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Abstract

We used a model based on the olfactory system of insects to analyze

the impact of neuron threshold variability in the mushroom body (MB)

for odorant discrimination purposes. This model is a single-hidden-

layer neural network (SLN) where the input layer representsthe an-

tennal lobe (AL), which contains a binary code for each odorant; the

hidden layer represents the Kenyon cells (KC) and the outputlayer

named the output neurons. The KC and output layers are responsible

for learning odor discrimination. The binary code obtainedfor each

odorant in the output layer has been used to measure the discrimina-

tion error and to know what kind of thresholds (heterogeneous or ho-

mogeneous) provide better results when they are used in KC and output

neurons. We show that discrimination error is lower for heterogeneous

thresholds than for homogeneous thresholds.





Contents

1 Introduction 1

2 State of the art 5

3 Olfactory model and methods 9

3.1 Neuron model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Network model . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Hebbian learning . . . . . . . . . . . . . . . . . . . . . . . . . .11

3.4 Odorants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

3.5 Discrimination error . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.6 Limit thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6.1 Homogeneous thresholds. . . . . . . . . . . . . . . . . .16

3.6.2 Heterogeneous thresholds. . . . . . . . . . . . . . . . . .17

4 Experiments and results 21

4.1 Model parameters relevance . . . . . . . . . . . . . . . . . . . .21

4.1.1 Input properties . . . . . . . . . . . . . . . . . . . . . . .22

4.1.1.1 Overlapping . . . . . . . . . . . . . . . . . . . 22

4.1.1.2 Gain control . . . . . . . . . . . . . . . . . . . 24

4.1.2 Network properties . . . . . . . . . . . . . . . . . . . . .24

4.1.2.1 Connection probabilities . . . . . . . . . . . . .24

4.1.2.2 Hebbian probabilities . . . . . . . . . . . . . .26

4.2 Threshold comparison . . . . . . . . . . . . . . . . . . . . . . .27

4.2.1 Different sets of odorants and connection probabilities . . 28

v



CONTENTS

4.2.2 Discrimination error - spike rate . . . . . . . . . . . . . .28

5 Conclusions and future work 31

6 Publications 33

Bibliography 35

vi



CHAPTER

1
Introduction

The olfactory system is a complex neural machinery that is able to classify a

large number of odorants, from stimuli that are highly variable and infinite [13]

(different concentrations, mixtures, etc). This is why we are interested in learning

how this system processes this information and achieves a successful classification

from the different patterns that it receives. In order to study this we focused on

olfactory systems of insects; these have a simple mechanismable to realize a quick

and stable odororant discrimination, a goal we want to achieve through computer

modelling.

Normally, these models are simulated using fixed neural thresholds. However,

recent applied research on artificial noses found that, if you use different detection

thresholds for different odorants, you can improve gas discrimination [6]. This is

one of the motivations why we study and use neuron threshold variability in the

information process achieved by neural olfactory system.

On the other hand, in findings on the olfactory system of insects has been re-

ported that neural thresholds vary in olfactory receptor neurons (ORN) [2] and in

Kenyon cells (KCS) in the insect mushroom body (MB) [37]. Neural variability

in the form of threshold variability is a general property ofneurons in the brain.
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1. INTRODUCTION

Is this threshold variability an evolutionary advantage that allows better odorant

discrimination? Or does this happen because there is a biological impossibility to

produce the same threshold for each neuron?

To investigate if neural threshold variability increases odorant discrimination

performance, we use a simple model of the olfactory systems of insects [21, 22]

based on McCulloch-Pitts neurons [31]. The insect olfactory pathway starts at the

antenna, where a massive number of receptors encode the odorstimulus in a high-

dimensional code. In locusts [28], this number is approximately 100,000 neurons.

This information is then sent to the AL for additional processing. In the locust,

the AL approximately has 1,000 neurons that compress the ORNinformation. The

AL exhibits complex dynamics produced by the interaction ofits excitatory and

inhibitory neural populations [4, 9, 29]. The excitatory cells are called projection

neurons because they only transmit the result of AL computation to deeper regions.

The projection neurons deliver the AL output to the 50,000 cells of the MB, KC, in

a fan-out phase which increases the separability between different odor encodings.

This fan-out phase combined with the sparse firing for these KC [15, 37, 48] facil-

itate the odorant discrimination process, which is realized by output neurons in a

fan-in phase.

We focus on the AL and MB (model in Fig.1.1), where the input to single-

hidden-layer neural network (SLN) is AL, which is connectedto MB through a

non-specific connectivity matrix. The reason for this non-specific connectivity

matrix is due to the individual connection variability of insects of the same spe-

cies [30, 46]. The other layers of the SLN, hidden and output, are composed by KC

and output neurons respectively. These are connected by a connectivity matrix that

implements Hebbian-like learning [7].

Our goal is to analyse how information is processed in the olfactory system

and what is the role of threshold variability in this system.For this purpose, we

compare homogeneous and heterogeneous thresholds to investigate whether neural

variability improves odorant discrimination. To determine this, we measure the

2



Figure 1.1: The structure of the model is divided into two parts: antennal lobe (AL)

and mushroom body (MB). MB is divided into two additional layers: Kenyon cells

(KC) and output neurons (OutN). The ratios shown are for locust.

discrimination error obtained in the output layer. This discrimination error repres-

ents the percentage of odorants that has not been correctly classified. A correctly

classified odorant always generates the same output patternA′ for a certain input

patternA. Furthermore, we calculate the percentage of KC spikes to prove that

discrimination success is related to the sparseness condition observed in the KC

layer.

We conclude that odorant discrimination improves with neuron threshold vari-

ability and that the discrimination performance is closelyrelated to sparse activity

of the KC population, for odorant sets that we chose.

3

Images/structure.eps




CHAPTER

2
State of the art

Modelling a simple system, that can discriminate odorants and allow us to know

how information is processed in the olfactory system, is a task that led us to study

olfactory systems of insects.

For an example, honeybee can visit over 100 flowers in a day. Onaverage, a

floral scent contains 20–60 different odorants [26]. The majority of floral odorants

are terpenes or terpene derivatives, but there are also large numbers of alcohols,

aldehydes, ketones, and esters. Different flower species emit different scents due

to a difference in chemical composition, or in concentration and ratio of the com-

ponents. A floral bouquet can even vary within a species, depending on the envir-

onmental conditions such as the location of an individual flower, the time of day,

the pollination status, nectar content, and the age of the flower [38]. Despite the

complexity and variability of natural scents, honeybees display an amazing ability

to learn, discriminate, and recognize floral odours, in fastand reliable way.

Insects have three known processing stages of odor information before classific-

ation: the antenna, the antennal lobe (AL), and the mushroombody (MB) (Fig.1.1).
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2. STATE OF THE ART

Each olfactory receptor cell in the antenna expresses one type of receptor, and

all olfactory receptor cells expressing the same receptor type connect to the same

glomerulus in the AL [14, 42, 49]. Thus, a chemosensory map of receptor activity

in the antenna is formed in the AL: the genetically encoded architecture induces

stimulus-dependent spatial code in the glomeruli [5, 10, 11, 23, 39]. Moreover, the

spatial code is conserved across individuals of the same species [12, 50] as would

be expected given the genetic origin of the code. The ratio between the number of

neurons in the antenna and the AL is 100:1 in the locust [27].

In the locust, the AL approximately has 1,000 glomeruli thatcompress the

ORN information. The AL exhibits complex dynamics producedby the interac-

tion of its excitatory and inhibitory neural populations [4, 9, 29]. The excitatory

cells are called projection neurons, PNs, because they onlytransmit the result of

AL computation to deeper regions, there are 830 PNs comparedto 300 LNs, local

interneurons, the inhibitory cells. The projection neurons deliver the AL output to

the 50,000 cells of the MB, 1:50, in a fan-out phase which increases the separability

between different odor encodings. Moreover, recordings from the AL in the locust

indicate that the activity in the projections of the excitatory neurons in the AL into

the MB is nearly constant in time [44]. Therefore, a gain control [41] mechanism

maintaining a nearly constant average neuronal activity inthe AL must exist, which

would be, according to recent research, in the LNs [35]. It seems that the AL per-

forms some preprocessing of the data to feed an adequate representation of it into

the area of the insect brain that is responsible for learningodor conditioning, the

MB.

The mushroom bodies (MB) are areas of the insect brain that have been shown

to be involved in memory formation [7, 8, 19, 32, 33, 34, 51]. The MBs are or-

ganized in two modules: the calyx/Kenyon cells (KCs) and themushroom body

lobes [45]. The calyx receives and integrates multimodal sensory information [19,

45], and the mushroom body lobes are involved in memory formation and stor-

age [7, 32, 51]. There is a large number of KCs in the MB: 200,000 in cockroach,

170,000 in the honeybee, 50,000 in locust, and 2,500 in the fruit fly Drosophila.

This large group of neurons sends afferents to the MB lobes, which contain on the
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order of a few hundred output neurons [22].

The KC neurons of the MB show very low activity. They are in thequiescent

state most of the time with a mean firing frequency lower than 1Hz. These neur-

ons behave as coincidence detectors [47](Fig.2.1), which implies that, when one

KC receives a specific number of spikes from a set of the AL neurons within some

time frame (±10 ms), then the KC neuron fires a single spike (it rarely yields more

than one) [37]. Another property of this system is the global inhibitory role played

by the lateral horn neurons [35]. Every 50 milliseconds these neurons acting as a

clock reset the activity of the whole system into the same initial conditions. By

means of this inhibition the system resets the state that it was previously.

Considering this dynamical simplicity, we have chosen a simple McCulloch-

Pitts neuron [31] as sufficient representation of the activity of the KC neurons. The

McCulloch-Pitts neuron is expressed as:

yj = Θ(

NAL
∑

i=1

cjixi − θj) (2.1)

wherexi andyj are activation states for the PNs in the AL and the KC neurons

respectively,cji is a weight which links two neurons,θj is a threshold for a KC

neuron, andΘ is the activation function. The synaptic model is a binary. This im-

plies that the values for the neural activation states or connectivity weights will be

0 or 1. The probability of placing a 1 incji is pc. The values of the connectivity

matrix are drawn from a statistically independent random process [15].

The biomimetic approach to represent our network is the Rosenblatt perceptron [40],

a three-layered neural network resembling the MBs of insects, which allows to

solve pattern recognition problems. More recently, approaches trying to replicate

the structure of the cortex have proved useful for solving complex pattern recog-

nition problems [1, 3, 24, 36]. In these approaches, feature extractors are used, in

analogy to the visual cortex, that are associated by means ofattractor networks [20].

To place an attractor network in the cortex might be optimistic, but the common

language to all these approaches is the use of Hebbian learning and of inhibition as
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2. STATE OF THE ART

Figure 2.1: Shematic illustration of (A) a perfect integrator and (B) a leaky integrator

that can be utilized as coincidence detector. In this example the membrane potential

yj(t), with a thresholdθ, integrates short current pulses of the two spike trains shown

at the bottom [47].

a way to enhance competitive learning.

So it remains to solve the neural thresholds calculation, neural network bias,

knowing that according to recent studies these could be different for all neur-

ons [2, 37]. This objective is one that we plan to solve in the future using an

ELM-based algorithm [17, 18], applying supervised learning. This algorithm will

be modified to make it minimize discrimination error and neuronal activity in the

hidden layer (sparseness condition).

All these tools allow us to develop a model, with a quick and stable odorant

discrimination, similar to olfactory systems of insects.
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CHAPTER

3
Olfactory model and

methods

3.1 Neuron model

In locusts, activity patterns in AL are practically time-discretized by a periodic

feedforward inhibition onto MB calyxes, and activity levels in KCs are very low [37].

Thus, information is represented by time-discrete, sparseactivity patterns in MB

in which each KC fires at most once in each 50 ms local field potential oscillation

cycle. Because of these neuron are inactive most of the time,but being activated,

their neuronal response is produced by the coincidence of concurrent spikes fol-

lowed by a reset, we have used the McCulloch-Pitts model [31] in all neurons of

the hidden and output layers, as mentioned above. This neuron model uses the

threshold step function as activation function. Therefore, we have the following

(see network model in Fig.3.1):

yj = Θ(

NAL
∑

i=1

cjixi − θj), zl = Θ(

NKC
∑

j=1

wljyj − εl) (3.1)
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3. OLFACTORY MODEL AND METHODS

wherexi, yj andzl are activation states for a input, hidden and output neuron re-

spectively,cji andwlj are weights which links two neurons,θj andεl are thresholds

for the hidden and output neuron respectively, andΘ is the activation function.

3.2 Network model
The network model is a SLN (Fig.3.1) with an input layer with 100 neurons, a

hidden layer with 5000 neurons (locust has a ratio of 1:50 between neurons of the

input and hidden layer) and an output layer with 10 neurons [22]. These dimen-

sions were chosen because they ensure a high probability of discrimination for the

input used [21] for a relatively low computational cost.

Figure 3.1: Network model composed by its 3 layers: antennal lobe, Kenyon cells and

output neurons.

The connectivity matrices,C andW , are initialized at the beginning of each

odorant discrimination process. We generate a matrix with random values uni-

formly distributed,[0, 1], with the same dimensions as our connectivity matrix. We

10
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3.3 Hebbian learning

establish connections in our connectivity matrix using theprobability of connection

matrix,pc andpw, as a threshold on the values of the random matrix: If a float value

is equal or less than the probability of connection, one connection is established,

otherwise no connection. In the case of the connectivity matrix C, this configura-

tion remains fixed throughout the odorant discrimination process. However, for the

connectivity matrixW , its configuration will be updated using Hebbian learning.

Finally, we have to mention that the synaptic model of this network is com-

pletely binary. Therefore, activation states for a neuron and weights can only take

values of 0 or 1.

3.3 Hebbian learning
As mentioned above, the connectivity matrix W, which links KC and output neur-

ons, has olfactory associative learning, which can be simulated by using Hebbian

learning [7]. It allows the strengthening or weakening the connectionsof a con-

nectivity matrix, as follows [21, 22]:

wlj(t+ 1) = H(zl, yj, wlj(t)),

H(1, 1, wlj(t)) =

{

1 with probability p+,

wlj(t) with probability 1− p+,

H(1, 0, wlj(t)) =

{

0 with probability p−,

wlj(t) with probability 1− p−,

H(0, 1, wlj(t)) = wlj(t), H(0, 0, wlj(t)) = wlj(t).

(3.2)

where the future connection statewlj(t+1) is determined by a functionH(zl, yj, wlj(t)),

which depends on the output layer neuronzl, the hidden layer neuronyj and the

current connection statewlj(t). If the output layer neuron has not fired, the con-

nection state is not changed. However, if the output layer neuron has fired, the

connection state depends on the hidden layer in the following ways:

• If the hidden layer neuron has fired, then the connection between these neur-

ons is created with a probabilityp+.

11



3. OLFACTORY MODEL AND METHODS

• If the hidden layer neuron has not fired, then the connection between these

neurons is destroyed with a probabilityp−.

This Hebbian learning allows to decrease discrimination error (derror) and

variation of weights of matrix W (dw) along interactions (time steps) (Fig.3.2):

derror(t) =
|#P d

in −#P d
out(t)|

#P d
in

, dw(t) =

NOutN
∑

l=1

NKC
∑

j=1

|wlj(t)−wlj(t−1)| (3.3)

where#P d
in is the number of different patterns at input,#P d

out(t) is the number of

different patterns at output for at instant,wlj(t) is the current connection state and

wlj(t − 1) the previous state, andNKC andNOutN are the number of neurons for

KC and output neurons respectively.
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Figure 3.2: Examples of error variability (top panels) and weights variability (bottom

panels) using Hebbian learning for network dimensions ofNAL = 100, NKC = 5000,

NOutN = 10, probabilities ofpc = 0.1, pw = 0.5, p+ = 0.2 andp− = 0.1, and

orthogonal (left panels) and character-based (right panels) odorants.
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3.4 Odorants

3.4 Odorants
The odorants used in our model as input have no correspondence to real odorant

data, because in this first approximation we want to test our hypothesis about the

benefits of neuronal variability. Instead, we have used orthogonal and character-

based encodings (Fig.3.3). The reason for using these encodings is because we

need these odorants have a minimum distance between them to ensure they are

different odorants. In the case of orthogonal encoding, we have wanted to ob-

serve what happens if different odorants do not share activated neurons in the input

layer, AL. We have used orthogonal encodings all of which have the same number

of active neurons in the input layer. Also, this number of active neurons is max-

imal. Therefore, if we have 100 input neurons, we will have 10active neurons

for 10 different odorant patterns, and 20 for 5 different odorant patterns. In the

case of character-based encodings, we have used numerical characters represented

in matrices of dimensions10 × 10, which we have later converted to vectors of

dimension 100. The minimum Hamming distance between these encodings is 4

activated neurons, for the numerical characters 5 and 6.

We have worked with four set of odorants, they have been created from a initial

set of odorants, which have been replicated three times and introduced them some

noise. This noise represents a set of input neurons which have changed their state

of activation (active/inactive). We have used a noise that affects a specific number

of neurons, which is in proportion (20%) to the number of active neurons. The four

set of odorants are as follows:

• 15 Orthogonal odorants: 5 orthogonal odorant patterns (20 active neurons)

repeated 3 times with noise in 4 neurons.

• 15 Character-based odorants: 5 character-based odorant patterns (with a min-

imum of 28 active neurons) repeated 3 times with noise in 6 neurons.

• 30 Orthogonal odorants: 10 orthogonal odorant patterns (10active neurons)

repeated 3 times with noise in 2 neurons.

13



3. OLFACTORY MODEL AND METHODS

• 30 Character-based odorants: 10 character-based odorant patterns (with a

minimum of 28 active neurons) repeated 3 times with noise in 6neurons.

Figure 3.3: Examples of orthogonal (top panels) and character-based (bottom panels)

encodings without and with noise. Colours: black (1, activeneuron), white (0, inactive

neuron).

We have used these odorants with noise to observe if they can be well classified

despite noise, after we have known the discrimination errorwhen these odorants

are presented without noise. This error for odorant discrimination in the absence

of noise will be shown in the results section.

3.5 Discrimination error
Discrimination error represents the percentage of odorants which have not been

correctly classified. To calculate this percentage, we assume that a correctly classi-

fied odorant always generates the same output patternA′ for a certain input pattern

A. Therefore, since we know how many clusters are in the input,we will expect

the same clusters appear in the output. This is expected clustering is used to meas-

ure the error of discrimination by comparison. So after obtaining the output of

our model, this is clustered and compared with the original clustering, all of those

odorants that are inconsistent with this clustering is our discrimination error.

14
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3.6 Limit thresholds

error =
|#P d

in −#P d
out|

#P d
in

, error = derror(T ) (3.4)

where#P d
in is the number of patterns at input,#P d

out is the number of patterns at

output andT is the total number of iterations (time steps).

3.6 Limit thresholds
A limit threshold is the minimum threshold value which prevents a neuron from

spiking for an odorant. This value has been used as thresholdin our neurons, in

order to prove how important threshold variability is in theproblem of odorant

discrimination. This limit threshold is calculated for each neuron and each odorant

as follows:

θOj =

NAL
∑

i=1

cjix
O
i , εOl =

NKC
∑

j=1

wljy
O
j (3.5)

where neuronj spikes∀θj , 0 ≤ θj < θOj , and neuronl spikes∀εl, 0 ≤ εl < εOl .

Being θOj the limit threshold for a KC (j) and an odorant (O), andεOl the limit

threshold for an output neuron (l) and an odorant (O), and both are natural numbers.

These thresholds are calculated only one time in the odorantdiscrimination process,

both before Hebbian learning. Therefore, the limit threshold matrix stores all limit

threshold of a layer. In case of hidden layer, it has dimensionNKC ×NODOR, and

dimensionNOutN ×NODOR for the output layer.

θOj =







θ11 · · · θ
NODOR

1

...
. . .

...
θ1NKC

· · · θ
NODOR

NKC






εOl =







ε11 · · · ε
NODOR

1

...
. . .

...
ε1NOutN

· · · ε
NODOR

NOutN






(3.6)

The purpose of these matrices (Fig.3.4, Fig.3.5) is to know all possible thresholds

for each layer, for all neurons and odorants, and choose the one which improves

odorant discrimination.

As we have already explained the meaning of limit threshold,we will ex-

plain how they are calculated for the cases of homogeneous and heterogeneous

thresholds.

15



3. OLFACTORY MODEL AND METHODS
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Figure 3.4: Example of limit threshold distributions in KC for different odorant sets:

30 Orthogonal odorants (left panel), 30 Character-based odorants (right panel).

Figure 3.5: Example of limit threshold distributions in KC for all odorants: Ortho-

gonal odorants (top panels), Character-based odorants (bottom panels).

3.6.1 Homogeneous thresholds.

To calculate the homogeneous thresholds, we obtain the limit threshold matrix for

the hidden layer and we take the minimum and maximum of this matrix. We take all

values between the minimum and maximum, including these, touse as thresholds

16
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3.6 Limit thresholds

for the hidden layer. The aim of this process is to obtain the minimum discrimina-

tion error for each threshold and the spike rate for this minimum.

To achieve this minimum discrimination error, for each hidden layer threshold

we obtain its limit threshold matrix for the output layer andwe take the minimum

and maximum of this matrix. We calculate the discriminationerror for all pos-

sible combinations and take the minimum observed. This value is the minimum

discrimination error for a hidden layer threshold:

Algorithm 1 Homogeneous threshold

θmin = min(θOj ) //minimum matrixθOj
θmax = max(θOj ) //maximum matrixθOj
N = θmax − θmin + 1 //number of thresholds

error[N ] = 1 //vector that stores the minimum error for eachθ

for n = 0 → N − 1 do

θ = θmin + n

M = εmax − εmin + 1

for m = 0 → M − 1 do

ε = εmin +m

if error < error(θ) then

error(θ) = error

end if

end for

end for

3.6.2 Heterogeneous thresholds.

In the case of heterogeneous thresholds, we obtain the limitthreshold matrix for

the hidden layer but we do not take all possible combinations. We obtain the dis-

tribution of limit thresholds for each hidden layer neuron and we select the value

which prevents each neuron from firing for a certain percentage of odorants. These

values will be the limit thresholds for these neurons (Fig.3.6).

17



3. OLFACTORY MODEL AND METHODS

We have taken all possible integer percentages, 0-100, and calculated the threshold

for each neuron in the hidden layer. We have obtained the minimum discrimination

error for each percentage and the spike rate for this minimum.

To achieve this minimum discrimination error, for each percentage used in the

hidden layer we take all possible integer percentages and calculate the threshold

for each neuron in the output layer. We calculate the discrimination error for all

possible combinations and take the minimum observed. This value is the minimum

discrimination error for a percentage used in the hidden layer:

Algorithm 2 Heterogeneos threshold

error[101] = 1

for n = 0 → 100 do

θ = thresholds(n) //thresholds(x) returns a thresholds vector for all neurons,

that prevents these fires for a percentage of odorants

for m = 0 → 100 do

ε = thresholds(m)

if error < error(θ) then

error(θ) = error

end if

end for

end for

18



3.6 Limit thresholds

Figure 3.6: Example of distribution of limit thresholds for a hidden layer neuron, a set

of 30 odorants with noise and aθ = thresholds(75) (Alg.2). The value selected as

limit threshold,θOj , for these neurons, represented by a black line, allows the neurons

only fires for 25% odorants. Therefore, if the selected percentage is high, the limit

threshold will be high too and the neuron will fire for a few odorants, the neuron will

be more selective. If the percentage is low, the selectivityof the neuron is also low.
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CHAPTER

4
Experiments and results

As mentioned above, our goal is to compare which kind of thresholds (ho-

mogeneous or heterogeneous) improves odorant discrimination. However, before

focusing on the results of this comparison, we analyse the relevance of the different

parameters of the model to use this knowledge in obtaining our final results.

4.1 Model parameters relevance
Besides the most important parameters for us, which are the thresholds, there are

many others that can condition the odorant discrimination ability of our model.

That is why, although previously have been seen slightly, wefocus on analyzing

them in this section as follows:

• Input properties

– Overlapping

– Gain control

• Network properties

– Connection probabilities
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4. EXPERIMENTS AND RESULTS

– Hebbian probabilities

For this analysis, we use mainly orthogonal odorant patterns, or derivatives

thereof, homogeneous thresholds, obtained through its exhaustive search, and 20

iterations of Hebbian learning. The following results are the average of 10 simula-

tions.

4.1.1 Input properties

The first parameter of our model is the input, and whatever theorigin of this, artifi-

cial or real, there are some properties that can influence thesuccess of its discrim-

ination.

4.1.1.1 Overlapping

Figure 4.1: Example of different levels of overlapping: Level 0: No overlap. Level 1:

Each odorant overlaps with two odorants. Level 2: Each odorant overlaps with half of

odorants. Level 3: Each odorant does not overlap with an odorant. Colours: black (1,

active neuron), white (0, inactive neuron).

Odorant encodings with overlapping between them, can be a serious problem

for a success discrimination. So we wanted to measure overlapping influence using
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4.1 Model parameters relevance

different levels of it in the input model. These levels of overlapping have been

configured as follows (Fig.4.1):

• Level 0: No overlap.

• Level 1: Each odorant overlaps with two odorants.

• Level 2: Each odorant overlaps with half of odorants.

• Level 3: Each odorant does not overlap with an odorant.

Observing that overlapping does not have a great influence onthe success of

the discrimination of odorants, at least for the odorants used (Fig.4.2). This strange

fact may have the following explanation: the odorants used must have a maximum

of 80% overlap, so the remaining 20% has enough information (50% activated,

10% of the total) for odorants to be discriminated. Therefore, for these simple

models, although overlapping of information is a frequent problem, the model will

be tolerant to this problem if it receives enough information and the input has a

gain control.
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Figure 4.2: Percentage of error based on level of overlap introduced at input.
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4. EXPERIMENTS AND RESULTS

4.1.1.2 Gain control

It is possible that different odorants do not have the same number of active neurons

in the input model. This variation of neuronal activity may influence the success

of discrimination of odorants. In fact, recent research about it, suggests that a gain

control is crucial for any system that aims to separate the quality of stimuli from

their intensity [43]. Gain control is present in nervous systems [41]. For example,

it has been observed that it exists in the olfactory system neurons responsible for

inhibition in the AL [35], LNs. So we will measure gain control influence using

different levels of activation variability in the input model (standard deviation of

the number of active neurons for each pattern). These activation variability levels

have been configured as follows (Fig.4.3):

• Level 0: No activation variability (gain control).σ = 0.

• Level 1: Low activation variability.σ = 0.876.

• Level 2: Medium activation variability.σ = 1.491.

• Level 3: High activation variability.σ = 3.028.

Observing that gain control has a strong influence on the success of the dis-

crimination of odorants (Fig.4.4) and therefore it is a parameter to take into great

consideration in our model.

4.1.2 Network properties

Threshold is the neural network bias, but there are other network parameters which

we have to take in consideration.

4.1.2.1 Connection probabilities

We mentioned above that the connectivity matrixC remains fixed throughout the

odorant discrimination process, but the connectivity matrix W is updated using

Hebbian learning. This fact suggests that the probabilitypc is more relevant than

the probabilitypw, but to know if this is true and its significance level, we need

to observe the percentage of discrimination error for all possible combinations of
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4.1 Model parameters relevance

Figure 4.3: Example of different activation variability levels: Level0: No activation

variability. Level 1: Low activation variability. Level 2:Medium activation variabil-

ity. Level 3: High activation variability. Colours: black (1, active neuron), white (0,

inactive neuron).
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Figure 4.4: Percentage of error based on activation variability level introduced at

input. Error which tends to its maximum when activation variability increases.
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4. EXPERIMENTS AND RESULTS

their probabilities (Fig.4.5).
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Figure 4.5: Relationship between error rate and connection probabilities for ortho-

gonal (left panels) and character-based (right panels) odorants.

As shown, thepc variability influences on results, whilepw variability does not

have notable relevance for these. On the other hand, it seemsthat, at least for

orthogonal odorants, discrimination error is lower whenpc probability is lower too.

4.1.2.2 Hebbian probabilities

The reason that pw connection probability is not relevant isdue to Hebbian learn-

ing, which has its own probabilities,p+ andp−. To know how these probabilities

influence on model, we will obtain the percentage of discrimination error for all

possible combinations of them (Fig.4.6).

As we can see, the discrimination error decreases when Hebbian probabilities

are low, where p+ probability seems be more relevant than p-,at least when this

probability is low.

Another observation can be made is that, for orthogonal odorants, minimum

discrimination error occurs when there are not Hebbian learning. Our explana-
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4.2 Threshold comparison
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Figure 4.6: Relationship between error rate and Hebbian probabilitiesfor orthogonal

(left panels) and character-based (right panels) odorants.

tion for this behaviour is that using homogeneous threshold, which are obtained

by exhaustive search, compensates the lack of learning whenwe have orthogonal

odorants, which are very simple and completely separable. Moreover, other studies

showed that Hebbian learning increases odorant discrimination when the number

of training examples also increases [22]. Being observed that from 1000 training

examples, Hebbian learning ability to discriminate odorants increases drastically,

while, in our case, we have 15 or 30 odorants. However, this behavior may be

interesting to study, as the lack of learning for the C matrixwas studied [16].

4.2 Threshold comparison

Noting the relevance of in the parameters of the model, we proceed to make the

comparison between different types of thresholds. We divide the results of this

comparison in two parts. First, we show the results for different sets of odorants:

15 orthogonal odorants, 30 orthogonal odorants, 15 character-based odorants and

30 orthogonal odorants; and different connection probabilities for the hidden layer,

pc. Finally, we present the results for a particular case, which shows the relationship

between discrimination error and spikes rate.
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4.2.1 Different sets of odorants and connection probabilities
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Figure 4.7: Comparison of the different types of thresholds (homogeneous and het-

erogeneous) for different sets of odorants and connection probabilities with noise and

the Hebbian learning probabilities which minimize the discrimination error. Sample

means with 95% confidence intervals of standard errors (SE).

We have made 10 simulations for each set of odorants. We have done these

simulations for different connection probabilities for the hidden layer (pc), differ-

ent Hebbian learning probabilities (p+,p−) and noise presence (absent or present).

We have used low connection probabilities forpc (0.1, 0.3, 0.5) based on studies

that confirm this [15, 25], a probability forpw (0.5) because it is applied to a matrix

with learning, and selected Hebbian learning probabilities which have been previ-
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4.2 Threshold comparison

ously studied [22]. Using this Hebbian learning over 20 time steps.

These averaged results (Fig.4.7) show that heterogeneous thresholds achieve

lower discrimination errors. As they show how discrimination error increases with

connection probability and number of odorants. Furthermore, by comparing these

results with those obtained for odorants without noise (orthogonal odorants: 0.3%

Homogeneous, 0.1% Heterogeneous; character-based odorants: 0.5% Homogen-

eous, 0.4% Heterogeneous), we can observe that the model is tolerant to noise and

therefore it is robust.

High values for the discrimination error in the case of character-based odor-

ants can be explained by the similarity of some odorants, high noise which has

been introduced in the input layer but above all because there is not a gain con-

trol. Standard deviation in the number of active neurons fororthogonal odorants

is 0 (gain control), but for the character-based odorants isaround 16.632 (standard

deviation is 16.763 for set of 15 odorants, and 16.501 for setof 30), a high value if

we take in consideration the results seen in Gain Control.

4.2.2 Discrimination error - spike rate

We have taken the averaged results, which we have seen above,and observed the

relationship between discrimination error and spike rate for a particular case (spike

rate can be observed in the dotted line in Fig.4.8).

These results show that minimum discrimination error is related to a low spike

rate. This proves our hypothesis that high population sparseness in KC layer im-

proves odorant discrimination.

The reason for this behavior is that if thresholds are too high, there will be very

few neuron spikes in the hidden layer, and therefore odorantinformation which

arrives to the output layer will be low, making discrimination impossible. How-

ever, if thresholds are too low, there will be a lot of neuron spikes in the hidden
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Figure 4.8: Results for 15 orthogonal and 15 character-based odorants with noise and

connectivity probabilitypc = 0.1.

layer, and the output layer will have high population sparseness to make odorant

discrimination possible.
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CHAPTER

5
Conclusions and future work

The primary objective of this master thesis was to study how the information is

processed in the olfactory system. For that we used a simple neural model based

on McCulloch-Pitts. We focused on the odorant discrimination, as well as on the

way the threshold variability influences this process. We compared the homogen-

eous and heterogeneous thresholds to find out whether the threshold variability

improves the odorant discrimination.

We showed, with simple artificial odorants, thatneural variability using het-

erogeneous thresholds improves odorant discrimination. Furthermore, we proved

thatdiscrimination success is related to the sparseness condition observed in the

KC layer, and it increases forlow connection probabilitiesbetween AL and MB.

Moreover, the analysis of the parameters that can influence the model has re-

vealed that, in case of input properties, overlapping does not have much of an im-

pact on discrimination success, when we have overlapping-free information. This

is only proved for simple odorant patterns. While gain control is crucial for odor-

ant discrimination. Also, in case of network properties, weproved that for theC

matrix, the connection probability,pc, is relevant, but for theW matrix, the initial

connection probability,pw, this is not the case.W matrix is conditioned by Hebbian
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5. CONCLUSIONS AND FUTURE WORK

learning and, therefore, by their probabilities. These probabilities decrease discrim-

ination error when they are low, for our model and odorants used.

Apart from this analysis, we studied other parameters such as the influence of

neuronal activity at input, and network dimensionality on the model. However,

the computation time needed to make a proper study of these parameters was ex-

cessive because of the exhaustive search algorithm for thresholds. Furthermore, we

encountered another problem with neural activity, which was also caused by the ex-

haustive search algorithm. The problem was that if we increase the neural activity

of the network, our algorithm will take higher thresholds, and the amount of in-

formation received by the MB will be the same, implying that the results obtained

for different neural activities are similar.

Consequently, the remaining analysis is one of the works that will take place in

the future, but it will not be the only one. Once we get there, the first steps will be to

develop an efficient search algorithm for thresholds [17, 18], that replaces current

exhaustive search of thresholds and avoids the computationtime problem men-

tioned above. This algorithm will allow us to minimize discrimination error and

neuronal activity in the hidden layer (sparseness condition) by supervised learning.

Secondly, we will use in our model real odorant data obtainedby artificial noses in

order to test this new algorithm.
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CHAPTER

6
Publications

This work resulted in the following paper presented at the conference last IWINAC

2013:

Neuron Threshold Variability in an Olfactory Model Improves Odorant Dis-

crimination Aaron Montero, Ramon Huerta, and Francisco B. Rodriguez IWINAC

2013, Part I, LNCS 7930, pp.16-25. 2013 (Article which received the award for

”Best paper in Biocomputation” ).

Also it will lead to a new paper that will be sent to a specialized journal in the

field:

Computational Enhancement by Neural Variability Aaron Montero, Ramon

Huerta, and Francisco B. Rodriguez
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