

performed with AcOEt as elution system to yield Boc 24b as an oil that 

solidified upon standing (76% yield). 1H NMR (CDCl3, 400 MHz): δ ppm 

12.38 (s, 1H), 9.49 (t, 1H, J = 1.4 Hz), 8.70 (d, 1H, J = 4.7 Hz), 8.64 (t, 1H, 

J = 4.6 Hz), 8.55 (dd, 1H, J = 8.3, 2.1 Hz), 8.47 (d, 1H, J = 3.7 Hz), 8.45 (d, 

1H, J = 4.0 Hz), 7.83 (td, 1H, J = 7.8, 1.8 Hz), 7.33 (ddd, 1H, J = 7.4, 4.8, 

1.1 Hz), 3.61 (dd, 2H, J = 12.9, 7.1 Hz), 1.75-1.83 (m, 2H), 1.53 (s, 9H), 

1.44-1.22 (m, 10H), 0.92-0.86 (m, 3H). 

 

Boc 24c. 

Yield: 67%; 1H NMR (DMSO, 400 MHz): δ ppm 10.99 (s, 2H, NH), 9.71 

(s, 2H, NH), 9.34 (s, 2H), 8.69 (s, 2H, NH), 8.52 (s, 4H), 1.50 (s, 18H); 

HR-MS (TOF-ESI+): m/z calc. for C24H30N8O6Na 549.2186, obt. 549.2188 

[M+]. 

 

Boc 24d. 

Yield: 78%. 1H NMR (CDCl3, 400 MHz): δ ppm 9.52 (d, 2H, J = 1.3 Hz), 

8.66 (t, 2H, J = 5.2 Hz), 8.58 (dd, 2H, J = 8.2, 1.9 Hz), 8.53 (d, 2H, J = 8.2 

Hz), 3.63 (dd, 4H, J = 12.9, 7.0 Hz), 1.76-1.65 (m, 4H), 1.53 (s, 18H), 1.48-

1.23 (m, 20 H), 0.96-0.83 (m, 6H), 13C NMR (CDCl3, 100 MHz): δ ppm 

175.8, 157.6, 156.7, 153.5, 151.0, 137.7, 133.4, 120.9, 83.4, 41.5, 31.8, 

29.3, 29.2, 28.1, 27.0, 22.6, 14.1. 
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General procedure for the preparation of 24a-d (example for the 

preparation of 24a). 

 

 

 
 

Procedure 

A solution of the Boc protected carboxyguanidine Boc 24a (101 mg, 0.30 

mmol) in trifluoroacetic acid (5 mL) was stirred at room temperature for 15 

mn. The solvent was then eliminated under reduced pressure. The obtained 

residue was then dissolved in MeOH/H2O and passed through an anion 

exchange resin for chloride. Water was then eliminated under vacuum to 

yield 24a as a white solid (61 mg, 74% yield). 1H NMR (DMSO, 400 

MHz): δ ppm 12.49 (s, 1H, NH), 9.44 (d, 1H, J = 1.6 Hz), 8.84-8.74 (m, 

3H), 8.74-8.64 (m, 3H), 8.58 (d, 1H, J = 8.4 Hz), 8.53 (d, 1H, J = 7.9 Hz), 

8.10 (td, 1H, J = 7.8, 1.4 Hz), 7.60 (dd, 1H, J = 6.9, 5.8 Hz). 

 

24b. 

In this case, after elimination of solvents, residue was taken into CH2Cl2 

and organic phase was washed with KOH 2N, followed by brine. After 

drying and elimination of the solvents, free base 24b was obtained. 

Additional washing with acidic solution of suitable pH (e.g. NH4Cl 1 N) 

enabled to isolate the protonated carboxyguanidinium form (white solid, 
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84% yield). 1H NMR (CDCl3, 400 MHz): δ ppm 9.43 (s, 1H), 8.71 (d, 1H, 

J = 3.9 Hz), 8.54 (dd, 1H, J = 8.2, 2.0 Hz), 8.45 (d, 1H, J = 8.0 Hz), 8.43 (d, 

1H, J = 8.2 Hz), 7.83 (td, 1H, J = 7.8, 1.8 Hz), 7.33 (ddd, 1H, J = 7.4, 4.8, 

1.0 Hz), 3.2 (m, 2H), 1.71-1.55 (m, 2H), 1.44-1.15 (m, 10H), 0.93-0.80 (m, 

3H).  

 

24c. 

A suspension of the diBoc protected diguanidine Boc 24c (596 mg, 1.13 

mmol) derivative was stirred in HCl 4 N (60 mL) at reflux for 30 min and 

mixture was stirred at room temperature overnight, time after which a white 

precipitate is observed. This suspension was then poured slowly into NaOH 

5N (60 mL). The suspension was then centrifuged and aqueous phase was 

removed. Water was then added and centrifugation was repeated. Water 

washing was then repeated twice. Resulting white solid was then dried on 

the vacuum line to yield 24c (107 mg, 40% yield). 1H NMR (DMSO, 400 

MHz) δ ppm: 9.28 (m, 2H), 8.47 (m, 4H), 8.20-7.60 (m, 4H), 7.60-6.77 (m, 

4H); 13C NMR (DMSO, 100 MHz): δ ppm 174.3, 163.6, 156.6, 150.3, 

137.5, 134.8, 120.6. 

 

24d (poor solubility) 

yield not measured; 1H NMR (CDCl3, 400 MHz): δ ppm 9.33 (s, 2H), 8.46 

(s, 4H), 3.46-3.20 (m, 4H), 1.84-1.65 (m, 4H), 1.45-1.18 (m, 20H), 1.00-

0.79 (m, 6H).  
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RuCl(bpy)(Ph-pybox)]PF6. 

 

 

 
 

Procedure 

To a solution of [RuCl2(p-cymene)]2 (97 mg, 0.16 mmol) in dry CH2Cl2 (18 

mL) was added the Ph-pybox (118 mg, 0.32 mmol) and resulting solution 

was stirred at room temperature for one hour, time after which solvent was 

eliminated under vacuum. A solution of 2,2’-bipyridine (50 mg, 0.32 

mmol) in absolute ethanol (21 mL) was then added to the residue and 

mixture was refluxed overnight. NH4PF6 sat. was then added (about 3 mL) 

and the solvent was eliminated under reduced pressure. The residue was 

reparted between CH2Cl2 and water and organic phase was isolated, dried 

with anhydrous sodium sulfate, filetered and evaporated under vacuum 

(back extraction of aqueous phase was also performed). Column 

chromatography was then performed on aluminium oxide using 

CH2Cl2/MeCN (6 to 20%) as elution system to yie1d a red solid after 

evaporation of the fractions (77.3 mg, 69% yield). 1H NMR (CDCl3, 400 

MHz): δ ppm 9.23 (d, 1H, J = 5.3 Hz), 8.11 (d, 1H, J = 7.8 Hz), 8.06 (d, 

1H, J = 7.1 Hz), 7.99 (t, 1H, J = 7.9 Hz), 7.73 (d, 1H, J = 7.8 Hz), 7.70-7.60 
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(m, 3H), 7.25-7.17 (m, 2H), 7.15 (d, 1H, J = 5.5 Hz), 7.10 (t, 2H, J = 7.7 

Hz), 7.01 (ddd, 2H, J = 15.0, 7.7, 1.2 Hz), 6.90 (d, 2H, J = 7.2 Hz), 6.62 (t, 

2H, J = 7.8 Hz), 6.24 (d, 2H, J = 7.3 Hz), 5.18 (t, 1H, J = 10.0 Hz), 5.14 (t, 

1H, J = 9.9 Hz), 4.82 (t, 1H, J = 9.7 Hz), 4.68 (t, 1H, J = 9.3 Hz), 4.52 (dd, 

1H, J = 11.6, 9.1 Hz), 4.21 (t, 1H, J = 10.7 Hz); 13C NMR (CDCl3, 100 

MHz): δ ppm 167.1, 157.7, 154.6, 152.6, 152.2, 136.6, 135.8, 135.6, 135.0, 

132.3, 128.9, 128.5, 128.5, 128.5, 128.4, 126.8, 126.4, 125.6, 125.4, 124.5, 

122.1, 121.6, 79.0, 78.6, 68.5, 68.4; Cyclic voltammetry: E 

[Ru(III)/Ru(II)] in 0.1 M TBAPF6 in DCM: 0.71 V.; HR-MS (TOF-ESI+): 

m/z calc. for C33H27ClN5O2Ru 662.0897, obt. 662.0882 [M+]. 

 

[Ru(H2O)(bpy)(Ph-pybox)](PF6)2. 

 

 

 
 

Procedure 

A solution of [RuCl(bpy)(Ph-pybox)]PF6 (50 mg, 0.062 mmol) and silver 

trifluoromethanesulfonate (35 mg, 0.14 mmol) in a 1:3 ethanol/water 

mixture (15 mL) was refluxed under argon for one hour. The obtained 

mixture was brought back at room temperature and rested in the fridge. 
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Precipitated silver salts were eliminated by filtration through celite and 

some saturated NH4PF6 was then added. Solvent volume was brought to 5 

mL by evaporation. The precipitated brown solid was then filtered, and 

recrystallized in water to yield the desired compound as a brown powder 

(33 mg, 57% yield). 1H NMR (D2O, 400 MHz): δ ppm 8.33 (d, 1H, J = 5.2 

Hz), 8.24 (dd, 1H, J = 8.2, 1.2 Hz), 8.21 (dd, 1H, J = 8.0, 1.1 Hz), 8.13 (t, 

1H, J = 8.0 Hz), 7.92 (d, 1H, J = 8.0 Hz), 7.83 (td, 1H, J = 7.7, 1.4 Hz), 

7.72 (d, 1H, J = 8.2 Hz), 7.59 (td, 1H, J = 7.6, 1.6 Hz), 7.29-7.22 (m, 2H), 

7.12-6.98 (m, 4H), 6.96-6.91 (m, 1H), 6.69 (d, 2H, J = 7.4 Hz), 6.58 (t, 2H, 

J = 7.7 Hz), 6.29 (d, 2H, J = 7.2 Hz), 5.22 (t, 2H, J = 9.5 Hz), 5.11 (t, 2H, J 

= 9.8 Hz), 4.24 (t, 1H, J = 10.8 Hz); Cyclic voltammetry: E 

[Ru(IV)/Ru(II)]: 0.46 V in phosphate buffer (pH 7) and NaClO4 0.1 M 

 

Protocol for spectrophotometric pKa determination: 

 

1.77 mg of the aquo complex were dissolved in 50 mL 0.1M 

trifluoromethanesulfonic acid, giving rise to a solution of pH 1.14. pH of 

the solution was brought to 12 by addition of aqueous KOH (5 M, 0.25 M 

and 5 mM). UV-Vis absorption was measured for each value of pH, which 

enables to determine the value of the pKa (isobestic point).  

 

General procedure for complexation studies of monodentate 

functionalized ligands and chiral ligands with Cu(I), Co(II) and Zn(II). 

 

Procedure 

Typically, equimolar amounts of ligands were mixed in methanol (BINOL 
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was deprotonated with 2 equivalents of MeONa prior to the addition of 

metal salt) and one equivalent of metal salt was added. The reaction 

mixture was stirred one hour at room temperature under argon and solvent 

was eliminated under vacuum. When suitable, crude mixture was submitted 

to 1H NMR; for paramagnetic species, mass spectrometry was the only way 

to characterize the compounds. This set of experiments did not enable so far 

to isolate and characterize a clear complex.  

 

General procedure for complexation experiments with 

Cu(MeCN)4(PF6). 

 

To a degased solution of Ph-pybox (1 eq.) in dry DCM and placed under 

argon was added the Cu(MeCN)4(PF6) (1 eq.). The resulting mixture was 

stirred 30 min at room temperature. After this time, a solution of the ligand 

(typically isoquinoline) in dry CH2Cl2 was added via canula to the mixture. 

In the case of 21a-b, precipitate was collected by filtration and dried under 

vacuum (Cu(21a-b)2); mother liquors contained Cu(Ph-Pybox)2PF6. 

Compounds were analyzed by mass spectrometry and, in every case; a 

mixture of complexes was obtained and not separated.   

 

Zn(21b2)2. 
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Procedure 

Thioureidoisoquinoline 21b2 (30 mg, 0.12 mmol) and zinc acetate (5.3 mg, 

0.03 mmol) were dissolved in a 1:1 MeOH/MeCN mixture (4 mL) and the 

obtained reaction mixture was stirred at room temperature for 30 min The 

solvent was then eliminated thanks to vacuum and residue precipitated in 

ether. 1H NMR (CDCl3, 400 MHz): δ ppm 9.44 (s, 2H), 8.52 (s, 2H), 7.79-

7.56 (m, 8H), 6.48 (s, 2H), 1.45 (s, 18H); MS (MALDI): m/z 582.2 [M+]. 

 

General procedure for complexation trials with [RuCl2(p-cymene)]2 

(monodentate ligands 21a-c). 

 

Procedure 

In dry CH2Cl2 and under argon were dissolved Ph-Pybox (1 eq.) and the 

monodentate ligand (1 eq.). To this solution was added [RuCl2(p-cymene)]2 

(0.5 eq.) and the resulting brown mixture was left stirring at room 

temperature for 4 days until the obtention of a violet solution. Solvent was 

then eliminated thanks to vacuum and the crude compound was analyzed by 

mass spectrometry (MALDI in pyrene).  

 

trans-RuCl2(Ph-pybox)(iq): 

Compound was isolated by column chromatography in 77% yield (Al2O3, 

DCM/AcOEt 30% as elution system). 1H NMR (CDCl3, 400 MHz): δ ppm 

9.34 (s, 1H), 8.59 (d, 1H, J = 6.5 Hz), 7.78 (d, 2H, J = 7.7 Hz), 7.67-7.55 

(m, 3H), 7.48-7.42 (m, 1H), 7.39 (d, 1H, J = 7.7 Hz), 7.18-7.12 (m, 4H), 

7.04-6.96 (m, 6H), 6.92 (d, 1H, J = 6.3 Hz), 5.30-5.21 (m, 2H), 5.17 (t, 2H,  

J = 10.1 Hz), 4.60 (dd, 2H, J = 10.0, 8.0 Hz); HR-MS (TOF-ESI+):  m/z 
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calc. for C23H26N4O2Cl2Ru 670.0476; obt. 670.0448 [M+]. 

 

Other derivatives could not be purified in a satisfactory way and were only 

detected by mass spectrometry as explained in the present report.  

 

RuCl2(p-cymene)(21b2). 

 

Procedure 

A mixture of thioureidoisoquinoline 21b2 (21 mg, 0.08 mmol) and 

[RuCl2(p-cymene)]2 (25 mg, 0.04 mmol) in dry THF (5 mL) was heated 

overnight at reflux. Mixture was diluted with DCM and solvent was 

eliminated under vacuum. Residue was used without any further 

purification.  

In this experiment, the metallocage Ru2Cl2(p-cymene)2(21b2)2 might have 

formed, though mass of the obtained compound corresponds to RuCl2(p-

cymene)(21b2) (this metallocage was not expected at the moment of the 

reaction).  

 

trans-RuCl2(Ph-pybox)(CO). 
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Procedure 

A solution of [RuCl2(p-cymene)]2 (25 mg, 0.04 mmol) in dry CH2Cl2 (5 

mL) was cooled at 0 ºC and placed under carbon monoxide atmosphere 

(balloon) over 30 minutes. Ph-Pybox (30 mg, 0.08 mmol) was then added 

via canula as a dry CH2Cl2 solution (5 mL). The resulting mixture was 

stirred at 0 ºC for one hour. Hexane was then added to the reaction mixture 

in order to precipitate a brown solid that was filtered and dried under 

vacuum (35 mg, 75% yield). Compound was purified by silica gel column 

chromatography using until 30% AcOEt/DCM as elution system, though 

some degradation was visible.1H NMR (CDCl3, 400 MHz): δ ppm 8.17 (t, 

1H, J = 7.7 Hz), 7.98 (d, 2H, J = 7.9 Hz), 7.40 (s, 10H), 5.31-5.25 (m, 2H), 

5.18 (t, 2H, J = 11.3 Hz), 4.69 (dd, 2H, J = 11.4, 8.5 Hz); MS (MALDI): 

m/z 541.8 [M-CO+]. 

 

General procedure for UV-Vis monitored titration experiments with 

ZnX2 (X=OAc, Cl or BF4) and 24b(Cl-). 

 

Procedure (example for Zn(OAc)2 

Solution 1: 1.6 mg of 24b(Cl-) were weighed down and disolved in 10 mL 

THF (4.10.10-4 M); the obtained solution was diluted 10 times. 

Solution 2: 0.43 mg Zn(OAc)2 were weighed down and disolved in 2 mL 

of solution 1; the obtained solution was diluted 10 times with solution 1 

(1.17.10-4 M).  

 

In the cuve of UV spectrometer were introduced 1.5 mL of solution 1 and 

25µL of solution 2 were added (0.05 eq.) successively. After each addition, 
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UV-Vis absorbance spectrum was recorded. Data were gathered and fitted 

using the SPECFIT® software.  

 

General procedure for catalyzed 1,4-addition of pyrrolidine to 2-5H-

furanone. 

 

O
H
NO

CH2Cl2, RT, 2 h

1 mol% 20b
1 mol% SnCl4

1-2 mol% (R)-BINOL

OO

N

 
 

Procedure 

To a solution of thiourea 20b (2.5 mg, 12 µmol) and (R)-BINOL (3.4 mg, 

12 µmol) in dry dichloromethane (10 mL) were added 2-5H-furanone (84 

µL, 1.19 mmol), followed by commercial tin(IV) chloride solution (12 µL, 

12 µmol) and pyrrolidine (99 µL, 1.19 mmol). The resulting reaction 

mixture was stirred at room temperature for two hours. The solvent was 

then eliminated under vacuum and the reaction crude was purified by 

column chromatography (SiO2, from 75% AcOEt/Hexane to 2% 

MeOH/CH2Cl2). The Michael adduct was obtained in 20-35% yield after 

evaporation of the fractions.  
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General procedure for catalysis of Baylis-Hillman reaction of 

benzaldehyde with methylvinyl ketone. 

 

 

 
 

Procedure 

A solution of the pre-formed catalytic system (complex+base, see above for 

complex preparation, 10 mol%) was added to a solution of benzaldehyde 

(26 µL, 0.25 mmol) and methylvinyl ketone (21 µL, 0.25 mmol) in dry 

CH2Cl2 (2 mL) at room temperature. The resulting reaction mixture was 

stirred overnight at room temperature and the solvent was eliminated under 

vacuum. Crude compounds were purified by silica gel column 

chromatography (5-35% AcOEt/Hexanes).  

 

General procedure for the Ru(IV) catalyzed olefin epoxidation. 

 

 

 
 

Procedure 

To a solution of [Ru(bpy)(Ph-pybox)H2O](PF6)2 (0.6 mM) and substrate 

(60 mM) in dry dichloromethane was added the oxidant PhI(OAc)2 (so that 

a 120 mM solution was obtained). The reaction mixture was then stirred at 
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room temperature for 24 hours. Aliquots were taken regularly and analyzed 

by gas chromatography after addition of 1 eq. TFA in the case of 

carboxylates and quick flash chromatography in other cases. 

GC (carboxylic acids): Column: Suprawax280 30m, ID 0.32mm, 0.25µm, 

injection volume: 0.2µL, split 100:1, Tinj/aux: 260/260 ºC, Oven: 100 ºC up 

to 200 ºC (10 ºC/min). 

 

General procedure for the Cu(I) catalyzed cyclopropanation of olefins: 

example for the cyclopropanation of cis-β-methylstyrene. 

 

 

 
 

Procedure 

To a stirred solution of [Cu(MeCN)4(PF6)] (9.4 mg, 25 µmol) in dry 

CH2Cl2 (4 mL) was added the 2,2’-bipyridine (3.9 mg, 25 µmol); cis-β-

methylstyrene (250 µL, 1.93 mmol) was then added. A solution of ethyl 

diazoacetate (102 µL, 0.96 mmol) in dry DCM (3 mL) was then added over 

3 hours via syringe pump and resulting mixture was then stirred overnight 

at room temperature. Solvent was then eliminated under vacuum and 

residue purified by column chromatography (SiO2, 20% ether/hexane) to 

afford the corresponding product of reaction after evaporation in vacuo of 

the corresponding fractions (91 mg, 46% yield, translucid oil). 1H NMR 

(CDCl3, 400 MHz): δ ppm 7.35-7.17 (m, 5H), 4.20 (q, 2H, J = 7.2 Hz), 
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2.79 (dd, 1H, J = 9.6, 5.0 Hz), 1.88-1.79 (m, 2H), 1.32 (t, 3H, J = 7.2 Hz), 

0.94 (d, 3H, J = 6.2). 

 

(E)-2-Ethoxy-2-oxoethyl but-2-enoate: translucid oil, 60% yield. 1H 

NMR (CDCl3, 400 MHz): δ ppm 7.06 (qd, 1H, J = 15.5, 6.9 Hz), 5.93 (dq, 

1H, J = 15.5, 1.6 Hz), 4.64 (s, 2H), 4.22 (q, 2H, J = 7.2 Hz), 1.90 (dd, 3H, J 

= 6.9, 1.7 Hz), 1.27 (t, 3H, J = 7.1 Hz); 13C NMR (CDCl3, 100 MHz): δ 

ppm 167.9, 165.6, 146.5, 121.6, 61.3, 60.6, 18.1, 14.1. 

 

General procedure for Cu(I) catalyzed olefin aziridination: example 

for the aziridination of cis-β-methylstyrene. 

 

 

 
 

Procedure 

To a flask placed under argon were added the N-tosylimino phenyliodinane 

(144 mg, 0.39 mmol) and the bipyridine derivative (6.8 mg, 19 µmol). 

Copper (I) complex (7.2 mg, 019 µmol) was then added via canula and cis-

β-methylstyrene (0.1 mL, 0.77 mmol) was added. Reaction mixture was 

stirred overnight at room temperature. Solvent was then eliminated under 

vacuum and residue was purified by silica gel column chromatography 

using first 2% Et2O/hexane and then 15% AcOEt/hexane. Product was 

isolated successfully as a translucid oil (yield not measured). 1H NMR 
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(CDCl3, 400 MHz): δ ppm 7.90 (d, 2H, J = 8.3 Hz), 7.34 (d, 2H, J = 8.1 

Hz), 7.31-7.26 (m, 3H), 7.24-7.20 (m, 2H), 3.94 (d, 1H, J = 7.3 Hz), 3.20 

(qd, 1H, J = 7.2, 5.8 Hz), 2.45 (s, 3H), 1.04 (d, 3H, J = 5.8 Hz). 
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Summary 

 

 This thesis reports on the preliminary studies of a conceptually new 

approach to supramolecular catalysis in which a library of N-heterocyclic 

ligands functionalized with H-bonding moieties was prepared, optimized, 

and complexed with transition metals and chiral ligands, aiming at forming 

a regioselective (substrate recognition) and enantioselective (chiral 

environment) catalyst for various processes (heteroleptic complex).  The H-

bonding moiety was initially thought to act either as an organocatalyst or as 

a substrate anchoring unit (depending on the catalytic activity of the used 

transition metal). 

  

 The first chapter of this thesis reviews some relevant examples of 

supramolecular approaches to catalysis, from covalent capsules to self-

assembled molecular containers and their applications in catalysis. In a 

second part, examples where self-assembly was also used for the 

elaboration of ligands (evaluated in catalysis applications) are discussed.  

 

 The second chapter of this thesis aims at studying the influence of the 

acidity of guanidinium cations on their binding abilities with oxoanions and 

their catalytic activity. To this aim, three guanidinium cations were 

prepared, modifying their acidic character by juxtaposition of an aromatic 

ring to the guanidinium cation. Binding abilities of these cations with 

acetate were then studied by Isothermal Titration Calorimetry, NMR and IR 

spectroscopies. Thermodynamic cycles were then constructed for the three 

species. Benzoguanidinium cations presented the higher binding constant 
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with acetate, while dibenzoguanidinium cations were shown to be acidic 

enough to protonate acetate (transprotonation), resulting in lower affinity. 

Oxoanion binding ability of guanidinium cations therefore increases with 

their acidity as long as transprotonation is avoided. This trend was also 

reflected in the catalytic activity of guanidinium cations. Benzoguanidinium 

cations proved to be the optimal catalysts for the 1,4-Michael addition of 

pyrrolidine to 2-(5H)-furanone, probably due to a suitable balance of the 

rates of the proton exchange processes that  are likely to take place, which 

evidenced the influence of the pKa of guanidinium cations on their catalytic 

activity. Benzoguanidinium cations and related structures therefore proved 

to be a structure of choice for our studies.  

 

 In the third chapter, metalloporphyrin systems functionalized with H-

bonding moieties are described as potential cooperative catalysts for the 

1,4-Michael addition of pyrrolidine to 2-(5H)-furanone. Metal screening 

experiments proved that tin(IV) porphyrins are nice catalysts for the 

reaction, which enabled to iniciate cooperativity studies of the 

functionalized systems with model non covalent ones. Results suggested 

that the catalytic activity of the H-bonding moiety adds to the one of the 

metal in a less important manner than in non-covalent systems (non-

cooperative effect), probably due to conformational issues. However, the 

compatibility of H-bonding and metal-substrate interactions for the 

catalysis of the 1,4-Michael addition of pyrrolidine to 2-(5H)-furanone was 

proven.  
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 The last chapter of this thesis describes the preparation of a library of 

functionalized N-heterocyclic mono- and bidentate ligands (urea, thiourea, 

guanidinium), as well as the preparation of a library of chiral ligands. 

Formation of the heteroleptic complex was then investigated with Cu(I), 

Zn(II) and Ru(II) and results actually proved disappointing. It was found 

that the heteroatom of the urea or the thiourea of the functionalized ligand 

tended to coordinate the transition metal, leading in homoleptic complexes 

(bridged dimers for Cu(I) and Zn(II)). On the other hand, homoleptic 

complexes made of two chiral ligands were also found to be favoured. This 

therefore resulted in the formation of a mixture of complexes. Efforts were 

then addresses towards the exclusive formation of the heteroleptic complex, 

which could not be achieved. Preliminar catalysis experiments were also 

performed with carboxylic acids, without success, since coordination of the 

substrate to the metal was often observed.  
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Introducción general y resultados  

 

 Las enzimas han representado un modelo inigualable para los químicos 

por sus características como catalizadores. En efecto, son capaces de 

realizar transformaciones químicas en condiciones suaves (medio acuoso) 

de manera regioselectiva y/o enantioselectiva. Por esa razón, numerosas 

reacciones químicas son catalizadas por enzimas a la escala industrial. 

Dado su alto potencial catalítico, el diseño de sistemas capaces de 

reproducir sus características se ha estudiado intensivamente, con el 

objetivo de eludir sus mecanismos y expander el campo de aplicaciones 

catalíticas mediante el diseño de enzimas artificiales. Las enzimas son 

estructuras moleculares complejas, mantenidas por interacciones covalentes 

y supramoleculares que definen su geometría y su conformación. Por ese 

motivo, la catálisis supramolecular ofrece la posibilidad de aproximarse a 

los mecanismos enzimáticos.  

 

  Este trabajo describe estudios preliminares sobre una aproximación 

conceptualmente nueva de la catálisis supramolecular, para lo cual se 

prepararon librerías de ligandos quirales y de ligandos N-heterocíclicos 

funcionalizados por grupos dadores de enlaces hidrógeno (típicamente: 

urea, tiourea y guanidinio). La formación de un complejo heteroléptico 

entre un metal de transición y estas librerías se estudió con el objetivo de 

formar un catalizador capaz de inducir regioselectividad por 

reconocimiento molecular del sustrato de la reacción y enantioselectividad. 

Inicialmente, se identificaron tres situaciones, dependiendo de la actividad 

catalítica del metal. El grupo dador de enlaces de hidrógeno puede ejercer 
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entonces la función de organocatalizador o de fijar el sustrato a una 

distancia determinada del centro activo del catalizador.   

 

 En el primer capitulo de este trabajo se revisan algunos ejemplos 

relevantes de aproximaciones supramoleculares a la catálisis, desde la 

encapsulación molecular del sustrato en cápsulas covalentes o formadas 

mediante procesos de auto-ensamblaje hasta la utilización de ligandos 

formados por auto-ensamblaje en sistemas catalíticos más clásicos, lo que 

permite evidenciar el potencial de la catálisis supramolecular.   

 

 En una segunda parte se estudia la influencia de la acidez de los 

receptores guanidinicos en su capacidad asociativa con oxoaniones 

mediante enlaces de hidrógeno, así como  su actividad catalítica. Se llevó a 

cabo la síntesis de tres receptores guanidinicos, cuya acidez se modificó por 

yuxtaposición de un anillo aromático al grupo guanidinio. La asociación de 

dichos receptores con acetato mediante enlaces de hidrógeno se estudió 

entonces por valoración calorimétrica isotérmica, espectrometrías RMN y 

IR. También se construyeron ciclos termodinámicos para cada compuesto 

estudiado, lo cual nos permito evidenciar que la fuerza de los enlaces de 

hidrógeno se ve incrementada con la acidez del receptor guanidinico si se 

evita la transprotonación. El catión benzoguanidinico resultó ser el que 

formaba los enlaces de hidrógeno más fuertes con acetato, debido a su 

mayor acidez. En cambio, el receptor dibenzoguanidinico protona el 

acetato, lo cual da lugar a un par desfavorecido por perdida de las cargas 

electrónicas y de las interacciones dipolares favorables. Respecto a la 

actividad catalítica, también se observó un comportamiento óptimo para un 
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valor determinado del pKa del catalizador. El receptor benzoguanidico 

resultó ser el mejor catalizador de la adición de Michael de pirrolidona a 2-

(5H)-furanona, debido probablemente a su acidez que permite acelerar los 

intercambios de protones entre las especies transitorias. Los receptores 

benzoguanidicos resultaron ser, según este estudio, los candidatos óptimos 

para nuestros estudios.   

 

 La tercera parte de este trabajo describe estudios de cooperatividad  de 

sistemas catalíticos formados por una metaloporfirina equipada con grupos 

dadores de enlaces de hidrógeno. Se estudió la compatibilidad de la 

activación por ácido de Lewis y la activación por enlaces de  hidrógeno en 

la adición de Michael de pirrolidona a 2-(5H)-furanona. Se demostró en 

primer lugar el potencial catalítico de las porfirinas de estaño para esta 

reacción y se estudió, en una segunda parte, la compatibilidad de ambas 

interacciones en la activación y la cooperatividad del sistema. Los 

resultados obtenidos demostraron que la actividad catalítica de los dadores 

de enlaces de hidrógeno se añade a la del ácido de Lewis, pero el sistema 

equivalente no covalentamente unido resultó ser más eficaz, lo cual sugiere 

que la conformación de las metaloporfirinas funcionalizadas no era óptima.  

No obstante, se demostró la compatibilidad de ambas interacciones en 

activación del sustrato.  

 

 El último capitulo de esta tesis describe la preparación de una librería de 

ligandos mono- y bidentados equipados con grupos dadores de enlaces de 

hidrógeno, así como una librería de ligandos quirales. La formación del 

complejo heteroléptico se investigó con Cu(I), Zn(II) y Ru(II). Las 
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dificultades encontradas se basan en la formación competitiva de dos 

complejos homolépticos formados, por una parte, por dos ligandos quirales 

y, por otra parte, por dos ligandos nitrogenados funcionalizados 

(coordinación al metal del heteroátomo del grupo dador de enlaces de 

hidrógeno). El uso de bipiridinas funcionalizadas con grupos guanidinicos 

pareció entonces ser la mejor solución, pero el complejo heteroléptico 

tampoco se pudo aislar con esta familia de ligandos. Aún así se hicieron 

pruebas de estos sistemas en catálisis (con sistemas modelos o 

funcionalizados) con ácidos carboxílicos como sustratos. La coordinación 

competitiva del àcido carboxílico al metal no dio lugar a la catálisis 

esperada.  
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