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Abstract

We used a model based on the olfactory system of insects tpzana
the impact of neuron threshold variability in the mushroady(MB)
for odorant discrimination purposes. This model is a skittElen-
layer neural network (SLN) where the input layer represémsan-
tennal lobe (AL), which contains a binary code for each odiréne
hidden layer represents the Kenyon cells (KC) and the ougyar
named the output neurons. The KC and output layers are rspen
for learning odor discrimination. The binary code obtaifiedeach
odorant in the output layer has been used to measure thendisar
tion error and to know what kind of thresholds (heterogesemuho-
mogeneous) provide better results when they are used in HGuput
neurons. We show that discrimination error is lower for hegeneous
thresholds than for homogeneous thresholds.
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CHAPTER

Introduction

The olfactory system is a complex neural machinery that s tbclassify a
large number of odorants, from stimuli that are highly Vialéaand infinite 3]
(different concentrations, mixtures, etc). This is why we iaterested in learning
how this system processes this information and achievescessful classification
from the different patterns that it receives. In order tadgtthis we focused on
olfactory systems of insects; these have a simple mechabtario realize a quick
and stable odororant discrimination, a goal we want to aehikerough computer
modelling.

Normally, these models are simulated using fixed neurattioiels. However,
recent applied research on artificial noses found that,ufyse different detection
thresholds for different odorants, you can improve gasroisnation [6]. This is
one of the motivations why we study and use neuron threshalidbility in the
information process achieved by neural olfactory system.

On the other hand, in findings on the olfactory system of itsskas been re-
ported that neural thresholds vary in olfactory receptarraoes (ORN) P] and in
Kenyon cells (KCS) in the insect mushroom body (MBY]. Neural variability
in the form of threshold variability is a general propertyn&urons in the brain.



1. INTRODUCTION

Is this threshold variability an evolutionary advantagattallows better odorant
discrimination? Or does this happen because there is agitaldmpossibility to
produce the same threshold for each neuron?

To investigate if neural threshold variability increase®@nt discrimination
performance, we use a simple model of the olfactory systdmssects p1, 22
based on McCulloch-Pitts neurorisl]. The insect olfactory pathway starts at the
antenna, where a massive number of receptors encode thstodalus in a high-
dimensional code. In locust&§], this number is approximately 100,000 neurons.
This information is then sent to the AL for additional prosieg. In the locust,
the AL approximately has 1,000 neurons that compress the @®kmnation. The
AL exhibits complex dynamics produced by the interactiont®fexcitatory and
inhibitory neural populations4] 9, 29]. The excitatory cells are called projection
neurons because they only transmit the result of AL comjuutéd deeper regions.
The projection neurons deliver the AL output to the 50,003 «d# the MB, KC, in
a fan-out phase which increases the separability betwdienatit odor encodings.
This fan-out phase combined with the sparse firing for theSd¥5, 37, 48] facil-
itate the odorant discrimination process, which is redliag output neurons in a
fan-in phase.

We focus on the AL and MB (model in Fif).1), where the input to single-
hidden-layer neural network (SLN) is AL, which is connectedVB through a
non-specific connectivity matrix. The reason for this npeefic connectivity
matrix is due to the individual connection variability ofsects of the same spe-
cies B0, 46]. The other layers of the SLN, hidden and output, are compbgekC
and output neurons respectively. These are connected byn&ctivity matrix that
implements Hebbian-like learnind]|

Our goal is to analyse how information is processed in thactdiry system
and what is the role of threshold variability in this systeRuor this purpose, we
compare homogeneous and heterogeneous thresholds togates/hether neural
variability improves odorant discrimination. To determithis, we measure the
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Figure 1.1: The structure of the model is divided into two parts: antétoize (AL)
and mushroom body (MB). MB is divided into two additional éag: Kenyon cells
(KC) and output neurons (OutN). The ratios shown are fordacu

discrimination error obtained in the output layer. Thiscdisination error repres-
ents the percentage of odorants that has not been corréadlsifeed. A correctly
classified odorant always generates the same output pattdom a certain input
patternA. Furthermore, we calculate the percentage of KC spikesdeepthat

discrimination success is related to the sparseness camdibserved in the KC
layer.

We conclude that odorant discrimination improves with wauhreshold vari-
ability and that the discrimination performance is closel\ated to sparse activity
of the KC population, for odorant sets that we chose.
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CHAPTER

State of the art

Modelling a simple system, that can discriminate odoramtissdiow us to know
how information is processed in the olfactory system, issé that led us to study
olfactory systems of insects.

For an example, honeybee can visit over 100 flowers in a dayav@rage, a
floral scent contains 20—60 different odorar#i§][ The majority of floral odorants
are terpenes or terpene derivatives, but there are alse hangbers of alcohols,
aldehydes, ketones, and esters. Different flower speci@sdéfarent scents due
to a difference in chemical composition, or in concentratod ratio of the com-
ponents. A floral bouquet can even vary within a species, ripg on the envir-
onmental conditions such as the location of an individuavéio the time of day,
the pollination status, nectar content, and the age of theefl§38]. Despite the
complexity and variability of natural scents, honeybeasplkdly an amazing ability
to learn, discriminate, and recognize floral odours, in &&st reliable way.

Insects have three known processing stages of odor infamiagfore classific-
ation: the antenna, the antennal lobe (AL), and the mushiway (MB) (Figl1.1).



2. STATE OF THE ART

Each olfactory receptor cell in the antenna expresses qeedfyreceptor, and
all olfactory receptor cells expressing the same recepfme tonnect to the same
glomerulus in the AL 14, 42, 49]. Thus, a chemosensory map of receptor activity
in the antenna is formed in the AL: the genetically encodethisacture induces
stimulus-dependent spatial code in the glome&ylilp, 11, 23, 39]. Moreover, the
spatial code is conserved across individuals of the sanmespp?2, 50] as would
be expected given the genetic origin of the code. The rativden the number of
neurons in the antenna and the AL is 100:1 in the loc2igt [

In the locust, the AL approximately has 1,000 glomeruli thaimpress the
ORN information. The AL exhibits complex dynamics produdsdthe interac-
tion of its excitatory and inhibitory neural populationg P, 29]. The excitatory
cells are called projection neurons, PNs, because theytmamgmit the result of
AL computation to deeper regions, there are 830 PNs compargd0 LNs, local
interneurons, the inhibitory cells. The projection newdeliver the AL output to
the 50,000 cells of the MB, 1:50, in a fan-out phase whicheases the separability
between different odor encodings. Moreover, recordingsifthe AL in the locust
indicate that the activity in the projections of the ex@tgtneurons in the AL into
the MB is nearly constant in timelfll. Therefore, a gain controlifl] mechanism
maintaining a nearly constant average neuronal activitiyerAL must exist, which
would be, according to recent research, in the LBH.[It seems that the AL per-
forms some preprocessing of the data to feed an adequatsegpation of it into
the area of the insect brain that is responsible for learnohgy conditioning, the
MB.

The mushroom bodies (MB) are areas of the insect brain thvat b@en shown
to be involved in memory formatiorv[ 8, 19, 32, 33, 34, 51]. The MBs are or-
ganized in two modules: the calyx/Kenyon cells (KCs) andritheshroom body
lobes B15]. The calyx receives and integrates multimodal sensormétion L9,
45], and the mushroom body lobes are involved in memory foromaéind stor-
age [7, 32, 51]. There is a large number of KCs in the MB: 200,000 in cockhpac
170,000 in the honeybee, 50,000 in locust, and 2,500 in theffy Drosophila.
This large group of neurons sends afferents to the MB lobk&hicontain on the



order of a few hundred output neurorzs].

The KC neurons of the MB show very low activity. They are in theescent
state most of the time with a mean firing frequency lower thdtz1 These neur-
ons behave as coincidence detectdrg(Fig.2.1), which implies that, when one
KC receives a specific number of spikes from a set of the AL areiwithin some
time frame 10 ms), then the KC neuron fires a single spike (it rarely walthre
than one) 7]. Another property of this system is the global inhibitooje played
by the lateral horn neuron8%]. Every 50 milliseconds these neurons acting as a
clock reset the activity of the whole system into the samegainconditions. By
means of this inhibition the system resets the state thastpreviously.

Considering this dynamical simplicity, we have chosen gpgénMcCulloch-
Pitts neuron31] as sufficient representation of the activity of the KC newsorhe
McCulloch-Pitts neuron is expressed as:

Narp

yi =00 cjiwi — 0)) (2.1)

wherez; andy; are activation states for the PNs in the AL and the KC neurons
respectivelyc;; is a weight which links two neurong, is a threshold for a KC
neuron, and® is the activation function. The synaptic model is a binargisTim-
plies that the values for the neural activation states oneotivity weights will be

0 or 1. The probability of placing a 1 iey; is p.. The values of the connectivity
matrix are drawn from a statistically independent randoatess 15].

The biomimetic approach to represent our network is the Raaé perceptror4(],

a three-layered neural network resembling the MBs of irsseghich allows to
solve pattern recognition problems. More recently, apghmea trying to replicate
the structure of the cortex have proved useful for solvingglex pattern recog-
nition problems 1, 3, 24, 36]. In these approaches, feature extractors are used, in
analogy to the visual cortex, that are associated by meaatrattor networks0].

To place an attractor network in the cortex might be optiimidiut the common
language to all these approaches is the use of Hebbianngaand of inhibition as
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A. KC like a perfect integrator B. KC like a coincidence detector
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Figure 2.1: Shematic illustration of (A) a perfect integrator and (Bgaly integrator
that can be utilized as coincidence detector. In this exarti@ membrane potential
y;(t), with a threshold), integrates short current pulses of the two spike traing/sho
at the bottom47].

a way to enhance competitive learning.

So it remains to solve the neural thresholds calculationralenetwork bias,
knowing that according to recent studies these could beréifit for all neur-
ons R, 37]. This objective is one that we plan to solve in the futurengsan
ELM-based algorithm17, 18], applying supervised learning. This algorithm will
be modified to make it minimize discrimination error and roeal activity in the
hidden layer (sparseness condition).

All these tools allow us to develop a model, with a quick arablt odorant
discrimination, similar to olfactory systems of insects.
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CHAPTER

Olfactory model and
methods

3.1 Neuron model

In locusts, activity patterns in AL are practically timesdietized by a periodic
feedforward inhibition onto MB calyxes, and activity les@h KCs are very low37].

Thus, information is represented by time-discrete, spacsigity patterns in MB
in which each KC fires at most once in each 50 ms local field piatlerscillation

cycle. Because of these neuron are inactive most of the bateheing activated,
their neuronal response is produced by the coincidence rduwreent spikes fol-
lowed by a reset, we have used the McCulloch-Pitts magiglip all neurons of
the hidden and output layers, as mentioned above. This neuouel uses the
threshold step function as activation function. Therefeve have the following
(see network model in Fig.1):

Nar, NKC
v =00 cimi—0;), 2=0(>_ wyy —e) (3.1)
i=1 j=1
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wherez;, y; andz; are activation states for a input, hidden and output neugen r
spectivelyc;; andw;; are weights which links two neuror, andg; are thresholds
for the hidden and output neuron respectively, &nid the activation function.

3.2 Network model

The network model is a SLN (Fig.1) with an input layer with 100 neurons, a
hidden layer with 5000 neurons (locust has a ratio of 1:5&/eeh neurons of the
input and hidden layer) and an output layer with 10 neur@as [These dimen-
sions were chosen because they ensure a high probabilitgafrdination for the
input used 21] for a relatively low computational cost.

AL MB

— - - e

KC(Y)

—

Ay O
@4 }~~~E.§m OuiN(Z)

&< O w0
=i ;—rt, ,F—x___u_ —
(— —»{_)
{ﬁL Fixed Hebbta ““\}
'_”:'::' randcm!y iearmrsg E
7 [
p,: “*r.:r” PW
8

Figure 3.1: Network model composed by its 3 layers: antennal lobe, Kemgdls and
output neurons.

The connectivity matrices;’ and W, are initialized at the beginning of each
odorant discrimination process. We generate a matrix vatidom values uni-
formly distributed,0, 1], with the same dimensions as our connectivity matrix. We

10
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3.3 Hebbian learning

establish connections in our connectivity matrix usingghabability of connection
matrix, p. andp,,, as a threshold on the values of the random matrix: If a floateva
is equal or less than the probability of connection, one ectian is established,
otherwise no connection. In the case of the connectivityimat, this configura-
tion remains fixed throughout the odorant discriminatiarcess. However, for the
connectivity matrixi?/, its configuration will be updated using Hebbian learning.

Finally, we have to mention that the synaptic model of thisweek is com-
pletely binary. Therefore, activation states for a neunoth @eights can only take
values of O or 1.

3.3 Hebbian learning

As mentioned above, the connectivity matrix W, which link€ Knd output neur-
ons, has olfactory associative learning, which can be sitadlby using Hebbian
learning [7]. It allows the strengthening or weakening the connectioing con-
nectivity matrix, as follows?21, 22):

wi(t+ 1) = H(z,y5,wij(t)),

1 with probability p.,
wy;(t)  with probability 1 — p.,

H(1,1,w;(t) = {

0 with probability p_, (3:2)

wy;(t)  with probability 1 —p_,

H(1,0,w;(t) = {
H(0, 1 wy(t) = wiy(t),  H(0,0,wy(t)) = wy(t).

where the future connection statg (t+1) is determined by a functiof (z;, y;, w;;(t)),
which depends on the output layer neurgnthe hidden layer neurog; and the
current connection state;;(¢). If the output layer neuron has not fired, the con-
nection state is not changed. However, if the output layerore has fired, the
connection state depends on the hidden layer in the follpwiays:

¢ If the hidden layer neuron has fired, then the connection &etvthese neur-
ons is created with a probabilipy, .

11



3. OLFACTORY MODEL AND METHODS

¢ If the hidden layer neuron has not fired, then the connecteiwéden these

neurons is destroyed with a probabiljty.

This Hebbian learning allows to decrease discriminatianrefderror) and

variation of weights of matrix Wdw) along interactions (time steps) (F332):

d _ d Nowtn Nkc
derror(t) = #F #ﬁdPWt(t”, dw(t) = Z Z lwyj(t) —wi(t—1)| (3.3)
in =1 j=1

where# P2 is the number of different patterns at inp#tP<,(¢) is the number of
different patterns at output fortanstant,w;;(¢) is the current connection state and
wy;(t — 1) the previous state, andl- and Np,,.n are the number of neurons for

KC and output neurons respectively.

Orthogonal Odorants Character-based Odorants
Error variability Error variability

derror
o
w

. . . . . . . . . I . . . . . . . .
2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Time steps Time steps

Weights variability

Weights variability
5000 T T T

4000

3000 -

dw

2000

1000 -

. . . . . . . . . . . . I . . . . .
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Time steps Time steps

Figure 3.2: Examples of error variability (top panels) and weights afaitity (bottom
panels) using Hebbian learning for network dimension&’ @f, = 100, N ¢ = 5000,
Nown = 10, probabilities ofp. = 0.1, p,, = 0.5, p4 = 0.2 andp_ = 0.1, and
orthogonal (left panels) and character-based (right gauoelorants.
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3.4 Odorants

3.4 Odorants

The odorants used in our model as input have no correspoaderreal odorant
data, because in this first approximation we want to test gpothesis about the
benefits of neuronal variability. Instead, we have usedogidhal and character-
based encodings (F§3). The reason for using these encodings is because we
need these odorants have a minimum distance between thensueceethey are
different odorants. In the case of orthogonal encoding, asehwanted to ob-
serve what happens if different odorants do not share aetivaeurons in the input
layer, AL. We have used orthogonal encodings all of whichetitse same number
of active neurons in the input layer. Also, this number ofvecheurons is max-
imal. Therefore, if we have 100 input neurons, we will haveatfive neurons
for 10 different odorant patterns, and 20 for 5 different rhd patterns. In the
case of character-based encodings, we have used numédcatters represented
in matrices of dimensions0 x 10, which we have later converted to vectors of
dimension 100. The minimum Hamming distance between thesedangs is 4
activated neurons, for the numerical characters 5 and 6.

We have worked with four set of odorants, they have beenexdadm a initial
set of odorants, which have been replicated three timesrratiuced them some
noise. This noise represents a set of input neurons which ttzanged their state
of activation (active/inactive). We have used a noise tffatts a specific number
of neurons, which is in proportion (20%) to the number of\getieurons. The four
set of odorants are as follows:

e 15 Orthogonal odorants: 5 orthogonal odorant patterns ¢B@eaneurons)
repeated 3 times with noise in 4 neurons.

e 15 Character-based odorants: 5 character-based odoterhggwith a min-
imum of 28 active neurons) repeated 3 times with noise in Gareu

¢ 30 Orthogonal odorants: 10 orthogonal odorant patterns¢liGe neurons)
repeated 3 times with noise in 2 neurons.

13



3. OLFACTORY MODEL AND METHODS

e 30 Character-based odorants: 10 character-based odatietns (with a
minimum of 28 active neurons) repeated 3 times with noiserie@ons.

2 2 2 2 2 2 2 2 2 2
T 4 4 4 4 4 4 4 4 4 4
2 6 4 & & 6 6 & & 3 &
£9 3 & 8 8 8 8 8 8 8 8
g
5 m 10 oLl wopd wi b [GIAN I ] L] B 0 ! 0
3 24690 24BE1D 246810 246810 24B810 24680 24690 24BEID 24B80 24680
z
S ] m ] M1 ] mn T M |
g, 2 2, 2 2 2 2 2 2 PI | 2
52 4 4 1 4 4 41 4 4 i 4 4 4
= gl [ a1 & 5 ], 6t fn & & B &
= & g g 8 8 g g ] g
) | b , DI L
0 10 0 0 (LI [G1N L] 0 0 0
24680 24BEID 24BEI0 24680 24BEID 24680 24650 24BEID FYET 24680
2 2 2 2 2 2 2 2 2 2
5 4 4 4 4 4 4 4 4 4 4
226 6 & & 3 3 & & B &
ER 8 ] ] 8 8 ] ] ] ]
3 10 0 0 10 10 0 0 10 i
= 24680 248610 246810 246810 246810 24680 24680 246610 246810 246810
L
E 2 2 2 2 2 2 2 2 2
& &
ooy 4 4 4 4 4 4 4 4 4
£ =
5% 5 3 5 5 6 6 5 5 5 5
£ 3 & g g 8 8 g g ] g
0 10 0 0 10 10 0 0 0 0
24680 248610 246810 246810 246810 246810 24680 246610 246810 246810

Figure 3.3: Examples of orthogonal (top panels) and character-basstb(b panels)
encodings without and with noise. Colours: black (1, aatiearon), white (0, inactive
neuron).

We have used these odorants with noise to observe if theyecarelbclassified
despite noise, after we have known the discrimination emoen these odorants
are presented without noise. This error for odorant diso@tion in the absence
of noise will be shown in the results section.

3.5 Discrimination error

Discrimination error represents the percentage of odsramich have not been
correctly classified. To calculate this percentage, weraedhat a correctly classi-
fied odorant always generates the same output pattdior a certain input pattern
A. Therefore, since we know how many clusters are in the inpetwill expect
the same clusters appear in the output. This is expectettohgpis used to meas-
ure the error of discrimination by comparison. So after wig the output of
our model, this is clustered and compared with the origihgdtering, all of those
odorants that are inconsistent with this clustering is ascrémination error.

14
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3.6 Limit thresholds

|# P — #Poue]
#P5,
where# P¢ is the number of patterns at inpy¢,P<, is the number of patterns at

u

output andl" is the total number of iterations (time steps).

error =

error = derror(T) (3.4)

3.6 Limit thresholds

A limit threshold is the minimum threshold value which pretseea neuron from
spiking for an odorant. This value has been used as threghaldr neurons, in
order to prove how important threshold variability is in theblem of odorant
discrimination. This limit threshold is calculated for @ageuron and each odorant
as follows:

Nar, Nkc

o _ o) o _ o)

9j = g Cjily & = E WY, (3.5)
i=1 j=1

where neurory spikesv6;, 0 < 6; < 69, and neuron spikesVe;,0 < g < &f.
Being 0 the limit threshold for a KC §) and an odorant(f), and<{’ the limit
threshold for an output neuroi) @nd an odorant®), and both are natural numbers.
These thresholds are calculated only one time in the oddrserimination process,
both before Hebbian learning. Therefore, the limit thrédmoatrix stores all limit
threshold of a layer. In case of hidden layer, it has dimensigQ- x Nopor, and
dimensionNo.:n X Nopor for the output layer.

1 Nopor 1 Nopor
o ... o el o €l
o _ . . : o _ . . )
9j = : g : & = : . : (3.6)
pL L GNODOR gl ... ~Nopor
Nkco Nkco NowtN NowtN

The purpose of these matrices (Big}, Fig.3.5) is to know all possible thresholds
for each layer, for all neurons and odorants, and chooserntbemhich improves
odorant discrimination.

As we have already explained the meaning of limit threshald, will ex-

plain how they are calculated for the cases of homogeneodheterogeneous
thresholds.

15
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x10* 30 Orthogonal odorants a5 x 10* 30 Character-based odorants

6

Number of occurrences
Number of occurrences

0 2 4 6 8 0 5 10 15 20
Limit threshold Limit threshold

Figure 3.4: Example of limit threshold distributions in KC for differendorant sets:
30 Orthogonal odorants (left panel), 30 Character-basedands (right panel).

2000 2000 —— 2000 2000 =— 2000 2000 T 2000 2000 T 2000 2000
E
5 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
o o
5
2 0 ol 0 o LI 0 o I 0 ol 0 ol
o 0510 0510 0 5 0 s 0 5 0 s 0510 0510 05 0510
=
5 2000 — 2000 2000 2000 g— 2000 2000 2000 2000 1 2000 - 2000
g
= 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
=
- L L
oL 0 | 0 0 0 ol 0 0 | ol ol
0510 0510 0 5 0 s 0 5 0510 0510 0510 0510 0510
1000 1500 1000 —— 1000 —— 1000 1000 —— 1000 —— 1500 1000 —— 1000
E 1000 1000
2 5 500 500 500 500 500 500 500 500
IS 500 500
S
E
= 0 0 0 0 0 0 0 0 0 0
H 01020 0510 01020 01020 01020 01020 01020 01020 01020 01020
2
2 1000 — 1500 1000 — 1000 — 1000 1000 — 1000 — 1500 1000 — 1000
5
[ 1000 1000
5 = 500 500 500 500 500 500 500 500
£ 500 500
S
0 0 0 0 0 0 0 0 0 0
01020 01020 01020 01020 01020 01020 01020 01020 01020 01020

Figure 3.5: Example of limit threshold distributions in KC for all odens: Ortho-
gonal odorants (top panels), Character-based odoraritsifppanels).

3.6.1 Homogeneous thresholds.

To calculate the homogeneous thresholds, we obtain thethm@shold matrix for
the hidden layer and we take the minimum and maximum of thisixa&\Ve take all
values between the minimum and maximum, including theseséoas thresholds

16
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3.6 Limit thresholds

for the hidden layer. The aim of this process is to obtain tiv@mum discrimina-
tion error for each threshold and the spike rate for this mum.

To achieve this minimum discrimination error, for each t@ddayer threshold
we obtain its limit threshold matrix for the output layer and take the minimum
and maximum of this matrix. We calculate the discriminateyror for all pos-
sible combinations and take the minimum observed. Thisevaithe minimum
discrimination error for a hidden layer threshold:

Algorithm 1 Homogeneous threshold

Omin = min(69) I/minimum matrix6$
Omae = mazx(69) [/maximum matrixy?
N = 0,ae — Omin + 1 /Inumber of thresholds
error[N] = 1 /lvector that stores the minimum error for edch
forn=0— N—-1do
0 = Opin +n
M = oz — Emin + 1
form=0— M —1do
€ = Emin + M
if error < error(f) then
error(0) = error
end if
end for
end for

3.6.2 Heterogeneous thresholds.

In the case of heterogeneous thresholds, we obtain thethn@ishold matrix for
the hidden layer but we do not take all possible combinatid¥s obtain the dis-
tribution of limit thresholds for each hidden layer neuramdave select the value
which prevents each neuron from firing for a certain perggtd odorants. These
values will be the limit thresholds for these neurons (5.
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3. OLFACTORY MODEL AND METHODS

We have taken all possible integer percentages, 0-100 sadated the threshold
for each neuron in the hidden layer. We have obtained thenmoim discrimination
error for each percentage and the spike rate for this minimum

To achieve this minimum discrimination error, for each eetage used in the
hidden layer we take all possible integer percentages dedlate the threshold
for each neuron in the output layer. We calculate the digoation error for all
possible combinations and take the minimum observed. Hihigevs the minimum
discrimination error for a percentage used in the hiddeartay

Algorithm 2 Heterogeneos threshold
error[101] =1
for n =0 — 100 do
0 = thresholds(n) /llthresholds(x) returns a thresholds vector for all nesron
that prevents these fires for a percentage of odorants
for m =0 — 100 do
e = thresholds(m)
if error < error(f) then

error(0) = error
end if
end for
end for

18



3.6 Limit thresholds

Character-based Odorants

Orthogonal Odorants
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Figure 3.6: Example of distribution of limit thresholds for a hidden ¢siyneuron, a set
of 30 odorants with noise andfa= thresholds(75) (Alg.2). The value selected as
limit threshold,ejo, for these neurons, represented by a black line, allowse¢heons
only fires for 25% odorants. Therefore, if the selected peege is high, the limit
threshold will be high too and the neuron will fire for a few oalats, the neuron will
be more selective. If the percentage is low, the selectdfithe neuron is also low.

19


Images/Hetero_75_Matrix.eps




CHAPTER

Experiments and results

As mentioned above, our goal is to compare which kind of thotts (ho-
mogeneous or heterogeneous) improves odorant discrilmmatowever, before
focusing on the results of this comparison, we analyse fegarce of the different
parameters of the model to use this knowledge in obtainimdioal results.

4.1 Model parameters relevance

Besides the most important parameters for us, which arehtiesholds, there are
many others that can condition the odorant discriminatioifitg of our model.
That is why, although previously have been seen slightlyfages on analyzing
them in this section as follows:

e Input properties

— Overlapping

— Gain control
e Network properties

— Connection probabilities
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4. EXPERIMENTS AND RESULTS

— Hebbian probabilities

For this analysis, we use mainly orthogonal odorant patteon derivatives
thereof, homogeneous thresholds, obtained through itsustive search, and 20
iterations of Hebbian learning. The following results dre &verage of 10 simula-
tions.

4.1.1 Input properties

The first parameter of our model is the input, and whateveotiggn of this, artifi-
cial or real, there are some properties that can influencsubeess of its discrim-
ination.

4.1.1.1 Overlapping

Level O
S oo s
S @ oo
S @ oo
S oo s
S @ oo
S oo s
S oo s
S @ oo
S oo s
S @ oo

246810 246810 246810 246810 246810 246810 246810 246810 246810 246810

Level 1
S oo e N
E R
E R
S oo e N
E R
S oo e N
S oo e N
E R
S oo e N

EREECEE

246810 246810 246810 246810 246810 246810 246810 246810 246810 246810

Level 2
S @@ B
S m oo =N
S m oo =N
S @@ B
S m oo =N
S @@ B
S @@ B
S m oo =N
S @@ B
S m oo =N

246810 246810 246810 246810 246810 246810 246810 246810 246810 246810

Level 3
S o e
S oo e N
S oo e N
S o e
S oo e N
S o e
S o e
S oo e N
S o e
S oo e N

246810 246810 246810 246810 246810 246810 246810 246810 246810 246810

Figure 4.1: Example of different levels of overlapping: Level 0: No degr. Level 1.
Each odorant overlaps with two odorants. Level 2: Each odareerlaps with half of
odorants. Level 3: Each odorant does not overlap with anasdoColours: black (1,
active neuron), white (0, inactive neuron).

Odorant encodings with overlapping between them, can be&@useproblem
for a success discrimination. So we wanted to measure @gen@ influence using
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4.1 Model parameters relevance

different levels of it in the input model. These levels of dapping have been
configured as follows (Fig.1):

e Level 0: No overlap.
e Level 1: Each odorant overlaps with two odorants.
e Level 2: Each odorant overlaps with half of odorants.

e Level 3: Each odorant does not overlap with an odorant.

Observing that overlapping does not have a great influendbesuccess of
the discrimination of odorants, at least for the odoranesl{§ig4.2). This strange
fact may have the following explanation: the odorants usadtrhave a maximum
of 80% overlap, so the remaining 20% has enough informa®®34 activated,
10% of the total) for odorants to be discriminated. Thermefdor these simple
models, although overlapping of information is a frequawnbem, the model will
be tolerant to this problem if it receives enough informatand the input has a
gain control.

Discrimination Error — Overlapping

09 h

0.8 i

0.7 h

0.6 h

0.5F i

% Error

0.4r h

O L L
0 1 2 3

Overlapping Level

Figure 4.2: Percentage of error based on level of overlap introduceapai.i
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4. EXPERIMENTS AND RESULTS

4.1.1.2 Gain control

It is possible that different odorants do not have the sameeu of active neurons
in the input model. This variation of neuronal activity maliuence the success
of discrimination of odorants. In fact, recent researchutliitpsuggests that a gain
control is crucial for any system that aims to separate ttaityuof stimuli from
their intensity f13]. Gain control is present in nervous system$|[ For example,

it has been observed that it exists in the olfactory systeunames responsible for
inhibition in the AL [35], LNs. So we will measure gain control influence using
different levels of activation variability in the input meld(standard deviation of
the number of active neurons for each pattern). These #otivgariability levels
have been configured as follows (Fg):

e Level 0: No activation variability (gain controly. = 0.

Level 1: Low activation variabilityc = 0.876.

Level 2: Medium activation variabilityr = 1.491.

Level 3: High activation variabilityc = 3.028.

Observing that gain control has a strong influence on theesscof the dis-
crimination of odorants (Fig.4) and therefore it is a parameter to take into great
consideration in our model.

4.1.2 Network properties

Threshold is the neural network bias, but there are othevarktparameters which
we have to take in consideration.

4.1.2.1 Connection probabilities

We mentioned above that the connectivity matrixemains fixed throughout the
odorant discrimination process, but the connectivity malty’ is updated using
Hebbian learning. This fact suggests that the probahilitts more relevant than
the probabilityp,,, but to know if this is true and its significance level, we need
to observe the percentage of discrimination error for afigiigie combinations of
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Level 0
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Level 3
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Figure 4.3: Example of different activation variability levels: Lev@l No activation

variability. Level 1: Low activation variability. Level 2Medium activation variabil-
ity. Level 3: High activation variability. Colours: blacl (active neuron), white (O,
inactive neuron).

Discrimination Error — Gain Control
1 T T

% Error

0 ‘ ‘
0 1 2 3
Activation Variability Level

Figure 4.4: Percentage of error based on activation variability leméloduced at
input. Error which tends to its maximum when activation &hiiity increases.
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4. EXPERIMENTS AND RESULTS

their probabilities (Figt.5).

Orthogonal Odorants Character-based Odorants

pe pw pe

Character-based Odorants

1
"~
08
06
9
g
04
02

pw
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
pw

Figure 4.5: Relationship between error rate and connection probigsilior ortho-
gonal (left panels) and character-based (right panelsindts

As shown, they,. variability influences on results, whijg, variability does not
have notable relevance for these. On the other hand, it sdeahsat least for
orthogonal odorants, discrimination error is lower wipgprobability is lower too.

4.1.2.2 Hebbian probabilities

The reason that pw connection probability is not relevaduis to Hebbian learn-
ing, which has its own probabilitieg,, andp_. To know how these probabilities
influence on model, we will obtain the percentage of disanetion error for all
possible combinations of them (FHg6).

As we can see, the discrimination error decreases when hielpbobabilities
are low, where p+ probability seems be more relevant thaatdeast when this

probability is low.

Another observation can be made is that, for orthogonalader minimum
discrimination error occurs when there are not Hebbiamliegr Our explana-
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4.2 Threshold comparison

Orthogonal Odorants Character-based Odorants
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Figure 4.6: Relationship between error rate and Hebbian probabiliGesrthogonal
(left panels) and character-based (right panels) odarants

tion for this behaviour is that using homogeneous threshshich are obtained
by exhaustive search, compensates the lack of learning wkdmave orthogonal
odorants, which are very simple and completely separabteet®er, other studies
showed that Hebbian learning increases odorant discrtramahen the number
of training examples also increase®]. Being observed that from 1000 training
examples, Hebbian learning ability to discriminate odtsancreases drastically,
while, in our case, we have 15 or 30 odorants. However, thisvier may be
interesting to study, as the lack of learning for the C matras studied16].

4.2 Threshold comparison

Noting the relevance of in the parameters of the model, weqa® to make the

comparison between different types of thresholds. We divite results of this

comparison in two parts. First, we show the results for diifé sets of odorants:
15 orthogonal odorants, 30 orthogonal odorants, 15 cheréeised odorants and
30 orthogonal odorants; and different connection proligslifor the hidden layer,

p.. Finally, we present the results for a particular case, Wwhiows the relationship
between discrimination error and spikes rate.
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4. EXPERIMENTS AND RESULTS

4.2.1 Different sets of odorants and connection probabilities
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Figure 4.7: Comparison of the different types of thresholds (homogesemd het-
erogeneous) for different sets of odorants and connectioipgpilities with noise and
the Hebbian learning probabilities which minimize the disination error. Sample
means with 95% confidence intervals of standard errors (SE).

We have made 10 simulations for each set of odorants. We have tthese
simulations for different connection probabilities foethidden layer,.), differ-
ent Hebbian learning probabilities (,p_) and noise presence (absent or present).
We have used low connection probabilities for(0.1, 0.3, 0.5) based on studies
that confirm this 15, 25], a probability forp,, (0.5) because it is applied to a matrix
with learning, and selected Hebbian learning probabditigdich have been previ-
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4.2 Threshold comparison

ously studied?2?2]. Using this Hebbian learning over 20 time steps.

These averaged results (Fgl) show that heterogeneous thresholds achieve
lower discrimination errors. As they show how discrimioaterror increases with
connection probability and number of odorants. Furtheenby comparing these
results with those obtained for odorants without noisen@gbnal odorants: 0.3%
Homogeneous, 0.1% Heterogeneous; character-based txlo@ab? Homogen-
eous, 0.4% Heterogeneous), we can observe that the modidnarit to noise and
therefore it is robust.

High values for the discrimination error in the case of cheeabased odor-
ants can be explained by the similarity of some odorantd) higgse which has
been introduced in the input layer but above all because tisenot a gain con-
trol. Standard deviation in the number of active neuronsoftinogonal odorants
is O (gain control), but for the character-based odorarasaand 16.632 (standard
deviation is 16.763 for set of 15 odorants, and 16.501 fook80), a high value if
we take in consideration the results seen in Gain Control.

4.2.2 Discrimination error - spike rate

We have taken the averaged results, which we have seen aalepserved the
relationship between discrimination error and spike rat@fparticular case (spike
rate can be observed in the dotted line in &i§).

These results show that minimum discrimination error iatesl to a low spike
rate. This proves our hypothesis that high population gpess in KC layer im-
proves odorant discrimination.

The reason for this behavior is that if thresholds are tob ftigere will be very
few neuron spikes in the hidden layer, and therefore odardotmation which
arrives to the output layer will be low, making discrimiraatiimpossible. How-
ever, if thresholds are too low, there will be a lot of neurpikes in the hidden
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Figure 4.8: Results for 15 orthogonal and 15 character-based odoratfitsmvise and
connectivity probabilityp. = 0.1.

layer, and the output layer will have high population spaess to make odorant
discrimination possible.
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CHAPTER

Conclusions and future work

The primary objective of this master thesis was to study Henrformation is
processed in the olfactory system. For that we used a singpi;mshmodel based
on McCulloch-Pitts. We focused on the odorant discrimoratias well as on the
way the threshold variability influences this process. Wagared the homogen-
eous and heterogeneous thresholds to find out whether tbghtiid variability
improves the odorant discrimination.

We showed, with simple artificial odorants, thmural variability using het-
erogeneous thresholds improves odorant discriminationFurthermore, we proved
thatdiscrimination success is related to the sparseness condit observed in the
KC layer, and it increases fdow connection probabilitiesbetween AL and MB.

Moreover, the analysis of the parameters that can influéreenodel has re-
vealed that, in case of input properties, overlapping de¢shave much of an im-
pact on discrimination success, when we have overlappegihformation. This
is only proved for simple odorant patterns. While gain colns crucial for odor-
ant discrimination. Also, in case of network properties, pveved that for the”
matrix, the connection probability,, is relevant, but for thél” matrix, the initial
connection probability,,,, this is not the casd}” matrix is conditioned by Hebbian
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5. CONCLUSIONS AND FUTURE WORK

learning and, therefore, by their probabilities. Thesdphilities decrease discrim-
ination error when they are low, for our model and odoranéslus

Apart from this analysis, we studied other parameters sa¢hainfluence of
neuronal activity at input, and network dimensionality twe imodel. However,
the computation time needed to make a proper study of thesenpters was ex-
cessive because of the exhaustive search algorithm fathtbids. Furthermore, we
encountered another problem with neural activity, whiclk alao caused by the ex-
haustive search algorithm. The problem was that if we ireweéhe neural activity
of the network, our algorithm will take higher thresholdadahe amount of in-
formation received by the MB will be the same, implying tHa tesults obtained
for different neural activities are similar.

Consequently, the remaining analysis is one of the worksatitake place in
the future, but it will not be the only one. Once we get thdre first steps will be to
develop an efficient search algorithm for thresholtg [L8], that replaces current
exhaustive search of thresholds and avoids the computatien problem men-
tioned above. This algorithm will allow us to minimize disnmation error and
neuronal activity in the hidden layer (sparseness congitiy supervised learning.
Secondly, we will use in our model real odorant data obtabmedrtificial noses in
order to test this new algorithm.
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CHAPTER

Publications

This work resulted in the following paper presented at thde@nce last IWINAC
2013:

Neuron Threshold Variability in an Olfactory Model Impra/©dorant Dis-
crimination Aaron Montero, Ramon Huerta, and Francisco &lrijuez IWINAC
2013, Part I, LNCS 7930, pp.16-25. 2013 (Article which reedithe award for
"Best paper in Biocomputation”).

Also it will lead to a new paper that will be sent to a specidiournal in the
field:

Computational Enhancement by Neural Variability Aaron Negwa, Ramon
Huerta, and Francisco B. Rodriguez
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