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Resumen

La presente tesis estudia fenmenos de transporte tanto de la carga como del esṕın electrónicos

en sistemas de puntos cuánticos bajo la acción de campos electromagnéticos alternos. Para ello, se ha

hecho necesario, en algunos casos, analizar no sólo el flujo de corriente sino también las fluctuaciones de

la misma.

Se han derivado las ecuaciones de evolución de la matriz de densidad para el caso en que el

sistema se haya bajo el efecto de potenciales externos dependietes del tiempo. En presencia de campos

alternos, que actúan como una oscilación en los niveles de enerǵıa de cada punto cuántico, los procesos de

transferencia electrónica a través de las barreras que delimitan el sistema se ven afectados por la eventual

absorción o emisión de fotones del campo. De esta forma, procesos que, sin la presencia del campo, no

estaŕıan energéticamente permitidos, pueden ahora ocurrir gracias a la enerǵıa suministrada por el campo

(proporcional a su frecuencia). Estos procesos no estaban incorporados en previos estudios de este tipo

de sistemas mediante la matriz de densidad.

Se ha estudiado un sistema de dos puntos cuánticos, conectados a dos contactos (que actúan

como reservorios electrónicos) sin diferencia de potencial alguna aplicada a ellos como sistema de bombeo

electrónico cuando se aplica un potencial alterno cuya frecuencia coincide con la diferencia de enerǵıa entre

los estados de simple ocupación de cada punto cuántico. Para ello, es necesaria cierta inhomogeneidad

espacial o bien que no se mantenga la reversibilidad temporal del sistema. En este caso, le inhomogeneidad

viene dada por la distribución de los niveles energéticos de cada punto cuántico: en uno de ellos, por

debajo del potencial qúımico de los contactos y, en el otro, por encima. Entonces, los electrones que entran

en el sistema son coherentemente deslocalizados entre los dos puntos cuánticos y finalmente transferidos

al colector. De esta forma, se genera una corriente finita en una situación de equilibrio electrostático.

Esta idea puede ser aplicada a sistemas de dos puntos cuánticos en una configuración que

permita la presencia simultánea de hasta cuatro electrones. En ese caso, si la frecuencia del campo

pone en resonancia los estados de doble ocupación de cada punto cuántico, se ha mostrado cómo se puede

seleccionar la polarización de la corriente bombeada, actuando entonces como filtro de esṕın. La corriente

estará completamente polarizada en cada uno de los dos casos, a no ser que los procesos asistidos por

fotones en las barreras de los contactos tengan una contribución apreciable. Como se ha demostrado, esto

sólo ocurre cuando la intesidad del campo es pequeña en comparación con su frecuencia. Por otra parte,

es necesario tener en cuenta la influencia de los procesos de relajación de esṕın debidos a la interacción

con el medio nuclear (interacción hiperfina) o por effecto esṕın órbita. El estudio de la forma de los picos

de resonancia permiten extraer información sobre la magnitud de estos procesos.

Por otra parte, se ha demostrado cómo los procesos de transferencia asistidos por fotones entre

los reservorios y el doble punto cuántico son capaces de deshacer la situación de bloqueo de esṕın. Esto

sucede cuando ambos puntos cuánticos están ocupados por un electrón con el mismo esṕın, de forma que

el principio de exclusión de Pauli impide la formación de estados de doble ocupación que contribuyan al

transporte. La importancia de este efecto reside en la reciente utilización de situaciones de bloqueo de
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espin para la manipulación coherente del esṕın del electrón mediante campor electromagéticos.

La rotación de espines en dobles puntos cuánticos mediante campos magnéticos oscilantes en

resonancia con el desdoblamiento provocado por otro campo magnético estático es analizada en sistemas

abiertos donde los procesos de transporte coherente pueden eventualmente mezclarse con las oscilaciones

producidas por el campo alterno. En concreto, cuando el desplazamiento de Zeeman es similar para los

electrones de ambos puntos cuánticos, ambas dinámicas son independientes. En ese caso, el sistema se

queda atrapado en el subespacio triplete (que no contribuye al transporte electrónico) y la corriente se

cancela, mientras que los dos electrones permanecen rotando coherentemente. Esta situación es muy

sensible a las inhomogeneidades en el desplazamiento Zeeman, debidas a campos magnéticos de distinta

intensidad, puntos cuánticos con distinto factor giromagnético o la interacción hiperfina con los espines

nucleares del medio. En ambos casos, aparece una corriente finita que oscila con una frecuendia que

depende de manera no trivial tanto de la intensidad del campo magnético oscilante como de la anchura

de la barrera que separa los dos puntos cuánticos.

El formalismo de la matriz de densidad también permite el análisis de las fluctuaciones de la

corriente. Mediante la derivación de la ecuación de movimiento para el operador que describe el número

de electrones acumulados en un contacto, se puede obtener tanto la corriente como el ruido de baja

frecuencia para sistemas que incluyan potenciales dependientes del tiempo.

Este nuevo formalismo se ha aplicado a casos relevantes de transporte coherente como los sitemas

de bombeo de carga y esṕın analizados en caṕıtulos anteriores o sistemas con bloqueo de esṕın. Los

primeros muestran ruido sub-poissoniano, como es de esperar en sistemas de transferencia electrónica

resonante. Por contra, los segundos se rigen por un mecanismo más complejo que provoca que los

electrones se transfieran en grupos, en aparente contradicción de su naturaleza fermiónica, provocando

que el ruido sea super-poissoniano.

También se ha analizado el ruido super-poissoniano observado en muestras de puntos cuánticos

dobles alrededor de ciertos picos de corriente resonante. El comportamiento con la temperatura es

achacado a la decoherencia inducida por efecto de los fonones de la red, mientras que los valores del ruido

alcanzados se explican mediante el acoplo capacitivo de dos canales con resonancia en voltages cercanos.

La alteración de las propiedades estad́ısticas se da también en bosones. En concreto, la relajación

electrónica en átomos de dos niveles puestos en resonancia mediante una iluminación coherente (resonan-

cia fluorescente) provoca la emisión de fotones desperdigados, esto es, mostrando ruido sub-Poissoniano,

pese a su naturaleza bosónica. Este tipo de sistemas puede ser considerado también en puntos cuánticos

de dos niveles en el régimen de transporte donde los procesos de relajación se deben a la emisión de

fonones (provinientes de la interacción con las vibraciones del sólido) en lugar de fotones. Se demuestra

en esta tesis cómo estas propiedades pueden ser alteradas mediante la variación de los parámetros del

sistema (la, intensidad del campo, el potencial qúımico de los contactos y el grosor de las barreras de los

contactos).

Para la obtención simultánea de las correlaciones entre eventos electrónicos y fonónicos a

cualquier orden, se ha desarrollado una técnica que permite la obtención de términos de correlación

cruzada entre distintas cuasipartćulas (en este caso, electrones y fonones) que no han sido consideradas

con anterioridad.
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Chapter 1

Introduction

The access to the quantum nature of matter has been for years restricted to quantum optics

experiments where the study of the spectra resulting from the illumination of atomic and molecular

systems provides information on their energy distribution and gives the opportunity to coherently excite

internal transitions. This changed drastically when in 1980 the first measurements of the quantum Hall

effect in two dimensional electron gases in semiconductor structures was reported[1]. There, for the first

time, quantized magnitudes were reached in mesoscopic artificial devices of hundreds of µm.

From that moment, the size of fabricated solid state structures has rapidly decreased by the

impulse of technologic and industrial development, with the aim of being able to buid as much elec-

tronic circuits is the less space. However, basic investigation has benefited from this advances, having

the opportunity to design systems where to explore quantum properties of electrons raising from their

low dimensionality and including, for example, chaotic cavities, carbon nanotubes–serving as one dimen-

sional conductors–, single atomic or molecular junctions. Among them, quantum dots deserve special

importance for being a realization of zero dimensional systems with a discrete energy distribution. For

this reason, they are also know as artificial atoms[2, 3, 4, 5], with the particularity that, in quantum dots,

one can explore regimes that are not accesible for atoms[6, 7], manipulate their properties by extrenal

voltages[8] or investigate a wide range of effects coming from interactions which are a small perturbation

in atoms, as hyperfine or spin-orbit interactions[9].

The analogy can be taken further, since coherent phenomena typical for quantum optics have

usually an electron transport counterpart[10]. Therefore, the introduction of time-dependent electromag-

netic fields was soon considered as a powerful tool to extract information about the internal dynamics of

a quantum dot system and even to control and operate electronic states.

Also, quantum dots have become a physical realization of two level systems. In particular, spin

states or single occupation states in coupled quantum dots, where the interdot tunneling barrer acts as a

coherent interaction[11], allow quantum dots to be considered for as building blocks for spintronic circuits

or qubits in the search of quantum information procesors, apart from the original intention to use them

as single electron transistors.

1.1 Quantum dots

Depending on their fabrication, one can distinguish several types of quantum dots. Lateral

quantum dots consist in a two dimensional electron gas in the interface between two semiconductor

7



8 1. Introduction

Fig. 1.1: (a) Lateral and (b) vertical quantum dots (taken from Ref. [9] and [7], respectively), including an energy

diagram of a quantum dot where the three electrons state is in the bias window, allowing electron transport to

the collector.

layers with different band gap (for example, AlGaAs and GaAs) and confined by quantum point contacts

nanolitographied on top of one of them, cf. Fig. 1.1a. Vertical quantum dots are grown nanostructures

confined between isolating barriers, cf. Fig. 1.1b. Lateral quantum dots have the advantage to be

completely tunable by external voltages. Concretely, the voltages applied to the two quantum point

contacts modify the tunneling strength while by the central gate voltage one can tune up and down the

quantum dot level energies.

As learned from basic quantum mechanics, an electron confined in a region of space show a

discrete energy distribution. The energy separation with the excited states is proportional to L−2, where

L is the size of the region. As can be seen in Fig. 1.2, for ultrasmall quantum dots, this energies can be

resolved by transport spectroscopy measurements.

Transport is also conditioned by Coulomb interaction wich is assumed to be high for electrons

inside the quantum dot. Thus, the transference of an electron to the collector needs the presence of the

state with an extra electron in the bias window, defined by the difference of Fermi energies of the source

and drain leads. In the experiment shown in Fig. 1.2, this is the case when the gate voltage is increased

(then, the energy levels decrease) until the ground state with an additional electron enters the bias

window, defining the bounds of the Coulomb blockade region. The theory of this processes is described

classicaly by Kulik and Shekhter[12] and, considering discrete levels, in the works by Beenakker[13] and

Averin, Korotkov and Likharev[14].

These approaches have in common a description of transport in terms of rate equations that

evaluate the evolution of the quantum dot occupation states by the tunneling rates of outgoing and incom-
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Fig. 1.2: Coulomb blockade diamonds in the differential conductance, ∂I/∂Vsd, through a single quantum dot.

In the white regions, transport is blocked due to intradot Coulomb repulsion, where tunneling is only possible

involving virtual states–cotunneling[16, 17, 18]. The entering of excited states in the bias window is fingerprinted

by the paralel to the Coulomb diamond lines (taken from Ref. [6]). The numbers inside the Coulomb diamonds

denote the number of electrons inside the quantum dot for each configuration.

ing electrons to/from the leads. The theory was definitely stablished by considering intradot correlations

by Gurvitz, Lipkin and Prager[15].

1.2 Coherent transport. Double quantum dots

One can also consider systems of two or more quantum dots separated by a tunneling barrier–

then, the analogy with atoms can be brought to call them artificial molecules. If the interdot coupling is

strong, the electrons will ocuppy molecular orbitals extended all over the dots. On the other hand, if it

is weak, orbitals in each dot can be considered individually. Charge displacements within the quantum

dot system are then considered as coherent processes leading to a superposition of states localized in the

different dots.

In Fig. 1.1a, a double quantum dot is represented, where the energies of each dot can be tuned

separately by different gate voltages. Then, if the single occupation states of each dot are not aligned,

interdot tunneling will be highly supressed and an electron entering the system remains in the quantum

dot that is directly coupled to the emitter. On the other hand, when the levels are resonant, the electron

will be delocalized performing coherent oscillations between the two sites, in a spatial version of Rabi

oscillations. Then, it has a finite probability to be extracted to the collector.

This transport dependence on the detuning of the levels in different dots makes this systems

highly manipulable and precise control of their bonds have been achived[19]. They can also be considered
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Fig. 1.3: AC driven transport in a double quantum dot. (a) Sketch of the double quantum dot system coupled

to the source and drain leads. Gate 2 modulates the interdot barrier while gates 1 and 3 act on the energy levels

of each dot. (b) Energy diagram of the device, showing the high source-drain voltage regime where transport is

unidirectional. (c) Current as a function of the gate voltage for different AC frequencies. When the AC frequency

match the energy difference between the levels of each dot, resonant tunneling through the absorption/emission

of one photon appears in the form of satellite peaks (taken from Ref. [78]).

as two level systems where to test the spin boson model[184] through the coupling to the phononic

vibrations of the host material[185], which are the main dissipative sources in these systems.

To consider these effects, the classical rate equations used to describe transport through sin-

gle quantum dots needed to be be reformulated to include non-diagonal terms of the density matrix,

accounting for the coherent dynamics[20, 21, 22, 23].

1.3 Coherent manipulation by external time dependent fields

Quantum coherence can be exploited by means of time dependent AC fields, as has been done

for years in atomic physics and quantum optics. In this sence, electric AC fields have been applied to

double quantum dots in order to drive internal charge transitions. For instance, electron delocalization

can be achieved even when the detuning of the states in each dot is high if the frequency of the AC field

matches that energy separation[78], cf. Fig. 1.3.

This photon-assisted tunneling involves the renormalization of the interdot coupling which now

depends on both the intensity and the frequency of the AC field through a series of Bessel functions.

Then, one can exploit the properties of these functions to find interesting regimes as, for example,

dynamical charge localization[51]. In that case, the AC intensitity is such that the Bessel function of

order correnponding to the number of photons involved in the interdot transition reaches its zero, and so

it is the renormalized tunneling coupling. Then, the two quantum dots are effectively uncoupled and no

charge flows through the system. This case is discussed in chapter 3.
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Fig. 1.4: Experimental setup for the detection of spin rotations in double quantum dots (a) where a coplanar

gold stripline is situated near by the device in order to induce an oscillating magnetic field perpendicular a the

external DC magnetic field. (b) When transport is cancelled by spin blockade, a pulsed magnetic field rotates one

of the spins so that current can be restablished, reflecting coherent oscillations due to the spin dynamics inside

the double quantum dot (taken from Ref. [95]).

This effect leads to the pumping effect, when finite current flows through an unbiased double

quantum dot provided that time reversability is lifted or the system is spatially inhomogeneous[48]. As

will be shown in chapter 4, the frequency of the AC field can be tuned to select processes involving

electrons with different spin polarization, leading to spin pumping and spin filter devices.

However, photon-assisted tunneling also affects to the contact barriers, introducing in the dy-

namics processes that would be energetically forbidden in the absence of driving[36, 68]. This effect

can lead to a limitation of the operativeness of the electronic device and are an additional source of

decoherence which must be taken into account.

1.3.1 Spin degree of freedom. AC magnetic fields

The electron spin also plays a important role. In fact, a whole new field has raised consisting in

the spin transport properties, spintronics, as an alternative to charge based electronics[24]. Also, spin is

essential in the search of qubits for quantum information processing.

Electronic transport through quantum dot systems is not fully described in terms of Coulomb
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Fig. 1.5: Transport through stacks of self-grown double quantu dots. (a) Current voltage charateristics and shot

noise spectra for different voltages with the fit to A/f + S0 that allows to extract the cero frequency noise. (b)

Differential conductance and shot noise around a current peak for different temperatures (taken from Ref. [188]).

blockade but also by considering Pauli exclusion[92]. It leads to spin blockade when an electron cannot

tunnel from one quantum dot to an orbital in an adjacent quantum dot which is already occupied by

an electron with opposite spin. Then, the two electrons are trapped in the double quantum dot. This

effect has opened the way to manipulate electronic spins in double quantum dots by the introduction of

magnetic fields: a DC magnetic field in the Z direction breaks spin degeneracy by a Zeeman splitting

while an AC magnetic field in the perpendicular plane, whose frequency is resonant with the Zeeman

splitting, rotates the Z component of the electron spins. Once one of the electrons is rotated, spin

blockade is removed (under certain conditions that will be discussed in chapter 5) and transport can flow

through the system[95]. The current thus produced shows oscillations reflecting the coherent rotation of

the spins, as seen in Fig. 1.4. This spin rotation, combined with recently achieved control of exchange

interaction between two spins[82]–also in the spin blockade regime–, permit the operation of two electron

double quantum dots as qubits.

Photon-assisted tunneling effects, as those discussed above have to be considered since they

can lift spin blockade and introduce additional decoherence. This effect will be treated in the pumping

configuration in chapter 4.

1.4 Current fluctuations

Far from being an incovenient for transport measurements, the fluctuations of the electronic

current contain information not provided by measurements on the electronic averaged current. In con-

crete, those originated in the discreteness of the charge carriers–shot noise–are strongly influenced by

the internal dynamics of the quantum system[25, 26] and electronic correlations. The concrete transport

mechanism can modify the statistical properties of the transferred particles. From Pauli exclusion prin-

ciple, one expects the probability of detecting two close in time electronic events to be low (contrary to

what is expected for bosons), involving a supression of the fluctuations with respect to those shown by

classical stochastic processes. In that case, the noise is said to be sub-Poissonian.
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Fig. 1.6: Time resolved detection of electronic tunneling through a quantum dot. The changes in the occupation

of the quantum dot affects the current through a quantum point contact situated close to it. By analyzing the

statistical distribution of the lapses of time between events, one can obtain the full counting statistics of transport

(taken from Ref. [162]).

Recent experiments have found how transport through quantum dot systems can affect the

shot noise by turning it super-Poissonian, meaning that electrons are detected in bunches, imitating the

bosonic behaviour. The measurements of Barthold et al. in self-grown double quantm dots samples[188]

show sub-Poissonian noise at resonant peaks, that goes super-Poissonian in its vicinity, evidenced by the

regions with Fano factor greater than one in Fig. 1.5b. The origin of this behaviour will be the subject

of chapter 7.

Also, time-resolved tunneling measurements in multilevel single quantum dots (see Fig. 1.6)

have demonstrated super-Poissonian shot noise when Coulomb interaction avoids the tunneling through

a conducting level if another level–below the bias window–is occupied[162]. This method allows the

calculation of higher order correlations, giving the full counting statistics of the electronic transport[150].

Opposite to fermions, bosons tend to be detected in bunches. However, antibunched photons

are emitted from resonantly illuminated two level atoms–resonance fluorescence[154]. This phenomena,

which originated the development of full counting statistics, can be brought to AC driven quantum dots

where phonon mediated relaxation plays the role of spontaneously emitted photons. In chapter 8, the

electronic and phononic counting statistics of such a system are analyzed, together with their mutual

correlation.





Chapter 2

Density matrix formalism

A comprenhensive description of a quantum system, its statistical properties and internal dy-

namics is provided by its density matrix. For instance, wave functions are only able to describe pure

states, i.e., when the state of the system can be determined by a series of measurements. However,

having a reduced system coupled to an environment–which is the case for the measurement problem as

well as for transport, it may form mixed superpositions of states which cannot be determined by any

measurement. A mixed state can be represented by a statistical mixture of pure states described by the

density operator[83]

ρ̂ =
∑

n

pn|ψn〉〈ψn| (2.1)

which, for this reason, is also known as statistical operator. Chosing an appropriate basis, |φi〉, these

states one can write in matricial form:

ρ̂ =
∑

nij

pna
∗
n,ian,j |φi〉〈φj | (2.2)

where the diagonal elements, ρii =
∑

n pn|an,i|2, represent the probability of finding the system in a given

state, |φi〉. This involves a normalization condition for the diagonal elements of the density matrix

trρ =
∑

i

ρii = 1 (2.3)

and[27]

ρii ≥ 0 (2.4)

ρiiρjj ≥ |ρij |2. (2.5)

The off-diagonal elements, ρi,j , account for the coherent superpositions between states, and their time

evolution will describe the coherent dynamics and interference effects.

The expectation value of any observable, Ô, can be expressed in terms of the density matrix:

〈Ô〉 =
∑

nij

pna
∗
n,ian,j〈φi|Ô|φj〉 =

∑

ij

ρij〈φi|Ô|φj〉 = tr(ρ̂Ô). (2.6)

15
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2.1 Time evolution

The time dependence of a wave function is given by the Schödinger equation

i~∂t|ψ(t)〉 = Ĥ(t)|ψ(t)〉, (2.7)

where Ĥ is the Hamiltonian of the system. In general, a time evolution operator can be defined such that

|ψ(t)〉 = Û(t)|ψ(0)〉, (2.8)

where Û(t) is unitary and, by substituying in (2.7), satisfies

i~∂tÛ(t) = Ĥ(t)Û(t). (2.9)

If the Hamiltonian is time independent, Û(t) = e−iĤt/~.

From (2.1), one can get the time evolution of the density operator:

ρ̂(t) =
∑

n

pn|ψn(t)〉〈ψn(t)| =
∑

n

pnÛ(t)|ψn(0)〉〈ψn(0)|Û†(t) = Û(t)ρ̂(0)Û†(t). (2.10)

Derivating with respect to time:

i~∂tρ̂(t) = i~∂tÛ(t)ρ̂(0)Û†(t) + i~Û(t)ρ̂(0)∂tÛ†(t) = Ĥ(t)Û(t)ρ̂(0)Û†(t) − Û(t)ρ̂(0)Û†(t)Ĥ(t) (2.11)

thus satisfying the equation of motion:

i~∂tρ̂(t) = [Ĥ(t), ρ̂(t)] (2.12)

analogue to the Liouville equation for a classical phase space probability distribution.

2.1.1 Interaction picture. Perturbative expansion

If the time dependence of the Hamiltonian is due to an external potencial, Ĥ(t) = Ĥ0 + V̂ (t),

it is much more convenient to consider the Heisenberg interaction picture, where the term Ĥ0 re-defines

the wave function so |ψI(t)〉 = eiĤ0t/~|ψ(t)〉 and the Schrödinger equation depends only on the external

potencial:

i~∂t|ψI(t)〉 = V̂I(t)|ψI(t)〉, (2.13)

where V̂I(t) = eiĤ0t/~V̂ (t)e−iĤ0t/~. Therefore, the time evolution operator, in the interaction picture,

ÛI(t) = eiĤ0t/~Û , satisfies the differential equation

i~∂tÛI(t) = V̂I(t)ÛI(t) (2.14)

with the initial condition ÛI(0) = I. The exact solution

ÛI(t) = I − i

~

∫ t

0

dτV̂I(τ)ÛI(τ) (2.15)

can be solved iteratively, if the external potential is considered as a small perturbation. Up to second

order:

Û (2)
I (t) ≈ I − i

~

∫ t

0

dτV̂I(τ) −
1

~2

∫ t

0

dτ

∫ τ

0

dτV̂I(τ)V̂I(τ
′). (2.16)
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In the same way, the Liouville equation for the density matrix in the interaction picture

i~∂tρ̂I(t) = [V̂I(t), ρ̂I(t)] (2.17)

can be written into an integral form

ρ̂I(t) = ρ̂I(0) − i

~

∫ t

0

dτ [V̂I(τ), ρ̂I(τ)] (2.18)

which can be solved iteratively:

ρ̂
(0)
I (t) = ρ̂I(0) (2.19)

ρ̂
(1)
I (t) = ρ̂

(0)
I − i

~

∫ t

0

dτ [V̂I(τ), ρ̂I(0)] (2.20)

ρ̂
(2)
I (t) = ρ̂

(1)
I − 1

~2

∫ t

0

dτ

∫ τ

0

dτ ′[V̂I(τ), [V̂I(τ
′), ρ̂I(0)]], (2.21)

and so on, to obtain the small deviations caused by the external perturbation in the system.

2.2 Relaxation to the stationary regime. Master equation

On contrary, the problems considered in this thesis all consist a small system (one or more

quantum dots) that is taken out of equilibrium by its interaction with a bigger environment (two fermionic

reservoirs) in which it is embeded. The theory for these irreversible problems was developed in the 50’s

by Wangsness, Bloch[28, 43], Fano[30] and Redfield[31] for a quantum system interacting with a thermal

bath. The system can be modeled by the Hamiltonian

Ĥ = ĤS + ĤR + V̂ , (2.22)

where the first two terms represent the quantum system and the reservoir, respectively and the last one,

the interaction between them, which will be treated perturbatively. As explained in the previous section,

one would rather work in the interaction picture which is obtained by writting Ĥ0 = ĤS + ĤR.

Then, one can write a differential equation for the density matrix of the whole system in the

interaction picture, χ̂I , by introducing (2.18) into the Liouville equation (2.17), to obtain

˙̂χI(t) = − i

~
[V̂I(t), χ̂I(0)] − 1

~2

∫ t

0

dt′[V̂I(t), [V̂I(t
′), χ̂I(t

′)]]. (2.23)

By tracing out the contribution of the reservoirs, one can write the dynamical equations for the

reduced density matrix, ρ = trRχ. If we consider t = 0 as the time when the interaction begins, the initial

state can be written as a product: χ̂(0) = χ̂S(0)χ̂R(0) = χ̂I(0), where χ̂S(0) = ρ̂(0). Considering that

the environment remains in equilibrium and only the small system is affected by the interaction, one can

write

χ̂(t) = ρ̂(t)χ̂R(0), (2.24)

involving that the processes related with the interaction between S and R will be irreversible. This

approximation is equivalent to the first order–Born approximation in perturbation theory, when the

initial uncorrelation between S and R is only slightly modified by the external potential. Then, one

obtains

˙̂ρI(t) = − i

~
trR[V̂I(t), ρ̂(0)χ̂R(0)] − 1

~2

∫ t

0

dt′trR[V̂I(t), [V̂I(t
′), ρ̂I(t

′)χ̂R(0)]]. (2.25)
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Asuming that the time when the reservoir mantains its correlation is much shorter than the time

when S is significantly damped, the influence of the past times on the evolution of the system is lost.

Then, the system is said to not preserve memory and one can substitute ρ̂I(t
′) ≈ ρ̂I(t) in (2.25)–Markov

approximation:

˙̂ρI(t) = − i

~
trR[V̂I(t), ρ̂(0)χ̂R(0)] − 1

~2

∫ t

0

dt′trR[V̂I(t), [V̂I(t
′), ρ̂I(t)χ̂R(0)]]. (2.26)

The interaction potential can in general be written as products

V̂ =
∑

i

ŝir̂i, (2.27)

where ŝi and r̂i are operators from the small system and the reservoirs, respectively. They commute, so

that in the interaction picture, one finds

V̂I(t) =
∑

i

ŝi(t)r̂i(t), (2.28)

where ŝi(t) = e−iĤSt/~ŝie
−iĤSt/~ and r̂i(t) = e−iĤRt/~r̂ie

−iĤRt/~. Inserting it into (2.26):

˙̂ρI(t) = − i

~

∑

i

trR[ŝi(t)r̂i(t), ρ̂I(0)χR(0)] − 1

~2

∑

ij

∫ t

0

dt′trR[ŝi(t)r̂i(t), [ŝj(t
′)r̂j(t

′), ρ̂I(t)χ̂R(0)]]. (2.29)

After writing the commutation relations and extracting the operators of S out of the trace, if one considers

the cyclic property of the trace, tr(ÂB̂Ĉ) = tr(ĈÂB̂) = tr(B̂ĈÂ):

˙̂ρI(t) = − i

~

∑

i

(ŝi(t)ρ̂I(0) − ρ̂I(0)ŝi(t)) 〈r̂i(t)〉 (2.30)

− 1

~2

∑

ij

∫ t

0

dt′{(ŝi(t)ŝj(t
′)ρ̂I(t) − ŝj(t

′)ρ̂I(t)ŝi(t)) 〈r̂i(t)r̂j(t′)〉 (2.31)

+ (ρ̂I(t)ŝj(t
′)ŝi(t) − ŝi(t

′)ρ̂I(t)ŝj(t)) 〈r̂j(t′)r̂i(t)〉}, (2.32)

where 〈...〉 = tr(...ρ). While χ̂R(0) = 1
Z e
−βĤR is diagonal, all the elements 〈N |r̂|N ′〉 (where |N〉 are the

eigenstates of ĤR) are non-diagonal or they would be absorbed by ĤR. Then, the expectation values

〈r̂i(t)〉 =
∑

NN ′

〈N |r̂i(t)|N ′〉〈N ′|χ̂R(0)|N〉 =
∑

N

〈N |r̂i(t)|N〉〈N |χ̂R(0)|N〉 = 0. (2.33)

As asumed by the Markov approximation, the correlations 〈r̂i(t)r̂j(t′)〉 only survive for short lapses of

time, τ , so

〈r̂i(t)r̂j(t′)〉 ≈ 〈r̂i(t)〉〈r̂j(t′)〉 = 0 (2.34)

if t− t′ ≫ τ . On the other hand, for t− t′ . τ , it is convenient to rewrite the reservoirs correlations as a

function of the difference of times:

〈r̂i(t)r̂j(t′)〉 = trR
(

e−iĤRt/~r̂ie
−iĤRt/~e−iĤRt′/~r̂ie

−iĤRt′/~χ̂R(0)
)

= 〈r̂i(t− t′)r̂j〉 (2.35)

again by using the cyclic property of the trace and [ĤR, χ̂R(0)] = 0. Introducing t′′ = t − t′ and

extending the integration limit to infinite, which is allowed by (2.34) and by the Markov approximation

(one considers times t large compared to τ):

˙̂ρI(t) = − 1

~2

∑

ij

∫ ∞

0

dt′′{[ŝi(t), ŝj(t− t′′)ρ̂I(t)]〈r̂i(t′′)r̂j〉 − [ŝi(t), ρ̂I(t)ŝj(t− t′′)]〈r̂j r̂i(t′′)〉}. (2.36)
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In the basis of eigenstates of ĤS , 〈m|ŝi(t)|n〉 = eiωmnt〈m|ŝi|n〉, where ~ωmn = Em − En:

〈m′|[ŝi(t), ŝj(t− t′′)ρ̂I(t)]|m〉 =
∑

kk′

(

eiωm′k′ teiωkk′ (t−t′′)〈m′|ŝi|k〉〈k|ŝj |k′〉〈k′|ρ̂I(t)|m〉 (2.37)

−eiωm′k′ (t−t′′)eiωkmt〈m′|ŝj |k′〉〈k′|ρ̂I(t)|k〉〈k|ŝj |m〉
)

〈m′|[ŝi(t), ρ̂I(t)ŝj(t− t′′)]|m〉 =
∑

kk′

(

eiωm′kteiωk′m(t−t′′)〈m′|ŝi|k〉〈k|ρ̂I(t)|k′〉〈k′|ŝj |m〉 (2.38)

−eiωkmte−iωkk′ t′′〈m′|ρ̂I(t)|k〉〈k|ŝj |k′〉〈k′|ŝi|m〉
)

.

Then, by rewritting
∑

k fkk′mm′ =
∑

kα fαk′km′δkm where necessary

〈m′| ˙̂ρI(t)|m〉 = − 1

~2

∑

ijkk′

〈k′|ρ̂I(t)|k〉
{

eiωm′k′ t
∑

α

〈m′|ŝi|k〉〈k|ŝj |k′〉
∫ ∞

0

dt′′e−iωαk′ t′′〈r̂i(t′′)r̂j〉δmk

−ei(ωm′k′+ωkm)t〈m′|ŝj |k′〉〈k|ŝi|m〉
∫ ∞

0

dt′′e−iωm′k′ t′′〈r̂i(t′′)r̂j〉 (2.39)

−ei(ωm′k′+ωkm)t〈m′|ŝi|k′〉〈k|ŝj |m〉
∫ ∞

0

dt′′e−iωkmt′′〈r̂j r̂i(t′′)〉

+eiωkmt
∑

α

〈k|ŝj |α〉〈α|ŝi|m〉
∫ ∞

0

dt′′e−iωkαt′′〈r̂j r̂i(t′′)〉δm′k′

}

.

Defining

λ+
mkln =

1

~2

∑

ij

〈m|ŝi|k〉〈l|ŝj |n〉
∫ ∞

0

dt′′e−iωlnt′′〈r̂i(t′′)r̂j〉 (2.40)

λ−mkln =
1

~2

∑

ij

〈m|ŝj |k〉〈l|ŝi|n〉
∫ ∞

0

dt′′e−iωmkt′′〈r̂j r̂i(t′′)〉, (2.41)

one obtains the differential equation for the density matrix elements

〈m′| ˙̂ρI(t)|m〉 =
∑

kk′

〈k′|ρ̂I(t)|k〉Rm′mk′ke
t(ωm′k′+ωkm)t, (2.42)

where the Redfield relaxation coefficients are defined as

Rm′mk′k = −δmk

∑

α

λ+
m′ααk′ + λ+

kmm′k′ + λ−kmm′k′ − δm′k′

∑

α

λ−kααm. (2.43)

Note, that the coefficients (2.40) and (2.41) satisfy

λ−∗mnkl = λ+
lknm (2.44)

λ±mmln = λ±lkmm = 0. (2.45)

Considering that the typical period of variation of the system, ω−1
mn, is much shorter than the

time integration step (which also must be long enough to satisfy the Markov approximation), one can

keep only the (secular) terms satisfying

Em′ − Ek′ + Ek − Em = 0. (2.46)

All the rest only contribute to fast oscillating terms and can be neglected[31]. Then, if the states are

non-degenerate, so each energy defines only one state, and the separation between energies is not-regular,

only three cases satisfy (2.46):
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1. m′ = k′, m = k, m′ 6= m

2. m′ = m, k′ = k, m′ 6= k′

3. m′ = m = k′ = k.

Then, (2.42) is written in terms of time-independent terms:

〈m′| ˙̂ρI(t)|m〉 = (1 − δm′m)〈m′|ρ̂I(t)|m〉Rm′mm′m + δmm′

∑

k 6=m

〈k|ρ̂I(t)|k〉Rmmkk

+δmm′〈m′|ρ̂I(t)|m′〉Rm′m′m′m′ . (2.47)

The first and third terms can be grouped by dropping the condition m 6= m′ and using (2.45):

Rm′mm′m = −
∑

α6=m′

λ+
m′ααm′ −

∑

α6=m

λ−mααm (2.48)

while the second one is

Rmmkk = λ+
kmmk + λ−kmmk = 2Reλ+

kmmk. (2.49)

These two terms will contribute in a very different way, so it is convenient to rename them, Λm′m =

−Rm′mm′m and Γmk = Rmmkk. Then, the equation of motion–master equation for the reduced density

matrix elements is finally:

〈m′| ˙̂ρI(t)|m〉 = δmm′

∑

k 6=m

〈k|ρ̂I(t)|k〉Γmk − 〈m′|ρ̂I(t)|m′〉Λm′m. (2.50)

It is interesting to distinguish the diagonal (m = m′) and off-diagonal (m 6= m′) terms. For the

first ones,

Λmm =
∑

α6=m

(

λ+
mααm + λ−mααm

)

=
∑

α6=m

Γαm (2.51)

so they coincide with the classical rate equations for the populations

〈m| ˙̂ρI(t)|m〉 =
∑

k 6=m

(〈k|ρ̂I(t)|k〉Γmk − 〈m|ρ̂I(t)|m〉Γkm) . (2.52)

These kind of equations are also called loss and gain equations since they relate the de-population of

some states with the population of others. Then, the coeficients Γkm can be interpreted as the transition

rates from state |m〉 to |k〉 due to the perturbative interaction.

The off diagonal terms–called coherences– describe the decoherence, i.e. how the coherence is

damped:

〈m′| ˙̂ρI(t)|m〉 = −〈m′|ρ̂I(t)|m′〉Λm′m, for m 6= m′ (2.53)

with the hermiticity condition fulfilled by Λm′m = Λ∗mm′ .

The real part of Λm′m is related to the transition rates:

ReΛm′m = Re





∑

α6=m′

λ+
m′ααm′ +

∑

α6=m

λ−mααm



 = Re





∑

α6=m′

λ+
m′ααm′ +

∑

α6=m

λ+
mααm





=
1

2





∑

α6=m′

Γαm′ +
∑

α6=m

Γαm



 (2.54)
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by taking into account (2.44) and (2.49). The imaginary part can be disregarded when going back into

the Schödinger picture as they only introduce a small shift in the energies:

〈m| ˙̂ρ(t)|m〉 =
∑

k 6=m

(Γmk〈k|ρ̂(t)|k〉 − Γkm〈m|ρ̂(t)|m〉) (2.55)

〈m′| ˙̂ρ(t)|m〉 = − i

~
〈m′|[ĤS , ρ̂(t)]|m〉 − 1

2





∑

α6=m′

Γαm′ +
∑

α6=m

Γαm



 〈m′|ρ̂(t)|m′〉 (m 6= m′).(2.56)

These equations of motion describe the transition from the initial state, ρ(0), to the asymptotic

limit, ρ∞, when the system reaches its stationary solution, so ρ̇∞(t) = 0.

2.3 Transition rates

As discussed above, the coefficients Γmn give the probability by unit time that the interaction

with the reservoir induced a transition |n〉 → |m〉 in S. By writing explicitely

〈r̂i(t′′)r̂j〉 =
∑

NN ′N ′′

〈N |r̂i(t′′)|N ′〉〈N ′|r̂j |N ′′〉〈N ′′|χ̂R(0)|N〉

=
∑

NN ′

ei(EN−EN′)t′′/~〈N |r̂i|N ′〉〈N ′|r̂j |N〉〈N |χ̂R(0)|N〉, (2.57)

where it has been considered that the density matrix of the reservoir is diagonal and, in the same way,

〈r̂j r̂i(t′′)〉 =
∑

NN ′

ei(EN′−EN )t′′/~〈N |r̂j |N ′〉〈N ′|r̂i|N〉〈N |χ̂R(0)|N〉, (2.58)

(2.49) becomes

Γmn =
1

~2

∑

ijNN ′

〈N |χ̂R(0)|N〉
(

〈n|ŝi|m〉〈m|ŝj |n〉
∫ ∞

0

dt′′ei(EN−EN′−~ωmn)t′′/~〈N |r̂i|N ′〉〈N ′|r̂j |N〉

+〈n|ŝj |m〉〈m|ŝi|n〉
∫ ∞

0

dt′′ei(EN′−EN−~ωnm)t′′/~〈N |r̂j |N ′〉〈N ′|r̂i|N〉
)

.(2.59)

By changing t′′ → −t′′ in the last integral:

Γmn =
1

~2

∑

ijNN ′

〈N |χ̂R(0)|N〉
(

〈nN |ŝir̂i|mN ′〉〈mN ′|ŝj r̂j |nN〉
∫ ∞

0

dt′′ei(EN−EN′−~ωmn)t′′/~

+〈nN |ŝj r̂j |mN ′〉〈mN ′|ŝir̂i|nN〉
∫ 0

−∞
dt′′ei(EN′−EN−~ωnm)t′′/~

)

. (2.60)

Using the definition of the Dirac delta,
∫∞
−∞ dke

±ik(x−a) = 2πδ(x− a), the transition rates

Γmn =
2π

~

∑

NN ′

〈N |χ̂R(0)|N〉
∣

∣

∣〈nN |V̂ |mN ′〉
∣

∣

∣

2

δ(EN − EN ′ − ~ωmn) (2.61)

adopt the well known Fermi Golden Rule for the first order time dependent perturbation theory. The

Dirac delta ensures energy conservation during the process.
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2.3.1 Tunneling rates

In the case of electronic transport, the perturbation V̂ consists in the coupling to electronic

leads, which is modeled by the tunneling Hamiltonian

ĤT =
∑

lkσ

γld̂
†
lkσ ĉσ + h.c., (2.62)

where the operators d̂†lkσ creates an electron with spin σ in the lead l = {L,R} while ĉσ annihilates an

electron with spin σ in the quantum system. The strength of the coupling, γl is asumed to be small.

If |m〉 and |n〉 in (2.61) represent occupation states of S that differ in one electron, two different

rates can be considered: Γ+
mn and Γ−mn if an electron tunnels out or into the system in the transition from

|n〉 to |m〉, respectively. Denoting χlN = 〈N |χ̂l(0)|N〉 to the probability of finding the lead l in the state

N , one have

Γmn =
2π

~

∑

NN ′

χlN

∣

∣

∣〈nN |ĤT |mN ′〉
∣

∣

∣

2

δ(EN − EN ′ − ~ωmn). (2.63)

In the case when an electron is extracted to the collector, only the terms in ĤT containing ĉσ contribute:

∑

NN ′k

χlN

∣

∣

∣〈nN |ĤT |mN ′〉
∣

∣

∣

2

=
∑

NN ′k

χlN |γl|2〈nN |ĉ†d̂lk|mN ′〉〈mN ′|d̂†lk ĉ|nN〉

=
∑

NN ′k

χlN |γl|2〈N |d̂lk|N ′〉〈N ′|d̂†lk|N〉 (2.64)

=
∑

Nk

χlN |γl|2〈N |d̂lkd̂
†
lk|N〉 =

∑

Nk

χlN |γl|2
(

1 − 〈N |d̂†lkd̂lk|N〉
)

.

The terms depending on N satisfy the definition of the Fermi distribution function

fl(εk) =
∑

N

χlN 〈N |d̂†lkd̂lk|N〉 (2.65)

and
∑

N

χlN = 1. (2.66)

The electronic states in the leads conform a continuum, so
∑

k can be replaced by an integral
∫

dε, so

the rate becomes:

Γ+
mn =

2π

~

∑

l

|γl|2
∫

dε (1 − fl(εk)) δ(ε− ~ωmn) =
2π

~

∑

l

|γl|2 (1 − fl(~ωmn)) , (2.67)

with

fl(ε) =
1

1 + e(ε−µ)β
. (2.68)

β = 1
kBT and µ is the chemical potential of the lead. In the same way:

Γ−mn =
2π

~

∑

l

|γl|2fl(~ωmn). (2.69)

The ± sign in the superindex of the tunneling rates indicates whether they contribute to the increasing

or decreasing of the number of electrons transferred to the lead. This will define the sign of the electronic

current.
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2.4 Current

As seen in (2.6), every observable can be expressed in terms of the density matrix. The current

can be defined as the time derivative of the number of electrons accumulated in the collector, N̂R[12]:

I = −e〈 ˙̂NR〉 = −e〈[Ĥ, N̂R]〉 = −tr
(

e[Ĥ, N̂R]ρ̂
)

. (2.70)

The cyclic property of the trace allows to rewrite the previous expression

−tr
(

[Ĥ, N̂R]ρ̂
)

= −tr
(

ĤN̂Rρ̂− N̂RĤρ̂
)

= −tr
(

N̂Rρ̂Ĥ − N̂RĤρ̂
)

= tr
(

N̂R[Ĥ, ρ̂]
)

(2.71)

and, therefore,

I = tr
(

eN̂R
˙̂ρ
)

. (2.72)

Then, it is convenient to decompose the reduced density matrix in terms with different number

of electrons in the collector[21]

ρ(t) =
∑

N

ρ(N)(t). (2.73)

The master equations for these elements is

〈mN | ˙̂ρ(t)|mN〉 =
∑

k 6=m

∑

N ′

(

ΓNN ′

mk 〈kN ′|ρ̂(t)|kN ′〉 − ΓN ′N
km 〈mN |ρ̂(t)|mN〉

)

(2.74)

with

ΓN ′N
mn =

2π

~
χlN

∣

∣

∣
〈nN |ĤT |mN ′〉

∣

∣

∣

2

δ(EN − EN ′ − ~ωmn). (2.75)

N̂R is diagonal in this basis, so the off-diagonal elements (2.53) of the density matrix do not contribute

to the current. Then,

tr
(

N̂R
˙̂ρ
)

=
∑

mN

N〈mN | ˙̂ρ(t)|mN〉

=
∑

mNN ′

N
∑

k 6=m

(

ΓNN ′

mk 〈kN ′|ρ̂(t)|kN ′〉 − ΓN ′N
km 〈mN |ρ̂(t)|mN〉

)

. (2.76)

If only sequencial transport is considered, electrons will be transferred one by one and N =

N ′± 1. The condition k 6= m can be removed since all the transitions change the state of the system and

Γmm = 0. Then,

tr
(

N̂R
˙̂ρ
)

=
∑

kmN

N
(

ΓNN+1
mk 〈kN + 1|ρ̂(t)|kN + 1〉 + ΓNN−1

mk 〈kN − 1|ρ̂(t)|kN − 1〉

−ΓN+1N
km 〈mN |ρ̂(t)|mN〉 − ΓN−1N

km 〈mN |ρ̂(t)|mN〉
)

. (2.77)

By considering new variables, N ′ = N + 1 and N ′ = N − 1 in the third and fourth terms in the

right side of (2.77), respectively and then rewriting again N ′ → N and changing k ↔ m:

tr
(

N̂R
˙̂ρ
)

=
∑

kmN

(

NΓNN+1
mk 〈kN + 1|ρ̂(t)|kN + 1〉 +NΓNN−1

mk 〈kN − 1|ρ̂(t)|kN − 1〉 (2.78)

−(N − 1)ΓNN−1
mk 〈kN − 1|ρ̂(t)|kN − 1〉 − (N + 1)ΓNN+1

mk 〈kN + 1|ρ̂(t)|kN + 1〉
)
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can be simplified

tr
(

N̂R
˙̂ρ
)

=
∑

kmN

(

ΓNN−1
mk 〈kN − 1|ρ̂(t)|kN − 1〉 − ΓNN+1

mk 〈kN + 1|ρ̂(t)|kN + 1〉
)

. (2.79)

As shown in the previous section, one can write ΓNN ′

nm depends only on the change of particles in the

collector in the transition from |m〉 to |n〉 so, writting it as ΓN−N ′

nm , they can be extracted from the sum:

tr
(

N̂R
˙̂ρ
)

=
∑

km

(

Γ+1
mk

∑

N

〈kN − 1|ρ̂(t)|kN − 1〉 − Γ−1
mk

∑

N

〈kN + 1|ρ̂(t)|kN + 1〉
)

(2.80)

=
∑

km

(

Γ+1
mk − Γ−1

mk

)

〈k|ρ̂(t)|k〉.

Thus, the final expression for the current is

I(t) = e
∑

km

(

Γ+
mk − Γ−mk

)

〈k|ρ̂(t)|k〉, (2.81)

where Γ+
mk and Γ−mk are the rates for processes that involve an electron tunneling to and from the collector,

respectively. Their expressions is analogue to those shown in (2.67) and (2.69), considering only the terms

involving the collector.

2.5 Single resonant level in a quantum dot–Sequencial tunneling

A quantum dot (QD) with a single level (which will serve us as the small system S) is coupled

to two fermionic leads, L and R in the Coulomb blockade regime. That is, double occupancy is forbidden

in the QD due to a high Coulomb repulsion and an electron cannot enter the system before it is empty.

The model Hamiltonian is, considering spinless electrons

Ĥ = ĤQD + Ĥleads + ĤT = εĉ†ĉ+
∑

lk

εlkd
†
lk d̂lk +

∑

lk

(

γld̂
†
lkc+ H.c.

)

. (2.82)

The basis consists in two states: |0〉 and |1〉 labeling the cases when the level in the QD is empty or it

contains one electron, respectively.

In the high bias regime, the energy of the level falls in the transport window:

µL ≫ ε≫ µR (2.83)

so the tunneling rates are Γ10 = 2π
~
|γL|2 = ΓL and Γ01 = Γ+

01 = 2π
~
|γR|2 = ΓR. Then, transport is

uni-directional with electrons flowing through the system from the left to the right lead.

The basis consist on two states: |0〉, when the QD is empty, and |1〉, when there is an electron

inside the QD. Then, one can write the master equations:

ρ̇00 = −ΓLρ00 + ΓRρ11 (2.84)

ρ̇11 = ΓLρ00 − ΓRρ11 (2.85)

with the normalization condition ρ00+ρ00 = 1. Note that there is no coherent processes inside the QD, so

the off-diagonal terms do not contribute to the dynamics. The stationary solution is obtained by making

ρ̇ij = 0. This makes (2.84) equal to (2.85), giving:

ΓLρ00 = ΓRρ11 = ΓR(1 − ρ00). (2.86)
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Then,
1

ΓR
ρ00 =

1

ΓL
ρ11 =

1

ΓL + ΓR
. (2.87)

The stationary current is, then:

I = eΓRρ11 =
eΓLΓR

ΓL + ΓR
. (2.88)

2.6 Spatial Rabi oscillations in a double quantum dot

Density matrix formalism allows to describe the reversible dynamics of the system, contained

in the off diagonal terms. Ine example of that is Rabi oscillations in two level systems. If the states

are in two differents sites, connected by a tunnel barrier, electrons would oscillate becoming spatially

delocalized between them.

Considering now two quantum dots weakly coupled in series where one of them is coupled to

the emitter and the other to the collector, again in the Coulomb blockade regime (only one electron is

allowed in the DQD), the Hamiltonian is

Ĥ = ĤDQD + Ĥleads + ĤT =
∑

l

εlĉ
†
l ĉl + tLR

(

ĉ†LĉR + H.c.
)

+
∑

lk

εlkd
†
lkd̂lk +

∑

lk

(

γld̂
†
lkc+ H.c.

)

. (2.89)

The unperturbed Hamiltonian of the DQD can be represented in matricial form by

HDQD =

(

εR tLR

t∗LR εL

)

, (2.90)

which can be diagonalized yielding the eigenenergies

E± =
1

2

(

εR + εL ±
√

(εR − εL)2 + 4|tLR|2
)

(2.91)

and eigenvectors[32]

|+〉 = cos
θ

2
e−i φ

2 |R〉 + sin
θ

2
ei φ

2 |L〉 (2.92)

|−〉 = − sin
θ

2
e−i φ

2 |R〉 + cos
θ

2
ei φ

2 |L〉, (2.93)

with tan θ = 2|tLR|2
εR−εL

and t∗LR = |tLR|eiφ. |R〉 and |L〉 represent the states with one electron in the right

and left QD, respectively. |±〉 then describe states where the charge is delocalized all over the DQD,

usually referred as bonding and antibonding states, in analogy with the H+
2 molecule.

In this basis, the tunneling rates are Γ0+ = cos2 θ
2ΓR, Γ0− = sin2 θ

2ΓR, for the electrons tunneling

to the collector and Γ+0 = sin2 θ
2ΓL and Γ−0 = cos2 θ

2ΓL for the electrons entering the DQD from the

emitter and the master equation results

ρ̇00 = cos2
θ

2
ΓRρ++ + sin2 θ

2
ΓRρ−− − ΓLρ00

ρ̇++ = sin2 θ

2
ΓLρ00 − cos2

θ

2
ΓRρ++ (2.94)

ρ̇−− = cos2
θ

2
ΓLρ00 − sin2 θ

2
ΓRρ−−.



26 2. Density matrix formalism

-10 -5 0 5 10
ε

0

0.2

0.4

0.6

s
t
a
t
i
o
n
a
r
y
 
c
u
r
r
e
n
t

Γ=0.1t
LR

Γ=0.5t
LR

Γ=t
LR

Γ=2t
LR

Fig. 2.1: Current as a function of the detuning for tLR = 1 and different couplings to the leads, ΓL = ΓR = Γ.

The stationary solution gives the occupation probabilities

ρ0

ΓR tan2 θ
2

=
ρ−
Γ

=
ρ+

ΓL tan4 θ
2

=
1

ΓR tan2 θ
2 + ΓL(1 + tan4 θ

2 )
(2.95)

and a current

I = eΓR(cos2
θ

2
ρ+ + sin2 θ

2
ρ−) = eΓLΓR

tan2 θ
2

ΓR tan2 θ
2 + ΓL(1 + tan4 θ

2 )
(2.96)

which is maximal at resonance: εL = εR, see Fig. 2.1.

The master equation was derived considering the elements of the density matrix in the eigenbasis

of S, in this case, (2.92) and (2.93). However, this molecular basis does not provide any information on

the coherent dynamics within the system. In order to describe it, it is convenient to consider the localized

basis |lr〉, with l, r = 0, 1, which coincides with the molecular one |±〉 if |t|2 ≪ (εR = εL)2 i.e., for weak

interdot coupling and finite detuning.

2.6.1 Coherent dynamics. Closed system

It is interesting to consider first the closed system, where the DQD is uncoupled to the leads

and there is always an electron into the DQD. Then, the equation of motion can be written simply as
˙̂ρ(t) = [ĤDQD, ρ̂(t)]. Note that, in this case, there is no relaxation in the system and the equations holds

for any basis. Writing it in matricial form, ρ̇(t) = Mρ(t), one obtains:









ρ̇LL

ρ̇LR

ρ̇RL

ρ̇RR









=









0 itLR −itLR 0

itLR iε 0 −itLR

−itLR 0 −iε itLR

0 −itLR itLR 0

















ρLL

ρLR

ρRL

ρRR









. (2.97)

and taking the Laplace transform, L(ρ̇(t)) = zρ̃(z) = Mρ̃(z) + ρ(0). Then, the time dependence of the

density matrix elements is obtained by the inverse transform

ρ(t) = L−1
{

(z −M)−1ρ(0)
}

. (2.98)
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Fig. 2.2: Time dependence of the resonant current (ε = 0) for tLR = 1 and Γ = 0.1. The current shows periodic

oscillations of frequency Ω = 2tLR due to the coherent charge delocalization inside the DQD.

When both levels are in resonance, the electron is coherently delocalized by the interdot coupling

performing spacial Rabi oscillations with a frequency Ω = 2tLR[32]:

ρRR(t) = 1 − ρLL(t) =
4t2LR

4t2LR + ε2
sin2

(

1

2

√

ε2 + 4t2LRt

)

. (2.99)

2.6.2 Decoherence

The coupling to the contacts produces incoherence and the oscillations are damped to a station-

ary solution, cf. Fig. 2.2, given by ρ̇ij = 0. The only finite transition rates for the high bias regime are:

ΓL0 = 2π
~
|γL|2 = ΓL, Γ0R = Γ+

0R = 2π
~
|γR|2 = ΓR. The master equation is[33]

ρ̇00 = −ΓL0ρ00 + Γ0RρRR

ρ̇LL = ΓL0ρ00 − itLR(ρRL − ρLR)

ρ̇LR =

(

iε− 1

2
Γ0R

)

ρLR − itLR(ρRR − ρLL)

ρ̇RR = −Γ0RρRR − itLR(ρLR − ρRL), (2.100)

where ε = εR − εL is the detuning. The stationary state is then

ρ00 =
4t2LR

4t2LRΓR + ΓL(8t2LR + Γ2
R + 4ε2)

(2.101)

ρLL =
ΓL(8t2LR + Γ2

R + 4ε2)

4t2LRΓR + ΓL(8t2LR + Γ2
R + 4ε2)

(2.102)

ρRR =
4t2LRΓL

4t2LRΓR + ΓL(8t2LR + Γ2
R + 4ε2)

(2.103)

(2.104)
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Fig. 2.3: Current as a function of the detuning for tLR = 1 and different couplings to the leads as calculated in

the localized basis. For Γ = Γ∗ =
√

12tLR the current is maximal at resonance.

giving a stationary current which shows a Lorentzian peak I = eΓRρRR = I0W 2

W 2+ε2 with height I0 and half

width at half maximum W 2:

W 2 =
4t2LR(ΓR + 2ΓL) + ΓLΓ2

R

4ΓL
(2.105)

I0 = eΓLΓR
4t2LR

4t2LR(ΓR + 2ΓL) + ΓLΓ2
R

(2.106)

around the resonance condition, cf. Fig. 2.3. In the simpler case ΓL = ΓR = Γ, it is easy to see how the

width of the peak increases with the coupling to the leads:

W 2 = 3t2LR +
1

4
Γ2 (2.107)

I0 = eΓ
4t2LR

12t2LR + Γ2
. (2.108)

This result holds if the coupling to the leads is weak. If Γ > tLR, the processes through the

contacts become more important and it is needed to consider the eigenbasis for which the master equation

was derived. It can be seen by comparing Fig. 2.1 and 2.3, were the current calculated in the localized

basis decreases for tunneling rates larger than Γ =
√

12tLR.

Another limitation of the formulation in the localized basis is that it may lead to results that

violate thermodinamic properties of equilibrium[34]. For instance, if the DQD is coupled to un-biased

leads with chemical potential µ, no current flows through the system. Having a configuration such that

εL < µ < εR, the only finite tunneling rates are Γ0+ = cos2 θ
2ΓR and Γ−0 = sin2 θ

2ΓL, so the master

equation obtained for the molecular basis becomes:

ρ̇00 = cos2
θ

2
ΓRρ++ − cos2

θ

2
ΓLρ00

ρ̇++ = − cos2
θ

2
ΓRρ++ (2.109)

ρ̇−− = cos2
θ

2
ΓLρ00,
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giving the stationary solution ρ00 = ρ++ = 0 and ρ−− = 1 and I = 0.

However, in the localized basis, (2.100) still hold. Though now the detuning can be arbitrarily

high, the solution always provide an eventually residual but finite current in equilibrium, I ∼ |tLR|2
ε2 .





Chapter 3

Time-dependent potentials.

Photon-assited tunneling

Electric fields –via laser illumination– have been largely applied to excite and explore the spec-

trum of multilevel atoms in the field of quantum optics. Similar methods can be used considering quantum

dots, where the electric fields are usually applied by time-dependent gate voltages that introduce an os-

cillatory component in the energy levels. This affects the quantum dots by adding photo-sidebands in

their energy spectrum which may open new conduction channels.

In the previous chapter, it was shown how the interaction of a small system, S, with an out of

equilibrium environment, R, perturbed its equilibrium state (section 2.1.1), or took it out of equilibrium

obliging it to relax to a stationary state (section 2.2). As a particular case, the electrostatic coupling of a

quantum dot system to a biased environment (two electronic leads) produces a finite stationary current

which can be described by means of tunneling-mediated relaxation processes. A similar description,

however, can be made for cases where the small system is not brought out of equilibrium by the interaction

with the environment(as, for instance, if no bias voltage is applied to the contacts of the quantum dot)

but for an external potential.

The introduction of an external time dependent potencial may induce internal transitions and

populate states involved in the incoherent transport, so the system will relax to a new stationary state in

consonance with the new dynamics. Then, a finite current appears, under certain conditions (discussed

below), in an unbiased system by the effect of the time dependent driving, which is known as pumping.

An important difference between the transport induced by a driving field and a bias voltage is

the possibility of accessing internal processes of the quantum system by tuning the properties of the field

(intensity and frequency). New properties appear as, for instance, the rotation of the electron spin by

magnetic fields, spin filtering in double quantum dots or the coherent quenching of the current by electric

fields[68]. These effects will be analyzed below.

3.1 Master equation in the presence of AC potentials

The effect of a sinusoidal time dependent potential gives a oscillatory component in the energies

of S: εl → εl + ε̃l cosωt. In general, it will affect the interaction with the environment and one should

take it into account in the derivation of the master equation.

31



32 3. Time-dependent potentials. Photon-assited tunneling

The Hamiltonian is now

Ĥ(t) = ĤS(t) + ĤR + V̂ , (3.1)

where ĤS(t) = ĤS + ĤAC(t) and [ĤS , ĤAC(t)] = 0. A unitary transformation

Û(t) = e−i
R

dt′ĤAC(t′)/~ (3.2)

removes the explicit time dependence from the Hamiltonian of the isolated system, ĤS according to

ˆ̃H(t) = Û †(t)
(

Ĥ(t) − i~∂t

)

Û(t) = ĤS + ĤR + ˆ̃V (t) (3.3)

Then, the time dependence has been transferred to the interaction term which in the iteraction picture

reads
ˆ̃VI(t) =

∑

i

(

ei
R

dt′ĤS (t′)/~ŝie
−i

R

dt′ĤS (t′)/~

)(

eiĤRt/~r̂ie
−iĤRt/~

)

=
∑

i

ŝi(t)r̂i(t). (3.4)

By comparing with (2.28), one sees that the same procedure as in the previous chapter can be followed

here. Asuming that the same properties for the environment still hold, i.e., Markovian dynamics and

irreversible interactions, one can write the same equation for the reduced density operator:

˙̂ρI(t) = − 1

~2

∑

ij

∫ ∞

0

dt′′{[ŝi(t), ŝj(t− t′′)ρ̂I(t)]〈r̂i(t′′)r̂j〉 − [ŝi(t), ρ̂I(t)ŝj(t− t′′)]〈r̂j r̂i(t′′)〉}. (3.5)

Now, the time dependence is explicitely different:

〈m′|[ŝi(t), ŝj(t− t′′)ρ̂I(t)]|m〉 =
∑

kk′

(Am′k′ (t)Akk′ (t− t′′)〈m′|ŝi|k〉〈k|ŝj |k′〉〈k′|ρ̂I(t)|m〉 (3.6)

−Am′k′(t− t′′)Akm(t)〈m′|ŝj |k′〉〈k′|ρ̂I(t)|k〉〈k|ŝj |m〉)
〈m′|[ŝi(t), ρ̂I(t)ŝj(t− t′′)]|m〉 =

∑

kk′

(Am′k(t)Ak′m(t− t′′)〈m′|ŝi|k〉〈k|ρ̂I(t)|k′〉〈k′|ŝj |m〉 (3.7)

−Akm(t)Akk′ (t′′)〈m′|ρ̂I(t)|k〉〈k|ŝj |k′〉〈k′|ŝi|m〉) ,

where Akm(t) = ei(ωkmt+
ζkm
~ω

sin ωt) and ζkm = ε̃k − ε̃m. Note that if the effect of the AC potential is the

same in all the states connected by the relaxation it will not affect the interaction. Expressions (3.6) and

(3.7) can be rewritten by using the relation

eiα sin ωt =
∑

ν

Jν(α)eiνωt, (3.8)

where Jν(α) is the ν-th order Bessel function of the first kind obtaining the coefficients Akm(t) =
∑

ν Jν

(

ζkm

~ω

)

ei(ωkm+ν~ω)t and ν can be intrepreted as the number of photons involved or the sideband,

with a spectral density Jν(α), that participates in the transition[68].

By defining

λ+
mkln,νν′ =

1

~2

∑

ij

Jν

(

ζmk

~ω

)

Jν′

(

ζln
~ω

)

〈m|ŝi|k〉〈l|ŝj |n〉
∫ ∞

0

dt′′e−i(ωln+ν′
~ω)t′′〈r̂i (t′′) r̂j〉 (3.9)

λ−mkln,νν′ =
1

~2

∑

ij

Jν

(

ζln
~ω

)

Jν′

(

ζmk

~ω

)

〈m|ŝj |k〉〈l|ŝi|n〉
∫ ∞

0

dt′′e−i(ωmk+ν′
~ω)t′′〈r̂j r̂i(t′′)〉,(3.10)
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one gets a Redfield-like equation

〈m′| ˙̂ρI(t)|m〉 =
∑

kk′

〈k′|ρ̂I(t)|k〉Rm′mk′k,νν′et(ωm′k′+ωkm+(ν+ν′)~ω)t, (3.11)

with coefficients

Rm′mk′k,νν′ = −δmk

∑

α

λ+
m′ααk′νν′ + λ+

kmm′k′νν′ + λ−kmm′k′νν′ − δm′k′

∑

α

λ−kααmνν′ . (3.12)

modified by the photonic terms. If the frequency of the AC potential does not match the energy difference

of the states of S involved in the relaxation transitions, the same secular terms as in the non-driven case

(see previous chapter) can be kept by just considering ν′ = −ν.
Then, defining Λm′m = −∑ν Rm′mm′m,ν−ν and Γmk =

∑

ν Rmmkk,ν−ν , one obtains a master

equation that is formally equal to (2.52) and (2.53) or, going back to the Schrödiger picture,

〈m| ˙̂ρ(t)|m〉 =
∑

k 6=m

(Γmk〈k|ρ̂(t)|k〉 − Γkm〈m|ρ̂(t)|m〉) (3.13)

〈m′| ˙̂ρ(t)|m〉 = − i

~
〈m′|[ĤS , ρ̂(t)]|m〉 − 1

2





∑

α6=m′

Γαm′ +
∑

α6=m

Γαm



 〈m′|ρ̂(t)|m′〉 (m 6= m′),(3.14)

with coefficients that depend on the parameters of the AC potential. In the same way as done in section

2.3, and considering the property J−ν(α) = (−1)νJν(α), one obtains the photo-assisted transition rates:

Γmn =
2π

~

∑

ν

∑

NN ′

J2
ν

(

ζmn

~ω

)

〈N |χ̂R(0)|N〉
∣

∣

∣〈nN |V̂ |mN ′〉
∣

∣

∣

2

δ (EN − EN ′ − ~ωmn − ν~ω) . (3.15)

3.2 Photon-assisted tunneling

If the interaction between S being a quantum dot and R electronic leads consists in a tunnel

barrier, then:

ĤT =
∑

lkσ

γld̂
†
lkσ ĉσ + h.c., (3.16)

where the operators d̂†lkσ creates an electron with spin σ in the lead l = {L,R} while ĉσ annihilates an

electron with spin σ in the quantum dot, the rates (3.15) describe tunneling processes mediated by the

absorption or the emission of photons coming from the AC potential.

Following the steps sketched in section 2.3.1, it is straightforward to obtain the photo-assisted

tunneling rates for electrons being transferred to the collector

Γ+
mn =

2π

~

∑

lν

J2
ν

(

ζmn

~ω

)

|γl|2 (1 − fl(~ωmn + ν~ω)) (3.17)

and the ones entering the quantum dot

Γ−mn =
2π

~

∑

lν

J2
ν

(

ζmn

~ω

)

|γl|2fl(~ωmn + ν~ω). (3.18)

Here, as will be shown bellow, the coefficients ζmn depend only on the intensity of the AC potential and

the number of transferred charges in each tunneling event (one, in this case).
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Thus, electrons that, in the absence of a driving potential, will be confined in the quantum dot

because the chemical potential of the transition is smaller than the Fermi level of the lead, µl > ~ωout,in,

can be extracted by the absorption of ν photons that provide the energy needed to satisfy the condition

µl < ~ωout,in + ν~ω. In the same way, an electron from the collector can absorb photons to enter the

quantum dot by a transition that requires an energy greater than µl. Then, states which are energetically

non available have a finite occupation probability.

This effect limits the operativeness of devices based in electrically driven transitions, as will be

further discussed.

3.3 A simple case: AC driven single level quantum dot

Let consider a quantum dot with spinless elcetrons where the Coulomb repulsion is high enough

to avoid double occupancy of its single level. Then, only the states |0〉 and |1〉, representing the empty

and occupied quantum dot, respectively, participate in the dynamics. An AC potential is introduced as a

sinusoidal signal in the gate voltage which manifests as an oscillation in the energy of the occupied state.

The Hamiltonian is then:

Ĥ(t) =

(

ε+
VAC

2
cosωt

)

c†c+
∑

lk

εkd
†
lkdlk +

∑

lk

(

γlc
†dlk + H.c.

)

. (3.19)

By the unitary transformation U(t) = e−i
VAC
2~ω

c†c, and the conmutation realation

[d†lkc, c
†c] = d†lkc, (3.20)

the time dependence is removed from the energy and appears in the tunneling terms which become

∑

lkν

(−1)νJν

(

VAC

2~ω

)

(

γle
iν~ωtc†dlk + H.c.

)

. (3.21)

Then, the tunneling rates are

Γ01 =
2π

~

∑

lν

J2
ν

(

VAC

2~ω

)

|γl|2 (1 − fl(~ω01 + ν~ω)) (3.22)

Γ10 =
2π

~

∑

lν

J2
ν

(

VAC

2~ω

)

|γl|2fl(~ω10 + ν~ω). (3.23)

Assuming that the Fermi level of the left lead is high enough, i.e., that the electron in the

quantum dot would need a large number of photons to tunnel to it, µL ≫ ~ω, all the terms proportional

to 1 − fL(~ω01 + ν~ω) will vanish. In the same way, tunneling from the left lead to the empty quantum

dot is always allowed and fL(~ω10 + ν~ω) = 1 for all ν. This is equivalent to say that tunneling through

the left barrier is not affected by the AC potential. On contrary, if ε < µR < ε+ ~ω the absorption of a

single photon will be enough to extract the confined electron to the right lead, cf. Fig. 3.1. Then, the

contribution of each barrier can be considered separately

Γ01,L = 0 (3.24)

Γ10,L =
2π

~

∑

ν

J2
ν

(

VAC

2~ω

)

|γL|2 =
2π

~
|γL|2 = ΓL, (3.25)
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Fig. 3.1: Schematic diagram of an AC-driven quantum dot where transport requires photo-assisted tunneling.

for the left barrier and

Γ01,R =
2π

~

∞
∑

ν=1

J2
ν

(

VAC

2~ω

)

|γR|2 =
π

~

(

1 − J2
0

(

VAC

2~ω

))

|γR|2 = ΓR,1 (3.26)

Γ10,R =
2π

~

0
∑

ν=−∞
J2

ν

(

VAC

2~ω

)

|γR|2 =
π

~

(

1 + J2
0

(

VAC

2~ω

))

|γR|2 = ΓR,0, (3.27)

for the right one, where it was used the normalization condition for the Bessel functions:
∑

ν

J2
ν (α) = J2

0 (α) + 2
∑

ν>0

J2
ν (α) = 1. (3.28)

Note that ΓR,0 + ΓR,1 = 2π
~
|γR|2 = ΓR.

The master equation has a balanced rate equations form

ρ̇0 = ΓR,1ρ1 − (ΓL + ΓR,0) ρ0 (3.29)

ρ̇1 = (ΓL + ΓR,0) ρ0 − ΓR,1ρ1 (3.30)

with ρ0 + ρ1 = 1. The stationary solution is, then:

ρ0 =
ΓR,1

ΓL + ΓR
(3.31)

ρ1 =
ΓL + ΓR,0

ΓL + ΓR
(3.32)

which gives a finite current

I = e (ΓR,1ρ1 − ΓR,0ρ0) =
eΓLΓR,1

ΓL + ΓR
=
e

2

ΓLΓR

ΓL + ΓR

(

1 − J2
0

(

VAC

2~ω

))

(3.33)

that can be manipulated externally by tuning the intensity and frequency of the driving. In the low

intensity limit, VAC → 0,

I ∼ eΓLΓR

ΓL + ΓR

V 2
AC

16
(3.34)

since Jν(α) ∼ αν

2νν! when α→ 0[35]. On the other hand, J0(α) → 0, when α→ ∞ so in the high intensity

limit, the current is:

I → e

2

ΓLΓR

ΓL + ΓR
. (3.35)
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3.3.1 Photo-sidebands

This result can be interpreted also in terms of the spectral decomposition of the wave function

into sidebands corresponding to different numbers of photons. Considering an electron confined in an

infinite well and under the effect of a time-dependent potential V cosωt, the Schrödinger equation can

be written

i~∂tψ(r, t) = Ĥ(t)ψ(r, t) = (ε+ V cos ~ωt)ψ(r, t), (3.36)

where ε depends on the spatial coordinates. Solving (3.36) gives a wave function

ψ(r, t) = ψ(r, 0)e−i(εt+ V
~ω

sin ~ωt)/~ = ψ(r, 0)
∑

ν

Jν

(

V

~ω

)

e−i(ε+ν~ω)t/~, (3.37)

formally equivalent to the static one and indicating that the electron have a probability proportional to

J2
ν

(

V
~ω

)

to have an energy ε± ν~ω[36].

It is interesting to note that, considering an open quantum dot in the weak coupling–high

frequency limit[37], Γi ≪ ω, one obtains the photo-assisted tunneling rates (3.17) and (3.18) and the

master equations (3.29) and (3.30), when considering tunneling through the photo-sidebands in the non-

driven tunneling rates (2.67) and (2.69)[38].

The effect of sidebands has been detected in quantum dots by varying the gate voltage which

shifts the energy levels in the quantum dot. When a side band enters the bias window, µR > ε±ν~ω > µL,

the current shows a resonant peak added to the undriven resonance described in section 2.5[39, 40] whose

height is now proportional to J2
0

(

V
~ω

)

. In the same way, the contribution of every ν-th satellite peak can

be tuned by the intensity of the field through J2
ν

(

V
~ω

)

[39].

3.4 AC driven double quantum dot. Photon-assisted delocal-

ization

Transport through a double quantum dot is supressed if the levels of the dots are not resonant,

i.e., they do not have the same energy εL 6= εR, as seen in section 2.6. The electron is not able to

tunnel through the interdot barrier and then remains localized in the left quantum dot. However, the

introduction of time dependent potentials may induce photon-assisted tunneling when the frequency of

the oscillation matches the energy separation between the discrete energy levels of the two quantum

dots[41, 78]. It can be interpreted as resonances of the sidebands with different number of photons.

Considering two quantum dots coupled to two electronic leads modeled by the Hamiltonian

Ĥ = ĤDQD + ĤLR + Ĥleads + ĤT (3.38)

where ĤDQD =
∑

l

(

∑

σ εlĉ
†
lσ ĉlσ + Uin̂i↑n̂i↓

)

+ ULRn̂Ln̂R represents the two isolated quantum dots with

intra and inter-dot Coulomb repulsion, Ui and ULR, respectively, ĤLR =
∑

σ

(

tLRĉ
†
Lσ ĉRσ + H.c.

)

, the

interdot coupling, Ĥleads =
∑

lkσ εlkσ d̂
†
lkσ d̂lkσ, the leads and ĤT =

∑

lkσ γlĉ
†
lσ d̂lkσ the contacts to the

leads. When applying an oscillatory potential with opposite phase to the gate voltages of the two dots,

a term

ĤAC(t) =
VAC

2~ω
cosωt

∑

σ

(

ĉ†Lσ ĉLσ − ĉ†Rσ ĉRσ

)

=
VAC

2~ω
cosωt (n̂L − n̂R) (3.39)

must be added to the total Hamiltonian. A difference of phase–for simplicity and a higher experimental

feasability, π– between the oscillations of gate voltages of each dot is essential or the internal dynamics
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will not be affected. Also, spatial inhomogeneity or time reversal symmetry breaking is needed in order

to obtain finite current. in our cse, it is provided by being le level in the left dot below the Fermi level

of the leads, while the one in the right dot is above them.

As in previous sections, a unitary transformation

Û(t) = e
i

R

t

t0
dt′ĤAC(t′)/~

= ei Vac
2~ω

sin ωt(n̂L−n̂R) (3.40)

is applied to the Hamiltonian

ˆ̃H(t) = Û(t)
(

Ĥ − i~∂t

)

Û †(t) = ĤDQD + ˆ̃HLR(t) + ˆ̃HT (t). (3.41)

All the explicit time dependence enters the coupling terms since ĤDQD and Ĥleads both commute with

Û(t). One have the relationships

[ĉ†Rσ ĉLσ, n̂L] = ĉ†Rσ ĉLσ (3.42)

[ĉ†Rσ ĉLσ, n̂R] = −ĉ†Rσ ĉLσ, (3.43)

for the interdot transitions and

[d̂†lkσ ĉlσ, n̂l′ ] = d̂†klσ ĉlσδll′ , (3.44)

for the coupling to the leads, obtaining the expressions for the transformed terms

ˆ̃HLR(t) =
∞
∑

ν=−∞
(−1)νJν

(

VAC

~ω

)

∑

σ

(

tLRe
iν~ωtĉ†Lσ ĉRσ + H.c.

)

(3.45)

and

ˆ̃HT (t) =

∞
∑

ν=−∞
(−1)νJν

(

VAC

2~ω

)

∑

lkσ

(

γle
iν~ωtd̂†lkσ ĉlσ + H.c.

)

. (3.46)

after using the property
ˆ̃O = Ô + [T̂ , Ô] +

1

2!
[T̂ , [T̂ , Ô]] + ... (3.47)

Note that the argument of the Bessel function in the interdot term is twice the one in the couplig to the

leads. This is because the expected value of n̂L − n̂R changes in ±2 when an electron tunnels from one

QD to the other and in ±1 when it tunnels through the contact barriers. As discussed above, if the two

dots were oscillating in phase so ĤAC(t) ∝ n̂L + n̂R, it is easy to see from (3.42), (3.43) and (3.47) that

the interdot hopping term would not be transformed by the AC[42].

The AC field produces coherent delocalization between the two quantum dots via the interaction

with ν photons when the energies of the states of each dot satify εR − εL ∼ ν~ω. Then, one can keep

only the terms of (3.46) that put the states of the DQD in resonance by say n photons, which is analogue

to consider the rotating wave approximation (RWA) in Quantum Optics[43, 44, 45, 46, 47] and disregard

non-resonant oscillating terms:

ˆ̃HRWA
LR = (−1)nJn

(

VAC

~ω

)

∑

σ

(

tLRe
inωtĉ†Lσ ĉRσ + H.c.

)

. (3.48)

It allows to define a Rabi frequency for the electronic oscillations between the two dots[48]

Ωn = 2J−n

(

VAC

~ω

)

tLR, (3.49)

renormalized in comparison with the undriven case studied in section 2.6.
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3.4.1 Closed system

Let consider the closed system with a single electron and ε = εR − εL = n~ω, the dynamics is

described by the coherent terms, ˙̂ρ(t) = [ĤDQD + ˆ̃HRWA
LR , ρ̂(t)]. In matricial form ρ̇ = Mρ









ρ̇LL

ρ̇LR

ρ̇RL

ρ̇RR









=









0 iΩn

2 e
in~ωt −iΩn

2 e
−in~ωt 0

iΩn

2 e
in~ωt iε 0 iΩn

2 e
in~ωt

−iΩn

2 e
−in~ωt 0 −iε −iΩn

2 e
−in~ωt

0 −iΩn

2 e
−in~ωt iΩn

2 e
in~ωt 0

















ρLL

ρLR

ρRL

ρRR









. (3.50)

Changing the off-diagonal variables

ρ′LR(t) = e−in~ωtρLR(t) (3.51)

so ρ̇′LR = −in~ωρ′LR + e−in~ωtρ̇LR, one obtains a differential equation with time-independent coefficients









ρ̇LL

ρ̇′LR

ρ̇′RL

ρ̇RR









=









0 iΩn

2 −iΩn

2 0

iΩn

2 i(ε− n~ω) 0 iΩn

2

−iΩn

2 0 −i(ε− n~ω) −iΩn

2

0 −iΩn

2 iΩn

2 0

















ρLL

ρ′LR

ρ′RL

ρRR









(3.52)

which is formally equivalent to the undriven (2.97), yielding a stationary solution

ρRR(t) = 1 − ρLL(t) =
Ω2

n

Ω2
n + (ε− n~ω)2

sin2

(

1

2

√

(ε− n~ω)2 + Ω2
nt

)

. (3.53)

Comparing to (2.99), the AC potential allows resonant delocalization dynamics in systems with a large

energy levels separation.

Additionally, the interdot tunneling dependence on the Bessel functions introduces the possibility

of manipulating the internal dynamics by means of the intensity and frequency of the AC potential. A

particularly interesting case appears when the argument of the Bessel function of the order n, so is

the renormalized Rabi frequency Ωn = 2J−n

(

VAC

~ω

)

tLR and interdot tunneling is supressed, leading to

dynamical charge localization[49, 50, 51, 52, 53]. This effect has been recently measured in double quantum

well systems[54]. When considering the open system, this property allows the switching on and off of the

electronic current by tuning VAC.

3.4.2 Up to one electron in the system

Considering that the Coulomb repulsion is high enough that only one electron is allowed in

the DQD, that is, UL, UR, ULR → ∞, if the DQD is coupled to highly biased contacts, as considered

in section 2.6, so an electron in the left QD would need the absorption of a high number of photons

to tunnel to the emitter (idem an electron in the collector to enter the right dot), one can disregard

photon-assisted tunneling, cf. Fig. 3.2. Then, the only tunneling rates that contribute to transport are

ΓL0 = 2π
~
|γL|2 = ΓL, Γ0R = Γ+

0R = 2π
~
|γR|2 = ΓR and the master equation reads

ρ̇00 = −ΓLρ00 + ΓRρRR

ρ̇LL = ΓLρ00 − i
Ω1

2
(ρRL − ρLR)

ρ̇LR =

(

i(ε− ~ω) − 1

2
ΓR

)

ρLR − i
Ω1

2
(ρRR − ρLL) (3.54)

ρ̇RR = −ΓRρRR − i
Ω1

2
(ρLR − ρRL),
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Fig. 3.2: Double quantum dot in the high bias regime, where photon-assisted tunneling is considered to not affect

tunneling processes through the contact barriers.

if εR − εL = ~ω, after similar steps as those made to obtain (3.52). The stationary current is

I =
Ω2

1ΓLΓR

ΓRΩ2
1 + ΓL (2Ω2

1 + Γ2
R

+ 4(ε− ~ω)2)
. (3.55)

giving a Lorentzian shaped peak, cf. Fig. 3.4, similar to the undriven case (2.106) and (2.105) with the

difference that the Rabi frequency of the oscillations is now tunable by means of the AC intensity and

leads to dynamical charge localization when the Bessel function of first order goes to zero.

Photon-assisted tunneling through the contact barriers become important as the applied bias is

reduced. In particular, one can consider the pumping configuration where µL = µR = µ, i.e., no external

bias is applied to the leads. For pumping to be efficient, a spatial asymmetry is required which is this

case is the finite detuning ε = εR − εL = ε such that εL < µεR. Then, the photon-assisted delocalization

of the electron–which would remain in the left quantum dot in the absence of driving– gives a finite

occupation probability to the right quantum dot and the subsequent extraction to the collector. Then,

finite electronic current from left to right appears through the pumping cycle |L〉 ! |R〉 → |0〉 → |L〉–as

in the high bias regime. However, electrons in the left quantum dot or in the right lead can absorb a

photon and tunnel to the emitter or the right quantum dot, respectively, thus contributing to electronic

current from right to left, opposite to the previously considered, cf. Fig. 3.3.

Fig. 3.3: Double quantum dot in the pumping configuration.
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The photon-assisted tunneling rates are

Γ0L =
2π

~

0
∑

ν=−∞
J2

ν

(

VAC

2~ω

)

|γL|2 =
π

~

(

1 + J2
0

(

VAC

2~ω

))

|γL|2 (3.56)

ΓL0 =
2π

~

∞
∑

ν=1

J2
ν

(

VAC

2~ω

)

|γL|2 =
π

~

(

1 − J2
0

(

VAC

2~ω

))

|γL|2 (3.57)

Γ0R =
2π

~

∞
∑

ν=1

J2
ν

(

VAC

2~ω

)

|γR|2 =
π

~

(

1 − J2
0

(

VAC

2~ω

))

|γR|2 (3.58)

ΓR0 =
2π

~

0
∑

ν=−∞
J2

ν

(

VAC

2~ω

)

|γR|2 =
π

~

(

1 + J2
0

(

VAC

2~ω

))

|γR|2, (3.59)

so the master equation, for ω ≈ ε, is

ρ̇00 = −(ΓL0 + ΓR0)ρ00 + Γ0LρLL + Γ0RρRR

ρ̇LL = ΓL0ρ00 − Γ0LρLL − i
Ω1

2
(ρRL − ρLR)

ρ̇LR =

(

i(ε− ~ω) − 1

2
(Γ0L + Γ0R)

)

ρLR − i
Ω1

2
(ρRR − ρLL) (3.60)

ρ̇RR = ΓR0ρ00 − Γ0RρRR − i
Ω1

2
(ρLR − ρRL).

The stationary current

I = Γ0RρRR − ΓR0ρ00 (3.61)

in resonance results, after taking into account Γ0i + Γi0 = 2π
~
|γL|2 = Γi,

I =
Ω2

1 (ΓL0Γ0R − Γ0LΓR0)

(ΓL0 + ΓR0 + ΓL + ΓR)Ω2
1 + (Γ0L + Γ0R) (Γ0LΓR + ΓL0Γ0R)

. (3.62)

In the simpler case ΓL0 = Γ0R = Γ+ and Γ0L = ΓR0 = Γ−, it is clear the contribution of photon-assisted

processes to the negative current

I =
Ω2

1 (Γ+ − Γ−) (Γ+ + Γ−)
2

3Ω2
1

(

Γ2
+ + Γ2

−
)

+
(

Γ2
+ + Γ2

− + Γ+Γ−
)

(

(Γ+ + Γ−)
2

+ 4(ε− ω)2
) . (3.63)

Note that, if photon-assisted processes are not considered in the tunneling through the contact

barriers, the same expression (3.55) as in the high bias regime is obtained. As seen in Fig. 3.4, this is a

good approximation for low driving intensities, VAC < ~ω.

3.4.3 Up to two electrons

If the Coulomb repulsion between the spinless electrons in different dots is small, ULR → 0, two

electrons can be simultaneously in the DQD, one in each dot. Still, UL, UR → ∞, so only one electron

is allowed in each quantum dot. Then, the spatial Rabi oscillations of an electron between |L〉 and |R〉
are damped not only by the extraction of the electron through one of the contact barriers but also by an

additional electron entering the DQD to the state |2〉.
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Fig. 3.4: Current as a function of the detuning when VAC = ω (left) and as a function of the AC intensity for

ω = ε (right) for the high bias and pump regimes. It was considered tLR = ΓL = ΓR = 0.1, e = ~ = 1 and

UL, UR, ULR → ∞, so only one electron is allowed at a time in the system. The influence of photon-assisted

tunneling through the contact barriers is clear in the decreasing of the current in the pumping regime, following

the behaviour of J0

“

VAC

2ω

”

. By comparing both regimes follows that the effect of photon-assisted tunneling in

the contacts is negligible for low AC intensities. The dynamical charge localization is manifested in the current

quenching (for both regimes) at VAC

ω
= 3.8317, when the Bessel function of first order is zero.

Following the same proccedure as before, the master equation for the high bias regime µL ≫
εL + ULR and µR ≪ εR + ULR

ρ̇00 = −ΓLρ00 + ΓRρRR

ρ̇LL = ΓLρ00 − ΓLρRR − i
Ω1

2
(ρRL − ρLR)

ρ̇LR =

(

i(ε− ~ω) − 1

2
(ΓL + ΓR)

)

ρLR − i
Ω1

2
(ρRR − ρLL) (3.64)

ρ̇RR = −(ΓL + ΓR)ρRR − i
Ω1

2
(ρLR − ρRL)

ρ̇22 = ΓLρRR − ΓRρ22

(3.65)

gives a stationary current[42]

I =
Ω2

1ΓLΓR (ΓL + ΓR)

(Γ2
L + Γ2

R)Ω2
1 +

(

2Ω2
1 + (ΓL + ΓR)

2
+ 4(ε− ~ω)2

)

ΓLΓR

. (3.66)

Comparing the latest expression to the strong repulsion case (3.55), the current increases when a sec-

ond electron is allowed to enter the system. The entrance of a second electron interrupts the coherent

delocalization and pushes the first electron to the right quantum dot, increasing its probability of being

transferred to the collector. In effect, if ΓL = ΓR = Γ ≪ Ω, the resonant current is Γ
3 , if ULR → ∞, and

Γ
2 , if ULR → 0.
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Fig. 3.5: Current as a function of the detuning when VAC = ω (left) and as a function of the AC intensity for ω = ε

(right) for the high bias and pump regimes. It was considered tLR = ΓL = ΓR = 0.1, e = ~ = 1, UL, UR → ∞ and

ULR → 0, so towo electrons can be simultaneously (on in each dot) in the system. The decreasing of the current

in the pump regime is proportional to J2
0

“

VAC

2ω

”

, as described in (3.70). The dynamical charge localization is

manifested in the current quenching (for both regimes) at VAC

ω
= 3.8317, when the Bessel function of first order

is zero. At VAC

ω
= 4.8096 (two times the first zero of the Bessel function of zeroth order), the current from left to

right is compensated by the photon-assisted current from right to left and the net current is zero. In comparison

with Fig. 3.4, the current is higher for non interacting electrons, as expected.

In the pumping configuration, the master equation becomes

ρ̇00 = −(ΓL0 + ΓR0)ρ00 + Γ0LρLL + Γ0RρRR

ρ̇LL = ΓL0ρ00 − (Γ0L + Γ2L)ρLL − i
Ω1

2
(ρRL − ρLR)

ρ̇LR =

(

i(ε− ~ω) − 1

2
(Γ0L + Γ2L + Γ0R + Γ2R)

)

ρLR − i
Ω1

2
(ρRR − ρLL) (3.67)

ρ̇RR = ΓR0ρ00 − (Γ0R + Γ2R)ρRR − i
Ω1

2
(ρLR − ρRL)

ρ̇22 = Γ2LρLL + Γ2RρRR − (ΓL2 + ΓR2)ρ22.

Considering Γ0R = ΓL0 = ΓL2 = Γ2R = Γ+ and ΓR0 = Γ0L = Γ2L = ΓR2 = Γ−, where

Γ+ =
Γ

2

(

1 + J2
0

(

VAC

2~ω

))

(3.68)

Γ− =
Γ

2

(

1 − J2
0

(

VAC

2~ω

))

(3.69)

are the tunneling rates for processes contributing to positive (from left to right) or negative (from right

to left) current, respectively. Since Γ+ + Γ− = Γ, one obtains a stationary current

I =
1
2Ω2

1 (Γ+ − Γ−)

Ω2
1 + Γ2 + (ε− ~ω)2

=
Ω2

1Γ

Ω2
1 + Γ2 + (ε− ~ω)2

J2
0

(

VAC

2~ω

)

. (3.70)
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The dependence on the Bessel function of zeroth order makes the current vanish not only when the AC

intensity satisfies the dynamical charge localization condition, J1

(

VAC

~ω

)

= 0, but also when J0

(

VAC

2~ω

)

= 0.

In this case, the probability for an electron in the right lead to be transferred to the left is the same as

for the reverse process. Also J0(α) → 0 when α→ ∞, so the net current vanishes for high AC intensities,

as can be seen in Fig. 3.5.





Chapter 4

Spin pumping in double quantum

dots

In the previous chapter, some examples of charge pumping through systems of two single-level

quantum dots in series were exposed. Spatial coherence in an asymmetric system was exploited in order

to produce a finite current in unbiased configuration. In that case, the asymmetry came by the detuning

between the level of the right dot (which has an energy larger than the chemical potential of the right

lead and thus contributes to the extraction of electrons to the collector) and the level in the left dot

(whose energy is smaller than the chemical potential of the left lead, so electrons can tunnel directly from

the emitter). The pumping mechanism comes from an AC potential applied to the gate voltages of each

dot such that the frequency of the sinusoidal signal matched the static detuning of the double quantum

dot (DQD). There, only single occupied states were considered, so the spin degree of freedom was not

important.

However, in the last few years a new field has rised by exploiting the electronic spin in the

search of new devices with properties that differ from those based on electronic charge–spintronics as an

alternative to electronics[24]. This is mostly due to the long coherence times of spins, as compared to

charge, giving rise to possible applications in quantum information processing. In this sence, adiabatic[59,

60, 61, 62] and non-adiabatic quantum dot spin pumps[63, 75, 76] has been proposed as an alternative

to previous proposals for generating spin-polarized currents by using ferromagnetic metals[55, 56] or

magnetic semiconductors[57, 58]. Indeed, the spin of an isolated electron in a QD has been proposed as a

quantum bit for transport of quantum information. For QD spin filters, dc transport through few electron

states is used to obtain spin-polarized currents which are almost 100% spin-polarized as demonstrated

experimentally by Hanson et al. [64] following the proposal of Recher et al. [65].

4.1 Spin pumping

The basic principle of spin pumps is closely related to that of charge pumps where a DC current

is generated by combining AC driving with either absence of inversion symmetry in the device, or lack of

time-reversal symmetry in the AC signal (ratchets). The range of possible pumps includes turnstiles [66],

adiabatic pumps[67] or non-adiabatic pumps based on photon-assisted tunneling (PAT) [68, 69] which

are treated here. In the last few years, the application of AC electric fields in quantum dots has shown

to be very accurate both to control and to modify their transport and electronic properties[68]. For

45
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instance, Sun et al.[70] have proposed a spin cell based on a double quantum dot driven by microwave

radiation in the presence of an external non-uniform magnetic field. An AC potential modifies as well

the electron dynamics within single and double quantum dots and, as seen in the previous chapter,

under certain conditions it induces charge localization and destroys the tunneling, allowing, by tuning

the parameters of the AC field, to control the time evolution of the state occupation, and therefore the

entanglement character of the electronic wave function[52, 53, 68]. Regarding detection of single spin

states in semiconductor quantum dots, this has been achieved[73, 74] using quantum point contacts and

spin to charge conversion allowing the determination of spin relaxation times on the order of milliseconds.

The separation of spin and charge dynamics is made by the introduction of an in-plane magnetic

field that breaks the spin degeneracy producing Zeeman splitting in the energy levels of the DQD. Then,

by chosing an appropriate chemical potential distribution (by tuning the gate voltages of the QDs),

electrons will be transmitted to the collector depending on their spin polarization[63]. In order to do

that, up to four electrons must be allowed in the DQD. The single occupation configuration discussed in

the previous chapter will be blocked as soon as an electron with the spin polarization that is not allowed

to tunnel to the collector enters the system. Then, one must consider doubly occupied states in both the

right QD–in order to be able to extract one of the electrons– and in the left one–to circumvent the spin

blockade effect, consisting in the avoiding of interdot tunneling by Pauli exclusion principle when both

QDs have only one electron with the same spin polarization[94]. Spin blockade effect will be consider in

following chapters.

The AC potential can be also used to select which electron is being to be transmitted by

considering a second level in the right QD so each level serves as a channel for resonant transmision of

a different spin polarization[75]. Then, for the right dot, we can have the following singlet and triplet

states, in order of increasing energy:

|S0〉 =
1√
2

(| ↓↑〉 − | ↑↓〉) (4.1)

|T+〉 = | ↑↑∗〉 (4.2)

|T0〉 =
1√
2

(| ↓↑∗〉 + | ↑↓∗〉) (4.3)

|T−〉 = | ↓↓∗〉 (4.4)

|S1〉 =
1√
2

(| ↓↑∗〉 − | ↑↓∗〉) , (4.5)

where the electrons in the upper level are marked with an asterisk (∗). In such a configuration, the system

acts as a bipolar spin filter just by tuning the ac frequency to be resonant with one of these channels.

Consider an asymmetric DQD connected to two Fermi-liquid leads which are in equilibrium

with reservoirs kept at the chemical potentials µα, α = L,R. Using a standard tunneling Hamiltonian

approach, we write for the full Hamiltonian

Ĥ = ĤDQD + ĤZ + Ĥleads + ĤT, (4.6)

where ĤDQD = ĤL + ĤR + ĤLR describes the DQD and Ĥleads =
∑

α

∑

kα,σ ǫkα
d̂†kασ d̂kασ describes

the leads. The presence of an external magnetic field is taken into account through the term ĤZ =
1
2

∑

α,σ,σ′ ∆αc
†
α,σ(σz)σσ′cα,σ′ , where ∆α ≡ gµBBα is the Zeeman splitting of the energy levels of each

QD in the presence of an external magnetic field ~Bα = (0, 0, Bα). It is assumed that only one orbital

in the left dot participates in the spin-polarized pumping process whereas two orbitals in the right dot

(energy separation ∆ǫ) are considered. The isolated left dot is thus modelled as a one–level Anderson
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impurity: ĤL =
∑

σ ELσ ĉ
†
Lσ ĉLσ + ULn̂L↑n̂L↓, whereas the isolated right dot is modelled as: ĤR =

∑

iσ ERiσ ĉ
†
Riσ ĉRiσ + UR(

∑

i n̂Ri↑n̂Ri↓ +
∑

σ,σ′ n̂R0σn̂R1σ′) + JŜ0Ŝ1 including the exchange interaction

term. The index i = 0, 1 denotes the two levels. The effect of the magnetic field is asummed by the gate

voltages so it increases the energy of the electrons with spin down polarization, while the ones with spin

up remain the same

EL↑ = ER0↑

EL↓ = EL↑ + ∆L (4.7)

ERi↓ = ERi↑ + ∆R.

with charging energies UR > UL. Si = (1/2)
∑

σσ′ ĉ
†
Riσσσσ′ ĉRiσ′ are the spin operators of the two levels.

ĤLR =
∑

i,σ tLR(ĉ†Lσ ĉRiσ +H.c.) describes interdot tunneling. The tunneling between leads and each QD

is described by the perturbation ĤT =
∑

kL,σ VL(d̂†kLσ ĉLσ + H.c.) +
∑

i,kR,σ VR(d̂†kRσ ĉRiσ + H.c.).

As a consequence of Hund’s rule, the intra-dot exchange, J , is ferromagnetic (J < 0) such that

the energy of the singlet |S1〉 = (1/
√

2)(ĉ†R0↑ĉ
†
R1↓ − ĉ†R0↓ĉ

†
R1↑)|0〉 (ES1,R = UR + ∆R + ∆ε− 3J

4 ) is higher

than the energy of the triplets |T+〉 = ĉ†R0↑ĉ
†
R1↑|0〉, (ET+,R = UR + ∆ε + J

4 ), |T0〉 = (1/
√

2)(ĉ†R0↑ĉ
†
R1↓ +

ĉ†R0↓ĉ
†
R1↑)|0〉 (ET0,R = UR + ∆R + ∆ε + J

4 ), and |T−〉 = ĉ†R0↓ĉ
†
R1↓|0〉 (ET−1,R = UR + 2∆R + ∆ε + J

4 ).

As can be seen, due to the Zeeman splitting, ET−
> ET0

> ET+
. Finally, we consider the case where

∆ǫ > ∆R − J/4 such that the triplet |T+〉 is higher in energy than the singlet |S0〉 = (1/
√

2)(ĉ†R0↑ĉ
†
R0↓ −

ĉ†R0↓ĉ
†
R0↑)|0〉 (ES0,L(R) = UL(R) + ∆L(R)).

The pumping force is included as an external AC field acting on the dots, such that the single

particle energy levels become time dependent:

EL(R)σ → EL(R)σ(t) = EL(R)σ ± VAC

2
cosωt (4.8)

where VAC and ω are the amplitude and frequency, respectively, of the applied field. We have considered

a basis of 40 states in the particle number representation which are obtained under these conditions,

considering up to two electrons in each QD.

To study the dynamics of a system connected to reservoirs one can consider the reduced density

matrix operator, ρ̂ = trleadsχ̂, where one traces all the reservoir states in the complete density operator of

the system, χ̂. The evolution of the system will be given by the Liouville equation: ˙̂ρ(t) = −i[Ĥ(t), ρ̂(t)].

Assuming the Markov approximation[83], the master equation reads:

ρ̇(t)m′m = −iωm′m(t)ρm′m(t) − i[ĤL⇔R, ρ̂(t)]m′m

+





∑

k 6=m

Γmkρkk(t) −
∑

k 6=m

Γkmρmm(t)



 δm′m

−Λm′mρm′m(t)(1 − δm′m) (4.9)

where ωm′m(t) = Em′(t)−Em(t) is the energy difference between the states |m〉 and |m′〉 of the isolated

DQD, Γmk are the transition rates for electrons tunneling through the leads, from state |k〉 to state |m〉
and Λm′m describes the decoherence of the DQD states due to the interaction with the reservoir. This

decoherence rate is related with the transition rates by: ℜγm′m = 1
2

(

∑

k 6=m′ Γkm′ +
∑

k 6=m Γkm

)

.

Let first neglect for simplicity the influence of the AC field on tunneling processes through the

leads which, as discussed in the previous chapter, is a good approximation for low AC intensities, so the

rates

Γmn =
∑

l

Γl(f(ωmn − µl)δNm,Nn+1 + (1 − f(ωnm − µl))δNm,Nn−1), (4.10)
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where Γl = 2πDl|Vl|2, l = L,R, determine the tunneling events for each lead. It is assumed that the

density of states in both leads DL,R and the tunneling couplings VL,R are energy-independent. Nk is the

number of electrons in the system when it is in state |k〉.
Spin relaxation and decoherence are included phenomenologically in the corresponding elements

of the equation for the RDM. Relaxation processes are described by the spin relaxation time T1 =

(W↑↓ + W↓↑)−1, where W↑↓ and W↓↑ are spin-flip relaxation rates fulfilling a detailed balance: W↓↑ =

exp(−∆z/kBT )W↑↓, where kB is the Boltzman constant and T the temperature. A lower bound for the

spin relaxation time T1 on the order of µs at B ≈ 0 − 2T was obtained by Fujisawa et al.[84]. Recently

a value of T1 = 2.58 ms with a field B = 0.02 T was measured [74] for a single QD using a tunnel-rate-

selective readout method. In the following, we focus on low temperature limit such that W↓↑ ≈ 0 and

thus T1 ≈ W−1
↑↓ . T2 is the spin decoherence time, i.e., the time over which a superposition of opposite

spin states of a single electron remains coherent. Recently, Loss et al.[85] obtained that T2 = 2T1 for

spin decoherence induced by spin-orbit interaction. This time can be affected by spin relaxation and by

spin dephasing time T2
∗, i.e., the spin decoherence time for an ensemble of spins. For processes involving

hyperfine interaction between electron and nuclear spins, Petta et al.[82] have obtained T2
∗ ≈ 10 ns

from singlet-triplet spin relaxation studies in a DQD. Here we consider two cases: T2
∗ = 0.1T1 and

T2
∗ = 0.001T1.

In practice, the dynamics of the reduced density matrix is integrated numerically the in the chosen basis.

In particular, all the results shown in the next paragraphs are obtained by letting the system evolve from

the initial state | ↓↑, ↑〉 until a stationary state is reached. The dynamical behavior of the system is

governed by rates which depend on the electrochemical potentials of the corresponding transitions.

Second order processes as co-tunneling are not included. The current from the right dot to the

right contact is given by:

I(t) =
∑

ss′

′ (Γs′sρss(t) − Γss′ρs′s′) , (4.11)

where the sum consider only states such that the right dot has one electron more when the system is in

state |s〉 than in state |s′〉. These transitions ocur through the right contact, so Γs′s = ΓR.

4.2 Spin filtering

The current through an AC-driven double quantum dot is analyzed, with VAC and ω the ampli-

tude and frequency of the AC-field, weakly coupled to the external leads, in the presence of a magnetic

field which induces a spin splitting ∆z in the discrete states of each dot. The ground state in each dot is

assumed to be the one with spin-up. The proposed model is of general application, i.e., it is valid for both

small or large inter-dot coupling. The presented results correspond to a particular configuration such

that the coupling of the dots with the leads is weak and symmetric: ΓL,R = 0.001, the hopping between

the dots is tLR = 0.005 and the charging energy for the left and right dots are UL = 1.0 and UR = 1.3

respectively. All energy units are in meV . The Zeeman splitting produced by an external homogeneous

magnetic field is: ∆L = ∆R = 0.026, corresponding to a magnetic field B ≈ 1T ; the exchange constant

for the right dot is J = −0.2 and the chemical potentials in the left and right leads are µL = µR = 1.31,

respectively. Two levels are considered in the right dot with energy separation ∆ǫ = 0.45. Inter-dot

Coulomb and exchange interactions are neglected.

In order to configure the system in a way that electrons can only be extracted from the state

|S0〉 to the right lead through the transitions: | ↑↓〉R → | ↑〉R the energy parameters must satisfy

UR < µR < UR + ∆R. The energy cost of introducing a second electron with either spin-up or spin-
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down polarization in the left dot has to be smaller than the chemical potential of the left lead. This is

always satisfied if µL > UL + ∆L. The system is considered to be in the pumping configuration µL = µR

throughout.

Then, if the DQD is initially in the state | ↑↓, ↑〉, no current will flow through the system unless

the AC frequency fits the energy difference between the different doubly occupied states for the left and

right dots and one of the electrons is delocalized within the DQD. For instance: | ↑↓, ↑〉 ! | ↑, ↑↓〉 (at

ω = ωS0↓ = UR − UL + ∆R − ∆L), | ↑↓, ↑〉 ! | ↑, T0〉 (at ω = ωT0↓ = UR − UL + ∆R − ∆L + ∆ǫ+ J/4),

| ↑↓, ↑〉 ! | ↑, S1〉 (at ω = ωS1↓ = UR − UL + ∆R − ∆L + ∆ǫ − 3J/4) or | ↑↓, ↑〉 ! | ↓, T+〉 (at

ω = ωT+↑ = UR−UL +∆ǫ+J/4). The suffix ↑ (↓) is used to remark that the inter-dot tunneling electron

has spin-up (down) polarization. At these frequencies, one electron becomes delocalized undergoing Rabi

oscillations with frequency[68]

ΩR = 2tLRJν

(

Vac

ω

)

, (4.12)

where Jν is the νth-order Bessel function of the first kind and ν is the number of photons required for

bringing the two states into resonance. It is important to note that the frequencies for transitions involving

spin down depend on the difference ∆R −∆L while the one involving spin up does not, see (4.7). As will

be shown below, this is the main reason for requiring an inhomogeneous magnetic field to obtain spin-up

polarized current. One should remark also that the resonance achieved between | ↑↓, ↓〉 ⇔ | ↑, T−〉 occurs

at a photon frequency: ωT−↓ = ωT0↓. Similarly, the resonance | ↑↓, ↓〉 ⇔ | ↓, T0〉 occurs at ωT0↑ = ωT+↑.

4.2.1 Homogeneous magnetic field. ∆R = ∆L

If the frequency of the AC field is tuned to the resonance between the doubly occupied states

with lower energy, i.e., ω = ωS0↓, the electron with spin down polarization becomes delocalized between

them. The energy configuration does not allow the extraction of the spin up electron in the right dot to

the collector. On the other and, since the left dot has only one level, Pauli exclusion principle avoids the

entrance of spin-up electrons to the left QD. Thus, the system follow the cycle

| ↑↓, ↑〉 ! | ↑, ↑↓〉 → {| ↑, ↑〉 or | ↑↓, ↑↓〉} → | ↑↓, ↑〉 (4.13)

and the pumped current will be fully polarized with spin down electrons[63]. Then, the device acts as a

filter and pump of electrons with spin down polarization, see the peak at ω = 0.3 Fig. 4.1a. Note that

the electrons with spin up polarization do not participate in the dynamics, so the system behaves roughly

as the up to two particles case shown in section 3.4.

By increasing the frequency of the AC field, the single state of the left QD is put in resonance

with the triplet states of the right QD. Since the Zeeman splitting is the same in both dots, inter-dot

tunneling processes involving electrons with different spins, as for instance: | ↑↓, ↑〉 ! | ↑, T0〉 (at

ω = ωT0↓) and | ↑↓, ↑〉 ! | ↓, T+〉 (at ω = ωT+↑) occur at the same frequency, i.e., ωT0↓ = ωT+↑ ≈ 0.65

and we find two overlapping peaks (see Fig.4.1b. The current is created through several processes. The

dominant ones are

| ↑↓, ↑〉 ! | ↑, T0〉 → {| ↑, ↑〉 or | ↑↓, T0〉} → | ↑↓, ↑〉, (4.14)

which contributes to spin-down current, and

| ↑↓, ↑〉 ! | ↓, T+〉 → {| ↓, ↑〉 or | ↑↓, T+〉} → | ↑↓, ↑〉, (4.15)

or

| ↑↓, ↑〉 ! | ↑, T0〉 → | ↑, ↓〉 → | ↑↓, ↓〉, (4.16)
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Fig. 4.1: Pumped current as a function of the ac frequency (∆L = ∆R), for the resonances (a) ωT0↓ = ωT+↑ ≈ 0.65

and (b) ωS0↓ ≈ 0.3. At this frequency, the current is fully spin down polarized. The smaller peaks in (b) are

multi-photon satellites of other processes: at ω ≈ 0.283, the three-photon process corresponding to the resonance

between the singlet S0 in the left dot and the singlet S1 in the right dot occurs. The two overlapping peaks at

ω ≈ 0.325 correspond to two-photon satellites of the resonance in (a). Parameters: tLR = 0.005, Γ = 0.001,

UL = 1.0, UR = 1.3, ∆L = ∆R = 0.026 (corresponding to a magnetic field of 1T ), ∆ε = 0.4, J = −0.2,

µL = µR = 1.31, Vac = ωT+↑[89].

which contribute to spin-up current. So, in this case, the current is partially spin-up polarized.

At higher frequencies, the resonance with the excited singlet |S1〉 appears (at ω = ωS1↑ = ωS1↓),

cf. Fig. 4.1c. The processes are similar then to the ones through |T0〉

| ↑↓, ↑〉 ! | ↑, S1〉 → {| ↑, ↑〉 or | ↑↓, S1〉} → | ↑↓, ↑〉, (4.17)

for spin-down transport and

| ↑↓, ↓〉 ! | ↓, S1〉 → {| ↓, ↓〉 or | ↑↓, S1〉} → | ↑↓, ↓〉, (4.18)

for spin-up. So this resonance also shows a mixed polarization.

Two peaks appear in the vicinity of ωS0↓, one at ω = ωS1↓/3 ≈ 0.283 (which corresponds to

the three-photon satellite of resonance ωS1↓) and two overlapping peaks at ω ≈ 0.325 (corresponding to

the two-photon satellites at ωT0↓/2 = ωT+↑/2, see Fig.4.1a). The positions of these peaks are completely

independent of each other and are determined by the energetics of the system.

4.2.2 Inhomogeneous magnetic field. ∆R 6= ∆L

In order to get a fully spin-up polarized current peak, we consider different Zeeman splittings

between both dots which can be due to an inhomogeneous magnetic field, with different intensity in
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Fig. 4.2: Pumped current as a function of the ac frequency (∆L 6= ∆R), for the resonances (a) ωT0↑ = ωT+↑ ≈ 0.65

and ωT0↓
= ωT−↓

≈ 0.676 and (b) ωS0↓
≈ 0.326. The current at the resonance ω = ωS0↓ is partially spin down

polarized due to the overlapping satellite peaks (at ω = ωT0↓/2 ≈ 0.338, ω = ωT+↑/2 ≈ 0.325, ω = ωS1↓/3 ≈
0.292). Parameters: tLR = 0.005, Γ = 0.001, UL = 1.0, UR = 1.3, ∆L = 0.026, ∆R = 2∆L, ∆ε = 0.4, J = −0.2,

Vac = ωT+↑[89].

each dot, or quantum dots with different g factors. Also, hyperfine interaction between the electronic

spins in the quantum dots and the nuclei underneath hs demonstrated to cause an additional Zeeman

splitting which may be different in each QD depending on the number of nuclei[87, 88]. On the other

hand, hyperfine interaction is the responsible for spin relaxation and decoherence which will be analyzed

below.

This introduces a separation ∆ω ≈ ∆R−∆L

n (where n is the number of photons involved in

the resonant transition) between peaks with different spin polarization, as can be seen for example by

comparing figures 4.1 and 4.2. The resonances ωT0↓(= ωT−↓) are shifted by an amount ∆R − ∆L with

respect to the resonance at ωT+↑(= ωT0↑) which is independent of Zeeman splitting (see Fig.4.2b). So

fully spin-up polarized current at ωT+↑ ≈ 0.65 and fully spin-down polarized current at ωT0↓ ≈ 0.676 are

obtained.

That is not the case of the resonances involvig the state |S1〉, which is connected to the initial

state | ↑↓, ↑〉 only by the tunneling of the spin-down electron. Then, fully spin-down polarized current

appears at ωS1↓ but, at ωS1↑, the system remains unaffected by the AC field, cf. Fig. 4.2c.

In Fig.4.2a, the resonance ω = ωS0↓ ≈ 0.326 is not well resolved because there are overlapping

satellite peaks (at ω = ωT0↓/2 ≈ 0.338, ω = ωT+↑/2 ≈ 0.325, ω = ωS1↓/3 ≈ 0.292). In concrete,

one finds different processes that contribute to opposite spin polarization currents and depend on the

absorption of a different number of photons (therefore, their Rabi frequencies are renormalized with Bessel

functions of different orders, Eq. (4.12)). It has been shown that for certain AC parameters and sample
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Fig. 4.3: (a) Current and (b) current polarization (defined as P = (I↑ − I↓)/(I↑ + I↓)) dependence on the AC

field intensity, for ωS0↓ = 0.326. There is fully spin-up polarization for intensities such that J1(α) = 0 and fully

spin-down-polarization when J2(α) = 0. The sample parameters are the same as in Fig. 4.2.

configurations[48] the height of the current peaks depend on ΩR, which is a non linear function on the

AC intensity (see Eq. (4.12)). Thus, one can take chance of the coincidence of different processes at the

same frequency to manipulate the spin polarization by tuning the intensity of the AC field. In Fig. 4.3

the current and current polarization are shown as a function of AC-field intensity at ω=ωS0↓. Here, the

spin-up contribution comes from a two-photon resonance (ω = ωT+↑/2 ≈ 0.325) and, thus, is expected to

vanish when J2(α) = 0 due to the dynamical localization phenomena[68]discussed in the previous chapter.

Furthermore, for AC intensities such that J1(α) = 0, the one-photon resonance ωS0↓ is quenched and fully

spin-up polarized current is obtained at this frequency. Thus, if one tunes the AC intensity to the value

where the first(second)-order Bessel function vanishes, we obtain fully spin-up(down) current. Fig.4.3(a)

shows that at low AC intensities, the contribution of multi-photon processes is small and the ωS0↓ ≈ 0.326

resonance corresponding to practically fully spin-down current is clearly resolved. However, this property

needs high intensities where photon-assisted tunneling through the contacts may contribute, leading to

the reduction of the polarization. The effect of these processes will be treated below.

4.3 Spin relaxation effects

It is important to note also that, contrary to the case for spin-down pumping, the pumping

of spin up electrons leaves the double dot in the excited state | ↓, ↑〉. This makes the spin-up current

sensitive to spin relaxation processes. If the spin ↓ decays before the next electron enters into the left

dot, a spin-down current appears through the cycle

| ↓↑, ↑〉 AC
! | ↓, T+〉 ΓR→ | ↓, ↑〉 W↑↓→ | ↑, ↑〉 ΓL→ | ↑↓, ↑〉 (4.19)
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Fig. 4.4: Pumped current near resonance ω = 0.65 for different symmetric couplings to the leads. ∆R = ∆L/0.3,

W↑↓ = 5 × 10−6, VAC = 0.14 and T2
∗ = 0.1T1. When increasing the coupling to the leads, the current decreases

which may be an artefact due to the formulation basis that is not the eigenbasis of the DQD, as discussed in

chapter 2.

and the pumping cycle is no longer 100% spin-up polarized leading to a reduction of the spin-up current

at this frequency. Note that spin-flip processes lift the conservation of spin currents through the device.

In Fig. 4.4, the current due to the ωT+↑ = 0.65 resonance is plotted for different values of the

coupling with the contacts, Γ, at VAC = 0.14 meV when including a finite spin-flip relaxation probability,

W↑↓ = 1/T1 = 5 × 10−6meV and T2
∗=0.1T1. The full widths (FWHM) of the current peaks are plotted

as a function of Γ in Fig. 4.5(a) for weak (circles) and strong (squares) AC-field intensity, VAC . In

order to minimize nonlinear effects, in Fig. 4.5(b) the low intensity regime (VAC = 0.14) is investigated

where one expects a FWHM dominated by decoherence, for two different values of the spin dephasing

time: T2
∗ = 0.1T1 and T2

∗ = .001T1. In every case, one finds that for large Γ, the behaviour of the

FWHM is linear with a slope which approaches 2, i.e., FWHM ∼ 2Γ, which can be directly related to

the decoherence time T2 as shown below. Thus, experiments along these lines would complement the

information about decoherence extracted from other setups [97]. As an illustration we present below an

analytical treatment which allows us to relate the current peak widths with the spin decoherence time.

4.3.1 Analytical treatment

In the following we present an analytical treatment in the stationary regime of the case discussed

above where the influence of spin-flip processes on the spin up current peak coming from the ac-induced

resonance between |1〉 = | ↑↓, ↑〉 and |2〉 = | ↓, ↑↑∗〉 was numerically obtained.

As discussed in the previous section, at ω = ωT+↑, these states are brought into resonance

and the current, for ∆R ≈ ∆L/0.3, is fully spin-up polarized. Intermediate states are |3〉 = | ↓, ↑〉,
|4〉 = | ↑↓, ↑↑∗〉, |5〉 = | ↑, ↑↑∗〉 and |6〉 = | ↑, ↑〉. From [48, 77] it is known that the dynamics of the system

at large time scales is obtained by a time-dependent basis transformation on the density matrix (rotating
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Fig. 4.5: Full width at half maximum of the total current in Fig. 4.4 as a function of coupling to the leads,

Γ, at frequency ω = 0.65 (a) for strong (squares) and weak (circles) field intensities and T2
∗ = 0.1T1 and (b)

for different spin dephasing times T2
∗ = 0.1T1 (circles) and T2

∗ = 0.001T1 (squares), for the weak field intensity

case. In both cases, the numerical results are compared to the analytic prediction (dotted lines) given by (4.27).

(a) In the weak field case, VAC = 0.14, ΩR ≈ 0.001 (circles), for Γ ≫ ΩR, the curve follows a linear behaviour:

FWHM ≈ 2γ = 2(W↑↓/2 + 1/T2
∗ + Γ). For the high field intensity case VAC = 0.7, ΩR ≈ 0.004 and the same

behaviour is expected at larger Γ. In (b), for T2
∗ = 0.001T1 (squares), we see that the width of the peak is

larger than the expected asymptotic behavior for large Γ. This is due to overlapping with the peak at ωT0↓. As

discussed in the text, the extrapolation of the asymptotic curves at Γ = 0 gives the value of 2(1/2T1 + 1/T2
∗).

Thus, for the case where T2
∗ ≪ T1, would allow to estimate the value of the spin dephasing time. In both graphics,

∆R = ∆L/0.3, W↑↓ = 1/T1 = 5 × 10−6.

wave approximation, RWA) such that ǫ(t) → ǫ0−nω and tLR → t̃LR = (−1)nJn(VAC/ω)tLR, see also the

previous discussion in chapter 3. The equations of motion for the corresponding reduced density matrix

elements in the RWA are:

ρ̇1 = −2t̃LRℑρ2,1 + ΓLρ3 + ΓRρ4 + ΓLρ6

ρ̇2 = 2t̃LRℑρ2,1 − (ΓR + ΓL +W↑↓)ρ2 (4.20)

while for the intermediate states,

ρ̇3 = ΓRρ2 − (ΓL +W↑↓)ρ3

ρ̇4 = ΓLρ2 − ΓRρ4 + ΓLρ5

ρ̇5 = W↑↓ρ2 − (ΓL + ΓR)ρ5

ρ̇6 = −ΓLρ6 + ΓRρ5 +W↑↓ρ3 (4.21)

The equation for the off-diagonal density matrix element is

ρ̇2,1 = [i(ǫ0 − nω) + γ]ρ2,1 + it̃LR(ρ2 − ρ1) (4.22)
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where γ = T−1
2 is the decoherence rate:

γ =
1

2
(ΓL + ΓR +W↑↓) +

1

T2
∗ (4.23)

This, together with the condition of conservation of probability Σiρi = 1 gives for the total current (at

this frequency), in the stationary regime, an expression which we can write[77] as:

I = I0
W 2

W 2 + (ǫ0 − nω)2
(4.24)

where I0 = 2γt̃2LR/W
2 is the current maximum and W is the half width at half maximum:

W 2 =
2γt̃2LR

ΓL + ΓR +W↑↓

(

Γ̃ +
W↑↓

ΓL + ΓR

(

Γ̃ − 1
)

)

+ γ2 (4.25)

Here, Γ̃ = (ΓL +ΓR)2/ΓLΓR. For the symmetric case, ΓL = ΓR = Γ (Γ̃ = 4) one can rewrite this in terms

of the Rabi frequency ΩR = 2t̃LR as :

W 2 =
2γΩ2

R

2Γ +W↑↓

(

1 +
3W↑↓
8Γ

)

+ γ2 (4.26)

In these calculations, W↑↓ = 5×10−6 ≪ ΩR,Γ throughout the range of values considered. Then,

Eq. (4.26) simplifies to

W 2 =
γΩ2

R

Γ
+ γ2. (4.27)

In the limit W↑↓, 1/T ∗2 ≪ Γ, then γ ≈ Γ, and we get W 2 = Ω2
R + Γ2 in agreement with previous

analytical results[48, 77].

From (4.27), one obtains the following asymptotic behaviors:

1. Γ ≪ ΩR (strong inter-dot tunneling)⇒ W 2 ≈ Ω2
Rγ/Γ

2. Γ ≫ ΩR (weak inter-dot tunneling) ⇒W ≈ γ

3. Γ ≈ ΩR ⇒W 2 ≈ γR(ΩR + γR), where γR = ΩR + 1/T2
∗.

In Fig. 4.5(a) the full width at half maximum (FWHM) of the spin-up current peak is represented

as a function of Γ for the case T2
∗ = 0.1T1 together with the analytical curve (4.26). For the weak field

case VAC = 0.14 (full circles) with ΩR ≈ 0.001, we see that the predictions of the theory are indeed

fulfilled. In particular, in the range Γ ≫ ΩR, the FWHM as a function of Γ is a straight line with slope 2

as expected (FWHM ≈ 2γ = 2/T2
∗ + 1/T1 + 2Γ). This means that a direct measure of the decoherence

time for the isolated system T iso
2 :

1

T iso
2

=
1

T2
∗ +

1

2T1
(4.28)

can be obtained from this linear behavior. In this limit, however, the effects of the chosen basis (on the

eigenstates one) may affect the results, as seen in chapter 2. From Fig. 4.5a it can be verified that the

cases (i) (W 2 ≈ a + b/(ΓT iso
2 )) and (iii) are also reproduced. Besides, it is interesting to mention that

from these cases one can get information on the Rabi frequency. The same analysis also holds for the

strong field case VAC = 0.7 (full squares), where ΩR ≈ 0.004.

Recently, it has been measured that the spin dephasing time T2
∗ induced by hyperfine interaction

is tens of nanoseconds[81, 82]. This, together with experimental values for T1 as long as miliseconds[74]
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Fig. 4.6: Pumped current as a function of the AC frequency compared to the fully spin-down polarized current

(dashed line) obtained by neglecting photon-assisted tunneling in the contact barriers. The subharmonic resonant

peaks are shown up to the one involving seven photons in the intradot transitions. The height of the polarized

currents depends non-linerarly in the relation between the AC intensity and frequency. Parameters: tLR = 0.005,

Γ = 0.001, UL = 1.0, UR = 1.3, ∆L = ∆R = 0.026, VAC = ωS1↓.

in GaAs quantum dots, such that 1/T1 ≪ 1/T2
∗, would allow to estimate the spin dephasing time T2

∗

directly from the intersection of the large Γ asymptote with the vertical axis (Fig. 4.5b, dotted line).

Note, from Fig. 4.5b, that the numerical results differ from the expected analytical curves for

the case T2
∗ = 10−3T1 for large Γ. This is because the parameters that contribute to FWHM (Γ or

1/T2
∗
) are large enough to make the current peak overlap with its neighboring spin-down current peak

at ωT0↓. Then, it loses its lorenztian shape, mixes its spin polarization and gets wider than what it is

analytically expected. This problem should hold in the experimental measurements unless the energy

difference between both peaks were large enough so they do not overlap and they can be fitted to a

lorenztian curve. This is the case when ∆R − ∆L ≫ 2γ.

4.4 Photon-assisted tunneling effects

4.4.1 Limitation of the spin filter

As discussed in chapter 3, even if the AC gate voltage is applied to the dots, photon-assisted

tunneling also affects the tunneling through the contact barriers. Then, processes that were considered
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Fig. 4.7: Dependence of the pumped currents on the AC field intensity compared to the fully spin-down polarized

current obtained when neglecting PAT in the contact barriers (dashed line), for fixed ac frequency ωS1↓ = 0.3.

energetically forbiden can now occur by the absorption or emission of photons with rates

Γmn = 2π
∑

l

∞
∑

ν=−∞
J2

ν

(

VAC

2ω

)

|γmn|2(f(ωmn + νω − µl)δNm,Nn+1

+(1 − f(ωnm + νω − µl))δNm,Nn−1). (4.29)

so new tunneling channels appear[90, 91]. Also, the probability of processes considered in the previous

section are reduced. Now, there is a finite probability (via the absorption or emission of photons) for

transitions that previously were not available due to the concrete energy configuration. Specifically, there

will be processes which extract spin-up electrons from the right dot doubly occupied singlet state by

photon absorption through the right contact, that is: | ↑↓〉R → | ↓〉R. In order to give an stimation

of the effect of these processes, let consider the resonance between the singlet states with lower energy

of each QD, ωS0↓, so the higher level of the right QD can be extracted form the integration–it would

only contribute with satellite peaks, as seen in the previous section. There, the device was operated as a

spin-down filter following the cycle

| ↑↓, ↑〉 ! | ↑, ↑↓〉 → {| ↑, ↑〉 or | ↑↓, ↑↓〉} → | ↑↓, ↑〉. (4.30)

Considering the same Zeeman splitting in both dots, both resonances | ↑↓, ↑〉 ! | ↑, ↑↓〉 and | ↑↓, ↓〉 !

| ↓, ↑↓〉 occur at the same frequency ωS1↓. So, through the sequence

| ↑↓, ↑↓〉 → | ↑↓, ↓〉 ! | ↓, ↑↓〉 → | ↑↓, ↑↓〉, (4.31)

a net spin-up polarized current appears (see Fig. 4.6). This sequence is much less efficient than (4.30)

since processes that do not depend on the absorption of photons through the contacts are more probable,
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Fig. 4.8: Pumped current as a function of the AC frequency. Parameters (in meV): tLR = 0.005, Γ = 0.001,

UL = 1.6, UR = 1.3, ∆L = ∆R = 0.026 (corresponding to a magnetic field B ≈ 1T ), εL = εR = 0.5, µ = 1.81,

VAC = 1.0 and kBT = 0.001. As discussed in the text, when the frequency of the driving field matches the intradot

Coulomb repulsion of each dot, some photon-assisted resonances that show up.

as shown in chapter 3. Also, the transitions | ↑↓, ↓〉 → | ↑↓, ↑↓〉 → | ↑↓, ↑〉 and | ↓, ↑↓〉 → | ↓, ↑〉 → | ↑↓, ↑〉
take the system back to the states involved in the spin-down cycle (4.30).

However, the generated spin-up current produced under PAT through the contacts, being small,

can be mostly removed as the AC-field intensity becomes small (see Fig. 4.7). In this case (low AC

intensity), neglecting PAT through the contacts is a good approximation[48], and we recover the spin-

down filter behaviour. On the other hand, the contribution of the new processes increases with the

AC intensity, so the spin-up current becomes more important, while the spin-down one is reduced when

including photon-assisted tunneling effects n the contact barriers. This behaviour was also predicted for

the two electrons case discussed in section 3.4.3. As expected, the current vanishes as the renormalized

Rabi frequency does, due to dynamical charge localization when J1

(

VAC

ω

)

= 0.

This dependence of the photon-assisted spin-up current with VAC is manifested also in the height

of the two-photons satellite peak (Fig. 4.6) at ωS0↓/2. The new PAT processes through the contacts

increase their rate with the AC intensity (via the Bessel function Jn

(

VAC

2ω

)

, being n > 0, see Eq.(4.29)),

so they increase their relative contribution to the current, as can be seen in the higher spin-up peak and

the lower spin-down one (Fig. 4.7).

4.4.2 Hidden resonances

Photon-assisted tunneling in the contacts may also give rise to new features that cannot be

predicted when neglecting it. The frequency of the AC field may be in resonance with the energy

required by the internal electrons to perform transitions to states from where they do not have enough

energy to tunnel to the reservoir–unless they absorbed one or more photons[91].

In the same configuration, with one level in each QD, when introducing the AC field, the

electrons of the state | ↑↓, ↑〉 are able, by the absorption of a certain number of photons, to leave the

DQD, giving a finite occupation probability to states that otherwise would never be populated as, for

instance, | ↓, ↑〉, once the spin-up electron of the left dot tunnels out towards the left contact. If the
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Fig. 4.9: Pumped spin up (dotted line) and spin down (solid line) current and total (dashed line) current as a

function of the intensity of the AC field for the fixed frequencies (a) ω = UL = 1.0 and (b) ω = UR = 1.3. The

rest of parameters are the same as in Fig. 4.8.

frequency of the AC field is tuned to be enough to compensate the Coulomb repulsion of the left dot

(that is, ω = ωL ≈ UL), the spin-up electron in the right dot is delocalized between both dots so that

another electron can enter from the right contact. Then, net spin-up current is created from the right to

the left contact through the sequence

| ↑↓, ↑〉 → | ↓, ↑〉 ! | ↑↓, 0〉 → | ↑↓, ↑〉. (4.32)

On the other hand, at this frequency, the state | ↑↓, 0〉 is also resonant with | ↑, ↓〉, which contributes

to spin down current to the right lead (and to spin up current to the left as well) by the sequence

| ↑, ↓〉 → | ↑, ↑↓〉 → | ↑, ↑〉. In this way, different spin polarized currents can flow in different directions,

as can be seen in figure 4.8.

Increasing the frequency of the AC field, the higher Coulomb repulsion of the right dot can now

be compensated if ω = ωR ≈ UR. Then, the spin-down electron is delocalized between the states | ↓, ↑〉
and |0, ↑↓〉, so spin-down current flows to the right contact through the cycle

| ↑↓, ↑〉 → | ↓, ↑〉 ! |0, ↑↓〉 → |0, ↑〉 (4.33)

(in this point, a spin down electron can enter the left dot, restoring the resonant state, | ↓, ↑〉, or two

electrons can form the initial singlet state, | ↑↓, ↑〉). The resonance between |0, ↑↓〉 and | ↑, ↓〉 at the same

frequency allows the flow of spin up electrons from the right to the left lead through a sequence

|0, ↑↓〉 ⇔ | ↑, ↓〉 → | ↑, ↑↓〉 → | ↑, ↑〉 → | ↑↓, ↑〉, (4.34)

that also contributes to spin-down current from the left to right lead.

In figures 4.8 and 4.9, the pumped current is plotted as a function of the AC frequency and

intensity respectively. Spin up and spin down current contributions flow in opposite directions, giving
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Fig. 4.10: Time evolution (normalized to τ = 2π/ΩR, being ΩR = 2J1(α)tLR the Rabi frequency of the delocal-

ization processes) of the diagonal density matrix elements which describe the occupation probability of the states

relevant for transport. Photon assisted tunneling through the contacts is manifested in the de-population of state

| ↑, ↑〉[?]. Parameters (in meV): tLR = 0.005, Γ = 0.001, UL = 1.6, UR = 1.3, ∆L = ∆R = 0.2 (corresponding to a

magnetic field B ≈ 8T ), εL = εR = 0.5, µ = 1.9, ω = UR = VAC/2.

rise to a finite spin current and a very small charge current. Then, tuning the AC parameters one

would expect a situation where the net charge current is very small and I↑ ≈ −I↓. However, to reach

a configuration where charge current is zero whereas spin current is finite by tuning the AC parameters

and sample configuration is not trivial due to the large number of tunneling processes involved.

4.4.3 Spin blockade lifting

As discussed at the begining of this chapter, if the gate voltages of the quantum dots are

tuned so, in the absence of driving, each quantum dot allows only one electron, pumping is limited by

spin blockade[63]. Pauli exlusion principle avoids interdot tunneling when both spins have the same

polarization[92, 93]. This effect has been exploited for current rectification[94] and coherent spin opera-

tions by means of AC fields[95].

Then, the introduction of an AC electric field in resonance between states with one electron in

each dot and the doubly occupied singlet state of one of them (the one in the right, in this case) would not

have any effect in the absence of photon-assited tunneling[96]. This effect has to be taken into account

when coherently manipulating single spins by oscillating external fields[95].

This would be the case when trying to pump spin-down currents when µ < Ul + εl + ∆l and

µ > UR+εR, so the non-driven DQD would be in a stable state with one electron in the left dot and a spin-

up electron trapped in the right QD– the state | ↓〉R decais through the sequence | ↓〉R → | ↑↓〉R → | ↑〉R.

Introducing an AC field in resonance with the states | ↓, ↑〉 and |0, ↑↓〉 (and, since ∆L = ∆R,

also with |0, ↑↓〉 and | ↑, ↓〉), the spin-down electron will be delocalized between both quatum dots and

there will be a finite probability for it to leave the DQD to the right lead. Then, one should expect a net
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Fig. 4.11: Pumped current (normalized to the tunneling probability, Γ) as a function of the frequency of the

AC field (in meV). Considering the blocking state, | ↑, ↑〉, if the electron in the left QD absorbs a photon and

tunnels to the left lead, net spin down current to the right lead is created due to the sequence: | ↑, ↑〉 → |0, ↑
〉 → | ↓, ↑〉 ! |0, ↑↓〉 → {|0, ↑〉 or | ↑, ↑↓〉} → | ↑, ↑〉, while spin up current flows in the opposite direction

(from right to left) by the sequence: | ↑, ↑〉 → |0, ↑〉 → | ↓, ↑〉 ! |0, ↑↓〉 ! | ↑, ↓〉 → | ↑, ↑↓〉 → | ↑, ↑〉 (in

this cycle, spin down current through the right contact is also produced). On the other hand, if the spin up in

the right QD is extracted from | ↑, ↑〉, there is a positive contribution to spin up current through the sequence:

| ↑, ↑〉 → | ↑, 0〉 → | ↑, ↓〉 ! |0, ↑↓〉 → {| ↑, ↑↓〉 or |0, ↑〉} → | ↑, ↑〉. The contribution of this sequence is smaller

(since it compites with the sequence | ↑, ↑〉 → | ↑, 0〉 → | ↑, ↓〉 → | ↑, ↓〉 → | ↑, ↑↓〉 → | ↑, ↑〉 that recovers rapidly the

state | ↑, ↑〉 without contributing to the current) and is only apreciable at high enough field intensities. However,

it may be the responsible of the supression of negative spin up current near resonance, giving a small bump. Note

also that, since so many states are contributing to the dynamics of the system, the behaviour of the resonance

peaks differs from the typical Lorentzian shape. The parameters are the same as in Fig. 4.10.

spin down current through the system through the pumping cycle

| ↓, ↑〉 ⇔ |0, ↑↓〉 → {|0, ↑〉 or | ↓, ↑↓〉} → | ↓, ↑〉. (4.35)

However, since the empty left QD can be also filled with a spin up electron, in the absence of photon-

assisted tunneling in the contacts, the system asymptotically evolves to the state | ↑, ↑〉 (i.e., ρ↑↑,↑↑(t →
∞) = 1 and ρi,j(t→ ∞) = 0, otherwise) that leads to SB[63].

However, the rates (4.29) allow the trapped spins in the DQD to absorb a certain number of

photons and tunnel out to the leads giving a finite ocuppation probability through the sequences

| ↑, ↑〉 → |0, ↑〉 → | ↓, ↑〉 (4.36)

| ↑, ↑〉 → | ↑, 0〉 → | ↑, ↓〉 (4.37)

to the states | ↓, ↑〉 and | ↑, ↓〉. These states are in resonance with the |0, ↑↓〉 that allows electronic

tunneling to the right lead (cf. Fig. 4.10). Then, PAT through the contacts creates a finite current

through the system (Fig. 4.11), removing the SB.
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4.5 Conclusions

A new scheme of realizing both spin filtering and spin pumping by using AC-driven double quan-

tum dots coupled to unpolarized leads has been proposed and analyzed. The results demonstrate that the

spin polarization of the current can be manipulated (including fully reversing) by tuning the parameters

of the AC field. For homogeneous magnetic field, ∆L = ∆R, one obtains spin down polarized current

involving singlet states in both dots. In order to obtain spin up polarized current, an inhomogeneous

magnetic field is required to break the degeneracy in transitions involving triplet states in the right dot.

These results also show, both analytically and numerically, that the width in frequency of the spin-up

pumped current gives information about the spin decoherence time T2 and also about the spin dephasing

time T2
∗ of the isolated double quantum dot system. Experiments along these lines would allow to get

information, from transport measurements, on the different mechanisms producing spin decoherence in

quantum dots.

It has been also shown how photon-assisted tunneling through the contact barriers in AC driven

DQD’s gives additional contributions to the pumped current and the limits where this effect can be

neglected. In particular, it modifies the spin filtering behaviour of a DQD device working as a spin pump.

However, this contribution is effective only for high AC-intensities.

Additionally, photon-assisted transport is manifested in resonances through states that otherwise

would not participate in the current. Different spin polarization contributions to the current. Interestigly,

currents involving the different spin polarizations flow in opposite direction, leading to the possibility of

manipulating spin currents even when the net charge transport is quenched.

These photon-assisted channel opening implies effects as spin blockade removal that are to be

taken into account when manipulating electrons in quantum dot systems by external AC potentials.



Chapter 5

Coherent spin rotations in double

quantum dots

The accurate tunability of time dependent fields has allowed the access and manipulation of

quantum systems by the resonant illumination of atoms, finding interesting effects such as the possibility

of trapping the atom in a non-absorbing coherent superposition (dark state) which is known as Coherent

Population Trapping [99, 100, 101, 102]. This effect has been applied to non-conducting states in quantum

dots (QD) – also known as artificial atoms– for spinless electrons [103, 105], having revealed several

advantages for practical issues such as electronic current switching[103, 104] or de-coherence probing[106].

Great interest is recently focussed in the coherent control of electron spin states in the search

of candidates for qubits. Within this scope, optical trapping of localized spins has been treated in self-

assembled quantum dots[107] and achieved in diamond deffects[108]. Electron spin states in QD’s have

been proposed as qubits because of their long spin de-coherence and relaxation times[109, 110, 111]. The

controlled rotation of a single electron spin is one of the challenges for quantum computation purposes.

In combination with the recently measured controlled exchange gate between two neighboring spins[79],

driven coherent spin rotations would permit universal quantum operations. Recently, experimental and

theoretical efforts have been devoted to describe Electron Spin Resonance (ESR) in single[97, 98] and

double quantum dots (DQDs)[?, 113, 114, 115]. There, an AC magnetic field, BAC , with a frequency

resonant with the Zeeman splitting ∆ induced by a DC magnetic field, BDC , drives electrons to perform

spin coherent rotations which can be perturbed by electron spin flip induced by scattering processes

such as spin orbit or hyperfine interactions. These are manifested as a damping of the oscillations. In

particular, hyperfine interaction between electron and nuclei spins induces flip-flop transitions and an

effective Zeeman splitting which adds to the one induced by BDC[87, 93, 95]. ESR mechanism also allows

to access spin-orbit physics in the presence of AC electric fields[116, 117] or vibrational degrees of freedom

in nano-mechanical resonators[118].

In the experiments of Ref. [95], fast electric field switching was required in order to reach

the Coulomb blockade regime and to manipulate the spin electron system. In this chapter, a simpler

configuration is analyzed which is easier to perform experimentally than the one proposed in [95], which

does not require to bring the double occupied electronic state in the right dot to the Coulomb blockade

configuration and which consists on conventional tunnel spectroscopy in a DQD under crossed DC and

AC magnetic fields, without additional electric pulses.

The main purpose is to analyze the spin dynamics and the tunneling current and to propose

63
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Fig. 5.1: Schematic diagram of the DQD in the presence of crossed DC and AC magnetic fields.

for the first time how to trap electrons in a DQD performing coherent spin rotations by a resonant AC

magnetic field which can be unambiguously detected by conventional tunnelling spectroscopy measure-

ments. It is also shown how to trap electrons in a concrete state by means of resonant bi-chromatic

magnetic fields in the case where the Zeeman splitting is different in both QD’s (as it usually happens in

the presence of hyperfine interaction).

Let consider a DQD in the spin blockade regime[92], i.e., inter-dot tunnelling is suppressed due to

Pauli exclusion principle[94] as the electrons in the DQD have parallel spins. This effect may be lifted by

the rotation of the electrons spin, under certain conditions, by the introduction of crossed BDC and BAC.

Then, when BAC is resonant with the Zeeman splitted level, the electrons both rotate their spins within

each QD and tunnel, performing spatial oscillations between the left and right QD. The electronic current

through such a system performs coherent oscillations which depend non trivially on both the AC intensity

and the inter-dot coupling. As will be shown, when the effective BDC is homogeneous through the sample,

the current is quenched since the system is coherently trapped in the triplet subspace (dark subspace) in

spite of the driving field. However, a finite current may flow as a consequence of spin relaxation processes.

In this case, measuring the current would give information about the spin relaxation time by identifying

its effect and separating it from leakage currents due to higher order tunneling processes[86]. If ∆ is

different within eachQD (it can be due to an inhomogeneous BDC, different g factors or the presence

of hyperfine interaction[87, 88] with different intensity within each quantum dot), BAC is resonant only

in one of them and the trapping is lifted. Then, off-resonance dynamics of the other electron should in

principle affect the total dynamics of the system and it should be included in a theoretical description

not restricted to the rotating wave approximation[?] which is valid just at resonance. Finally it will be

shown that it is possible to trap the electrons also in this configuration, where ∆ is different within each

quantum dot, by applying a bichromatic BAC, such that each frequency matches the Zeeman splitting of

the electron in each quantum dot.

5.1 Electron spin resonance in an open double quantum dot

The two weakly coupled quantum dot system connected to two fermionic leads, is described by

the model Hamiltonian:

Ĥ = Ĥ0 + ĤLR + ĤT + Ĥleads, (5.1)

where Ĥ0 =
∑

iσ εiĉ
†
iσ ĉiσ +

∑

i Uin̂i↑n̂i↓+ULRn̂Ln̂R describes the uncoupled double quantum dot, ĤLR =

−∑σ(tLRĉ
†
Lσ ĉRσ + H.c.) is the inter-dot coupling and ĤT =

∑

lǫ{L,R}kσ(γld̂
†
lkσ ĉlσ + H.c.) gives the
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tunnelling between the DQD and the leads, described by: Ĥleads =
∑

lkσ εlkd̂
†
lkσ d̂lkσ , where εi is the

energy of an electron located in dot i and Ui (ULR) is the intra-dot (inter-dot) Coulomb repulsion. For

simplicity, the Heisenberg exchange interaction[93, 94] is disregarded. Finite exchange, would slightly

split the inter-dot singlet-triplet energy separation without modifying qualitatively the results presented

here. The chemical potentials of the leads, µi, are such that only two electrons (one in each dot) are

allowed in the system: εi < µi − ULR < εi + Ui and µi < εi + 2ULR. In this configuration, the spin

blockade is manifested when a bias voltage is applied such that the state with two electrons in the right

dot (the one which contributes to the current) is in resonance with those with one electron in each dot.

The current is then quenched when the electrons in each QD have the same spin polarization and Pauli

exclusion principle avoids the inter-dot tunneling[94]. Now, a magnetic field is introduced with a DC

component along the Z axis (which breaks the spin degeneracy by a Zeeman splitting ∆i = giBz,i) and a

circularly polarized AC component in the perpendicular plane XY that rotates the Z component of the

electron spin when its frequency satisfies the resonance condition, ω = ∆i[98]:

ĤB(t) =
∑

i

[∆iS
i
z +BAC

(

cosωtSi
x + sinωtSi

y

)

], (5.2)

where Si = 1
2

∑

σσ′ c
†
iσσσσ′ciσ′ are the spin operators of each dot (see Fig. 7.1).

The dynamics of the system is given by the time evolution of the reduced density matrix ele-

ments, whose equation of motion, within the Born-Markov approximation[119], see chapter 2, reads:

ρ̇ln(t) = −i〈l|[H0 +HLR +HB(t), ρ]|n〉 +
∑

k 6=n

(Γnkρkk − Γknρnn) δln − Λlnρln(1 − δln). (5.3)

where Γln are the transition rates induced by the coupling to the leads, Γi = 2π|γi|2, and the eventual

spin scattering processes (introduced phenomenologically by the spin relaxation and de-coherence times,

T1 and T ∗2 = 0.1T1, respectively [?]). At low temperatures, the incoherent spin flip excitation is negligible:

Γ↓←↑ = e−β∆z 1
T1

. The decoherence term is Λln = 1
2

∑

k(Γkl +Γkn)+T2
−1, where T2

−1 = 1
2T1
−1 +T ∗2

−1.

The evolution of the occupation probabilities is given by the diagonal elements of the density matrix.

In our configuration, the states relevant to the dynamics are: |0, ↑〉, |0, ↓〉, |T+〉 = | ↑, ↑〉, |T−〉 = | ↓, ↓〉,
| ↑, ↓〉, | ↓, ↑〉, |SR〉 = |0, ↑↓〉. This latest states is the only tha contributes to tunneling to the right lead,

so the current is given by

I(t) = 2eΓRρSR,SR
(t). (5.4)

5.2 Closed system. Coherent dynamics

The purely coherent dynamics is present only in the closed system (for Γ = 0) and infinite T1

and T2. The properties of such a system will prevail–at least transiently–in the transport configuration

and it is interesting to consider them with some detail[122].

5.2.1 One electron spin resonance

The single electron case is formally equivalent to the photon-assisted delocalization in a double

quantum dot studied in chapter 3 and the Rabi problem for a particle with angular momentum one

half[120, 121]. Considering a Zeeman splitting ∆z , the Hamiltonian can be written as

H(t) =
∆z

2
σz +

BAC

2
(cosωtσx + sinωtσy) (5.5)



66 5. Coherent spin rotations in double quantum dots
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Fig. 5.2: Time dependence of the occupation probabilities for (a) the states | ↑〉 (solid) and | ↓〉 (dotted) of an

isolated electron and (b) | ↑, ↑〉 (solid), | ↓, ↓〉 (dotted) and | ↑, ↓〉 and | ↓, ↑〉 (dashed) of two isolated electrons. As

discussed in the text, the probability of flipping a single spin oscillates with double frequency in the presence of

a second electron.

and, in matricial form, in the basis ↑〉 and | ↓〉

HESR =

(

ε+ ∆z
BAC

2 e−iωt

BAC

2 eiωt ε

)

, | ↓〉 ==

(

1

0

)

, | ↑〉 ==

(

0

1

)

, (5.6)

with the Pauli matrices

σx =

(

0 1

1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0

0 −1

)

. (5.7)

Then, the Liouville equation is

ρ̇↑(t) = −iBAC

2

(

eiωtρ↓↑(t) − e−iωtρ↑↓(t)
)

ρ̇↑↓(t) = i(∆z − ω)ρ↑↓(t) − i
BAC

2

(

eiωtρ↓(t) − e−iωtρ↑(t)
)

(5.8)

ρ̇↓(t) = i
BAC

2

(

eiωtρ↓↑(t) − e−iωtρ↑↓(t)
)

.

By the transformation ρ′↑↓(t) = e−iωtρ↑↓(t), the explicit time dependence disapears and one can write

these equation in matricial form ρ̇ = Mρ by the inverse Laplace transform
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Fig. 5.3: Probability of flipping any of the two isolated spins, Pf , as a function of time and (left) BAC and (right)

B2
AC (proportional to the RF power[95]) for ∆L = ∆R = ∆ in resonance (ω = ∆).

This set of equations can be solved analytically by taking the Laplace transform, so ρ(z) = (z−M)−1ρ(0).

If the initial condition is ρ(0) = ρ↑(0), the occupation probabilities are

ρ↓ = 1 − ρ↑ =
B2

AC/2

B2
AC + (∆z − ω)2

sin2

(

1

2

√

B2
AC + (∆ − ω)2t

)

, (5.10)

revealing coherent spin rotations which, if the AC field is resonant with the Zeeman splitting, show a

Rabi frequency ΩESR = BAC[32], cf. Fig. 5.2a. It is interesting to compare (5.10) with (2.99), describing

the delocalization of an electron between two tunneling-coupled quantum dots. This two processes–spin

rotation and spatial charge delocalization–will be the responsible of the dynamics showed in this chapter.

5.2.2 Two electrons spin resonance

However, the presence of an additional particle modifies the dynamics, even if both of them are

isolated in different quantum dots. In general, each of them is affected by a different Zeeman splitting,

so only one of them would be in resonance with the AC field. Then, the system is described by the

Hamiltonian Ĥ(t) = Ĥ0 + ĤB(t) and the basis |1〉 = | ↑, ↑〉, |2〉 = | ↓, ↑〉, |3〉 = | ↑, ↓〉 and |4〉 = | ↓, ↓〉.
Again, after a similar variable transformation to the one performed in the one electron case, ρ′12,24,34 =

e−iωtρ12,24,34 and ρ14 = e−i2ωtρ14, the Liouville equation ρ̇(t) = −i[H(t), ρ(t)] has the form

ρ̇1 = −iBAC

2
(ρ′21 − ρ′12 + ρ′31 − ρ′13)

ρ̇2 = −iBAC

2
(ρ′12 − ρ′21 + ρ′42 − ρ′24)

ρ̇3 = −iBAC

2
(ρ′43 − ρ′34 + ρ′13 − ρ′31) (5.11)

ρ̇4 = −iBAC

2
(ρ′34 − ρ′43 + ρ′24 − ρ′42),
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Fig. 5.4: Probability of finding the system in ↑↓〉 (for the closed system case) when the left electron is out of

resonance, for different ratios ∆L/∆R. The crossover from the oscillations of two electrons to the single resonant

electron can be appreciated. Inset: the case ∆L/∆R = 0.9 for longer times.

for the diagonal terms, and

ρ̇′12 = −iBAC

2
((ρ2 − ρ1 + ρ32) − ρ′14) + i(ω21 − ω)ρ′12

ρ̇′13 = −iBAC

2
((ρ3 − ρ1 + ρ23) − ρ′14) + i(ω31 − ω)ρ′13

ρ̇′14 = −iBAC

2
(ρ′24 + ρ′34 − ρ′12 − ρ′13) + i(ω41 − 2ω)ρ′14

ρ̇23 = −iBAC

2
((ρ′43 − ρ′21) + ρ′13 − ρ′24 − iω23ρ23 (5.12)

ρ̇′24 = −iBAC

2
(ρ4 − ρ2 − ρ23 + ρ′14) + i(ω42 − ω)ρ′24

ρ̇′34 = −iBAC

2
(ρ4 − ρ3 − ρ32 + ρ′14) + i(ω43 − ω)ρ′34,

for the coherences, where ω21 = ω43 = ∆L, ω31 = ω42 = ∆R, ω41 = ∆L + ∆R and ω23 = ∆L − ∆R.

If the effect of the magnetic field is the same in both electrons, that is, they suffer the same

Zeeman splitting, ∆L = ∆R = ∆, the probability of flipping a spin is equal in both dots, so ρ3 = ρ4 =

ρS/2. The equations can be solved by doing the Laplace transform, Lρ̇ = zρ − ρ0. The probability of

finding one of the electrons flipped, Pf = ρ2 + ρ3 is:

Pf =
2B2

AC

(B2
AC + (∆ − ω)2)2

(

B2
AC

4
sin2

√

B2
AC + (∆ − ω)2t+ (∆ − ω)2 sin2

√

B2
AC + (∆ − ω)2

2
t

)

, (5.13)

and, in the resonant case ω = ∆:

Pf =
1

2
sin2BACt. (5.14)
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Fig. 5.5: Occupation probabilities (for the closed system) for the states (a) | ↓, ↑〉 and (b) |0, ↑↓〉 for

∆L = ∆R and (c) |0, ↑↓〉 for ∆L 6= ∆R, for different ratios BAC/tLR. When ∆L = ∆R, ρ↓,↑ = ρ↑,↓
oscillates with a frequency ΩAC while ρ0,↑↓, with ΩT , while in (c) both the spin rotation and the tunnelling

dynamics contribute to the time evolution of ρ0,↑↓. Finite relaxation and de-coherence rates have been

included: 1
T1

= 0.04τLR and T ∗2 = 0.1T1.

Therefore, the Rabi frequency for this configuration is:

ΩAC = 2BAC, (5.15)

twice the one found for the single electron case, cf. Fig. 5.2.

On the other hand, if ∆L 6= ∆R, the resonance condition holds only for one of them. Then,

in first approximation one could consider that the dynamics of one electron and one obtains for the

probability of flipping the spin of the resonant electron: Pf = sin2BACt. However, we will see that

the off-resonance electron plays also a role in the dynamics and modifies it in a non trivial way. If, for

example, ω = ∆L, one obtains:

Pf =
B2

AC

4Λ2

(

2 − cos
√

2B2
AC + δ2 + 2BACΛt− cos

√

2B2
AC + δ2 − 2BACΛt+

4δ2

B2
AC

sin2BAC

2
t
)

where Λ2 = B2
AC + δ2 and δ = ∆L − ∆R. As can be seen in Fig. 5.4, there is a superposition of different

oscillations which results in a complicated dynamics as δ increases. Then, it is not true in general that

even in the case where the two QD’s are decoupled, and just one of the two electrons is on resonance with

BAC, one could consider the electron dynamics for a single electron. However, the probability of finding

the resonant electron rotated is the same as having only one electron: ρ2 + ρ4 = sin2 1
2BACt, while for

the off-resonance one: ρ3 + ρ4 =
B2

AC

Λ2 sin2 1
2Λt.

5.2.3 Electron delocalization

The interdot coupling term, HLR, induces electron tunneling between both dots. In the present

configuration, it involves the states |1〉 = | ↑, ↓〉, |2〉 = | ↓, ↑〉 and |3〉 = |0, ↑↓〉 so, in the absence of



70 5. Coherent spin rotations in double quantum dots

magnetic field, the Liouville equation ρ̇ = −i[H0 +HLR, ρ] gives:

ρ̇1 = itLR(ρ31 − ρ13)

ρ̇2 = −itLR(ρ32 − ρ23)

ρ̇3 = −itLR(ρ31 − ρ13 + ρ23 − ρ32)

ρ̇12 = itLR(ρ32 + ρ13) − i(∆R − ∆L)ρ12

ρ̇13 = itLR(ρ3 − ρ1 + ρ12) − i (εL − εR − UR) ρ13

ρ̇23 = −itLR(ρ3 − ρ2 + ρ21) − i (εL − εR + ∆L − ∆R − UR) ρ13 (5.16)

In resonance, the occupation of the state |0, ↑↓〉 is:

ρ3 =
1

2
sin2

√
2tLRt, (5.17)

so the Rabi frequency is modified respect to the single electron case (Ω1e = 2tLR, see section 2.6):

ΩT = 2
√

2tLR. (5.18)

5.2.4 Mixing of spatial delocalization and spin rotation

For ∆L = ∆R, the spin rotation and tunnelling dynamics do not mix and can be parametrized

by the frequencies ΩAC = 2BAC and ΩT = 2
√

2tLR, respectively, cf. Fig. 5.5a,b. On the other hand,

if ∆L 6= ∆R, one finds a coherent oscillation that depends in both magnetic field and interdot hopping

magnitudes. This dependence should be manifested in the current (proportional to ρ0,↑↓) for the open

system, that will be analyzed in the next section.

The most simple case showing both tunneling and ESR is when the Zeeman splitting is very

different in the two QD’s. In this case, if the field is resonant with the left QD, the equations are,

considering the basis |1〉 = | ↑, ↑〉, |2〉 = | ↓, ↑〉 and |3〉 = |0, ↑↓〉:

ρ̇1 = −iBAC

2
(ρ21 − ρ12)

ρ̇2 = −iBAC

2
(ρ12 − ρ21) − itLR(ρ32 − ρ23)

ρ̇3 = −itLR(ρ23 − ρ32)

ρ̇12 = −iBAC

2
(ρ2 − ρ1) + itLRρ13 + i(∆L − ω)ρ12

ρ̇13 = −iBAC

2
ρ23 + itLRρ12 − i (εL − εR − UR − ∆R + ω) ρ13

ρ̇23 = −iBAC

2
ρ13 − itLR(ρ3 − ρ2) − i (εL − εR − UR + ∆L − ∆R + ω) ρ23. (5.19)

If the gate voltages are tuned in a way that the left electron can tunnel to the doubly occupied singlet

state in the right dot (having both electrons opposite spin polarization), one finds that the frequency of

the oscillations depends on both the tunneling coupling and the field intensity, cf. Fig. 5.5:

ρ1 =
1

(1
4B

2
AC + t2LR)2

(

t2LR +
1

4
B2

AC cos
1

2

√

B2
AC + 4t2LRt

)2

(5.20)

ρ2 =
B2

AC

B2
AC + 4t2LR

sin2 1

2

√

B2
AC + 4t2LRt (5.21)

ρ3 =
B2

ACT
2
LR

(1
4B

2
AC + t2LR)2

sin4 1

4

√

B2
AC + 4t2LRt (5.22)
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Fig. 5.6: (a) I(t) for initial state | ↑, ↓〉 in the absence of spin relaxation for ∆L = ∆R = ∆ and ΩAC = ΩT/2. (b)

The corresponding occupation probabilities: | ↑, ↓〉 (solid), | ↓, ↑〉 (dash-dotted), |0, ↑↓〉 (dotted) and | ↑, ↑〉 and

| ↓, ↓〉 (dashed). Parameters (e = ~ = 1): ΓL = ΓR = Γ = 10−3meV, T−1
1(2) = 0, ΩT = 11.2GHz and holding for

the rest of the plots (in meV): εL = 1.5, εR = 0.45, ∆ = 0.026 (BDC ∼ 1T ), UL = 1, UR = 1.45125, V = 0.4,

µL = 2 and µR = 1.1.

5.3 Transport regime

Each coherent process can be parametrized in terms of a Rabi-like frequency, as described in the

previous section. For instance, in the case of two isolated spins, one in each QD, which are in resonance

with BAC (∆L = ∆R), the oscillation frequency is: ΩAC = 2BAC, see (5.15). On the other hand, the

inter-dot tunnelling events can be described by the resonance transitions between the states | ↑, ↓〉, | ↓, ↑〉
and |SR〉, whose populations oscillate with a frequency ΩT = 2

√
2tLR, see (5.18).

Let consider initially the ideal case where there is not spin relaxation or de-coherence in the

system and BDC is homogeneous, so that ∆R = ∆L and both spins rotate simultaneously. Then, the

dynamics of the system is properly described in terms of the dynamics of the total spin of the DQD. BAC

acts only on the states with a finite total magnetic moment: |T±〉 and |T0〉 = 1√
2
(| ↑, ↓〉 + | ↓, ↑〉), while

the inter-dot tunnelling, that does not change the spin, is only possible between |SR〉 and |S0〉 = 1√
2
(| ↑

, ↓〉 − | ↓, ↑〉). Therefore, in the absence of spin relaxation, spin rotation and inter-dot hopping (essential

for transport) are independent processes so any eventual singlet component will decay by tunnelling to

the contacts. This produces a transient current that rapidly drops to zero for longer times. This process

is independent of BAC, which is manifested in the frequency of the current oscillations, ΩT, cf. Fig. 5.6a.

Thus, for large enough times (t ≫ Γ−1
i ), transport is cancelled and one electron will be confined in each

QD. The electrons will be coherently trapped in the inter-dot triplet subspace, T±, T0 (dark subspace)

and behave as an isolated single particle of angular momentum S = 1 performing coherent spin rotations

with a frequency ΩAC (Fig. 5.6b).
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Fig. 5.7: Effect of (a) finite spin relaxation rates, T−1
1 and (b) the Zeeman inhomogenity, ∆L/∆R, on the

stationary current when tuning the frequency of the magnetic field. In (a), ∆L/∆R; in (b), T1 = 0. (Same

parameters as in Fig. 5.6 but Γ = 10−2meV).

A finite spin relaxation time mixes the dynamics of the singlet and the triplet subspaces[123],

so that inter-dot tunnelling is allowed and finite current appears, cf. Fig. 5.7a. The shorter the spin

relaxation time, the larger is the singlet-triplet mixing and therefore, the higher is the current, cf. Fig.

5.8a, up to relaxation times fast enough to dominate the electron dynamics (T−1
1 ≫ ΩAC). In this case,

ESR is not effective in order to rotate the spins and spin blockade is recovered, cf. Fig. 5.8b. Since

both, spin rotations and spatial delocalization are resonant processes, this singlet-triplet mixing produces

complicated dynamics in the current that shows oscillations with a frequency that depends both on the

inter-dot coupling and the AC field intensity, cf. Fig. 5.8c. When BAC increases, the frequency of the

current oscillations increases but not linearly due to the interplay with the hopping. This effect is small

for long spin relaxation times.

However, if one introduces an inhomogeneous BDC , so that only one of the electrons is in

resonance with BAC (for instance, ω = ∆R 6= ∆L), the total spin symmetry is broken and then the

electron in each QD behaves differently. In fact, the states | ↓, ↑〉 and | ↑, ↓〉 have different occupation

probabilities and inter-dot hopping induces the delocalization of the individual spins. This populates the

state |SR〉 and a finite current appears showing a double peak, cf. Fig. 5.7b, which can be the origing

of the under-resolved structure measured in Ref. [95]. By tuning the Zeeman splittings difference, the

current presents an anti-resonance of depth ∼ 0.1nA near ∆L = ∆R, cf. Fig. 5.9a, pretty similar to the

coherently trapped atom spectrum[102]. As expected, taking one electron slightly out of resonance, the

frequency of the current oscillation is modified in comparison with the double resonance situation. If one

electron is far enough from resonance, the frequency of the current oscillation becomes roughly half of

the value as it would be the case for the rotation of one electron spin, cf. Fig. 5.9b. Otherwise, the

off-resonant electron modifies the Rabi frequency for spin rotations in a more complicated way depending

on BAC, tLR and how much both dynamics are mixed (which is related to ∆L − ∆R), cf. Fig. 5.9c. In

the limiting case when ∆L and ∆R are very different and only the electron in the right QD is affected

effectively by BAC, the system performs coherent oscillations with a frequency Ω =
√

B2
AC + 4t2LR between

the states |T+〉, | ↑, ↓〉 and |SR〉.
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Fig. 5.8: (a) I(t) for different spin-flip times (in µs), with ΩAC = ΩT = 11.2GHz and ∆L = ∆R = ∆). The initial

state here is | ↑, ↑〉, then, for T−1
1 = 0, there is no mixing of the triplet and singlet subspaces and therefore, no

current flows through the system. Spin relaxation processes contribute to populate the singlet, producing a finite

current. (b) Stationary current as a function of spin relaxation time. For long T1, electrons remain in the dark

space. As T1 decreases, I begins to flow, being again suppressed for short enough T1, as discussed in the text. (c)

I(t) for different ratios between the AC field intensity and the inter-dot hopping, i.e., between ΩAC and ΩT, with

T1 ∼ 0.1µs. (Same parameters as in Fig. 5.7).

5.3.1 Bichromatic magnetic field

There is a way for trapping the system in a dark state even for different Zeeman splittings by

introducing a bichromatic BAC with a different frequency that also brings into resonance the electron in

the left QD:

Ĥ
(2)
B (t) =

∑

i,j

[∆iS
i
z +BAC

(

cosωjtS
i
x + sinωjtS

i
y

)

] (5.23)

(i = {L,R}, j = {1, 2}), with ω1 = ∆L and ω2 = ∆R. Then, each electron is resonant with one of the

field frequencies. In this case, as ∆i is different in both QD’s, |T0〉 mixes with |S0〉 and a finite current

flows until the electrons fall in the superposition: 1√
2
(| ↑, ↑〉 − | ↓, ↓〉) which is not affected by Ĥ

(2)
B but

for off-resonant oscillations that can be averaged out. Then the population of the states | ↑, ↓〉, | ↓, ↑〉
and |SR〉 and, therefore, the current drop to zero, see Fig. 5.10a. This transport quenching also allows

to operate the system as a current switch by tuning the frequencies of the AC fields (Fig. 5.10b) and the

inicialization of the system in a concrete superposition to be manipulated.
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Fig. 5.9: (a) Dependence of the time averaged current on the DC field inhomogeneity ∆L − ∆R for different

relaxation times (in µs). The quenching of the current for ∆L = ∆R is lifted by spin relaxation. (b) I(t) for

different values of ∆L/∆R when the electron in the right QD is kept in resonance, in the absence of relaxation.

A crossover to the one electron spin resonance is observed by increasing the difference between ∆L and ∆R = ∆.

(c) Dependence of the current oscillations on BAC for ∆L = 0.99∆R and T−1
1 ∼ 0.1µs. Same parameters as in

Fig. 5.8.

The application of a bichromatic magnetic field provides a direct measurement of the Zeeman

splittings of the dots by tuning the frequencies untill the current is brought to a minimum as in Fig.

5.10b. Then, by switching one of the frequencies off and tuning the Zeeman splitting by an additional

BDC in one of the dots, the antiresonance configuration of Fig. 5.9a could be achieved. In this case,

electrons in both QD’s perform coherent spin rotations, as shown in Fig. 5.6b.

5.4 Conclusions

In summary, the coherent electron spin dynamics in a DQD has been described, in the spin

blockade regime, with up to two extra electrons, where crossed DC and AC magnetic fields are applied.

The time dependent magnetic field produces coherent spin rotations between spin up and down states

while resonant inter-dot hopping allows the spatial delocalization of the electrons.

The interplay between coherent oscillations coming from inter-dot tunnel and those due to BAC

gives rise to a non trivial electron dynamics which strongly depends on the ratio between the different
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Fig. 5.10: (a) Transient current in the presence of a bichromatic B, when ω1(2) = ∆L(R) for: ∆L = ∆R/2 (solid)

and ∆L = 0.9∆R (dotted) and T−1
1 =0. Left inset: detail of the current oscillation. In the case where ∆L = ∆R/2,

I oscillates with ΩT and it presents faster oscillations over-imposed (more important for ∆L = 0.9∆R) coming from

the effect of each frequency on its off-resonance electron. Right Inset: occupation probabilities for ∆L = ∆R/2:

| ↑, ↑〉 (solid), | ↓, ↓〉 (dotted), | ↑, ↓〉 ∼ | ↓, ↑〉 (dashed) and |0, ↑↓〉 (dash-dotted, remaining very close to zero). The

occupation of |0, ↑↓〉 drops to zero, and therefore, I drops as well. At long times the electrons fall in a coherent

superposition of | ↑, ↑〉 and | ↓, ↓〉. b) Time-averaged current as a function of ω1 when ω2 = ∆R, for different

relaxation rates, T−1
1 . I drops at ω1 =∆L. (∆R = ∆, Γ = 10−3meV, ΩT = 1.12GHz).

Rabi frequencies involved. If the Zeeman splitting is the same for the left and the right QD, electrons

remain performing coherent spin rotations in the S = 1 dark subspace and the current is quenched. This

electron trapping is removed by spin relaxation or inhomogeneous BDC and finite current flows.

Measuring the current will allow to control coherent spin rotations and also to extract informa-

tion on the spin relaxation time. However, electron trapping is possible even when the Zeeman splittings

are different by applying a bi-chromatic magnetic field such that each frequency matches the Zeeman

splitting within one QD. Then, tunnelling spectroscopy experiments in DQD’s under tunable mono- and
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bi-chromatic magnetic fields allow to drive the electrons to perform coherent spin rotations which can be

unambiguously detected by measuring the tunnelling current.



Chapter 6

Shot noise

All the results presented above concerned the electronic current through quantum dot systems,

that is, the averaged time derivative of the number of electrons accumulated in the collector

I = −e〈 ˙̂NR〉 = −e〈[Ĥ, N̂R]〉 = −tr
(

e[Ĥ, N̂R]ρ̂
)

, (6.1)

as seen in chapter 2. However, there is a lot of information of the transport characteristics that is not

contained in the average current but is provided by the study of its fluctuations ∆I(t) = I(t)−〈I(t)〉. In

concrete, their correlation function

S(t, t′) =
1

2
〈∆I(t)∆I(t′) + ∆I(t′)∆I(t)〉 (6.2)

defines the noise of the transport signal[25, 26]. Measurement of the noise allows to get information on

the effective transferred charge[124, 33], its particle or wave nature[125] or entanglement[126].

Schottky predicted that the electronic current being ejected from a cathode in a vacuum

tube showed some unavoidable fluctuations originated in the discreteness of the electronic charge–shot

noise[127]. This seminal work states the referencial quantity for classical charge fluctuations

SSchottky = 2e〈I〉 (6.3)

typical for uncorrelated processes ocurring in time intervals that obey the Poisson distribution function

P (∆t) = 1
τ e
−∆t

τ , where τ is the mean time interval between two events[25]. Therefore, classical shot

noise as the one studied by Schottky or, for intance, electrons tunneling incoherently through a biased

quantum point contact is referred as Poissonian. In contrast, systems where correlations play a role as

chaotic cavities[128] or quantum dots[174, 175] deviate from this value and their fluctuations are then

said to have sub- or super-Poissonian character depending on whether their shot noise is higher or lower

than SSchottky, respectively.

These correaltions are strongly influenced by Pauli exclusion principle. Thus, in the absence of

further interaction, one expects different fluctuations being the transferred particles fermions or bosons.

For particles obeying the Fermi-Einstein statistics, the time interval between two events tends to be

enhanced thus showing sub-Poissonian values[129]. On the other hand, bosonic bunching usually involves

super-Poissonian fluctuations[130].

However, as will be discussed below, this is not always the case and one can find systems where

bosonic fluctuations are sub-Poissonian, as a resonant fluorescent two level system[154], see chapter 8,

77
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or fermions are transferred in bunches, as an entanglement interferometer[126] or capacitively coupled

several channel conductors[161].

In this chapter, the current and noise charateristics of quantum dot system will be analyzed,

with a particular attention to AC driven double quantum dots.

6.1 Master equation

As seen in chapter 2, the non-equilibrium dynamics of a quantum dot system can be described

by means of the equation of motion for the reduced density matrix elements., ρ, which can be written in

Liouville space[131, 132] as

ρ̇ = − i

~
[H, ρ] = Lρ, (6.4)

where L is the Liouvillian superoperator acting on the density operator, ρ. When evaluating this equation

on the eigenbasis of the system, one recovers the master equation (2.55) and (2.56) in matricial form:

ρ̇i = Mijρj , where the vector ρj contains all the diagonal and non-diagonal elements of the density

matrix.

In the same way, one can define the current superoperators, J±, that acting on the reduced

density operator give the positive and negative contributions of the current. Thus, (2.81) can be formuled

as the trace of the current operator[133, 134]

I = tr(J ρ) = tr((J+ − J−)ρ). (6.5)

Note that the trace over the system states can be considered as a vector v†0 in Liouvillian space with

properties

v†0ρ = 1, (6.6)

from the normalization condition of the density matrix, and

v†0L = 0 (6.7)

from the derivative 0 = trρ̇ = v†0Lρ. In matricial form, it is expressed as (10...010...01), where the the

elements corresponding to populations in ρi are 1, while the ones corresponding to the coherences are 0.

Then, the current can be written as I = v†0J ρ.
It is convenient to include explicitely the current operators in the master equation, which is

easily done by separating those terms that do not change the number of particles in the collector

ρ̇(t) = Lρ(t) = (L0 + J+ + J−) ρ(t). (6.8)

In a quantum dot system, the superoperator L0 is responsible for the internal dynamics and the tunneling

through the emitter barrier.

The shot noise can be written in terms of the accumulated charge in the collector R, QR(t) =

e (NR(t) −NR(t0)) =
∫

dt′I(t′)
d

dt

(

〈Q2
R(t)〉 − 〈QR(t)〉2

)

= S(t) (6.9)

directly related with the MacDonnald formula[170] that describes shot noise by the correlations 〈NR〉
and 〈N2

R〉. Based on this, one can obtain the higher order moments of the fluctuations by evaluating

the moments 〈Nα
R〉 that define the statistics of the electronic transference–full counting statistics. This
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technique was originally developed for the detection of photons emitted from an atomic source[145, 148,

166] and recently adapted to electronic transport through mesoscopic conductors[150, 151].

One can define the operator

G(z, t) = trR
(

zNRχ(t)
)

(6.10)

that generalizes the density operator, which is recovered when evaluating G(1, t) = trRχ(t) = ρ(t), and

satisfies the derivatives

g(α)(t) =

(

z
∂

∂z

)α

z=1

G(z, t) = trR (Nα
Rχ(t)) . (6.11)

Note that g(0)(t) = g(t) = ρ(t).

The equations of motion for G(z, t) are easily obtained from the N -particles resolved master

equation, as done in section 2.4 (for a derivation of the master equation in this formalism, see Ref. [21])

ρ̇(t) = trRχ̇(t) =
∑

N

(L0χN + J+χN−1 + J−χN+1) (6.12)

and therefore

Ġ(z, t) = trR
(

zN χ̇
)

= trR
(

zN (L0χN + J+χN−1 + J−χN+1)
)

(6.13)

= trR
(

L0χNz
N + zJ+χN−1z

N−1 + J−χN+1z
N+1

)

.

By adding J+χN−1z
N−1 − J+χN−1z

N−1 and a corresponding one for J−, one gets

Ġ(z, t) =
(

L + (z − 1)J+ +
(

z−1 − 1
)

J−
)

G(z, t) (6.14)

which together with

〈Nα〉 = v†0

(

z
∂

∂z

)α

z=1

G(z, t) (6.15)

up to second order will provide the current and shot noise by:

d

dt
〈N〉 = v†0

(

z
∂

∂z

)

z=1

(

L + (z − 1)J+ +
(

z−1 − 1
)

J−
)

G(z, t) = v†0 (J+ − J−) ρ(t) (6.16)

and

d

dt
〈N2〉 = v†0

(

z
∂

∂z

)2

z=1

(

L + (z − 1)J+ +
(

z−1 − 1
)

J−
)

G(z, t)

= v†0

(

(J+ + J−) ρ(t) + 2 (J+ − J−) g(1)(t)
)

, (6.17)

where (6.14), (6.15) and (6.7) were used.

The equations of motion for the different moment generators, g(α), can be derived from (6.14).

The zeroth order one coincides with the master equation when evaluated in z = 1:

ġ(t) = ρ̇(t) = Lρ(t). (6.18)

At first order, one gets

ġ′(t) =

(

z
∂

∂z

)

z=1

Ġ(z, t) = Lg′(t) + (J+ − J−)ρ(t), (6.19)

and similarly for higher orders[134].



80 6. Shot noise

time
0

1

2
ρ
g’
g’

Fig. 6.1: Time dependence of one element of the density matrix, ρ, the moment generator, g′ and its proyection

out of the Liouvillian null space, g′
⊥ = (1 − ρ∞v†

0)g
′.

6.1.1 Stationary solution

For long times, the system evolves to a stationary state given by

Lρ∞ = 0. (6.20)

The stationary solution is related with the zero eigenvalue of the Liouvillian superoperator. Therefore,

the normalization condition v†0ρ∞ = 1 is required. By introducing it in (6.21) one obtains

ġ′(t) = Lg′(t) + (J+ − J−)ρ∞. (6.21)

The null eigenvalue of L involves a solution with a component linear in time that can be separated by

the projector to the nullspace, ρ∞v
†
0:

g′(t) = ρ∞v
†
0(J+ − J−)ρ∞t+ g′⊥(t), (6.22)

cf. Fig. 6.1. The orthogonal component, g′⊥(t), converges for long times and, as will be shown, is the

only that will contribute to the noise. Introducing (6.22) into (6.21), one has

ρ∞v
†
0(J+ − J−)ρ∞ = Lg′⊥(∞) + (J+ − J−)ρ∞. (6.23)

Therefore,

Lg′⊥(∞) =
(

ρ∞v
†
0 − 1

)

(J+ − J−)ρ∞, (6.24)

with the orthogonality condition v†0g
′
⊥(∞) = 0.

Known ρ∞ and g′⊥(∞), one obtains the stationary current

I = −e d
dt
〈N〉 = −etr(J+ − J−)ρ∞ (6.25)

and the zero frequency shot noise

S = e2
(

d

dt
〈N2〉 − 2〈N〉 d

dt
〈N〉

)

= e2tr ((J+ − J−)g′⊥(∞) + (J+ + J−)ρ∞) . (6.26)
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The ratio between them defines the Fano factor

F =
S

e|I| (6.27)

and the sub- or super-Poissonian character of the noise if F < 1 or F > 1, respectively. For instance, one

finds that Poissonian processes satisfy trJ+g
′(∞) = trJ−g′(∞).

Alternatively, one can solve the problem numerically by integrating simultaneously (6.18) and

(6.21) until g′⊥(t) converges, see Fig. 6.1.

This method is valid for AC driven systems provided that one considered the averaged Ī and S̄

over one period of the field[135].

6.2 Single resonant level in a quantum dot–Sub-Poissonian shot

noise

The most simple case one can consider is a single quantum dot with one level in the high bias

and Coulomb blockade regime, i.e. electrons are transferred one by one due to high Coulomb repulsion

inside the quantum dot. The master equation then is reduced to
(

ρ̇00

ρ̇11

)

=

( −Γ10 Γ01

Γ10 −Γ01

)(

ρ00

ρ11

)

, (6.28)

where |0〉 and |1〉 are the states without and with one extra electron in the system. The current operators

are

J+ =

(

0 Γ01

0 0

)

(6.29)

and J− = 0, since no electron can tunnel from the collector to the system. Then, one can easily calculate

the stationary current

I =
Γ01Γ10

Γ01 + Γ10
(6.30)

and the shot noise[175]

S =
Γ01Γ10

(

Γ2
01 + Γ2

10

)

(Γ01 + Γ10)3
. (6.31)

This gives a reduction of the shot noise

F = 1 − 2Γ01Γ10

(Γ01 + Γ10)2
(6.32)

compared to the single barrier case. For intance, if both barriers ar equal, Γ01 = Γ10 = Γ, the Fano factor

becomes exactly F = 1
2 . Coulomb repulsion is the responsible for the introduction of a time scale of the

order Γ−1 between two tunneling events, thus reducing the fluctuations in the time separation between

them.

6.3 Shot noise in double quantum dots

Let consider a two level system consisting on a double quantum dot quantum dot (DQD) con-

nected in series to two electron reservoirs which can be described by the Hamiltonian:

Ĥ = Ĥ0 + ĤLR + ĤT, (6.33)
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where Ĥ0 = εLĉ
†
LĉL + εRĉ

†
RĉR + Un̂Ln̂R describes the uncoupled DQD plus leads system. The inter-dot

coupling is: ĤLR = tLRĉ
†
LĉR + H.c. while the coupling to the leads, ĤT =

∑

lǫ{L,R}k(γld̂
†
lk ĉl + H.c.),

is considered weak and treated perturbatively, similarly to what was done in section 2.6. Considering

infinite on site Coulomb repulsion, so double occupancy is avoided in a single quantum dot, spin does

not play any role and one can consider spinless electrons.

The stationary current through such systems was already studied in chapter 2.

6.3.1 Up to one electron: U → ∞.

The high Coulomb repulsion does not allow a second electron to enter the DQD when it already

contains one. The basis is then reduced to: |0〉, |L〉 and |R〉. In the high bias regime[142], the master

equation can be written in matricial form, ρ̇i = Mijρj as:















ρ̇00

ρ̇LL

ρ̇LR

ρ̇RL

ρ̇RR















=















−ΓL0 0 0 0 Γ0R

ΓL0 0 itLR −itLR 0

0 itLR iε− Γ0R

2 0 −itLR

0 −itLR −iε− Γ0R

2 0 itLR

0 0 −itLR itLR −Γ0R





























ρ00

ρLL

ρLR

ρRL

ρRR















. (6.34)

A similar one can be written for (6.21) by wrtting the current operators as

J+ =















0 0 0 0 Γ0R

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0















(6.35)

and J− = 0.

Thus, from the stationary solution, Lρ∞ = 0, the current and shot noise are given by

I =
4t2LRΓLΓR

4ΓRt2LR + ΓL (4ε2 + 8t2LR + Γ2
R)

(6.36)

S =
4t2LRΓLΓR

(

16Γ2
Rt

4
LR + Γ2

L

(

Γ4
R + 8(ε2 − t2LR)Γ2

R + 16
(

ε4 + 6t2LRε
2 + 4t4LR

)))

(4ΓRt2LR + ΓL (4ε2 + 8t2LR + Γ2
R))

3 , (6.37)

resulting in a sub-Poissonian Fano factor at resonance[33]

F = 1 − 8t2LRΓL

(

ΓR

(

8t2LR + Γ2
R

)

+ 3ΓLΓ2
R + 4ε2 (ΓR − ΓL)

)

(4t2LR(2ΓL + ΓR) + ΓL (4ε2 + Γ2
R))

2 , (6.38)

cf. Fig. 6.2. Note that the shot noise shows a small deep at the resonance condition. It can be interpreted

in terms of the scattering theory that describes current by a transmition coefficient, T , and shot noise by

T (1 − T )[25]. At resonance, the transmition is maximal, so 1 − T is minimal.

Also, as will be the studied below, the noise may be super-Poissonian out of resonance in an

asymmetrically coupled DQD if ΓL > ΓR[136, 138] for ε2 >
ΓR(8t2LR+Γ2

R)+3ΓLΓ2
R

4(ΓL−ΓR) .
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Fig. 6.2: (a) Current, shot noise and (b) Fano factor as a function of the difference of the level energies: ε = εL−εR

for U → ∞, ∆ = 1, Γ = 0.1 and kBT = 10−3.

6.3.2 Up to two electrons: U = 0.

In the limiting case when the Coulomb repulsion is negligible between electrons in different dots,

the system can be populated by two electrons simultaneously and thus described by the basis: |0〉, |L〉,
|R〉 and |2〉. In the high bias and low temperature regime, the master equation is:



















ρ̇00

ρ̇LL

ρ̇LR

ρ̇RL

ρ̇RR

ρ̇22



















=



















−ΓL0 0 0 0 Γ0R 0

ΓL0 0 itLR −itLR 0 ΓL2

0 itLR iε− Γ0R+Γ2R

2 0 −itLR 0

0 −itLR −iε− Γ0R+Γ2R

2 0 itLR 0

0 0 −itLR itLR − (Γ0R + Γ2R) 0

0 0 0 0 Γ2R −ΓL2

































ρ00

ρLL

ρLR

ρRL

ρRR















. (6.39)

Again, transport is unidirectional, so J− = 0 and

J+ =



















0 0 0 0 Γ0R 0

0 0 0 0 0 ΓL2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



















(6.40)

In the same way as in the previous case, one obtains the current

I =
8t2LRΓR

16t2LR + (ΓL + ΓR)2 + 4ε2
(6.41)
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Fig. 6.3: (a) Current, shot noise and (b) Fano factor as a function of the difference of the level energies: ε = εL−εR

for U = 0, ∆ = 1, Γ = 0.1 and kBT = 10−3.

and the shot noise in resonance (ε = 0)

S =
8t2LRΓR

(

64 (3ΓL − ΓR) t4LR + 8 (ΓL + ΓR)
(

3Γ2
L − 4ΓRΓL − Γ2

R

)

t2LR + ΓL (ΓL + ΓR)
4
)

ΓL

(

16t2LR + (ΓL + ΓR)
2
)3 , (6.42)

giving a Fano factor

F = 1 − 8t2LR (ΓL + ΓR)
(

8t2LR + Γ2
L + Γ2

R + 8ΓLΓR

)

ΓL

(

16t2LR + (ΓL + ΓR)
2
)2 , (6.43)

see Fig. 6.3. As a difference to the upt to one electron case seen previously, the Fano factor when two

electrons can occupy simultaneously the DQD is always sub-Poissonian. This may be due to coherence

destroying when the second electron enters the system[136].

6.4 Double quantum dot pumps

One can consider driven systems and numerically integrate (6.18) and (6.21) until the stationary

solution is reached, as described in section 6.1.1. However, it is also possible to obtain analytical results for

simple systems as the charge pump studied in chapter 3. If the levels of the double quantum dot considered

in the previous section are coupled to unbiased leads, with chemical potential, µ, and εL < µ < εR, finite

current flows if an AC potential is applied shuch that its frequency, ω, matches the energy difference

εR − εL, cf. section 3.4. Also, it has been shown that the noise of such a system reaches a minimum at

resonance (where the current shows a peak)[137]. In the rotating wave approximation one disregards the

contribution of all the off-resonance harmonics of the field, being possible to write the master equation
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as














ρ̇00

ρ̇LL

ρ̇LR

ρ̇RL

ρ̇RR















=















− (ΓL0 + ΓR0) Γ0L 0 0 Γ0R

ΓL0 −Γ0L iΩ1

2 −iΩ1

2 0

0 iΩ1

2 i(ε− ω) − Γ0R

2 0 −iΩ1

2

0 −iΩ1

2 −i(ε− ω) − Γ0R

2 0 iΩ1

2

ΓR0 0 −iΩ1

2 iΩ1

2 −Γ0R





























ρ00

ρLL

ρLR

ρRL

ρRR















, (6.44)

where Ω1 = 2J1

(

VAC

ω

)

tLR is the Rabi frequency (3.49) of the delocalization of an electron within the

DQD by the absoption of one photon from the field. The tunneling rates are modified by the action of

the AC field

Γ0L =
π

~

(

1 + J2
0

(

VAC

2~ω

))

|γL|2 (6.45)

ΓL0 =
π

~

(

1 − J2
0

(

VAC

2~ω

))

|γL|2 (6.46)

Γ0R =
π

~

(

1 − J2
0

(

VAC

2~ω

))

|γR|2 (6.47)

ΓR0 =
π

~

(

1 + J2
0

(

VAC

2~ω

))

|γR|2, (6.48)

Photon-assited tunneling allows electrons tunneling backwards from the right dot, so the current

operators are

J+ =















0 0 0 0 Γ0R

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0















and J− =















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ΓR0 0 0 0 0















. (6.49)

In the simpler case, where the strength of both couplings to the leads are the same, ΓL0 = Γ0R =

Γ+ and Γ0L = ΓR0 = Γ−, one can parametrize the system by the tunneling rate, Γ, α = J2
0

(

VAC

2~ω

)

and

β = J1

(

VAC

~ω

)

such that Γ
2 = Γ+

1−α = Γ−

1+α . Then the stationary current results

I =
4α2β2Γt2LR

(α4 + 3)Γ2 + 12β2t2LR

(6.50)

and the shot noise

S =
2β2Γt2LR

(

(

α4 + 1
) (

α4 + 3
)2

Γ4 − 8
(

α8 + 16α4 − 9
)

β2t2LRΓ2 + 16
(

α4 + 9
)

β4t4LR

)

((α4 + 3)Γ2 + 12β2t2LR)
3 . (6.51)

As can be seen in Fig. 6.5, Fano factor

F =

(

α4 + 1
) (

α4 + 3
)2

Γ4 − 8
(

α8 + 16α4 − 9
)

β2t2LRΓ2 + 16
(

α4 + 9
)

β4t4LR

2 (α (α4 + 3)Γ2 + 12αβ2t2LR)
2 (6.52)

can be tuned from sub- to super-Poissonian values when increasing the AC intensity. As discussed in

chapter 3, when the Bessel function of first order (that modulates interdot tunneling) vanishes, β = 0, the
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Fig. 6.4: (a) Current, shot noise and (b) Fano factor as a function of AC intensity for a double quantum dot

pump: ω = εL − εR for U → ∞, tLR = 1 and Γ = 1. Inset of panel (a): current and shot noise in the same

configuration but Γ = 0.01.

current is cancelled by dynamical charge localization, but the noise is not, since photon-assisted tunneling

induce charge fluctuations without contributng to the net current. Then, at those points, within this

approximation1, the Fano factor diverges.

Additionaly, since J0(x) goes to zero when x → ∞, the currents flowing in opposite directions

are asymptotically cancelled, though tunneling is not supressed. Thus, the net current vanishes but shot

noise is kept finite. Therefore, the Fano factor increases asymptotically with VAC.

Interestingly, when the coupling to the leads is small compared to the interdot barrier, Γ ≪ tLR,

the dependence of the current on the AC intensity is given exclusively by the Bessel function of zeroth

order, I ∼ 1
3α

3Γ, except for those intensities that satisfy the dynamical charge localization condition,

β = 0, where it is rapidly supressed, cf. instet in Fig. 6.5. Additionally, the shot noise is roughly constant

at high AC intensities, S ∼ α4+9
54 Γ, when β 6= 0. Then, the Fabno factor increases with the intensity of

tha AC field as F ∼ 1
2α2 + α2

18

6.5 Shot noise in spin pumps

The spin pump device discussed in chapter 4 presents similar characteristics to the single electron

pump seen in the previous section. In the absence of photon-assisted tunneling inthe contact barriers, the

1The current will not vanish completely at dynamical charge localization due to the contribution of out of resonance
subharmonics, disregarded in the rotating wave approximation.
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Fig. 6.5: Current, shot noise and Fano factor dependence on (a) the frequency and (b) the intensity of the

AC field in the spin pumping configuration (see chapter 4). Parameters (in meV): εL = εR = 0.5, ∆z = 0.026

(corresponding to a magnetic field Bz ∼ 1T ), UL = 1, UR = 1.3, µ = 1.81, tLR = 0.005, Γ = 0.001. For these

parameters, the current is mostly spin-down polarized[90].

electrons with spin up remain in ther sites and only the spin-down electrons are transferred from the left

lead to the right one[63] through the singlet states of each dot, thus producing fully spin-down polarized

current. It was shown how photon absorption modified the tunneling across the leads reducing the spin

polarization of the current[90].

The system is modeled by the Hamiltonian Ĥ = ĤL + ĤR + ĤLR + Ĥleads + ĤT + ĤAC(t),

where each dot is represented by Ĥj={L,R} =
∑

σ εjσn̂jσ + Ujn̂j↑n̂j↓ and the reservoirs: Ĥleads =
∑

lǫ{L,R}kσ εlkd̂
†
lkσ d̂lkσ . The energies εjσ include the Zeeman splitting ∆j stemming from the interac-

tion with a magnetic fiel which breaks the spin degeneracy, such that the spin-up state becomes the

ground state. Thus, εj↓ = εj↑ + ∆j . The QDs are weakly connected between them and to the leads

through tunneling barriers: ĤLR = −tLR

∑

σ ĉ
†
Lσ ĉRσ + h.c. and ĤT =

∑

lǫ{L,R}kσ(γd̂†lkσ ĉlσ + h.c.). As in

previous sections, the external AC field is introduced as an oscillation with different phase in the gate

voltages of the dots (~ = e = 1): ĤAC(t) = 1
2VAC

∑

σ(n̂Lσ − n̂Rσ) cosωt. For instance, when the fre-

quency of the AC field matches the energy difference between the states | ↑↓, ↑〉 and | ↑, ↑↓〉, the spin down

electron is delocalized by the interaction with one photon and the interdot hopping strongly depends on

the Bessel function of first order.

One can derivate the master equation for the densty matrix

ρ̇(t) = L(t)ρ(t), (6.53)

as done for (4.9) in chapter 4 and, similarly write the equations of motion for the moment generator

ġ′(t) = L(t)g′(t) + J+ − J−ρ(t), (6.54)
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where the current superoperators can b defined as

J±ρ =
∑

m′m

Γm′mρmmδNR
m,NR

m′±1|m′〉〈m′|, (6.55)

with the tunneling rates (4.29).

Then, one integrates numerically the equations of motion (4.9) and (7.6) extracting the con-

vergent component of g′(t) until the stationary solution is reached. As expected, the current shows a

resonance peak when the frequency of the AC field matches the frequency ω = ω0 = (ω2
RL + 4t2RL)1/2,

where ωRL is the energy difference between the states | ↑, ↑↓〉 and | ↑↓, ↑〉, while the shot noise is reduced

with respect to the Poissonian statistics (for which S = I) typical for resonant tunneling processes[25],

cf. Fig. 6.5a, following roughly the same behaviour shown in the previous section for a single electron

being pumped through an empty double quantum dot.

Most interesting is the dependence of the current and shot noise on the AC amplitude, because

the photon absorption rate strongly depends on the field intensity and, eventually, one no longer finds

an ideal spin pump behaviour [90]. Moreover, the dependence of the renormalized interdot tunneling

on the Bessel function of first order, leads to dynamical localization [49, 26] in the DQD that supresses

the current, as shown in Fig. 6.5b. On the other hand, photon-assisted tunneling through the right

contact is not supressed. This enhances the fluctuations of the electron number in the right lead with the

consequence that the shot noise becomes larger while the net pump current remains low. Consequently,

the Fano factor reaches huge values.

Additionally, as the AC intensity increases, the contribution of electrons tunneling from right

to left reduces the net current–until it asymptotically vanishes– while the shot noise remains roughly

unaffected–tunneling events still hold. Thus, one observes super-Possonain noise characterized by S >

I[139] and an increasing Fano factor.

6.6 Spin blockade in AC driven double quantum dots

In section 4.4.3, it was discussed how Pauli exclusion principle blocks the current through double

quantum dots with up to two electrons (one in each dot) when they have the same spin polarization and

how this effect is removed by photon-assisted tunneling in AC driven system when one of the electrons

is extracted to the collector and another one with opposite polarization occupies its site.

Then, current only flows in the short (compared to the time that the system remains blocked)

periods of time when the two electrons have the same polarization. This means that electrons are

transferred in bunches separated by lapses of time when no current is detected and the shot noise is super-

Poissonian. This kind of dynamics are similar to dynamical channel blockade, which will be discussed

in chapters 7 and 8, where tunneling through a conducting channel is supressed by the occupation of a

trapped that is capacitively coupled to it. Here, two channels are not needed and Coulomb repulsion is

replaced by spin interaction.

Let consider a double quantum dot in a slightly different configuration as that treated in section

4.4.3, though still in the pumping regime, µL = µR = µ2. The single occupation states of both dots are

below the chemical potential of the leads: µ > εl but the doubly occupied singlets | ↑↓〉l are well above

it, Ul + εl > µ, so any of the two electrons can be extracted, independently of their spin.

2In the high bias regime, where photon-assisted tunneling is minimized in the leads, no essential differences with the

undriven case would appear–except for dynamical charge localization– and the system would be asymptotically trapped in

a superposition of the states | ↑, ↑〉 and | ↓, ↓〉.
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Fig. 6.6: (a) Current, shot noise and (b) Fano factor dependence on the intensity of the AC field in the spin

blockade configuration. Parameters (in meV): εL = εR = 0.5, ∆z = 0.026 (corresponding to a magnetic field

Bz ∼ 1T ), UL = 3, UR = 1, V = 0.5, µ = 1.2, tLR = 0.005, Γ = 0.001.

An AC field is applied with a frequency tuned to match the energy separation between the states

|0, ↑↓〉 = |0, SR〉 and | ↑, ↓〉, i.e., ω = εR − εL + UR − ULR, where εl is the energy of the single occupied

states and UR ULR are the Coulomb repulsion between electrons in the right dot and in different dots,

respectively. A magnetic field is applied as in the spin pump device, so the electrons with spin down

polarization are shifted by an energy ∆l. In such a configuration, the spin up electron is delocalized

within the DQD until one of the electrons tunnels out to the right lead. If the Zeeman splitting is the

same in both dots, the spin down electron can also be delocalized at the same frequency between |0, SR〉
and | ↓, ↑〉. Then, current will flow until an electron enters the DQD being occupied by an electron

of the same polarization, so the system is in one of the states | ↑, ↑〉 or | ↓, ↓〉 and interdot hopping is

forbidden by Pauli exclusion principle[94, 93]. If the chemical potentials related to the extraction of any

electron from these states, µ − εl − ULR > 0, the system is trapped until one of them is extracted by

photon-assisted tunneling.

As can be seen in Fig. 6.6a, current peaks appear when the frequency of the AC field is resonant

with the energies ω = (εR − εL + UR − ULR)/n. As expected, the noise is super-Poissonian.

The dependence of the transport characteristics on the AC intensity is however more interesting,

cf. Fig. 6.6b and c. The initial absence of transport at VAC = 0 is lifted when increasing the intensity

so both current and noise grow roughly linearly. Then, the Fano factor rapidly reaches a plateau near

F = 4. This situation changes when the AC intensity approches the value that makes J1

(

VAC

ω

)

reach

a maximum. Then, interdot hopping is most effective, so current is maximal and shot noise is reduced

showing a pronunced deep. As discussed above for the spin pump configuration, further increasing of

the AC intensity reduces the net current by making the tunneling rates of processes contributing to the

current from right to left approach asymptotically those corresponding to electrons going from left to

right. This does not affect the shot noise, so the Fano factor begins to increase. Particularly, when
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Fig. 6.7: (a) Current, (b) shot noise and (c) Fano factor dependence on the magnetic field inhomogenity in the

spin blockade configuration, with and without the consideration of spin flip processes. The frequency of the AC

field matches the energy difference between the states |0, ↑↓〉 and | ↑, ↓〉. Parameters (in meV): εL = εR = 0.5,

∆R = 0.026 (corresponding to a magnetic field Bz ∼ 1T ), UL = 3, UR = 1, V = 0.5, µ = 1.2, tLR = 0.005,

Γ = 0.001, VAC = ω, T−1
2 = 10T−1

1 .

J1

(

VAC

ω

)

= 0, the interdot tunneling processes that are assited by one photon are supressed, the current

is minimal as well as the shot noise. At this intensity, the Fano factor reaches a peak of around F = 25.

Another factor important for spin blockade is the difference between the Zeeman splittings, as

also discused in chapter 5. It can be due to an inhomogeneous magnetic field, different g factors in each

dot or the presence of hyperfine interaction[87, 88] which may also induce spin relaxation processes. If

∆L = ∆R, the states | ↑, ↓〉 and | ↓, ↑〉 are indistinguible, so interdot singlet |S0〉 = 1√
2

(| ↑, ↓〉 − | ↓, ↑〉)
and triplet |T0〉 = 1√

2
(| ↑, ↓〉 + | ↓, ↑〉) states appear in the dynamics. Interdot tunneling does not change

the total spin, so it can only occur between the singlet states |S0〉 and |0, SR〉. Then, not only | ↑, ↑〉 and

| ↓, ↓〉 contribute to the transport blocking, but also |T0〉.

On the other hand, if ∆L 6= ∆R, |T0〉 and |S0〉 are mixed, so the current increases, cf. Fig.

6.7. If the difference between Zeeman splittings is high enough, only the electrons of one of the spin

polarizations (in this case the spin-up ones) can tunnel resonantly, so current decreases again.

Also spin flip processes and decoherence contribute to the current enhancement by increasing

the lifetime of the trapped states. The decreasing of the ratio between the trapped and conducting lapses

of time is reflected in a reduction of the Fano factor, cf. Fig. 6.7.
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6.7 Conclusions

A method for computing the zero frequency shot noise of AC driven systems is presented,

allowing the analytical evaluation of the stationary properties of transport and an easy method for

numerical calculations.

The shot noise characteristics has been studied for several double quantum dot configurations,

complementing the ones presented in previous chapters. They include the undriven case in the Coulomb

blockade regime, allowing one and two electrons in the system. Sub-Poissonian shot noise is found for

this cases except for asymmetric contacts in the vicinity of resonance.

The effect of photon-assisted tunneling has been studied by introducing a resonant AC field in

the unbiased configuration–pumping regime. The shot noise can be manipulated by means of the AC

intensity, being possible to tune it back and forth between sub- and super-Poissonian values. For high

AC intensities, the net current is asymptoticaly cancelled while tunneling events still hold, resulting in

finite shot noise and a increasing Fano factor. Additionally, huge Fano factors are predicted at dynamical

charge localization. The same behaviour appears in the spin pump device studied in chapter 4.

Spin dependent super-Poissonian shot noise has been studied in the spin blockade regime, where

current is limited to the short lapses of time when the incoming electrons form an interdot singlet. All the

triplet superpositions block the system. The effect of different parameters as the inhomogeneous Zeeman

field or finite spin-flip times have been analyzed.





Chapter 7

Electron Bunching in Stacks of

Coupled Quantum Dots

The aim of controlling and manipulating nanoscale devices requires good knowledge of the

processes involved in the electronic transport through open quantum systems. The increasing success in

accessing single electron states in semiconductor quantum dots and the unavoidable presence of lattice

vibrations in such devices obliges one to consider dissipation caused by electron-phonon interaction [184,

185, 164]. The study of the electronic current fluctuations provides further information about the system

[25, 26]. E.g., from the investigation of shot noise—a consequence of the charge discreteness—we know

about deviations from Poissonian statistics indicating correlations between tunneling events.

A particular example for Poissonian statistics is the electron transport through a point con-

tact, for which all tunneling events are statistically independent. For resonant tunneling through single

quantum dots, this is no longer the case: As long as an electron populates the quantum dot, no further

electron can enter and, consequently, tunneling events are anti-bunched[175], see section 6.2. However,

when several of such transport channels conduct in parallel and are coupled capacitively, the current

noise becomes super-Poissonian, as has been demonstrated experimentally [161, 162, 187]. This means

that electrons tend to be transferred in bunches, which at first sight is counter-intuitive if one thinks in

terms of the Pauli exclusion principle. The phenomenon can be understood in terms of Coulomb interac-

tions between electrons in different channels, so that an electron in one channel suppresses the transport

through the other [182, 183, 186, 140], and one observes dynamical channel blockade. Consequently the

electron transport through one dot occurs in bunches during lapses of time when the other dots are empty.

In a recent experiment [188] with transport channels that consist of double quantum dots (see

Fig. 7.1), intriguing noise properties have been observed: By slightly modifying the source-drain voltage,

the levels of a double quantum dot can be tuned across a resonance which yields a current peak at whose

center, the noise is sub-Poissonian. In the vicinity of such resonances, by contrast, the noise is super-

Poissonian such that the Fano factor assumes values up to 1.5. This structure becomes washed out with

increasing temperature, indicating the suspension of DCB by the interaction with substrate phonons.

In this chapter, it is shown that a model with a single transport channel qualitatively reproduces this

behavior. For a quantitative agreement with the experimentally observed Fano factor and temperature

dependence, however, the capacitive coupling to a second, almost identical channel is found to be essential.

Let start out by modelling a single transport channel of the setup sketched in Fig. 7.1, which

was analyzed (in the absence of phonons) in section 6.3. The double quantum dot coupled to fermionic
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ΓRΩΓL

eV

eV

Fig. 7.1: Sketch of the transport through two parallel double quantum dots measured in Ref. [188]. Both

transport channels are capacitively coupled. The source-drain voltage shifts the relative position of the

levels by eV , albeit it is so large that all levels lie within the voltage window.

leads and substrate phonons is described by the Hamiltonian [141, 136]

H = H0 +Hleads +HT +He−ph +Hph, (7.1)

where H0 =
∑

l=L,R εlnl +UnLnR −Ω(c†LcR + c†RcL)/2 describes the coherent dynamics inside the double

dot and nl denotes the population of dot l = L, R. Henceforth it will be assumed that the Coulomb

repulsion U is so strong that only the zero-electron state |0〉 and the states with one electron in the left or

the right dot, |L〉 and |R〉, play a role. The leads and the phonons are described by Hleads =
∑

l,k εlknlk

and Hph =
∑

ν ~ωνa
†
νaν , respectively, where nlk is the electron number in state k in lead l and aν

is the annihilation operator of the νth phonon mode. The interaction with the double dot is given

by the tunneling Hamiltonian HT =
∑

l,k(γld
†
lkcl + h.c.) and the electron-phonon coupling He−ph =

∑

ν(nL−nR)λν(a†ν+aν)[185]. By tracing out the leads and the bath within a Born-Markov approximation,

one obtains for the reduced density matrix the equation of motion

ρ̇ = Lρ = (L0 + LT + Le−ph) ρ. (7.2)

Introducing for the density matrix the vector notation ρ = (ρ00, ρLL, ρLR, ρRL, ρRR)T , the Liouvillian

reads

L =
1

~















−ΓL 0 0 0 ΓR

ΓL 0 − i
2Ω i

2Ω 0

0 − i
2Ω+A+ iδ−B 0 i

2Ω−A−
0 i

2Ω+A+ 0 −iδ−B − i
2Ω−A−

0 0 i
2Ω − i

2Ω −ΓR















, (7.3)

where the detuning δ = εR − εL − eV depends on the source-drain voltage (or on the gate voltages in

lateral quantum dots) and E2 = δ2 + Ω2. For the phonons, one can assume an Ohmic spectral density

J(ω) = π
∑

ν λ
2
νδ(ω − ων) = 2παω [184], so that their influence is determined by the coefficients

A± = 2παΩ ± 2παδΩ
(2kBT

E2
− 1

E
coth

E

2kBT

)

, (7.4)

B = 4πα
(2δ2kBT

E2
+

Ω2

E
coth

E

2kBT

)

+ γ, (7.5)
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where γ = ΓR/2 stems from the additional decoherence associated with the tunneling to the leads. In

consistency with the experiment of Ref. [188], the voltage is asumed to be so large that the Fermi level of

the left (right) lead is well above (below) the energy of the left (right) dot level. Therefore it is sufficient

to consider only unidirectional transport from the left lead to the right lead described by the effective

tunneling rates Γl which are proportional to |γl|2 [142].

Within the same approximation, one can derive for the current, defined as the time derivative

of the charge in the right lead, the expression I = etrsys[(J+ − J−)ρ0], where ρ0 denotes the stationary

solution of the master equation (7.2) and J± are the superoperators describing the tunneling of an

electron from the right dot to the right lead and back, respectively. For unidirectional transport, they

read J− = 0 and J+ρ = (ΓR/~)ρRR|0〉〈0|.
The noise will be characterized by the variance of the transported net charge which at long times

grows linear in time, 〈∆Q2
R〉 = St. For its computation, one introduces the operator trleads+ph(NRρtotal)

[143, 134], see chapter 6, which resembles the reduced density operator and obeys

ġ′(t) = Lg′(t) + (J+ − J−) ρ(t). (7.6)

As discussed in the previous chapter, g′ has a divergent component which is proportional to ρ∞ and

does not contribute to the zero-frequency noise S. Thus, S is fully determined by the traceless part

g′⊥ = g′0 − ρ∞trg′. In terms of ρ∞ and g′⊥, the zero-frequency noise reads [134]

S = e2trsys[2(J+ − J−)g′⊥ + (J+ + J−)ρ∞]. (7.7)

A proper dimensionless measure for the noise is the Fano factor F = S/eI which equals unity for a

Poisson process, while a larger value reflects electron bunching.

7.1 Transport through a single channel

Let first consider the simplest case, consisting in a double quantum dot, similar to that studied

in section 6.3.2 in the absence of dissipation. Figure 7.2a shows the differential conductance and the

current for various temperatures as a function of the internal bias. In contrast to the dissipationless

case (α = 0) [142, 41], the shape of the curve is no longer Lorentzian but exhibits an asymmetry. At

higher temperatures, the peak becomes broader and more symmetric. This behavior is also reflected by

the noise. In the absence of dissipation, the Fano factor deviates from the Poissonian value F = 1: For

ΓL > ΓR (as in the experiment) and α = 0, we observe an anti-resonant behavior with a dip (F ≈ 0.5),

which is accompanied by two maxima with values slightly above 1. This double peak structure does

not appear if ΓL ≤ ΓR. With increasing dissipation strength α and increasing temperature, the maxima

vanish and the Fano factor eventually tends to the Poissonian value F = 1.

Although this behavior resembles the experimental findings reported in Ref. [188], there are

significant quantitative differences. For the maximal peak value of the Fano factor, which is assumed in

the dissipationless limit α→ 0 for δ = Ω/
√

2, we find the analytic expression

Fp(α = 0) = 1 +
Ω2 (ΓL − ΓR)

2

2Ω2(ΓLΓR + 2Γ2
L − Γ2

R) + 8Γ2
LΓ2

R

. (7.8)

It implies Fp ≤ 5/4, with the maximum assumed for ΓR ≪ ΓL,Ω. This means that for a single channel,

the theoretical prediction for the maximal Fano factor is clearly smaller than the value observed in the

experiment even at finite temperature and in the presence of dissipation [188]; cf. inset in Fig. 7.2b.

Therefore one must conclude that the one-channel model does not fully capture the experimentally

observed shot noise enhancement.
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Fig. 7.2: (color online) (a) Differential conductance, current (inset), and (b) Fano factor through a single

channel for various temperatures and ΓL = 0.025, ΓR = 0.0125, Ω = 0.025, ε = 0.5, α = 0.005 (in meV).

The inset of panel (b) shows the Fano factor for dissipation strength α = 0 (solid), 10−3 (dashed), and

10−2 (dotted) at zero temperature.

7.2 Transport through two coupled channels

The natural assumption is now that the shot noise must be influenced also by the interaction

with a second transport channel; cf. Fig. 7.1 and Ref. [188]. Thus, we now consider two capacitively

coupled channels, so that the system Hamiltonian reads H0 =
∑

i,l(εilnil + 1
2

∑

i′,l′ Uii′ll′nilni′l′), where

i = 1, 2 labels the different transport channels. Note that without inter-channel interaction (Uii′ll′ = 0

for i 6= i′), both channels are statistically independent. Thus, the behavior observed in the one-channel

case is repeated at a different voltage (see dotted lines in Fig. 7.3), but still the Fano factor cannot exceed

the value 5/4.

In order to simplify the model, we assume that the interaction Uii′ll′ is huge whenever i = i′ or

l = l′. Then, the system will accept up to two extra electrons provided that they are placed in different

stacks and different layers [186, 144]. This means that we have to consider the following 7 states (the ith

letter refers to channel i): the empty state |00〉, the one-electron states |L0〉, |R0〉, |0L〉, |0R〉, and the

two-electron states |RL〉, |LR〉. It is assumed that both dots on the right-hand side couple to the same

lead, while each channel couples to an individual phonon bath. Then we derive for the coupled channels
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Fig. 7.3: (color online) (a) Differential conductance and (b) Fano factor for two coupled channels for

various temperatures and the parameters ΓL = 0.025, ΓR = 0.0125, Ω = 0.025, α = 0.005, ε1 = 0.5,

ε2 = 0.75 (in meV). Dotted lines: corresponding results for two uncoupled channels. The inset shows the

temperature broadening of the current peak.

a master equation of the form (4.9) with a Liouvillian given by an 11 × 11 matrix. A closer inspection

of this Liouvillian reveals that—formally—it can be obtained also in the following way: One writes the

reduced density operator of the double channel as a direct product of each channel, ρ = ρ(1) ⊗ ρ(2), and

the Liouvillian accordingly as L = L(1) + L(2), where L(i) is the Liouvillian (7.3) with the parameters

replaced by those of channel i. In this case, γi = (ΓjL + ΓiR)/2, j 6= i. Finally, one removes all lines and

columns that contain one of the “forbidden” states |LL〉, |RR〉.
For self-assembled quantum dots, a realistic assumption is that all barriers are almost identical,

so that ΓL/R and Ω do not depend on the channel index i. By contrast, for the internal bias εi = εiR−εiL, it

will be shown that already small differences play a role, so that we have to maintain the channel index i in

the effective detunings δi = εi−eV . For unidirectional transport, the current operators now read J− = 0,

while J+ = J (1)
+ + J (2)

+ acts on the reduced density operator as J+ρ = (ΓR/~)[(ρR0 + ρ0R)|00〉〈00| +
ρRL|0L〉〈0L| + ρLR|L0〉〈L0|].

In the absence of the phonons, one finds the scenario discussed already in Ref. [186]: The Fano

factor exhibits two peaks, but their origin is now different than in the one-channel case. If both double

quantum dots become resonant at different source-drain voltages, an electron in the double dot that
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Fig. 7.4: (a) Differential conductance and (b) Fano factor for two coupled channels for various tempera-

tures and the parameters ΓL = 0.11, ΓR = 0.055, Ω = 0.11, α = 0.005, ε1 = 0.5, ε2 = 0.75 (in meV). The

inset shows the temperature broadening of the current peak.

is out of resonance has only a small probability to tunnel through the central barrier. Therefore, the

non-resonant double dot will mostly be occupied with one electron and thereby block the other channel,

so that the current peaks becomes smaller than in the one-channel case; cf. insets of Figs. 7.2a and 7.3a.

Whenever the non-resonant channel is empty, however, the resonant channel will transmit a bunch of

electrons, so that eventually the noise is super-Poissonian.

Figures 7.3 and 7.4 show the corresponding current and the Fano factor in the presence of

dissipation for two different configurations. We observe two striking features which are in accordance

with the experimental results of Ref. [188]: First, dynamical channel blocking is less pronounced at higher

temperatures and, second, the structure of the Fano factor exhibits a clear asymmetry.

This behavior can be explained within the following picture: Let us consider, for instance, the

situation sketched in Fig. 7.5 where ε1 < ε2. When the source-drain voltage puts the first double quantum

dot in resonance, i.e. δ1 = 0, the second double dot is still above resonance (δ2 > 0), thus, blocking the

resonant channel. If now the electron in channel 2 absorbs a phonon, the blockade is lifted. On the

other hand, when δ2 = 0, double dot 1 one is already below resonance (δ1 < 0) and phonon emission can

resolve the blockade. Both processes are more frequent the higher the temperature, so that dynamical

channel blockade is eventually resolved. The fact that emission is more likely than absorption, explains
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Fig. 7.5: Phonon-assisted channel opening: The blocking electron in the off-resonant channel can tunnel

through the interdot barrier after phonon absorption (left) or emission (right) and thereby open the

resonant channel.

the observed asymmetry and its reduction with increasing temperature. We emphasize that this does not

rely on differences in the inter-dot hoppings Ωi, in contrast to the mechanism of Ref. [186].

This phonon-induced channel opening is also manifested in the enhancement of the current shown

in the inset of Fig. 7.3a. The current peak becomes larger with increasing temperature and experiences a

slight shift away in its location. At low temperatures it tends to be around the larger resonance voltage

(ε2) which is driven by phonon relaxation. As phonon emission becomes important with temperature, the

current peak becomes larger and shifts towards eV0 = (ε1 + ε2)/2 coinciding with the maximal current

voltage in the absence of dissipation.

This effect is weaker when considering stronger tunneling couplings: the Fano factor is reduced

by DCB lifting and the current peak remains centered at eV0 when increasing temperature, which only

affects to its boadening, cf. Fig. 7.4.

7.2.1 Leakage currents

The observed behavior reproduces rather well the measurements reported in Ref. [188], but there

is still one difference: In the experiment, the Fano factor far from resonance is clearly smaller than 1,

while for the two-channel model, it tends to be Poissonian. This can be explained by leakage currents Ik
that inevitably flow through the whole sample, but have been ignored so far. We assume that the leakage

currents are statistically independent of each other and of the coupled double dots considered. Then we

can write both the current and the noise of the complete sample as a sum of the independent channels:

Isample = Isys +
∑

k

Ik (7.9)

and

Ssample = Ssys +
∑

k

FkIk, (7.10)

where Fk is the Fano factor associated to Ik. If the leakage currents stem from resonant tunneling through

single quantum dots or double dots far from resonance, Fi < 1 [175] and, thus, the total Fano factor is

decreased: Fsample = Ssample/Isample < Fsys. However, since there are about 106 leakage channels [188],

it is not possible to estimate their effect more precisely.
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7.3 Conclusions

To summarize, the effect of electron-phonon interaction in the transport through double quantum

dots systems has been studied, predicting super-Poissonian shot noise whenever the source-drain voltage

tunes a double dot close to resonance. The corresponding Fano factor exhibits an asymmetric double-

peak structure which becomes less pronounced with increasing temperature. In order to obtain the

experimentally observed values [188] for the Fano factor, one can assume that two transport channels

are so close that they can block each other. The temperature dependence of the double peaks have

been explained by the suspension of dynamical channel blocking via phonon emission or absorption. The

sub-Poissonian noise observed far from resonance is attributed to the appearance of independent leakage

currents. So experiments with devices where these systems were isolated from these additional noise

sources are highly desirable.



Chapter 8

Electron and Phonon Counting

Statistics.

The complete knowledge of the statistics and, in concrete, the properties of the fluctuations of the

number of particles emitted from a quantum system has been a topic of intense studies in quantum optics

[145, 146, 147, 148, 166, 149] and, in more recent years, in quantum transport[150, 151, 25, 26, 152, 153].

In particular, interesting features like an anti-bunching of photons emitted from a closed two-level atom

under a resonant field[154], or a bunching of electrons tunneling through interacting two-levels quantum

dots (QD) connected to fermionic reservoirs [155, 156, 157, 158, 159, 160] have been reported. The

electronic case appears to be specially important since measurements of higher order electron noise

correlations have been recently realized[161, 162, 163].

In this paper, it is show how the combined statistics of Fermions and Bosons is a very sensitive

tool for extracting information from time-dependent, driven systems. In particular, phonon emission

has been measured by its influence on the electronic current in two-levels systems[164]. We analyze the

electron and phonon noises and find that they can be tuned back and forth between sub- and super-

Poissonian character by using the strength of an ac driving field or the bias voltage.

For this purpose, we develop a general method to simultaneously extract the full counting

statistics of single electron tunnelling and (phonon mediated) relaxation events.

Our system consists of a two level quantum dot (QD) connected to two fermionic leads by tunnel

barriers. The Coulomb repulsion inside the QD is assumed to be so large that only single occupation

is allowed (Coulomb blockade regime). The lattice vibrations induce, at low temperatures, inelastic

transitions from the upper to the lower state. In analogy to Resonance Fluorescence in quantum optics,

a time-dependent ac field with a frequency ω drives the transition between the two levels ε1, ε2 close to

resonance, ∆ω = ε2 − ε1 − ω ≈ 0, which allows us to assume the rotating wave approximation. Thus,

the electron in the QD is coherently delocalized between both levels performing photon-assisted Rabi

oscillations[68]. For simplicity, we consider spinless electrons.

This system is modelled by the Hamiltonian:

Ĥ(t) =
∑

i

εid̂
†
i d̂i +

Ω

2

(

e−iωtd̂†2d̂1 + hc.
)

+
∑

Q

ωQâ
†
QâQ +

∑

kσ

εkαĉ
†
kαĉkα

+
∑

kαi

Vαi

(

c†kαd̂i + hc.
)

+
∑

Q

λQ

(

d̂†2d̂1âQ + hc.
)

, (8.1)
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where âQ, ĉkα and d̂i are annihilation operators of phonons and electrons in the leads and in the QD,

respectively and Ω is the Rabi frequency of the intra-dot oscillations, which is proportional to the intensity

of the ac field.

The last two terms in Eq. (8.1) give the coupling of the electrons in the QD to the fermionic

leads and to the phonon field, respectively. These terms are responsible for the incoherent dynamics and

they can be considered apart in the derivation of the master equation for the reduced density matrix.

Applying the quantum-jump approach[165, 21] to electronic transport and phonic emission events, it can

be written:

ρ̇(t) = L0(t)ρ(t) + Le(t)ρ(t) + Lp(t)ρ(t), (8.2)

where Le and Lp are the Liouvillian superoperator responsible for the incoherent events: electron tunnel-

ing from the system to the collector and relaxation by spontaneous phonon emission. Thus, the density

matrix can be integrated iteratively:

ρ(t) = e−L0tρ(0) +

∫ t

0

dt′e−L0(t−t′) (Lp(t
′) + Le(t

′)) e−L0t′ρ(0)

+

∫ t

0

dt′
∫ t′

0

dt′′e−L0(t−t′) (Lp(t
′) + Le(t

′)) e−L0(t
′−t′′) (Lp(t

′′) + Le(t
′′)) e−L0t′′ρ(0) + ...

=
∑

ne,np

ρ(ne,np), (8.3)

where ρ(ne,np)(t) gives the probability that, during a certain time interval t, ne electrons have tunneled

out of a given electron-phonon system and np phonons have been emitted:

ρ(0,0) = e−L0tρ(0)

ρ(1,0) =

∫ t

0

dt′e−L0(t−t′)Le(t
′)e−L0t′ρ(0)

ρ(0,1) =

∫ t

0

dt′e−L0(t−t′)Lp(t
′)e−L0t′ρ(0)

ρ(2,0) =

∫ t

0

dt′
∫ t′

0

dt′′e−L0(t−t′)Le(t
′)e−L0(t

′−t′′)Le(t
′′)e−L0t′′ρ(0) (8.4)

ρ(0,2) =

∫ t

0

dt′
∫ t′

0

dt′′e−L0(t−t′)Lp(t
′)e−L0(t

′−t′′)Lp(t
′′)e−L0t′′ρ(0)

ρ(1,1) =

∫ t

0

dt′
∫ t′

0

dt′′e−L0(t−t′)
(

Lp(t
′)e−L0(t

′−t′′)Le(t
′′) + Le(t

′)e−L0(t
′−t′′)Lp(t

′′)
)

e−L0t′′

...

By introducing the electron (phonon) counting variables, se(ph), one can define the generating

function 1 [166, 168]

G(t, se, sp) =
∑

ne,np

sne
e snp

p ρ(ne,np)(t), (8.7)

1The generating function was introduced by R. Ellickson as a method for calculating the fluctuations in disintegration

problems described by rate equations[169] and later applied by D.K.C. MacDonald to describe Poissonian processes[170]

like emission of electrons from a cathode, an analogy to tunnel through a single barrier. The probability of n tunnelling

events wit a rate Γ in a time t, Pn(t), obeys

Ṗn(t) = −Γ(Pn(t) − Pn−1(t)). (8.5)
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whose derivatives give the correlations:

∂ℓ+mtrG(t, 1, 1)

∂sℓ
e∂s

m
p

=

〈

ℓ
∏

i=1

m
∏

j=1

(ne − i+ 1)(np − j + 1)

〉

. (8.8)

One can derive the equations of motion for the generating function as previously done for the

density matrix:

Ġ(t, se, sp) = M(se, sp)G(t, se, sp), (8.9)

that generalizes the master equation, ρ̇(t) = M(1, 1)ρ(t), by introducing the counting variables in those

terms corresponding to the tunneling of an electron to the collector lead and the emission of a phonon.

Writing the density matrix as a vector, ρ = (ρ00, ρ11, ρ12, ρ21, ρ22)
T , the equation of motion of the GF

(8.9) is described, in the Born-Markov approximation, by the matrix[119, 172]:

M(se, sp) =















−2ΓL − (f1 + f2)ΓR sef̄1ΓR 0 0 sef̄2ΓR

ΓL + s−1
e f1ΓR −f̄1ΓR iΩ2 −iΩ2 spγ

0 iΩ2 Λ12 + i∆ω 0 −iΩ2
0 −iΩ2 0 Λ12 − i∆ω iΩ2

ΓL + s−1
e f2ΓR 0 −iΩ2 iΩ2 −γ − f̄2ΓR















, (8.10)

where ρ00 gives the occupation of the empty state, ρ11 and ρ22 correspond to the ground and excited

electronic states, respectively, and ρ12 and ρ21 are the coherences, γ = 2π|λε2−ε1
|2 is the spontaneous

emission rate due to the coupling with the phonon bath, ΓL(R) = 2π|VL(R)|2 is the tunneling rate through

the left(right) contact (considering Vα1 = Vα2) and fi = f(εi − µ) =
(

1 + e(εi−µ)β
)−1

and f̄i = 1 − fi

are the Fermi distribution functions that weight the tunneling of electrons between the right lead (with a

chemical potential µ) and the state i in the QD. The decoherence is given by Λ12 = − 1
2

(

(f̄1 + f̄2)ΓR + γ
)

.

The Fermi energy of the left lead is considered high enough that no electrons can tunnel from the QD to

the left lead. All the parameters in these equations, except the sample-depending coupling to the phonon

bath, can be externally manipulated.

Taking the Laplace transform of the generating function, G̃(z, se, sp) = (z −M)−1ρ(0), where

ρ(0) is the initial state, the long-time behaviour is given by the residue for the pole near z = 0. From the

Taylor expansion of the pole z0 =
∑

m,n>0 cmn(se−1)m(sp−1)n, one can write trG(t, se, sp) ∼ g(se, sp)e
z0t

and obtain, from (8.8), the cumulants, κ
(i)
e(p) =

〈

(

ne(p) − 〈ne(p)〉
)i
〉

:

κ
(1)
e(p) = 〈ne(p)〉 =

∂g(1, 1)

∂se(p)
+ c10(01)t (8.11a)

κ
(2)
e(p) = σ2

e(p) =
∂2g(1, 1)

∂s2e(p)

−
(

∂g(1, 1)

∂se(p)

)2

+ (c10(01) + 2c20(02))t (8.11b)

where

σ2
ij = 〈ninj〉 − 〈ni〉〈nj〉 (8.11c)

Defining the generating function, Q(x, t) =
P∞

n=0 xnPn(t), it is easy to derive the differential equation

Q̇(x, t) = Γ(x − 1)Q(x, t), (8.6)

with the initial condition Q(x, 0) = 1. Then, by the Taylor expansion of the solution, Q(x, t) = eΓ(x−1)t, one obtains the

Poisson distribution, Pn(t) = e−Γt (Γt)n

n!
, for which κ1 = κ2 = κ3 = Γt.
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and the noise for the emitted electronic and phononic signals becomes: Se(p) = σ2
e(p).

κ
(3)
e(p) =

∂3g(1, 1)

∂s3e(p)

−3
∂g(1, 1)

∂se(p)

∂2g(1, 1)

∂s2e(p)

+2

(

∂g(1, 1)

∂se(p)

)3

+
∂g(1, 1)

∂se(p)
+(c10(01)+6c20(02)+6c30(03))t, (8.11d)

which give the mean, variance and skewness, respectively. In the large time asymptotic limit, all the

information is included in the coefficients cmn. Thus, the mean 〈ne(p)〉 ∼ c10(01)t and the variance

σ2
e(p) ∼ (c10(01) + 2c20(02))t from where one gets the current Ie(p) = d

dt 〈ne(p)〉 ∼ c10(01) and the low

frequency noise S(0) = d
dtσ

2
e(p) ∼ (c10(01) +2c20(02)). Then, the Fano factor is Fe(ph) = 1+2c20(02)/c10(01)

so that, the sign of the second term in the right hand side defines the sub- (F < 1) or super-(F > 1)

Poissonian character of the noise.

In the limit ΓL(R) → 0 we obtain the pure Resonance Fluorescence case for the noise of the

emitted phonons, formally equivalent to the expression for emitted photons in quantum optics[166],

Fp(Γi = 0) = 1 − 2Ω2(3γ2 − 4∆2
ω)

(γ2 + 2Ω2 + 4∆2
ω)2

, (8.12)

yielding the famous sub-Poissonian noise result at resonance (∆ω = 0). In the following, only the resonant

case will be considered unless the opposite were indicated.

Electron-phonon correlations are obtained from:

〈nenp〉 =
∂g(1, 1)

∂se
c01t+

∂g(1, 1)

∂sp
c10t+ c11t+ c10c01t

2 (8.13)

Then,

σ2
ep =

∂2g(1, 1)

∂se∂sp
+ c11t. (8.14)

The long time behaviour is given by σ2
ep ∼ c11t. The correlation coefficient is then defined

as[167]:

r =
σep

√

σ2
eσ

2
p

=
c11

√

(c10 + 2c20)(c01 + 2c02)
. (8.15)

Similarly to the electronic(phononic) correlations, where the sign of the second order cummulant,

c20(02), defined the sub- or super-Poissonian character of the noise, the sign of c11 gives the character of

the electron-phonon correlations. If c11 > 0, the detection of a transmitted electron would involve the

detection of a phonon in a short lapse of time, while c11 < 0 involves distant events.

The electron-phonon correlation coefficient is limited to |r| < 1, having r = 1 for the case

where the number of detected electrons is proportional to the number of detected phonons: ne ∝ np.

r = 0 means uncorrelated events. Note that independent events give r = 0, but the opposite is not

necessary true, all will be shown below. Analogously to the Fano factor for the second order cumulants,

the deviation of the third cumulants from the Poissonian statistics can be parametrized by the coefficient:

ηe(p) =
κ

(3)
e(p)

κ
(1)
e(p)

=
〈n3

e(p)〉 − 3〈ne(p)〉〈n2
e(p)〉 + 2〈ne(p)〉3

〈ne(p)〉
= 1 + 6

c20(02) + c30(03)

c10(01)
. (8.16)

In what follows, we will discuss different configurations concerning the relative positions of the

energy levels with respect to the chemical potentials of the contacts. As we will see, electron and phonon

fluctuations and their correlations are strongly sensitive to the levels and to the chemical potentials of

the contacts configuration.
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Fig. 8.1: In the low bias regime, the electron remains in the QD, in analogy to resonance fluorescent atoms.

8.1 Low bias regime. Resonance Fluorescent Phonon Emission

If the chemical potential of the left and right lead is above the energies of both levels, µ > ε1(2),

the QD is always populated by one electron and transport is cancelled. Then, this case is completely

analogue to the resonance fluorescence problem, where spontaneously emitted phonons play the role of

fluorescent photons: the trapped electron is coherently delocalized by the driving field between the two

levels performing photo-assisted Rabi oscillations until the emission of a phonon, then the electron is

relaxed to the lower level, cf. Fig. 8.1.

In the case shown in Fig. 1, where ǫ2 is below but very close to µ, the electron in the upper

level has a small probability, xΓR, to be extracted to the right lead due to the thermal broadening of the

Fermi level: f1 = 1, f2 = 1 − x, where x ≈ eβ(ε2−µ) and β = kBT . Then, the phonons deviate from the

resonance fluorescence like statistics because the QD may be empty during short lapses of time. It would

be the case if the resonance fluorescent atom could be eventually ionized.

The phononic resonance fluorescence behaviour as well as electronic transport quenching is

recovered for x = 0. From the expressions shown in Appendix A.1, one can obtain the following Fano

factors for electrons and phonons :

Fe = 1 + ΓLΓR

(

γ(γ2 − 2Ω2)

(γ2 + 2Ω2)2 (ΓL + ΓR)
− Ω2

(ΓL + ΓR)2

)

x+ O
(

x2
)

(8.17)

Fp = 1 − 6γ2Ω2

(γ2 + 2Ω2)
2 (8.18)

− γΩ2ΓR

2 (γ2 + 2Ω2)
2

(

γ3 − 10Ω2γ

(γ2 + 2Ω2) (ΓL + ΓR)
− 4

(

7γ2 − 4Ω2
)

γ2 + 2Ω2
− Ω2

(ΓL + ΓR)
2

)

x+O
(

x2
)

.

The driving field induces sub-Poissonian phononic noise which (in the limit x = 0) reaches a minimum

Fp,m = 1
4 for Ωm = γ/

√
2 before the Rabi oscillations dominate the dynamics over relaxation processes,

cf. Fig. 8.2. The electron-phonon correlation coefficient becomes (see Appendix A.1):

r = (γ (ΓL + ΓR)
(

γ2 − 10Ω2
)

− Ω2
(

γ2 + 2Ω2
)

)

√

γΓLΓRx

2 (ΓL + ΓR)3 (γ4 − 2Ω2γ2 + 4Ω4)
+O

(

x3/2
)

. (8.19)
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Fig. 8.2: Low bias: Dependence of Fe (solid), Fp (dashed) and r (dotted) with (a) the field intensity, Ω̃, for

γ̃ = 0.1, (b) the phonon emission rate, γ̃ = γ/Γ for Ω = Γ/2 in the low bias regime: ε1,2 < µ. ΓL = ΓR = Γ,

Ω̃ = Ω/Γ, γ̃ = γ/Γ, x ≈ 0. c) Dependence of ηe (solid), ηp (dashed) with the field intensity, Ω̃, for γ̃ = 0.1 in the

low bias regime: ε1,2 < µ. ΓL = ΓR = Γ, Ω̃ = Ω/Γ, γ̃ = γ/Γ, x ≈ 0.

The third cumulants become:

ηe = 1 +
3ΓLΓR

(

γ(γ2 − 4Ω2) (ΓL + ΓR) − Ω2
(

γ2 + 2Ω2
))

x

(γ2 + 2Ω2)
2
(ΓL + ΓR)

2 +O
(

x2
)

(8.20)

ηp = 1 − 6
(

3Ω2γ6 − 4Ω4γ4 + 16Ω6γ2
)

(γ2 + 2Ω2)
4 +O (x) (8.21)

We will analyze now two asymptotic limits of the results presented above:

8.1.1 Undriven case.

Without driving, there is no process that removes the electron from the lower level, so the

stationary state of the system coincides with ρ2 = 1. Then, both phonon emission and electron tunneling

are cancelled:

cij = 0 ∀i, j. (8.22)

However, the electronic Fano factor and the electron-phonon correlation coefficient deviate from one and

zero, respectively:

Fe = 1 +
2xΓLΓR

(ΓL + ΓR) (2γ + xΓR) − xγΓR

ΓL=ΓR−→ 1 +
2Γx

4γ + xΓ
(8.23)

Fp = 1 (8.24)

r =

√

xγΓLΓR (2ΓL + (2 − x)ΓR)

2 (ΓL (2γ + xΓR) + ΓR (xΓR + (2 − x)γ)) (ΓR (xΓR + (2 − x)γ) + ΓL (2γ + 3xΓR))

ΓL=ΓR−→
√

(4 − x)γx

2(2xΓ + (4 − x)γ)(4xΓ + (4 − x)γ)
(8.25)

ηe = 1 +
6xΓLΓR (2ΓL (γ + xΓR) + ΓR (xΓR − (x− 2)γ))

(ΓL (2γ + xΓR) + ΓR (xΓR − (x− 2)γ))2
(8.26)

ηp = 1. (8.27)

8.1.2 High intensity limit: Ω → ∞
Increasing the intensity of the ac field, the electron tends to occupy the upper level with a

probability: ρ2 = 2ΓL+(2−x)ΓR

4ΓL+(4−x)ΓR
∼ 1

2 . Then, it can tunnel to the right contact with a probability xΓR,
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producing a finite current:

c10
x→0−→ xΩ2ΓLΓR

(γ2 + 2Ω2)(ΓL + ΓR)
(8.28)

and the electronic statistics becomes sub-Poissonian:

Fe = 1 − 8xΓLΓR

(4ΓL + (4 − x)ΓR)
2

ΓL=ΓR−→ 1 − 8x

(8 − x)2
∼ 1 − x

8
. (8.29)

This result should be compared with the single level case, where it is known that Fe = 1 − x
2 and the

probability of finding an electron in the QD is ρ = 2−x
2 ∼ 1, see Appendix B.

Since the occupation probability of the upper level at high intensity field is maximum, so it is

the probability of finding the QD unoccupied, ρ0 = xΓR

4ΓL+(4−x)ΓR
. This introduces lapses of time when

phonon emission is suppressed, affecting the phononic statistics by turning it super-Poissonian:

Fp = 1 +
2xγΓR

(4ΓL + (4 − x)ΓR)
2

ΓL=ΓR−→ 1 +
2γx

(8 − x)2Γ
(8.30)

On contrary, the electron-phonon correlation is negative since the detection of an electron (phonon)

reduces the probability of detecting a phonon (electron): when an electron has tunnelled out of the

system, this is left empty and phonon emission is suppressed and when a phonon has been emitted, the

upper level is unoccupied and no electron can be extracted from the QD:

r = −
√

2xγΓLΓR
√

32Γ3
L + 48(2 − x)ΓRΓ2

L + 2 (9x2 − 40x+ 48)Γ2
RΓL + (4 − x)2(2 − x)Γ3

R

(8.31)

× 4ΓL + (4 − 3x)ΓR
√

16Γ2
L + 8(4 − x)ΓRΓL + ΓR (ΓR(4 − x)2 + 2xγ)

(8.32)

For the higher moments, one obtains:

ηe = 1 − 24xΓLΓR

(

16Γ2
L + 16(2 − x)ΓRΓL + (4 − x)2Γ2

R

)

(4ΓL + (4 − x)ΓR)
4 (8.33)

ηp = 1 +
6xγΓR

(

16Γ2
L + 4 (2(4 − x)ΓR − γ) ΓL + ΓR

(

ΓR(4 − x)2 − (4 − 3x)γ
))

(4ΓL + (4 − x)ΓR)
4 (8.34)

8.2 Dynamical Channel Blockade regime.

If the chemical potential of the right lead lies between the energy levels of the QD, ε1 < µ < ε2
and therefore, f1 = 1 − x, f2 = 0, where x ≈ eβ(ε1−µ) and β = kBT , electronic transport is strongly

suppressed through the lower level, cf. Fig. 8.3. Then, since only one electron is allowed in the system, the

occupation of the lower level avoids the tunneling of electrons from the left lead and the current is blocked.

This mechanism, which is known as dynamical channel blockade, predicts electronic super-Poissonian

shot noise in multichannel systems like, for instance, two-level quantum dots[155] or capacitively coupled

double quantum dots[186] as well as positive cross-correlations in three terminal devices[181, 182, 183].

It has been proposed as the responsible of noise enhancement measured experimentally in multilevel

quantum dots[187] and double quantum dots (DQDs)[188].

The blocking of the current is not forever since the electron in the lower level has a finite but

small probability of tunneling to the collector, xΓR, due to the thermal smearing of the Fermi level.
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Fig. 8.3: Dynamical channel blockade configuration, where the electronic transport is strongly suppressed through

the lower level.

Then, the trapped electron eventually escapes to the right lead allowing electrons to tunnel through the

upper level before the lower one is again occupied. Thus, the current is restricted to short lapses of

time while for long periods t ∼ (xΓR)−1 transport is quenched. This bunching of electrons is reflected in

super-Poissonian shot noise.

Phonon-mediated relaxation introduces an additional way to occupy the lower level when current

is flowing through the upper one, shortening the lapse of time when transport is allowed. Thus, the

electrons are transferred in smaller bunches and the super-Poissonian character of the electronic noise

is reduced. The detection of a phonon is always at the end of a bunch of electrons and implies the

cancelation of the current, leading to a positive electron-phonon correlation.

The introduction of the AC field pumps the electron in the lower state to the upper one, giving

the electron a finite probability to tunnel to the right lead or to be relaxed by the emission of one phonon.

This reduces the electronic shot noise by reducing the duration of the lapses of time when transport is

blocked (opposite to the effect of phonons). Thus, when x = 0, the electronic current and the phononic

emission are proportional to the driving intensity and channel blockade is removed. Considering, for

simplicity, the case ΓL = ΓR = Γ, the Fano factors become (see Appendix A.2):

Fe = 1 − 8Ω4 + 2
(

2γ2 + 15Γγ + 9Γ2
)

Ω2 − 2Γ(γ + Γ)2(3γ + 2Γ)

(7Ω2 + (γ + Γ)(3γ + 2Γ))2
(8.35)

Fp = 1 − 2γΩ2
(

22Γ2 + 28γΓ− Ω2
)

Γ (7Ω2 + (γ + Γ)(3γ + 2Γ))2
. (8.36)

The electron-phonon correlation coefficient will be considered in the asymptotic non-driven and high

intensity cases. As expected, the driving contributes to make the electronic noise sub-Poissonian and the

phononic one super-Poissonian. However, it has to compete with the phonon emission that contributes to

bring the electron to the lower state and to block the current, cf. Fig. 8.4. The positive electron-phonon

correlation is decreased by the ac field since the emission of a phonon does not imply transport blocking

anymore, cf. Fig. 8.4.

8.2.1 Undriven case.

The most interesting features appear in the absence of the AC field, where the consequences of

the dynamical channel blockade are maximal and there is a strong dependence of the statistics on the
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Fig. 8.4: Dynamical Channel Blockade: Dependence of Fe (solid), Fp (dashed) and r (dotted) with (a) the

field intensity, Ω̃, for γ̃ = 0.1, (b) the phonon emission rate, γ̃ = γ/Γ for Ω = Γ/2 in the dynamical channel

blockade regime: ε1 < µ < ε2. µ < ε1,2. ΓL = ΓR = Γ, Ω̃ = Ω/Γ, γ̃ = γ/Γ, x ≈ 0. c) Dependence of ηe (solid),

ηp (dashed) with the field intensity, Ω̃, for γ̃ = 0.1 in the dynamical channel blockade regime: ε1 < µ < ε2.

ΓL = ΓR = Γ, Ω̃ = Ω/Γ, γ̃ = γ/Γ, x ≈ 0.

thermal smearing factor, x. In the absence of phonons, the electronic current and Fano factor are:

c10 =
2xΓLΓR

(x+ 1)ΓL + ΓR
≈ 2xΓLΓR

ΓL + ΓR
(8.37)

Fe = 1 +
2ΓL

(

(1 − x)2ΓL + (1 − 3x)ΓR

)

((x + 1)ΓL + ΓR)2
≈ 1 +

2ΓL

ΓL + ΓR
. (8.38)

It is interesting to see here how the Fano factor can be tuned by the asymmetric coupling to the leads:

Fe = 3 (if ΓL ≫ ΓR), Fe = 2 (if ΓL = ΓR) and Fe = 1 (if ΓL ≪ ΓR). In the last case, the contribution of

xΓR is diminished and the left barrier controls the transport (in this limit, the current is c10 = 2xΓL).

Then, the transferred electrons are uncorrelated one from the others resembling the behaviour of the

single barrier problem briefly discussed above. The particular case ΓL ≪ ΓR was studied in Ref. [155]

without considering the processes that introduce an electron from the collector to the lower level, with a

rate (1 − x)ΓR, giving a Fano factor Fe = 2.

Considering phonon emission and for small x, one can expand the first coefficients for the

electronic and phononic statistics, as well as for the electron-phonon correlations.The Fano factors and

the correlation coefficient r become:

Fe = 1 +
2ΓLΓR

ΓR (γ + ΓR) + ΓL (2γ + ΓR)
− 2

(

ΓLΓR

(

2γ2 + 5ΓRγ + 3Γ2
R + 2ΓL (γ + 2ΓR)

))

x

(ΓR (γ + ΓR) + ΓL (2γ + ΓR))
2 +O

(

x2
)

ΓL=ΓR−→ 1 +
2Γ

3γ + 2Γ
+O(x) (8.39)

Fp = 1 − 2γΓLΓR (γ + 2ΓL + 2ΓR)x

(ΓR (γ + ΓR) + ΓL (2γ + ΓR))
2 +O

(

x2
) ΓL=ΓR−→ 1 − 2γ(γ + 4Γ)x

(3γ + 2Γ)2
+O(x2) (8.40)

r = (2ΓL + ΓR)

√

γ(γ + ΓR)

2 (ΓR (γ + ΓR) + ΓL (2γ + ΓR)) (ΓR (γ + ΓR) + ΓL (2γ + 3ΓR))
+O (x)

ΓL=ΓR−→ 3

√

γ(γ + Γ)

(3γ + 2Γ)(3γ + 4Γ)
+O(x). (8.41)

The expected super-Poissonian electronic statistics and positive electron-phonon correlation are

obtained. Interestingly, the presence of phonons reduces the electronic Fano factor (noise reduction by

noise), but does not affect to its super-Poissonian character. On the other hand, the presence of electronic
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transport affects the Poissonian phononic statistics by introducing a sub-Poissonian component: once a

phonon has been emitted, the electron is relaxed to the lower level blocking the transport. A second

phonon will not be detected until the electron tunnels to the collector and another one enters the upper

level, so phononic events are well separated in time.

For the third cummulants, one obtains:

ηe = 1 +
6ΓLΓR (γ + ΓR) (2ΓL + ΓR)

(ΓR (γ + ΓR) + ΓL (2γ + ΓR))
2 +O (x) (8.42)

ηp = 1 − 6 (γΓLΓR (γ + 2ΓL + 2ΓR)) x

(ΓR (γ + ΓR) + ΓL (2γ + ΓR))2
+O

(

x2
)

. (8.43)

8.2.2 High intensity limit: Ω → ∞
If the intensity of the driving field is large enough, the dynamical channel blockade is completely

lifted, so sub-Poissonian electronic noise and super-Poissonian phononic noise are recovered:

Fe = 1 − 8ΓLΓR

(4ΓL + 3ΓR)
2 +O(x)

ΓL=ΓR−→ 41

49
+O(x) (8.44)

Fp = 1 +
2γΓR

(4ΓL + 3ΓR)
2 +O(x)

ΓL=ΓR−→ 1 +
2γ

49Γ
+O(x). (8.45)

Also, the ac field allows the extraction through the upper level of an electron that has been relaxed by

the emission of one phonon. This means that the electron-phonon correlation becomes negative:

r = −
√

2γΓLΓR (4ΓL + ΓR)
√

(32Γ3
L + 48ΓRΓ2

L + 34Γ2
RΓL + 9Γ3

R) (16Γ2
L + 24ΓRΓL + ΓR (2γ + 9ΓR))

+O (x)

ΓL=ΓR−→ −5

√

2γ

123(2γ + 49Γ)
+O(x). (8.46)

Then, by tuning the driving intensity, one can manipulate the character of the shot noise of

electrons and phonons, turning the super(sub)-Poissonian statistics to sub(super)-Poissonian for elec-

trons(phonons) when increasing Ω.

Higher moments are also obtained, giving

ηe = 1 − 24(x+ 1)ΓLΓR

(

16Γ2
L − 16(x− 1)ΓRΓL + (x− 3)2Γ2

R

)

((x− 3)ΓR − 4ΓL)
4 (8.47)

ηp = 1 +
6(x+ 1)γΓR

(

16Γ2
L − 4 (γ + 2(x− 3)ΓR) ΓL + ΓR

(

ΓR(x− 3)2 + (3x− 1)γ
))

((x− 3)ΓR − 4ΓL)
4 . (8.48)

8.3 High Bias regime.

If the energy of both levels are above µ, ε1, ε2 > µ (f1 = f2 = 0), the two of them contribute

to electronic transport, cf. Fig. 8.5. In this particular case, quantum interference effects may be

important[178] depending on the concrete geometry of the system. However, in the weak coupling and

high frequency limit case considered here, ε2 − ε1 ≫ ΓL,R, they can be disregarded.

Contrary to the previous regimes, the contribution of the empty state:

ρ0 =
ΓR

2ΓL + ΓR
(8.49)
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Fig. 8.5: Pure transport configuration.

plays an important role here. It strongly affects the sub-Poissonian character of the phononic noise.

Since the tunneling rates are considered independent on the energy, electronic transport does

not depend on the level that the electron occupies when tunneling through the QD. Then, the transport

characteristics (electronic current and noise) are independent of the field intensity, detunning and the

spontaneous emission. Similarly to the single resonant level, the Fano factor is sub-Poissonian. However,

the contribution of the two levels increases the noise (see Appendix A.3):

Fe =
4Γ2

L + Γ2
R

(2ΓL + ΓR)2
ΓL=ΓR−→ 5

9
. (8.50)

The normalized third cumulant becomes:

ηe = 1 − 12ΓLΓR

(

4Γ2
L + Γ2

R

)

(2ΓL + ΓR)
4

ΓL=ΓR−→ 7

27
. (8.51)

Interestingly, the two resonant levels statistics coincides with the single resonant one when writing ΓL/2

for ΓL. That is not the case for the phononic statistics that depends on the population of the upper level

and, therefore, on the ac field parameters.

The expressions for the second order moments are quite lengthy, so considering the simpler case,

ΓL = ΓR = Γ, one obtains a sub-Poissonian Fano factor:

Fp = 1 − 2γ
Γ(γ + 2Γ)2(γ + 4Γ) +

(

14Γ2 + 17Γγ − γ2
)

Ω2 − 2Ω4

9Γ (2Ω2 + (γ + Γ)(γ + 2Γ))
2 . (8.52)

which can be tuned to super-Poissonian for high enough intensities. The electron-phonon correlation:

c11 = −γΓ(Γ − 5γ)(γ + 2Γ)2 + 2
(

γ2 + 16Γγ + 4Γ2
)

Ω2 + 4Ω4

27 (2Ω2 + (γ + Γ)(γ + 2Γ))2
. (8.53)

may be positive or negative depending on the concrete parametrization of the system, as discussed below.

In concrete, positive correlation is obtained when ΓL ≪ ΓR as well as, for low intensity driving, when the

tunneling rates are small compared to the phonon emission rate, cf. Fig. 8.6.

8.3.1 Undriven case, Ω = 0:

The emission of a phonon, in this case, depends on the tunneling of an electron from the left

lead to the upper level. Then, it can tunnel to the collector directly or after being relaxed to the lower
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Fig. 8.6: High Bias: Dependence of Fe (solid), Fp (dashed) and r (dotted) with (a) the field intensity, Ω̃, for

γ̃ = 0.1 and (b) the phonon emission rate, γ̃ = γ/Γ for Ω = Γ/2 in the high bias regime: µ < ε1,2. ΓL = ΓR = Γ,

Ω̃ = Ω/Γ, γ̃ = γ/Γ. c)Dependence of ηe (solid), ηp (dashed) with the field intensity, Ω̃, for γ̃ = 0.1 in the high

bias regime: µ < ε1,2. ΓL = ΓR = Γ, Ω̃ = Ω/Γ, γ̃ = γ/Γ.

level by the emission of one phonon. Therefore, phonons adopt the electronic sub-Poissonian statistics.

The first moments give a phononic Fano factor:

Fp = 1 − 2γΓLΓR (γ + 2ΓL + 2ΓR)

(γ + ΓR)
2
(2ΓL + ΓR)

2 (8.54)

The electron-phonon correlation is given by:

r =

√
γ
(

4γΓ2
L − 2Γ2

RΓL + Γ2
R (γ + ΓR)

)

√

2 (γ + ΓR) (4Γ2
L + Γ2

R)
(

4 (γ2 + ΓRγ + Γ2
R) Γ2

L + 2ΓR (γ2 + 2ΓRγ + 2Γ2
R) ΓL + Γ2

R (γ + ΓR)
2
)

(8.55)

If the phonon emission rate is large enough compared to the tunneling rate, concretely: once an electron

occupies the upper level, it will rather be relaxed to the lower level and tunnel to the collector than

directly tunnel from the upper level. Then, the probability of detecting consequently one phonon and

one electron increases, thus making the electron-phonon correlation positive if:

γ >
Γ2

R(2ΓL + ΓR)

4Γ2
L + Γ2

R

. (8.56)

This is more clearly seen when considering ΓL = ΓR = Γ:

r = (5γ − Γ)

√

γ

10(γ + Γ)(7γ2 + 10γΓ + 9Γ2)
. (8.57)

The coefficient

ηp = 1 − 2γ
(

7γ3 + 41Γγ2 + 52Γ2γ + 36Γ3
)

27(γ + Γ)4
(8.58)

also shows sub-Poissonian behaviour.

8.3.2 High intensity limit: Ω → ∞
For high ac field intensities, the contribution of the chemical potencial of the collector is only

reflected in the occupation probabilities. Particularly important for the phononic dynamics is the prob-

ability of finding the QD in its empty and lower states, since they limits phonon emission. As seen in



8.4. High Bias–Step Configuration. 113

0 2 4 6 8 10

Γ
�

0.6

0.7

0.8

0.9

1

1.1

1.2

F
e

0 2 4 6 8 10

Γ
�

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
p

0 2 4 6 8 10

Γ
�

-0.1

0

0.1

0.2

0.3

0.4

0.5

r

Fig. 8.7: Dependence on the relation between the relaxation and tunneling rates, γ̃ = γ/Γ for the different

chemical potential configurations: µ < ε1,2 (solid), ε1 < µ < ε2 (dashed), ε1,2 < µ (dotted) for Ω = 0.5. Compare

with Figs. ?? and ??.

the previous regimes, the occupation of the empty state affects the sub-Poissonian statistics (expected

for resonance fluorescence) by turning it to super-Poissonian values:

Fp = 1 +
γΓR

(2ΓL + ΓR)
2

ΓL=ΓR−→ 1 +
γ

9Γ
. (8.59)

Comparing to (8.30) and (8.45), the higher unoccupation of the QD involves a higher super-Poissonian

character in the phononic statistics.

High intensities allow the emission of several phonons before the electron is extracted to the

collector. Also, an electron tunneling from the emitter to the upper level, can be extracted to the

collector from the lower level without the emission of a phonon. Then, the electron-phonon correlation

tends to be negative. However, if ΓL is small, ρ0 ≈ 1 − 2ΓL/ΓR ≫ ρ1, ρ2, i. e., the probability of finding

the QD empty is almost one. Then, the detection of phonons and electrons is restricted to short lapses

of time, which makes the electron-phonon correlation positive:

r = (ΓR − 2ΓL)

√

γΓR

2 (4Γ2
L + Γ2

R) (4Γ2
L + 4ΓRΓL + ΓR (γ + ΓR))

(8.60)

The third order coefficient

c03 =
γ3ΓLΓR (ΓR − 2ΓL)

4 (2ΓL + ΓR)5
(8.61)

gives

ηp = 1 +
3γΓR

(

8Γ2
L − 2 (γ − 4ΓR) ΓL + ΓR (γ + 2ΓR)

)

2 (2ΓL + ΓR)
4 . (8.62)

8.4 High Bias–Step Configuration.

A particularly interesting configuration in the high bias regime (f1 = f2 = 0) where the electron-

phonon correlation is paradigmatic, needs unusual coupling to the leads: electrons can enter only to the

upper level and tunnel out only from the lower one. That is: ΓuL = ΓdR = Γ, ΓdL = ΓuR = 0, cf. left

diagram in Fig. 8.8. This selective coupling to the leads could be obtained by zero-dimensional contacts

consisting in neighbour single-level QDs strongly coupled to the leads[179]. Then, if the level of the
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Fig. 8.8: Schematic diagrams of the step configuration.

left(right) dot is resonant with the upper(lower) level, the emitter(collector) will be uncoupled of the

lower(upper) level, see right diagram in Fig. 8.8.

In the absence of driving field, an electron that enters the upper level can only be transferred

to the collector after being relaxed by the emission of one phonon. This makes the electronic and

phononic dynamics completely identical, giving sub-Poissonian Fano factors and maximal electron-phonon

correlation (see Appendix A.4):

Fe = Fp = 1 − 2γΓLΓR(γ + ΓL + ΓR)

(γΓR + ΓL(γ + ΓR))2
(8.63)

r = 1. (8.64)

The third cumulants give:

ηe = ηp = 1 − 6γΓLΓR

(

γ2 + Γ2
R

)

Γ3
L + (γ + ΓR)

(

γ2 + ΓR (γ + ΓR)
)

Γ2
L + 2γ2Γ2

RΓL + γ2Γ2
R (γ + ΓR)

(γΓR + ΓL (γ + ΓR))4

(8.65)

The AC field allows the tunneling of an electron to the collector without having previously

emitted a phonon as well as the emission of several phonons from the relaxation of the same electron.

This un-correlates the electronic and phononic statistics.Considering ΓL = ΓR = Γ, for simplicity, we

obtain for the Fano factors:

Fe = 1 − 2
(

γ4 + 4Γγ3 + 5Γ2γ2 + 3Ω2γ2 + 2Γ3γ + 3ΓΩ2γ + 2Ω4 + 4Γ2Ω2
)

(2γ2 + 3Γγ + Γ2 + 3Ω2)
2 (8.66)

Fp = 1 − 2γ
(

2Γ4 − Ω2Γ2 + γ3Γ − Ω4 + γ2
(

4Γ2 − Ω2
)

+ γ
(

5Γ3 + 6Ω2Γ
))

Γ (2γ2 + 3Γγ + Γ2 + 3Ω2)
2 (8.67)

From the Fano factor, it can be seen that the electrons obey sub-Poissonian statistics while the phonons

become super-Poissonian for high enough field intensities. The driving field also contributes to make the

electron-phonon correlation coefficient negative:

r =
√
γ
(

Γ(γ + Γ)3
(

2γ2 + Γ2
)

− γΓ(γ − 11Γ)(γ + Γ)Ω2 −
(

γ2 + Γγ − 4Γ2
)

Ω4 − Ω6
)

×[
(

(2γ + 9Γ)Ω4 + 2
(

γ3 + 10Γ2γ + 3Γ3
)

Ω2 + Γ(γ + Γ)2
(

2γ2 + Γ2
))

(8.68)

×
(

Ω2 + γ(γ + Γ)
) (

Ω2 + Γ(γ + Γ)
) (

5Ω4 + 2
(

3γ2 + 6Γγ − Γ2
)

Ω2 + (γ + Γ)2
(

2γ2 + Γ2
))

]−1/2.
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Fig. 8.9: Step: ΓL = ΓR = Γ = 1, γ = 0.1 (solid), γ = 1 (dashed), γ = 10 (dotted).
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Fig. 8.10: Step: (a) For ΓR = 2ΓR, the driving un-correlates the electronic and phononic statistics. ΓR = 1,

ΓL = 0.5, γ = 0.1 (solid), γ = 1 (dashed), γ = 10 (dotted). (b) The correlation can be tuned from negative to

positive by the tunneling rate from the emitter: ΓL = 0.25 (solid), ΓL = 0.5 (dashed), ΓL = 1 (dotted), with

ΓR = γ = 1. Ω̃ = Ω/ΓR. ηe (solid) and ηp (dashed) as a function of the driving intensity for ΓL = ΓR = Γ = 1

and γ = 0.1. The ac field rapidly separates the electronic and phononic behaviours.

8.4.1 High intensity limit: Ω → ∞
An intense driving involves the delocalization of the electron between the upper and lower level,

so it has the same probability of occupying each of them: ρ1 = ρ2 = ΓL/(2ΓL + ΓR). Then, the system

resembles the single resonant level, for which one expects sub-Poissonian shot noise:

Fe = 1 − 4ΓLΓR

(2ΓL + ΓR)2
. (8.69)

The high probability of finding the QD empty, ρ0 = ΓR/(2ΓL + ΓR), kills the resonance fluorescence like

phonon anti-bunching and the phononic statistics become super-Poissonian:

Fp = 1 +
2γΓR

(2ΓL + ΓR)2
. (8.70)

As discussed in the previous section, the electron-phonon correlation is lost by the influence of the ac

field. However, if the coupling to the leads is asymmetric and ΓR > 2ΓL, the QD spends most of the time

empty, so the detection of electrons and phonons is restricted to the short periods of time when the QD

is occupied and r remains positive, cf. Fig. 8.10:

r =

√
γΓR (ΓR − 2ΓL)

√

(4Γ2
L + Γ2

R) (4Γ2
L + 4ΓRΓL + ΓR (2γ + ΓR))

. (8.71)
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The third order cumulants:

c30 =
8Γ3

LΓ3
R

(2ΓL + ΓR)
5 (8.72)

c03 =
γ3ΓLΓR (ΓR − 2ΓL)

(2ΓL + ΓR)
5 (8.73)

give

ηe = 1 − 12ΓLΓR

(

4Γ2
L + Γ2

R

)

(2ΓL + ΓR)
4 (8.74)

ηp = 1 +
6γΓR

(

4Γ2
L − 2 (γ − 2ΓR) ΓL + ΓR (γ + ΓR)

)

(2ΓL + ΓR)
4 (8.75)

8.4.2 Phonon relaxation rate probe

However, the special electron-phonon correlation properties are not the only interesting feature

of this configuration. From a detailed study of the current, including a finite detuning:

c10 =
ΓLΓR

(

4γ∆2
ω + (γ + ΓR)

(

γ2 + ΓRγ + Ω2
))

ΓL (γ + ΓR) (γ2 + 2ΓRγ + 2Ω2 + Γ2
R + 4∆2

ω) + ΓR (4γ∆2
ω + (γ + ΓR) (γ2 + ΓRγ + Ω2))

(8.76)

c01 =
γΓL

(

4ΓR∆2
ω + (γ + ΓR)

(

Ω2 + ΓR (γ + ΓR)
))

ΓL (γ + ΓR) (γ2 + 2ΓRγ + 2Ω2 + Γ2
R + 4∆2

ω) + ΓR (4γ∆2
ω + (γ + ΓR) (γ2 + ΓRγ + Ω2))

, (8.77)

it can be seen that their second derivative obey:

∂2c10(01)

∂∆2
ω

∝ ΓR − γ, (8.78)

which is reflected in a resonance to anti-resonance crossover, cf. Fig. 8.11. As a consequence, one

can extract information on the sample-depending spontaneous phonon emission rate, γ, by externally

modifying the tunneling couplings to the collector[180].
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8.5 High Bias–Level-dependent tunneling

If the left and right barriers are equal, the tunneling events may differ on which level participates

due to the concrete orbital distribution of each level. Then, one have VLi = VRi for the couplings in (8.1)

and electronic transport can be parametrized by the tunneling rates Γu = 2π|VL2|2 and Γd = 2π|VL1|2
when the electron tunnels to or from the upper or the lower level, respectively[171].

The equations of motion for the generating function and the density matrix (after setting se =

sp = 1) are then given by the matrix

M(se, sp) =















−Γu − Γd seΓd 0 0 seΓu

Γd −Γd iΩ2 −iΩ2 spγ

0 iΩ2 −Γu+Γd+γ
2 + i∆ω 0 −iΩ2

0 −iΩ2 0 −Γu+Γd+γ
2 − i∆ω iΩ2

Γu 0 −iΩ2 iΩ2 −γ − Γu















(8.79)

in the same matrix form chosen to write (8.10).

The dependence on the level which is occupied introduces the effect of the driving field and

phonon emission in the electronic current even in the high bias regime. If, for instance, the tunneling

rate through the lower level is smaller than the one through the upper level, transport will be reduced

by phonon emission. The electronic and phononic currents are, in the general case:

c10 =
(Γu + Γd)

(

(Γu + Γd)
(

ΓuΓd + Ω2
)

+ γΓd (γ + Γd + 2Γu)
)

(γ + 3Γd) Γ2
u + (γ2 + 3Ω2 + 3Γd (2γ + Γd)) Γu + Γd (2γ2 + 2Γdγ + 3Ω2)

(8.80)

c01 =
γ
(

(Γu + Γd)
(

ΓuΓd + Ω2
)

+ γΓu

)

(γ + 3Γd) Γ2
u + (γ2 + 3Ω2 + 3Γd (2γ + Γd)) Γu + Γd (2γ2 + 2Γdγ + 3Ω2)

. (8.81)

As expected, if Γd < Γu, the emission of phonons inhibits the transport of electrons. However, the

oposite is not true: if Γu < Γd, electrons will rather tunnel through the lower level, thus avoiding phonon

emission. These two limiting cases will be further analyzed bellow.
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Fig. 8.12: Level dependent tunneling: (a) Fe (solid), Fp (dashed) and r (dotted) and (b) ηe (solid) and ηp

(dashed) in resonance for Γd = Γu = Γ = 5γ. The field introduces negative correlation. Ω̃ = Ω/Γ.
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8.5.1 Undriven case.

In the absence of the driving field, the difference in the tunneling rates of each level is enough

to define the sub- or super-Poissonian electronic statistics:

Fe = 1 +
2Γu

(

Γ3
d + (γ + Γd)Γ2

u

)

− 2Γd

(

γ2 + (γ + Γu)(γ + 4Γd)Γu

)

(2γΓd + (γ + 3Γd) Γu)
2 . (8.82)

Interestingly, in the absence of phonon relaxation, the Fano factor diverges when one of the levels becomes

uncoupled of the leads:

Fe(γ = 0) = 1 +
2

9

(

Γd

Γu
+

Γu

Γd
− 4

)

. (8.83)

Phonon emission diminish this effect, contributing to recover the sub-Poissonian shot noise observed in

the high bias regime, cf. Eq. (8.50):

Fe(γ → ∞) = 1 − 2Γd(Γd + Γu)

(2Γd + Γu)
2 . (8.84)

On the other hand, phononic statistics remain sub-Poissonian, independently of the configura-

tion:

Fp = 1 − 2γΓdΓu (γ + 2Γd + 2Γu)

(2γΓd + (γ + 3Γd) Γu)
2 . (8.85)

The electron-phonon correlation coefficient

r =

√
γΓu

√

(γ + Γu) (Γd + Γu) ((4γ2 + 8Γuγ + 9Γ2
u) Γ2

d + 2γΓu (γ + Γu) Γd + γ2Γ2
u)

(8.86)

×

(

(γ − Γd) Γ3
u + (γ + Γd)

2
Γ2

u + Γd

(

2γ2 + 3Γdγ − Γ2
d

)

Γu + 2γ (γ − Γd) Γ2
d

)

√

2 (γ + Γd) Γ3
u + (γ2 + 4Γdγ + Γ2

d) Γ2
u + 2Γd (γ + Γd)2 Γu + 2γ2Γ2

d

. (8.87)

shows how electrons and phonons can be uncorrelated by the manipulation of the tunneling rates. As a

simple example, r = 0 if Γu = Γd = 5γ, cf. Fig. 8.12.

8.5.2 High intensity limit: Ω → ∞
As the driving field couples the two levels, it tends to annihilate the particular behaviour intro-

duced by the different couplings to the leads. Thus, the high field intensity asymptotic electronic Fano

factor and skewness recover the case where all tunneling rates are the same:

Fe =
5

9
(8.88)

ηe =
7

27
. (8.89)

Similarly, one can compare the phononic Fano factor

Fp = 1 +
2γ

9 (Γd + Γu)
(8.90)

with Eq. (8.59). As expected, electron-phonon correlation becomes negative:

r = −
√

γ

5 (2γ + 9 (Γd + Γu))
. (8.91)
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Fig. 8.13: Schematic diagram of the proposed setup for a level dependent tunneling configuration where Γd ≪ Γu.

Finally, the third moment for the phononic statistics gives

ηp = 1 − 2γ (γ − 9Γd − 9Γu)

27 (Γd + Γu)
2 . (8.92)

8.5.3 Γd ≪ Γu limit:

The zero-dimentional contacts introduced in the previous section can also be employed to sim-

ulate energy-dependent tunneling. If both zero-dimentional contacts are aligned (by tuning the gate

voltages of the left and right QDs) with the same level of the QD, transport through the other level will

be strongly suppressed, cf. Fig. 8.13. Thus, the occupation of the off resonant level blocks the electronic

current. This configuration can be analogue to double quantum dot systems where only one of them is

coupled to the leads that have been proposed as qubits.

If the levels of the surrounding QDs are aligned with the upper level, in the absence of driving,

as soon as the lower level is ocuppied (by the relaxation of an electron from the upper level), transport

is canceled in a high bias version of dynamical channel blockade. Thus, electrons flow in bunches, while

phononic transport is highly supressed.

Again, the driving field removes the blockade, producing finite electronic and phononic currents

ce
Γu

=
cp
γ

=
Ω2

γ2 + γΓu + 3Ω2
(8.93)

thus reducing the super-Poissonian electron noise

Fe = 1 + 2
(γ + Γu)

2
(

Γuγ − Ω2
)

− 2Ω4

(γ2 + γΓu + 3Ω2)2
, (8.94)

which becomes sub-Poissonian for high enough driving intensities. For low intensities, the phononic noise

is sub-Poissonian, resembling the resonance fluorescence but, for Ω >
√

2Γu(2γ + Γu), the contribution

of the empty state turns it super-Poissonian:

Fp = 1 − 2γΩ2 2Γu(2γ + Γu) − Ω2

Γu (γ2 + 3Ω2 + γΓu)
2 . (8.95)

It is interesting to note that, though the electronic and phononic mean counts are proportional, their

variances are not, which is reflected in the electron-phonon correlation

c11 = γΩ2 γΓu(γ + Γu)2 − Ω2(γ2 + Γ2
u + 6γΓu) − Ω4

(γ2 + 3Ω2 + γΓu)3
(8.96)
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Fig. 8.14: Level dependent tunneling (a) Fe (solid), Fp (dashed) and r (dotted) and (b) ηe (solid) and ηp

(dashed) as a function of the driving intensity in resonance for γ = 0.1, Γd = 10−5 and Γu = 1.

that gives r < 1. The third cummulants give, for Ω = 0:

ηe =
γ2 + 6Γ2

u(γ + Γu)

γ2
(8.97)

ηp = 1. (8.98)

8.5.4 Γu ≪ Γd limit:

This case is similar to the previous one with the difference that the contribution of phonon

emission has the opposite effect: the upper level is very weakly coupled to the leads so its population

quenches the electronic current, cf. Fig. 8.15. Therefore, relaxation by phonon emission opens the lower

level channel.

Fig. 8.15: Schematic diagram of the proposed setup for a level dependent tunneling configuration where Γu ≪ Γd.

In the absence of driving, the electrons tend to be transferred through the lower level (and the

system is reduced to the single resonant level), so there is no chance for phonon emission. The driving
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Fig. 8.16: Level dependent tunneling (a) Fe (solid), Fp (dashed) and r (dotted) and (b) ηe (solid) and ηp

(dashed) as a function of the driving intensity in resonance for γ = 0.1, Γu = 10−5 and Γd = 1.

populates the upper level giving a finite probaility to phonons to be emitted:

ce =
Γd

(

γ2 + γΓd + Ω2
)

2γ2 + 2Γdγ + 3Ω2
(8.99)

cp =
γΩ2

2γ2 + 2Γdγ + 3Ω2
. (8.100)

The ac field modifies the electronic Fano factor typical from the single resonant level, Fe = 1/2, without

changing its sub-Poissonian character but for Γd >
√

2Ω ≫ γ:

Fe = 1 − 2
(

γ2(γ + Γd)2 + Ω2
(

3γ2 − Γ2
d

)

+ 2Ω4
)

(2γ2 + 2Γdγ + 3Ω2)2
. (8.101)

The phononic Fano factor

Fp = 1 +
2γΩ2

(

γ2 − 5Γdγ − 2Γ2
d + Ω2

)

Γd (2γ2 + 2Γdγ + 3Ω2)
2 (8.102)

can be turned from sub-Poissonian to super-Poissonian by increasing the field intensity if Γd >
1
4 (
√

33−
5)γ. The electron-phonon correlation is always negative:

c11 = −γΩ
2
(

2γΓ3
d +

(

8γ2 + Ω2
)

Γ2
d +

(

6γ3 + 4Ω2γ
)

Γd + Ω2
(

γ2 + Ω2
))

(2γ2 + 2Γdγ + 3Ω2)3
. (8.103)

The third electronic cumulant varies between ηe = 1
4 , for Ω = 0, and ηe = 7

27 for the high

intensity limit, but it shows a deep minimum for low voltages where it is negative, cf. Fig. 8.16. The

phononic one is removed by the ac field from ηp = 1 to the asymptotic limit:

ηp = 1 − 2γ(γ − 9Γd)

27Γ2
d

, (8.104)

for Ω → ∞. Then, the skewness of the phononic statistics can be tuned by the strength of the tunneling

couplings.
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Fig. 8.17: Color plot showing the different regions where one can find Fe, Fph ≥ 1 (white, appearing only for

Ω̃ = 0), Fe < 1, Fph ≥ 1 (light grey), Fe ≥ 1, Fph < 1 (dark grey) and Fe, Fph < 1 (black) by tuning µ and

Ω̃ = Ω/Γ, for Γ = ΓL = ΓR = γ.

8.6 Conclusions

A method for extracting the simultaneous counting statistics for electrons tunneling through a

two levels driven QD and phonons emitted in the intradot relaxation processes is presented. It allows to

calculate all the electronic and phononic cumulants well as the correlation between fermionic and bosonic

statistics, showing how they affect one to the other. For instance, phonon emission reduce the super-

Poissonian electronic shot noise in the dynamical channel blockade regime, while the sub-Poissonian

statistics for spontaneously emitted bosons form a driven two level system (resonance fluorescence) is

turned to super-Poissonian (typical for thermal particles obeying Bose-Einstein statistics) by effect of

electronic transport.

It is shown how the character of the electronic and phononic fluctuations can be manipulated

by tuning the external parameters like the intensity of the ac field, the chemical potencial of the right

lead or the tunneling barriers. By this kind of measurements, information about electron relaxation times

can be obtained. As shown in Fig. 8.17, all the combinations of sub- and super-Poissonian noise can be

selected this way.

The calculation of the electron-phonon correlations also helps to understand the dynamical be-

haviour of each concrete configuration and the importance of relaxation processes in transport properties.

In this sense, a configuration with a maximal electron-phonon correlation is proposed. Additionally, this

configuration can serve as a probe for the phononic emission rate.



Apendix A

Moments of the electron-phonon

counting statistics

In this appendix, the moments cmn calculated in chapter 8 are presented for completity and in

order to give there a clearer explanation of the physical processes.

A.1 Low Bias Regime

The first coefficients from the Taylor expansion are, for electrons:

c10 =
Ω2ΓLΓR

(γ2 + 2Ω2) (ΓL + ΓR)
x+O

(

x2
)

(A.1)

c20 = −Ω2Γ2
LΓ2

R

(

Ω2
(

γ2 + 2Ω2
)

− γ(γ − 2Ω)(γ + 2Ω) (ΓL + ΓR)
)

2
(

(γ2 + 2Ω2)
3
(ΓL + ΓR)

3
) x2 +O

(

x3
)

(A.2)

c30 =
Ω2Γ3

LΓ3
Rx

3

4 (γ2 + 2Ω2)
5
(ΓL + ΓR)

5

(

2
(

γ2 + 2Ω2
)2

Ω4 (A.3)

+γ (ΓL + ΓR)
(

24Ω6 + 6γ2Ω4 − 3γ4Ω2 + γ
(

γ4 − 10Ω2γ2 + 48Ω4
)

(ΓL + ΓR)
))

+O
(

x4
)

and, for phonons:

c01 =
γΩ2

γ2 + 2Ω2
− γΩ2ΓR

(

Ω2 + 3γ (ΓL + ΓR)
)

2
(

(γ2 + 2Ω2)2 (ΓL + ΓR)
) x+O

(

x2
)

(A.4)

c02 = − 3γ3Ω4

(γ2 + 2Ω2)3
(A.5)

− γ2Ω4ΓR

(γ2 + 2Ω2)
3

(

γ(γ2 − 16Ω2)

4 (γ2 + 2Ω2) (ΓL + ΓR)
− Ω2

4(ΓL + ΓR)2
− 23γ2 − 8Ω2

2(γ2 + 2Ω2)

)

x+O
(

x2
)

.

c03 =
4γ3Ω6

(

4γ2 − Ω2
)

(γ2 + 2Ω2)5
+O (x) . (A.6)

The electron-phonon correlation is given by:

c11 =
γΩ2ΓLΓR

(

γ
(

γ2 − 10Ω2
)

(ΓL + ΓR) − Ω2
(

γ2 + 2Ω2
))

2 (γ2 + 2Ω2)3 (ΓL + ΓR)2
x+O

(

x2
)

(A.7)
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A.1.1 High Intensity Limit

c30 =
64x3Γ3

LΓ3
R

(4ΓL + (4 − x)ΓR)
5 (A.8)

c03 = −xγ
3ΓR (4ΓL + (4 − 3x)ΓR) (2ΓL + (2 − x)ΓR)

(4ΓL + (4 − x)ΓR)
5 (A.9)

A.2 Dynamical Channel Blockade regime.

c10 =
2Ω2ΓLΓR

ΓR (γ2 + 2ΓRγ + 3Ω2 + Γ2
R) + ΓL (2γ2 + 3ΓRγ + 4Ω2 + Γ2

R)
(A.10)

c01 =
γΩ2 (2ΓL + ΓR)

ΓR (γ2 + 2ΓRγ + 3Ω2 + Γ2
R) + ΓL (2γ2 + 3ΓRγ + 4Ω2 + Γ2

R)
(A.11)

Considering, for simplicity, the case ΓL = ΓR = Γ, the following moments become:

c20 = −2ΓΩ2
(

4Ω4 +
(

2γ2 + 15Γγ + 9Γ2
)

Ω2 − Γ(γ + Γ)2(3γ + 2Γ)
)

(7Ω2 + (γ + Γ)(3γ + 2Γ))
3 (A.12)

c02 = − 3γ2Ω4
(

22Γ2 + 28γΓ− Ω2
)

Γ (7Ω2 + (γ + Γ)(3γ + 2Γ))
3 (A.13)

c11 = −γΩ
2
(

10Ω4 +
(

6γ2 + 101Γγ + 71Γ2
)

Ω2 − 3Γ(γ + Γ)2(3γ + 2Γ)
)

(7Ω2 + (γ + Γ)(3γ + 2Γ))
3 (A.14)

and

c30 =
2ΓΩ2

(7Ω2 + (γ + Γ)(3γ + 2Γ))
5

(

Γ2(γ + Γ)4(3γ + 2Γ)2

−2Γ(γ + Γ)2(3γ + 2Γ)
(

3γ2 + 20Γγ + 13Γ2
)

Ω2 (A.15)

+
(

8γ4 + 62Γγ3 + 545Γ2γ2 + 700Γ3γ + 241Γ4
)

Ω4 + 4
(

8γ2 + 46Γγ + 29Γ2
)

Ω6 + 32Ω8
)

c03 =
3γ3Ω6

(

−5Ω4 −
(

3γ2 + 110Γγ + 503Γ2
)

Ω2 + Γ
(

3γ3 + 1396Γγ2 + 2171Γ2γ + 850Γ3
))

Γ2 (7Ω2 + (γ + Γ)(3γ + 2Γ))
5 (A.16)

A.2.1 Undriven case.

Considering phonon emission and for small x, one can expand the first coefficients for the

electronic statistics:

c10 =
2ΓLΓR (γ + ΓR)x

ΓR (γ + ΓR) + ΓL (2γ + ΓR)
+ O

(

x2
)

(A.17)

c20 =
2Γ2

LΓ2
R (γ + ΓR) x

(ΓR (γ + ΓR) + ΓL (2γ + ΓR))
2 +O

(

x2
)

(A.18)

c30 =
2Γ3

LΓ3
R (γ + ΓR) x

(ΓR (γ + ΓR) + ΓL (2γ + ΓR))3
+O

(

x2
)

, (A.19)
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phononic statistics:

c01 =
γΓLΓRx

ΓR (γ + ΓR) + ΓL (2γ + ΓR)
+O

(

x2
)

(A.20)

c02 = − γ2Γ2
LΓ2

R (γ + 2ΓL + 2ΓR)x2

(ΓR (γ + ΓR) + ΓL (2γ + ΓR))
3 +O

(

x3
)

(A.21)

c03 = − γ2Γ2
LΓ2

R (γ + 2ΓL + 2ΓR)x2

(ΓR (γ + ΓR) + ΓL (2γ + ΓR))3
+O

(

x3
)

. (A.22)

and for electron-phonon correlations:

c11 =
γΓLΓR (γ + ΓR) (2ΓL + ΓR)x

(ΓR (γ + ΓR) + ΓL (2γ + ΓR))2
+O

(

x2
)

(A.23)

A.2.2 High intensity limit

c30 =
64(x+ 1)3Γ3

LΓ3
R

(4ΓL + (3 − x)ΓR)
5 (A.24)

c03 = − (x+ 1)γ3ΓR

(

8Γ2
L + 2(3 − 5x)ΓRΓL +

(

3x2 − 4x+ 1
)

Γ2
R

)

(4ΓL − (x− 3)ΓR)
5 . (A.25)

A.3 High Bias regime.

Electron statistics:

c10 =
2ΓLΓR

2ΓL + ΓR
(A.26)

c20 = − 4Γ2
LΓ2

R

(2ΓL + ΓR)3
(A.27)

c30 =
16Γ3

LΓ3
R

(2ΓL + ΓR)5
. (A.28)

Phonon statistics:

c01 =
γΓL

(

2Ω2 + ΓR(γ + 2ΓR)
)

(2ΓL + ΓR) (γ2 + 2Ω2 + 3γΓR + 2Γ2
R)
. (A.29)

The expressions for the second order moments are quite lengthy, so considering the simpler case, ΓL =

ΓR = Γ:

c01 =
γΓ(γ + 2Γ) + 2γΩ2

3(γ + Γ)(γ + 2Γ) + 6Ω2
(A.30)

c02 = −γ
2
(

−2Ω4 +
(

−γ2 + 17Γγ + 14Γ2
)

Ω2 + Γ(γ + 2Γ)2(γ + 4Γ)
) (

γΓ + 2
(

Γ2 + Ω2
))

27Γ (2Ω2 + (γ + Γ)(γ + 2Γ))
3 ,(A.31)
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A.3.1 Undriven Case

Statistics for phonons:

c01 =
γΓLΓR

(γ + ΓR) (2ΓL + ΓR)

ΓL=ΓR−→ γΓ

3(γ + Γ)
(A.32)

c02 = −γ
2Γ2

LΓ2
R (γ + 2ΓL + 2ΓR)

(γ + ΓR)
3
(2ΓL + ΓR)

3

ΓL=ΓR−→ −γ
2Γ(γ + 4Γ)

27Γ(γ + Γ)3
(A.33)

c03 =
γ3Γ3

LΓ3
R

(

2γ2 + 8Γ2
L + 7ΓR (γ + ΓR) + 2ΓL (3γ + 7ΓR)

)

(γ + ΓR)
5
(2ΓL + ΓR)

5 , (A.34)

A.4 High Bias-Step Configuration

In the absence of driving field, an electron that enters the upper level can only be transferred to

the collector after being relaxed by the emission of one phonon. This makes the electronic and phononic

dynamics completely identical:

c10 = c01 =
γΓLΓR

γΓL + γΓR + ΓLΓR
(A.35)

c20 = c02 = −γ
2Γ2

LΓ2
R(γ + ΓL + ΓR)

(γΓL + γΓR + ΓLΓR)3
(A.36)

c11 = γΓLΓR
γ2Γ2

L + γ2Γ2
R + Γ2

LΓ2
R

(γΓL + γΓR + ΓLΓR)3
(A.37)

c30 = c03 = γ3Γ3
LΓ3

R

2
(

γ2 + Γ2
L + Γ2

R

)

+ 3(γΓL + γΓR + ΓLΓR)

(γΓL + γΓR + ΓLΓR)5
(A.38)

In the presence of an ac field the first moments are:

c10 =
ΓLΓR

(

γ2 + ΓRγ + Ω2
)

ΓR (γ2 + ΓRγ + Ω2) + ΓL (γ2 + 2ΓRγ + 2Ω2 + Γ2
R)

(A.39)

c01 =
γΓL

(

Ω2 + ΓR (γ + ΓR)
)

ΓR (γ2 + ΓRγ + Ω2) + ΓL (γ2 + 2ΓRγ + 2Ω2 + Γ2
R)

(A.40)

c20 =
c102ΓLΓR

(

2γ2 + 2ΓRγ + Ω2
)

(γ + ΓR) (ΓR (γ2 + ΓRγ + Ω2) + ΓL (γ2 + 2ΓRγ + 2Ω2 + Γ2
R))

(A.41)

−c210
γ3 + 2Ω2γ + ΓR

(

7γ2 + 7ΓRγ + 4Ω2 + Γ2
R

)

+ ΓL

(

5γ2 + 4Ω2 + 5ΓR (2γ + ΓR)
)

(γ + ΓR) (ΓR (γ2 + ΓRγ + Ω2) + ΓL (γ2 + 2ΓRγ + 2Ω2 + Γ2
R))

c02 =
c01γ

(

(γ + ΓR)Ω2 + 2ΓL

(

Ω2 + 2ΓR (γ + ΓR)
))

(γ + ΓR) (ΓR (γ2 + ΓRγ + Ω2) + ΓL (γ2 + 2ΓRγ + 2Ω2 + Γ2
R))

(A.42)

−c201
γ3 + 2Ω2γ + ΓR

(

7γ2 + 7ΓRγ + 4Ω2 + Γ2
R

)

+ ΓL

(

5γ2 + 4Ω2 + 5ΓR (2γ + ΓR)
)

(γ + ΓR) (ΓR (γ2 + ΓRγ + Ω2) + ΓL (γ2 + 2ΓRγ + 2Ω2 + Γ2
R))

and, considering ΓL = ΓR = Γ, for simplicity:

c11 =
γ
(

Γ(γ + Γ)3
(

2γ2 + Γ2
)

− γ(γ − 11Γ)Γ(γ + Γ)Ω2 −
(

γ2 + Γγ − 4Γ2
)

Ω4 − Ω6
)

(3Ω2 + (γ + Γ)(2γ + Γ))
3 . (A.43)



Apendix B

Single resonant level shot noise

Let consider a one level quantum dot connected to the left lead (with infinite chemical potential)

by a tunneling rate ΓL and to the right one with fΓR, where f is the Fermi function describing the right

lead. Written in matricial form, the density matrix is represented by (ρ00, ρ11)
T , where |0〉 and |1〉 denote

the empty and one electron states. The density matrix is then
(

ρ̇00

ρ̇11

)

=

( −ΓL − (1 − f)ΓR fΓR

ΓL + (1 − f)ΓR −fΓR

)(

ρ00

ρ11

)

, (B.1)

with the stationary solution

ρ00 =
fΓR

ΓL + ΓR
(B.2)

ρ11 =
ΓL + (1 − f)ΓR

ΓL + ΓR
. (B.3)

The generating function satisfies the equation of motion, Ġ(t, se) = M(se)G(t, se), where:

M(se) =

(

−ΓL − (1 − f)ΓR fΓRse

ΓL + 1
se

(1 − f)ΓR −fΓR

)

.

Following the proccedure shown in chapter 8, one can obtain the moments of the distribution function.

The first ones, that allow to calculate the mean current and shot noise, are the first moments are:

c1 =
fΓLΓR

ΓL + ΓR
(B.4)

c2 = − c21
ΓL + ΓR

. (B.5)

Thus, the Fano factor is[176]:

F = 1 − 2fΓLΓR

(ΓL + ΓR)2
(B.6)

with the limiting cases[151]:

F (f = 1) =
Γ2

L + Γ2
R

(ΓL + ΓR)2
ΓL=ΓR−→ 1

2
(B.7)

F (f = 0) = 1. (B.8)
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Apendix C

Bessel functions

Here, some properties of the Bessel functions of the first kind that are useful for the analytical

treatment of photon-assisted processes are presented, considering real aguments, α.

Limit for α→ 0:

Jν(α) ∼ 1

ν!

(α

2

)ν

when (C.1)

Ascending series:

Jν(α) =
(α

2

)ν ∞∑

k=0

(

−1

4

)k
1

k!ν!
(C.2)

Recurrence relation:

J ′0(α) = −J1(α) (C.3)

Generating function:

e
1
2
α(t−1)/t =

∞
∑

k=−∞
tkJk(α) (C.4)

Upper bounds:

|Jν(α)| ≤ 1 (ν ≥ 0), |Jν(α)| ≤ 1√
2

(ν ≥ 1) (C.5)

Normalization:

1 = J2
0 (α) + 2

∞
∑

k=1

J2
k (α) (C.6)

Asymptotic limits for |α| → ∞:

Jν(α) =

√

2

πα
cos(α− νπ

2
− π

4
) +O(α−1) when (C.7)

Asymptotic limits for ν → ∞:

Jν(α) ∼ 1√
2πα

(eα

2ν

)ν

when α→ ∞ (C.8)

Zeros:
J0(α) 2.4048 5.5201

J1(α) 3.8317

J2(α) 5.1356
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9. R. Sánchez, C. López Mońıs, J. Iñarrea and G. Platero, Electron Spin Resonance in Double Quantum

Dots, Phys. E, in press.

10. R. Sánchez, G. Platero and T. Brandes, Phonon Emission in Two Levels Quantum Dots, Phys. E,

in press.

11. R. Sánchez, F.J. Kaiser, S. Kohler, P. Hänggi and G. Platero, Shot Noise in Spin Pumps, Phys. E,

in press.
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