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Resumen

�Dígame Sr Hoover, ¾cuáles son sus intereses?

Señora, soy ingeniero.

¾En serio? Le había tomado por un caballero.�

Herbert Hoover

En el campo del procesamiento de imagen médica, los datos volumétricos
generados por métodos de microscopía 3D como resonancia magnética (MRI
en sus siglas en inglés), tomografía por emisión de positrones (PET en sus
siglas en inglés) y tomografía axial computarizada (CT en sus siglas en inglés)
presentan extensas aplicaciones en la visualización y el análisis de órganos.
Los métodos de tratamiento de imagen 2D, como por ejemplo la microscopía
óptica, generan típicamente series de secciones con una resolución mucho más
alta que los escáners de MRI o CT. La reconstrucción tridimensional de esas
secciones bidimensionales se ha convertido por lo tanto en una herramienta
importante para el estudio de las esctructuras anatómicas en 3D. La principal
motivación de este trabajo de tesis es la necesidad de métodos e�cientes
y automáticos para la reconstrucción de muestras gruesas de tejido desde
secciones histológicas teñidas.

La mayoría de los algoritmos que se presentan en este manuscrito, y
que son de hecho la principal contribución de esta tesis, están enmarcados
en R3D2, un sistema para el análisis morfológico y molecular simultáneo
de muestras de tejido grueso (Fernandez-Gonzalez et al., 2002; Fernandez-
Gonzalez, 2006). Este sistema completamente integrado se compone de un
microscopio de campo claro asistido por ordenador y una aplicación JAVA de
visualización y análisis que permite una e�ciente adquisición, alineamiento,
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Resumen

anotación, reconstrucción tridimensional y ánalisis de las estructuras de in-
terés en secciones gruesas de tejido de diferentes especímenes.

Las principales líneas de trabajo de esta tesis son el registro de imá-

genes y la reconstrucción 3D. El registro de imágenes se re�re aquí al
proceso de transformación de diferentes conjuntos de datos �secciones his-
tológicas en nuestro caso� para llevarlos al mismo sistema de coordenadas.
Para lectores interesados es muy recomendable el estudio detallado del campo
que llevan a cabo en su artículo Zitová and Flusser (2003). Por lo tanto este
proceso, y de hecho nos referiremos a él de este modo en algunos momentos
de la tesis, puede llamarse también alineamiento de imágenes. Además, dado
el interés general existente en el campo de la Biomedicina hacia los méto-
dos de alinemiento de imágenes, hemos extendido uno de nuestros nuevos
métodos de registro de pares de secciones histológicas para poder registrar
secuencias enteras de imágenes 2D de todo tipo.

La tesis está organizada del siguiente modo: en el Capítulo 2 se presentan
nuevos métodos para el alineamiento de secciones histológicas, primero con
una transformación global de cuerpo rígido y después con un re�namiento lo-
cal basado en la correlación de las imágenes. El Capítulo 3 describe un nuevo
método para el alineamiento no lineal de pares de imágenes. El Capítulo 4
extiende el método no lineal para pares de imágenes descrito en el capítulo
anterior para alinear secuencias de imágenes 2D. Finalmente, en el Capítulo
5 se presenta el protocolo completo para producir reconstrucciones tridimen-
sionales de secciones histológicas y se muestran diferentes aplicaciones sobre
muestras de tejido de glándula mamaria completa..
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1
Introduction

�Tell me, Mr Hoover, what are your interests?

Madam, I am an Engineer.

Really? I took you for a gentleman.�

Herbert Hoover

1.1 3D data

In medical imaging, volumetric data generated by 3D microscopy methods
such as magnetic resonance imaging (MRI), positron emission tomography
(PET) and computed tomography (CT) have wide applications in the vi-
sualization and analysis of organs. 2D imaging methods, such as optical
microscopy, typically generate serial sections with much higher resolution
than MRI or CT scans. The 3D reconstruction of these 2D sections has
therefore become an important tool for understanding anatomical structures
in 3D. The main motivation of this work is the need for e�cient and auto-
matic methods to reconstruct thick tissue samples from stainned histological
sections.

1.2 R3D2

Most of the algorithms presented in this manuscript �which are indeed
the main contribution of this thesis� are framed in R3D2, a system for
simultaneous morphological and molecular analysis of thick tissue samples
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Figure 1.1: 3D reconstruction protocol. The di�erent steps (sectionnig, ac-
quisition, alignment, annotation, markings grouping and reconstruction) are
illustrated.

(Fernandez-Gonzalez et al., 2002; Fernandez-Gonzalez, 2006). This com-
pletely integrated system is composed of a computer-assisted microscope
and a JAVA-based image display, analysis, and visualization program that
allows e�cient acquisition, alignment, annotation, three-dimensional recon-
struction, and analysis of structures of interest in thick sectioned tissue spec-
imens. Figure 1.1 shows a graphical explanation of the protocol followed by
the system.

1.3 Objetives of this thesis

The main lines of this thesis work are image registration and 3D recon-

struction. Image registration refers to the process of transforming di�erent
sets of data �histological sections in our case� into the same coordinate
system. We recommend the survey article by Zitová and Flusser (2003) for
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a detailed overview. Thus this process can also be called image alignment.
Furthermore, and given the general interest in Biomedicine in image align-
ment methods, we extended one of our novel methods for registering pairs
of histological sections to register whole sequences of 2D images of any sort.

This manuscript is organized as follows. Chapter 2 presents new methods
to align histological sections, �rst with a global rigid-body transformation
and then with a local correlation-based re�nement. Chapter 3 describes a
new method for nonlinear registration of image pairs. Chapter 4 extends the
nonlinear pairwise registration method described in the previous chapter to
align 2D image sequences. Finally, Chapter 5 presents the complete protocol
to produce three-dimensional reconstructions from serial sections and shows
di�erent applications using mammary gland tissue samples.
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2
Rigid and Local Registration

�Computer Science is no more about computers than astronomy
is about telescopes.�

Edsger W. Dijkstra

Abstract

We present a method for automatically registering 2D images of histological
serial sections. This method combines two independent algorithms. The
�rst one consists of a hierarchical, multi-resolution rigid body registration.
The second uses non-linear local correlation-based registration to re�ne the
result of the previous algorithm. Both methods present two variants, one
that is applied to the gray scale images and makes use of the entire image
information, and another one that reuses the result from the segmentation of
the most relevant structures in the image. These methods could be applied
independently, although are more e�ective when combined. In this chapter
we present the algorithms and evaluate their performance by registering fully
sectioned tissue biopsies of human mammary gland and breast cancer tissue
samples.

2.1 Introduction and Antecedents

Histological tissue sections are the main source of information in diagnostic
Pathology. By carefully evaluating the morphology of the tissues at di�erent
levels of resolution, the Pathologist can detect changes in the architecture of
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the tissue and relate them to their likely causes. Observing the morphology
of the tissue requires appropriate tissue processing and staining. Namely, to
preserve the morphology of the anatomical structures, the tissue is �rst �xed
to eliminate autolytic enzymes and avoid bacterial decomposition. After
�xation, the tissue is usually embedded in a rigid or semirigid material that
gives consistency to the tissue, and allows cutting it into thin slices. Para�n
is the most commonly used embedding product. After embedding, the tissue
is cut into thin slices using a microtome. The sections are then attached to
glass slides using a mounting agent such as grenetine. The slices dry o� and
the grenetine works as a tissue adhesive. Then the slides are stained to allow
visualization of structures of interest. The user can choose among several
staining methods, depending on the tissue source and the structures being
observed. Hematoxylin and Eosin (H&E) staining, which labels both the
nuclei an cytoplasm of the cells is routinely used when combined architectural
and cell level morphological information is required.

To this date, the pathological study of the tissue structure is done in
two dimensions, by observing the tissue using a conventional microscope.
This causes a loss of the tissue's architectural information, which is re-
duced to �at samples of complex three-dimensional objects. Very rudimen-
tary three-dimensional information can be obtained by observing multiple
�consecutive� tissue sections. This method can only provide very gross,
simpli�ed information of the actual tissue structures because of the complex-
ity of the most tissues and the limited ability of the human brain to correctly
report topological quantitative 3D information.

We believe that a completely three-dimensional visualization and quan-
ti�cation of the tissue, using computer-based reconstruction of the structures
of interest, will re�ne the histo-pathological diagnosis of the tissues, allowing
detection of small morphological changes that would be missed using stan-
dard two-dimensional analysis. To this end, we developed a computerized
microscopy system (Fernandez-Gonzalez et al., 2002) (called R3D2 ) that
semi-automates the tasks involved in reconstructing tissue structures from
fully sectioned tissue blocks. The system scans entire sections of tissue and
provides a set of interactive tools for registering (Arganda-Carreras et al., 1-5
Sept. 2004) and segmenting (Fernandez-Gonzalez et al., 2004) the images of
the scans, to then create 3D surface renderings of the structures of interest.

A topologically accurate rendition of the tissue requires all the images of
the sections to be correctly registered (i.e. aligned), to ensure the continuity
of the structures crossing several sections. Manually registering each pair of
sections is a relatively simple task that involves either manually rotating and
translating a half-transparent image over the reference image (Haas and Fis-
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cher, 1997; Hofstadler-Deiques et al., 2005), or marking sets of corresponding
points on both images and calculating the a�ne transform that aligns the
images (Capuco et al., 2002; Fiala, 2005). However, this fully manual ap-
proaches become cumbersome when registering completely sectioned tissue
blocks, made of hundreds of sections and adds a component of error to the
registration, since the user can bias the registration by incorrectly selecting
the �ducial points or the corresponding rotation and translation values. Fi-
nally, these approaches are not accurate enough since they assume that the
registration between consecutive sections is an a�ne transformation, typical
from rigid bodies. However, the preparation steps may introduce non-linear
e�ects that can not be corrected for using an a�ne transformation as de-
scribed by Deverell et al. (1989), Schormann et al. (1995) and Brey et al.
(2002). Examples of these e�ects are missing sections and/or non-linear
distorting e�ects, such as tissue folding, stretching, tearing... To add even
more di�culty to the registration, the resolution of the images in the ver-
tical directions (i.e. the distance between sections) is considerably lower in
this modality than it is in other 3D imaging modalities. This causes sub-
stantial di�erences between the same structures in consecutive sections and
consequently, a more complex registration.

In this chapter we present an automatic registration method that ad-
dresses those problems, and that has been implemented in a computationally
e�cient way to fast and accurately register images of consecutive sections of
fully sectioned tissue blocks. A full description of the methods applied in this
project is given in Section 2.2. Section 2.2.1 describes the image acquisition
process and Sections 2.2.2 and 2.2.3 respectively explain the rigid and local
registration methods with their two possible variants. The results from both
methods are presented in Section 2.3. Finally, the discussion and conclusion
are dealt with in Sections 2.4 and 2.5.

2.2 Methodology

2.2.1 Image Acquisition

We used formalin �xed-para�n embedded tissue blocks, which contained
either entire mouse mammary glands or human tissue biopsies of normal
breast tissue and breast tumors. The blocks were fully sectioned at 5 micron
thickness and each section stained with H&E. The number of sections per
block depended on the thickness of the tissue block, ranging from the low
tens to the low hundreds. Low-resolution (2.5x magni�cation) multiple-
snapshot images of all the sections were taken using a computed assisted wide
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(a)

(b)

Figure 2.1: Background correction. 2.1a shows the original image obtained
from multiple consecutive snaps shots. 2.1b shows the background corrected
version of 2.1a.

�eld microscope (Fernandez-Gonzalez et al., 2002). The size of the images
depended on the size of the tissue sections, typically from 3000 × 3000 to
5000× 5000 pixels. A background correction algorithm was used to correct
a mosaic-like e�ect of the images due to uneven illumination of the �eld of
view of the microscope (see example in Figure 2.1). The sections were saved
in either TIFF or ICS (Dean et al., 1990) format (gray scale mode) and
grouped in sets of related images that we will refer to as cases.

2.2.2 Rigid Registration

A rigid-body registration between two images can be accomplished manually
by marking pairs of corresponding points �landmarks� on the images and
calculating the rigid-body transformation that minimizes the lineal quadratic
distance between the corresponding points of both images. Maurer et al.
(1996) demonstrated that the registration error is inversely proportional to
the number of �ducial points used to de�ne the transformation. Manually
registering all the sections of a entire tissue block could become extremely
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tedious when the cases are made of tens to hundreds of sections, even if only
a few pairs of points is used to calculate the transformation between each
pair of images.

Bossert (2005) proposed a registration method for histological sections
where the landmark points are assumed to naturally exist. Therefore, only
histological preparations providing nuclei or comparable structures �that
extend over several sections and are capable of being extracted using methods
of pattern recognition� could be registered by this algorithm.

Two methods appeared recently to automatically extract common fea-
tures from two images, what could be used for automatic landmarks ex-
traction. These methods are the Scale-Invariant Feature Transform (SIFT)
by Lowe (2004) and Multi-Scale Oriented Patches (MOPs) by Brown et al.
(2005). However, these methods do not work always on histological sections,
since they require a similar histogram in both images, i.e. the same tissue
staining, and they are really dependent on the image size and section thick-
ness. Too thick sections make the methods to fail because they are expecting
images with very similar objects in di�erent positions.

Automated Image Registration (AIR) by Woods et al. (1998) is an open
source collection of C programs and subroutines designed to align images
within and across subjects (mainly from positron emission tomography �
PET� and magnetic resonance imaging �MRI) and within and sometimes
across imaging modalities (PET-MRI). It has been used in some works to
register histological sections (Brey et al., 2002). However, it provides a
local solution and depends on a set of parameters that need to be tuned
for every couple of images. Maes et al. (1997) proposed another method
for multimodality image registration on computed tomography (CT), PET
and MRI small images (256× 256 pixels). They used mutual information or
relative entropy as matching criterion and Powell's optimization to �nd as
well a local solution.

Our goal is to automate the rigid-body registration of our large images to
achieve a global solution and integrate it in the system. We have done it by
combining the original ideas of Borgefors (1988) and Hult (1995), optimized
and customized for our histological images. Following them, the automation
can be solved using optimization methods over global similarity measures
between each pair of images. These similarity measures can be based on
the cross-correlation between the images or on distance measures calculated
from the structures of interest as de�ned by the relevant image gradients
(Hult, 1995). Due to the large size of the images, we used a hierarchical
pyramidal approach to the problem (Borgefors, 1988), by working with dif-
ferent levels of image subsampling. Thus di�erent versions of the images,
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of gradually increasing resolution are used. In every level of this pyramid
the rigid-body transformation of the source image that better matches the
target image is calculated, thus gradually approaching the best registration
between the images. In our case, the top of the pyramid corresponds to the
most subsampled version of the image, and its bottom to the original image,
i.e. the full resolution image. The pyramid has n levels, being 2n−1 the sub-
sampling factor on the top level, the �rst one to be processed, and 2i−1 the
factor used in the ith level. The start point in each level is the registration
result obtained using the previous level. This way the system uses reduced
versions of the images thus decreasing signi�cantly memory use. Using sub-
sampled versions of the images introduces an error in the registration that
is proportional to the subsampling factor. However, this error decreases in
every iteration of the algorithm.

The algorithm used to calculate the optimum registration at each pyra-
mid level (Figure 2.2) works as follows: First both target and source images
are subsampled according to the corresponding factor (determined by the
pyramid level). Then a Gaussian �lter is applied to remove image noise.
Next a Sobel operator is applied that calculates 2D gradients of the images,
thus detecting the areas with high gradient, which usually correspond to
the image edges. To determine the location of the relevant image edges,
and create a binary contour map, the images are then binarized applying
an auto-thresholding function that assigns white value �255� to the pixels
that belong to relevant edges of the images, and black value �0� to all the
other pixels. This function is an adaptive threshold based on the work of
Otsu (1979). The function sets an initial test threshold value and computes
the averages of the pixels below and above this value, and the composite av-
erage of both averages. Then the test threshold value is increased iteratively
until it is larger than the composite threshold (Rasband, 1997-2009). After
thresholding, the distance transform of the target image alone is computed,
where pixels corresponding to the edges in the target image will have high
pixel values, and the rest of pixels will present gradually smaller values as
they are located increasingly and farther from the edges. This is actually the
inverse of the classical distance transform, where the pixel values increase
with the distance to the edges.

After both target and source images have been processed as described,
a matching function is applied between the target image and several rigid-
body transformations of the contour image. Let Pc be the set of pixels of
the source contour image, Pd the set of pixels of the target distance image,
pc[i] the value of the ith pixel in the contour image and pd[j] the value of the
jth pixel in the distance image. The matching value m of our contour and
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Figure 2.2: Image preprocessing for rigid registration. Both source and target
images are subsampled (according to the pyramid level) and �ltered with a
Gaussian kernel to remove noise, their edges are detected by a Sobel operator,
and both images are also binarized by an auto-thresholding function. Then
a matching function is applied between the source image after a rigid-body
transformation and an inverse distance transform version of the binarized
target image.
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distance images is de�ned by

m(α, tx, ty) =
∑
pc[i] 6=0

pd[j], ∀pc ∈ Pc (2.1)

where α, tx and ty are the parameters of the rigid transformation applied
to the contour image: α is the angle of the rotation, and tx and ty are the
translations in x- and y- directions. The (0, 0) coordinate for the transla-
tions corresponds to the situation where the upper left corner of both images
coincides. The value j is the pixel index in the distance image that corre-
sponds to the pixel i in the contour image after applying the rigid-body
transformation. Then if pixel i is de�ned by coordinates (xi, yi, 1), the coor-
dinates (xj , yj , 1) corresponding to pixel j are calculated by a simple matrix
multiplication:  xj

yj
1

 =

 cosα −sinα tx
sinα cosα ty

0 0 1

 xi
yi
1

 (2.2)

Since not every pair of coordinates in the contour image has a valid pair
of coordinates in the distance image after its transformation, the value of
the matching function for those coordinates that do not match any pixel in
the distance image is set to 0.

Instead of applying all possible rotations and translations to the contour
image, to then calculate their matching value, the rotations and translations
used depend on the level of the pyramid. This is done to minimize the time
used to �nd the maximum of the matching function. Namely, in the �rst
pyramid level the system checks all possible rotations from −180◦ to 170◦ in
steps of 10◦, performing all possible translations that guarantee at least 50%
overlap between contour and distance images, in steps that depend on the
image dimensions and resolution. This 50% minimum overlap is achieved by
assigning the 25% of the image width and height to the limits in x- and y-
translations. Thus the minimum translation value in the x- axis corresponds
to −25% the image width and the maximum to +25% the image width.
The same limits apply to the y- direction with the image height. These
x and y limits de�ne the space of search for the translations. Since the
image is rotated, this space is also transformed in order to preserve the same
orientation as the image and guarantee the overlap after the image rotation.
The size of the translation steps is determined by the image resolution which
is the measure of the pixel information, but also by the image dimensions
since an upper limit is imposed in order to avoid large steps in small images.
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The maximum of the matching function after trying all possible rotations
and translations is then recorded for the pyramid level. The error of this
measurement remains under control and will be gradually reduced in the
following levels. The alignment (i.e. rotation and translation) that produced
the maximum of the matching function in the �rst pyramid level is then
used as the starting point for the second level, where the system reduces the
range of translations and rotations to a neighborhood of the previous result.
Furthermore, the size of the rotation and translation steps will be decreased
in order to re�ne the previous registration. The neighborhood dimensions
are directly related to the size of the steps that were used in the previous
level. Thus, if steps of 10◦ were used in the previous rotation, the new space
of search will be a symmetric 20◦ neighborhood of the best angle obtained in
the previous pyramid level. The same rule can be extended to the translation
steps taking now into account the correspondent change in the resolution of
the image.

The search of the maximum level by level is performed until the error
falls under a pre-determined value or until the requested number of pyramid
levels is completed. A detailed graphical description of the method is shown
in Figure 2.3.

Using this multi-resolution hierarchical algorithm, the best matching is
found progressively, by �rst approaching it by using low-resolution images
and large search areas, and then re�ning it by using high-resolution images
and reduced search spaces. Consequently, the reduction of the error in ev-
ery pyramid level is implicit, since lower levels involve more resolution and
therefore more image information. The e�ciency of the algorithm is also
guaranteed, since the size of the space of search decrease as the size of the
subsampled images is increased.

We proposed a variation of the rigid-body registration, called shape rigid
registration, which is a natural extension of the method that we just pre-
sented. This second method can be used when the images to be registered
have been segmented and can be represented as a binary set of contours cor-
responding to the edges of the structures of interest. Therefore, in the process
already described and shown in Figure 2.2, the results of the auto-threshold
of the source and target images are replaced by the binary representation
of the segmented contours of the images. The rest of the algorithm does
not change from what has been already described. This method presents
two general advantages over the previous one. First, assuming that the seg-
mented contours correspond only to the relevant structures in the image, the
matching between the images will be based only on relevant image informa-
tion, thus mitigating the e�ect of noise or artifacts. The second advantage
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Figure 2.3: Rigid registration algorithm. The method begins by the top of
the pyramid and it is iterated until the stop condition is achieved, updating
the limits and the steps applied to the rigid-body transformation according
to the correspondent pyramid level and the previous parameters.
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of this method is its increased e�ciency. As the image preprocessing (Figure
2.2) is reduced to the last two steps and the number of multiplications in
(2.1) is drastically reduced since most of the pixels in the binary image are
black. Memory use can be further reduced by replacing the actual binary
images by a chain-code representation of the segmented contours. Figure
2.4 shows the di�erence between the binary image obtained by the standard
rigid registration method and the shape rigid registration method.

Our methods (Arganda-Carreras et al., 1-5 Sept. 2004) parallel the Hi-
erarchical Chamfer Matching Algorithm (HCMA) of Borgefors (1988) and
Hult (1995) algorithms. While the HCMA works with the entire grayscale
image information but does not specify the way to obtain the contours,
Hult method attempts to achieve a binary image containing only the rele-
vant information from the gray scale image, which is ideally the input to
HCMA. Both methods begin the search of the optimum registration from
predetermined start positions and consequently could converge in local max-
ima instead of the global maximum of the matching function. Our algorithm
(both the standard and the shape-based) instead, guarantees �nding a global
maximum with an error that is de�ned by the resolution of the bottom layer
of the pyramid.

2.2.3 Local Registration

As already mentioned in the introduction, manual tissue sectioning can pro-
duce non-linear deformations in the tissue, such as folding, stretching, tear-
ing... Occasionally also, due to the tissue conditions or improper mainte-
nance of the microtome, some sections can be damaged beyond recovery and
have to be disposed, thus introducing gaps in the sequence of sections of the
case. All these e�ects may cause large misalignment between areas of the
section that cannot be corrected for solely by applying a global a�ne trans-
formation. Many non-rigid registration methods have been already proposed
in the literature (Dawant, 2002; Lester and Arridge, 1999; Hajnal et al., 2001;
Maintz and Viergever, 1998). Speci�c solutions based on complex transfor-
mations, such as elastic registration (Rohr, 2000; Sorzano et al., 2005; Auer
et al., 2005) or piecewise registration (Pitiot et al., 2003, 2006), can be too
expensive in computation time given the dimensions of the images of our
histological sections. Furthermore, this type of methods do not di�erentiate
between what can be consider natural distortions in the tissue �for instance
a change in the orientation of a duct� from strong arti�cial distortions
�tissue stretching, folding, etc. Therefore we opted for a local registra-
tion solution that can produce accurate results in a reasonable time without
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(a) (b) (c)

Figure 2.4: Graphical example of the reduction in complexity of the rigid
registration algorithm when using as input a binary image containing only
the most representative contours of the structures of interest or containing
all the gradient information above a modi�ed Otsu threshold. (2.4a) Histo-
logical section image already segmented. The contours from the structures of
interest are represented in di�erent colors. (2.4b) Binary image constructed
from the contours. (2.4c) Binary image obtained with the pre-processing
described in Section 2.2.2 (subsampling and Gaussian �ltering, application
of the Sobel operator and modi�ed Otsu thresholding).
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large image deformations unless they are strictly necessary. The algorithm
locally re�nes the registration in the areas of the structures of interest based
on their cross-correlation. This way we preserve the natural deviations on
the morphology of the tissue while correcting the misalignments produced
during the rigid registration. If the correlation coe�cient between the lo-
cal areas is too large �compared to the average in the group of structures
being re�ned� we substitute the correction vector by the average vector of
its neighborhood. Ourselin et al. (2001) proposed a blockmatching strategy
that allows to compute local displacements between the sections, but then
they collected these local measures to estimate a global rigid transformation,
what we already have from the method described in Section 2.2.2.

Our local registration algorithm calculates a common bounding box for
area or sub-image of the section and calculates a correction vector for each
of these sub-images. The correction vector is calculated using the cross-
correlation between the bounding box in the target image and the corre-
sponding bounding box in the source image. This source bounding box is
de�ned from the rigid registration parameters if a previous rigid-body regis-
tration has been applied before to the image.

This alignment algorithm uses the Phase Correlation Method (PCM)
from Kuglin and Hines (1975), a popular method to calculate translational
o�sets between images. PCM is based on the Fourier shift theorem which
states that a shift between two images results in a linear phase di�erence
in the Fourier transform of both images. Therefore, the correlation between
these areas or sub-images can be e�ciently calculated in the frequency do-
main. The result is two new images: modulus and phase. The modulus of the
correlation has a peak located a distance that corresponds to the translation
of one of the images that would render the best alignment or similarity with
the other image. Therefore, the shift vector is obtained by calculating the
di�erence between the coordinates of the center of the image and the coor-
dinates of the brightest peak in the modulus image. A graphical description
of this process is shown in Figure 2.5.

Since the dimensions of the sub-images are �xed, parts of one or more
structures of interest can belong to di�erent sub-images, causing less accu-
rate results than if the entire structures were inside the same sub-images.
Therefore the algorithm makes use of two di�erent window sizes: the sub-
image size and the correlation area size. The correlation area is the part of
the image centered in the sub-image that is used to calculate the correction
vector. Its size must be bigger than the sub-image size in order to avoid the
previously mentioned problem. Indeed, this size should equal the estimated
maximum error produced during the rigid registration in order to correct the
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(a) (b)

(c) (d) (e)

Figure 2.5: Image alignment by phase correlation. (2.5a) Selected region of
a tissue section. (2.5b) Same region of the tissue section but shifted. (2.5c)
Modulus of the autocorrelation image. Note the peak at the image center.
(2.5d) Modulus of the cross-correlation between images (2.5a) and (2.5b).
Note how the peak is shifted. (2.5e) Correction vector in white.
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misalignment introduced in that process.
As in the rigid registration algorithm, the local registration algorithm

can be applied to the gray scale image or to the binary image containing
only the segmented contours.

At the end of this process there will be a correction vector and a correla-
tion coe�cient for every sub-image. The correlation coe�cient is calculated
between the original reference sub-image and a new target sub-image, which
is the result of applying the correction vector to the old target sub-image.
Thus the correlation coe�cient will provide a measure of the accuracy of the
correction vector.

The value of the cross-correlation can be a�ected by several factors like
improper focusing of areas in the same image, di�erences in the luminosity of
the areas, or even the presence of foreign bodies in the tissue. Therefore, two-
step �ltering is applied to the correction vector list in order to eliminate and
recalculate erroneous vectors. The �rst �lter recalculates the vectors whose
correlation coe�cient lies under a threshold value, that is obtained using the
auto-threshold function over the coe�cient list. This function is the same
one that was used in the rigid registration method, but now applied only
to 1D data. The correction vectors that have a low correlation coe�cient
are then substituted by the average of the vector of a 3 × 3 neighborhood
of the a�ected window. Thus, vectors with a very low correlation coe�cient
will not be taken into account. The second �lter to be applied to the list of
vectors is a mean �lter, also with a 3 × 3 kernel, that will allow smoothing
the vector �eld and reducing the e�ect of the spurious noise.

2.3 Results

2.3.1 Rigid registration validation

As a �rst test of the goodness of both standard and shape rigid registration
methods, we used synthetic cases, i.e. arti�cial cases where every section was
a rigid-body transformation of the same original section. That allows testing
the algorithm's capacity to recover the original alignment and calculating its
speed.

A way of qualitatively evaluating the accuracy of the algorithms consists
of creating a color image combining both the target and the transformed
source image. This color image will have the target image information in
the red channel and the source image information in the green channel.
The source image was transformed according to the parameters previously
obtained in the rigid registration process. That way, overlapping areas will
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present yellow color, as it corresponds to aggregation of red and green, while
non-overlapping areas will be either green or red. Generating these color
images for each pyramid level in the algorithm allow us graphically evaluating
the error reduction implicit in each level. Figures 2.6 and 2.7 show this way
the results of applying both rigid registration methods to two arti�cially
generated cases.

These synthetic cases were used to empirically calculate the size of the
steps to be used in the rigid registration, which depends on the resolution
of the images and subsampling factor, and that should provide a good com-
promise between computational load and accuracy. In our case, the exper-
iments, testing many di�erent step sizes, proved that translation steps of 6
pixels are appropriate for images subsampled by a factor of 16 and that have
a resolution of 2.72 microns per pixel. Therefore, this value was �xed and
it allowed establishing a proportional relationship between the image reso-
lution (including here the subsampling factor) and the translation step size.
For more subsampled and/or lower resolution images this step size must be
decreased in order to avoid missing relevant image information, and it can
be consequently increased for higher resolution levels. Once the translation
steps for the �rst level are established in this way, the steps of the next
levels are calculated by dividing the previous steps by two. This rule was
restricted to avoid translation steps smaller than 1 or larger than 1/20th of
the corresponding image height or width.

Two or three levels were enough to achieve an accurate rigid registration
of the cases presented in this chapter. In the �rst pyramid level, rotation
steps of 10◦, with limits of −170◦ and 180◦ were used. As mentioned before,
the translations steps were established empirically, with limits guaranteeing
50% of images overlap as we explained in Section 2.2.2. In the second level,
the rotation limits were reduced to the best angle in the �rst level ±10°, with
steps of 2◦. Finally, in the third level, the rotation limits were reduced to the
best angle in the second level ±2◦, with steps of 1◦. The translations steps of
each level were calculated as half the step of the previous level. For instance,
in the case shown in Figure 2.6, where the images had 2.72 microns per pixel
resolution, the translation steps for the rigid registration of the �rst two
sections were as follows: in the �rst level (with subsampling factor 16), steps
of 6 pixels in x- and y-; in the second level (with subsampling factor 8), steps
of 3 pixels; and in the third and last level (with subsampling factor 4), steps
of 1 pixel. Accordingly, the theoretical maximum error in the third level
corresponds to 1◦ of rotation and 4 pixels of translation in every direction,
which involves perfect alignment in almost all the synthetic cases.

After proving experimentally the correct operation of both algorithms,
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Figure 2.6: Rigid registration results with small rotations. The top row
shows the �rst four sections of the synthetic case created in order to test
the algorithms' accuracy. Small angles of rotation and di�erent x- and y-
translations were applied to the same image in order to generate the case.
Next rows show the zoom over the result color image for each level in the
standard rigid registration method and for each pair of sections (from left
to right we have the result images from the registration between sections
1-2, 2-3 and 3-4). This image combines the target image in red and the
transformed source image in green. Yellow color involves perfect matching,
what is practically achieved after 3 levels.
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Figure 2.7: Shape rigid registration results with large rotations. The top
row shows the �rst four sections of another synthetic case. Now, larger
angles of rotation were applied to the image in order to test the algorithm
in extreme conditions. As in Figure 2.6, next rows show the level results
of applying the rigid-body alignment for each pair of sections, in this case
by the shape registration method. This method makes uses only of the
segmentation result, represented in the section images (top row) by blue
contours.
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they were applied to real mammary gland cases. Contrary to the synthetic
cases, the real cases could present substantial di�erences between sections,
therefore the limits in the translations for level 2 and 3 where lightly increased
in order to avoid the e�ect of these di�erences. Figure 2.8 shows an example
of the shape rigid registration of two mammary gland sections and its error
evolution.

Both algorithms were written in Java, and run on a PC Pentium IV
(2.66GHz, 1GByte of RAM memory) under Linux. The standard rigid reg-
istration algorithm takes around 6 minutes to register two typical sections
(around 35MB each) with 3 resolution levels, whereas the shape rigid reg-
istration uses less than 1 minute to register the same pair of sections also
in 3 levels. For most of the cases tested in this work, two algorithm levels
provided a rigid-body transformation that matched or was very close to the
reachable maximum. For more complex images or synthetic sections, three
pyramid levels are recommended.

As a way to quantitatively evaluate the algorithm performance and its
error reduction we used a normalized matching value. Let m(α, tx, ty) be
the �nal matching value obtained in the corresponding pyramid level, where
α corresponds to the �nal angle of rotation, tx to the �nal value for the
translation in the x- axis and ty to the �nal value for the translation in the
y- axis. And let wc be the number of white �foreground� pixels in the
binary contour image obtained from the original target image. Then, the
normalized matching value between the target and source images is de�ned
by

m(α, tx, ty) =
m(α, tx, ty)
wc · 255

(2.3)

This value will be always between 0 and 1, and is a pseudo-percentage
of the alignment between the images, which allows us quantifying the al-
gorithms accuracy of the registration and also provides a way to compare
both algorithms. The normalized matching value will be 0 when none of the
contour pixels overlaps any non 0 value in the distance image, and it will be
1 when a perfect matching between contours occurs. Last situation is very
unlikely in non-synthetic cases because the contours in consecutive sections
normally change.

Table 2.1 shows the evolution of the normalized matching value for both
standard and shape rigid registration algorithms when applied to the case
whose �rst four sections are shown in Figure 2.7. The values correspond to
the average of the matching values of the entire case. We can observe that
the standard method provide lightly less accurate results than the shape
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Figure 2.8: Shape rigid registration results on a real case. The top raw shows
the two mouse mammary gland sections being registered, where the left im-
age shows the target section and the right image the source one. In this
example, the shape rigid registration method was used. The color markings
in the gray scale images represent the segmented contours that were used in
the registration. The colored squares and letters that appear in the target
image are additional information to the sections, which was not used during
the registration process. The bottom row shows from left to right the evolu-
tion of the error in the three algorithm levels that were used to accomplish
the rigid registration. The di�erences between the results in the second and
third level are usually not very signi�cant; they represent scarcely a small
re�nement to the previous result.
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Rigid Registration Method Level 1 Level 2 Level 3

Standard 0.965780520 0.982260468 0.993172073

Shape 0.986874474 0.994532693 0.996894195

Table 2.1: Comparison between standard and shape rigid registration by the
normalized matching value (Case Figure 2.7)

method, as we expected taking into account the elimination of the noise in
the shape registration method. We observe also that the di�erences between
the result in the second and the third level are quite small, as we visually
noticed �rst in the color images in Figure 2.8.

2.3.2 Local registration validation

The local registration algorithm was also tested �rst using arti�cial cases.
In this method, the only way of evaluating the correct operation was either
representing the correction vectors over the result color image obtained in
the rigid registration, or rendering the sections in three dimensions in order
to visualize the improvement in the volume generation. Figure 2.9 show
the results obtained applying the local registration method to one of our
synthetic cases.

Finally, both versions of the local registration algorithm (registration by
gray scale images or by binary contours) were applied to actual cases of mam-
mary gland sections. Di�erent sizes of sub-images and correlation areas were
tested. In our cases, given the origin of the images and the distance between
their structures, sub-images of 64 × 64 or 128 × 128 pixels, and correlation
areas of 128× 128 or 256× 256 pixels provided the most satisfactory results.
These sizes must be decided depending on the size of the features of the
corresponding images and also on some previous tests. The correlation area
should be large enough to cover the maximum error committed during the
rigid registration process. However, too large correlation areas would cause
the loss of the locality this algorithm was inspired in. Figure 2.10 shows an
example of a local registration result and Figure 2.11 shows an example of
the improvement in the mesh generation.
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Figure 2.9: Validation of local registration.The top row shows the �rst four
sections of an arti�cially generated case, which consists of a 256× 256 pixel
gray scale images with the same white structure linearly shifted to di�erent
positions. The segmented contours appear in purple and there is a red point
in every contour that allows us better analyzing the results. In this case, only
one correlation area was used, whose dimensions correspond to the images
dimensions. Thus we can evaluate the goodness of the correction vectors
by just comparing them to the original shift vectors that can be calculated
subtracting the red points. The second row shows the result color images. As
before, the reference image is presented in the red channel, the transformed
target image in the green channel, and �nally, the correction is painted in
light green. The left picture in the bottom row shows the 3D reconstruction
of the contours before the local correction. The right picture shows the
same volume after applying the correction vector, where an almost perfect
alignment is achieved. Notice also the alignment of the four red points,
represented in the space by four red spheres.
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(a) (b)

(c) (d)

Figure 2.10: Local registration results. Pictures 2.10a and 2.10c show re-
spectively the reference and target sections. The segmented contours are
represented on purple and green. Pictures 2.10b and 2.10d show the result
color image with the correction vectors in light green. For this example, local
shape registration was used since this method is very e�ective in order to
remove the e�ect of strange bodies in the images, as it happened with image
2.10c.
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(a) (b)

Figure 2.11: Volumes aligned by local registration. Example of improvement
in the three-dimensional reconstruction of the mammary gland morphology.
Image 2.11a shows the volume generated from the contours after applying
only a rigid-body registration of the sections. A certain zigzag e�ect in the
volumes appears due to the non-linear di�erences between sections. In image
2.11b, the local registration algorithm has been run over the case and the
mentioned e�ect has disappeared, providing smoother and more realistic 3D
representations.

2.4 Discussion

The rigid registration methods presented here perform a global search of the
optimum matching value between images. This search is based on a pseudo
brute-force strategy, in which a large number of transformations are tested to
avoid getting trapped in local matching maxima. Therefore this systematic
search could be improved by applying optimization methods that explore the
space of search in a faster and more e�ciently way. However, the strength of
our methods lies precisely in the fact that a global maximum is guaranteed,
which does not happen in the original methods (Borgefors, 1988; Hult, 1995)
and most of the optimization algorithms presented in the literature.

The large size of our images requires relatively simple and time-saving
non-rigid algorithms to correct for local, non-linear registration errors. Vol-
ume smoothing algorithms like Laplacian smoothing, improved Laplacian
smoothing (Vollmer et al., 1999) or mesh median �ltering (Yagou et al.,
2002) allow removing the distorting e�ect in the volumes (see Figure 2.11)
with a low computational load, but they do not take into account the global
structure of the volumes. However, they can be used at the end of the local
re�nement process in order to improve the visualization. The two local reg-
istration methods presented in this chapter provide very satisfactory results,
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but they tend to produce straight and parallel volumes, losing their natural
orientation. Therefore, a global inter-section study of the volume through
the case is required in order to preserve the original morphology, distinguish-
ing between the natural shifts of the structures in the images and the shifts
that are produced due to the misalignment of the sections.

Our local registration methods can be improved if the sub-images used to
calculate the local correlation �t the bounding boxes of the contours anno-
tated in the segmentation process. Such improvement is described in Chapter
5, Section 5.2.5.

2.5 Conclusions

We described a complete and automatic algorithm for the registration of
microscope images of serial tissue sections. The algorithm is divided in two
phases, a �rst rigid-body registration and a subsequent local re�nement. The
global maximum of the rigid transformation is guaranteed. Both registra-
tion methods present two variants, the �rst one is based on the gray scale
information of the images, and the second one is based on a previous seg-
mentation of the relevant contours in the images. The algorithms presented
in this chapter were applied to mammary gland tissue sections but can also
be used on other types of tissues and imaging modalities.
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3
Consistent and Elastic Pairwise Registration of

Histological Sections Using Vector-Spline

Regularization

�Not everything that can be counted counts, and not everything
that counts can be counted.�

Albert Einstein

Abstract

In this chapter we present a new image registration algorithm for the align-
ment of histological sections that combines the ideas of B-spline based elastic
registration and consistent image registration, to allow simultaneous registra-
tion of images in two directions (direct and inverse). In principle, deforma-
tions based on B-splines are not invertible. The consistency term overcomes
this limitation and allows registration of two images in a completely sym-
metric way. This extension of the elastic registration method simpli�es the
search for the optimum deformation and allows in many cases registering
with no information about landmarks or deformation regularization. This
approach could be used as the �rst step to solve the problem of group-wise
registration.

3.1 Introduction

Studying the three-dimensional organization of complex histological struc-
tures requires imaging, analyzing and registering large sets of images taken
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from serially sectioned tissue blocks. As explained in Chapter 2, we have de-
veloped an integrated microscopy system that automates or greatly reduces
the amount of interaction required for these tasks (Fernandez-Gonzalez et al.,
2002, 2004) and provides volumetric renderings of the structures in the tissue
(see Chapter 5).

Proper section alignment is the �rst step towards an accurate 3D tis-
sue reconstruction, as it is in other imaging modalities. Image registration
methods have been intensively studied in the �eld of medical imaging, and
we refer interested readers to the articles by Maintz and Viergever (1998),
Glasbey and Mardia (1998), Lester and Arridge (1999) and Hajnal et al.
(2001) for excellent reviews. In our case, we �rst perform a coarse align-
ment of the sections using an automatic rigid-body registration method (see
Chapter 2, Section 2.2.2 or Arganda-Carreras et al. (1-5 Sept. 2004)). This
method can not correct some non-linear distorting e�ects (e.g. tissue folding,
stretching, tearing, etc.) caused by the manual sectioning process. More-
over, the distance between sections causes signi�cant di�erences between the
same structures of interest in consecutive sections, which could be misinter-
preted by a complete linear registration process. Therefore, a local (Chapter
2, Section 2.2.3) or non-linear method is strongly needed in order to re�ne
the �rst registration step. In this chapter we present a new method for
elastic and consistent registration of histological sections. All the examples
described in the chapter used mammary gland tissue samples; however, the
same algorithm could be equally applied to other tissue sources and image
modalities, as it is shown in Appendix A.

3.2 Methodology

A key element in any registration algorithm is the method chosen to model
the deformation functions. We decided to use splines. Thin-plate splines
(TPS) by Bookstein (1989) have been widely used in medical image regis-
tration (Rohr et al., 1996; Johnson and Christensen, 2002; Auer et al., 2005;
Eriksson and Astrom, 2006). However, TPS have a global support, which is
not appropriate to model local image deformations, which are better mod-
eled by using B-splines (Xiao et al., 2002; Xie and Farin, 2004; Loeckx et al.,
2004; Sorzano et al., 2005; Zheng et al., 2006). Therefore, we chose to use
B-splines for both interpolating the images and modeling the deformation
functions. B-splines are computationally light, are di�erentiable, have good
approximation properties and can be used to represent both linear and non-
linear transformations, providing close control of the level of detail of the
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transformation. Indeed, the properties of B-splines have been largely proved
to be very useful when modeling deformations in many biomedical imaging
problems; such as tracking the movement of the left ventricle from MRI im-
ages (Radeva et al., 1997), reconstructing the 3-D motion of the cardiac cycle
(Huang et al., 1999) or modeling the motion of the breast by dynamic MR
imaging (Rueckert et al., 1999). Moreover, we use a multiresolution (itera-
tive coarse-to-�ne) implementation, which improves the convergence speed
and robustness of the algorithm (Unser, 1999).

The registration of a source image with a target image can be de�ned
as the problem of �nding a deformation �eld that transforms coordinates of
the target image into coordinates of the source image. The main problem
of using B-spline deformation �elds is that the estimated �eld might not be
invertible (which is not a problem since depending on the speci�c case, the
true deformation �eld may not be invertible neither). However, in case it
were invertible, the inverse deformation �eld can be computationally expen-
sive. Either it is invertible or not, it is convenient to have also a way of
transforming coordinates in the source image into coordinates of the target.
This would de�ne a second deformation �eld that is close to the inverse of
the original �eld and it has proven to be useful as a way of regularizing the
registration problem (Christensen and He, 2001; Avants et al., 2006). This
two-way registration is known as consistent registration. Avants et al.
(2006) achieve the consistency by forcing the deformation �eld to be a dif-
feomorphism (continuous, di�erentiable, and invertible, its inverse must also
be continuous and di�erentiable). This is a too strong constraint for our im-
ages, although it has the advantage of not having to compute two separate
�elds since the di�eomorphism condition automatically guarantees the exis-
tence of the deformation inverse. Christensen and He (2001) compute two
independent deformations whose composition should be as close as possible
to the identity transformation. Thus, one is not the inverse of the other.
This closeness to identity is explicitly introduced into the objective function.

In this work we combine the idea of elastic registration using vector-
spline regularization (Sorzano et al., 2005) with that of a consistent registra-
tion (Christensen and He, 2001). We combine both ideas and extend them
in order to overcome their limitations. The standard registration method
presented by Sorzano et al. (2005) proposes the calculation of the elastic
deformation �eld trough the minimization of an energy functional composed
by three terms: the energy of the similarity error between both images (rep-
resented by the pixelwise mean-square distance), the error of the mapping of
soft landmarks, and a regularization term based on the divergence and the
curl of the deformation to ensure its smoothness. This minimization is opti-

51



Chapter 3. Consistent and Elastic Pairwise Registration

mized by a variant of the robust Levenberg-Marquardt method (Marquardt,
1963).

We transform the energy functional presented by Sorzano et al. (2005)
into a new functional that incorporates a factor of the deformation �eld
consistency. Unlike Sorzano et al. (2005), we are now looking for two trans-
formations at the same time (direct and inverse). Therefore, the vectors
passed to the Levenberg-Marquardt optimizer are now twice as long. Be-
sides the measurement of dissimilarity between the source and target images
(now in both directions) Eimg, the optional landmark constraint Eµ and the
regularization term (Ediv + Erot), we add a new energy term Econs that ex-
presses the geometrical consistency between the elastic deformation in one
direction (from source to target) and the other direction (from target to
source). Therefore, the energy function is now given by

E = wiEimg + wµEµ + (wdEdiv + wrErot) + wcEcons (3.1)

Where wx are the speci�c weights given to the di�erent energy terms.

3.3 Consistency Term

The consistency energy represents the geometrical distances between the
pixel coordinates after applying both transformations (direct-inverse or inverse-
direct), i.e. the amount by which the composed transformation di�ers from
identity. The standard approach by Sorzano et al. (2005) for this type of
registration is to �nd a deformation function

g+(x) : R2 → R2. (3.2)

This function transforms the source image Is into an image as similar as
possible to the target image It. This transformation g+ maps coordinates
in Is into coordinates in It. Here, following the idea of Christensen and He
(2001), we will also simultaneously look for its corresponding inverse function

g−(x) : R2 → R2. (3.3)

This function maps the coordinates in It into coordinates in Is. Following
this notation, our consistency energy term is given by
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Econs = E+
cons + E−cons

=
�
x∈R2

‖x− g−(g+(x))‖2dx

+
�
x∈R2

‖x− g+(g−(x))‖2dx. (3.4)

If we approximate the integrals by discrete sums and restrict the integra-
tion domain, we obtain

E+
cons =

1
#Ω+

∑
x∈Ω+

‖x− g−(g+(x))‖2. (3.5)

E−cons =
1

#Ω−
∑

x∈Ω−

‖x− g+(g−(x))‖2. (3.6)

Where , Ω+, Ω− de�ne sets of relevant pixels common to the target and
source images:

Ω+ = {x ∈ Ωs ∩ Z2 : g+(x) ∈ Ωt ∩ Z2}. (3.7)

Ω− = {x ∈ Ωt ∩ Z2 : g−(x) ∈ Ωs ∩ Z2}. (3.8)

And where #Ω+ and #Ω− are the number of pixels in the masks.

3.4 Deformation Representation

Following the same idea as Sorzano et al. (2005) we represent the deformation
�elds as a linear combination of B-splines. For instance, g+:

g+(x) = g+(x, y)
=

(
g+

1 (x, y), g+
2 (x, y)

)
=

∑
k.l∈Z2

(
c+

1,k,l

c+
2,k,l

)
β3

(
x

sx
− k
)
β3

(
y

sy
− l
)
. (3.9)

Where sx and sy are scalars (sampling steps) controlling the degree of detail
of the representation of the deformation �eld.
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3.5 Explicit Derivatives

The chosen optimizer uses gradient information. We will now calculate the
derivatives of the energy function with respect to all the parameters, starting
with Econs. It can be easily shown that the derivative of E+

cons with respect
to any of the deformation coe�cients de�ning the �rst component (x in our
case) of the direct deformation �eld g+, is given by

∂E+
cons

∂c+1,k,l
= −2

∑
x∈Ω+

(
x− g−

(
g+(x)

))
·

(
∂

∂c+1,k,l

(
g−
(
g+(x)

)))
. (3.10)

Where

∂

∂c+1,k,l

(
g−
(
g+(x)

))
=

(
∂g−1
∂x

∣∣∣∣
x′,y′

,
∂g−2
∂y

∣∣∣∣
x′,y′

)
∂g+

1

∂c+1,k,l

∣∣∣∣∣
x,y

. (3.11)

And where
x = (x, y) . (3.12)

And
(x, y) = g+(x, y) . (3.13)

Again, following the de�nition of the transformation function we express its
derivative with respect to the coe�cients of the �rst component as

∂g+
1 (x, y)
∂c+1,k,l

= β3

(
x

sx
− k
)
β3

(
y

sy
− l
)
. (3.14)

This derivative is the same in the case of the second component.
The derivative of E+

cons with respect to any of the deformation coe�cients
of the second component of the direct deformation �eld is calculated in an
analogous way.

Let us see now the derivative of E+
cons with respect to the coe�cients of

the �rst component of the inverse transformation:

∂E+
cons

∂c−1,k,l
= −2

∑
x∈Ω+

(
x− g−

(
g+(x)

))
·

(
∂

∂c−1,k,l

(
g−
(
g+(x)

)))
. (3.15)

Where

∂

∂c+1,k,l

(
g−
(
g+(x)

))
=

∂

∂c+1,k,l

(
g−(x′, y′)

)
= β3

(
x′

sx
− k
)
β3

(
y′

sy
− l
)
.

(3.16)
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The derivative of E+
cons with respect to any of the deformation coe�cients of

the second component of the inverse deformation �eld can be calculated in an
analogous way. The derivatives of E−cons are easily inferred in a similar way.
We refer to the original article from Sorzano et al. (2005) for the derivatives
of Eimg, Eµ and (Ediv + Erot).

3.6 Choice of consistency weight wc

Every energy term composing the functional represents a di�erent measure
over the images or the deformations and presents di�erent units. Therefore,
the terms are not comparable and a weight term is needed. We determined
the optimum value experimentally. While value of zero is useful to com-
pare results with the previous algorithm, weight values around 10.0-30.0
often showed the best compromise between the �nal similarity and the de-
formations consistency for our images. Higher values make the consistency
constraint too rigid and consequently decrease the images similarity. Lower
values cause the lack of relevance between g+ and g− in the optimization pro-
cess and thus do not achieve symmetric transformations. Figure 3.1 shows
the evolution of the similarity error with respect to wc. The consistency error
decreases with the weight but causes a signi�cant increase in the similarity
error when approaching to values close to 100.

For the rest of weight terms we refer to Sorzano et al. (2005). From our
own experience we recommend to set wi to 1.0 and if necessary, wµ to 1.0
and wd and wr to 0.1.

3.7 Results

3.7.1 Visual evaluation

To evaluate our algorithm we �rst tested its performance using synthetic im-
ages. We applied some known deformations to the images and then checked
whether our method could correct the deformation. That also allowed us
to compare our algorithm with the standard one from Sorzano et al. (2005).
For instance, in Figure 3.2 we have registered a Lena picture with a deformed
version of the same image. In this case, the standard method properly reg-
isters the deformed image with the original one, but is unable to �nd the
inverse deformation �eld without using soft landmarks, regularization val-
ues and a speci�c image mask. In the same example, our algorithm �nds
simultaneously both deformation �elds (direct and inverse) using only the
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Figure 3.1: Evolution of the similarity and consistency error with increasing
values of the consistency weight.
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Figure 3.2: From top to down, left to right: source image, target image,
registered source image (by the standard method), registered source image
(by our new method), registered target image (by our new method)

similarity term and the consistency term of the energy function.
Figures 3.3, 3.4, and 3.5 contain a relevant example of the results obtained

applying our algorithm compared to the results obtained with the original
method (lacking the consistency term) using two consecutive histological
sections from breast cancer tissue.

Figure 3.4 shows the deformation �elds calculated with both methods. It
is easy to see how our method guarantees the consistency between the direct
and the inverse transformation while the traditional method does not.

In Figure 3.5 we show the result of subtracting the deformed source and
target images. We can appreciate how for the inverse transformation our
method achieves a much better result than the standard method, as we
expected by observing the deformation �elds on Figure 3.4 These results
were also evaluated numerically obtaining an average of similarity error of
31.63 and 32.68 for the deformations calculated with the original method
(direct-inverse and inverse-direct) and an average of 31.48 and 31.66 for
the deformations of our new method. The di�erences between the inverse-
direct averages provoke visible changes on the registration as shown in the
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Figure 3.3: Two consecutive histological sections from a human biopsy pre-
senting two big tumors.

deformation �elds representations on Figure 3.4.
The gray-scale sample images in Figure 3.3 have respectively 325 × 325

pixels and 300× 312 pixels and it took 18 seconds to properly register them
in an Intel Pentium M, 1.60 GHz, 589 MHz, 512MB of RAM memory, under
a SuSE Linux system.

Figure 3.6 is another example with breast tissue sample where the stan-
dard method is unable to approach any proper deformation between the
source and target images based in the images similarity but where our new
method achieves easily the right deformation thanks to the consistency term.

As inferred from the experimental results using our bidirectional method,
in most cases only the similarity and the consistency term are needed to
achieve a proper registration. This involves a simpli�cation of the energy
functional to be minimized and therefore, a reduction in the computational
time and complexity. At the same time, forgetting about placing soft land-
marks in the images allows us reducing the human interaction in the registra-
tion process, which is another advantage of our algorithm over the previous
method.

3.7.2 Numerical evaluation

We developed a software to help to numerically test the performance of the
method. This program can apply �ve di�erent deformations on an image:
elastic, �sheye, perspective, barrel/pincushion and �simile� deformations (see
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Figure 3.4: Comparison of the deformation �elds obtained with the original
method described in Sorzano et al. (2005) and our new algorithm over the
images in Figure 3.3. The �rst row shows the deformation when registering
image 1 to 2 (left) and image 2 to 1 (right), applying the traditional energy
functional. The second row shows the same deformations when using the
proposed improvement.

Figure 3.7). This way, we can produce synthetic data sets with known de-
formations and then apply our registration method to correct them. We
measured the accuracy of the registrations using a mean squared distance
version of the standard warping index (Thévenaz et al., 1998) de�ned as
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Figure 3.5: The top row shows the subtractions of the deformed images and
the target ones in both senses, using the traditional method. The bottom
row shows the result when applying our method. The black arrow points the
most relevant error committed by the standard method.

$ =

√
1
‖ R ‖

∑
x∈R
‖x− g(g∗(x))‖2. (3.17)

Where g∗ is the synthetic known deformation, g is the deformation in the
opposite direction and R is the set of pixels common to both images. The
warping index measures the average geometric error �in pixels� between
the original transformation and the deformation calculated by our algorithm.

In most cases and for all types of deformations, setting the right parame-
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Figure 3.6: Example with two transversal cuts of a mammary duct. From top
to down, left to right: source image, target image, registered target image,
registered source image, di�erence source image, di�erence target image.
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Figure 3.7: Types of arti�cial deformations to test the registration. From left
to right and from top to down: the original grid image and its corresponding
elastic, �sheye, perspective, barrel and smile e�ect examples of deformations.

ters (weights) our method achieves a warping index below 1.0 �i.e. sub-pixel
accuracy� without the use of landmarks or regularization.

3.8 Conclusions

A new algorithm for consistent elastic registration has been presented. It
combines the ideas of elastic image registration based on B-splines models
and consistent image registration. The method improves the results obtained
without the consistency factor in the energy function, as it has been qualita-
tive and numerically shown in the results section, and accelerates the search
for the optimum.

This consistent and elastic registration method was implemented as an
ImageJ plugin (Rasband, 1997-2009) called bUnwarpJ (from bidirectional
unwarping in Java, Arganda-Carreras et al. (2008)). The most up-to-date
release of this ImageJ plugin and its source code can be freely downloaded
from http://biocomp.cnb.csic.es/~iarganda/bUnwarpJ/. The software
to produce the random image deformations was as well implemented as an
ImageJ plugin. It is called SplineDeformationGenerator and can be found at
http://biocomp.cnb.csic.es/~iarganda/SplineDeformationGenerator/.
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The registration method described in this chapter could be extended,
for instance, increasing the number of images involved in the registration to
do group-wise registration. For this case, the explicit derivatives must be
recalculated and a method for composing the deformation �elds needs to be
proposed.
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4
Non-rigid Consistent Registration of 2D Image

Sequences

�Problems worthy of attack prove their worth by �ghting back.�

Paul Erdos

Abstract

In this chapter we present a novel algorithm for the registration of 2D im-
age sequences that combines the principles of multiresolution B-spline based
elastic registration and those of bidirectional consistent registration. In our
method, consecutive triples of images are iteratively registered to gradually
extend the information through the set of images of the whole sequence. The
intermediate results are reused for the registration of the following triple. We
choose to interpolate the images and model the deformation �elds using B-
spline multiresolution pyramids. Novel boundary conditions are introduced
to better characterize the deformations at the boundaries. In the experimen-
tal section, we quantitatively show that our method is able to recover from
barrel/pincushion deformations with subpixel error. Moreover, it is more ro-
bust against outliers �occasional random strong noise and large rotations�
than the state-of-the-art methods. Finally, we show that our method can be
used to realign series of histological serial sections, which are often heavily
distorted due to folding and tearing of the tissues.
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4.1 Introduction

Registering two images consists in �nding a deformation function that maps
a given image S onto a target image T . Finding an optimal deformation
function requires maximizing a similarity criterion between the intensities of
all pixels in both images and/or mapping selected reference �landmark�
points. In an ideal situation, the deformation function should be unique
and bijective. In other words, it should unequivocally link every pixel in
the target image T with a pixel in the source image S. It should also have
biological meaning appropriate for the particular image modality and source
of misalignment.

The problem of registering pairs of images can be extended to registering
sets of spatially, temporally or spectrally related images. The state-of-the-
art approaches for this type of registration are: (i) register all images to a
reference image or (ii) pairwise register all the images starting from the �rst
image of the sequence. In the �rst approach all the images in the group are
registered to a reference image, which can be a selected image of the group
(Marsland et al., 2003; Malandain et al., 2004), an average image (Bhatia
et al., 2004) or an iteratively calculated image model (Twining et al., 2005).
This is commonly used to locate an image in a normalized reference frame
or coordinate system as part of the process of generating anatomical atlases
(Bhatia et al., 2004; Twining et al., 2004). In the second approach, the
images are registered as a sequence applying pairwise deformation functions.
This is more appropriate for sequences of images that change in time, space,
wavelength, etc. It has been used, for instance for tracking cardiac motion
in MRI images (Radeva et al., 1997; Huang et al., 1999; Rueckert et al.,
1999; Ledesma-Carbayo et al., 2005), registering blocks of histological tissue
sections (Auer et al., 2005; Wirtz et al., 2005; Arganda-Carreras et al., 2006)
or registering multispectral �uorescence microscope images (Matula et al.,
2004).

Both approaches bias the registration by assigning special relevance to
one of the images in the sequence. An alternative method consist of sequen-
tially registering neighborhoods of images �i.e. subgroups of consecutive
images� in order to increase the robustness of the registration and the
smoothness of the deformations without assigning an arbitrary normative
value to any of the images. For instance, Wirtz et al. (2004) unidirectionally
registered neighborhoods of three images. Yushkevich et al. (2006) bidirec-
tionally registered 5-image neighborhoods, after choosing a reference image
and removing what they considered bad slices in the sequence. Alterna-
tively, Geng et al. (2005) registered groups of three manifolds , i.e. contours
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or surfaces.
The second key element of a registration algorithm is the method used

to model the transformation between the source and target images. Some
authors proposed using di�eomorphic deformation functions, which are in-
vertible, di�erentiable and bijective (Avants et al., 2006; Cootes et al., 2004;
Rueckert et al., 2006; Grenander and Miller, 1998). This method is fast,
e�cient and very appropriate when the transformation satis�es the di�eo-
morphic properties. However, this might not be the case for some large
non-linear transformations, such as the ones that can be found in series of
manually processed histological sections, which are often heavily folded or
torn. An alternative approach (Christensen and Johnson, 2001; Thirion,
1998) consists in jointly estimating the direct (S onto T ) and reverse (T
onto S) deformations and imposing as a constraint that one be the inverse
of the other. This method signi�cantly reduces the registration error and
while calculating the direct transformation gst it also provides a deformation
gts that is very similar to the ideal (gst)−1.

In this work, we build upon and combine the concepts of neighborhood
registration (Geng et al., 2005) and consistency (Christensen and Johnson,
2001) in the context of the registration of series of images (Csapo et al.,
2007). Namely, we use the general idea of transitivity from computational
anatomy suggested by Grenander and Miller (1998), but we do not enforce
by de�nition the invertibility of the anatomical transformations. Instead, we
enforce it by approach as proposed by Christensen and Johnson (2001). This
way, we can calculate and recover from complex non-invertible distortions,
such as those commonly found in histological sections (e.g. tissue folding
and tearing). Then, looking for a computationally reasonable compromise
solution to the problem of registering image sequences, we use Geng et al.
(2005) tri-wise registration concept �originally developed to register triples
of contours� apply it to triples of images, and then extend it to register en-
tire image sequences. The propagation of the information through the entire
sequence is ensured by the overlap between the image triples and the iterative
back-and-forth progression of the algorithm. To register each image triple
�which is the building block of the registration of the entire sequence�, we
take advantage of the fact, proved by Csapo et al. (2007), that the sequen-
tial composition of two transformations is equivalent to the transformation
between the �rst and third member of the triple. This was used by Csapo
et al. to unidirectionally and non-consistently register sequences of images,
and we here extend its use to the bidirectional and consistent registration of
triples of images. In summary, we approach the problem of registering series
of images by bidirectionally registering consecutive triples of images, to �nd
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a solution that minimizes the overall similarity and consistency errors while
keeping acceptable computational speed. The consistency is ensured locally
through the registration of groups of three images and globally by spreading
the results back and forward in the whole set of images.

In our implementation we estimate the deformation function by minimiz-
ing a cost functional made of two terms: a similarity term and a consistency
term. We use an e�cient Marquardt-Levenberg optimization method (Mar-
quardt, 1963) with Hessian estimation (Press et al., 1992). We use B-splines
to interpolate the images and model the deformation functions. B-splines
are computationally light, di�erentiable, have good approximation proper-
ties and can be used to represent both linear and non-linear transformations,
providing close control of the level of detail of the transformation. Finally,
we use a multiresolution (iterative coarse-to-�ne) implementation, which im-
proves the convergence speed and robustness of the algorithm (Unser, 1999).
Although this method can be applied to many registration problems, we show
in particular the bene�t obtained by using it to register series of histological
sections, which are often a�ected by dramatic deformations.

The structure of the chapter is as follows. First we describe the previous
work in Section 4.2.1, and then we introduce the concept of consistent tri-
wise registration in Section 4.2.2. The two terms of our cost functional are
described in Sections 4.2.3 and 4.2.4. The image and deformation represen-
tations are presented in Sections 4.2.5 and 4.2.6. Our optimization algorithm
is then described in Section 4.2.7 while the multiresolution implementation
is presented in Section 4.2.8 and the main outline of our consistent sequential
registration method is introduced in Section 4.2.9. Next, we show experi-
mental results, �rst with synthetic images in Section 4.3.1, and also with real
sequences of biological images in Section 5.3.2. We �nish with conclusions
in Section 5.4.

4.2 Methods

Given three consecutive images of a sequence, our algorithm �nds the de-
formation �elds that relate them. This is done by minimizing an energy
functional that has two terms: the similarity error ETi

S between every triple
Ti �local group of three consecutive images Ii, Ii+1, Ii+2� and the con-
sistency error of the corresponding partial deformations ETi

C . The energy
functional can be written as
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E =
NS−2∑
i=1

(
wsE

Ti
S + wcE

Ti
C

)
, (4.1)

where NS is the number of images in the sequence and ws and wc are the
speci�c weights given to the similarity and consistency energy terms.

4.2.1 Pairwise registration

Our work builds on our previous work (see Chapter 3) and that of oth-
ers. Namely, we develop on the idea of Unidirectional Pairwise Registration
(UPR) (Sorzano et al., 2005; Kybic and Unser, 2003) and of Consistent Pair-
wise Registration (CPR) (Christensen and Johnson, 2001; Arganda-Carreras
et al., 2006).

UPR can be formulated as �nding the best deformation function g(x) :
R2 → R2 that transforms a source image Is into a target image It. Therefore,
the deformed version of the source image, Is(g(x)), should closely resemble
the target image It(x).

CPR adds the idea of imposing a consistency constraint by simultane-
ously calculating the transformations g and h such that g maps Is to It and
h maps It to Is subject to the constraint g ' h−1. The search space is twice
as large as in the unidirectional case. However the consistency constraint
often allows faster convergence in terms of number of iterations compared to
a non-consistent registration, as it will be shown in Section 4.3.1.5.

4.2.2 Consistent Tri-wise Registration

We now extend the previous concepts �UPR and CPR� to the case of
simultaneously registering three images. We call it Consistent Tri-wise Reg-
istration (CTR). Let I1, I2 and I3 be the images to be registered. We aim
at �nding the deformation functions

gij(x) : R2 → R2, (4.2)

that map coordinates of Ii into coordinates of Ij . The explicit estimation of
g13 and g31 as described by Geng et al. (2005) improves the consistency of
the deformations at expense of increasing the complexity of the optimizer.
Instead, looking for a compromise between accuracy and computation time,
we decided to use only pairwise transformations (12, 23. . . ) to move through
the sequence. This was originally proposed by Csapo et al. (2007), who
showed that the composition of the intermediate transformations g12 and g23
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Figure 4.1: CTR scheme. The diagram shows a group of three images and
their corresponding transformations. For every pair of images (i and j with
i, j = 1, 2, 3 and i 6= j) there are two functions (gij , gji) that map pixel
coordinates from image i to image j and vice versa.

makes g13 and g31 implicitly consistent. Therefore, only g12, g21, g23 and
g32 need to be calculated, as we de�ned g13 and g31 by composition, that is
g13 = g23 ◦ g12 and g31 = g21 ◦ g32, i.e. g13(x) = g23(g12(x)) and g31(x) =
g21(g32(x)). See Figure 4.1 for a graphical description of the transformations
involved.

4.2.3 Similarity Error Term

We calculated the similarity between the images as the sum of squared image
di�erences. This is not a critical choice, and other similarity criteria can be
used instead, such as mutual information (Pluim et al., 2003; Skouson et al.,
2001), cross-correlation (Andronache et al., 2006), etc.

The direct similarity error term EijS between a source image Ii and a
target image Ij is de�ned as

EijS =
1

#Ωij

∑
x∈Ωij

(
Ij(x)− Ii(gij(x))

)2
, (4.3)

where Ωij de�nes a set of relevant pixels common to the images Ii and Ij
that can be de�ned by masks, and where #Ωij is the total number of pixels
under the mask.

In the bidirectional case, the similarity error ES between two images
Ii and Ij , is de�ned as ES = EijS + EjiS . Finally, the similarity error for
CTR, ES can be written as the sum of the direct, EDS, and the inverse,
EIS, similarity errors: ES = EDS + EIS where EDS = E12

S + E23
S + E13

S and
EIS = E21

S + E32
S + E31

S .
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Since this similarity measure is sensitive to linear transformations of the
image gray values, we assume that all images use a common intensity range,
e.g. 0 to 255.

4.2.4 Consistency Term

The consistency error EijC is the Euclidean distance between a point x of the
source image Ii and the same point after a forward and backward transfor-
mation gji(gij(x)). Therefore, the consistency error EC between two images
Ii and Ij is given by

EC = EijC + EjiC , (4.4)

where

EijC =
1

#Ωij

∑
x∈Ωij

‖x− gji(gij(x))‖2 . (4.5)

The UPR energy functional does not have a consistency term.
We now extend the consistency term for groups of three images (CTR

method). To this end, we do not need to consider the consistency of g13

and g31, since they are de�ned by composition (see Section 4.2.2) and their
consistency is ensured by that of the intermediate deformations �elds g12,
g23, g21 and g32. Therefore, the total consistency term is then given by
E12

C + E23
C + E21

C + E32
C .

4.2.5 Image Representation

The target image Ij is always evaluated at integer positions while the source
image Ii needs to be evaluated at generally non-integer coordinates, gij(x).
We opted for using cubic B-spline interpolation, since it o�ers a good trade-
o� between accuracy and speed (Unser et al., 1991). Therefore, we represent
the source image Ii as

Ii(x, y) =
∑
k,l∈Z2

ck,lβ
3
(x
h
− k
)
β3
(y
h
− l
)
, (4.6)

where β3 is a cubic B-spline, ck,l are the B-spline coe�cients, and h is a
parameter that controls the level of detail of the representation.

71



Chapter 4. Registration of 2D Image Sequences

4.2.6 Deformation Representation

Taking advantage of the properties of the B-splines (Szeliski and Shum, 1996)
we also represent the deformation �elds as a linear combination of B-splines:

gij(x) = gij(x, y) =
(
gij1 (x, y) gij2 (x, y)

)
=

=
∑

k,l∈Z2

(
cij1,k,l, c

ij
2,k,l

)
β3
(
x
sx
− k
)
β3
(
y
sy
− l
)
, (4.7)

where sx and sy are the sampling steps that control the degree of detail of
the deformation �eld.

4.2.7 Optimization

To optimize the energy functional, we use a variation of the robust Levenberg-
Marquardt method by Thévenaz et al. (1998). This method iteratively up-
dates the deformation coe�cients c = cijmkl so that c(n+1) = c(n) + ∆c(n),
where ∆c is the solution of H̃∆c(n+1) = ∇E(c(n)), n is the iteration number;
∇E(cn) is the gradient of the energy with respect to the deformation coef-
�cients evaluated at c(n) and H̃ is a modi�ed version of the Hessian matrix
H with the diagonal components H̃ calculated as [H̃]ii = (1 + λ)[H]ii. This
algorithm achieves a gradual transition between quasi-Newton and gradient
descent steps, controlled by the parameter λ. The parameter λ is adaptively
modi�ed according to the ability of c(n) to minimize the energy functional.
If the previous step succeeded to decrease the goal function, then the local
model is considered appropriate and more weight is given to the second or-
der information provided by the Hessian. Consequently, the next iterative
step of the optimization algorithm will be more Newton-like. If the previous
iterative step did not decrease the criterion, the local model is considered
inappropriate and the optimization algorithm will retry the last step, thus
behaving more like a gradient descent. We compute a Broyden-Fletcher-
Goldfarb-Shanno (BFGS) approximation of the Hessian (Press et al., 1992)
using the algorithm described by Sorzano et al. (2005). The BFGS approx-
imates the Hessian as a semi-de�nite matrix, thus assuring the stability of
the quasi-Newton optimization algorithm. The Hessian estimated this way
is initialized by a diagonal approximation and is updated only on success-
ful estimates c(n) and when the positive de�nite quality of the estimated is
assured.

Our optimizer makes extensive use of the derivatives of the di�erent
energy terms with respect to the deformation coe�cients. Since the images
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(a) (b)

Figure 4.2: Example of symmetric (4.2a) and anti-symmetric (4.2b) bound-
ary conditions for a quadratic function. Vertical lines represent the bound-
aries.

and the deformation �elds are expressed in B-splines basis, these derivatives
can be computed explicitly and e�ciently (Appendix B.1.1 and B.1.2).

4.2.8 Multiresolution

All images and deformations are represented using multiresolution pyramids
(Unser et al., 1993). The number of B-spline coe�cients at pyramid level L
is 2L×2L for L = 0, 1, 2... The algorithm starts using low-resolution versions
of the images and deformations, �nds the minimum of the energy functional
and then moves to the next pyramid level, using the deformation obtained
in the lower level as the starting point of the next �upper� level. This is
repeated until the highest resolution level of the pyramid is reached.

To move between pyramid levels, customized reduction and expansion
operators were used (Unser et al., 1993) (see Appendix B.1.3 for a technical
explanation), resolved at the image and deformation borders using the ap-
propriate boundary conditions. For the images we used standard symmetric
boundary conditions. For the deformation �elds, symmetric mirror condi-
tions do not properly account for the deformation trend at the boundaries,
and thus we applied anti-symmetric boundary conditions (Figure 4.2).
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The following straightforward experiment shows the bene�t of using anti-
symmetric over symmetric boundary conditions to represent the deformation
�elds. We �rst applied a barrel/pincushion (Ma et al., 2003) deformation
to a 256 × 256 pixel image of a uniform grid (Figure 4.3). This type of
deformation is very relevant in this context because it preferentially a�ects
the borders of the image. If the input coordinate x is normalized to lie
in [1,−1] × [1,−1], and if rin is the radius of its polar expression in this
coordinate system, then the output radius rout produced by the distortion
is rout = 1 + k1r

2
in + k2r

4
in. Thus, the type of barrel pincushion deformation

is given by the signs of k1 and k2. Thus, k1 < 0 and k2 < 0 (k1 > 0
and k2 > 0) generates a barrel (pincushion) deformation. We represented
the deformation using 16 × 16 B-spline coe�cients with k1 and k2 set to
0.10. Then, we reduced the deformation �eld to 8 × 8 coe�cients using
both symmetric and anti-symmetric boundary conditions and subsequently
expanded them back. To compare the e�ect of the boundary conditions,
we calculated the di�erence between the original and the reduced and then
expanded deformation �elds, for both the symmetric and anti-symmetric
case. Figure 4.4 shows a detail of the upper left corner of the di�erence image,
where the e�ect of the boundary conditions should be more pronounced. It
is clear from the image that anti-symmetric mirror conditions preserve the
deformation �eld better than their symmetric counterpart. Note also that
the anti-symmetric boundary conditions force the second derivatives to be
zero at the boundary, which is convenient when working with distortions
that have small high order derivatives.

4.2.9 Consistent Sequential Registration

We have further extended the idea of CTR to do Consistent Sequential Reg-
istration (CSR). To this end, at each resolution level, triples of images are
iteratively CTR-registered forward and backward until either the desired de-
gree of accuracy or a maximum number of iterations is reached. Registering
backward and forward iteratively re�nes the intermediate results incorpo-
rating contributions of all the members of the sequence to the registration
process. See Algorithm 1 for a formal description.
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(a) (b)

Figure 4.3: (4.3a) Pincushion distortion (k1 = 0.10 and k2 = 0.05) of a
uniform grid and (4.3b) its inverse barrel transformation (k1 = −0.10 and
k2 = −0.05).

(a) (b)

Figure 4.4: Upper left corner of the di�erence image between 16×16 B-spline
coe�cients barrel/pincushion deformation and its 8× 8 coe�cients reduced
and then expanded version using symmetric boundary conditions (4.4a) and
anti-symmetric boundary conditions (4.4b).
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Algorithm 1: Consistent Sequential Registration method
Input: S ← A sequence of images Ii, i = 1...NS

Initial transformations: gi,i+1, gi+1,i ← Identity ∀i ∈ [1, NS − 2]1

Auxiliary transformations: g12, g21, g23, g32 ← Identity2

foreach pyramid level do3

while not (convergence or max num of iterations) do4

for i := 0 to NS − 2 do Forward registration5

g12 ← gi+1,i+2, g21 ← gi+2,i+1, g23 ← gi+2,i+3,6

g32 ← gi+3,i+2

Do tri-wise registration of Ii, Ii+1, I i+2 with initial7

transformations g12, g21, g23, g32

Save gi,i+1, gi+1,i, gi+1,i+2, gi+2,i+18

end9

for i := NS − 3 down to 0 do Backward registration10

g12 ← gi+1,i+2, g21 ← gi+2,i+1, g23 ← gi+2,i+3,11

g32 ← gi+3,i+2

Do tri-wise registration of Ii, Ii+1, I i+2 with initial12

transformations g12, g21, g23, g32

Save gi,i+1, gi+1,i, gi+1,i+2, gi+2,i+113

end14

end15

end16
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4.3 Experimental Results

4.3.1 Validation of the method using synthetic images

4.3.1.1 Accuracy

We �rst tested the performance of our CSR algorithm using synthetic image
sets. To this end, we applied twenty known deformations g∗ to an image and
then performed the registration of the image and all its warped versions. Fig-
ure 4.5 shows the image that we used, a standard histology section of human
breast epithelium stained with Hematoxylin and Eosin (H&E), captured at
40x magni�cation.

To deform the images, we used the barrel/pincushion distortion (Ma
et al., 2003), which is characteristic of image acquisition and displaying de-
vices such as cameras and monitors. Note that this choice does not favor
B-splines, because these distortions can not be exactly represented in a B-
spline space. Zero-mean Gaussian noise with standard deviation 0.05 to k1

and k2 was added to the images. To register the images we used a 4 level
deformation pyramid and a 5 level image pyramid, i.e. a grid of 8 × 8 B-
spline coe�cients in the maximum detail level of the deformation pyramid
and 16× 16 B-spline coe�cients in the highest resolution level of the image
pyramid. We used 1.0 as similarity weight ws and 20.0 as consistency weight
wc.

Let g be the transformation function obtained using CSR algorithm. We
measured the accuracy of the registration using the standard warping index
(Thévenaz et al., 1998) de�ned as

$ =

√
1
‖ R ‖

∑
x∈R
‖g(x)− g∗(x)‖2, (4.8)

where ‖ R ‖ is the number of image pixels. The warping index measures
the average geometric error �in pixels� between the deformation applied to
the image and the transformation calculated by our algorithm. The original
average warping index of the unregistered images was 4.50±3.50 pixels. The
warping index after our sequential registration was 0.07±0.05 pixels, i.e. the
error was reduced to subpixel level.

4.3.1.2 Registration of cyclical data

The iterative, bidirectional �forward and backward� way our CSR algo-
rithm aims at the optimum registration transformation, allows information
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Figure 4.5: H&E stained section of human breast epithelium.

from the whole set of images to be used in the registration process. This
makes the algorithm suitable for registering sequences of images, especially
if they are cyclical. In order to test this, we used a Macaca fascicularis brain
section stained with cholinesterase. We applied 18 rotations to the image at
20 degree intervals, the last image of the sequence therefore being equal to
the �rst one. Then we evaluated the results of the UPR, CPR and CSR algo-
rithms by registering all 18 images and comparing the �rst and last images.
We used ws = 1.0 and wc = 10.0. As expected, our sequential CSR method
was more e�cient for this type of sequences than the two other algorithms
(Table 4.1). Note that the mean squared error (MSE) and the standard de-
viation (STD) obtained using CSR are half the ones obtained using either
UPR or CPR. Furthermore, the CSR maximum intensity di�erence (MAX)
is almost one fourth of the ones obtained using UPR or CPR. Figure 4.6
shows the registration error visually for all three methods. We calculated
and compared the percentage of correctly aligned pixels. For this, we con-
verted the RGB images to HSV and set an acceptance threshold value of
± π

25 that corresponds to a yellow hue value. CSR outperformed the other
two methods: CSR produced 79.28% overlap compared to 55.99% (UPR)
and 67.30% (CPR).
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UPR CPR CSR

MSE 1494.38 1264.22 715.24

Std 2745.29 2559.83 1499.46

Min 0 0 0

Max 31684 29929 22201

Table 4.1: Mean Squared Error (MSE), Standard Deviation (Std), Minimum
(Min) and Maximum (Max) intensity di�erence between the original and the
result after the combined rotations from the experiment described in Section
4.3.1.4 for the new algorithm (CSR) and the previous methods (UPR and
CPR).

Figure 4.6: Visual estimation of registration accuracy of UPR (left), CPR
(middle) and CSR (middle). A cyclical sequence -18 rotations of 20 degrees-
of a Macaca fascicularis brain section was registered using the three methods.
The original image is shown in green and the �nal transformed image is in
red. Therefore, yellowish areas are regions of perfect overlap while red and
green areas represent incorrect alignment.
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Non-CSR CSR

DSE 60.75± 143.50 32.48± 4.00

ISE 142.72± 255.78 33.72± 8.91

Table 4.2: Average and Standard Deviation of the Mean-Squared Error for
the direct/inverse similarity (DSE/ISE) for the synthetic experiment of Non-
Consistent Sequential Registration (Non-CSR) vs CSR

4.3.1.3 Use of neighbor information

Next we showed the bene�ts of using versus non using the consistency in-
formation. To this end we used the same sequence of Monkey brain sections
used in the previous section and registered the sequence in groups of three
images, �rst without consistency and then using our complete CSR algorithm
(wc = 10.0). In both cases we used a 4 level multiresolution image pyramid
and a 3 level deformation pyramid, with ws = 1.0. As it can be seen in Table
4.2, our method substantially improved the registration results . To estimate
the invertibility of the transformations calculated by both methods, we can
look at the �nal (direct and inverse) consistency errors: 2243.50 ± 7387.42
and 2421.08 ± 6678.07 for the non-consistent method and 1.69 ± 1.39 and
1.58± 1.16 for our CSR method.

4.3.1.4 Robustness against outliers

To further re�ne and explain the bene�t of using CTR as the building block
of CSR, versus using UPR (Sorzano et al., 2005) or CPR (Arganda-Carreras
et al., 2006) we used groups of three images where one of the members
had been heavily distorted. This way we show the improvement obtained
when combining consistency, bidirectionality and groupwise �in this case
tri-wise� registration.

First, we used seven groups of three images from the sequence of 20
distorted version of the image in Figure 4.5 used in Section 4.3.1.1 adding
random noise (with 50% of randomization, i.e. percentage of a�ected pixels)
to one of the images of each group (see Figure 4.7). Then we registered
triples using UPR, CPR and CTR with a 4 level image pyramid and a 5
level deformation pyramid. We used ws = 1.0 and wc = 20.0. The average
warping indexes obtained were 14.96 ± 18.72 (UPR), 5.12 ± 5.33 (CPR)
and 3.67 ± 3.77 (CTR). This shows the improvement obtained by using a
consistent method compared to a non-consistent one, as well as the bene�t
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Figure 4.7: Example of triple histology images used in the validation test.
A signi�cant amount of random noise was added to the middle image.

of a tri-wise method over a pairwise method when one of the elements in the
series is heavily distorted.

Next, we tested the robustness of our algorithm against independent,
non-correlated rotations. This is an interesting problem from a practical
point of view because it is very common in sequences of manually processed
histological sections. We used ten groups of three images taken from a
sequence of Macaca fascicularis brain sections stained with cholinesterase
(grayscale, 300 × 282 pixels size). We then rotated one of the images of
the triple a random number of degrees, uniformly distributed between 20
and 30. See Figure 4.8 for an example. We used ws = 1.0 and wc = 10.0.
The registration results, shown in Table 4.3 con�rm that CTR is more ro-
bust against outliers than UPR and CPR. Our CTR method achieves the
lowest similarity error values while keeping moderate consistency error lev-
els. CPR gives intermediate values for the similarity error while obtaining
the best values for the consistency error. This is explained by the fact that
CTR jointly minimizes the similarity error of three images (6 dissimilarity
measures) and the consistency error of two direct transformations with their
corresponding inverse in both directions (4 consistency measures), while in
the two equivalent CPRs of the same images, the optimizer minimizes sepa-
rately the dissimilarity of both pairs of images (4 dissimilarity measures) and
their corresponding direct-inverse transformations (4 consistency measures).

4.3.1.5 E�ect of the Consistency Term

Finally, we have studied the behavior of the tri-wise algorithm in terms of
similarity error and the impact of our consistency term compared to the
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Figure 4.8: Example of a triple of Macaca fascicularis brain sections, stained
with cholinesterase. The third image of the trio was arti�cially rotated 25
degrees.

UPR CPR CTR

DSE 543.21± 23.10 497.23± 97.84 398.48± 66.29

ISE 570.86± 30.67 489.65± 81.66 450.29± 51.15

DCE 15.28± 2.08 2.15± 1.38 8.59± 6.86

ICE 14.84± 1.28 2.01± 1.53 10.57± 4.09

Table 4.3: Average and Standard Deviation of the Mean-Squared Error for
the direct/inverse similarity (DSE/ISE) and the direct/inverse consistency
(DCE/ICE) for the synthetic rotation experiment described in Section 4.3.1.4
for the new algorithm (CTR) and the previous methods (UPR and CPR).
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previously described regularization term by Sorzano et al. (2005). To this
end, we used the �rst triple of the sequence of images described in the pre-
vious Section (monkey brain section rotated 0, 20 and 40 degrees). We then
applied a tri-wise image registration using a 4 level multiresolution image
pyramid, a 3 level deformation pyramid and either:

1. only the similarity term of our energy functional (4.1), or

2. the similarity term plus a vector-spline regularization with two sub-
terms, one based on the gradient of the divergence of the deformation
�elds and one based on the gradient of their curl (Sorzano et al., 2005),
or

3. the similarity term plus our consistency term.

The results of the convergence of the three methods are shown in Figure 4.9.
Adding a regularization or consistency term to the energy function increases
the complexity of the goal function to be optimized but in return forces the
deformations to be smooth, which usually helps reducing the global similarity
error ES . When comparing both scenarios, it is clear that using a consis-
tency term instead of using regularization produces signi�cant improvement
in the �nal value of the similarity error, with the additional advantage of
obtaining also the inverse transformations. Additionally, in our case the
number of deformation coe�cients is su�ciently low so as to not need to be
regularized. This is therefore the choice when no prior knowledge about the
deformation exists. However, if a priori information about the deformation
is known, adding an appropriate regularization term to the energy functional
can greatly improve the results (Sorzano et al., 2005).

4.3.2 Experiments with real image sequences

We now show the results of using CSR to align real image sequences.

4.3.2.1 Robustness against non invertible transformations

We �rst show how CSR can e�ciently correct heavy distortions, such as
those caused by folding and tearing in histological tissue sections. As a
reference, we compare our CSR algorithm with Vercauteren's Di�eomor-
phic Demons (VDD) method (Vercauteren et al., 2007), a non-parametric
di�eomorphic registration algorithm that generalizes Thirion's di�eomor-
phic demons (Thirion, 1998). We used consecutive 50 nm thick Transmis-
sion Electron Microscope (TEM) sections of Lamina tissue from Drosophila
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Figure 4.9: Evolution of the similarity error with the number of iterations
for the non-regularized non-consistent, regularized non-consistent and non-
regularized consistent tri-wise registration of the �rst image triple used in
Section 4.3.1.2.
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Melanogaster. All images were acquired at 3500x magni�cation, 512 × 512
pixel size. These extremely thin tissue sections are often folded or torn,
making the registration a very di�cult task. An example of this is shown in
Figure 4.10, which shows two consecutive TEM sections, one of them (Fig-
ure 4.10b) severely a�ected by a folding area �black stripe in the middle
of the section�. We applied our CSR registration �adding a third section
to complete a triple� and then VDD, obtaining a direct similarity error at
convergence of 3306.38 (CSR) and 4546.82 (VDD). The corresponding de-
formation maps (Figure 4.10c and 4.10d) show how the CSR method is able
to identify and correct the folding area.

To further compare the performance of CSR with other standard reg-
istration methods, we used a set of 14 TEM Lamina sections (512 × 512
pixel size). The TEM image sequence was registered using CSR, VDD and
a combined method consisting of an initial a�ne registration followed by
unidirectional elastic registration with conjugate gradient optimizer (UER),
which is part of the open-source toolkit elastix. All methods used the same
initial conditions: 4 levels of multiresolution image pyramid, 8× 8 deforma-
tion coe�cients at the �nest level, and the same stopping threshold (0.01),
i.e. desired level of precision (absolute error di�erence between last and pre-
vious level registration). To evaluate the results, several cells of the tissue
were manually segmented by an expert. The average cell overlap after regis-
tration was 69.86±34.09% (VDD), 78.48±17.77% (UER) and 83.91±6.06%
(CSR). If we only consider the image triples containing some torn tissue (as
in 4.10b) the improvement of using CSR is even more clear: 11.95± 20.63%
(VDD), 51.06 ± 20.40% (UER), and 76.93 ± 10.53% (CSR). The result can
be visualized by reslicing the sequence of sections and comparing it with
the original alignment (Figure 4.11a), the di�eomorphic demons alignment
(Figure 4.11b), the UER result (Figure 4.11c) and the CSR result (Figure
4.11d).

These results con�rm with real image series our previous results our
previous results obtained in synthetic data sets, i.e that CSR is especially
bene�cial when one or several images of the sequence are heavily distorted.

Figure 4.12 shows the segmented cells �in red� and the sequence of 14
CSR aligned TEM sections from the previous experiment. This way, we can
see the segmented cells in a completely aligned 3D environment.

4.3.2.2 Registration of brain histological sections

We �nally registered nine consecutive coronal cuts of Macaca fascicularis
stained with cholinesterase. The images were grayscale, 300×282 pixels size.
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(a) (b)

(c) (d)

Figure 4.10: Correction of heavy distortion. Two consecutive TEM tissue
sections (4.10a) where the second one (4.10b) is folded in the middle. (4.10c)
Deformation grid after di�eomorphic registration (Vercauteren's method).
(4.10d) Deformation grid after CSR.
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(a)

(b)

(c)

(d)

Figure 4.11: Center section after reslicing the sequence of TEM images from
the top of the stack: (4.11a) original misaligned sequence, (4.11b) di�eomor-
phic demons results, (4.11c) UER results and (4.11d) CSR results.

The registration algorithm used a 5 level multiresolution image pyramid and
a 4 level deformation pyramid, with 1.0 as similarity weight and 10.0 as
consistency weight. We set empirically the stopping threshold to 0.01 and
the maximum number of iterations (i.e. whole sequence registration in the
corresponding level) to 10.

This sequence presents challenges to any image registration algorithm
since one of the brain slices is badly torn (7th slice) and there are important
di�erences between slices due to the distance between sections. However, our
method achieved a very satisfactory result, as can be seen in Figure 4.13.
The initial dissimilarity error 2122.00±426.36 was reduced to 375.27±88.97,
while VDD and UER only achieved 617.93 ± 348.73 and 610.34 ± 159.32,
respectively. This signi�cant di�erence in the minimization of the similarity
error with respect to the previous example is due to the higher level of
pyramid resolution and especially to the �at light background of the brain
images. The registration time was 90 minutes running on an Intel Pentium
M, 1.59 GHz, with 2GB of RAM memory, under Linux SuSE 10.0. The
contours of the structures of interest were satisfactorily aligned, as can be
seen in Figure 4.14.
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(a)

(b)

Figure 4.12: 3D reconstruction of registered Lamina TEM sections with
some segmented cells before (4.12a) and after alignment (4.12b). The tissue
is displayed in an orthoslice fashion to better appreciate the isosurfaces of
the segmented cells (in red).
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Figure 4.14: 3D reconstruction of registered Macaca fascicularis brain sec-
tions stained with cholinesterase.
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4.4 Conclusions

We have introduced a novel, automatic landmark-free method for registration
of 2D image sequences. Our method uses consistency, elasticity and full bidi-
rectionality to register series of related images in a multiresolution fashion.
We have pro�ted from the B-spline theory to implement both images and de-
formations with multiresolution spline pyramids, which produces a general,
�exible and computationally e�cient solution to the registration problem.
Furthermore, we chose a very powerful optimizer with the BFGS estimation
of the Hessian, which combines steepest-descent and quasi-Newton steps in
order to speed up convergence. In principle, the deformations represented by
B-splines are not invertible, however and thanks to the enforced consistency
of the transformation �elds, we obtain deformations that are quasi-inverse of
each other. Moreover, the method spreads the information from the neigh-
bors through the whole set of images enforcing the consistency of the whole
sequence.

As shown in Section 5.3, this algorithm reduces the warping index of syn-
thetic images to sub-pixel level, even when the arti�cially generated deforma-
tion belongs to a space that cannot be exactly represented using B-splines.
These results are better than those obtained using classic pairwise unidi-
rectional or bidirectional (consistent) registration algorithms. Besides, we
have shown that our algorithm is more robust than those methods against
speci�c image adverse e�ects such as noise or large rotations. We believe
that this increase in robustness is due to the combined use of consistency
and global image information, provided the iterative, back and forth tri-wise
registration algorithm, which assigns equal relevance to all the images of the
sequence.

Finally, although our algorithm allows using both landmarks and defor-
mation regularization, we show that registering using the consistency con-
straint provides satisfactory, unbiased results without requiring the use of
a landmarks or a regularization term. This is especially useful when no in-
formation about the deformations exists that may be used to customize the
regularization term and the number of deformation coe�cients is su�ciently
low. Using these improvements, we show the bene�t of applying iteratively
tri-wise bidirectional consistent registration to sequences of images and in
particular to series of TEM and histological images.
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5
3D Reconstruction of Histological Sections

�Who are you going to believe, me or your own eyes?�

Groucho Marx

Abstract

In this chapter, we present a novel method for the automatic 3D recon-
struction of thick tissue blocks from 2D histological sections. The algorithm
completes a high-content (multi-scale, multi-feature) imaging system for si-
multaneous morphological and molecular analysis of thick tissue samples.
This computer-based system integrates image acquisition, annotation, reg-
istration and three-dimensional reconstruction. We present an experimental
validation of this tool using both synthetic and real data. In particular, we
present a 3D reconstruction of a entire mouse mammary gland.

5.1 Introduction

The mammary gland is a ductal tree that develops during puberty. In
neonate mammals, mammary epithelium consists of a branched sprout con-
tiguous with the nipple. During puberty, there is considerable growth of the
ductal tree to invade and �ll the fat pad where it is embedded. In the adult
animal, ducts are formed by secretory, luminal epithelial cells. Contrac-
tile myoepithelial cells surround the ducts. The interrelationship between
the three-dimensional structure of the mammary gland (macroarchitecture)
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and its cellular composition (microarchitecture) has been only described in
a qualitative way in studies on humans and animal models. This is mainly
due to the lack of 3D imaging methods to simultaneously capture the mor-
phology of the gland and the phenotype of its constituent cells, de�ned by
the morphology and the expression of speci�c markers within the cells.

Some studies are based on whole mount preparations (Cleary et al., 2004;
Bagheri-Yarmand et al., 2003; Giovanni et al., 2004; Westerlind et al., 2002).
These studies provide a global picture of the development of the mammary
gland along with information about the quantity and spatial distribution of
its di�erent morphological structures: primary and secondary ducts, lobular
units, etc. Even before the use of digital image processing, a standard for
the evaluation of whole mount samples was established (Russo and Russo,
1978a,b). The preparations were imaged with conventional analog cameras
and analyzed by manual and rather tedious methods. The use of digital
tools gave a signi�cant boost to the analysis of whole mount preparations.
Thanks to this technology, some studies in mammary development in rats
with manual measures and counts of epithelial areas and lobular terminal
units appeared (Ip et al., 1999).

The whole mount analysis allows a macroscopic analysis of the gland, but
it is generally restricted to two dimensions. A further step is necessary and
possible thanks to the 3D microscopy technologies, such as real-time stereo-
microscopy or confocal microscopy. Stereo-microscopes have been used to
visualize the morphology of mammary gland epithelial cells in rats (Hayward
et al., 1996), to calculate the epithelial density of the gland (Hadsell et al.,
2003; Hilakivi-Clarke et al., 1997), to measure the penetration of the ducts
and the number of branches per millimeter of duct (Wiseman et al., 2003),
etc. Confocal microscopy has been used to visualize the three-dimensional
architecture of whole mounts of mammary glands in transgenic mice (Chang
et al., 2004) and to reconstruct samples of human breast (Liu et al., 1997).
These methods do not allow combining macro- and microscopic data to study
how they relate to each other. Another advantage of the 3D microscopy
methods is that the images do not need registration or annotation since the
sample is not moved during acquisition. However, the analysis of the whole
mammary gland at macroscopic level is not feasible.

All these microscopy modalities �confocal microscopy, two-photon exci-
tation microscopy, etc.� do not provide enough resolution. In the best-case
scenario, using the most modern technology, one can visualize 200-300 mi-
crons into the sample. However, the complexity of the mammary gland
stroma a�ects both the light transmission and the staining performance and
reduces the vision capability to 20-30 microns depth. Thus, a di�erent tech-
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nique with larger resolution is necessary.
In a recent and noteworthy extension of the previous method, Capek

et al. (2009) approached this problem by physically sectioning the specimens
in 40 micron sections and then acquiring image stacks that were stitched
in the x-y plane and registered in the z �vertical� direction. This allows
creating a complete digital version of the specimen. However, due to data
management and analysis issues, this is only suitable for small tissue volumes.
Another shortcoming of this method is that it relies on confocal imaging of
�uorescent markers, which might be the best approach for high-resolution
nuclear reconstruction, but is not the best staining strategy for low-resolution
reconstruction of histological structures.

Our alternative to combine low resolution imaging of histological struc-
tures with high-resolution analysis of cellular expression relies on serial sec-
tioning. Namely, after �xation, the tissue is embedded in para�n and cut
into thin slices (4-5 microns). The slides are stained to allow visualization
of structures of interest. Even slices are stained with Hematoxylin & Eosin
(H&E) to highlight the histological structures, and the intermediate odd
sections stained by immunohistochemistry using antibodies against several
cellular markers. The even sections are then imaged at low resolution and
the odd section are imaged at high resolution. This way the cellular informa-
tion can be traced back to the corresponding histological structures imaged
in the contiguous sections. This requires being able to accurately reconstruct
the tissue structures from the �low resolution� images of the even H&E
stained sections. This chapter deals with the automatic reconstruction of
entire tissue blocks in a way that could be later used to store the cellular
level phenotypic information measured in the intermediate sections. This
requires the system to be automatic, work at high resolution in the vertical
direction and rely on elastic registration to account for non linear distortions,
as it is described in the following paragraphs. Another important factor from
the standpoint of the system usability is the integration of the acquisition,
analysis and storage under a single platform, hiding the integration details
to the end user.

As already described in Chapter 2, a topologically accurate rendition of
tissues requires all the images of the sections to be correctly aligned, to ensure
the continuity of structures crossing several sections. This is a very di�cult
task that involves correcting from both linear and non-linear distortions that
can appear in the tissue. Using a manual, a�ne, non integrated approach,
Capuco et al. (2002) manually registered and segmented histological sections
�5 microns thick� with Adobe Photoshop and produced the 3D reconstruc-
tion of breast structures. Ohtake et al. (2001) used a similar method to re-
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construct breast tumors from very thick sections �2 mm�. Streicher et al.
(2000) presented a computerized method for three-dimensional visualization
of embryonic gene expression and morphological structures from histological
sections, but it is based on a rigid registration relying on markers (Streicher
et al., 1997), manual segmentation and also dependent on di�erent com-
mercial tools and formats. There exist also non-commercial tools for 3D
reconstruction of histological sections of other types of tissue and morpho-
logical structures, for instance Reconstruct (Fiala, 2005) and TDR-3Dbase
(Verbeek et al., 1995). Reconstruct is used to render neuronal tissue and its
registration and annotation steps are manual. In TDR-3Dbase all the steps
are integrated but manual and the mesh reconstruction is very coarse.

Some other authors tried to combine the advantages of 3D microscopy
with those of the histological sections by episcopic methods (Weninger et al.,
1998; Weninger and Mohun, 2002). These methods do not required regis-
tration because the images are acquired at the same time of the sectioning
process. However, they are quite limited in terms of resolution, because there
is only one snapshot per image, i.e. not scanning, and in terms of staining,
because there is only staining on the surface of the microtome. This lim-
its the staining methods and prevents from the automation of the process.
Again, these are non-integrated systems and depend on commercial tools.

MacKenzie-Graham et al. (2004) described another technique to produce
renderings from histological sections in order to build a multi-modal (MRI,
classical histology and immunohistochemistry) and multi-dimensional atlas
of mice brain. They used thick sections (50 microns) and the registration
method although automatic was limited to an a�ne transformation.

In this chapter we extended and combined our previous work with the
system R3D2 (see Chapters 2 and 3) in order to address those problems
and accurately render images of consecutive sections of fully sectioned tissue
blocks. In practice, our algorithm proceeds as follows: once the images are
acquired from the microscope, they are automatically and rigidly registered.
Next, the structures of interest are segmented and their resulting contours are
automatically grouped. Finally, the registration is locally and/or elastically
re�ned and the structures are reconstructed in 3D based on the grouped
contours. We evaluated the system with an arti�cial model and then applied
it to real mammary gland tissue blocks. We show the bene�t of using these
integrated techniques to �nally generate realistic, smooth and compact 3D
reconstructions of histological tissue at high resolution. These are indeed
novel 3D views of such a biological tissue.

The structure of the chapter is as follows. First we describe the image
acquisition technique in Section 5.2.1 and then we describe the methods
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for rigid registration (Section 2.2.2), segmentation of structures of interest
(Section 5.2.3), contours grouping (Section 5.2.4), local group registration
(Section 5.2.5) and 3D rendering (Section 5.2.6). Next, we show experimental
results, �rst with an arti�cial case in order to validate the algorithm (Section
5.3.1) and also with real histological data (Section 5.3.2). Finally, we discuss
the conclusions of our approach in Section 5.4.

5.2 Methodology

5.2.1 Image Acquisition

As explained in Chapter 2, we used para�n embedded tissue blocks con-
taining either normal mouse mammary glands or human tissue biopsies of
patients with ductal carcinoma in-situ (DCIS) of the breast. The blocks
were fully sectioned at 5 microns thickness and stained with Hematoxyilin
and Eosin (H&E), which highlights histological structures such as mammary
ducts or tumors. All the sections were imaged at low resolution (2.5x) using
a monochrome CCD camera without using any interference or absorption
color �ltering. The images were stored in either TIFF or ICS (Dean et al.,
1990) format in sets of related images that we, again, refer to as cases.

5.2.2 Rigid Registration

The �rst step to a correct sections alignment is an a�ne approach using an
automatic rigid-body registration method (see Chapter 2, Section 2.2.2 or
Arganda-Carreras et al. (1-5 Sept. 2004)). This approach is not enough to
produce proper 3D reconstructions of the tissue, but it facilitates the work
of the following tasks (segmentation and contours grouping) and it can be
re�ned later with local or non-rigid registration methods.

5.2.3 Segmentation of structures of interest

In order to automatically extract the contours of the features of interest we
use a method (Fernandez-Gonzalez et al., 2004) that combines image process-
ing techniques and two well-established schemes for interface propagation:
the Fast-Marching method (Sethian, 1996) and the Level-Set method (Os-
her and Sethian, 1988; Osher and Fedkiw, 2002; Osher and Paragios, 2003).
This approach starts by the background correction step. This is an impor-
tant step, since the background pattern generated during image acquisition
modi�es the gradient of the image, and the speed function that it is used for
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interface propagation depends on that gradient. Once the background has
been corrected, the Fast-Marching method is run. This technique provides
a good approximation of the boundaries of the objects that we are trying
to segment in a very short time, since it assumes monotonic speed functions
(always positive or always negative). Then the approximation provided by
the Fast-Marching method is used as the initial condition for the Level-Set
method. This is a computationally more expensive algorithm but it is run for
just a few steps, enough to �t the front to the contours of the structures of
interest, but not as many as to make the segmentation too time consuming.

5.2.4 Contours Grouping

In the segmentation step we annotate the structures of interest of our tissue:
ducts, lymph nodes, etc. We group the contours that belong to the same
structure so that they can be rendered together. We have developed an
automatic grouping algorithm which proceeds in two steps. The �rst step
assigns the same group number to the contours of consecutive sections if
their projected bounding boxes �minimum squared areas containing the
shapes� overlap. If there is not overlap the contour remains ungrouped.
During this process, if the bounding box of a grouped contour overlaps an
already grouped contour, then both contours receive the same super-group
number. Following this idea we iteratively create a hierarchy of groups. In
the second step, all the remaining ungrouped contours are assigned the group
and super-group number of the closest grouped contour in the next section.
See Algorithm 2 for a formal description.

5.2.5 Local Group Registration

As already mentioned before, the sectioning process can produce non-linear
deformations in the tissue, such as folding, stretching, tearing... Occasionally
also, some sections can be damaged beyond recovery and have to be disposed,
thus introducing gaps in the sequence of sections of the case. All these e�ects
may cause large misalignment between areas of the section that cannot be
corrected by the initial rigid-body transformation.

In Chapter 2, Section 2.2.3, we introduced a local re�nement based on
the phase correlation method (PCM) by Kuglin and Hines (1975). It divided
the sections in areas or sub-images and calculated a correction vector for
each of those areas. However, some problems appeared when a contour
was distributed in several of these areas. For that reason and now that we
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Algorithm 2: Contours grouping algorithm

/*
Definitions:

BBox(cx): bounding box of contour cx
GN(cx): group number of contour cx
SGN(cx): super-group number of contour cx
*/

Ng ← 01

forall sections Si in the Case do2

forall contours cj in Si do3

BBj ← BBox(cj) projected in Si+14

forall contours ck in BBj do5

if [GN(cj) 6= ∅ and GN(ck) 6= ∅ and GN(cj) 6= GN(ck)]6

then

SGN(ck)← SGN(cj)7

else if GN(ck) = ∅ then8

GN(ck)← GN(cj)9

SGN(ck)← SGN(cj)10

else if GN(cj) = ∅ then11

GN(cj)← GN(ck)12

SGN(cj)← SGN(ck)13

else14

GN(cj)← GN(ck)← Ng15

SGN(cj)← SGN(ck)← Ng16

Ng ← Ng + 117

end18

end19

end20

end21

forall sections Si in the Case do22

forall contours cj in Si do23

if GN(cj) = ∅ then24

cclosest ← closest contour in Si+125

GN(cj)← GN(cclosest)26

SGN(cj)← SGN(cclosest)27

end28

end29

end30
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have automatically grouped all shapes in the case, we can extend the idea
to match contours and areas. Therefore, our local registration algorithm
generates now a common bounding box for each group of contours which
were automatically detected in the previous step and calculates a correction
vector for each of these groups. The correction vector is calculated using
the cross-correlation between the bounding box in the target image and the
corresponding bounding box in the source image. This source bounding box
is de�ned from the rigid registration parameters if a previous rigid-body
registration has been applied before to the image.

At the end of this process there will be a correction vector and a correla-
tion coe�cient for every group of contours in every section. The correlation
coe�cient is calculated between the original target sub-image and a new
source sub-image, which is the result of applying the correction vector to the
old source sub-image. Thus the correlation coe�cient will provide a measure
of the accuracy of the correction vector. The user can set here a minimum
correlation threshold value. For values lower than this threshold the system
will consider the areas as strongly distorted and it will call our consistent
elastic registration routine (see Chapter 3 or Arganda-Carreras et al. (2006))
to correct the misalignment.

5.2.6 3D Reconstruction

The system reconstructs the 3D structures of interest based on the group-
ing (Section 5.2.4) of the segmented contours (Section 5.2.3). The contours
are previously aligned following the registration results (Sections 5.2.2 and
5.2.5). The user can choose between rendering all contours belonging to
the same group or to the same super-group as the same volume, and conse-
quently with the same color. The surfaces of the volumes are created with a
re�ned Delaunay triangulation (Boissonnat and Geiger, 1993). Some exam-
ples and validation experiments of the complete rendering process are shown
in the next section. Alternatively, R3D2 o�ers the option of creating a 3D
binary image, containing the segmented and aligned contours in white and
the background in black. This binary image can be used for further studies
of the structures of interest such as generating their skeleton, counting and
measuring their branches, volumes, etc. as it is shown in the next section.
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5.3 Results

5.3.1 Validation of the method using a phantom

We validated our system by arti�cially simulating the most common prob-
lems found during the reconstruction of histological tissue. To this end,
we create a model or phantom which, on one hand represents the type of
structures we want to render and, on the other hand, can be manipulated to
simulate the problems that appear with real data. Our phantom was an x-ray
tomographic reconstruction of mice airways, with a tree-like structure simi-
lar to that of the mammary gland. We stored the model in a 444×471×568
pixel 3D image. We calculated the isosurfaces of the structures of interest
using ImageJ 3D Viewer (Schmid, 2008), a popular open source software
which extracts the volume surface from the 3D image and allows storage in
virtual reality modeling language (VRML) format. Figure 5.1 shows a view
of the volume. We then used the model to study the robustness of our 3D
reconstruction system to variations in the direction of tissue sectioning, the
loss of sections and the presence of tissue distortions. Notice here that the
structures of interest in this volume are smaller than in our histological tis-
sue, but the size of the volume is also smaller thus preserving the proportion
between structure sizes and the x-, y- and z- resolutions we expect from the
histological samples. Although the tomographic volume is isotropic and the
histological data is usually not, we assume the distance between sections is
small enough to allow reconstructing those structures as we can do with the
arti�cial model.

5.3.1.1 Direction of sectioning

Since R3D2 does not work with input 3D images but 2D sections we �rst
proceeded to create a set of slices from the model 3D image. We performed
3 di�erent sectionings, in the x-, y- and z- axis, so we could test the perfor-
mance of our system in any direction of cut. Thus, we obtained three sets
of images which were processed as R3D2 cases. For these three cases we
followed the steps previously described in the Methodology: segmentation,
grouping and rendering. At this point we did not perform any registration
method because the sections preserved the alignment of the original 3D im-
age.

We then compared the resulting isosurfaces with the original model sur-
face. For this we used the Hausdor� distance (Rote, 1991), which measures
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Figure 5.1: Model volume generated from x-ray tomography of mice airways
to validate the reconstruction method.
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Directions X- Y- Z-

Mean 1.28 1.14 1.21

RMS 1.58 1.42 1.42

Max 15.11 19.79 8.9

Table 5.1: Symmetric distance in pixels (mean, root-mean-square and max-
imum) between the model surface and the R3D2 reconstructions with x-, y-
and z- directions of sectioning.

how far two compact non-empty subsets of a metric space are from each
other. We used the software toolbox MESH (Aspert et al., 2002), to com-
pute the minimum, maximum, mean and root-mean-square errors, between
the surfaces and to visualize the di�erences between them. Table 5.1 we
shows the mean symmetric distance Haussdorf between the model surface
and the three surfaces generated by our method. As we can appreciate from
the values, the system produces surfaces which are around 1 pixel away from
the original model. If we take into account that our segmented contours
are 1 pixel thick, we can conclude that R3D2 recovers almost perfectly the
model from any direction of sectioning. In Figure 5.2 we show an example
of the case reconstruction with a color code on top of the R3D2 surface
representing the distance to the model. This way we can visualize the vol-
umes matching. Blue areas represent perfect �t while green and yellow areas
represent larger errors.

5.3.1.2 Missing Sections

Another problem of manual histological processing is the loss of sections that
may happen during the cutting process. We wanted to test how robust our
algorithm is against this problem that can lead to the loss or distortion of
small structures of interest. To quantify the e�ect of missing sections we used
the case sectioned in the z direction and generated 10 renderings. For the
�rst rendering, all the sections are used. For the nth rendering, only one of
every nth section are kept. Figure 5.3 shows the evolution of the symmetric
error versus the percentage of sections used to generate the reconstruction.
Using 100% of the sections we obtained 1.27 pixels of average error (mean
symmetric Hausdor� distance), and this number gradually increased up to
3.11 pixels when we used only 10% of the sections. More representative of
this degradation is the maximum distance error, which increases from 8.90
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Figure 5.2: Visualization of Hausdor� distance. From left to right: histogram
with color distance code scaled in microns (1 pixel = 6.8 microns) and R3D2
reconstruction of the x- axis sectioned case colored with the distance to the
model.
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Figure 5.3: Distance error vs section loss.

when we used all the sections up to 40.92 in the 10% case. Figure 5.4 shows
a zoom over the 3D renderings of the synthetic case (from using 100% of the
sections down to using only 10%). We observe in the latter case that the
main structure of the volume is maintained although the surface is gradually
degraded. Indeed, we can visually infer from this experiment that using less
than 25% of the sections prevents from extracting realistic measures based on
the volume surface, since it loses too much detail with regard to the original
model surface. However, we observe that the basic structure of the volume
remains even when only a small percentage of the sections are used in the
reconstruction.

5.3.1.3 Rigid and non-rigid deformations

The �nal validation step tested the robustness of our algorithm to correct
for misalignment problems. To this end, we �rst applied random rigid de-
formations to all the sections of the model. Namely, we applied ±20 pixels
displacements and ±15◦ rotations to the sections, and then registered and
reconstructed the model. We obtained a reconstructed volume similar to the
original model but with di�erent orientation. To be able to measure the sur-
face distances, we then aligned the volumes using the basic Iterative Closest
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Point Zhang (1993) method, which allowed us to match both reconstructions
and calculate the Hausdor� distance between them. Even when the entire
case was rigidly distorted, we obtained an acceptable mean symmetric dis-
tance of 3.48 pixels. This results con�rms that our registration is robust
against rigid distortions.

The �nal synthetic experiment combined rigid and non-rigid deforma-
tions. Thus, we applied the same type of random rigid transformations used
in the previous experiment and added one elastic deformation (Arganda-
Carreras et al., 2006) every 20 sections. To create the elastic deformations
we used SplineDeformationGenerator1. The elastically deformed sections
were corrected using our consistent elastic registration Arganda-Carreras
et al. (2006) and then we proceeded to reconstruct the case. Again, we �rst
matched the resulting volume and the model before calculating the symmet-
ric distance between surfaces, which amounted to 3.57 pixels. This result
proves the e�ectiveness of the registration method against non-linear distor-
tions, since the distance is similar to the distance of the previous experiment.

5.3.2 Experiments with real data

Once the system was tested on synthetic data, we used it on real mammary
gland tissue sections. An entire mouse mammary gland was fully sectioned
and stained with H&E (even sections) and alternatively Estrogen Recep-
tor (ER), Progesterone Receptor (PR) and Her2-neu (odd sections). Two
hundred sections were produced with 5 microns thickness.

First, we used only the H&E sections. 6, 106 structures of interest were
segmented and 821 sub-groups were automatically detected and distributed
under two big super-groups: the lymph node and the ductal network. Two
views of the entire gland reconstruction are shown in Figure 5.5. The top
image shows the result of the reconstruction before the rigid and local group
registration process and the bottom image shows the same view after reg-
istration. The e�ect of the registration on the �nal meshes is really clear
on this example, where the registered case shows much more compact and
smoother volumes.

Next, in order to increase the volume quality, we segmented as well the
structures of interest in the odd sections of the case and re-registered them
re�ning the results with the local consistent elastic option. We then produced
a more accurate volume and proceed to its analysis. First, we generated a
binary image containing the ductal network and then calculated its skeleton

1SplineDeformationGenerator can be freely downloaded from http://biocomp.cnb.

csic.es/~iarganda/SplineDeformationGenerator/
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(a)

(b)

Figure 5.5: Two di�erent 3D reconstructions of a whole mouse mammary
gland: (5.5a) reconstruction before rigid and local group registration, (5.5b)
reconstruction after the registration process.
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Figure 5.6: Mammary gland skeleton reconstruction view. The ductal net-
work (yellow branches and blue terminal end points) is shown along with the
lymph node volume (in fuchsia).

by applying a 3D thinning algorithm by Lee et al. (1994). This way, we
obtained a more clear view of the ducts organization. In Figure 5.6 we show
an example of the volume skeleton rendered with the lymph node volume
to better appreciate the real distribution of the ductal network. Next, we
analyzed the skeleton visiting its tree and measuring it. We found the ductal
network consists of 6, 209 branches �regions between junctions and/or end
points� averaging 191.99 microns, and 2, 762 junctions.

5.3.3 Study of cell distribution

As a direct application of the system, we can use the registered sections to
study for instance the cell distribution in a duct. We can take 5 consecutive
sections of the case and mark the membrane cells emphasized by their cor-
responding staining, project them into the same space using the registration
results and have a look at their distribution. See Figure 5.7 for an example.

5.4 Conclusions

We have presented a method for the 3D reconstruction of mammary gland
tissue blocks. The algorithm includes rigid and non-rigid image registration,
automatic segmentation, contours grouping, and volume rendering. We val-
idated the method using synthetic data, which allowed us to test it in chal-
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lenging situations such as di�erent sectioning orientations, loss of sections
and rigid and non-rigid misalignments. We �nally applied the system to
real data and showed renderings of entire mammary gland tissue blocks, the
corresponding ductal network skeleton and its measures. We also showed
the bene�ts of the system to study the membrane cell distribution at high
resolution.

This algorithm completes the integrated and computer-based microscopy
system R3D2 for simultaneous morphological and molecular analysis of thick
tissue samples. This system overcomes the penetration limitations of other
microscopy modalities �confocal microscopy, two-photon excitation microscopy,
etc.�, allows novel 3D views of the mammary gland morphology and is a
complete and powerful tool to study any type of histological tissue.

Although R3D2 is not open source software, many of the methods de-
scribed and used in this work (elastic registration, 3D skeletonization...) have
been developed as ImageJ plug-ins (Rasband, 1997-2009) and can be freely
downloaded from http://arantxa.ii.uam.es/~iarganda/software.html.
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Conclusions

�Reasoning draws a conclusion, but does not make the conclusion
certain, unless the mind discovers it by the path of experience.�

Roger Bacon

The most relevant steps to produce proper visualization of volumetric data
are image registration, image segmentation and 3D triangulation of seg-
mented data. In this thesis work we have included these steps in a com-
plete and validated protocol to create realistic 3D reconstructions of serial
sections data, mainly from histological sections but also from TEM sections.
Moreover, we have studied in depth the �eld of medical image registration
and we have presented novel methods to register any type of 2D images or
image sequences. In this sense, the original contributions of this thesis are:

� The rigid and local registration methods (Chapter 2). The rigid method
was published as "Automatic Registration Of Serial Mammary Gland
Sections", I. Arganda-Carreras, R. Fernandez-Gonzalez, C. Ortiz-
de-Solorzano. The 26th International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBS), 1-5th September,
2004, San Francisco, California.

� The consistent elastic pairwise registration method (Chapter 3), pub-
lished as �Consistent and Elastic Registration of Histological Sections
using Vector-Spline Regularization�, I. Arganda-Carreras, C. O. S.
Sorzano, R. Marabini, J. M. Carazo, C. Ortiz-de-Solorzano, and J. Ky-
bic, Lecture Notes in Computer Science, Springer Berlin / Heidelberg,
volume 4241/2006, CVAMIA: Computer Vision Approaches to Medical
Image Analysis, pages 85-95, 2006.
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� The application of consistent elastic registration to 2D gels (Appendix
A), published as "Elastic Image Registration of 2D gels for di�eren-
tial and repeatability studies", C.O.S. Sorzano, I. Arganda-Carreras,
P. Thévenaz, A. Beloso, G. Morales, I. Valdés, C. Pérez-García, C.
Castillo, E. Garrido, M. Unser. Proteomics. 2008 Jan; 8(1):62-5.

� The consistent elastic registration of 2D image sequences (Chapter
4), submitted as �Non-rigid Consistent Registration of 2D Image Se-
quences�. I. Arganda-Carreras, C.O.S. Sorzano, P. Thévenaz, A.
Muñoz-Barrutia, J. Kybic, R. Marabini, J. M. Carazo, C. Ortiz-de-
Solorzano. Medical Image Analysis (Submitted).

� The 3D reconstruction protocol, including the local group registration
method and the automatic grouping algorithm (Chapter 5), published
as �3D Reconstruction of Histological Sections: Application to Mam-
mary Gland Tissue�. I. Arganda-Carreras, R. Fernandez-Gonzalez,
A. Muñoz-Barrutia, C. Ortiz-de-Solorzano, Mic. Res. Tech. (Submit-
ted).

On top of scienti�c publications, a further contribution of this thesis is the
open source software bUnwarpJ, an ImageJ plugin for consistent and elastic
image registration. Since its �rst release on July 20th 2006 and to this
date, the bUnwarpJ website (http://biocomp.cnb.csic.es/~iarganda/
bUnwarpJ/) has received more than 10, 300 unique visits from all around
the world, and the source code has been downloaded more than 1, 200 times.
The plugin details were published in:

� �bUnwarpJ: Consistent and elastic registration in ImageJ. Methods and
applications�. I. Arganda-Carreras, C.O.S. Sorzano, C. Ortiz-de
Solorzano, J. Kybic, In: ImageJ User & Developer Conference 2008.
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Conclusiones

�El razonamiento extrae una conclusión, pero eso no hace la con-
clusión cierta, a menos que la mente la descubra por el camino
de la experiencia.�

Roger Bacon

Los pasos más importantes para producir una correcta visualización de datos
volumétricos son el registro de imágenes, la segmentación de imágenes y la
triangulación 3D de los contornos segmentados. En este trabajo de tesis
hemos incluido estos pasos en un protocolo completo y validado para crear
reconstrucciones 3D realísticas de secciones seriadas, principalmente de sec-
ciones histológicas pero también de secciones de microscopio electrónico de
transmisión (TEM por sus siglas en inglés). Además hemos estudidado en
profundidad el campo del registro de imagen médica y hemos presentado
métodos nuevos para alinear todo tipo de imáges 2D o secuencias de imá-
genes 2D. En este sentido, las contribuciones originales de esta tesis son:

� Los métodos de registro rígido y local (Capítulo 2). El método de
registro rígido fue publicado como "Automatic Registration Of Serial
Mammary Gland Sections", I. Arganda-Carreras, R. Fernandez-
Gonzalez, C. Ortiz-de-Solorzano. The 26th International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBS),
1-5th September, 2004, San Francisco, California.

� El método de registro consistente y elástico de pares de imágenes (Capí-
tulo 3), publicado como �Consistent and Elastic Registration of His-
tological Sections using Vector-Spline Regularization�, I. Arganda-
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Carreras, C. O. S. Sorzano, R. Marabini, J. M. Carazo, C. Ortiz-de-
Solorzano, and J. Kybic, Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, volume 4241/2006, CVAMIA: Computer Vision
Approaches to Medical Image Analysis, pages 85-95, 2006.

� La aplicación del registro consistente y elástico a geles bidimensionales
(Apéndice A), publicado como "Elastic Image Registration of 2D gels
for di�erential and repeatability studies", C.O.S. Sorzano, I. Arganda-
Carreras, P. Thévenaz, A. Beloso, G. Morales, I. Valdés, C. Pérez-
García, C. Castillo, E. Garrido, M. Unser. Proteomics. 2008 Jan;
8(1):62-5.

� El algoritmo de registro consistente y elástico de secuencias de imá-
genes 2D (Capítulo 4), enviado como �Non-rigid Consistent Registra-
tion of 2D Image Sequences�. I. Arganda-Carreras, C.O.S. Sorzano,
P. Thévenaz, A. Muñoz-Barrutia, J. Kybic, R. Marabini, J. M. Carazo,
C. Ortiz-de-Solorzano. Medical Image Analysis (Enviado).

� El protocolo de reconstrucción 3D, incluyendo el registro local por gru-
pos y el algoritmo de agrupamiento automático (Capítulo 5), enviado
como �3D Reconstruction of Histological Sections: Application to Mam-
mary Gland Tissue�. I. Arganda-Carreras, R. Fernandez-Gonzalez,
A. Muñoz-Barrutia, C. Ortiz-de-Solorzano. Mic. Res. Tech. (Envi-
ado).

Por encima de las publicaciones cientí�cas, una contribución indudable de
esta tesis es el programa de código abierto bUnwarpJ, un plugin de ImageJ
para registro elástico y consistente de imágenes. Desde su primera distribu-
ción el 20 de julio de 2006 y hasta la fecha, el lugar web de bUnwarpJ
(http://biocomp.cnb.csic.es/~iarganda/bUnwarpJ/) ha recibido más de
10300 visitas únicas procedentes de todo el mundo, y su código fuente has
sido descargado más de 1200 veces. Los detalles del plugin fueron publicados
en la conferencia de ImageJ de 2008 como:

� �bUnwarpJ: Consistent and elastic registration in ImageJ. Methods and
applications�. I. Arganda-Carreras, C.O.S. Sorzano, C. Ortiz-de
Solorzano, J. Kybic, In: ImageJ User & Developer Conference 2008.
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A
Application of pairwise registration: Elastic

Registration of 2-D Gels for Di�erential and

Repeatability Studies

This chapter is a technical brief where we describe and example of application
that came as side e�ect of the registration method introduced in Chapter 3.

Abstract

One of the main applications of electrophoretic 2-D gels is the analysis of
di�erential responses between di�erent conditions. For this reason, speci�c
spots are present in one of the images, but not in the other. In some other
occasions, the same experiment is repeated between two and twelve times
in order to increase statistical signi�cance. In both situations, one of the
major di�culties of these analysis is that 2-D gels are a�ected by spatial
distortions due to run-time di�erences and dye-front deformations, resulting
in images that are signi�cantly dissimilar not only because of their content,
but also because of their geometry. In this technical brief, we show how to
use free, state-of-the-art image registration and fusion algorithms developed
by us for solving the problem of comparing di�erential expression pro�les,
or computing an �average� image from a series of virtually identical gels.
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A.1 Technical brief: consistent elastic registration

of 2-D gels

2-D electrophoresis is a procedure to separate and identify the proteins ex-
pressed by an organ, tissue, or cell, at a given time and under certain condi-
tions (Goerg et al., 2004). Proteins are �rst separated on the basis of their
isoelectric point (pI) by isoelectric focusing (IEF) in an immobilized pH gra-
dient (IPG) acrylamide strip. Then, proteins are separated in a perpendicu-
lar direction according to their mass by electrophoresis in a polyacrylamide
gel in the presence of SDS (SDS-PAGE). Finally, a dye is applied with a
selective a�nity toward speci�c components of the proteins. The result is a
bidimensional image in which small spots reveal the presence of those pro-
teins that showed a�nity to the dye and that had a speci�c mass and charge
in the initial solution.

One of the problems of this technique is that, when comparing two dif-
ferent gels of similar biological content, there are important local spatial
deformations that must be corrected if we want to identify biological dif-
ferences or to compute an average gel from a series of biologically identical
experiments. This geometrical correction is known in image processing as
image registration.

Solving the registration problem can be done either by the help of land-
marks (Raman et al., 2002) or the image content (Gustafsson et al., 2002;
Rohr et al., 2004; Smilansky, 2001; Veeser et al., 2001; Sorzano et al., 2006).
Sorzano et al. (2006) reported such preliminary results using an algorithm
based on vector splines (Sorzano et al., 2005). This algorithm had a number
of advantages over other image-based approaches such as versatility of the
estimated deformation �eld, accurate image interpolation performed during
the estimation of the deformation �eld, possibility of including both im-
age information and landmarks at the same time, and possibility to impose
smoothness to the deformation �eld through its divergence and rotational.
Our registration algorithm is based on the use of cubic B-splines to represent
the deformation �eld (this allows us to represent any continuous deforma-
tion �eld simply by reducing the spacing between splines). The algorithm
minimizes in an e�cient way (Levenberg-Marquardt minimization enhanced
by a BFGS estimate of the local Hessian of the goal function) the quadratic
error between a target image and a deformed source image. The deformation
�eld can be constrained to be regular by penalizing its divergence and curl.
Although the use of landmarks is not compulsory, in di�cult cases (with
very di�erent image content) they can be very helpful to identify the correct
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image deformation.
We extended the method (Arganda-Carreras et al., 2006) to compute

�quasi-invertible� deformation �elds so that image A can be mapped onto
image B and vice versa. (The algorithm called bUnwarpJ can be freely down-
loaded from http://biocomp.cnb.csic.es/~iarganda/bUnwarpJ). This helps
the optimizer to reduce the chance of getting trapped in a local minimum
and opens the door to the simultaneous registration of any number of images.

In this technical brief, we show how to use bUnwarpJ to compare gels
with di�erent expressions and how to produce a single gel from a series
of virtually identical gels. We show the applicability of our registration
algorithm with 2-D gels used in the study of the Pseudomonas putida global
Crc regulator. This protein is a global regulator of carbon metabolism in
Pseudomonas. Morales et al. (2004) compared the proteome pro�le of a P.
putida strain to that of an isogenic derivative in which the crc gene had
been inactivated. Among others, the results showed that Crc is involved
in the catabolic repression of hpd and hmgA genes from the homogentisate
pathway, one of the central catabolic pathways for aromatic compounds.
Based on four gels, a change in the expression of thirteen proteins of the
metabolic pathway was identi�ed (Morales et al., 2004). We registered the
same gels and checked our results against those of Morales et al. (2004). We
show in Figure A.1 the registration outcome as an RGB image, with one
image assigned to the red channel and the other to the green channel. We
used the same numbers as in the original paper to label the thirteen spots
identi�ed by Morales et al. (2004). As can be seen, all thirteen proteins
can be properly and easily identi�ed in our registration. Spots 5 and 6
are particularly interesting because they do not correspond to an inhibition
process but to an overexpression. These two spots appear with an orange
tint in Figure A.1, meaning that the registration algorithm correctly found
the corresponding spots in the other image. We conclude that every protein
with di�erential expression patterns that was identi�ed by Morales et al.
(2004) has been correctly picked out by our algorithm, too. We also picked
out additional proteins that, according to our registration method, exhibit a
di�erential expression pattern. Those, however, were not selected by Morales
et al. (2004) because they were unrelated to the metabolic pathway under
study.

We created 2-D gels from the cerebellum of rat brains to perform a re-
peatability study and to produce a single �average� gel. Proteins were �rst
separated by IEF in a IPG strip (17 cm, pH: 3-10 non linear) and then by
SDS-PAGE in 12% polyacrilamide gels (180×200×1 mm). Finally, the gels
were stained with silver nitrate. We used the PROTEAN Plus Dodeca Cell
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Figure A.1: Registration of two pairs of gels of P. putida. For each pair,
one of the images was put in the red channel of an RGB color image and
the other one was put in the green channel. Yellow spots correspond to
proteins that are equally expressed in both gels. Red spots (3 and 4, 7�13)
correspond to proteins that were expressed in the �rst gel but not in the
second. Conversely, green spots (1 and 2) correspond to proteins expressed
in the second gel but not in the �rst. Orange spots (5 and 6) correspond to
overexpressed proteins.
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(Bio-Rad) for the SDS-PAGE and the Dodeca Stainer (Bio-Rad) for the silver
stain; those devices can run and stain 12 gels at a time, which ensures that
gels are processed under the same conditions and improves reproducibility.

We used the software to mutually align all pairs of images. Then, we
took one of them as reference and produced the corresponding warped im-
ages of the others. Instead of computing the pointwise arithmetic average,
we followed an image fusion approach to retain as much information as pos-
sible from the original images (Forster et al., 2004). Image fusion combines
the information from a set of images by keeping the most salient regions
from each image under the hypothesis that information must show high lo-
cal energy, which is met by a series of aligned 2-D gels. Saliency is measured
in the wavelet domain: at each location the most salient wavelet coe�cient
is the one with highest module (wavelet coe�cients are complex numbers).
However, the most salient wavelet coe�cient need not be selected, instead
we use this concept in combination with two consistency checks: �rst, if
two out of three corresponding subband coe�cients are attributed to the
same image, then the third one is taken from that image, too; second, if
the majority of neighboring numbers in a 3× 3 window in the �nal wavelet
map are from a di�erent image, then we take the �outlier� coe�cient also
from that image. Finally, an inverse wavelet transform is performed to re-
construct the image. The software for image fusion can be freely down-
loaded from http://bigwww.epfl.ch/demo/edf. We show in Figure A.2
the results of a simple average of the three images and the fused image after
�quasi-invertbile� elastic registration. The fused image does not show multi-
ple spots thanks to the elastic alignment and keeps the spots from the image
where they are more salient thanks to the image-fusion algorithm. This pro-
duces a fused image in which the spots are as contrasted and resolved as
possible (the median of the absolute di�erence between the fused image and
the three images is 3.8%). As a drawback undesired lines (like the ones in
the rectangle of Figure A.2a) are also kept in the fused image. These lines
are distorted because they have to be mapped onto �at regions with no fea-
tures, and the distorted lines �t equally in any orientation. If protein spots
were available around, the regularity and continuity of the deformation �eld
would prevent too much distortion (Sorzano et al., 2006).

The two experiments reported in this chapter show that free, open-
source, publicly available, state-of-the-art image-processing algorithms for
image registration and fusion can be used to compare gels with di�erential
expression pro�les and to build a single �average� gel from a series of virtu-
ally identical gels. This can be done in a low cost personal computer (PC or
Mac) with a computational cost of less than 3 or 4 minutes.
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Figure A.2: (a�c) Three 2-D gels with identical biological content, taken
under similar conditions; (d) arithmetic average before alignment; (e) image
fusion after alignment by bUnwarpJ. Despite the physical handling of mul-
tiple gels at a time, which improves repeatability, we see in (d) that some
spots still do not coincide. Image registration and fusion are required to
obtain (e), where we observe a much better resolved average gel combining
the information present in all three gels.
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In this chapter we provide operators and derivative calculations to complete
Chapter 4.

B.1 Operators and Explicit Derivatives

We calculate the derivatives of the similarity and consistency terms with re-
spect to the deformation coe�cients c in Appendix B.1.1 and B.1.2. Thanks
to using B-splines to represent the images and the deformations, the deriva-
tives can be calculated explicitly. Then we de�ne the reduction and expan-
sion operators needed to move through the resolution pyramids in Appendix
B.1.3.

B.1.1 Data Term Derivatives

The derivative of the similarity term EijS between images Ii and Ij with
respect to the coe�cients c of the deformation �eld cr,sa,k,l can be easily inferred

from the corresponding de�nitions of EijS (see (4.3)) and cr,sa,k,l (see (4.7)).
Thus,

∂EijS
∂crsa,k,l

= −2
∑

x∈Ωij

[(
Ij(x)− Ii(gij(x))

) ∂Ii(gij(x))
∂crsa,k,l

]
, (B.1)

where a ∈ {1, 2}, i, j, r, s ∈ {1, 2, 3} and k, l ∈ Z2.
The last term in the expression above equals
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∂Ii(gij(x))
∂crsa,k,l

=
∂Ii(gij(x))
∂gij(x)

· ∂g
ij(x)

∂crsa,k,l

=
∂Ii(gij(x))

∂gij1 (x)

∂gij1 (x)
∂crsa,k,l

+
∂Ii(gij(x))

∂gij2 (x)

∂gij2 (x)
∂crsa,k,l

, (B.2)

where · denotes the scalar product. Finally, we need to evaluate
∂gij

b (x)

∂crs
a,k,l

.

If i = r and j = s (ij = {12, 21, 23, 32}), we can write

∂gijb (x)

∂cija,k,l
=

∂gijb (x, y)

∂cija,k,l

=

{
β3
(
x
sx
− k
)
β3
(
y
sy
− l
)

if a = b

0 if a 6= b
(B.3)

with b ∈ {1, 2}.
In other cases, that is, if i 6= r and j 6= s and |i− j| = 2 (i.e., ij = {13}

and rs = {12, 23} or ij = {31} and rs = {21, 32}), the expressions are
slightly more complicated. For instance, for ij = {13} and rs = {12}, we
get

∂g13
b (x)

∂c12
a,k,l

=
∂g23

b (g12
b (x, y))

∂c12
a,k,l

=
∂g23

b

∂x

∣∣∣∣
(x′,y′)

∂g12
b

∂c12
a,k,l

∣∣∣∣∣
(x,y)

+
∂g23

b

∂y

∣∣∣∣
(x′,y′)

∂g12
|b−2|+1

∂crsa,k,l

∣∣∣∣∣
(x,y)

, (B.4)

where (x′, y′) = g12
b (x, y) and ∂g12b (x)

∂c12a,k,l
is calculated as given in (B.3).

For ij = {13} and rs = {23}, we can write
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∂g13
b (x)

∂c23
a,k,l

=
∂g23

b (g12
b (x, y))

∂c23
a,k,l

=
∂g23

b

∂c23
a,k,l

∣∣∣∣∣
(x′,y′)

+
∂g23
|b−2|+1

∂c23
a,k,l

∣∣∣∣∣
(x′,y′)

, (B.5)

where (x′, y′) = g12
b (x, y) and ∂g23b (x′)

∂c23a,k,l
is calculated as in (B.3).

The corresponding derivatives for ij = {31} and rs = {21, 32}, are ob-
tained by symmetry from the ones already calculated.

B.1.2 Consistency Term Derivatives

The consistency energy functional EijC needs to be evaluated only for the in-
termediate deformation �elds, which simpli�es the number of the derivatives
to calculate. We have

∂EijC
∂crsa,k,l

= −2
∑

x∈Ωi,j

(x− gji(gij(x)))

(
∂gji(gij(x))
∂crsa,k,l

)
. (B.6)

For i = r and j = s, we can write for the last term

∂gji(gij(x))

∂cija,k,l
=

∂gji(gij(x))
∂gij(x)

· ∂g
ij(x)

∂cija,k,l

=
∂gji(gij(x))

∂gij1 (x)

∂gij1 (x)

∂cija,k,l

+
∂gji(gij(x))

∂gij2 (x)

∂gij2 (x)

∂cija,k,l

=
∂gji

∂x

∣∣∣∣
(x′,y′)

∂gij1
∂cija,k,l

∣∣∣∣∣
(x,y)

+
∂gji

∂y

∣∣∣∣
(x′,y′)

∂gij2
∂cija,k,l

∣∣∣∣∣
(x,y)

, (B.7)

where (x′, y′) = gij1 (x, y) and ∂gij
b

∂cija,k,l

is calculated from (B.3).

For i = s and j = r, the evaluation is straight-forward also from (B.3).
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∂gji(gij(x))

∂cjia,k,l
=

∂gji(x′)

∂cjia,k,l

=
∂gji1 (x′)

∂cjia,k,l
+
∂gji2 (x′)

∂cjia,k,l
, (B.8)

where (x′, y′) = gij(x, y) and ∂gji
b

∂cji
a,k,l

is calculated from (B.3).

B.1.3 Reduction and Expansion Operators

The expansion operator maps a coarser level of the pyramid onto a �ner grid,
and the reduction operator makes the complementary action. Following the
idea of Unser et al. (1993), we de�ne the expansion and reduction operators
needed to implement the image and deformation pyramids. When the image
dimensions are not a power 2 we divide by 2 and truncate to the closest
integer. We can write the expansion operator as:

c−1(k) =
(
u3

2∗ ↑2 (c0)
)

(k), (B.9)

where c0 are the initial coe�cients, u3
2 is the binomial �lter de�ned by

u3
2(k) =

 2−3

(
4

k + 2

)
|k| ≤ 2

0 other,
, (B.10)

the ∗ operator represents a discrete convolution such that (u ∗ v)(k) =∑
l∈Z u(l)v(k − l) and the operator ↑2 (·) upsamples its argument by two.
The reduction operator can be expressed as:

c1(k) =
(

1
2
(
b7
)−1 ∗ ↓2 (u3

2 ∗ b7 ∗ c0)
)

(k), (B.11)

where bn(k) = βn(x)|x=k for n = 3, 7, and the operator ↓2 (·) downsamples
its argument by two. Since u3

2 and b7 are FIR �lters, the main di�culty to

evaluate (B.11) stems from the fact that
(
b7
)−1

is an IIR �lter.
As images are always �nite, some data extrapolation is necessary to cal-

culate the in�nite sum involved in �ltering with
(
b7
)−1

. We have chosen to
extend the images using the widely extended mirror-on-bounds symmetric
boundary conditions. If f0(k)∀k ∈ [0 . . . N − 1] is the 1D signal we want to
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process and f(k) is the mirrored signal with symmetric boundary conditions
then

f(k) =
k∈Z


f0(−k) k < 0
f0(k) k ∈ [0 . . . N − 1]

f0(2N − 2− k) k > N − 1
, (B.12)

Let us next give the de�nition of the mirror-on-bounds anti-symmetric
boundary conditions in 1D. Let f(k) be the mirrored signal with anti-symmetric
boundary conditions ∀x ∈ R :

f(x)− f(0) = f(0)− f(−x)
f(x+N − 1)− f(N − 1) = f(N − 1)

−f(N − 1− x)
. (B.13)

The direct B-spline �lter
(
b7
)−1

is an all-pole system that can be im-
plemented e�ciently using a cascade of �rst-order causal and anti-causal
recursive �lters (Unser et al., 1993). Next, we describe the explicit pro-
cedure for the calculation using the same reasoning as described by Unser
(1999).

By sampling the seventh degree B-spline at integers values we �nd that

b7(z) =
(
z3 + 120z2 + 1191z + 2416

+1191z−1 + 120z−2 + z−3
) (

1
5040

)
. (B.14)

Thus, the �lter to implement is

(b7)−1(k) ↔ 1
b7(z)

= 5040
3∏
i=1

(
1

ziz−1

)(
−zi

1− ziz

)
, (B.15)

with z1 = −0.53528, z2 = −0.122558 and z3 = −0.00914869. This three-
pole �lter can be implemented as three sequential one-pole �lters. Given the
input signal values {f(k)}k=0,...,N−1 and de�ning c−(k) = c(k)

5040 . The right
hand side factorization leads to the following recursive algorithm

c+(k) = f(k) + zic
+(k − 1), (k = 1, . . . , N − 1), (B.16)

c−(k) = zi(c−(k + 1)− c+(k)), (k = N − 2, . . . , 0), (B.17)
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where zi is the corresponding pole. Notice that the �rst �lter is casual,
running from left to right and the second �lter is anticausal running from
right to left. Therefore, we need to specify the appropriate starting values
for both recursions, i.e., c+(0) and c−(N − 1). To ensure that the procedure
is reversible, we impose the requirement that f(k) can be recovered exactly
by convolving c(k) with b7 using the same type of boundary conditions.
The starting values to be used for symmetric mirror boundary conditions
are given by Unser (1999). We have calculated the corresponding values for
anti-symmetric mirror boundary conditions using the same reasoning. The
initial value for the �rst recursion is given by

c+(0) =

(
1

1− z2N−2
i

)(
1 + zi
1− zi

)
(
f(0)− zN−1

i f(N − 1)
)

+

+
∑

n∈[1...N−2]

(
z

(2N−2−n)
i − zni

)
f(n) (B.18)

Note that here f(k) indicates the results of the previous recursions and
not the original samples as it was above in (B.12) and (B.13). Correspond-
ingly, the initialization for the second recursion is

c−(N − 1) =
(
−zi

(1− zi)2

)
(
c+(N − 1)− zic+(N − 2)

)
. (B.19)
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