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Preface

This thesis is about the application of the AdS/CFT correspondence to the dynamics of
strongly coupled gauge theories, paying special attention to the hydrodynamic behavior
of these systems. In particular, we study the response to small external perturbations
of a strongly coupled quark-gluon plasma (sQGP) using holographic techniques, with an
special interest in the exploration of the validity of the hydrodynamic approximation in
such a system. We also study the hydrodynamic regime of high Tc superconductors within
the frame of the gauge/gravity duality.

The AdS/CFT correspondence establishes an equivalence between a quantum field
theory and string theory in a curved background with the peculiarity of being a strong-
weak coupling duality. When the gauge coupling is taken to be large, the field theory
is in a non-perturbative regime, whereas the string theory can be approximated by its
classical low energy limit, supergravity. It provides us with a theoretical tool to describe
the dynamics of strongly interacting gauge theories. Of particular interest is the strongly
coupled quark-gluon plasma (sQGP) discovered in the Relativistic Heavy Ion Collider
(RHIC) at Brookhaven. The sQGP behaves as a nearly perfect fluid and can be described
in terms of hydrodynamics in the low energy long-wavelength limit. The RHIC accelerator
creates very dense and hot matter, mostly made of quarks and gluons, by colliding heavy
nuclei. The created fireball rapidly thermalizes, expands and cools down coming back
to the hadronic gas phase, but in the meanwhile, when it is a quark-gluon plasma, it
reproduces the conditions of the primordial plasma in the first microseconds after the
Big Bang. At the end of the Grand Unification era (10−36 seconds) the universe was
filled with a soup of free particles that was expanding and cooling down. Around 10−11

seconds after the explosion, the electroweak force decoupled from the strong force and
particle interactions were energetic enough to create particles such as the Z and the W

bosons. The Early Universe was then filled by the quark-gluon plasma, still cooling and
expanding, until it reached a temperature of about 200 MeV that is 2× 1012 K, when the
confinement/deconfinement phase transition took place. The QGP hadronized forming
protons and neutrons. This happened a couple of microseconds after the Big Bang. Few
minutes after that, the temperature was low enough to allow the binding of hadrons, thus
the formation of light nuclei started. The state of the Early Universe just before the
quark/hadron phase transition is roughly reproduced at RHIC, and soon it will also be
tested at the ALICE experiment in the LHC at CERN. These experiments give valuable
information about QCD in the deconfined phase and the physics of the primordial plasma.
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Having a theoretical understanding of them is a hard, challenging and interesting task,
and it seems that holography can help us in this venture.

Recently, the AdS/CFT correspondence has emerged as a very useful tool in the frame
of condensed matter physics as well, since there is a wide number of strongly correlated
condensed matter systems that cannot be treated using the conventional paradigms, like
for instance quantum critical systems. There are many strongly coupled materials that can
be engineered and studied in laboratories that are challenging for condensed matter theory
and for which seems possible that the gauge/gravity duality can be helpful to gain some
insight into them. The high Tc superfluids and superconductors are expected to belong to
this family of condensed matter theories to which holographic techniques might be applied.
On the other hand, this large number of condensed matter systems also provides us with
an enormous and rich variety of effective Lagrangians. Therefore it might as well be that
using experimental techniques a material with a known gravity dual can be engineered,
leading to experimental AdS/CFT and allowing for a better understanding of quantum
gravity through atomic physics, thus reversing the usual direction of the correspondence.
Consequently, the study of AdS/CM correspondence appears as a very exciting and rich
topic. In this thesis we will apply the correspondence to model simplified condensed matter
systems and see what kind of information we can get from it.

This thesis is organized in two parts. The first part is devoted to present the back-
ground ingredients and tools that will be used later on, namely, the properties of strongly
coupled systems and the holographic techniques:

Chapter 1: We present the main features and issues of strongly coupled systems,
centered on the sQGP phase of QCD, exposing some of the most relevant results at RHIC
experiment that point to the strong coupling behavior of the formed plasma, and on the
phenomena of quantum criticality, specially for the case of high temperature supercon-
ductivity and superfluidity. We also present some basics on linear response theory and
hydrodynamics, the main tools to study perturbations in those setups.

Chapter 2: This chapter is devoted to explain the basics of the AdS/CFT corre-
spondence, avoiding as far as possible to enter in technical details that will not be useful
in what follows. We center on those aspects of the correspondence and its extensions more
relevant for applications to the systems already mentioned: how to add temperature and
how to add finite chemical potentials to the gauge theory.

Chapter 3: The power of the gauge/gravity duality relies on the ability to perform
real-time computations. In this chapter we present the main computational tool for the
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rest of the thesis: a prescription to holographically compute thermal correlators. We also
present some results of the correspondence concerning the singularities of the propagators
and the spectrum of quasinormal modes of black holes and the constraints that stability
imposes on their location.

In the second part of the thesis, we present applications of the correspondence con-
cerning strongly interacting physics:

Chapter 4: We examine an interesting property of the duality related to the quasi-
normal spectra of black holes: in the large frequency limit, the location of the poles of
retarded correlators can be explained in terms of null rays bouncing in the black hole back-
ground, thus the quasinormal spectrum is related to the causal structure of the black hole
geometry. This relation is consistent with the prescription given in the previous chapter
for computing thermal correlators.

Chapter 5: The physics of near-equilibrium processes in the gauge theory is encoded
in real time two-point correlation functions of operators and is completely determined by
its singularities. Holographic correlators only have poles as singularities. We compute the
quasinormal spectrum and the corresponding residues for different types of perturbations
to measure the contribution of each collective mode in a gluon plasma. We present the
results for the hydrodynamic modes and study the regime of validity of a hydrodynamic
description based on those modes alone. We also are able to define a lower limit of the
thermalization time for the plasma.

Chapter 6: The simplest model of holographic superfluidity is studied: the sponta-
neous symmetry breaking (SSB) of a global symmetry through the formation of a Bose
condensate is holographically realized by a charged scalar condensing in a charged AdS
black hole background. For small temperature the scalar field develops an expectation
value and the system enters the superfluid phase. We find the expected Goldstone boson
appearing at the SSB of a global U(1) symmetry and follow it into the broken (superfluid)
phase. Below the critical temperature it propagates as a sound mode: the second sound
of the superfluid component.

The first part of this work is basically a compendium of many papers and reviews on
the corresponding topics. The original work presented here corresponds to the second part
of this doctoral thesis. It is based on our published papers [1–4].





Part I

Background:

Strongly Coupled Systems

and Holography





Chapter 1

Strongly coupled systems

Most of our understanding of quantum field theories relies on the possibility of performing
perturbative analysis. This is guaranteed when ever the system is weakly interacting. The
fact that an effective weakly interacting quasiparticle description can be valid in some the-
ories even when the microscopic degrees of freedom are strongly interacting has led to a
considerable progress in the understanding of strongly coupled systems. But problems ap-
pear when such a perturbative description is lacking and purely non-perturbative methods
are needed. This is the case of non-Abelian gauge theories, as Quantum Chromodynamics
(QCD): for processes that involve energies of order ΛQCD the gauge coupling becomes
strong thus making the perturbative analysis unreliable. Strongly coupled gauge theories
can be studied using lattice simulations when one is interested in the static properties of
the system, but they are not suitable (or require a huge effort) for the study of real-time
dynamical processes.

A different framework where inherently strongly coupled physical phenomena are
present is condensed matter physics. In general, correlated electron materials can be
described in terms of order parameters, when a broken symmetry is present, and quasi-
particles, when long-lived excitations are involved. Then, field-theoretical methods allow
to determine the dynamics of the system. However, there are many examples that can-
not be described using the usual paradigms. The absence of well-defined quasiparticle
excitations implies that kinetic theory does not completely determine the transport prop-
erties of the system, so a different approach is needed. One family of systems for which
this is the case corresponds to systems close to quantum critical points. Their dynamics
can be described in terms of quantum criticality but anyway a non-perturbative analysis
is required in order to fully determine their transport coefficients. This is the case, for
instance, for systems that exhibit ‘non-Fermi liquid’ behavior, and also for some systems
with a superfluid/superconductor-insulator transition, like cuprate superconductors (also
called high Tc superconductors).

In this chapter we try to flash the main properties of these two kinds of physical systems
for which new non-perturbative methods must be developed in order to have a description
of dynamical processes. We will see in the next chapter that the AdS/CFT correspondence
provides us with such a tool for studying strongly interacting field theories, or at least for
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studying some simplified models that might nevertheless give useful information about real
world physical systems. In particular here we center on the strongly coupled quark-gluon
plasma and in the non conventional superconductors. We also present some field theory
results related to the hydrodynamics of these systems.

1.1 Quark-Gluon Plasma

Quantum Chromodynamics (QCD) is the theory that describes the strong nuclear inter-
actions between quark matter. This theory does not only exist in vacuum, moving around
the phase diagram by changing temperature and baryon chemical potential, one finds a
rich variety of phases some of them not fully understood yet. The ultrarelativistic heavy
ion collision experiments taking place at RHIC, and the upcoming experiment at the
LHC, have made the quark-gluon plasma (QGP) phase of QCD accessible. Quarks and
gluons appear deconfined. For a long time it was expected that the QGP was in a weakly
coupled regime. In contrast, experiments at the Relativistic Heavy Ion Collider (RHIC)
at Brookhaven seem to indicate that around the deconfinement temperature the plasma
remains in a strongly coupled regime. Developing methods to describe this state and the
dynamical processes in it is really appealing and an important challenge. Strongly coupled
QCD at equilibrium is usually studied using lattice simulations, that have proved to be
a very successful tool to extract static quantities. However, studying real-time dynamical
phenomena is much more involved since in general simulations are run in Euclidean time.
Hence for most of the cases, lattice computations are not suitable for out-of-equilibrium
processes and new methods are needed. For us the solution to this problem will be using
the gauge/gravity duality to study such phenomena in sQGP-like models.

QCD phase diagram.

QCD is a non-Abelian gauge theory with local internal symmetry group SU(3). Each
quark comes in three colors and there are six different kinds of quarks, called flavors. The
quark-quark interactions are mediated by gluon exchange, where the gluons are the carriers
of the force. There are eight different gluons corresponding to the possible different color
and anti-color combinations. In contrast to what happens for the electromagnetic and the
weak nuclear interactions, the individual matter constituents of QCD, the quarks, are not
observed isolated in nature, only colorless states can appear as free states: baryons and
mesons, what is usually refereed to as quark confinement. The gluons also carry color, so
they can interact among themselves, unlike photons in QED. Therefore they will appear
confined in color invariant combinations as well, the so-called glueballs. Thus we may
better talk about color confinement rather than quark confinement. Another property
of QCD that is not observed for the other interactions is the fact that strong nuclear
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interactions turn off when the momentum transfer is large, it is refereed to as asymptotic
freedom.

These two properties can at first sight seem surprising in comparison with the other
particle interactions, though they are built into the quantum character of the field theory1.
The general approach to field theories is perturbation theory. As a quantum theory it is
likely that corrections in the loop expansion are divergent, thus to make sense of the
perturbation series, renormalization of the physical quantities is needed. This procedure
implies that quantities like masses and couplings will depend on the energy scale of the
processes in such a way that the renormalized action is invariant under changes in the
regularization parameter. The running coupling constant is found to be

Λ
∂

∂Λ
g(Λ) = β(g) , (1.1)

where the form of the beta-function β(g) depends on the gauge theory under consideration.
If β > 0, the coupling is increasing with the energy scale Λ, and the theory may run to a
Landau pole in case that the coupling becomes divergent. On the other hand, if β < 0, the
coupling decreases while increasing the momentum scale so the theory is asymptotically
free. This is the case of non-Abelian gauge theories [6]. Assuming that the coupling is
small, the beta-function can be written as a perturbative expansion in g. To leading order,
the beta-function for SU(N) with Nf flavors was obtained in [7, 8],

β(g) ≈ β0g
3 = − g3

16π2

(
11
3

N − 2
3
Nf

)
, (1.2)

which for the case of QCD (N = 3, Nf=6) is negative. The strength of the interactions is
actually given by αs = g2/4π. From the running coupling constant to leading order it is
given by

αs(Λ) =
1

1/αs(Λ0) − 8πβ0log(Λ/Λ0)
, (1.3)

where Λ0 is the arbitrary renormalization scale. For large transfer momentum Λ, the
strength of the interactions is small, leading to ultraviolet asymptotic freedom, in the limit
that the coupling vanishes the particles become free. For small energies, the strength of the
interactions becomes large, thus the perturbative analysis is not reliable any more. One can
expect that for energies such that αs ∼ O(1), the interaction between quarks and gluons
is strong enough to confine them together in hadrons, leading to infrared confinement.
The scale at which this happens set the scale of non-perturbative interactions, known as
ΛQCD.

A natural consequence of these two aspects of QCD, confinement in hadrons at low
energy and ultraviolet asymptotic freedom, is that there should be a phase transition

1For a detailed explanation of these issues we refer the reader to any quantum field theory book. In

particular we have followed [5].
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between the two different phases of matter when the temperature is raised. Consider a
hadron gas at zero baryon chemical potential. The dominant degrees of freedom at low
temperature are pions and light mesons, that are the only excitations that can be easily
produced for T ≤ 100 MeV. When the temperature is increased above this value, more and
more massive resonances start to contribute and eventually dominate. At some limiting
temperature it will be easier to use the energy to excite new particles than to increase
the temperature. It was found by Hagedorn that the limiting temperature for QCD is
around 160 MeV [9]. The density of hadrons becomes large enough to consider the soup of
hadrons not as made of composite particles but as a sea of quarks and gluons. The phase
transition becomes apparent if one compares the pressure due to a hadron gas with the
pressure due to a plasma made of free quarks and gluons. At some critical temperature the
pressures coincide and the hadron gas and the plasma of constituents are in equilibrium.
For temperatures above that critical temperature the initial gas of hadrons enters a new
phase of matter, the deconfined quark-gluon plasma [10–12].

This transition has been investigated using lattice QCD computations at zero baryon
chemical potential. In [13] it was found for various models with different number of
light quarks that their thermodynamic quantities rise very steeply at some value of the
temperature signaling the presence of a transition between two different matter phases.
Furthermore, the results given in [14] point that there is actually no phase transition, but
a continuous crossover. The critical temperature corresponds then to a region rather than
to an exact value. It has been estimated to be between 150− 190 MeV for zero chemical
potential [15].
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Figure 1.1: Normalized energy density and pressure in various lattice QCD simulations. The

arrows represent the corresponding asymptotic value given by the Stefan-Boltzmann result for an

ideal free gas of quarks and gluons. Both plots from [13].

Energy density and pressure as a function of temperature are shown in figure 1.1. If
the system recovers asymptotic freedom at very high temperatures, it will become a free
gas of quarks and gluons that can be studied using statistical perturbation theory. In fact,
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its thermodynamic properties will correspond to the Stefan-Boltzmann predictions for an
ideal non-interacting gas. Lattice simulations show that after the fast rising, the energy
density reaches a plateau, remaining almost constant up to temperatures about 4Tc, at
roughly the 80% of the Stefan-Boltzmann result.

However, it is not completely clear if this result is pointing to a weakly or a strongly
coupled regime of the deconfined phase. In the case that at temperatures close to the
critical temperature T ≥ Tc the system remains strongly coupled a new paradigm of quark-
gluon plasma will enter the scene, the strongly coupled quark-gluon plasma (sQGP). It
should describe a liquid of deconfined quarks and gluons, and not a gas. Later on we will
see some experimental results that seem to point in that direction.

So far we have only considered QCD at vacuum and at finite temperature but one
can also introduce finite chemical potential and see how the picture changes. We can
start examining the zero temperature, finite µB case. The initial ground state is the
vacuum. As the chemical potential is increased the situation remains the same up to a
critical value for which the appearance of bound nucleons in the ground state is favored.
The baryon density becomes finite nB '= 0 for µ0 ( 922MeV. It corresponds to a first
order phase transition that is expected to persist at finite temperature and finally end up
in a critical point. If one continues increasing the chemical potential, hence the baryon
density, at fixed low temperature, a phase transition is again expected from a phase in
which matter exists in the form of nucleons to a phase described in terms of quarks, the
so-called color superconductor, for which diquark condensates are formed. These very high
baryon densities are relevant for the physics of compact neutron stars.

The case of finite temperature, finite chemical potential is more difficult to treat.
Lattice simulations, proven so useful for finite temperature and µB = 0, have very deep
problems when dealing with finite chemical potential, though some improvements have
been made that let one go to at least small values of µB

2. Using that improvements, the
crossover found at zero chemical potential is expected to extend to finite density for small
values of µB and smoothly connect to a critical point in the (T, µB)-phase diagram. For
larger values of the chemical potential, the phase transition is expected to be a first order
phase transition.

In figure 1.2 the QCD phase diagram is shown as contemporary understood. We are
interested in studying the possible sQGP appearing at small µB . Nowadays, this region
of the phase diagram is being experimentally tested. Let us now comment what such
experiments tell us about the matter phase just above the critical temperature.

2See for instance [16] and references therein for a summary of such methods.
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Figure 1.2: Scheme of the QCD phase diagram.

RHIC and the sQGP.

The plasma phase of QCD is explored at RHIC, where head-on collisions of gold nuclei at
center of mass energy of order ∼ 200 GeV/nucleon lead to the production of a tiny drop
of quark-gluon plasma. Following [17], assuming thermalization, it is possible to prove
that this energy will produce an energy density in the central region of the collision that
is above the critical density, given by the density inside the hadrons, thus it is enough to
deconfine the constituents in a plasma state. A comparison with the energy density found
using lattice simulations in [13], suggests that the central region reaches a temperature
about T ∼ 200MeV, that from the analysis above is expected to be sufficient for QGP
formation. The various stages of the collision are depicted in figure 1.3.

Figure 1.3: The flattened ions due to relativistic effects approach each other. In the collision, part

of the energy is transformed into heat and particles. For energetic enough collisions, the hadrons

‘melt’ and quarks and gluons are liberated: QGP drop in the central region. Expansion and cool

down drive the system back to the hadronic phase. Figure from [18].

The nuclei are accelerated to velocities corresponding to a Lorentz factor γ ∼ 100,
thus they are highly contracted in the direction of motion. In off-center collisions, the
overlap region between the two flattened ‘pancakes’ is almond-shaped. In the initial in-
elastic collisions between nucleons, many particles are liberated in the high matter density
medium, thus they can rescatter several times, leading to a very hot and dense ‘fireball’
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in which quarks and gluons are freed. This fireball then thermalizes through collisions
between the particles, leaving us with a drop of QGP that can be well described in terms
of hydrodynamics [17]. Finally, expansion and cooling drive the system to temperatures
below the deconfinement Tc and hadronization of the plasma occurs. This effect implies
the production of the jets of hadrons that are actually detected. Information about the
fireball must be inferred from the emitted hadrons.

Hydrodynamics seem to provide a good description of the formed plasma (thermalized
fireball), but in order to extract information from data some inputs are needed. A crucial
one is the initial time from when on we expect the system to be well described by hydrody-
namics. There are three contributions that must be taken into account from the impact of
the two nuclei. The first one is the time scale of the collision. Its shortest value estimated
as the overlapping time between the pancakes, turns out to be tmin ∼ 0.14 fm/c. The
fireball has a formation time associated to the creation of the large amount of particles
that form it, that is expected to be about tform ∼ 0.35 fm/c. The last contribution comes
from the thermalization time of the fireball. It is the hardest one to estimate. After ther-
malization, the system is expected to be described by a thermal distribution governed by
collective excitations. Matching the data to the corresponding collective parameters com-
ing from hydrodynamic simulations leads to a very fast thermalization, estimated to be
τtherm ∼ 0.6−1.0 fm/c. In section 1.3 we will briefly have a look at plasma hydrodynamics.

In off-center collisions there is an anisotropy effect in the formation of the fireball due
to the almond-shape of the overlap region between the colliding nuclei. The production
of particles is affected by the shape of the overlap region. Interactions between the pro-
duced particles generate a gradient of pressure larger in the collision direction than in the
transverse one. This effect translates into an anisotropy in the distribution of transverse
momenta. In principle, the anisotropy can be washed out by free streaming or result
in a non uniform distribution of detected particles with respect to the interaction plane.
Experimental data signal that the collective flow suffers the presence of pressure gradi-
ents that push the particles more in some directions, generating the so-called elliptic flow.
The angular distribution of detected particles can be parametrized in terms of the elliptic
flow parameter v2. The experimental results for such parameter can be compared with
hydrodynamic simulations parametrized by the shear viscosity to entropy ratio η/s [19].
Matching the measured parameter with hydrodynamic models seem to imply a very small
shear viscosity, like the one of an almost perfect fluid [20–23]. This result supports the
picture of a sQGP liquid rather than the description as a weakly interacting gas of quasi-
particles.

Of course, many other properties of the QGP can be studied experimentally. However,
performing theoretical predictions of such properties is very hard. The strongly coupled
regime in which the plasma seems to be makes it compulsory to find non-perturbative



10 Chapter 1. Strongly coupled systems

computational tools in order to give a reliable description of this new phase of QCD. Lattice
simulations do its best for static properties but typically fail if a dynamical description
is required. After thermalization one can try to exploit the hydrodynamic nature of the
evolution, but at the end of the day one has to face the computation of correlators in a
strongly coupled system, so the problem arises again.

Our proposal is to use the gauge/gravity duality, which gives a description of strongly
coupled field theories in terms of classical supergravity. We will see in the next chapter
that the correspondence typically involves a super Yang-Mills theory (SYM) in the gauge
side. One can argue that SYM and QCD are very different theories and in fact they
are, for instance, SYM is conformal, supersymmetric and not confining whereas QCD
has a running coupling, is not supersymmetric and does confine. But this differences
get diluted when one considers both theories at finite temperature, more concretely at
RHIC temperatures, slightly above the critical temperature. Then, none of them is con-
fining, nor supersymmetric, nor conformal and both display Debye screening and can be
strongly coupled. Certainly, there are still differences in the matter composition and in
some parameters, but there are strong similarities and one can expect that the AdS/CFT
correspondence can help to gain some insight into real world sQGP.

1.2 Quantum phase transitions

There is another branch of physics that provides us with strongly correlated systems to
which usual field-theoretical tools cannot be applied: quantum critical dynamics. There
are more condensed matter examples that exhibit intrinsic strongly interacting behavior
besides quantum critical systems. However, one reason for paying special attention to
this kind of materials is that very simple holographic duals can be constructed to model
their main characteristics, making the application of the holographic tools much easier.
On the other hand, there are many examples of real materials that have been studied
experimentally and that exhibit quantum criticality, so in principle they also give an
arena in which the correspondence can be experimentally checked.

Within the large number of quantum critical systems in the market, let us center
on non-conventional superfluids and superconductors, that are not described by the well
established condensed matter paradigms. Superconducting materials are usually layered in
the three dimensional crystal and couplings between layers are negligible, thus the physics
is effectively two dimensional. For that reason we will focus on 2 + 1-dimensional systems
and on second order phase transitions, typical for superconducting-insulator transitions3.
Let us start reviewing what is a quantum critical theory.

3A general discussion on quantum phase transitions can be found in [24].
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Quantum criticality.

A quantum phase transition is a phase transition that takes place at zero temperature. The
change between different phases of matter depends on the value of some physical param-
eter, as pressure, doping or magnetic field, and is driven by quantum fluctuations rather
than thermal fluctuations. The quantum critical point is not necessarily the zero tempe-
rature limit of a finite temperature phase transition, in fact, it can become a crossover at
finite temperature. Moreover, the Coleman-Mermin-Wagner-Hohenberg theorem [25–27]
states that in 2 + 1 dimensions there cannot be spontaneous breaking of continuous sym-
metries at finite temperature 4.

At T = 0 but away from the quantum critical point, the system is characterized by
two quantities: the energy scale that measures the fluctuations about the ground state
(or mass gap) and the coherence length that measures the scale over which correlation
is lost. Typically, at the critical point we expect the energy to vanish and the coherence
length to diverge with some scaling properties. The system becomes scale invariant and
can be described in terms of an effective scale invariant field theory: the quantum critical
theory. In general, the scaling of energy and length do not need to be inversely related and
different relations correspond to different condensed matter systems. We are interested in
a particular case in which the quantum critical theory is Lorentz invariant, thus time and
space are going to scale in the same way.

Quantum critical points dominate a whole region in the phase diagram away from the
quantum phase transition. The so-called quantum critical region is the finite temperature
region of the diagram characterized by the requirement that the deformation away from
critically due to some energy scale is small compared with the deformation due to finite
temperature. The key observation is that the effective scale invariance at the critical point
extends to the critical region thus the system there can be described by the generalization
to finite temperature of the effective scale invariant quantum critical theory.

Figure 1.4 illustrates the typical phase diagram of a system that undergoes a quantum
phase transition. The region between the dashed lines is the quantum critical region, that
for a 2+1-dimensional system is known to be described by a conformal field theory CFT3.
Notice that the imprint of the critical point grows as the temperature is increased. Of
course, the system can also undergo thermal phase transitions or crossovers away from the
critical point and outside of the QCR. Different low temperature phases will be separated
in the phase diagram by the quantum critical region.

There are many physical examples of quantum critical systems whose quantum criti-

4In some 2 + 1-dimensional theories it is possible to have a Berezinsky-Kosterlitz-Thouless transition,

that is an infinite order phase transition. Normal second order phase transitions are only allowed when

fluctuations are strictly suppressed. In chapter 6 we have an example of such transition.



12 Chapter 1. Strongly coupled systems

7

?"0%(!"&/ =!*"$+')(

@"+!'"-
#(&'&#+$

Ac

7c

Figure 1.4: Typical phase diagram near a quantum phase transition. Solid line denotes a possible

thermal phase transition or crossover between the two low temperature phases, which are also

separated by the scale invariant region (QCR) delimited by the dashed lines.

cal theory is strongly coupled and whose phase diagram is basically given by figure 1.4.
For instance, 2 + 1-dimensional antiferromagnets and boson Hubbard models have both a
quantum phase transition between an ordered and a disordered low temperature phases. In
the first case, the phase transition between coupled pairs of spins and decoupled dimers is
driven by the ratio between the two different strengths for neighbor interactions (see for ex-
ample [28]). In the second case, the phase transition corresponds to a superfluid-insulator
transition induced by tunning the ratio between repulsion and hopping interactions of the
bosons [29].

One can try to exploit the proximity to a quantum phase transition to describe the
dynamics of condensed matter systems for which a weakly interacting description is not
valid, at least close to the quantum critical region. For the case of superfluid-insulator
transitions, a theory of quantum critical transport has been developed in [30,31], based on
weak coupling perturbative analysis. However, this theory is only valid in a small region
of the parameter space and cannot be generalized, thus a general theory of transport in
strongly interacting superfluids is lacking.

Another example for which quantum phase transitions are believed to be relevant is the
description of superconducting-insulator transitions in thin metallic films, whose effective
description is again 2 + 1-dimensional. Common superconductors are described by BCS
theory [32], where charged fermions condense forming Cooper pairs due to an attractive
interaction between quasiparticles that is mediated by phonons and becomes strong at
very low energies [33]. But there are examples in nature of superconducting materials
that do not fit in this description. This is the case of cuprate high Tc superconductors,
whose typical phase diagram is depicted in figure 1.5.

Typically, the parent compound of a cuprate superconductor is not superconductor
but an antiferromagnetic insulator. When it is doped, by replacing some atoms in the
lattice of the layer, it can turn into a superconductor at low temperatures. Over doped
high temperature superconductors behave as Fermi liquids above the critical temperature,
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Figure 1.5: Schematic phase diagram of a cuprate superconductor. The solid lines denote thermal

phase transitions. The dashed lines delimit a possible QCR in case that there is a quantum critical

point beneath the dome.

thus they have an effective description in terms of weakly interacting quasiparticles. The
phase transition appearing when the temperature is lowered is fairly well described by the
BCS theory and the Cooper pairing mechanism. On the contrary, under doped high Tc

superconductors are expected to be described by strongly interacting degrees of freedom
and it is still not clear which is the correct description just above the superconducting
to normal phase transition. It is expected that electrons remain in bound states and
disordering of the phase of the condensate is involved, since such a transition takes place
from a ordered phase to a disordered one [34]. The under doped region is usually refereed to
as pseudogap. It is also expected that the system has a quantum critical point hiddenunder
the superconducting dome in the phase diagram [35,36]. If there is such a quantum critical
point, the quantum critical region (between dashed lines in figure 1.5) should describe the
so-called strange metal state. This state experimentally shows an unexpected resistivity,
which is linear with the temperature. It seems reasonable that the hypothetic quantum
phase transition is important to describe the dynamics of high Tc superconductors in the
under doped and in the strange metal regions.

Therefore, quantum critical physics plays an important role in the understanding of
some strongly coupled systems, in particular for some superfluid/superconductor-insulator
transitions, but they are certainly not enough to determine the dynamics of such systems.
One can think that lattice simulations might be useful since many superconducting materi-
als are actually crystals, so discretization appears naturally. But as in the case of strongly
coupled plasmas above, it is a very hard task to deal with non-equilibrium physics, so
lattice methods will not be a powerful tool to get information related to quantum critical
transport either. In chapters 2 and 3 we will see that the AdS/CFT correspondence pro-
vides us with a new toolkit for studying the dynamics of strongly interacting systems and
that it is possible to construct holographic models of superfluidity/superconductivity that,
though they are quite vanilla models, reproduce the most representative characteristics of
such systems. But, what are the defining properties of superfluids and superconductors?
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Superfluids and Superconductors.

Superconductivity and superfluidity show up in condensed matter physics as the low tem-
perature phase of disordered to ordered phase transitions. The ordered phase appears as
an instability of the vacuum under the formation of a condensate, thus under spontaneous
symmetry breaking of some gauge or global symmetry of the system 5.

Superfluidity is associated with a global U(1) symmetry that is spontaneously broken,
thus a massless Goldstone boson is present in the broken phase. The simplest example in
which this happens is the complex φ4 theory,

L = ∂µφ∗∂µφ + m2|φ|2 + λ|φ|4 . (1.4)

The Lagrangian is invariant under global transformation of the phase of the field φ = *eiϕ.
If m2 < 0, the scalar field can take a non trivial expectation value and the symmetry will
be spontaneously broken by fluctuations. The field ϕ becomes a massless field in the
Lagrangian, as expected from the Goldstone mechanism. Following Landau’s theory of
superfluidity one expects that the broken phase has a two fluid description, since not all
the system develops superfluidity at the same time. This implies that there are two sets
of transport coefficients, those related to the normal phase, also present in the broken
phase, and those related to transport in the superfluid component. We will comment a bit
on these coefficients in the next section. The main characteristics of superfluids are then
the appearance of a new massless boson (the Goldstone), a second sound velocity and of
course the absence of resistance to flow.

On the other hand, superconductivity is associated with the spontaneous symmetry
breaking of a gauge U(1) symmetry, thus with a Higgs mechanism. This implies the
appearance of a massive photon in the broken phase. Promoting the above Lagrangian to
have a gauge U(1) symmetry under local transformations of the phase of φ,

L = (∂µ + iqAµ)φ∗(∂µ − iqAµ)φ + m2|φ|2 + λ|φ|4 − 1
4
F 2 , (1.5)

one can again have a non trivial expectation value for the scalar and the symmetry will
be spontaneously broken. Now writing the field has φ = 〈φ〉 + (φ1 + iφ2)/2 it is possible
to gauge away the second field φ2 and end up with a Lagrangian in which there is still
a real massive scalar but also the gauge field becomes massive. Considering a static
scenario and assuming that the fluctuations on the field are very small (something expected
at low temperature), the current will be given by the London equation , = −2q 〈φ〉 ,A.
Since the electric field is ,E = −∂t

,A = 0, combining the Ohm’s law ,E = R, and the
London equation one finds the well known characteristic of superconductors: R = 0 zero
resistance to conduct electricity, thus an infinite DC (zero frequency) conductivity. The

5For a detailed explanation on the features of superfluids and superconductors see [37] and [38].
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other characteristic of superconductivity is the Meissner effect, the expulsion of magnetic
fields from the superconductor. It is a consequence of having a massive photon in the
broken phase. It can be easily deduced taking the curl of Ampere’s law ,∇ × ,B = ,

combined again with the London equation. The result is an equation for the magnetic
field,

∇2 ,B = 2q 〈φ〉 ,B , (1.6)

whose solution, in one spatial direction, is given by Bx = B0e−kx, where k =
√

2q 〈φ〉.
Thus the magnetic field only penetrates the sample a finite distance, it exponentially
decays inside the superconductor. Its characteristic penetration depth is 1/k, and it is
easy to show that k is actually the mass acquired by the photon.

Photons can be neglected when the electromagnetic interaction is weak or when it is
screened in the charged medium. In such cases, one can consider that the effective degrees
of freedom are charged particles, not photons, thus effectively the electromagnetic sym-
metry can be treated as a global symmetry. This implies that the underlying physic of
superfluids and superconductors will be effectively the same. Therefore, the main charac-
teristic of superfluid/superconducting-insulator transitions that we are going to take into
account are the formation of a spontaneous symmetry breaking condensate, the appear-
ance of a Goldstone boson and new transport coefficients in the broken phase and infinite
conductivity at zero frequency. In chapter 6 we give a concrete holographic realization of
these properties.

1.3 Linear response and Hydrodynamics

In the previous two sections we have seen two very different systems of non-perturbative
nature for which the usual field-theoretical methods are not applicable and for which known
non-perturbative approaches are not enough to describe their dynamics and transport. In
order to study the transport physics of any thermal system one shall study the evolution of
propagating fluctuations on such system. In a thermal medium, properties of elementary
particles are modified since they are ‘dressed’ by their interactions and one should talk
about collective modes. These collective excitations or quasiparticles, are characterized
by a mass and a damping rate. The dispersion relation of collective modes is related to
the transport coefficients of the theory.

Evolution of collective excitations is given by the response of the medium to small
external perturbations, where small is meant for perturbations that do not change signifi-
cantly the state of the system. In this near-equilibrium situation, linear response theory is
enough to determine the time evolution of such fluctuations. Consider the time evolution
of a state |ΨS(t)〉 in a quantum system where we introduce a small perturbation that can
be expanded in terms of a potential term VH(t). The subscripts S and H stand for the
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Schrödinger and Heisenberg pictures. In linear approximation, the state in the perturbed
system is

|Ψ̄S(t)〉 = e−iHt

(
1 − i

∫ t

t0

dτVH(τ) + . . .

)
|ΨS(0)〉 , (1.7)

where bars refer to states in the perturbed system. Of course, if one switches off the
perturbation, unperturbed evolution is recovered. The effect of the perturbation on an
observable is given by the subtraction

δ 〈O(t)〉 = 〈Ψ̄S(t)|O|Ψ̄S(t)〉 − 〈ΨS(t)|O|ΨS(t)〉 . (1.8)

From the relation between the state suffering the perturbation and the initial state, the
linear response in the operator O is

δ 〈O(t)〉 = −i

∫ ∞

t0

dτ〈ΨH| θ(t − τ) [OH(t), VH(τ)] |ΨH〉 + . . . . (1.9)

Therefore the linear response is given by the retarded commutator of the perturbation
and the operator. An special case is this in which the perturbation is given by an external
source like V (τ) =

∫
d3ξj(τ, ξ)OS(ξ). In such a case, the linear response reduces to the

convolution of the source with the retarded two-point Green function

δ 〈O(t,x)〉 = −
∫

dτd3ξGR(t − τ,x − ξ)j(τ, ξ) . (1.10)

Of course, one should have expected that the response is given by the retarded correlator
and not any other known thermal correlator since causality has to be satisfied. As we will
see in chapter 3, different kind of sources are related to different effects on the plasma. For
instance, sources localized in time will involve dissipation, how energy is lost in the system
as a function of time, whereas periodic sources localized in space will involve absorption,
related with spatial correlations in the system. There can also be diffusion effects when
conserved charges are present, the charge cannot dissipate but it spreads over the medium.
In such case, the collective excitations associated with that conserved charges are massless
and will govern the late time evolution of the perturbed system, that will be described in
terms of hydrodynamics.

Hydrodynamics.

Hydrodynamics gives an effective description of the near-equilibrium real-time macroscopic
evolution of a given system, provided that the evolution is both slow in time and space
compared to the typical scale set by the underlying microscopic theory. For thermal
quantum field theories as the ones we are interested in, this microscopic scale is given by
the inverse of the temperature. Therefore, the hydrodynamic description will be valid when
the characteristic energy and momentum of the involved processes are small compared to
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the temperature of the system, i. e. (ω, k) , T , or equivalently it describes the dynamics
at large time scales and large distances. It is formulated in terms of a few relevant fields,
their equations of motion and the so-called constitutive relations. The reason for not
using an action principle and work directly with the equations of motion is the dissipative
character of thermal media. The relevant fields, or hydrodynamic fields, are associated
to the conserved charges of the system, since they can fluctuate at arbitrarily long times.
In fact, the existence of a hydrodynamic description relies on the existence of this kind
of modes. The equations of motion are then the continuity equations for the conserved
charges. The constitutive relations encode the dissipative behavior and relate the currents
with the characteristic parameters of the system. As an effective theory, we can make an
expansion order by order in gradients of these parameters, namely, in temperature and
local fluid velocity gradients. Here we just consider first order hydrodynamics.

Consider the simple example of a system with a conserved charge. The current con-
servation equation and the constitutive relation are

∂µjµ = 0 , (1.11a)

jµ = ρuµ − D (gµν + uµuν) ∂νρ = ρuµ − DPµν∂νρ , (1.11b)

where ρ is the charge density, uµ is the local fluid velocity and D is the diffusion constant.
The coefficients in the constitutive relation, like D, are the so-called transport coefficients
of the theory. They can be deduced from the retarded two-point correlation functions that
determine the response in the corresponding fields. In particular, transport coefficients
are given in terms of the Green-Kubo formulas. For instance, the diffusion constant will
be given by the current-current correlator,

D ∝ lim
ω→0

1
ω

Im Gj j
R (ω,k = 0) . (1.12)

One can also find the location of the poles of the retarded Green functions looking for
normal modes that are plane waves. The solutions give us the dispersion relation of the
corresponding collective excitations that in this low frequency low momentum limit are
called hydrodynamic modes. The dissipative effects imply that the dispersion relations
allow complex ω(k). For the case of charge diffusion,

∂tρ − D∇2ρ = 0 , (1.13)

there is a pole in the current-current correlator at ω = −iDk2. This particular mode
encodes the dissipative behavior of the charge in the system.

More interesting is the case of transport coefficients associated to the energy-momentum
conservation. The conservation equations and first order constitutive relations are

∂µT µν = 0 , (1.14a)

T µν = T µν
ID − PµαP νβ

[
η

(
∂αuβ + ∂βuα − 2

3
gαβ∂λuλ

)
+ ζgαβ∂λuλ

]
, (1.14b)
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where the transport coefficients are the shear viscosity η and the bulk viscosity ζ. If one
considers perturbations with momentum in the direction k = (0, 0, k), the hydrodynamic
modes appearing as poles of the correlators between different elements of the energy-
momentum tensor can be computed in the same way as that for the charge density example.
There are two different types of hydrodynamic modes for the stress-energy tensor: the
shear modes, related with diffusion of the momentum in the transverse directions, and the
sound modes, related with longitudinal propagation of the energy density.

The shear modes correspond to fluctuations of T 0i and T 3i where i = 1, 2 labels the
transverse directions. Both are related by the constitutive equation, so the evolution can
be encoded in one of them and it turns out that it satisfies a diffusive equation similar to
(1.13)

∂0T
0i − η

ε + P
∂2

3T 0i = 0 . (1.15)

The dispersion relation for the shear mode is given by

ω = −i
η

ε + P
k2 . (1.16)

The sound modes correspond to fluctuations of T 00, T 03 and T 33. The three fluctua-
tions are related by two conservation equations now. They can be diagonalized leading to
a dispersion relation for the sound mode

ω = vsk − i

2(ε + P )

(
4
3
η + ζ

)
k2 , (1.17)

where vs is the sound velocity at which this sound wave propagates and is given by v2
s = dP

dε ,
where the energy density is defined by ε + P = sT .

The hydrodynamic modes are massless modes in the sense that their dispersion rela-
tions satisfy limk→0 ω = 0. We have already seen that they appear associated to conserved
charges of the system. It is also known that the phases of order parameters of second or-
der phase transitions behave as hydrodynamic modes. So the massless Goldstone boson
that appears at spontaneous continuous symmetry breaking should also be identified as a
hydrodynamic mode.

For the simple model of superfluidity given by (1.4), the hydrodynamic equations of an
ideal relativistic superfluid were worked out in [39]. In addition to the energy-momentum
tensor and the U(1) current conservation, the evolution of the condensate phase ϕ satisfies
a Josephson equation. The equations of motion are then

∂µT µν = 0 , (1.18a)

∂µjµ = 0 , (1.18b)

uµ∂µϕ − µ = 0 , (1.18c)
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where µ is the chemical potential associated to the charge density n of the conserved
current. These equations form a coupled system, since the constitutive relations for the
current and the energy-momentum tensor are modified in the presence of a condensate.
From the equation of state, the conjugate variables of the hydrodynamic parametersT, µ,ϕ

are
dP = sdT + ndµ + V 2d

(
1
2
(∂µϕ)2

)
, (1.19)

where V 2 is the condensate density associated to the chemical potential for the order
parameter ϕ. The constitutive relations are

T µν = (ε + P )uµuν + Pgµν + V 2∂µ∂νϕ , (1.20a)

jµ = nuµ + V 2∂µϕ , (1.20b)

where the energy density is now defined by ε + P = sT + nµ. This supports the picture
of a two fluid model in the superfluid phase. The current and the stress-energy tensor
have a normal fluid component given by the ideal fluid current and stress tensor but
they also have a field contribution due to the motion of the condensate that leads to the
superfluid component. The velocity uµ is interpreted as the fluid velocity of the normal
component, that in the two fluid model is the only one carrying entropy. It is possible
to study fluctuations in this superfluid model to find the hydrodynamic modes. In the
broken phase, two different sound modes appear with dispersion relations ω2 = v2

sk
2 and

ω2 = v2
2k

2. The propagation velocities are given by [75]

v2
s =

∂P

∂ε
, (1.21a)

v2
2 = V 2

[(
1 +

nµ

sT

)(∂2P

∂µ2
− n + µV 2

s

∂2P

∂T∂µ

)]−1

. (1.21b)

Hence, vs is the sound velocity of the normal component whereas v2 is interpreted as
the velocity of the so-called second sound of the superfluid component. Of course, in
the absence of a condensate, V = 0, the second sound mode disappears and its velocity
vanishes. In chapter 6 we will come back to the second sound of superfluids and using
holographic techniques we will be able to take into account also the dissipative behavior
of the thermal medium, that here has been neglected.





Chapter 2

The AdS/CFT correspondence

The Holographic principle states that a theory of quantum gravity in a region of space
can be described in terms of a non-gravity theory living on a lower dimensional space that
has one or less degrees of freedom per Planck area [40, 41]. The concept of holography
is well known from the study of black hole physics, where the entropy given by all the
possible microstates of a black hole is determined by the area of its horizon, leading to the
celebrated Bekenstein-Hawking bound [42].

A decade ago, Maldacena conjectured that superstring theory (or supergravity in the
low energy limit) in a negatively curved space is equivalent to a certain class of confor-
mal field theories living on the boundary of this space, yielding the so-called AdS/CFT
correspondence [43]. The strong version of this duality states that a quantum gravity the-
ory in an asymptotically anti-de Sitter spacetime is equivalent to a quantum field theory
in a lower dimensional space. Hence, the correspondence can then be interpreted as a
holographic realization of quantum gravity.

A connection between gauge theories and strings was first proposed by ’t Hooft [44] in
an attempt to understand strong interactions giving an approximate qualitative description
of the QCD flux tubes in terms of effective strings. The AdS/CFT correspondence is a
precise implementation of this idea as an exact duality in terms of real strings.

In this chapter we briefly present the basic properties of the original Maldacena con-
jecture and also some of the generalizations of the duality. In particular we show how to
implement finite temperature and finite chemical potential, achieved by the introduction
of a black hole in the geometry and by the addition of a Maxwell field coupled to gravity,
respectively. We emphasize those aspects of the duality that are more relevant for the ap-
plications considered in this thesis. More detailed explanations about the original proposal
and its extension to finite temperature can be found in the original papers [43,45,46] and
in the exhaustive reviews [47, 48] and references therein. For the case of finite chemical
potential with applications to condensed matter systems see the reviews [49,50].
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2.1 The Conjecture

Before describing the concrete example worked out by Maldacena, let us present two dif-
ferent ways in which the connection between quantum gauge theories and gravity theories
shows up. First we will review the ’t Hooft argument, that claims that gauge theories have
an effective description in terms of strings in some certain limits. Afterwards, departing
from a string theory scenario, which incorporates gravity in a natural way, we will see
that it is possible to include gauge interactions through the addition of new objects called
Dp-branes and derive the duality in a more straightforward way.

Large N and strings.

In [44] ’t Hooft proposed that gauge theories could be described in terms of ‘string’ theories.
Although the analysis suggested a duality between both theories, there were no proposals
for an explicit formulation of such duality. The first problem that arises in doing so is
that there are no consistent phenomenologically relevant string theories in less than ten
dimensions.

In order to see how this duality arises we can consider a SU(N) Yang-Mills theory
with schematic Lagrangian

L ∼ 1
g2
YM

Tr
[
(∂Φ)2 + V (Φ)

]
. (2.1)

In the large N limit, the effective coupling parameter of such theory is the ’t Hooft coupling
λ = g2

YMN . Eventually we will take the ’t Hooft limit, i. e. infinitely large number of
colors N → ∞ while keeping the ’t Hooft coupling fixed and finite.

The fields Φ transform in the adjoint representation of the gauge group and can be
written in matrix notation, so Feynman diagrams can be written in a double line notation
in which any adjoint field is represented by a direct product of a fundamental and an
anti-fundamental field, see figure 2.1. In this double line representation, we can order the
diagrams as an expansion in powers of N by noticing that each vertex introduces a factor
1/g2

YM = N/λ, propagators are proportional to g2
YM = λ/N and each closed line sums over

the index in the loop so gives a factor of N . The diagrams can be viewed as the simplicial
decomposition of two-dimensional surfaces: the loops represent faces and the propagators
edges. The order on powers of N of a diagram with E edges, V vertices and F faces is

NF+V −EλE−V = NχλE−V , (2.2)

where χ = F + V − E = 2 − 2g is the Euler character and g is the genus of the compact,
closed and oriented Riemann surface described by the diagram.
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Figure 2.1: Feynman diagrams (left) rewritten in double line notation (middle) interpreted as

Riemann surfaces (right).

Therefore, the SU(N) Yang-Mills theory diagrammatic expansion in the ’t Hooft cou-
pling can be interpreted as an expansion in Riemann surfaces with Euler character equal to
the power of N in the corresponding diagram, see figure 2.1. It is clear that the larger the
genus the more suppressed the diagrams, so in the ’t Hooft limit only the planar diagrams
(g = 0) will contribute.

The amplitude of any process in this gauge theory is given by a double expansion in
the number of colors and in the coupling, leading to a partition function

logZ =
∞∑

g=0

N2−2gfg(λ) , (2.3)

where fg(λ) represents the sum over all the possible Feynman diagrams with a given genus.
This expression is the same that one finds when performing a perturbative expansion of
a closed oriented string theory upon identification of the string coupling constant to be
gs ∝ 1/N . In the limit of large N the string theory is weakly interacting and since the
genus can be interpreted as the number of string loops, the planar diagram description of
the gauge theory can be identified with the tree level of the string theory.

This ‘derivation’ of the ‘duality’ is based on perturbation theory and in order to claim
that this relation is rigorous one should be able to match also non-perturbative effects on
both sides. Another problem is the matching of dimensionality of the gauge and the string
theories. Naively one would expect that starting with a 4-dimensional gauge theory one
gets a closed string theory living in a 4-dimensional space, but this cannot be the case since
string theories are not consistent in less than ten dimensions, so one is forced to include
extra-dimensions [51,52] and guess the string theory. The AdS/CFT correspondence is a
realization of this idea, although it appears naturally when one considers strings theories
with additional objects, Dp-branes.
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Open strings vs. closed strings.

The key point that led to the discovery of the gauge/gravity duality was the identification
of the Dp-branes as the full string theoretical description of the supergravity extremal
p-branes made by Polchinski [53].

String theories include gravity in a natural way, they contain closed strings whose low
energy excitations include a massless graviton and some other fields that amount to the
matter content of ten dimensional supergravity. But it is known that string theories can
also contain solitonic ‘membranes’ of different dimensionalities called D(irichlet)-branes.

A Dp-brane is a p+1 dimensional object in the ten dimensional spacetime where open
strings can end, even when only closed string are allowed to propagate in the bulk (like
in type IIB theory). The ends of the strings can move freely on the brane hyperplane,
but Dirichlet boundary conditions are imposed on the transverse directions. They are
dynamical objects that can fluctuate due to excitations of the open strings. A very nice
property of D-branes is that the massless excitations of open strings living on a D-brane
are gauge fields in an Abelian gauge group. Non-abelian gauge groups can be obtained
with stacks of parallel branes. If one considers N coincident Dp-branes the gauge group
living on their world-volume will be U(N), since the endpoints of the open strings can
be attached on different branes and all the combinations are possible. Therefore the low
energy theory living on the world-volume of a (stack of) branes is a (non-)abelian gauge
theory. It is worth to notice that in general this theory will come with a number of
supersymmetries that depends on the precise arrangement of branes.

The D-branes are massive objects with tension, or energy density, proportional to 1/gs,
thus they couple to gravity. This implies that open strings on the brane couple to closed
strings on the bulk. The backreaction on the geometry due to the presence of these massive
hyperplanes effectively curves the spacetime. It was shown by Polchinski that the low
energy limit of Dp-branes are extremal p-branes in supergravity [53]. Black p-branes are
massive p + 1-dimensional solutions of supergravity (gravity with local supersymmetry)
analogous to black holes in general relativity. They are called extremal if the area of
the horizon goes to zero. So the low energy limit of the string theory with D-branes
is supergravity on a spacetime curved by the presence of a heavy source, the extremal
p-branes.

We have presented two different pictures of the same configuration, the D-brane car-
toon and the curved background cartoon, that of course must be completely equivalent.
In general we do not know how to deal with stringy effects, so a natural limit in which
compare these two approaches is one where these effects are negligible. This corresponds
to the low energy limit, E , l−1

s .
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The action of the system is given by the contribution of the branes, the bulk and the
interactions between them. The interactions between brane modes and bulk modes are
proportional to positive powers of the gravitational constant κ ∼ gsl4s . Since taking the
low energy limit is equivalent to take the string length to zero, the open string sector
living on the brane decouples from the close string sector living on the bulk. Moreover,
the interactions between closed strings are also proportional to κ, thus the bulk theory is
free. If we look know to the massless spectrum, we find that in the low energy limit we
have two decoupled theories: a supersymmetric gauge theory living on the stack of branes
and free supergravity in the bulk.

On the other hand, we can consider that the system is described by only closed strings
in a curved spacetime. The D-branes act as the source that curves the space, generating a
throat (near-horizon region) close to their location but asymptotically flat far away from it.
From the point of view of an asymptotic observer, any excitation living in the near-horizon
region has very small energy due to the redshift suffered when we bring it closer and closer
to the branes. So excitations of arbitrary energy in the throat are compatible with the
low energy limit when measured by an observer at infinity. In the flat region we will
have again free supergravity. This is so because in the low energy limit, bulk excitations
have wavelengths large enough to ignore the effect on the geometry of the stack of branes,
while excitations in the near-horizon region cannot escape to the asymptotic region. Then
finally we end up with free supergravity in the bulk but with closed string theory in the
throat.

If we compare the resulting limits and take into account that the departing theory was
the same, we can match the free supergravities in the bulk for the two descriptions and
also identify the gauge theory on the branes with the string theory on the throat leading
to the strong version of the celebrated Maldacena conjecture: a quantum gravity theory in
asymptotically AdS is dual to a quantum gauge theory in its conformal boundary.

The canonical example.

For the sake of clarity we will center on a concrete example, the original proposal and the
simplest realization of the gauge/string duality first found in [43]:
N = 4 SU(N) super Yang-Mills theory in four dimensional Minkowski space is dual to
type IIB superstrings theory on AdS5 × S5 with N unit of R-R 5-form flux on the sphere.

Let us consider a stack of N coincident D3-branes in type IIB string theory in flat
ten dimensional Minkowski space. The low energy limit world-volume theory on the
branes is given by N = 4 SU(N) super Yang-Mills theory in 3 + 1 dimensions [54, 55].
This theory is conformally invariant with conformal group SO(4, 2) and contains a unique
vector multiplet, that consists of a gauge field, four Weyl complex fermions and six real
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scalars, so in addition to the conformal symmetry it has a SO(6) R-symmetry that rotates
the scalar fields into each other. All the fields are in the adjoint representation of the
gauge group and are connected by supersymmetric transformations.

On the other hand, the metric of the D3-branes is given by

ds2 =
(

1 +
L4

r4

)−1/2

dxµdxµ +
(

1 +
L4

r4

)1/2 (
dr2 + r2dΩ2

5

)
, (2.4)

where the coordinates xµ correspond to the Minkowski space filled by the branes, r is the
radial coordinate of the transverse space and the parameter L is proportional to the string
length and is defined as

L4 = 4πgsNl4s . (2.5)

Far away from the location of the branes r 0 L ten-dimensional Minkowski space is
recovered since the metric is asymptotically flat. We can instead look to the geometry
very close to the brane position. For r → 0 the metric appears to be singular. In the low
energy limit, an asymptotic observer sees excitations close to the source very redshifted.
The throat can be defined as the region where excitations of arbitrary energy are seen as
low energy excitations by this outside observer. The relation between the energy measured
at infinity and the proper energy is

E∞ ∼
√
−g00 Ep =

(
1 +

L4

r4

)−1/4

Ep ⇒ for r → 0 : E∞ ∼ r

L
Ep . (2.6)

Hence the throat or near-horizon region corresponds to r , L. Notice that in this limit
the spacetime is not singular but develops a negative constant curvature. The metric in
the near-horizon limit is then

ds2 =
r2

L2

(
−dt2 + d,x2

)
+

L2

r2
dr2 + L2dΩ2

5 . (2.7)

This metric describes the product space AdS5 × S5 , where the parameter L plays the role
of both the anti-de Sitter space radius and the 5-sphere radius. The symmetries of this
spacetime are the AdS5 group of isometries SO(4, 2) and the SO(6) rotation group of
the sphere. The anti-de Sitter space is the maximally symmetric solution of Einstein’s
equations with negative cosmological constant.

Following the arguments exposed above, one is tempted to say that these two theories
are physically equivalent, though this equivalence has not been proven yet. We do not have
a non-perturbative description of string theory and we do not know how to quantize it in
a curved space, so we may better consider the correspondence just as a conjecture. Much
effort has been made to obtain the spectrum beyond the supergravity approximation and
progress has been made for special operators in some limits. For instance, exploiting the
integrability of the system the spectrum of large spin operators has been resolved [56–58].
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Nevertheless, there are strong indications that the duality should be valid in its strong
version coming from the spectrum of some particular operators, supersymmetry protected
correlators and in general coupling independent properties.

One can start examining the gauge and global symmetries that of course do not depend
on the coupling constants. Coming back to the isometries of AdS5 × S5 , it has spacetime
symmetry groups SO(4, 2) and SO(6). Superstring theories living on anti-de Sitter have
32 supercharges since the space is maximally symmetric. All these symmetries combine
in the super-Lie group SU(2, 2|4). The N = 4 Yang-Mills theory is conformal so in four
dimensions it has a SO(4, 2) conformal symmetry group. It also has a R-symmetry group
SO(6) due to supersymmetry. N =4 in four dimensional space has 16 supercharges, but
the conformal superalgebra doubles the number of supersymmetry generators, giving a
total of 32 supercharges. The symmetries again combine in the superconformal group
SU(2, 2|4). We can finally conclude that gauge symmetries of the gravity side map to
global symmetries of the gauge side.

There is still a non-perturbative symmetry shared by both theories. The Montonen-
Olive duality states that the N =4 Yang-Mills theory is invariant under SL(2, Z) S-duality
transformations acting on the complex gauge coupling τ = θ

2π + i 4π
g2
YM

, where θ is the
instanton angle. In type IIB string theory the same S-duality acts on the axion-dilaton
complex coupling τ = χ

2π + ie−Φ, where the dilaton field is eΦ = gs. Identifying the two
complexified parameters, we can extract the relation between the coupling constants of
the gauge and the gravity theory to be g2

YM = 4πgs, that can also be found from the
Born-Infeld action of the branes.

The key feature of the correspondence that makes it so attractive for applications
to strongly interacting systems is that it is a strong/weak duality. The supergravity
approximation of string theory is valid when the spacetime is weakly curved, this happens
when the radius of curvature L of the AdS space, of the throat, becomes large compared
with the string length. On the other hand, a perturbative analysis of the Yang-Mills
theory is reliable when the ’t Hooft coupling λ is small. From (2.5) and provided the
relation between the string and the gauge couplings, we can relate these two parameters
that define the perturbative regime on each theory,

L4 = λ l4s . (2.8)

It is clear that both perturbatively valid descriptions are incompatible, but in fact this is
good for our purposes. The supergravity approximation is valid when the ’t Hooft coupling
goes to infinity, when the field theory is strongly coupled, allowing us to get information of
the non-perturbative regime of gauge theories that in general cannot be solved otherwise.
Infinite ’t Hooft coupling is equivalent to infinite number of colors N → ∞. As we saw
before, the large N limit also corresponds to the planar limit of the gauge theory and to
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the tree-level string theory. It implies that quantum string loops are 1/N corrections in
the gauge theory. One can also think about stringy corrections coming from the finiteness
of the string length. These are corrections in α′ = l2s and correspond to 1/

√
λ corrections

in the field theory.

Therefore, in the Maldacena limit, i. e. N, λ → ∞, classical supergravity on a weakly
curved AdS space and a strongly coupled gauge theory describe the same physical setup.

Another interesting remark concerns the holographic interpretation of the AdS/CFT
correspondence. Let us forget about the 5-sphere and write the AdS metric in Poincaré
coordinates as

ds2 = 7(z)2
(
dz2 + dxµdxµ

)
with 7(z) =

1
z

, (2.9)

where z = L2/r is the new radial coordinate and the coordinates xµ define the brane hy-
perplane, thus the field theory spacetime. From the AdS metric written in this way, it is
easy to see that the gauge theory lives on z → 0 (or r → ∞), that is the conformal bound-
ary of AdS and in Poincaré coordinates is obvious that this boundary is 4-dimensional
Minkowski space. Hence, the gauge/gravity duality is holographic in the sense that it
relates a gravity theory on some spacetime with a field theory living on its boundary.
Moreover, the radial coordinate plays the role of the renormalization group scale from the
boundary theory point of view. This can be seen from the relation between energies and
distances in the bulk (from now on bulk refers to the interior of the AdS space) and in
the boundary given by the warp factor,

E = 7(z)Ep and l =
1

7(z)
lp . (2.10)

Then, close to the boundary z → 0, large distances (low energy) bulk phenomena corre-
sponds to short distances (high energy) physics in the boundary theory, i. e. ultraviolet
physics, while short distance phenomena deeply in the throat z → ∞, map to large dis-
tances physics from the field theory point of view, i. e. infrared physics. This implies that
different positions in the bulk correspond to different energy scales in the boundary. The
RG-flow is parametrized by the radial coordinate: the supersymmetric Yang-Mills theory
regularized in the ultraviolet and living on the boundary of the AdS space flows to the
infrared fixed-point going down the throat. The fact that ultraviolet effects on the field
theory map to infrared effects on the gravity side is known as the UV/IR duality [59].

At this point, it is worth to notice that the holographic formulation of the correspon-
dence can be generalized to any dimension provided that the gravity theory lives in an
asymptotically AdS d+1-dimensional space and the gauge theory lives on its d-dimensional
boundary. Nevertheless, the connection with string theory would imply to find a consis-
tent truncation of string theory or M theory yielding to a consistent supergravity in the
desired space and this can be a highly non trivial task. We are interested in applications
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of the correspondence to plasma physics in 3+1 dimensional spacetimes, but also to 2+1
dimensional condensed matter theories. In the latter case, we will assume that the corre-
spondence holds without worrying about the precise string embedding that brings to the
four dimensional gravity theory more than saying that it must come from a dimensional
reduction of M -theory on an AdS4 × X7 spacetime.

The dictionary.

We have presented the basic features of the AdS/CFT correspondence through a mainly
qualitative description, but in order to make the duality a powerful tool we need to know
how physical observables of the two theories are related and how to obtain quantitative
results.

The natural objects to consider in a conformal field theory are operators and the
physical observables are expressed as correlation functions of gauge invariant combinations
of them, while supergravity and string theory are formulated in terms of fields.

A variation of the field theory coupling constant is related to a variation of the string
theory coupling which in turn is related to changing the expectation value of the dilaton
field, g2

YM ∝ gs = eΦ. As the expectation of the dilaton is set by its boundary condition
at the AdS boundary, one can infer a connection between operators in the field theory
side and excitations of the string fields subject to boundary conditions. In fact, it is
possible to establish a one to one field/operator correspondence and to give a precise
prescription for computing correlation functions using the duality [45, 46]. A motivation
for such connection comes from considering propagating waves in the full ten dimensional
spacetime. A wave coming from asymptotic infinity can be absorbed by tunneling into the
throat and then propagating through it. This signal may be thought of as a perturbation of
the AdS boundary that propagates into the bulk, so correlators of the gauge field must be
related with the response of string theory to propagating fields with boundary conditions
at the AdS boundary. The field/operator relation can be read off from the brane action,
in which gauge theory operators will appear coupled to boundary values of string fields.
For instance, the dilaton couples to trF 2 and the R-R scalars to trFF̃ , where Fµν is the
field strength of the gauge field, the graviton couples to the energy-momentum tensor Tµν

of the gauge theory and bulk vector (Maxwell) fields couple to global currents in the dual
field theory.

In the spirit of that argument it is natural to identify the generating functional of the
partition function of the conformal field theory with the partition function of the classical
string theory. Withal, in the supergravity approximation the latter can be substituted
by its low energy counterpart, leading to a quantitative formulation of the AdS/CFT
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correspondence in the regime of interest that in the Euclidean version reads,
〈
e

R
d4x φ0(x)O(x)

〉
= ZCFT [φ0] ≡ Zstring [φ] ≈ e−Ssugra[φ] , (2.11)

where the bulk field φ is a classical solution for the supergravity action Ssugra satisfying
the boundary condition φ(z, x) = φ0(x) for z → 0. It is clear from the above expression
that the boundary value of the supergravity field can be interpreted as the source for the
insertion of an operator in the gauge theory.

The supergravity equations of motion have two linearly independent solutions with
different asymptotic behavior close to the AdS boundary,

φ(z, x) = φ0(x)z∆− + φ1(x)z∆+ , (2.12)

where ∆+ > ∆− are the characteristic exponents of the equation. These coefficients
depend on the character of the field and on its mass. Generically, the first term corresponds
to non-normalizable fluctuations close to the boundary and the second term corresponds
to normalizable ones. The scale invariance of the AdS space under (z, x) → D (z, x)
transformations, implies that the fields φ0 and φ1 have to rescale in such a way that the
bulk field is invariant what turns out to require that the former transforms as a source
and the latter as a vev from the conformal field theory point of view. This actually means
that the non-normalizable solutions are dual to the insertion of operators in the gauge
theory sourced by the boundary value of such modes, while the normalizable modes are
understood as the expectation value of the dual operator. Moreover, the characteristic
exponent is related to the conformal weight of the operator ∆ = d − ∆−, where d is the
dimensionality of the gauge theory spacetime, leading to a relation between the mass of
the supergravity fields and the conformal dimension of their dual operators 1.

Given the relation (2.11), n-point correlation functions in the Euclidean gauge theory
are obtained by taking functional derivatives of the supergravity action with respect to
the fields that act as sources,

〈O(x1)O(x2) . . .O(xn)〉 =
δnSsugra

δφ0(x1)δφ0(x2) . . . δφ0(xn)
. (2.13)

Although it has been formulated in Euclidean signature, one can in principle make an
analytic continuation to Lorentzian signature. However, in the case of finite tempera-
ture, this continuation involves the complete discrete Matsubara frequency spectrum of
the Euclidean propagator and it can happen that extracting relevant information of the
corresponding real frequencies is very hard or even impossible. Then, a prescription to

1It can be the case that both fluctuations are normalizable at the boundary, then one can define two

different theories depending on which of the modes is interpreted as the source and which as the vev,

that in fact corresponds to different dimensions for the dual operator. This will be the case for the model

considered in chapter 6.
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compute directly Lorentzian correlators will be needed in order to study dynamical prop-
erties of the systems. Since Lorentzian Green functions will be the main computational
tool used in this thesis, we reserve the next chapter to present the real-time thermal AdS
prescription and some of their features.

2.2 Finite Temperature

So far we have described the correspondence for a very peculiar setup that involves an
infinitely strongly coupled gauge theory constrained by supersymmetry and conformal
invariance, what makes it a nice scenario in order to check the correspondence but that has
a very limited phenomenological interest. Fortunately, one can relax such constraints and
generalize the correspondence to non-conformal and non-supersymmetric gauge theories
by deforming the AdS geometry or by adding new objects to the setup.

One particular property that is shared by all the systems for which we claimed that the
AdS/CFT correspondence might be useful is finite temperature. We devote this section
to explain how this can be implemented in a holographic frame and some of the most
interesting features of this generalization of the gauge/gravity duality.

Adding a black hole.

It is well known that finite temperature and thermodynamics show up naturally in general
relativity in the study of black hole physics. In this sense, it is reasonable to expect that
the extension to finite temperature of the correspondence is such that the gravity dual of
a thermal field theory lives in an anti-de Sitter black hole background.

If we consider the decoupling limit of the near-extremal black 3-branes background,
the metric in the near-horizon region reduces to

ds2 =
r2

L2

(
−f(r)dt2 + dx2

)
+

L2

r2

dr2

f(r)
+ L2dΩ2

5 ,

f(r) = 1 − r4
H/r4 . (2.14)

The asymptotic behavior is not modified with respect to the zero temperature case (2.7),
but the infrared physics must be affected by the presence of the black hole, with regular
event horizon at r = rH. Notice that the above metric describes a planar Schwarzschild-
AdS black hole since the horizon is flat. The temperature manifests itself as the Hawking
temperature of the horizon TH which in turn is identified with the dual field theory tempe-
rature. One way to find it passes through Wick rotate to Euclidean signature and demand
the absence of conical singularities. This fixes the period of the compact Euclidean time.
The temperature is then identified with the inverse of that period, that in fact leads to
thermal probability distributions in the field theory.
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We can focus on the 2-dimensional part of the Euclidean metric given by the coordi-
nates (τ, r) and look to the region close to the horizon r → rH, so the metric reads

ds2
E =

r2
Hf ′(rH)

L2
(r − rH) dτ2 +

L2

r2
Hf ′(rH)

dr2

(r − rH)
. (2.15)

Introducing new coordinates ρ2 = 4L2(r−rH)/r2
Hf ′(rH) and θ = r2

Hf ′(rH)τ/2L2 the metric
takes the plane form ds2 = dρ2 + ρ2dθ2, that is free of singularities provided that the
angular coordinate has period βθ = 2π. We can now read off the field theory temperature
as the inverse of the period of the Euclidean time coordinate,

T ≡ TH =
1
βτ

=
r2
Hf ′(rH)
4πL2

. (2.16)

This result is completely general and holds for any kind of black hole [60]. In the concrete
case of 5-dimensional AdS-Schwarzschild, with blackening factor f(r) given in (2.14), the
temperature is

T = rH/(πL2) . (2.17)

An important remark is that the Euclidean boundary admits two different spin struc-
tures depending on the boundary conditions satisfied by fermions on the compact circle.
In principle one can either impose periodic (supersymmetric) boundary conditions or anti-
periodic (thermal) ones, however, in the presence of a black hole, only anti-periodic bound-
ary conditions are allowed, therefore, supersymmetry will be broken. Also, the presence
of the black hole modifies the isometries of the AdS space and the dual gauge theory is
not conformal anymore, though it still flows to an ultraviolet fixed point since the bulk
space is asymptotically AdS, so only at very high energies the conformal invariance of the
field theory will be restored.

This is nice since we are looking for holographic descriptions of ‘close to real world’
scenarios that in general would not be supersymmetric nor conformal, but on the other
hand it makes much more difficult to test the validity of the duality. As we already saw,
most of the tests that can be done in the zero temperature case concern quantities protected
by the symmetries of the system. The lack of some of them in the finite temperature case
of course does not mean that the correspondence does not hold, just that it is harder to
check it.

One indication that finite temperature gauge theories are well described by gravity
theories in AdS black hole backgrounds comes from the comparison of the entropy of a
N =4 SU(N) infinitely strongly coupled theory at finite temperature and the entropy of
an ideal Stefan-Boltzmann gas of gluons [61,62]. In the gravity computation the entropy
is given by the Bekenstein-Hawking entropy of the black hole, while for the free gauge
theory statistical mechanics fixes the dependence on the number of degrees of freedom
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and conformal invariance the scaling with the temperature, giving a final result

SBH =
3
4
SSB =

π2

2
V N2T 3 . (2.18)

The appearance of a relative factor between both of them is not surprising since the
entropy is not protected against running with the coupling constant. In fact, this factor
far from contradicting the duality must be regarded as a holographic prediction about the
strongly coupled gauge theory. Notice that the gravity result captures the scaling with the
number of colors, which indicates the presence of N2 unconfined gluons, thus the gravity
background must be interpreted as the dual of the deconfined (plasma) phase of finite
temperature N = 4 Yang-Mills theory. Moreover, coming back to the discussion about
plasmas in the previous chapter, results at RHIC and lattice simulations in conjunction
with this holographic relation between infinitely coupled and free gauge theories supports
the picture of a strongly coupled QGP just above the deconfinement temperature.

Confinement-Deconfinement.

The holographic formulation of the correspondence allows us to construct the conformal
field theory dual to a given gravity theory. This is so since we can define local operators
of the boundary theory just by considering the boundary behavior of perturbations of the
gravity fields. However, the boundary conditions are completely determined by the con-
formal boundary of the bulk and in principle it is possible to have several bulk geometries
with the same boundary, hence satisfying the same boundary conditions. In this case it is
necessary to take into account the contributions to the partition function of the boundary
theory of all the gravity theories leading to the same boundary theory when evaluating
(2.11). In the large N limit, the supergravity action scales with a positive power of N ,
thus the dominant contribution to the partition function will be given by the configuration
with smallest free energy. This provides a natural scenario for a phase transition in the
boundary theory, that would happen at the point where two different geometries have the
same free energy. Therefore, for each phase of a field theory we can construct its holo-
graphic dual and phase transitions correspond to change the geometry of the bulk space
in the gravity side [63].

This implies that the AdS/CFT correspondence should be able to reproduce the usual
confinement/deconfinement phase transition of finite temperature gauge theories. For the
case considered so far, the boundary topology is S1×R3 in Euclidean signature. The only
scale of the field theory is set by the size of the time circle, i. e. the temperature. The
absence of dimensionless parameters implies that the temperature can be either zero or
different from zero and that all the finite temperatures are equivalent by rescaling. There-
fore, no phase transition is possible. One can instead consider a global AdS bulk metric,
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whose boundary has topology S1×S3. In this case, two scales are defined on the boundary
theory corresponding to the size of the circle and the size of the sphere. A dimensionless
parameter can be constructed as the ratio between both of them. Varying this parameter
it is possible that the field theory undergoes a phase transition, that in the gravity side
must correspond to a ‘jump’ between two different asymptotically AdS geometries. In
fact, for the N =4 case, there exist two solutions to the supergravity equations of motion
that share the same asymptotic topology S1 × S3 in Euclidean signature, given by

ds2 =
(

1 +
r2

L2

)
dτ2 +

(
1 +

r2

L2

)−1

dr2 + r2dΩ2
3 , (2.19a)

ds2 =
(

1 +
r2

L2
− M

r2

)
dτ2 +

(
1 +

r2

L2
− M

r2

)−1

dr2 + r2dΩ2
3 , (2.19b)

where M is the mass of the black hole. In order to compare the free energy of these two
configurations it is necessary to regularize both spacetimes in such a way that they lead
to the same boundary geometry. Doing so, one finds that for large temperature in the
boundary theory, the AdS black hole metric (2.19b) is favored, while for low temperature
the so-called thermal AdS (2.19a) is dominant. This is the well known Hawking-Page
transition, where a thermal gas of gravitons eventually collapses forming a black hole
when the temperature is increased [64].

This transition is interpreted in the dual large N N =4 gauge theory living on S1×S3 as
a confinement/deconfinement phase transition in analogy to QCD. The high temperature
phase is analogous to a deconfining phase with free energy of order N2 that reflects the
contribution of gluons and whose gravity dual is given by the AdS black hole metric,
whereas the low temperature phase corresponds to a confining phase with free energy of
order one (since color singlet hadron contributions are N -independent) whose gravity dual
is the thermal AdS background [63].

Finally we can consider the field theory living on S1 × R3. This corresponds to send
the radius of the S3 to infinity and in this case the black hole metric is always favored, so
the field theory cannot develop a phase transition but is in the plasma (deconfined) phase.
This limit corresponds to the Euclidean version of the metric (2.14) upon redefinition of
the variables when only the AdS part is taken into account.

2.3 Finite chemical potential

We have discussed the implementation of finite temperature in the holographic correspon-
dence and found that it is nothing but placing the supergravity theory in a black hole
background. This simple deformation allows us to give a holographic dual description of
the plasma phase of a Yang-Mills theory in the limit of strong coupling. For the realm



2.3 Finite chemical potential 35

of this thesis this will be enough to illustrate how the AdS/CFT correpondence can be
applied to plasma physics, keeping in mind that this gauge theory has to be seen as an
oversimplified toy model of real plasmas like those produced at RHIC.

In order to study condensed matter physics at least one supplementary deformation
is required: the gauge theory must be placed at finite chemical potential, or finite charge
density, thus we need to implement the dual of a U(1) symmetry. Moreover, in the case
of superconductors and superfluids, the correspondence should be able to reproduce the
phase transition between the normal and the superconducting phases, hence we also need
a mechanism for spontaneous symmetry breaking of such symmetry in the bulk.

Adding a global current.

To have a gauge theory at finite charge density means to give a non-zero expectation
value to the time component of a global current. The field/operator dictionary tells us that
global conserved currents Jµ in the boundary theory couple to bulk massless Maxwell fields
Aµ, or equivalently that a global U(1) symmetry of the field theory is dual to a gauge U(1)
symmetry of the gravity theory. Therefore, a finite chemical potential is obtained adding a
Maxwell term to the Einstein-Hilbert action with a negative cosmological constant, leading
to an Einstein-Maxwell theory, that in four dimensions is given by

S =
1

16πG

∫
d4x

√
−g

(
R +

6
L2

− 1
4
F 2

)
, (2.20)

where F = dA is the electromagnetic field strength. We want to consider now four
dimensional classical gravity in order to have a holographic description of 2+1 dimensional
strongly coupled condensed matter systems.

Hence, the dual gravitational description of a finite temperature and finite charge
density field theory is gravity in an electrically charged black hole background. The
unique solution of the above Einstein-Maxwell action describing such gauge theory is the
Reissner-Nordstrom AdS black hole 2, whose metric is

ds2 =
r2

L2

(
−f(r)dt2 + dx2 + dy2

)
+

L2

r2

dr2

f(r)
,

f(r) = 1 −
(

1 +
µ2L2

4r2
H

)(rH

r

)3
+

µ2L2

4r2
H

(rH

r

)4
, (2.21)

with a non-zero scalar potential

At(r) = µ
(
1 − rH

r

)
. (2.22)

2The most general solution is actually a dyonic AdS black hole with both electric and magnetic charge.

Since for our purposes it is enough to consider an electrically charged black hole we set the magnetic charge

to zero.
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The constant term in the scalar potential has been chose such that it vanishes at the black
hole horizon, At(rH) = 0. The parameter µ is then directly identified with the chemical
potential of the field theory. The charge density of the field theory is then n = µrH and
corresponds to the electric field of the black hole. In fact, the scalar potential has to vanish
at the horizon in order to have a well defined Maxwell field in the analytic continuation
to Euclidean space. One can use the integral Gauss law to compute the charge inside a
closed surface at a given r0,

∮
A =
∫ β
0 dτ
∫ r0

rH
drrFrτ . In the limit r0 = rH, the area of the

surface vanishes and since there is no puntual charge located at the origin of the Euclidean
space, the integral must vanishes too, what actually implies that At(rH) = 0.

We can use the definition (2.16) for the Hawking temperature, since the metric used in
the previous section to derive it is formally the same as (2.21). The resulting temperature
for a charged four dimensional black hole is

T =
rH

4πL2

(
3 − µ2L2

4r2
H

)
. (2.23)

In the case of zero chemical potential, the temperature (2.17), that only depends on the
horizon radius, introduces a scale in the theory that breaks conformal invariance. The
horizon radius rH can be scaled out, thus all the non-zero temperatures are equivalent.
Now in the charged black hole we have two scales that parametrize the system: the
chemical potential of the field theory and the horizon radius. Again, we can scale out the
horizon radius but we are left with the scale set by the chemical potential, so temperatures
are not equivalent anymore. Then, the only non trivial dependence on the temperature of
any physical quantity will be in the dimensionless ratio T/µ.

Unlike for zero µ where one can have either temperature or not without a smooth
connection between both solutions, for finite charge density the temperature can be con-
tinuously taken to zero. Then it makes sense to ask what happens when we cool the
system down and whether it undergoes a phase transition.

Spontaneous symmetry breaking.

We can probe the above background adding charged matter in the bulk in order to answer
this question. Since we are interested in testing whether or not a superconducting phase
exist, we will only consider the case of bosonic operators. Spontaneous symmetry breaking
occurs when a charged operator condenses, i. e. acquires a vev. In principle the operators
that condense do not have to be scalars. Although we will center in the s-wave supercon-
ductors for which the order parameter is a scalar operator, one can also talk about p-wave
or d-wave superconductors for which the condensate carries angular momentum. In the
frame of the AdS/CFT correspondence, the first proposals for a s-wave superconductor
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realization were done in [65–67], for the p-wave case in [68–70] and recently for d-wave
superconductors in [71].

The presence of a charged scalar operator in the gauge theory is equivalent to consider
a charged scalar field propagating in the bulk. This amounts to the addition to (2.20) of
an action for the scalar field

S =
1

16πG

∫
d4x

√
−g
(
|∂φ − iqAφ| + m2|φ|2

)
, (2.24)

where q is the charge of the scalar under the U(1) gauge symmetry. The potential for the
scalar field has been chosen to be a mass term, though the exact form would be fixed by
the string embedding leading to such supergravity action. As mentioned before, we will
not care about that issue but rather fix the potential this way and explore the yielding
phenomenology. Nevertheless, some proposals of string embeddings with a low energy
action compatible with a superconducting phase have been done in [72–74].

An obvius solution to the resulting Abelian-Higgs model coupled to gravity is still
a Reissner-Nordstrom AdS black hole (2.21) with scalar potential (2.22) and a trivial
expectation value for the charged scalar operator, so a vanishing scalar field in the bulk
φ = 0. This solution corresponds to the normal (non-superconducting) phase of the gauge
theory. The key observation is that this background can be unstable to the formation of
a charged condensate. The finite charge density induces a negative contribution to the
effective mass of the scalar field,

m2
eff = m2 + q2gttA2

t = m2 − q2µ2L2

r2f(r)

(
1 − rH

r

)2
. (2.25)

In anti-de Sitter space, fields with negative squared mass can be stable provided that their
mass remains above the Breinthenlohner-Freedman bound, that for d-dimensional AdS is
m2

BF = −(d − 1)2/4L2. The correction to the mass vanishes both at the boundary and
at the horizon, but for large enough chemical potential, the effective mass can eventually
violate the bound, m2

eff < m2
BF, at some intermediate point. At high temperature (low µ)

we find a Reissner-Nordstrom AdS black hole background solution with zero condensate,
that describes the normal phase of the field theory. If we decrease the temperature (in-
crease µ), this solution will become unstable at some critical value Tc and the scalar field
will develop a non-trivial profile, what implies a non-zero expectation value for the dual
charged operator. This solution of a RN-AdS black hole with a non-zero charged scalar
field hovering outside the horizon is an hairy black hole and describes the superconducting
phase of the field theory.

In fact, even for a neutral scalar field the described background can become unstable
to condensation. It is known that at zero temperature the Reissner-Nordstrom AdS black
hole has an AdS2×R2 geometry close to the horizon, whose size is related to the size of the
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four dimensional black hole by L2
2 = L2/6. So near extremal RN-AdS black holes coupled

to a neutral scalar can become unstable too, since stable fields in the asymptotically AdS4

bulk can be unstable in the AdS2 near-horizon throat due to the difference in the BF
bounds for each part of the space.

Therefore, the minimal content of the gravity dual of an holographic model of super-
conductivity consists of a charged AdS black hole coupled to a scalar field. Although this
model is usually referred to as holographic superconductor it is more proper to speak of
an holographic charged superfluid as in [75] since the U(1) symmetry in the boundary
field theory is global and there is no clear holographic description of how to add gauge
fields. In fact, since superfluidity is associated with the Goldstone mechanism while su-
perconductivity does with the Higgs mechanism, the broken phase of that model actually
corresponds to a superfluid in the boundary and a superconductor black hole in the bulk.

In chapter 6 we will come back to the Abelian gauge model introduced in [66] and
present some features about the phase transition and the hydrodynamic behavior of the
superfluid. A more carefull and extense treatment of holographic superconductivity and
superfluidity can be found in the nice reviews [49,50].



Chapter 3

Thermal correlators and quasinormal modes

We have seen that the AdS/CFT correspondence gives a recipe for computing n-point
Euclidean correlators of strongly coupled field theories using the classical gravity dual
through the precise relation (2.13). In many cases one is interested in study dynamical
properties of the thermal field theory for which real-time correlation functions cannot be
obtained by analytic continuation of the Euclidean ones. This is the case of some kinetic
coefficients that are obtained as a certain limit of thermal Green functions through Kubo
formulas, but also of the hydrodynamic limit (small frequency and momentum). The
Euclidean correlator is given in terms of the Matsubara frequencies (ω = 2πin, where
n ≥ 1 is an integer), and the problem relies in doing an analytic continuation of a discrete
set of Euclidean frequencies to the real values of ω. Even after doing so it would be
very hard to get information about the hydrodynamics of the system, since the lowest
Matsubara frequency can be far away from the low frequency limit. On top of that, it is
likely to happen that one is not even able to do the analytic continuation due to a lack
of an analytic expression for the Euclidean frequencies. All in all, it is clear then that
a real-time AdS/CFT prescription for directly compute real-time thermal correlators is
needed.

3.1 The Lorentzian propagators

In the Euclidean formulation the correlators where nothing else that the variation of
the supergravity on-shell action with respect to the boundary values of the fields. For
finite temperature, the solutions to the supergravity equations of motion are completely
determined by imposing regularity in the whole bulk, what amounts to give a boundary
condition for the field at the boundary and to ensure regularity at the horizon. In the
Lorentzian formulation this is not enough since the horizon does not represent the end of
the spacetime, fields can cross the horizon, so an additional boundary condition as to be
set at r = rH to fix the solutions to the field equations. This ambiguity in defining the
bulk solutions is related to the multiple Green functions that one can define for a thermal
field theory. Selecting a concrete boundary condition will then correspond to fix which
thermal correlators are going to be computed.
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As an example, let us consider a massless scalar in an AdS black hole background, that
for convenience we can write as

ds2 =
dr2

f(r)
+ r2dx2 ± f(r)dt2 , (3.1)

for which the horizon is located at r = rH and the boundary at r = ∞. Notice that the
plus or minus sign corresponds to Euclidean or Lorentzian signature, respectively, and
that for both of them we are calling t the time coordinate. The equation of motion for
the scalar propagating in this space is

1
r3

∂r
(
r3f(r)∂rφ

)
+

1
r2

∂2
i φ ± 1

f(r)
∂2

t φ = 0 . (3.2)

We can Fourier transform the field

φ(r, t,x) =
∫

d4k

(2π)4
e±iωt+ikxfk(r)φ0(k) , (3.3)

where fk(r → ∞) := 1 in order to satisfy the boundary condition φ|∂ = φ0(xµ). The
equation of motion in terms of the mode function fk(r) reads

1
r3

∂r
(
r3f(r)∂rfk(r)

)
−
(

k2

r2
± ω2

f(r)

)
fk(r) = 0 . (3.4)

Near the boundary at r → ∞ the two solutions of the equation behave as ∼ 1 and ∼ r−4

for both signatures. Near the horizon we have a different situation for each frame. For the
Euclidean version, the two asymptotic behaviors close to the horizon go like ∼ (r − rH)±ω

and imposing regularity corresponds to pick the minus sign solution, that will correspond
to a particular linear combination of the two asymptotic solutions close to the boundary.
Thus fixing the boundary condition at the boundary and imposing regularity at r = rH

completely determines the bulk solution in the Euclidean formulation. In Minkowski space,
one finds the same behavior close to the boundary, but close to the horizon the two possible
solutions go like ∼ (r− rH)±iω that of course are both stable solutions: they oscillate very
rapidly close to the horizon but with a constant amplitude. So now regularity is not enough
to uniquely determine the solution in the bulk. As we already pointed out, this is not bad
by itself, different boundary conditions will lead to different thermal propagators, what
implies that the AdS/CFT correspondence captures the multiplicity of Green functions
that can be defined in a finite temperature field theory. The point is to be able to identify
which condition corresponds to which correlation function. But even after doing that and
obtaining the bulk solution to be fed back into the supergravity action, the Euclidean
prescription (2.11) cannot be directly extended to the Lorentzian case.

This can be easily seen if we write the classical action for the bulk field solution
and integrate the radial coordinate, obtaining a boundary term that in principle gets
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contributions from both the horizon and the boundary,

Ssugra = K

∫
d4k

(2π)4
√
−ggrrφ(−k, r)∂rφ(k, r) , (3.5)

with K a normalization constant. If we were in the Euclidean case there would not be
any contribution from the horizon and the Green function would reduce to

GE(k) = −2K
√

gf−k(r)∂rfk(r)|r→∞ , (3.6)

throwing away the contact terms when taking the limit [76]. But if one extends the recipe
to the Lorentzian case in a straightforward manner,

〈
ei

R
d4xφ0(x)O(x)

〉
= eiSsugra[φ] , (3.7)

and tries to compute the two point function related to the chosen boundary condition, one
ends up with

G(k) = −F(r, k)
∣∣∣
r→∞

r=rH

− F(r,−k)
∣∣∣
r→∞

r=rH

, (3.8)

where F(k, r) = K
√
−ggrrf−k(r)∂rfk(r). However, this result can not be correct: Green

functions are in general expected to be complex quantities, like for instance the retarded
one, and the above quantity is not. The mode function satisfies f∗

k (r) = f−k(r), so the
imaginary part of F(r, k) can be shown to have no dependence on r, so contributions from
the boundary and from the horizon will cancel each other leading to a real correlator.
Even keeping only the contributions to the boundary term at r → ∞, the imaginary parts
cancel since reality of the field equation implies F(r,−k) = F∗(r, k). Therefore, we cannot
obtain the thermal Green functions by direct variation of the action.

Retarded two-point function prescription.

The first proposal that overcame these problems was made by Son and Starinets in [77],
and though it was an ad hoc proposal for computing retarded or advanced two-point
functions supported on the matching with the zero temperature result, it has been proven
to be valid by the more rigorous prescription made in [78], based on the Schwinger-Keldish
formalism, that we will later briefly review.

The first problem to solve in a Lorentzian formulation of the correspondence is the
identification of boundary conditions in the bulk as different kinds of correlators in the
boundary theory. If we come back to the behavior of the solutions to (3.4) close to the
horizon and we also recover the time dependent phase e−iωt in the wave function, we can
write the solutions as

φ− ∼ e−iωtfk(r) ∼ e−iωt(r − rH)−iω/4πT ∼ e−iω(t+r∗) , (3.9a)

φ+ ∼ e−iωtf∗
k (r) ∼ e−iωt(r − rH)iω/4πT ∼ e−iω(t−r∗) , (3.9b)
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where we have defined the coordinate r∗ = (ln(r − rH))/(4πT ), for which the horizon sits
at r∗ = −∞. It is clear that these plane wave solutions represent two different directions
of motion. The solution (3.9a) corresponds to a left moving wave front in r∗, thus a wave
that moves towards the horizon, i. e. infalling, whereas solution (3.9b) represents a right
moving wave front in r∗, thus a wave that moves away from the horizon, i. e. outgoing.
In the former case, the oscillating field travels from the boundary all the way through the
bulk up to the horizon and then disappears, being absorbed by the black hole. In the latter
case, the field is emitted by the black hole and then travels forward from the horizon until
it reaches the boundary. Since classical black holes do not radiate, the infalling solutions
satisfy causality and it seems natural to associate them with retarded correlators on the
field theory, on the other hand the outgoing solutions satisfy anti-causal conditions so they
should be associated with the advanced correlators on the boundary theory.

We are interested in studying the reaction of strongly coupled systems to small per-
turbations and their relaxation back to equilibrium, so the physical boundary condition
to impose on the bulk fields is therefore that the solutions have to be infalling at the black
hole horizon. This implies that the response will be given by the retarded propagators of
the field theory operators, in agreement with the knowledge from linear response theory.

The second problem is the reality of the propagator found by direct variation of the
action, that cannot be interpreted as the retarded Green function. The authors of [77]
proposed that the Lorentzian retarded two-point correlator should by defined as

GR(k) = −2F(r, k)
∣∣∣
r→∞

(3.10)

in analogy to the zero temperature and the Euclidean cases, but with no direct proof.
It is surprising that the boundary term coming from the horizon must be thrown away
during the computation and that only the solution at the boundary is involved in the
final prescription for the retarded correlator taking into account that it existence relies
on the presence of the black hole horizon and on the boundary conditions imposed there.
Nevertheless, this definition was proven to work in all the cases for which independent
verification was possible, and later on it was shown to be a particular case of the general
real-time formulations made by [78,79]. In many cases, this simple prescription is enough
to get physically interesting results and it can be generalized to the case of more than one
field. In particular, in chapter 6 we will show how it works for a system of coupled fields.
Note that the advanced correlators corresponds to pick the outgoing boundary condition
for the bulk field, that translates in changing fk → f∗

k , thus the prescription reproduces
the well-known relation GA(k) = G∗

R(k).

Even if the formula (3.10) works fairly well, it is still a postulate and cannot be gener-
alized to n-point Green functions. We will now briefly comment the general formulation
of AdS Lorentzian correlators to avoid the feeling that this prescription is imposed ad hoc.
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Schwinger-Keldish propagators.

The analytic extension of the AdS black hole, the ‘eternal black hole’, has two disconnected
boundaries, see the left side of figure 3.1 below. This has been interpreted as having two
independent copies of the field theory each one living in one of the two boundaries [80–83],
based on the original ideas of Israel [84]. In Schwarzschild time, that is identified with
the time in the dual field theory, the second boundary corresponds to the extension to
complex values t → t− iβ/2, where β is the inverse of the temperature. This suggested to
the authors of [78] a natural identification in the field theory with the Schwinger-Keldysh
formalism1 , where the description of the thermal field theory in Lorentzian signature needs
to double the degrees of freedom and extend time to complex values. The corresponding
Schwinger-Keldysh path starts at some time ti, extends along the real axis to a time tf

and then moves in the imaginary direction to tf − iβ/2. Then it comes back in the real
direction to ti − iβ/2 and finally it goes to ti − iβ. The second set of field operators live
on the t − iβ/2 piece. In the right side of figure 3.1, a general Schwinger-Keldish path
is shown. The parameter σ is arbitrary, but the symmetric path corresponding to the
value σ = β/2 appears naturally in the gravity computation. The general case can also
be reproduced introducing a rescaling in the boundary values of fields living in the second
boundary.

;E
tf

tf − iσ

ti − iβ

ti
F

G

Figure 3.1: (Left) Full Penrose diagram of an eternal AdS black hole. (Right) The general

Schwinger-Keldish contour.

If we consider a massless scalar propagating in the extended AdS space of (3.1), the
equations of motion can be solved independently in the left (L) and the right (R) quadrants
of the above diagram. Near the horizons the solutions will behave like (3.9a) or (3.9b) in
both of them. We can label the solutions attending to their near-horizon behavior as φ±,R

and φ±,L if they live in the R quadrant or in the L one, respectively. Of course R fields
vanish in the L quadrant and vice versa.

1A description of the Schwinger-Keldysh formalism can be found in Thermal Field Theory books,

like [85].
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The Schwarzschild coordinates do not cover the whole space. In order to have a general
prescription we need first a frame in which we can describe all the Penrose diagram. It
is achieved by using the Kruskal coordinates for the AdS black hole case, which cover the
entire spacetime of the maximally extended Schwarzschild-AdS black hole and that are
well behaved everywhere outside the singularity,

U = −e−2πT (t−r∗) , V = e2πT (t+r∗) . (3.11)

The R quadrant corresponds to U < 0 and V > 0, while the L quadrant corresponds to
U > 0 and V < 0. The future horizon sits at U = 0 whereas the past horizon sits at V = 0
in the complete space, since in the left quadrant the Schwarzschild time runs backwards.
In Kruskal coordinates the horizons are regular surfaces. We can again solve the equations
of motion close to the horizons, and we find that the normal Kruskal modes are

φout ∼ e−iω̃U ∼ e−iω̃(tK−xK)/2 , (3.12a)

φin ∼ e−iω̃V ∼ e−iω̃(tK+xK)/2 , (3.12b)

where the Kruskal time and radial coordinate are tK ≡ U + V and xK ≡ V − U , so it
is clear that the first solution is outgoing in R, while the second one is ingoing in this
quadrant.

Notice that ω '= ω̃, modes of definite frequency in the Schwarzschild sense mix positive
and negative frequency modes in the Kruskal sense, since as it is well known positive and
negative frequency modes are defined in a different way in different vacua. Following Unruh
[86], we take the Kruskal vacuum to be the sensible vacuum in the near horizon region, since
fields arbitrarily close to the black hole horizon still have well-defined finite energy. On
the other hand, asymptotic observers experience a thermal bath. The meaningful states
close to the horizon should have well-defined frequency in the Kruskal sense. We can
construct positive or negative frequency Kruskal modes out of Schwarzschild modes with
arbitrary frequency by demanding that the combinations have the appropriate analytic
properties that the Kruskal modes have, i. e. positive frequency solutions are analytic in
the lower-half complex U and V planes and negative frequency solutions are analytic in
the upper-half complex planes.

In this way it is possible to construct four different solutions by connecting L and R
solutions smoothly through the horizons, but one is still forced to choose some boundary
conditions at the black hole horizons. However, we want to reproduce the Schwinger-
Keldish propagators, thus the boundary conditions are now given in a natural way by
the contour time ordering in the SK path. It turns out that it picks two out of the four
solutions: positive frequency and ingoing in the future horizon and negative frequency and
outgoing in the past horizon, from the R quadrant point of view. So the final physical
solution is a linear combination of this two modes satisfying boundary conditions at both
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of the boundaries of the extended AdS black hole. If we impose that at the R boundary
it takes the value φ1(k) and at the L boundary φ2(k), the bulk field can be written as

Φ(r, k) =
[
(n + 1)f∗

k,R(r) − nfk,R(r)
]
φ1(k) +

√
n(n + 1)

[
fk,R(r) − f∗

k,R(r)
]
φ2(k)

+
√

n(n + 1)
[
f∗

k,L(r) − fk,L(r)
]
φ1(k) +

[
(n + 1)fk,L(r) − nf∗

k,L(r)
]
φ2(k)

= ΦR(r, k) + ΦL(r, k) , (3.13)

where n = 1/(eω/T − 1). Feeding back the action (3.5) with this field and taking into
account that it will split in two terms, one for the R quadrant and one for the L quadrant,
we can get the SK matrix of propagators Gab with a, b = 1, 2 by taking functional deriva-
tives of the action, but more generally we can compute any n-point correlator. If one does
the computation for the two-point functions and substitutes the conjectured prescription
(3.10) for the retarded correlator and the analogous for the advanced one, the result is

G11(k) = −G∗
22(k) = (n + 1)GR(k) − nGA(k) = ReGR(k) + i coth

β

2T
Im GR(k) ,

G12(k) = G21(k) =
√

n(n + 1)(GA(k) − GR(k)) =
2 i e−βω/2

1 − e−βω
Im GR(k) , (3.14)

that exactly corresponds to the SK propagator of a thermal field theory in the symmetric
path case σ = β/2. The arbitrary σ propagator can also be reproduced if one rescales the
boundary condition on the second boundary a factor e(σ−β/2)ω .

This general formulation reproduces the Schwinger-Keldish formalism for thermal field
theories by taking the maximal extension of the AdS space and imposing boundary condi-
tions at both boundaries. From the R quadrant perspective, bulk fields are combinations
of infalling positive frequency and outgoing negative frequency eigenmodes of the Kruskal
vacuum close to the event horizons. The prescription of [77] for retarded correlators is
then recovered when only the infalling modes are considered.

3.2 Quasinormal modes

We have seen that the retarded propagators of the field theory correspond to imposing
infalling boundary conditions at the black hole horizon for fields in the gravity dual. On
the other hand, infalling boundary conditions are also the constitutive ingredient for the
calculation of the quasinormal modes of black holes. These modes are solutions to the
linearized equations of motion with complex frequency, whose imaginary part represents
the damping in time of the field on the background. Perturbed black holes are intrinsically
dissipative systems. If a field is excited in the presence of a black hole, the energy of the
fluctuation will be lost inside the horizon or spread out to infinite and eventually the final
state will be a larger black hole with no fluctuations. This process is described by the
quasinormal spectrum, that was first studied in the context of asymptotically flat space
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(for a review see [87,88]). In an AdS geometry, fluctuations cannot escape to infinit since
it acts effectively as a box, thus all the energy is dissipated by the black hole horizon. The
spectrum of quasinormal excitations was first computed for black holes in asymptotically
anti de Sitter spacetimes in [89] and afterwards they have been exhaustively studied in
different AdS black hole backgrounds and in various dimensions [90–100] (for a recent
review see [101]).

The authors of [91] observed that the quasinormal frequencies of BTZ black holes
coincide with the poles of the retarded two-point functions in the dual two-dimensional
conformal field theory. In [94,95] it was shown that this observation extends generally to
the Lorentzian AdS/CFT correspondence when one imposes infalling boundary conditions
at the horizon, i. e. quasinormal frequencies in AdS can be interpreted as the poles of the
retarded Green functions or resonances in the dual field theory. The direct implication of
this fact is that the inverse of the imaginary part of quasinormal modes give the relaxation
time back to equilibrium of the plasma under small perturbations.

The analysis of the quasinormal spectrum requires solving an eigenvalue problem sub-
ject to boundary conditions for the corresponding linear differential equations. At the
horizon we impose infalling boundary conditions to the fluctuations to ensure that they
are absorbed by the black hole, but at the boundary of AdS various boundary conditions
can be imposed. Regularity of the solutions imply that scalar and gauge invariant fields
satisfy Dirichlet boundary conditions at the AdS boundary, whereas for gauge dependent
fields the situation is more subtle, in principle there is no compelling reason that selects a
preferred boundary condition. The procedure in that case will pass through first find the
gauge invariant combinations and then see which boundary conditions have to be satisfied
in order to match the poles of the corresponding retarded Green functions.

To examine how the identification of quasinormal modes of black holes and poles of
retarded Green functions arise, let us consider a generic gauge invariant perturbation Zk

that satisfies infalling boundary conditions at the horizon. We can write this solution as
a linear combination of the local solutions close to the boundary,

Zk(z) = A(ω,k)y1(z) + B(ω,k)y2(z) , (3.15)

where A(ω,k) and B(ω,k) are the connection coefficients of the differential equation. Near
the boundary the solution becomes

Zk(z ≈ 0) = A(ω,k) z∆−(1 + . . . ) + B(ω,k) z∆+(1 + . . . ) , (3.16)

where again ∆+ > ∆− are the characteristic exponents close to the boundary. In general,
fields can be redefined such that ∆+ > 0 and ∆− = 0. Imposing Dirichlet boundary
conditions correspond to impose A(ω,k) = 0. In fact this equation establishes the relation
between frequencies and momenta that has to be satisfied in order to ensure that the
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solution is normalizable at the boundary. Thus the eigenvalue equation A = 0 defines the
quasinormal mode spectrum of black hole fluctuations.

On the other hand, the on-shell action in terms of the gauge-invariant fields to quadratic
order in perturbations reduces to a boundary term plus contact terms that do not contain
derivatives of the field,

S = lim
z→0

∫
d4kF (ω,k)g(z)Z ′(z)Z(z) + . . . , (3.17)

where F (ω,k) contains the normalization of the action and the dependence on the param-
eters ω and k, and g(z) contains the dependence in the radial coordinate. Applying the
prescription (3.10) for computing retarded correlators, we find that the two-point function
for the dual operator of the bulk field Z(z) is

GR(ω,k) = 2 (∆+ − ∆−)F (ω,k)
B(ω,k)
A(ω,k)

lim
z→0

(
g(z)z∆+−∆−−1

)
, (3.18)

provided that ∆+ − ∆− /∈ Z. When the difference between characteristic exponents is an
integer, one of the two asymptotic boundary solutions can get a logarithmic contribution
and this relation would be modified. Anyway, if the resultant radial dependence has a
well-defined limit at the boundary, as it will be in the cases considered later on, for any
value of the characteristic exponents the retarded correlator will be proportional to the
ratio of connection coefficients,

GR(ω,k) ∝ B(ω,k)
A(ω,k)

+ . . . , (3.19)

thus the poles of the propagator will be given by the zeros of A(ω,k). As we already said,
the condition that the connection coefficient A vanishes is equivalent to impose that the
solutions are just made of normalizable modes, hence the fields correspond to states of the
gauge theory and not to the insertion of operators. In this sense, the quasinormal modes
can be viewed holographically as the response of the medium in the absence of sources.

By comparison between the gravity point of view and the field theory point of view,
one can state that all the information about the poles of the retarded Green functions or
resonances of a quantum field theory is encoded in the quasinormal mode spectrum of the
dual gravity theory. This identification allows us to get relevant information about trans-
port properties and excitation spectra of the near-equilibrium strongly coupled plasma
using classical supergravity computations.

In the holographic dual gauge theory, the plasma tries to restore thermal equilibrium
in the presence of small perturbations. That involves dissipation in the case of perturba-
tions localized in time or absorption it they are localized in space. Quasinormal modes
are complex frequency eigenvalues that describe how small perturbations fall through the
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horizon of the black hole after traveling a finite time in the background. They are inter-
preted as the inverse of relaxation times of excitations on the plasma, hence quasinormal
modes give a dual description of dissipation processes in the field theory. For periodic
perturbations localized in space, relaxation back to equilibrium will be measured in terms
of absorption lengths in the plasma. They will correspond in the gravity dual to the inverse
of complex momentum eigenvalues that describe the falling through the horizon of small
perturbations after traveling a finite distance in the background. Both the QNM and the
CMM are solutions to the same linearized equations of motion satisfying the same bound-
ary conditions. The difference is that quasinormal modes decay exponentially in time,
while complex momentum modes decay along the direction of propagation. The complex
momentum spectrum has been computed in the frame of AdS black holes in [102], but
it was considered before for horizons of compact spatial geometry, where such modes are
interpreted as Regge poles [103] of the S-matrix. In chapter 5 we will consider both type
of solutions in order to study the response of the plasma to different kind of perturbations.

3.3 Stability issues

We will now show how the pole structure of the retarded Green functions is restricted by
stability considerations. This of course does not fix the precise location of the poles in the
complex frequency or complex momentum planes, but allows us to identify the instabilities
of the system, hence the breakdown of the description signaling possible phase transitions
in the dual gauge theory. In fact, in chapter 6 we will use the appearance of tachyonic
excitations as a signal of the system entering a superconducting phase.

Instabilities appear as exponentially growing modes, i. e. modes that are not absorbed
by the black hole after traveling a finite time or distance. The time and space dependence
of bulk fields is given simply by exponentials of the form

φ ∼ e−iωteikx , (3.20)

where we are considering that the perturbation propagates in the x direction. Stability
demands that the solutions are exponentially decaying. Since we want to ensure causality,
in the case of quasinormal modes we impose t > 0, thus instabilities will appear as quasi-
normal modes with positive imaginary part Im ω > 0 and we should expect all the poles
of the retarded Green function lying in the lower-half of the complex frequency plane. In
the case of complex momentum modes we want to impose that they are outgoing from the
origin of the perturbation. For x > 0 this implies that signω = sign Re k, while stability
demands that Im k > 0. On the other hand, for x < 0 the outgoing condition translates to
sign ω = −sign Re k and the stability condition to Im k < 0. These two conditions imply
that complex momentum poles of the retarded Green function lie in the first and third
quadrants of the complex momentum plane.
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All these conditions summarizes to the following stability criteria

QNM : Im ω < 0 ,

CMM : sign
( ω

Re k

)
= sign Im k . (3.21)

The above requirement has been proved to hold in the case of a Schwarzschild-AdS back-
ground by studying the behavior of the Schrödinger-like equations of motion of quasinormal
modes in [89] and analogously for complex momentum modes in [102].

We can also adopt the field theory perspective. As we saw in section 1.3, to study the
effect of small external perturbations it is enough to use linear response theory when the
energy of the perturbation is negligible compared to the total energy of the system. In this
linear approximation, the response of a field Φ to a perturbation represented by an external
source j(t,x) is given by the convolution of the retarded Green function GR(t − τ,x − ξ)
with the source,

〈Φ(t,x)〉 = −
∫

dτ d3ξ GR(t − τ,x − ξ) j(τ, ξ) , (3.22)

where the retarded two-point correlation function is

GR(t − τ,x − ξ) = −iΘ(t − τ) 〈[Φ(t,x),Φ(τ, ξ)]〉 . (3.23)

Using Fourier transforms, the response can be written as

〈Φ(t,x)〉 = −
∫

dω

2π
d3k

(2π)3
e−iωt+ikx G̃R(ω,k) ̃(ω,k) . (3.24)

We can now choose to make an analytical continuation either to the complex ω-plane or
to the complex k-plane.

Let us first consider that we choose to analytically continue to the complex frequency
plane. We can then use Cauchy’s theorem to evaluate this integral by closing the contour
on the lower half of the complex ω plane for t > 0, thus picking up the contributions
from the poles of the retarded propagator, i.e. the frequencies of the quasinormal modes
in the AdS/CFT correspondence. At this point we assume that the only singularities of
the retarded Green function are single poles in the lower half complex frequency plane.
This is indeed the case for the holographic retarded two-point functions. In principle one
could think that for t < 0 the integration contour should be closed on the upper half plane
picking contributions from non-analyticities there, but causality (encoded on the Heaviside
function in (3.23)) ensures that the retarded propagator vanishes for t < 0, thus there
should be no poles in the upper half plane. Therefore all the poles of the retarded Green
function should lie in the lower-half complex frequency plane. The retarded propagator
can be written as

G̃R(ω,k) (
∑

poles

Rn(ω,k)
ω − ωn(k)

, (3.25)
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where ωn := Ωn− iΓn and Rn are the residues of the retarded propagator evaluated at the
poles. We should emphasize that this is a formal expression since the infinite sum does
not necessarily converge; we will come back to this issue in section 5.2. Doing a partial
Fourier transform in space, the response of the system to a perturbation is now expressed
by a sum over the poles

〈Φ(t,k)〉 = iθ(t)
∑

n

Rn(ωn(k),q) ̃(ωn(k),k) e−iΩn(k)t−Γn(k)t , (3.26)

where we have assumed that the source does not introduce new non-analyticities in the
lower half plane. This will be the case, for example, if we consider that the perturbation
is localized in time, i. e. we strike the medium once at t = 0, so the source will be
j(t,x) ∝ δ(t). A constrain in the location of the poles comes both from the reality of the
response (3.26) and from the time reversal symmetry ρ(ω,k) = ρ(−ω,k) of the spectral
function ρ(ω,k) = −2Im GR(ω,k). These conditions yield to the poles coming in pairs.
The relation between the partners and their residues is such that if ωn is a pole with
associated residue Rn then ω̃n = −ω∗

n is also a pole with residue R̃n = −R∗
n. Unpaired

poles can also be present if they lie on the imaginary axis and their residues are purely
imaginary.

=- ω

;% ω

Figure 3.2: Relevant integration contour for the poles in the complex ω-plane. All the poles are

in the lower-half plane, corresponding to the interpretation of quasinormal modes as the poles of

the retarded Green function.

Therefore, from the field theory we find that that the complex frequency poles not
only have to be in the lower half plane, but they also have to come in pairs. The presence
of a pole in the upper half plane will correspond to a tachyonic mode traveling backwards
in time, thus to an instability. This is consistent with the result found from the gravity
theory, where exponentially growing modes, identified as instabilities, lie in the upper half
complex ω plane. In figure 3.2 is depicted the typical arrangement of quasinormal modes
appearing in the study of small perturbations of black holes in AdS backgrounds.

Now we switch the roles of time and one spatial coordinate and analytically continue
to the complex k plane. We consider again that the only singularities of the retarded
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propagator are single poles in the complex momentum plane, so

G̃R(ω, k) (
∑

poles

Rn(ω, k)
k − kn(ω)

, (3.27)

where kn = kR
n + ikI

n. We can choose a periodic perturbation localized in space, so we
assume a source of the form j(t,x) = δ(x)exp[−i(ωt − k⊥x⊥)]. From (3.22), the response
of the system takes the form

〈Φ(t,x)〉 = − 1
2π

e−i(ωt−k⊥x⊥)
∫

dqk eiqx G̃R(ω,k⊥, k) . (3.28)

Such a perturbation has the form of a plane wave in the perpendicular directions x⊥.
We have assumed that the perturbation started far in the past such that the system has
reached a stationary state. We will also assume that it is no further modulated in the
x⊥-directions, i.e. we set k⊥ = 0. By Cauchy’s theorem we can evaluate this integral by
closing the contour on the upper half of the complex k plane for x > 0 or on the lower-half
complex k plane for x < 0. The response of the system to a perturbation localized in
space as a sum over the poles reads

〈Φ(t,x)〉 = −i sign(x) e−iωt
∑

n

Rn(ω, kn(ω)) eikR
n (ω)x−kI

n(ω)x . (3.29)

By parity symmetry x → −x, if kn is a pole, then also k̃n = −kn has to be a pole. The
expectation is that the fluctuation creates damped waves that move away from the origin
of the perturbation, so we want that our modes move to the left for x < 0 and to the right
for x > 0. It implies that the poles of the retarded Green function have to lie in the first
and third quadrants of the complex k plane for x > 0 and x < 0, respectively. A typical
arrangement of complex momentum poles and the corresponding integration contours is
depicted in figure 3.3.

=- k

;% k

=- k

;% k

Figure 3.3: Relevant integration contours for the poles in the complex momentum plane. (Left)

Contour for x < 0. (Right) Contour for x > 0. To obtain exponentially decaying waves traveling

away from the origin of the perturbation it is necessary that poles lie in the first and third quadrants.
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Chapter 4

AdS black holes as reflecting cavities

In section 3.1 we have reviewed how thermal propagators can be computed holographically
from classical solutions propagating in an asymptotically AdS black hole background. In
section 3.2 we have presented a very interesting result of the correspondence, the relation
between the quasinormal mode spectrum that describes the decay of perturbations in black
holes and the singularities in the complex frequency plane of two-point functions in the
holographic dual. Semiclassical computations suggest that both could be simply related
to geometric properties of the bulk, in particular to its causal structure [104–109]. Very
massive fields, corresponding to operators of large conformal dimension, can be studied
using a WKB approximation where the field propagates along geodesics. We have seen that
in the black hole background, the space has an analytic extension through the horizon to
another asymptotically AdS region. Spacelike geodesics can explore both regions and give
information about the thermal state where the field theory is defined. It is also possible
to relate different geodesics with the frequency in the field theory, in such a way that in
the large frequency limit the geodesic approaches a null ray. The geodesic approximation
has been used to compute the asymptotic position of quasinormal modes in the large mass
limit, although it has been argued that the results should be generalizable to the case of
fields with small mass [107].

In this chapter we show that null geodesics in the bulk give useful information about
the singularities of the dual correlators even for fields with small mass. In the large
frequency limit, that we can associate to the ultraviolet behavior of the field theory, the
classical solutions to the equations of motion can be described in terms of the eikonal
approximation. Therefore, the propagation of fields in the bulk is well approximated by
null rays and it reduces to a problem of geometric optics in the curved spacetime. We
first illustrate this by introducing a mirror in AdS and studying the spectrum of the
dual theory and we then proceed in section 4.2 to find the eikonal approximation for a
scalar field in AdSd+1 black hole backgrounds and show how the solution bouncing on the
singularity can be extended to the asymptotic region behind the horizon. In section 4.3 we
explain the asymptotic location of the singularities of field theory correlators and hence
the quasinormal mode spectrum of the black hole in simple terms of the geometric shape
of the black hole, seen as a reflecting cavity with the asymptotically AdS boundaries and
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the future and past singularities as walls. Finally, we discuss possible applications of the
high frequency-null ray identification and the interpretation in thermal field theories.

4.1 AdS with a mirror

To illustrate that null geodesics in AdS contain the relevant information about the sin-
gularities of the dual two-point correlators let us pick up a very simple example, a scalar
field in AdSd+1 spacetime. We work with the metric

ds2 =
1
z2

(
−dt2 + dz2 + dx2

)
, (4.1)

where z = 0 is the boundary of AdS and we introduce a mirror at a finite value of the
radial coordinate z = z0. This translates into Dirichlet boundary conditions for the fields
at this surface.

A scalar field φ with mass m2 = ∆(∆− d) is dual to a scalar operator O of conformal
dimension ∆. The source j(t) of the operator in the field theory corresponds to a boundary
condition for the dual field in the bulk. Consider a spatially homogeneous source localized
in time j(t) = δ(t). Then, the expectation value (vev) of the operator will be given by the
two-point correlator G(t, x) as

〈O(t)〉 ∼
∫

dt′
∫

dx
∫

dx′G(x − x′, t − t′)δ(t′) = V G(t,q = 0) , (4.2)

where V is the volume of the space and q is the spatial momentum. The singularities of
the vev are thus related to singularities of the correlator. In the holographic description,
the expectation value is implicit in the asymptotic behavior of the field, that we can
compute using Witten diagrams [63]. We are interested in the propagation from points
(z = 0, t0,x0) at the boundary, to the bulk at (z, t′,x′) and back to the boundary at
(z = 0, t,x). The value of the field at the boundary can be computed using the convolution
of two bulk-to-boundary propagators

φ0(t) ∼
∫ z0

0

dz

zd+1

∫
dxdx0 dx′ dt0 dt′ z2∆ δ(t0)

|z2 + (x − x′)2 − (t − t′)2|∆ |z2 + (x′ − x0)2 − (t′ − t0)2|∆
. (4.3)

After integrating over the spatial directions and t0 and introducing Schwinger parameters
w1 and w2, we find

φ0(t) ∼
∫

dt′
∫ z0

0
dzz2∆−d−1

∫ ∞

0
dw1

∫ ∞

0
dw2 (w1w2)∆−(d+1)/2e−w1|z2−(t−t′)2|e−w2|z2−t′2|

(4.4)
The ultraviolet limit corresponds to w1 → ∞, w2 → ∞. The integral is dominated in
this case by null trajectories z = ±t′ and z = ±(t − t′). If t = 0, the two classes of null
trajectories become degenerate and there is a singularity. In the presence of a mirror, we
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can consider a null ray going from the boundary to the mirror and back as part of a single
trajectory, so in some heuristic sense the two null trajectories also become degenerate
when t = 2z0. In the following we will show that this intuitive picture gives the correct
answer by computing explicitly two-point Green functions in the field theory.

Using the prescription given in section 3.1, the field theory correlator G(k) can be
computed from the on-shell action for classical solutions of the bulk field φk(z). The
result is a boundary term given by relation (3.10). For simplicity, we will consider zero
spatial momentum and modes with fixed frequency φ(t, z) = e−iωtϕ(z). The equation of
motion for the field is

(! − m2)φ = 0 ⇒ zd+1∂z

(
z1−dϕ′(z)

)
+ (z2ω2 − ∆(∆ − d))ϕ(z) = 0 . (4.5)

In order to regularize, we introduce a cutoff at z = ε, ε → 0, such that ϕ(ε) = ε∆−, where
∆− is the smallest characteristic exponent of the equation of motion. The solution is given
in terms of Bessel functions. Imposing Dirichlet boundary conditions on the field at z = z0

and using ν2 = m2 + d2

4 =
(
∆ − d

2

)2,

ϕ(z) =
zd/2 (Yν(ωz0)Jν(ωz) − Jν(ωz0)Yν(ωz))

εd/2−∆− (Yν(ωz0)Jν(ωε) − Jν(ωz0)Yν(ωε))
. (4.6)

Taking the limit ε → 0, up to contact terms, the holographic Green function is given by

G∆(ω) = c∆ω2ν Yν(ωz0)
Jν(ωz0)

. (4.7)

If ν is an integer, there are extra logarithmic terms that cancel the branch cut in Yν(ωz0)
when ω → 0. As an example, in AdS5 a massless scalar field gives

G4(ω) = c4ω
4

(
πY2(ωz0)
J2(ωz0)

− log
[
(ωz0)2
])

. (4.8)

Apart from a possible branch cut coming from the ω2ν factor, the only singularities of
the Green function are poles ωn on the real frequency axis, associated to the zeros of the
Bessel function

Jν(ωnz0) = 0, n = 1, 2, 3 . . . (4.9)

Since Jν(−x) = (−1)νJν(x), the poles are paired ωn and −ωn.

We are interested in the ultraviolet behavior of the correlator and how it is related
to light-like propagation in the bulk, so we take the ω → ∞ limit. Then, (4.7) can be
approximated by

G∆(ω) ( c∆ω2ν tan
[
ωz0 −
(

ν − 1
2

)
π

2

]
. (4.10)

The asymptotic position of the poles is therefore

ωnz0 = (2n + 1)
π

2
+
(

ν − 1
2

)
π

2
≡ nπ + ω0z0, n ∈ Z . (4.11)



58 Chapter 4. AdS black holes as reflecting cavities

To show explicitly the relation with null trajectories is more convenient to look at the
time-dependent propagator.

G∆(t) =
∫

C
dωe−iωtG∆(ω) . (4.12)

For the Feynman propagator, the contour C in the complex frequency plane is defined
in such a way that it picks up all the positive frequencies for t ≥ 0 and the negative
frequencies for t < 0, so it passes slightly above the real axis for ω > 0 and slightly below
for ω < 0. Above some frequency ωk, the position of the poles will be well approximated
by the asymptotic expression (4.11), so the propagator would have a piece coming form
the lowest modes plus the contribution from the infinite high-frequency modes. For t ≥ 0,
we find

G+
∆,F (t) ( G+

F,IR(t) + 2πic∆(i∂t)2νe−iω0t
∞∑

n=k

e−iπnt/z0 =

= G+
F,IR(t) + 2πic∆(i∂t)2νe−iω0t e−i(k−1)πt/z0

eiπt/z0 − 1
. (4.13)

We can understand this expression as being defined using the usual prescription for
spacetime-dependent correlators t → t − i0+. Strictly speaking, the expression above
is well defined only when 2ν is an integer (ν ≥ 0 by unitarity). When this is not the case,
there will be a branch cut that must be taken properly into account. This will introduce
power-like corrections, but the location of the singularities of the propagator in time is
determined by the sum over high-frequency poles. For t < 0

G−
∆,F (t) ( G−

F,IR(t) − 2πic∆(−i∂t)2νeiω0t e−i(k−1)πt/z0

eiπt/z0 − 1
. (4.14)

We can see now that the singularities associated to the ultraviolet behavior of the
Feynman propagator appear at regular intervals of time

t = 2nz0, n ∈ Z . (4.15)

The identification of these singularities with the singularities on the null trajectories of
the bulk propagator leads to the geometric interpretation of a light ray bouncing on and
off from the boundary at z = 0 and the mirror at z = z0, if we take t = 0 as the ‘initial
point’. The points where the ray reaches the boundary coincide with the singularities in
the time-dependent Green function, see figure 4.1.

4.2 The eikonal approximation in AdS black holes

In black hole backgrounds, the absorption of classical fluctuations of the fields is described
by an infinite set of modes with complex frequencies, known as the quasinormal modes.
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Figure 4.1: Null geodesic bouncing on and off from the boundary at z = 0 and the mirror surface

at z = z0.

In the holographic dual the frequencies of these modes correspond to singularities of the
two-point correlators, that are in last instance responsible for the dissipative behavior of
the thermal theory. The relation between null trajectories ending on the boundary and
the high frequency behavior of the correlators strongly suggests that the analytic continu-
ation of the space behind the horizon can explain the asymptotic location of quasinormal
frequencies or equivalently, the singularities of the dual correlators in complex frequency
and time.

The eikonal approximation is a high frequency limit where ω 0 R and R is the typical
curvature of the spacetime. This approximation leads to the classical limit of geometric
optics in the curved spacetime, similar to ray optics in ordinary electromagnetism. The
null trajectories we want to describe start at the AdS boundary and propagate into the
interior until they hit the singularity. Presumably it should be possible to extend the
geodesic to the asymptotically AdS region behind the horizon by joining it to a null ray
that starts at the singularity and continues towards the second boundary. However, the
eikonal approximation is expected to fail at the singularity, so it is a matter of concern
what is the fate of solutions there. In the following, we construct the classical solutions in
the eikonal approximation in the two asymptotically AdS regions and find the matching
conditions at the future and past singularities.

In the eikonal approximation, an ansatz for the field is

φ(x) = A(x)eiθ(x) , (4.16)

where the eikonal phase θ(x) is O(ω) and the amplitude A(x) is O(1). We consider a
scalar field with the Klein-Gordon equation of motion

(! − m2)φ = 0 ⇒ 1√
−g

∂µ
(√

−ggµν∂νφ
)
− m2φ = 0 . (4.17)

Expanding this equation in ω, we find that the leading order gives the eikonal equation

gµν∂µθ∂νθ = 0 , (4.18)

so kµ = ∂µθ is a null vector field. It defines a family of null geodesics tangent to the field
and in electromagnetism it can also be identified with the four-momentum of the photons.
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Notice that the mass is neglected in this approximation, it will appear as a lower energy
effect, while the leading behavior is universal. The next orders give the equations

kµ∂µA = −1
2
∂µkµA ,

(! − m2)A = 0 . (4.19)

The first equation describes the evolution of the amplitude along the geodesic, while the
last start to take into account subleading effects like the mass.

To work out the eikonal approximation we will use the Rosen coordinate system, that
is better adapted to null geodesics. A nice explanation of coordinate systems adapted to
the Penrose limit can be found in [110] and an example of its application to the eikonal
expansion in [111]. The AdSd+1 black hole metric is (d ≥ 2) 1

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dx2, f(r) = r2 − 1

rd−2
. (4.20)

We will consider only geodesics at a fixed point in the spatial directions x, so in terms of
the affine parameter u they are determined by two functions (t(u), r(u)). These functions
can be found by solving the variational problem with Lagrangian

L =
1
2

(
−f(r) ṫ2 +

ṙ2

f(r)

)
(4.21)

where ṫ, ṙ are the first derivatives with respect to u. The variation with respect to t

introduces a conserved quantity E, so that

ṫ =
E

f(r)
. (4.22)

For null geodesics we can further impose the condition L = 0, so we find

ṙ2 = f(r)2ṫ2 = E2 . (4.23)

This also implies that r̈ = 0. In the Rosen coordinate system we take the affine parameter
of the null geodesics u to be one of the coordinates, while we introduce another coordinate
v satisfying the null condition gµν∂µv∂νv = 0 and that corresponds to the Hamilton-Jacobi
function of the variational problem. We have several possibilities

1) E > 0, ṙ = −E u = −r v = −t −
∫

dr
f(r)

2) E > 0, ṙ = E u = r v = −t +
∫

dr
f(r)

3) E < 0, ṙ = −E u = r v = t +
∫

dr
f(r)

4) E < 0, ṙ = E u = −r v = t −
∫

dr
f(r)

(4.24)

1We have taken the AdS radius R = 1, and the coordinates are rescaled as (t, r,x) → (t/rH, rHr,x/rH).

Restoring the units, the Hawking temperature of the black hole is T = drH/4πR2.
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The choices of coordinates 1) and 4) correspond to geodesics starting at the boundary
u = −∞ and reaching the singularity at u = 0. On the other hand, 2) and 3) correspond
to geodesics that go from the singularity at u = 0 to the boundary at u = ∞. Geodesics
described by 1) and 2) go forwards in time while the ones described by 3) and 4) go
backwards. The metric in Rosen coordinates is

ds2 = 2dudv − f±(u)dv2 + u2dx2 , f±(u) = u2 − (±1)d−2

ud−2
, (4.25)

where f+(u) = f(u) is valid for 2) and 4), while for 1) and 3) we have f−(u), instead. This
distinction is important only when d is odd, since when d is even f−(u) = f+(u) = f(u).

We can now write the eikonal ansatz (4.16) as φ(u, v) = A(u)eiωv and expand in inverse
powers of the frequency

φ(u, v) = A0(u)eiωv

(
1 +

A1(u)
iω

+
A2(u)
(iω)2

+ . . .

)
. (4.26)

Plugging back in the equation of motion (4.17), we see that the eikonal equation (4.18) is
automatically satisfied by our choice of v. The next orders in the expansion (4.19) have
the following solution to O(1/ω)

A0(u) = (−g)−1/4 = u(1−d)/2 ,

A1(u) =
1
8
(d2 − 1 + 4m2)u − (±1)d−2 d − 1

8
u1−d , (4.27)

where the + solution applies for geodesics 2) and 4), while the − is valid for 1) and 3).
Then, choosing the correct definition of v and the correct sign in A1(u), the solution (4.26)
describes the four possible geodesics given by (4.24).

This solution is valid as long as ud−1ω 0 1 and u/ω , 1, so it will stop to be trustable
when we get close to the singularity u = 0 or the boundary u → ∞. There is an extra
issue concerning the definition of v in (4.24). The function f(r) has a pole at r = 1, so
in general v will be shifted by a complex value for r < 1. This could be compensated by
defining v differently for r > 1 and r < 1 with a compensating constant in this region. The
right treatment pass by using Kruskal coordinates, we will analyze this more thoroughly
in section 4.3.

Matching of eikonal solutions and bouncing rays.

There are two possible descriptions of a ray bouncing on the boundary, one joining the
geodesics associated to 2) with 1) in (4.24) or the time reversed process joining 3) with
4). In terms of the eikonal approximation we should find a matching when we continue
the solutions close to the boundary.
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At large values of the radial coordinate r the black hole factor can be neglected f(r) ( 1
and it is better to switch to the coordinate system focused on the boundary (4.1). In this
case, the right identification of eikonal phases will be

1) eiωv ∼ e−iω(t+r) ∼ e−iω(t−z)

2) eiωv ∼ e−iω(t−r) ∼ e−iω(t+z)

3) eiωv ∼ eiω(t+r) ∼ eiω(t−z)

4) eiωv ∼ eiω(t−r) ∼ eiω(t+z)

From section 4.1 we know that the solutions close to the boundary are Bessel functions.
To match with the plane wave behavior of 2), we take the combination that gives the
second Hankel function

φ(2) ( e−iωtH(2)
ν (ωz) ∼ e−iω(t+z), ωz 0 1 . (4.28)

We can treat the bouncing on the boundary as the continuation of this solution to negative
values of z, z → −z, that we should interpret as a parity transformation of the solutions
in the z direction. Under this transformation, the solution changes to the first Hankel
function, that shows the right asymptotic behavior to match with the eikonal solution of
1)

φ(1) ( e−iωtH(1)
ν (ωz) ∼ e−iω(t−z). (4.29)

The time reversed process can be found using the transformation t → −t, so it works in
the same way, the initial solution is

φ(3) ( eiωtH(2)
ν (ωz) ∼ eiω(t−z), (4.30)

while the reflected one is found again by analytic continuation z → −z

φ(4) ( eiωtH(1)
ν (ωz) ∼ eiω(t+z). (4.31)

We are interested now in rays coming from the boundary that bounce on the future
singularity and rays coming from the region behind the horizon that bounce on the past
singularity. The expansion of the amplitude (4.26) fails close to the singularity ud−1ω < 1.
However, the ansatz (4.16) in the form φ = A(u)eiωv gives still valid solutions to the
equations of motion. We can solve the Klein-Gordon equation as a Frobenius expansion,
being the general solution of the form

A(u) = C1y1(u) + C2 [y2(u) + log u y1(u)] , (4.32)

where y1(u) and y2(u) are series expansions in the u coordinate. For d ≥ 2 we find

y1(u) = 1 +
iω

d − 1
ud−1 − m2

d2
ud − 3ω2

4(d − 1)2
u2(d−1) + . . .

y2(u) = 1 +
iω

d − 1
ud−1 +

d2 − (d − 2)m2

d3
ud +

(4 − 3d)ω2

4(d − 1)3
u2(d−1) + . . . (4.33)
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To describe the bouncing on the singularity we need to extend the geodesic associated
to 1) and defined for u < 0 to positive values of the affine parameter. In the original
coordinates, r is extended to negative values. The eikonal phase does not change, but
the branch cut appearing in (4.32) implies that the amplitude will in general pick up a
non-trivial phase factor. In order to understand the extended solution from the point of
view of an observer in the second boundary, we must change r → −r keeping u > 0. The
time runs forwards for an observer in the second boundary, so there is no time reversal.
The solution is then of the type 2), so we come to a situation analogous to the starting
one and we can use the results we have already obtained to describe the bouncing on the
second boundary and on the past singularity, that from this perspective looks like a future
singularity.

4.3 Black holes as reflecting cavities

We have shown that in the high frequency limit, the eikonal approximation provides a
good description of classical solutions in the bulk, and that the matching conditions at the
boundary and singularities are consistent with a limit where a geometric description can
be given in terms of null rays bouncing on the boundaries and singularities, so the black
hole looks effectively as a box. We have also related null geodesics reaching the boundary
with ultraviolet singularities in the time-dependent correlators of the dual field theory and
hence with the asymptotic location of singularities in the high frequency limit.

A similar light-cone singularity in real time was found in [107] from the limit of space-
like geodesics. It was shown that in the WKB computation there are three possible
geodesics in the Euclidean geometry, associated to different branches of the correlator.
The singularity belongs to an unphysical branch, while the physical result is given by a
combination of two complex branches with no singularities. Therefore, the singularities
associated to null geodesics should appear at complex values of time. Indeed, it was shown
that for complex values with Im t ∼ β/2, the two extra branches disappear. In terms of
the eikonal approximation, the extension to complex values of time will follow from the
extension of the solution beyond the horizon. We will now proceed to study null geodesics
in the black hole in order to extract information about the singularity structure of the
correlators in the thermal field theory.

Consider a geodesic starting at the AdS boundary, bouncing on the singularity and
reaching the AdS boundary behind the horizon. This corresponds to the analytic extension
to positive values of u for the case 1) in (4.24). Notice that v will be shifted in general due
to the contribution from

∫
dr/f(r). In order to keep a constant eikonal phase, the value
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of t has to be shifted as well as part of the analytic continuation. We find then

∆t =
∫ ∞

−∞

du

f(u)
. (4.34)

The function f(u) has two poles at the horizon u = ±1, since for d odd we must switch
between f−(u) and f+(u). The contour we pick pass above the first pole at u = −1 and
below the second pole at u = 1. Then, using the expression

1
x ∓ iε

= P 1
x
± iπδ(x) , (4.35)

the shift in time on the AdS boundary behind the horizon is

∆t =
2π
d

(
cot

π

d
− i
)

. (4.36)

We have seen that the geodesic coming from the region behind the horizon after bouncing
on the past singularity is equivalent to the one we have just described. We can also
consider geodesics going backwards in time using the analytic extension of 3), as well
as a contour that surrounds the poles at the horizon in the opposite way. We can then
identify the complex values of time where the geodesics hit one of the AdS boundaries
with the location of singularities of field theory correlators in the complex time plane.
The time coordinate is given in dimensionless units, in order to restore the temperature
dependence β = 1/T , we must divide by the radius of the horizon rH = 4π/dβ. For the
lowest dimensional AdSd+1 spaces, the singularities tn, n ∈ Z are at

AdS2+1 tn = inβ
2

AdS3+1 tn = nβ
2

(
1√
3
± i
)

AdS4+1 tn = nβ
2 (1 ± i)

(4.37)

The value of the imaginary part can be understood in terms of the Wick rotation of the
metric to Euclidean time (c.f. [80]), where it can be seen that the second boundary of AdS
corresponds to the antipodal point in the thermal circle, with β being the full period. The
value of the real part can also be understood in simple geometric terms. For this purpose,
the best suited coordinate system are Kruskal coordinates

U = e2(t+r∗), V = −e−2(t−r∗), r∗ =
∫

dr

f(r)
. (4.38)

with a metric
ds2 =

−f(UV )dUdV

4UV
+ r2(UV )dx2 (4.39)

In AdS3, the metric takes the particularly simple form

ds2 =
−dUdV

4(1 + UV )2
+
(

1 − UV

1 + UV

)2

dx2 . (4.40)
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The black hole does not cover the entire (U, V ) plane, but it is limited by the asymptotic
AdS boundary and by the singularity. They can be deduced from the conditions r2(UV ) →
∞ and r2(UV ) → 0, using the relation

UV = −e4r∗(r) . (4.41)

For instance,
AdSd+1 singularity boundary
d = 2 UV = 1 UV = −1

d = 3 UV = e
2π

3
√

3 UV = −e
2π√

3

d = 4 UV = 1 UV = −eπ

(4.42)

The real value of the position of the singularities tn in the complex time plane can be
found following the path of null geodesics in the Kruskal diagram, and using that t =
log(−U/V )/4. The null geodesics bounce on the boundaries and the singularities, giving
the picture of a reflecting cavity. Following figure 4.2, the points where the singularities
are located are

AdSd+1 (U, V ) : t = 0 → singularity → boundary
d = 2 (1,−1) → (1, 1) → (−1, 1) ⇒ Re t = 0

d = 3 (e
π√
3 ,−e

π√
3 ) → (e

π√
3 , e−

π
3
√

3 ) → (−e
7π√

3 , e−
π

3
√

3 ) ⇒ Re t = 2π
3
√

3

d = 4 (e
π
2 ,−e

π
2 ) → (e

π
2 , e−

π
2 ) → (−e

3π
2 , e−

π
2 ) ⇒ Re t = π

2

(4.43)

In agreement with eq. (4.36). From this formula we can also do a Fourier transformation
to deduce the asymptotic quasinormal frequencies, up to a shift that depends on the mass
of the field considered. The general formula is

ωn ( 4πTn
(
cot

π

d
± i
)

sin2 π

d
, (4.44)

that coincides with the results found in [97, 112] using a WKB approximation to the
equations of motion in the AdS black hole backgrounds.

4.4 Conclusions

Using the eikonal approximation, we have seen that the asymptotic formula for the quasi-
normal spectrum of fields with large mass in AdS black holes is also valid for fields with
small mass in the large frequency limit. The analytic formula derived for the the asymp-
totic value of quasinormal frequencies (4.44), agrees with the expressions found in [97,112]
using a WKB analysis, and with expressions derived for fields with large mass [107–109]
and for fields with small mass in AdS2+1 ωn ( 4πiTn [91], the numerical results in AdS3+1

ωn ( (
√

3 ± 3i)πTn = 3
4(
√

3 ± 3i)n rH [96] and AdS4+1 ωn ( 2πiTn(1 ± i) [89].
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Figure 4.2: Kruskal diagram of a eternal black hole in AdS space. The light solid line represents

a null geodesic starting on the boundary at t = 0 bouncing on the future singularity, on the second

AdS boundary, on the past singularity and back to the boundary at t = (cot π
d − i)β.

An interesting question is whether a geometric analysis of null geodesics in the analytic
extension of the black hole could be applied to more general cases, like charged or rotating
black holes or black holes with different asymptotics. A simple example is the topological
AdS4+1 black hole of [113], where the (t, r) part of the metric is the same as AdS2+1, so
the zero-momentum quasinormal spectrum will have the same asymptotic behavior. In
the dual theory, the correlators are then similar to a free theory, in contrast with the
non-extremal black hole. This could be related to the fact that the topological black
hole corresponds to D3 branes in the Milne universe, so non-renormalization theorems
could still hold. The non-extremal black hole, on the other hand, corresponds to a high
temperature phase of the theory.

In this analysis the AdS boundary has played a crucial role since it is there where
the value of the quasinormal modes is determined. Other geometries, like asymptotically
flat spacetimes, do not have a similar boundary, making it more difficult to find a similar
prescription. Although in principle there could be a description of extended null geodesics
bouncing on the singularities, it is not clear that they can return in the way they do in
AdS spacetimes. Nevertheless addressing this issues could give interesting results.

The relation between null geodesics and the high-frequency singularities of the dual
correlators also gives a good starting point to solve the inverse holographic problem: how
to construct a gravitational background from the field theory. The information contained
in the location of the singularities in time is quite topological, it only knows about the
causal structure of the space-time. Interesting ideas related to the emergence of the causal
structure of the bulk from the field theory can also be found in [114, 115]. For operators
with large conformal dimension, the geodesic approximation could be used to gather more
information, see [116] for instance.
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Let us now discuss the holographic interpretation of the black hole computation for
Green functions in the thermal field theory. In section 3.1 we explained the holographic
prescriptions for computing Lorentzian correlators. Concretely, the relation between the
Schwinger-Keldysh path and the second boundary of the eternal black hole that was
pointed out in [78], whose analysis shows that there is only one SK path consistent with
the prescription of [77] to compute the retarded Green function, corresponding to the
symmetric choice σ = β/2 in the Schwinger-Keldish contour, see figure 3.1 (right). In
the thermal field theory, the SK correlator is built introducing insertions of operators at
Im t = 0 or Im t = −iβ/2, so it is a matrix with components

GSK(t) =

(
GF (t) G<(t + iβ/2)

G>(t − iβ/2) GF (t)†

)

,

where G>(t), G<(t) are the Wightman Green functions and GF (t) is the time-ordered
(Feynman) correlator. The relation between the Feynman and the Wightman Green func-
tions, together with the KMS relation2

GF (t) = θ(t)
(
G>(t) − G<(t)

)
+ G<(t) ,

G>(t) = G<(t + iβ) ,

imply that the SK correlator should have singularities on the imaginary time axis. All
these correlators can be written in terms of the spectral function, ρ(t) = G>(t) − G<(t).
The Fourier transforms read

G>(ω) = eωβG<(ω) =
eωβ

eωβ − 1
ρ(ω) ; GF (ω) =

(
θ(t) +

1
eωβ − 1

)
ρ(ω) .

Notice that all of them at least have poles at ωn = 2πin/β, thus singularities at t = iβn

appear from the ultraviolet contribution of that poles to the time dependent correlators
in the same way they did at the end of section 4.1. Since for d > 2 we find no such
singularities, this means that the singularities associated to null rays should correspond
to the commutator, that is the spectral function, since it is the combination for which
such ultraviolet contribution vanishes. This is consistent with the identification of the
singularities of frequency-dependent correlators with quasinormal modes.

The singularities of frequency-dependent thermal correlators computed from hologra-
phy turn out to be poles, indicating that there is always an exponential decay with time.
For fields with larger conformal dimensions the location of the poles is modified due to the
shift of the quasinormal spectrum. Also notice that all this analysis has been made at zero
momentum. At non-zero momentum the singularities of the spectral function move in the
complex frequency plane, but they remain as poles, in contrast with Green functions at

2Which can be derived from the periodicity in imaginary time of Euclidean correlators.
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weak coupling where poles open up in branch singularities. Also in [117] it was argued
that higher curvature corrections in the bulk, that correspond to quantum corrections in
the field theory, do not change the nature of the singularities. On the other hand the
analysis of [118] shows that subleading corrections in the large-N expansion can introduce
power-like tails in time. These corrections correspond to quantum corrections in the bulk,
so it would be interesting to analyze Green functions in the black hole background beyond
the classical approximation.



Chapter 5

Beyond hydrodynamics in the sQGP

In recent years a new paradigm concerning the high temperature behavior of QCD has
been established: the strongly coupled Quark-Gluon Plasma (sQGP). Experimental re-
sults from heavy ion collisions at RHIC indicate that QCD at temperatures around 2Tc

is strongly interacting, in spite of being in a deconfined phase, and thus rendering per-
turbative computations not suitable for describing it. In the previous chapters, we have
seen how holography can be a useful tool to understand analytically the dynamics of
non-Abelian gauge theories in the strongly coupled plasma phase by performing classical
computations in the asymptotically AdS black hole gravity duals. In this chapter we apply
the holographic techniques explained before in order to study the response of the plasma
to small external perturbations, paying special attention to the hydrodynamic regime and
its domain of validity. Our gravity background is given by (2.14), thus our dual field
theory is the plasma phase of the strongly coupled N =4 gauge theory. Nevertheless, the
results might be relevant also for RHIC physics.

Hydrodynamic modes like diffusion, shear or sound modes are also described by quasi-
normal modes in the gravity dual. They are special cases of quasinormal modes whose
frequencies vanish in the zero momentum limit [92,93]. One of the most interesting results
of this AdS black hole hydrodynamics has been the derivation of a universal bound for
the shear viscosity to entropy ratio η

s ≥ !
4πkB

[119, 120] for field theories that admit a
supergravity dual description1. It has also been argued that this value is relevant to the
description of heavy ion phenomenology at RHIC [125]. The shear viscosity is a hydrody-
namic transport coefficient governing the momentum diffusion through the medium. One
way to derive it is to compute the lowest quasinormal frequency in the retarded two-point
correlator in the vector channel of the stress tensor.

The hydrodynamic approximation can be interpreted as a low energy effective theory
where all the degrees of freedom except the hydrodynamic modes have been integrated
out. It is then possible to make a systematic expansion in higher derivative terms, whose
coefficients depend on the microscopic physics. The first order terms correspond to the
usual hydrodynamic equations, while second order terms take into account the finite de-

1It has been shown that this bound can be violated in effective theories of higher derivative gravity, like

Gauss-Bonnet theories [121–123], or in gauge theories that have different central charges [124].
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lay in the response of the system. Second order hydrodynamics is important since the
relativistic first order formalism leads to the well-known problem of acausal signal propa-
gation. As it is reviewed in appendix A.3, the speed of signal propagation is determined
by the so called front velocity v = limω→∞

ω
qR , with qR the real part of the complex mo-

mentum mode. Diffusion equations as they arise typically in first order hydrodynamics
do not have a finite front velocity and therefore allow acausal behavior. In second order
hydrodynamics the non-zero delay of the response is encoded in a relaxation time constant
and can restore causality [126–129]. The latter have been recently computed for conformal
theories using the AdS/CFT correspondence [130–133]. However, even second order hy-
drodynamics cannot simply be extended to arbitrary short wavelengths or high frequencies
and thus a front velocity smaller than the speed of light in second order hydrodynamics
is not guaranteed, since inevitably the hydrodynamic description breaks down at small
wavelengths. Thus the question arises how causal signal propagation is guaranteed in the
N =4 plasma at strong coupling. We will show numerically that the hydrodynamic mode
approaches the front velocity vF = 1 and argue that this is indeed the exact value for all
quasinormal modes including the hydrodynamic diffusion modes.

As an effective theory, the hydrodynamic approximation will be valid up to energies
of the order of the microscopic scale, in this case given by the temperature T . At weak
coupling hydrodynamic modes are collective excitations made up by the collective mo-
tion of the hard particles. Therefore they actually should decouple at short wavelengths.
In standard perturbative finite temperature field theory and in the HTL approximation
collective excitations do indeed appear already in the two-point correlators of the funda-
mental fermion and gauge fields. At weak coupling one distinguishes a soft scale of order
gT from a hard scale T . Above T the hard partons are the quarks and gluons of the
elementary fields, at the soft scale there are quasiparticles, dressed quarks and gluons and
collective excitations, i.e. the plasmon and plasmino modes [85,134,135]. They show up as
poles in the retarded two-point functions but can be distinguished by the behaviour of the
residues at momenta at or above the hard scale T : the residues of the collective excitations
decay exponentially signaling their decoupling at short wavelengths. What can we expect
then for the quasinormal modes? In fact the high frequency and short wavelength limit
can be interchanged with the T → 0 limit [94]. Going to zero temperature an infinite
number of quasinormal modes come together and open up a branch cut, characteristic for
the T = 0 retarded correlators. Therefore, the residues of almost all quasinormal modes
should not decay in this limit. However, a finite number might still decouple, and indeed
this is what we find for the residues of quasinormal modes representing diffusive behaviour
at long wavelengths.

In what follows we present an analysis of the residues of the quasinormal modes and
complex momentum modes of R-current and energy-momentum tensor correlators. In
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section 5.1 we recall how linear response theory is related to hydrodynamic behaviour.
We study the regime of validity of the hydrodynamic approximation and define a lower
bound in length and time scales. Since hydrodynamic simulations of the QGP evolution
are a key point in the paradigm of the sQGP, it is of utmost importance to be able to
define hydrodynamic time scales from when on such approximation is valid. In section
5.2 we discuss how the retarded Green function can be expressed as infinite sums over the
poles at the quasinormal frequencies or complex momenta. We point out that these sums
do not converge and analytic terms are needed to regularize the sums. These analytic
terms should not be confused with contact terms arising from the action.

In sections 5.3 and 5.4 we study quasinormal frequencies and complex momentum
modes and their residues for R-charge correlators and stress tensor correlators respectively.
We find that the behaviour of the hydrodynamic mode in the shear channel is very similar
to the one in the diffusion channel for the R-charge correlators. Both of them decouple
for short wavelengths, signaling a breakdown of the effective field theory based on the
hydrodynamic mode alone. This is not the case in the sound channel: the lowest mode,
the sound mode, does not decouple at short wavelengths. It becomes similar to a higher
quasinormal mode. We also study how well the spectral functions can be approximated
by summing only over the contributions of the lowest quasinormal modes. Knowledge
about the complex momentum eigenvalues for fixed real frequencies allows us to compute
(numerically) the front velocity. We find that the front velocity for all modes, even the
hydrodynamic one, is in agreement with causal signal propagation.

5.1 Hydrodynamic scales and linear response theory

We consider a medium in thermal equilibrium. By now we know that linear response
theory is enough to study the effect of small external perturbations when their energy
is negligible compared to the total energy of the system. The response of a field Φ to
a perturbation represented by an external source j(t,x) is given by (3.22). We saw in
section 3.3 that if we make an analytic continuation to the complex ω plane the retarded
Green function is of the form (3.23) and assuming that the source does not introduce new
non-analyticities, the response is given by (3.26) as a sum over complex frequency poles.
Therefore, the location of the quasinormal modes determine their frequency and damping
and their residues determine how much each mode contributes to the response. For each
channel corresponding to a gauge invariant operator in the dual gauge theory there is an
infinite tower of quasinormal modes. Since for holographic duals of gauge theories there
exist infinitely many quasinormal modes the precise form of the response also depends on
the form of the source. There is however an exception to this: the extreme long-wavelength
modes of conserved charges such as energy and momentum. Perturbations that induce a
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change in the overall charge have to excite the special hydrodynamic modes. These are
modes whose quasinormal frequencies obey limq→0 ωH(q) = 0. This behaviour guarantees
that the integrated response

∫
d3x 〈Φ(t,x)〉 is time independent, as it has to be for a

conserved charge. Notice however that there is no fundamental reason that would forbid
neutral perturbations to dissipate away primarily in the higher quasinormal modes, i.e.
the infinite tower of modes with non vanishing zero momentum limit. It is also interesting
to think about what the presence of the infinitely many quasinormal modes mean for the
formulation of an initial value problem. Let us assume for the moment that there would
be only one quasinormal mode, e.g. a diffusion mode in a conserved charge. The time
development for t > 0 would then be completely determined by specifying the expectation
value of the field at t = 0, i.e. 〈Φ(0,x)〉 = Φ0(x). Indeed, cutting the sum in (3.26) after
the first term, the hydrodynamic term in this case, leaves us with a one-to-one relationship
between the initial value and the source Φ̃0(q) = R(q) ̃(q). However, in our case there are
infinitely many quasinormal modes and therefore one has to specify not only the field at
t = 0 but also an infinite number of its time derivatives in order to be able to compute the
source from the initial condition. Strictly speaking the system becomes non-Markovian
due to the presence of the infinitely many quasinormal modes: it remembers (at least for
short times) the history of how it reached a certain state. Putting it another way, we can
define a system to be in local thermal equilibrium if it has no memory, i.e. the response
is completely dominated by the hydrodynamic mode.

We will concentrate on simple forms of source perturbations. We imagine that the
source acts only over a time interval ∆t. Such a perturbation will excite a significant
number of quasinormal modes for small ∆t and in the limit where ∆t → 0 it will excite
all quasinormal modes with equal weight. We can then assume a source of the form
j(t,x) = δ(t) cos(qx).

At small values of the momentum, the hydrodynamic mode dominates the long time
behaviour since it has the smallest imaginary part. In fact, we can define the hydrodynamic
time scale, from which on the hydrodynamic mode dominates and the hydrodynamic
approximation is good, by demanding that the response in the hydrodynamic mode equals
the response in the first quasinormal mode at the time τH. We can estimate this time scale
using (3.26)

τH =
log |RH ̃H|− log |R1 ̃1|

ΓH − Γ1
, (5.1)

where we have written ̃n = ̃(ωn(q),q). The hydrodynamic description will be trustable
for times larger than τH, whereas for shorter times the contribution of higher modes must
be taken into account.

In the same way we did in section 3.3, we can again switch the roles of time and
space and consider periodic perturbations localized in space, over an interval ∆x in the x
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direction. In the limit ∆x → 0 the source as the form j(t,x) ∝ δ(x). The response of the
system is then given by (3.29) as a sum over complex momentum poles. Analogously to
what we did before, we can define a hydrodynamic length scale. From (3.29) we find

:H =
log|RH|− log|R1|

Im qH − Im q1
. (5.2)

For distances from the origin of the perturbation larger than :H, the hydrodynamic mode
will dominate the response of the system. We emphasize that the definition of the hy-
drodynamic length scale (5.2) applies only if the sources are localized in space. For a
more general source, the Fourier transform evaluated at the complex momentum mode
̃(ω,qn(ω)) will enter in the definition of :H in an analogous way to (5.1).

As we have seen the response and the hydrodynamic scales depend crucially on the
knowledge of the residues of the retarded correlators. In the following we will determine
them numerically and study such hydrodynamic scales.

5.2 Including higher thermal resonances

The hydrodynamic mode provides a good description of the system at very long wave-
lengths ω, q , T . As we have argued, for shorter times or distances the holographic
computation shows that higher modes start to be relevant. It is an interesting question to
see if a description in terms of the hydrodynamic mode plus a few thermal resonances gives
a reasonable good model of the plasma up to frequencies of the order of the temperature
ω ∼ T . What we mean by thermal resonances are the quasinormal modes found in the
holographic dual, that describe the dissipation of gauge-invariant configurations.

Due to conformality, the properties of the N = 4 plasma rescale trivially with the
temperature T . A possible way to introduce a non-trivial temperature dependence would
be to compactify the theory in a three sphere of radius R. The compactification breaks
conformal invariance, so there is a non-trivial dependence on R T . Then, the physics of
the plasma in flat space R → ∞ can also be recovered in the infinite temperature limit
T → ∞ [63]. Computations of the quasinormal mode spectrum at lower temperatures
R T ≥ 1 [89, 136] show that the lowest modes are long lived enough to have a good
quasiparticle interpretation. Other computations in the context of flavor branes, where
high and low temperature is given in terms of the quark mass mq/T , also show similar
results for the quasinormal spectrum of mesons [137–140]. This suggests that for more
realistic plasmas, e.g. non-conformal and maybe closer to the intermediate temperature
regime between the deconfinement transition and the free gas limit than the simpler models
just mentioned, a description in terms of bound states could be appropriate, although
usually colored bound states are considered [141–143]. In spirit, this approach is similar
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to the description of QCD correlators at low energies using the lowest states of the meson
spectrum.

From the linearized AdS/CFT computation, we know that the retarded correlators of
channels with hydrodynamic modes have the general form

G̃R(ω, q) =
nH∑

i=1

R(i)
H

ω − Ω(i)
H

+
∞∑

n=1

Rn

ω − ωn
+

−R∗
n

ω + ω∗
n

+ A(ω, q) , (5.3)

where ΩH, ωn are the hydrodynamic and quasinormal poles, RH, Rn their residues and nH

is the number of hydrodynamic modes. For the shear and diffusive channels nH = 1, while
for the sound channel nH = 2 and Ω(2)

H = −Ω(1) ∗
H , R(2)

H = −R(1) ∗
H .2 The term A denotes

possible terms analytic in frequency and momentum. In principle they look like the contact
terms that can arise from Ward identities or some choice of renormalization scheme, in
which case they could be absorbed by a finite number of counterterms. However, their
origin is different and we will see that they are necessary in order to give a consistent
Green function, the main reason being the infinite sum over quasinormal modes.

Let us concentrate on a particular example, the density-density correlator of the R-
current. In [139] the explicit form of the current-current correlator at zero momentum was
found (w := ω/(2πT )),

Gij(w) = δij
N2T 2

8

{
iw+w2

[
ψ

(
(1 − i)

2
w

)
+ ψ

(
−(1 + i)

2
w

)]}
∼
∑

n

R̃n

w − wn
. (5.4)

The poles and its residues can be extracted from the following representation of the
digamma function

ψ(x) = −γE −
∞∑

n=1

(
1

x − 1 + n
− 1

n

)
, (5.5)

so the residues will scale as R̃n ∼ w2 rn, with rn ∼ 1 and the frequencies wn ∼ n.
Evaluated at the pole this gives R̃n ∼ w2

n rn ∼ n2, as was confirmed numerically in [2].
Using current conservation, the density-density correlator is related to the longitudinal
current-current correlator through Gtt = q2

ω2 GL
ii, so the residues of the density-density

correlator go as Rn ∼ q2 rn ∼ q2.

The imaginary part of the retarded correlator receives a contribution from the quasi-
normal modes

Im G̃R ∼ ω
∑

n

Im
(
ω2

nRn
)

(ω2 − Re ω2
n)2 + (Im ω2

n)2
∼ q2ω
∑

n

1
n2

. (5.6)

2There exist of course also channels without any hydrodynamic behaviour nH = 0, such as scalar field

perturbations. We will not consider these channels.
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The sum over the quasinormal modes is convergent in this case. On the other hand the
real part goes as

Re G̃R ∼
∑

n

|ωn|2Re (ω∗
nRn)

(ω2 − Re ω2
n)2 + (Im ω2

n)2
∼ q2
∑

n

1
n

. (5.7)

In this case the sum is not convergent, although the Green function is finite. The divergence
of the sum over quasinormal modes can be cured by subtracting a divergent analytic part,
or in a better defined way, subtracting order by order a small analytic part. The analytic
term would look

A =
∑

n

An ∼ −q2
∑

n

1
n

. (5.8)

In order to give a consistent approximation to the retarded correlator, the analytic term
must be properly taken into account. For the first m modes

G̃R(ω, q) ( −iq2σH(q)
ω + iq2DH(q)

+ q2
m∑

n=1

(
rn(q)

ω − ωn(q)
+

−r∗n(q)
ω + ω∗

n(q)

)
− Cmq2, ω, q < T , (5.9)

where we have defined the hydrodynamic pole and residue in terms of a q-dependent
‘conductivity’ and ‘diffusion coefficient’ RH = −i q2σH(q) and ΩH = −i q2DH(q). In the
zero momentum limit, they take the value of the known constant transport coefficients
D = 1/(2πT ), σ = N2T/16π. The coefficient of the analytic term Cm depends on the
number of modes and diverges when m → ∞. The exact Green function including all the
modes would differ by a small amount from this approximation at small enough frequencies.

In the hydrodynamic approximation only the mode associated to diffusion would be
considered, adding higher derivative corrections to the effective description as momentum
increases. It is then interesting to find out its exact behaviour beyond the hydrodynamic
limit from the holographic dual.

5.3 R-charge current correlators

We now consider the conserved current Jµ associated to the global R-symmetry in the
N =4 theory

∂µJµ = 0 . (5.10)

The diffusion of the R-charge Q =
∫

d3xJ0 is described by a hydrodynamic mode, that at
low frequencies and momenta dominates the response of the system to small perturbations
jµ

〈δJµ(t,x)〉 = −
∫

dt′ d3x′ Gµα(t − t′,x − x′) jα(t′,x′) . (5.11)

The global current Jµ is dual to a five-dimensional gauge field AM .3 We work in the gauge
Ar = 0. The gauge invariant quantities are the longitudinal and transverse electric fields

3That is actually a component of the metric with the group index associated to an internal space.
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EL = qA0 + ω q ·A/q, ET = ωAT , where q ·AT = 0. We describe the method to find the
quasinormal modes in the appendix A.1.

The retarded two-point functions can be expressed in terms of two scalar functions ΠT

and ΠL corresponding to transverse and longitudinal polarizations, assuming q = (0, 0, q)

G̃TT = ΠT , G̃tt =
q2

ω2 − q2
ΠL , (5.12)

G̃tz(ω, q) =
ω

q
G̃tt(ω, q) , G̃zz(ω, q) =

ω2

q2
G̃tt(ω, q) . (5.13)

The results for residues RT,L
n of the quasinormal modes of the scalar functions ΠT,L are

plotted in figure 5.1. We have also computed the quantities σH(q) and DH(q) and they
are shown in figure 5.2. We remark that the residues of the density-density correlator are
actually

R(tt)
n =

q2

ω2
n(q) − q2

R(L)
n (q) . (5.14)

The longitudinal fluctuations show interesting behaviour related to the diffusion mode.
The peaks and dips in Figure 5.1 appear roughly at the locations where the hydrodynamic
mode 4 crosses the imaginary part of the quasinormal frequency.
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Figure 5.1: (Left) Real and imaginary parts of the residues for the first four quasinormal modes

in the transverse component ET . (Right) Idem for longitudinal component EL. The n2 scaling is

necessary to recover the asymptotic behaviour of the spectral function at large frequencies. Close

to the crossing with the diffusion mode q ∼ 1, the residues of the longitudinal component present

peaks. The residues grow with momentum, this is also reflected in the growth of the spectral

function. All the numerical values of residues are normalized by a factor N2T 2/8 in what follows.

The hydrodynamic mode behaves in a very different way. The diffusion pole quickly
moves towards negative imaginary frequencies, while the residue first grows according to
hydrodynamics and later goes over into a damped oscillation with the momentum, as
shown in figure 5.2. Such oscillatory behavior the residue of the diffusion mode, implies

4We continue calling it like this even outside the regime of validity of the hydrodynamic approximation.
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that for a finite value of q < 2πT the q-dependent conductivity we have defined becomes
zero and then negative. Notice that the analytic corrections that can come from higher
modes would not solve this problem, so clearly the diffusion mode does not have a good
hydrodynamical interpretation anymore. Furthermore, the residue vanishes exponentially
with increasing momentum, so this mode decouples and the system leaves the hydrody-
namic regime. The zeros appear when the diffusion pole reaches the value of the imaginary
part of the quasinormal frequencies at zero momentum. The values of the momentum when
this happens can be found analytically (appendix A.2). At a slightly smaller value of the
momentum the imaginary part of the nth higher quasinormal mode becomes smaller than
the value for the hydrodynamic mode, i.e. the diffusion mode crosses the nth quasinormal
mode. This first happens at around q = 0.68. The time development is then dominated
by the contribution of the lowest quasinormal modes instead of the hydrodynamic mode.
In the section 5.4 we will find an analogous behaviour in the shear diffusion mode of the
stress tensor two-point function.

R
h
y
d
ro

0.6
0.4
0.2

0
-0.2
-0.4

q

R
ew

(t
ri

an
gl

e)
,

−
Im

w
(c

ir
cl

e)

10.80.60.40.20

2

1.5

1

0.5

0

Figure 5.2: In the lower figure, we show the real and imaginary parts of the quasinormal fre-

quencies in the longitudinal channel and the value of the frequency for the diffusion mode. The

quasinormal frequencies remain fairly stable as momentum increases, until there is a ‘crossing’

with the diffusion mode (it reaches a special value w = −in). From there on the quasinormal

frequencies start approaching the real axis. The residue of the diffusion mode, in the upper figure,

behaves according to hydrodynamics ∼ q2 for small momentum. For larger momentum, it shows

an oscillatory decaying behaviour. The zeros of the residue coincide with the ‘crossing’ values.

A way to estimate the regime of validity of the hydrodynamic approximation is to intro-
duce an external perturbation, localized in time or space and compute the hydrodynamic
time (5.1) or length (5.2) scales. In the first case we consider the evolution of the charge
density (given by Gtt), while in the second case we do it for the longitudinal component of
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the current (given by Gzz). The time-localized source is a plane wave of fixed momentum
q that begins at t = 0 and last some time ∆t. The perturbation creates inhomogeneities
that start to relax to equilibrium after it is switched off. The late time relaxation will be
dominated by the diffusion mode. If the perturbation lasts for a long time, it is possible for
the system to reach a steady state already dominated by the diffusion mode. This seems
to be the case as long as ∆t is a few times the inverse temperature. If the perturbation is
short lived, then we find that the minimal time to enter the diffusion dominated regime
is 2πT τH ∼ 0.35. We also find that for short wavelengths, when q approaches the value
of the zero of the hydro residue, τH grows unbounded. So for wavelengths of the order
of the inverse temperature or higher, the relaxation to equilibrium is never dominated by
the diffusion mode, but by higher modes.

The space-localized source is a pulse constant on x and y directions and localized in
the z direction with size ∆z. The pulse is oscillating with some fixed frequency ω. The
perturbation will be screened as we move in the z direction far from the plane where
the pulse is localized. At large enough distances, the diffusion complex momentum mode
would dominate the decay of the perturbation. We find that if the size of the pulse is
larger than the scale given by the temperature ∆z > 1/T and the frequency is low enough
ω < 2πT , the screening is dominated by the hydro mode at any distance. However,
at higher frequencies the diffusion mode starts dominating at larger distances from the
source, so :H > 0. When the size of the source is of the order of the inverse temperature,
finite size effects like the shape of the perturbation start to be important to determine
the hydrodynamic length scale. In our definition of hydrodynamic time and length scales
there is an explicit dependence on the source,

̃ =






sin(ω∆t)
ω localized in time

sin(q∆x)
q localized in space

(5.15)

The source is evaluated at the value of the of the mode ωn(q) or qn(ω). For large values
of the frequency or the momentum, the ∼ 1/ω, 1/q scaling determines the response, while
for very low values it is constant. For intermediate values however, the sine function
introduces an oscillatory behaviour. In general, we will find different answers for different
kind of perturbations, depending on their shape.

In summary, no matter the value of q for the time-dependent source there is a minimal
hydrodynamic time scale τH if the duration of the perturbation is short enough. However,
for the space-localized source one can always lower the frequency to a value where the
length :H becomes zero, no matter how small the source is.

The validity of the hydrodynamic regime can also be studied through the spectral
function. As a first approximation we could pick only the diffusion mode. However, the
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spectral function and the residue have the same sign, so the approximation would clearly
fail at the first zero. This means that in order to have a sensible approximation for larger
values of the momentum, we must take into account higher modes. We will see that this
solves the problem.

Following the discussion in section 5.2, we can compare the results from the exact
retarded density-density correlator G̃tt with the approximation taking the first four quasi-
normal modes or just the hydrodynamic mode. In order to fix the analytic term C4 in
(5.9), we equate the values of the exact and the approximate Green functions at zero
frequency and q = 0.2, giving C4 ( 3.9. In figure 5.3 we can see that the approximation
for fixed momentum is very good in the interval w < 1, even for larger values of the
momentum.

0.5 1
Ω

Ρ

0.5 1
Ω

Σ

Figure 5.3: Imaginary (left) and real (right) parts of the retarded Gtt correlator as a function of

the frequency at q = 0.2 (black) and q = 0.4 (grey). The dotted line is the hydrodynamic mode

contribution, the solid line is the exact solution and the dashed line is the four-mode approximation.

We also present the residues of complex momentum modes in figures 5.4 and 5.5.
Again these are the residues of the scalar functions ΠT,L. We find that contrary to the
quasinormal modes, the hydrodynamic mode does not decay at high frequencies.
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Figure 5.5: Real and imaginary parts of the residues for the diffusion complex momentum mode.

In [102] the locations of the complex momentum modes in the R-charge diffusion
channel have been studied. It was found numerically that the real part of the complex
momentum approaches ω whereas the imaginary part becomes smaller and smaller at
high frequency for all the modes. Furthermore we argued in the introduction that the
high frequency and momentum limit can be exchanged with the zero temperature limit
T → 0. The theory at T = 0 recovers Lorentz symmetry and in the case at hand even
conformal symmetry. This restricts all signal propagation at T = 0 automatically to the
light cone, showing that indeed vF = 1.

5.4 Energy-momentum tensor correlators

The energy-momentum tensor is a conserved quantity

∂µTµν = 0 , (5.16)

we can identify E =
∫

d3xT00 and Pi =
∫

d3xT0i as the conserved energy and momentum.
Since they are conserved and cannot be dissipated away, they will slowly spread through
the plasma or they will be displaced between different regions. This is described by
the hydrodynamic shear and sound modes. The response to an external perturbation
represented by the source jµν(t,x) is given by

〈δTµν(t,x)〉 = −
∫

dt′ d3x′ Gµν, αβ(t − t′,x − x′) jαβ(t′,x′) , (5.17)

where GR is the retarded two-point function. For low frequencies and momentum (large
times and distances), the response is dominated by the hydrodynamic modes.

The energy-momentum tensor Tµν in the gauge theory is dual to the five-dimensional
metric gMN . We work in the linear approximation, so we will consider small fluctu-
ations hMN on top of the background metric of a planar black hole in AdS5 space
(2.14). We fix the gauge to hrM = 0 and expand the metric components in plane waves
hµν(t,x, r) = e−iωt+iqxhµν(r). It is convenient to use quantities that are gauge-invariant
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under the residual diffeomorphism transformations and group them according to their
representation under the rotational group. In this way, we can distinguish three different
components, scalar, vector and tensor, that correspond to the sound, shear and scalar
channels in the dual theory [98]. Assuming that the momentum is along the z direction,
and using the dimensionless frequency and momentum 2πT (w, q) := (ω,q), the gauge-
invariant quantities are

(Shear) Z1i = qHti + wHzi, i = x, y ,

(Sound) Z2 = q2Htt + 2wqHtz + w2Hzz + (q2 − w2 + rf ′(r)/2)(Hxx + Hyy) ,

(Scalar) Z3 = Hxy , (5.18)

where Hµν = hµν/r2. The retarded Green function of the dual gauge theory can then be
computed using the Lorentzian prescription (3.10). The method to find the quasinormal
modes is explained in appendix A.1. The Green functions G1, G2, G3 found using the
Z1, Z2, Z3 components are scalar quantities. They are the coefficients of the tensor pro-
jectors depending on ω and q in which energy-momentum correlators can be decomposed
once Lorentz invariance is reduced to rotational invariance (c.f. [98]). For instance,

Gtx, tx =
1
2

q2

ω2 − q2
G1 , (5.19)

Gtt, tt =
2
3

q4

(ω2 − q2)2
G2 , (5.20)

Gxy, xy =
1
2

G3 . (5.21)

We also compute the residues of the different modes. Notice that we are using the functions
G1, G2 and G3, so in order to recover the right residue for the different components of
the energy-momentum tensor correlators, one should take into account the appropriate
factors coming from the tensor projectors.

In the vector and scalar channels, the lowest quasinormal mode shows the right be-
haviour at low momentum to be identified with the shear (ω = −iDq2) and sound
(ω = vsq − iΓsq2) modes respectively. In figure 5.6 we compare our numerical results
with the second order hydrodynamic approximations of [131]. From the Kubo formula of
the tensor component Gxy,xy the second order corrections including a term η τΠ ω2 have
been identified with

τΠ =
2 − log 2

2πT
. (5.22)

According to the hydrodynamic expansion, the first corrections to the shear and sound
poles would be

ωshear = −i
η

sT
q2 − i
( η

sT

)2
τΠ q4 ,

ωsound = vsq − iΓsq
2 +

Γs

vs

(
v2
s τΠ − Γs

2

)
q3 . (5.23)
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With η the shear viscosity, s the entropy density and vs and Γs the sound velocity and the
sound attenuation. However, in the holographic computation the dispersion relation for
the shear mode differs from the second order hydrodynamic result. This discrepancy can
be attributed to the necessity of going to third order hydrodynamics to capture the right
O(q4) correction to the shear pole. In terms of the dimensionless variables the holographic
theory gives the next to leading order corrections in the dispersion relations

wshear = −i
q2

2
− i

(1 − log 2)
4

q4 ,

wsound =
q√
3
− i

q2

3
+

3 − 2 log 2
6
√

3
q3 . (5.24)

When we compare the numerical results with these (fig. 5.6), we find a very good agreement
up to q " 1. Similar comparisons between the exact values and first order hydrodynamics
or the first corrections can be found in [95, 98, 131]. It seems justified then to consider
just the first hydrodynamic corrections to describe the properties of the shear and sound
modes up to frequencies of the order of the temperature ω, q ∼ T . Note however, that
the q4 term that arises from second order hydrodynamics obviously does not approximate
the numerical result very well, clearly indicating that second order hydrodynamics is not
valid to predict the q4 terms as already pointed out in [131].
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Re Ωsound
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Figure 5.6: (Left) The numerical value of the shear mode [solid black] compared with the correct

expression [dotted gray] and the value from second order hydrodynamics [dashed gray]. (Middle)

The numerical value of the real part of the sound mode [solid black] compared with the second

order hydrodynamic approximation [dotted gray]. (Right) The numerical value of the imaginary

part of the sound mode [solid black] compared with the second order hydrodynamic approximation

[dotted gray].

Again, we have also computed the complex momentum modes that describe the pen-
etration depth of a perturbation inside the plasma as a function of the frequency [102].
Here we show the complex momentum modes for the sound channel in figure 5.7, while
for the shear channel can be found in reference above. The results for the residues are
displayed in figures 5.8 and 5.9. The zero frequency value corresponds to the inverse
of the screening masses in the plasma. Again we find that the imaginary parts become
smaller with increasing frequency and that the real parts approach the light cone ω/q → 1
indicating a front velocity vF = 1 as in the other channels (see Appendix A.3).
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Figure 5.7: (Left) Real and imaginary parts of the first four complex momentum modes in the

sound channel. (Right) Idem for sound mode.
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Figure 5.8: (Left) Real and imaginary parts of the residues for the first four complex momentum

modes in the shear channel. (Right) Idem for sound channel.
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Residues and higher thermal resonances.

In figures 5.10 and 5.11 we plot the residues of the lowest four quasinormal modes in the
shear and sound channels. The residue in the shear mode (figure 5.11) shows a decaying
and oscillatory pattern with increasing momentum, similar to the diffusion mode of the
R-current. We can apply the same arguments here, at short enough wavelengths the
first quasinormal mode will dominate the late time behaviour and the hydrodynamic
approximation will not be valid. The sound mode on the other hand has a non-vanishing
residue at high momentum, and its pole moves away from the real axis only for low values
of the momentum, but then it behaves as an ordinary quasinormal mode, so it always
dominates the late time response of the system.

Using the numerical values of the residues, we can study the hydrodynamic time (5.1)
and length (5.2) scales for the shear and sound modes. Notice that the residues of the
sound channel R(2)

n (q) we have computed are evaluated at the quasinormal frequencies
and correspond to the ‘scalar’ Green function G2. From (5.19), we can see that in order
to expand Gtt, tt as a sum over quasinormal modes we should use the residues

R(tt, tt)
n =

2
3

q4

(ω2
n(q) − q2)2

R(2)
n (q) . (5.25)

In the shear channel we are computing the residues R(1)
n (q) of the function G1 evaluated

at the quasinormal frequencies. Using (5.19), the residues of Gtx, tx should be

R(tx, tx)
n =

1
2

q2

ω2
n(q) − q2

R(1)
n (q) . (5.26)

However, contrary to the cases of the density-density correlator of the R-current or the
Gtt, tt correlator of the sound channel, the large frequency behaviour does not asymptote
to a momentum-dependent constant (∼ q2 or q4), but to ∼ q2(ω2 − q2). This means
that there should be an implicit ω2 dependence in the residues, but this is not shown by
our computation. A way to partially recover the right dependence is to use the following
definition

R(tx, tx)
n =

1
2

ω2 − q2

(ω2
n(q) − q2)2

q2 R(1)
n (q) . (5.27)

We consider the same kind of perturbations as for the R-current diffusion mode in
section 5.3, one is a spatial plane wave of momentum q that is switched on only during a
finite amount of time ∆t. It sources the transverse and longitudinal momentum densities,
whose response is given by Gtx,tx and Gtt,tt. The other perturbation is a pulse of size ∆z

localized in the z direction that oscillates with frequency ω. We study the response of the
transverse and longitudinal momentum currents given by for Gzx,zx and Gzz,zz. The results
for the shear mode are qualitatively the same as for the diffusion mode. For a short-lived
time-localized source there is a minimal hydrodynamic time 2πT τH ∼ 1.34. The maximal
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value of the momentum beyond which the relaxation to equilibrium is dominated by higher
modes at late times is q ∼ 2.6πT . For a space-localized source, for large enough ∆z > 1/T
and small enough frequencies ω < 0.6πT , the screening is well described by the complex
momentum shear mode. For smaller sizes or higher frequencies in general the shear mode
dominates only at a finite distance from the source :H > 0, unless the frequency is very
low.

The sound mode behaves qualitatively different because its residue does not vanish
at any value of the momentum. It always dominates the relaxation to equilibrium for
long enough times or large enough distances as far as our computation can show. Higher
modes dominate the response for a finite time after switching off the source for momenta
q > 1.2πT . There is no minimal time for the sound mode, but since for large frequencies
the sound mode behaves as any other mode, the behaviour will not be hydrodynamic until
some finite time has passed if the source is very short-lived. If the source is localized in
space, higher modes dominate at a finite distance for values of the frequency ω > 2.5πT .

We can also study the validity of the hydrodynamic regime through the spectral func-
tion. As we found for R-current diffusion, the first zero of the shear residue implies a
change of sign for the approximation with the shear mode alone, hence a failure of the
hydrodynamic approximation. This happens around q ∼ 1.3. We find that also the spec-
tral function restricted to the sound mode alone changes sign but it is not related to a
‘crossing’. It coincides approximately with the change of behaviour of the residues that
can be observed in figure 5.10, close to q ∼ 1.1. Therefore, in order to have a consis-
tent description of the system for larger values of momentum, it is necessary to take into
account higher modes.
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Figure 5.10: (Left) Real and imaginary parts of the residues for the first four quasinormal modes

in the shear channel. (Right) Idem for the sound channel. The numerical values are normalized

by π2N2T 4 and the square of the mode number.

Using these results for the residues and the frequencies of the first quasinormal modes
we can build an approximation to the retarded correlator as explained in section 5.2. For
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Figure 5.11: (Left) When the shear mode hits a special value, there is a qualitative change in the

behaviour of the quasinormal modes. Zeroes of the residue of the shear mode roughly coincide with

the crossing of the shear mode and the quasinormal modes. (Right) The residue of the sound mode

behaves as the rest of the quasinormal modes. The numerical values are normalized by π2N2T 4

the sound channel, the properly defined Green function actually includes the boundary
terms found in [98] added to the Frobenius series approximation. Otherwise, an unphysical
singularity would appear at ω = ±q. We examine the Gtt, tt Green function and find that
the approximation and the exact function differ by a real constant C ∼ 0.374. Once
this term is included, they agree for a fair interval of frequencies and momenta (fig. 5.12).
Even for values of ω, q smaller but comparable to the temperature, the hydrodynamic
mode alone gives a remarkable good approximation for the spectral function. We can
see that for q = 0.2, the hydrodynamic approximation and the exact result are virtually
indistinguishable for w " 1.
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Figure 5.12: Imaginary (left) and real (right) parts of the retarded Gtt, tt correlator as a function

of the frequency at q = 0.2 (black) and q = 0.4 (grey) for the real part and q = 1 (grey) for the

imaginary part. The dotted line is the hydrodynamic mode contribution, the solid line is the exact

solution and the dashed line is the four-mode approximation.

Other correlators related to the sound channel can be found from Gtt, tt using the
explicit expressions for the tensor projectors [98].
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We also examine the Gtx, tx component of the shear channel, the results are in fig. 5.13.
We have to add an analytic piece ∼ 0.9q2w to the spectral function. To the real part of
the correlator we need to add a more complicated term ∼ 1.89q4 −0.16q2 −1.77q2w2. The
plots made in figure 5.13 have been done using the definition (5.27), we observe very good
agreement for w < 1, q " 0.6.
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Figure 5.13: Imaginary (left) and real (right) parts of the retarded Gtx, tx correlator as a function

of the frequency at q = 0.2 (black) and q = 0.4 (grey). The dotted line is the hydrodynamic mode

contribution, the solid line is the exact solution and the dashed line is the four-mode approximation.

5.5 Conclusions

We have studied hydrodynamics in the strongly coupled N =4 gauge theory based on lin-
ear response theory using the AdS/CFT correspondence. As emphasized we understand
hydrodynamics here as the effective theory resulting from integrating out the higher quasi-
normal modes and keeping only the contribution of the hydrodynamic modes, i.e. those
modes whose quasinormal frequency vanishes at zero momentum. We also recall that we
can consider this to be a definition of the system being in local thermal equilibrium. One
of the important findings is that the hydrodynamic approximation defined in that way has
its breakdown built into it: we saw that the diffusion mode in the longitudinal channel of
the R-charge crosses the lowest quasinormal mode at around q ≈ 0.7 and that the diffusion
mode in the shear channel does it at around q ≈ 1.3. From that value on it is the lowest
non hydrodynamic mode that determines the late time behaviour. In fact, already slightly
before the spectral function of the hydrodynamic mode ceases to be positive. We inter-
pret this as a signal for the breakdown of the effective theory based on the hydrodynamic
mode alone. Similarly, in the sound channel we found that the spectral function of the
sound mode switches sign at q ≈ 1.1 and again we take this as a breakdown of a putative
effective theory based on the sound channel alone. The full spectral functions (or even
the approximation keeping the contributions from only a few quasinormal modes) behave
perfectly reasonable at these points.

An important role in our investigations have been played by the residues. We saw
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that the shear diffusion mode and the R-charge diffusion are very similar. Both decay
in an oscillatory pattern with decreasing frequency and numerically we find that they
decouple for momenta q > 1. As we explain in appendix A.2 this can be understood from
the analyzing the in-falling boundary conditions at the special values of the frequency
w = −in with n ∈ N. That both diffusion modes show such similarities leads one naturally
to suspect that this might be a universal property of holographic hydrodynamic diffusion
modes. At the moment it is not clear how such a conjectured universal behaviour could be
proved. However it seems doable and an interesting task to generalize the calculations of
the residues presented here to other holographic gauge theories and check if the diffusive
modes behave in the same way. A clue of why this might happen comes from causality:
in order to preserve causality and at the same time reproduce (first order) hydrodynamics
in the long wavelength limit some drastic modification at short wavelengths is definitely
necessary.

As we have seen, the complex momentum modes needed for the calculation of the front
velocity do behave perfectly causal and their residues do not decouple at high frequencies.
Although in the small frequency/momentum limit the lowest complex momentum mode
can be computed from the analytic continuation of the quasinormal hydrodynamic mode
w = −iq2 this is not so for short wavelengths and high frequencies. This does not come as
a surprise, since only rotational invariance is preserved in the finite temperature theory,
so non-analyticities between ω and q dependence are expected, like ω/q. An example of
this is the fact that the two limits ω → 0 and q → 0 of the retarded correlator do not
commute in general. Also, in order to do the analytic continuation of the Green function
properly, all modes must be taken into account, only in the ω → 0, q → 0 limit the
hydrodynamic mode dominates. It is interesting to consider the hydrodynamic time scale
we found in the energy density correlator, 2πT τH ≈ 1.34. At RHIC temperatures T ≈ 300
MeV this translates into a very short time τH = 0.14fm/c. For the R-charge density this
is even around four times shorter. One might take this as an indication for an extremely
fast thermalization time. Of course, thermalization at RHIC includes processes that are
outside the regime of linear response considered here, so the short hydrodynamic scale can
at best describe a late stage of thermalization.

Another important point was to see how well the retarded Green’s functions can be
approximated by keeping only a few quasinormal modes. We found that analytic pieces
related to the non-convergence of the sum over quasinormal modes played an important
role. Recently, attempts of reconstructing the quasinormal mode spectrum from (much
easier to compute) holographic spectral functions have been made in [144]. We think that
our observations might also be useful to gain a better control on such procedures.



Chapter 6

Holographic superconductors

The range of physical phenomena to which the AdS/CFT correspondence can be applied
is constantly increasing. One of the latest additions is the realization of spontaneous sym-
metry breaking and the appearance of a superfluid phase at low temperature as explained
in 2.3. A model with a charged scalar condensing in the background of a charged AdS
black hole has first been introduced in [65]. Shortly afterwards it was realized that a
neutral scalar can condense as well and it was shown explicitly that the DC conductivity
is infinite in the broken phase [66].

By now there is a large variety of holographic models of superfluidity/superconductivity
[70, 72, 73, 145–157]. Specifically hydrodynamical behavior in these models has been ad-
dressed before in [75, 158] where the speed of sound has been calculated from derivatives
of thermodynamic quantities. The hydrodynamic poles of retarded Green functions have
been studied in an analytical approximation for infinitesimal condensate in a p-wave model
in [159].

In this chapter we are interested in the hydrodynamics of the holographic supercon-
ductor introduced in [66]. In general, hydrodynamic behavior is connected either to the
presence of a conserved charge, a spontaneously broken symmetry or a second order phase
transition. As we will see in our model all three possibilities are realized. We already know
that in holographic models the hydrodynamic modes appear as quasinormal modes in the
AdS black hole background whose frequency vanishes in the zero momentum limit and
quasinormal modes are identified with the poles of the holographic Green functions. In
general, they can be computed using the prescription given in [77] and reviewed in section
3.1. In situations in which there are several fields whose linearized wave equations form
a coupled system of differential equations possibly subject to a constraint due to a gauge
symmetry the construction of the holographic Green functions is a bit more complicated.
We solve this problem in full generality and show that the quasinormal modes defined are
the zeros of the determinant spanned by the values at the boundary of a maximal set of
linearly independent solutions to the field equations.

Having solved the problem of defining the holographic Green functions we concentrate
on finding the lowest quasinormal modes and in particular the ones representing the hy-
drodynamic behavior of the system. Hydrodynamic modes can be understood as massless



90 Chapter 6. Holographic superconductors

modes in the sense that limk→0 ω(k) = 0. Such modes arise in the presence of a conserved
charge. In this case a local charge distribution can not simply dissipate away but has to
spread slowly over the medium according to a diffusion process. Other situations in which
hydrodynamic modes appear are at a second order phase transition, characterized by the
appearance of a new massless mode and spontaneous breaking of a global symmetry where
a massless Goldstone boson appears. A discussion of hydrodynamics in systems with spon-
taneous breaking of global symmetries can be found in [160] and in the relativistic context
in [39].

We will consider the abelian gauge model of [66] without backreaction, i.e. assuming
that the metric is a simple AdS black hole with flat horizon topology. In [66] it has been
established that this model undergoes a second order phase transition towards forming a
condensate of the charged scalar field thus spontaneously breaking the U(1) gauge sym-
metry. The conductivity in the broken phase has a delta function peak at zero frequency
and a gap typical of superconductors.

An important particularity of the model is the missing backreaction. Since the metric
fluctuations are set to zero this means that effectively there is no energy momentum tensor
in the field theory dual. In particular the generators of translations and rotations are
missing in the operator algebra. This does of course not mean that the model does not have
these symmetries, they are however not realized as inner automorphisms of the operator
algebra (they are still outer automorphisms). Besides the space time symmetries being
realized as outer automorphisms there is a direct consequence of this in what concerns
the hydrodynamics of the model: all hydrodynamic modes related to them are missing.
There is no shear mode for the momentum diffusion and no sound mode for the energy
transport. The hydrodynamic modes we find in the model are therefore only due to the
presence of the U(1) symmetry and its spontaneous breakdown.

Hydrodynamics can be understood as an effective field theory defined by the continuity
equations of the conserved currents and so-called constitutive relations which encode the
dissipative behavior of the system. The constitutive relations tell us how fast a current is
built up due to gradients in the charge density or due to external fields. The constitutive
relations depend on transport coefficients such as viscosity or conductivity. Transport
coefficients can be divided into absorptive and reactive ones depending on whether they
are odd or even under time reversal [160]. A typical example for an absorptive trans-
port coefficient is the diffusion constant, an example for a reactive one is the speed of
sound. Reactive transport coefficients such as the speed of sound (the static susceptibility
is another example) can often be computed from purely thermodynamic considerations.
This has been done for the speed of second sound in this model in [75] and for a variant
of fourth sound in [158]1. As we have argued before, the hydrodynamic modes of en-

1Note that in [75] the mode has been called second sound whereas in [158] it was argued that it should
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ergy and momentum transport, shear and sound modes are missing. In the broken phase
one expects however the appearance of a hydrodynamic mode with approximately linear
dispersion relation for small momenta which represents the second sound present in super-
fluids. Indeed such a mode is bound to appear for each spontaneously broken continuous
symmetry [160]. We find (numerically) the second sound mode directly as a pole in the
holographic Green functions in the broken phase and read off the speed of sound from
its dispersion relation. Our results for the speed of second sound agree (with numerical
uncertainties) with the results in [75].

Below the critical temperature one expects actually only a part of the medium to
be in the superfluid state whereas another part stays in the normal fluid phase. The
fluid is a two component fluid and naively one might expect that this is reflected in the
pole structure of the Green functions as the presence of the diffusive pole of the normal
fluid component. As we will see, the hydrodynamic character of this diffusive pole is lost
however below the critical temperature. We find a pole with purely imaginary frequencies
obeying a dispersion relation roughly of the form ω = −iγ− iDk2. The gap γ goes to zero
at the Tc such that at the critical temperature this mode goes over into the usual diffusive
mode of the normal fluid.

In section 6.1 we introduce the model and describe its properties. We compute the
condensate as a function of temperature. This is basically a review of the results of [66]
except the fact that we choose to work in the grand canonical ensemble where we hold
fixed the value of the chemical potential instead of the value of the charge density.

Afterwards, we compute the quasinormal modes of the complex scalar field in the
unbroken phase. As expected we find that at the critical temperature a quasinormal
frequency crosses over into the upper half of the complex frequency plane. Since a pole in
the upper half plane is interpreted as an instability this is an indication that the scalar field
condenses. The quasinormal modes of gauge fields in the four dimensional AdS black hole
have been studied before [161]. In particular the longitudinal gauge field channel shows a
diffusion pole with diffusion constant D = 3/(4πT ). The holographic Green functions for
gauge fields are often calculated in a formalism that employs gauge invariant variables,
i.e. the electric field strengths. For reasons explained in section four we prefer however
to work directly with the gauge fields. The longitudinal components obey two coupled
differential equations subject to a constraint and we show in full generality how to compute
the holographic Green function in such a situation. The quasinormal mode condition boils
down to setting a determinant of field values at the boundary of AdS to zero. We find

be rather called fourth sound. There it has been argued that it is the fourth sound that survives the probe

limit. In any case working directly in the probe limit we only have one sound mode. For convenience

we will refer to it as second sound. Disentangling first, second or fourth sound would need to take into

account the backreaction.
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that this determinant is proportional to the electric field strength exemplifying that the
poles of holographic Green functions are gauge invariant as expected on general grounds.

In section we study the lowest modes of the quasinormal mode spectrum in the su-
perfluid phase. We find that the longitudinal gauge fields at non zero momentum couple
to real and imaginary part of the scalar field fluctuations, building up a system of four
coupled differential equations subject to one constraint. We solve this system numerically
and compute the quasinormal modes from our determinant condition. We find hydrody-
namic modes with approximately linear real part of the dispersion relation. We compute
the speed of second sound from it and find our results to be in good numerical agreement
with what was found in [75] from thermodynamic considerations. The second sound pole
has however also an imaginary part and we can fit the dispersion relation (for small mo-
menta) to ω = ±vsk − iΓsk2 which allows us to read off the attenuation constant Γs of
second sound. We also find a purely imaginary mode with a dispersion relation of the
form ω = −iγ− iDk2 with D the diffusion constant. It is a sort of gapped diffusion mode.
The gap γ goes to zero for T → Tc. A simple two fluid model suggests that there is still a
normal fluid component and in it charges should diffuse in the usual way right below Tc.
Therefore we expect a diffusive pole to show up in the two-point function. The diffusive
behavior is modified however at long wavelength by the presence of the gap γ. This mode
is therefore not really a hydrodynamic mode.

6.1 The Model

As in [66] we consider a four dimensional planar AdS black hole with line element

ds2 = −f(r)dt2 +
dr2

f(r)
+

r2

L2
(dx2 + dy2) . (6.1)

the blackening factor is f(r) = r2

L2 − M
r . This metric has a horizon at rH = M1/3L2/3, the

Hawking temperature is T = 3
4π

rH
L2 . In the following we will rescale coordinates according

to 



r

t

x

y




→





rHρ

L2/rH t̄

L2/rH x̄

L2/rH ȳ




(6.2)

In the new dimensionless coordinates the metric takes the form (6.1) with M = 1 times
the overall AdS scale L2.

As explained in section 2.3, we take an abelian gauge model with a massive charged
scalar field in order to have a model of superconductivity,

L = −1
4
FµνFµν − m2ΨΨ̄ − (∂µΨ − iAµΨ)(∂µΨ̄ + iAµΨ̄) (6.3)
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and a tachyonic mass m2 = −2/L2 above the Breitenlohner-Friedmann bound. As in [66]
we ignore the backreaction of these fields onto the metric. This so-called probe limit
corresponds to case of a scalar field with infinitely large charge. We seek solutions for
which the time component of the gauge field vanishes at the horizon and takes a non-
zero value µ on the boundary. This value is interpreted as the chemical potential. The
boundary condition on the horizon is usually justified by demanding that the gauge field
has finite norm there. Here this can be seen as follows: as in [75] we can chose a gauge
that removes the phase of the scalar field Ψ from the equations of motion. In this gauge
the scalar field current becomes Jµ = ψ2Aµ. Therefore the value of Aµ is directly related
to a physical quantity, the current, and it is a well defined physical condition to demand
the current to have finite norm at the horizon. This is achieved by taking the scalar field
to be regular and the gauge field to vanish at the horizon.

In addition to the gauge field the scalar field might be non trivial as well. In fact we
have seen that for high chemical potential (low temperature) the scalar field needs to be
switched on in order to have a stable solution. In our study of the quasinormal modes in
the next section we will indeed see that a quasinormal mode crosses into the upper half
plane at the critical temperature. We denote the temporal component of the gauge field
in the dimensionless coordinates by Φ. The field equations for the background fields are

Ψ′′ + (
f ′

f
+

2
ρ
)Ψ′ +

Φ2

f2
Ψ +

2
L2f

Ψ =0 , (6.4)

Φ′′ +
2
ρ
Φ′ − 2Ψ2

f
Φ =0 . (6.5)

The equations can be solved numerically by integration from the horizon out to the bound-
ary. As we just argued for the current to have finite norm at the horizon we have to chose
Φ(1) = 0 and demand the scalar field to be regular at the horizon. These conditions
leave two integration constants undetermined. The behavior of the fields at the conformal
boundary is

Φ = µ̄ − n̄

ρ
+ O(

1
ρ2

) , (6.6)

Ψ =
ψ1

ρ
+

ψ2

ρ2
+ O(

1
ρ2

) . (6.7)

The value of the mass of the scalar field chosen allows to define two different theories due
to the fact that both terms in the expansion above are normalizable in AdS. The canonical
choice of what one considers to be the normalizable mode gives a theory in which ψ1 is
interpreted as a coupling and ψ2 as expectation value of an operator with mass dimension
two. On the other hand one might consider ψ2 as the coupling and ψ1 as the expectation
value of an operator of dimension one.

All our numerical calculations are done using the dimensionless coordinates. In order
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to relate the asymptotic values (6.6), (6.7) to the physical quantities we note that

µ̄ =
3L
4πT

µ , (6.8)

n̄ =
9L

16π2T 2
n , (6.9)

ψ1 =
3

4πTL2
〈O1〉 , (6.10)

ψ2 =
9

16π2T 2L4
〈O2〉 , (6.11)

where µ is the chemical potential, n the charge density and 〈Oi〉 are the vacuum expecta-
tion values of the operators sourced by the scalar field. From now on we will set L = 1 and
work in the grand canonical ensemble by fixing µ = 1. Different values for µ̄ can now be
interpreted as varying the temperature T . For high temperatures the scalar field is trivial
and the gauge field equation is solved by Φ = µ̄ − µ̄

ρ . Spontaneous symmetry breaking
means that an operator has a non trivial expectation value even when no source for the
operator is switched on. We therefore look for nontrivial solutions of the scalar field with
either ψ1 = 0 or ψ2 = 0. Numerically we find that a non-trivial scalar field is switched on
at µ̄ = 1.1204 corresponding to a critical temperature Tc = 0.213µ for the operator O1 and
at µ̄ = 4.0637 corresponding to a critical temperature of Tc = 0.0587µ for the operator
O2. We chose to plot the squares of the condensates as a function of reduced temperature.
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Figure 6.1: The condensates as function of the temperature in the two possible theories.

It makes the linear behavior for temperatures just below the critical one manifest,

〈Oi〉2 ∝
(

1 − T

Tc

)
. (6.12)

Since we want to compute the holographic two point functions we will have to expand
the action to second order in field fluctuations around the background. We divide the
fields into background plus fluctuations in the following way

Ψ = ψ(ρ) + σ(ρ, t, x) + iη(ρ, t, x) , (6.13)

Aµ = Am(ρ) + aµ(ρ, t, x) . (6.14)
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The gauge transformations act only on the fluctuations

δaµ = ∂µλ , (6.15)

δσ = −λη , (6.16)

δη = λσ + λψ . (6.17)

The action expanded out to second order is S = S(0) + S(1) + S(2)

S(0) =
∫ √

−g

(
−1

4
FµνFµν +

2
L2

ψ2 − (∂µψ)(∂µψ) −AµAµψ2

)
,

S(1) =
∫ √

−g

(
−1

2
Fµνfµν +

4
L

2

ψσ − 2∂µψ∂µσ − 2∂ψAµη − 2A2ψσ

+2Aµ∂µη − 2Aµaµψ2

)
,

S(2) =
∫ √

−g

(
−1

4
fµνf

µν − (∂σ)2 − (∂η)2 −A2σ2 −A2η2 +
2
L

2

σ2 +
2
L

2

η2

−2∂µψaµη − 2Aµaµψσ − 2∂µσAµη + 2Aµσ∂µη + 2∂µηaµψ − a2ψ2

)
(6.18)

Up to the equations of motion these can be written as boundary terms

S(1)
B =

∫

B

√
−g (gρρFρµaµ − 2gρρ∂ρψσ + 2Aρψη) ,

S(2)
B = −

∫

B

√
−ggρρ

(
1
2
gνλfρνaλ + η∂ρη + σ∂ρσ + aρψη

)
. (6.19)

Note that S(1) is not trivial since according to the holographic dictionary it has to encode
the non-vanishing expectation values of the field theory operators.

6.2 Quasinormal Frequencies in the Unbroken Phase

We assume now that the scalar field Ψ has vanishing background value and take the field
to depend on t, x, ρ. Frequency ω and momentum k in the dimensionless coordinates are
related to the physical ones ωph, kph as

ω =
3ωph

4πT
, k =

3kph

4πT
. (6.20)

The equations of motion in the unbroken phase are

0 = Ψ′′ + (
f ′

f
+

2
ρ
)Ψ′ + (

(Φ + ω)2

f2
+

2
f
− k2

fρ2
)Ψ ,

0 = a′′t +
2
ρ
a′t −

k2

ρ2
at −

ωk

fρ2
ax ,

0 = a′′x +
f ′

f
a′x +

ω2

f2
ax +

ωk

fρ2
at ,

0 =
ω

f
a′t +

k

ρ2
a′x . (6.21)
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The equation of motion for the complex conjugate scalar Ψ̄ can be obtained by changing
the sign of the gauge field background Φ in (6.21).

Green Functions.

In order to calculate the quasinormal frequencies we impose ingoing boundary conditions
at the horizon. Since the coefficients of the differential equations (6.21) are known ana-
lytically and are such that they are of Fuchsian type we can use the Frobenius method to
approximate the solutions at the horizon and at the boundary by series expansions. As is
well-known the holographic Green functions are proportional to the ratio of the connection
coefficients. More precisely we demand

ΨH = (ρ − 1)−iω/3(1 + O(ρ − 1)) , (6.22)

on the horizon and write the local solution at the AdS boundary as

ΨB =
A

ρ
+

B

ρ2
+ O
(

1
ρ3

)
. (6.23)

In the theory with the dimension two operator we take A as the coefficient of the non-
normalizable mode and B as the coefficient of the normalizable mode. Writing the local
solution on the horizon as a linear combination of normalizable and non-normalizable
modes on the boundary fixes the connection coefficient A and B. We have written the
boundary action as a functional of real and imaginary part of the scalar field. We will
rewrite the boundary action now in terms of the complex scalar Ψ and its conjugate. In
addition we introduce a local boundary counterterm to regularize the action.

SB
Ψ =
∫ [

−1
2
fρ2(Ψ̄Ψ′ + ΨΨ̄′) − ρ3Ψ̄Ψ

]

ρ=Λ

. (6.24)

This allows to compute the Green functions GŌO(q) = 〈Ō(−q)O(q)〉 and GOŌ(q) =
〈O(−q)Ō(q)〉 fulfilling GOŌ(−q) = GŌO(q), with q being the four momentum (ω, k). We
write Ψ(q, ρ) = Ψ0(q)fq(ρ), where we interpret Ψ0(q) as the source that inserts the op-
erator O(q) in the dual field theory. We introduce a cutoff and normalize the profile
function fq to 1/Λ at the cutoff. In terms of an arbitrary solution the normalized one is
fk(ρ) = Ψk(ρ)/(ΛΨ(Λ)) where Ψk(ρ) has the boundary expansion (6.23). The boundary
action is now

SB = −1
2

∫ [
Ψ0(−q)(ρ2ff−qf̄

′
q + ρ3fqf̄q)Ψ̄0(q) + c.c.

]
ρ=Λ

=
∫

Ψ0(−q)FΨΨ̄(Λ)Ψ̄0(q) + Ψ̄0(−q)FΨ̄Ψ(Λ)Ψ0(q) . (6.25)

According to the relation (3.10), the renormalized retarded Green functions are given by
the limit limΛ→∞−2F(Λ), thus

GŌ2O2
=

B

A
, GO2Ō2

=
B̄

Ā
. (6.26)
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We denote the connection coefficients for the complex conjugate scalar as Ā, B̄2. According
to (6.21) they can be obtained by switching the sign of the chemical potential in the
expressions for A,B.

The theory with the operator of dimension one can be obtained through a Legendre
transform of the theory with dimension two operator. We note that the expectation value
of the dimension two operator is 〈O2〉 = − ρ2(ρΨ(ρ))′

∣∣
ρ=Λ

, whereas the source is given by
ΛΨ(Λ). We therefore add the following terms to the boundary action

SB → SB +
∫

d4k
[
ρ3(Ψ̄(ρΨ(ρ))′ + Ψ(ρΨ̄(ρ))′

]∣∣
ρ=Λ

. (6.27)

Now we can evaluate the Green functions as before, the only difference being the normal-
ization of the profile function fk(ρ) = Ψk(ρ)/[ΛΨ′(Λ) + Ψ(Λ)]. This normalization takes
care that the term of order 1/ρ2 in the boundary expansion couples with unit strength
to the source Ψ0(q). We find finally for the Green functions of the Legendre transformed
theory

GO1Ō1
=

A

B
, GŌ1O1

=
Ā

B̄
, (6.28)

as expected. The quasinormal modes in the scalar sector are given by the zeroes of the
connection coefficients A and Ā in the theory with operator of dimension two and by
the zeroes of B and B̄ in the theory with the dimension one operator. In terms of the
unnormalized solutions to the field equations we can write the Green functions as

GŌ2O2
= − lim

Λ→∞

(
Λ2 Ψ′

q(Λ)
Ψq(Λ)

+ Λ
)

, (6.29)

GO1Ō1
= lim

Λ→∞

Ψq(Λ)
Λ(ΛΨ′

q(Λ) + Ψq(Λ))
. (6.30)

Quasinormal Modes from Determinants.

Before presenting the results for the quasinormal modes of the scalar field we would like
to outline a method of how to calculate the holographic Green functions for the gauge
fields without using gauge invariant variables such as the electric field strength E =
−i(kat + ωax).

The complicated structure of the gauge symmetry in the broken phase makes it rather
difficult to express the boundary action in terms of gauge invariant field combinations. As
a warm up for the problem of how to calculate the holographic Green functions in this
situation we will consider how we can calculate them in the unbroken phase directly in
terms of the gauge fields. We necessarily have to solve a system of coupled differential
equations whose solutions are restricted by a constraint.

2Note that the infalling boundary condition for the conjugate scalar is Ψ̄ ∼ (ρ − 1)−iω/3.
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The correct boundary conditions for the gauge fields on the horizon are

at ∝ (ρ − 1)1−iω/3(a0
t + . . . ) , (6.31)

ax ∝ (ρ − 1)−iω/3(a0
x + . . . ) . (6.32)

The two coefficients a0
x and a0

t are not independent but related by the constraint. At this
point we have fixed the incoming wave boundary conditions and there seems to be now a
unique solution to the field equations. We would expect however two linearly independent
solutions with infalling boundary conditions on thehorizon. The constraint reduces this
to only one solution. The problem is now that in order to compute the Green function
for the charge density and longitudinal current component separately we need solutions
that asymptote to (at, ax) = (1, 0) and (at, ax) = (0, 1) respectively. This is of course not
possible with only one available solution at the horizon. Because of the gauge symmetry
the gauge field system (6.21) allows for an algebraic solution

at = −ωλ , (6.33)

at = kλ , (6.34)

with λ′ = 0, i.e. λ being independent of ρ. This is of course nothing but a gauge
transformation of the trivial solution. Remember that even after fixing the radial gauge
aρ = 0, gauge transformations with gauge parameters independent of ρ are still possible.
These gauge transformations appear as algebraic solutions to the field equations. We also
stress that the infalling boundary conditions really have to be imposed only on physical
fields, i.e. the electric field strength. Having therefore an arbitrary non trivial gauge field
solution corresponding to an electric field with infalling boundary conditions we can add
to it the gauge mode (6.33).

We can use this to construct a basis of solutions that allows the calculation of the
holographic Green functions. Let us now assume that there is a solution that takes the
values (at, ax) = (1, 0) at the boundary. We will call this solution from now on αt

i for
i ∈ t, x. Analogously we define the solution αx

i . According to the holographic dictionary
the solution αt

i couples to the boundary value limρ→∞ at(q, ρ) = At(q), i.e. the source of
the field theory operator Jt (the time component of the conserved current Jµ). In parallel
αx

i couples to the boundary value Ax(q). A generic solution of the gauge field equations
can now be written in terms of the boundary fields as

ai(q, ρ) = Ax(q)αx
i (ρ) + At(q)αt

i(ρ) . (6.35)

Using this expansion the boundary action can be written as

SB =
1
2

∫

B
Ai(−q)

[(
ρ2αi

t(−q, ρ)
d

dρ
(αj

t (q, ρ)) − f(ρ)αi
x(−q, ρ)

d

dρ
(αj

x(q, ρ))
)]

ρ=Λ

Aj(q) ,

(6.36)
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where again we have introduced a cutoff at ρ = Λ. From this it follows that the holographic
Green functions are given by

2F ij(ρ) = ρ2αi
t(−k, ρ)

d

dρ
(αj

t (k, ρ)) − f(ρ)αi
x(−k, ρ)

d

dρ
(αj

x(k, ρ)) , (6.37)

in the limit
Gij = lim

Λ→∞
−2F ij(Λ) . (6.38)

Notice also that d
dρ [F ij(ρ) − F∗ji(ρ)] = 0 by the field equations.

Although there are no terms of the form a′tax in the boundary action this formalism
gives automatically expressions for the mixed Green functions Gtx and Gxt! But we still
have to construct the solutions αi

j(ρ). This can be done in the following way: suppose we
have an arbitrary solution (at(ρ), ax(ρ)) obeying the infalling boundary conditions (6.31).
We can add to this now an appropriate gauge mode, such that at the cutoff the solution
takes the form (1, 0) or (0, 1) in terms of at(Λ), ax(Λ). This is easily achieved by solving

(
ct
t ct

x

cx
t cx

x

)(
at(Λ) az(Λ)
−ωλ kλ

)

=

(
1 0
0 1

)

. (6.39)

The linear combinations formed with coefficients ci
j give now new solutions (αt

t(ρ),αt
x(ρ))

and (αx
t (ρ),αx

x(ρ))) obeying the correct boundary conditions on the AdS boundary. Using
the general expression for the Green function (6.38) we get explicitly in terms of solutions
obeying the infalling boundary conditions

Gtt = lim
Λ→∞

Λ2 ka′t(Λ)
kat(Λ) + ωax(Λ)

, (6.40)

Gtx = lim
Λ→∞

Λ2 ωa′t(Λ)
kat(Λ) + ωax(Λ)

, (6.41)

Gxt = − lim
Λ→∞

Λ2 ka′x(Λ)
kat(Λ) + ωax(Λ)

, (6.42)

Gxx = − lim
Λ→∞

Λ2 ωa′x(Λ)
kat(Λ) + ωax(Λ)

. (6.43)

Note that the denominator for all is given by kat(Λ)+ωax(Λ) which is up to an irrelevant
constant nothing but the gauge invariant electric field Ex. Therefore we see immediately
that the poles of these Green function are gauge invariant and coincide of course with the
poles of the Green function in the gauge invariant formalism where G ∝ E′

x
Ex

. Indeed using
the constraint on the boundary we find the well known expressions [98]

Gtt =
k2

k2 − ω2
lim

Λ→∞
Λ2 E′

x

Ex
, Gtx =

kω

k2 − ω2
lim

Λ→∞
Λ2 E′

x

Ex
,

Gxx =
ω2

k2 − ω2
lim

Λ→∞
Λ2 E′

x

Ex
. (6.44)
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On general grounds one expects indeed that the poles of the holographic Green functions
for gauge fields are gauge independent.

If we are interested only in the location of quasinormal frequencies we do not even have
to construct the holographic Green functions explicitly. From the linear system in (6.39)
we infer that the quasinormal frequencies coincide with the zeroes of the determinant of
the field values at the boundary. Indeed vanishing determinant means that there is a
nontrivial zero mode solution to (6.39) such that the boundary values of the fields are
(0, 0) which in turn means that the coefficient in the solution of the non-normalizable
mode vanishes. The determinant is λ(kat + ωax) and again given by the electric field
strength. In fact these remarks apply to systems of coupled differential equations in AdS
black hole metric in general: the quasinormal frequencies corresponding to the poles of the
holographic Green functions are the zeroes of the determinant of the field values on the
boundary for a maximal set of linearly independent solutions obeying infalling boundary
conditions on the horizon. The fact that the differential equations are coupled is the
holographic manifestation of mixing of operators under the RG flow. Therefore one has
to specify at which scale one is defining the operators. The scheme outlined above is dual
to define the operators at the cutoff Λ.

Hydrodynamic and higher QNMs.

We have numerically computed the quasinormal frequencies for the fluctuations satisfying
the equations of motion (6.21) for both the O2 and the O1 theories. The quasinormal modes
of the scalar field correspond to zeroes of A in the theory of dimension two operator and
to zeroes of B in the dimension one operator theory, where A and B are the connection
coefficients of the boundary solution (6.23). Results for the lowest three poles of the scalar
field at zero momentum are shown in Figure 6.2.

The poles with positive real part correspond to the quasinormal modes of the complex
scalar Ψ, while those with negative real part are the quasinormal modes of Ψ̄, obtained
by changing the overall sign of the gauge field background Φ. As the temperature is
decreased, the poles get closer to the real axis, until at the critical temperature Tc the
lowest mode crosses into the upper half of the complex frequency plane. It happens at
Tc = 4.0637 for the theory of dimension two operator and at Tc = 1.1204 in the case
of the dimension one operator theory. For T < Tc the mode would become tachyonic,
i. e. unstable. This instability indicates that the scalar field condenses and the system
undergoes a phase transition at T = Tc. At the critical point, the lowest scalar quasinormal
mode is a hydrodynamic mode in the sense that it is massless, limk→0ω(k) = 0. This mode
is identified with the Goldstone boson that appears after the spontaneous breaking of the
global U(1) symmetry and in the next section we will see that it evolves into the second
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sound mode characteristic of superfluid models.
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Figure 6.2: Lowest scalar quasinormal frequencies as a function of the temperature and at mo-

mentum k = 0, from T/Tc = ∞ to T/Tc = 0.81 in the O2 theory (right) and to T/Tc = 0.56 in the

O1 theory (left). The dots correspond to the critical point T/Tc = 1 where the phase transition

takes place. Red, blue and green correspond to first, second and third mode respectively.

The quasinormal modes correspond to simple poles of the retarded Green function, so
close to the nth pole the Green function can be approximated by G(ω, k, T ) ∼ Rn(ω,k,T )

ω−ωn(k,T ) .
Knowing the connection coefficients we can compute the Green functions and therefore
the residue for each quasinormal mode as explained in appendix A.1. For the lowest
quasinormal mode at k = 0 and at the critical temperature, the residue takes the value
R2(Tc) = −2.545 + 0.825i in the O2 theory and R1(Tc) = 0.686 − 0.348i in the O1 theory.
In general, one expects the residues of hydrodynamic modes that correspond to conserved
quantities of the system to vanish in the limit of zero momentum, since its susceptibility
remains constant. Consider for instance the diffusion mode associated to conserved density.
The susceptibility is defined through the two point correlation function as

χ = lim
k,ω→0

〈ρρ〉 = lim
k,ω→0

iσk2

ω + iDk2
=

σ

D
, (6.45)

where D is the diffusion constant and σ is the conductivity. The residue, iσk2, vanishes
and one recovers the well-known Einstein relation σ = Dχ. However, for hydrodynamic
modes appearing at second order phase transitions the order parameter susceptibility
should diverge at the critical point. This order parameter susceptibility is given in our
case by the correlator of the boundary operator sourced by the scalar field. At the critical
temperature it is

χŌiOi
= lim

k,ω→0
〈ŌiOi〉 = lim

k,ω→0

Ri(k, Tc)
ω − ωH(k, Tc)

→ ∞ (6.46)

since ωH(0, Tc) = 0 while the residue remains finite. This result allows us to identify the
lowest scalar quasinormal mode in the unbroken phase with the Goldstone boson appearing
at the critical point.
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In the model under consideration one can also compute the gauge field fluctuations
in the normal phase. Nevertheless, as the model does not include the backreaction of
the metric, the computation is not sensitive to temperature anymore. This can be seen
from the equations of motion (6.21) of the gauge fluctuations, that do not depend on
the background solutions thus are independent of the temperature. Hence we recover the
results for the quasinormal modes of vector field perturbations in the AdS4 black hole
background computed by [161]. For our purposes the most important fact is the presence
of a hydrodynamic mode corresponding to diffusion. For small momenta that mode has
dispersion relation ω = −iDk2 with D = 1 (which is D = 3/(4πT ) in physical units). In
order to study the behavior of the diffusion pole in the unbroken phase as a function of
the temperature one has to consider the backreacted model described in [67].

:

:

;% 3ω6

=- 3ω6

Figure 6.3: Schematic plot of the poles in the coupled system, i.e. in the broken phase at small

finite momentum right below Tc. These poles are present in each retarded correlation function

for the coupled fields η, σ, At, Ax, while their residues might vanish for specific fields. Close to

the origin we find the (pseudo)diffusion mode and two hydrodynamic second sound modes. In

addition two sets of higher quasinormal modes are shown. In the unbroken phase these poles

originate from the scalar (grey dots). We also expect a tower of purely imaginary poles stemming

from the longitudinal vector channel (black dots). The grey area indicates where our numerical

methods break down.

6.3 Quasinormal Frequencies in the Broken Phase

In this section we will apply our determinant method for finding quasinormal modes of
a coupled system of field equations. With this technique we follow the model analyzed
in the previous section into its broken phase. Figure 6.3 schematically summarizes our
analysis. The two formerly separate sets of scalar (grey dots) and longitudinal vector
poles (black dots) present in the unbroken phase where the scalars and vectors decouple,
are now unified into one inseparable pole structure in the coupled system. This is in
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analogy to a coupled system of two harmonic oscillators in which it makes no sense to ask
for the eigenfrequencies of the single oscillators. One could of course try to diagonalize
the system of differential equations, in our case however this looks rather complicated and
we prefer to work directly with the coupled system and with the gauge fields instead of
gauge invariant variables. The lowest modes (see figure 6.3) are two hydrodynamic second
sound modes originating from the two lowest scalar quasinormal modes in the unbroken
phase. In addition we will find a non-hydrodynamic pseudodiffusion mode staying on the
imaginary axis in the range of momenta we consider. This mode can be thought of as the
prolongation of the diffusion mode into the unbroken phase.

Application of the determinant method.

The equations of motion in the broken phase couple the scalar fluctuations η, σ to the
longitudinal vector components at, ax

0 = fη′′ +
(

f ′ +
2f
ρ

)
η′ +
(

φ2

f
+

2
L2

+
ω2

f
− k2

ρ2

)
η − 2iωφ

f
σ − iωψ

f
at −

ikψ

r2
ax ,

(6.47)

0 = fσ′′ +
(

f ′ +
2f
ρ

)
σ′ +
(

φ2

f
+

2
L2

+
ω2

f
− k2

ρ2

)
σ +

2φψ

f
at +

2iωφ

f
η , (6.48)

0 = fat
′′ +

2f
ρ

at
′ −
(

k2

ρ2
+ 2ψ2

)
at −

ωk

ρ2
ax − 2iωψ η − 4ψφσ , (6.49)

0 = fax
′′ + f ′ax

′ +
(

ω2

f
− 2ψ2

)
ax +

ωk

f
at + 2ikψ η . (6.50)

This system of four coupled equations is subject to the constraint

ω

f
at

′ +
k

ρ2
ax

′ = 2i
(
ψ′ η − ψ η′

)
, (6.51)

where the left hand side known from the unbroken phase is amended by the condensate
terms on the right. Note that the real part σ of the scalar fluctuation is not involved in
the constraint.

The constraint can be interpreted as the Ward identity of current conservation in the
presence of the condensate. We expand the gauge fields near the boundary and note that
a′0 = 〈n〉/ρ2 and a′x = −〈jx〉/ρ2, where jx is the x-component of the current. Expanding
also the r.h.s. and comparing the leading orders in ρ we find

∂µ〈jµ〉 = 2〈Oi〉ηi
0 , (6.52)

where ηi
0 is the source for the insertion of the imaginary part of the operator Oi, i.e. the

Goldstone field in the dual field theory. This equation is to be understood as the local
Ward identity encoding current conservation in the presence of the condensate 〈Oi〉. It
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follows for example that the two point function of the divergence of the current with the
operator O(η)

i is zero only up to a contact term
〈
∂µjµ(x)O(η)

i (y)
〉

= 〈Oi〉 δ(x − y).

The gauge field component ay being transverse to the momentum decouples from the
above system and assumes the form

0 = f ay
′′ + f ′ay

′ +
(

ω2

f
− k2

ρ2
− 2ψ2

)
ay . (6.53)

Since we do not expect any hydrodynamic modes in the transverse vector channel we will
not study this equation further.

Applying the indicial procedure to the system (6.47) to find the exponents for the
singular and the coefficients for the regular parts of the fields, we obtain the following
behavior at the horizon

η = (ρ − 1)ζ
(
η(0) + η(1)(ρ − 1) + . . .

)
, (6.54)

σ = (ρ − 1)ζ
(
σ(0) + σ(1)(ρ − 1) + . . .

)
, (6.55)

at = (ρ − 1)ζ+1
(
a(0)

t + a(1)
t (ρ − 1) + . . .

)
, (6.56)

ax = (ρ − 1)ζ
(
a(0)

t + a(1)
t (ρ − 1) + . . .

)
, (6.57)

with the exponent ζ = −iω/3 obeying the incoming wave boundary condition.

Due to the constraint we can choose only three of the four parameters at the horizon.
Using the constraint and without loss of generality we can eliminate the time component
a0

t and parametrize the solutions by (η(0),σ(0), a(0)
x ). We choose three linearly independent

combinations I, II, III. A fourth solution can be found from the gauge transformations

ηIV = iλψ , σIV = 0 , aIV
t = λω , aIV

x = −λk , (6.58)

with λ being an arbitrary constant with respect to ρ. It is not an algebraic solution to the
equations of motion since η has non trivial dependence on the bulk variable ρ. The gauge
solution solves the equations (6.47) not exactly but only up to terms proportional to the
background equations (6.4).

Our goal is to find the poles in the retarded correlation functions of the four fields
appearing in the coupled system of equations of motion (6.47). A convenient way of
imposing the appropriate boundary conditions is given by redefining the scalar fields as

η̃(ρ) = ρη(ρ) , σ̃(ρ) = ρσ(ρ) . (6.59)

Then the most general solution for each field ϕi ∈ {η̃, σ̃, at, ax} including gauge degrees
of freedom can be written

ϕi = α1ϕi
I + α2ϕi

II + α3ϕi
III + α4ϕi

IV . (6.60)
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In the theory with the dimension two operator the sources for the various gauge in-
variant operators are given by ϕi(Λ). We are interested in the quasinormal modes of the
system (6.47) and as we have argued in the previous section these are the special val-
ues of the frequency where the determinant spanned by the values ϕI,II,III,IV

i vanishes.
Expanding this determinant we get

0 =
1
λ

det





ϕη
I ϕη

II ϕη
III ϕη

IV

ϕσ
I ϕσ

II ϕσ
III ϕσ

IV

ϕI
t ϕII

t ϕIII
t ϕIV

t

ϕI
x ϕII

x ϕIII
x ϕIV

x




= iϕIV

η det




ϕσ

I ϕσ
II ϕσ

III

ϕI
t ϕII

t ϕIII
t

ϕI
x ϕII

x ϕIII
x





+ ω det




ϕη

I ϕη
II ϕη

III

ϕσ
I ϕσ

II ϕσ
III

ϕI
x ϕII

x ϕIII
x



 + k det




ϕη

I ϕη
II ϕη

III

ϕσ
I ϕσ

II ϕσ
III

ϕI
t ϕII

t ϕIII
t



 , (6.61)

which needs to be evaluated at the cutoff ρ = Λ. The first term in (6.61) vanishes at the
cutoff since ϕIV

4 = Λψ = 0 is just the condition that the operator O2 is not sourced by
the background.

We first find three linearly independent numerical solutions and then solve condition
(6.61) numerically. Explicit checks confirm that the choice of a solution basis ϕI,II,III,IV

is completely arbitrary and does not change the results. Note also that in our present case
all the remaining determinants can not be factorized. But if the momentum is set to zero,
the only remaining term is the one with ω and the determinant factorizes into a scalar
part and a vector part since the system of equations decouples.

In the theory with the dimension one operator the sources are given by −Λ2η̃ and
−Λ2σ̃ for the scalar fields. Let us call ϕ1 = −ρ2η̃′ and ϕ2 = −ρ2σ̃′ in this case. The
determinant has therefore the same form and again the first term vanishes due to the
absence of sources for O1 in the background solution. The quasinormal modes can again
be found by integrating three arbitrary solutions with infalling boundary conditions from
the horizon to the cutoff and finding numerically the zeroes of the determinant (6.61).

Hydrodynamic and Goldstone modes.

Sound mode The scalar modes originally destabilizing the unbroken phase turn into
Goldstone modes at Tc instead of becoming tachyonic. Below Tc they evolve into the two
second sound modes. Figure 6.4 shows their movement when momentum is changed at
different temperatures. Note that we focus on the positive real frequency axis because
of the mirror symmetry sketched in figure 6.3. From the dispersion relation at small
frequencies and long wavelengths we extract the speed of second sound vs and the second
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sound attenuation Γs using the hydrodynamic equation

ω = vsk − iΓsk
2 . (6.62)
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Figure 6.4: Movement of the positive frequency sound pole away from ω = 0 with increasing

spatial momentum. Distinct curves correspond to temperatures below the phase transition T/Tc =
0.999 (black), 0.97 (pink), 0.91 (red), 0.71 (green), 0.52 (blue), 0.26 (light blue). Dots on one curve

are separated by ∆k = 0.05. All curves start at k = 0.05 and end at k = 1.00.

It turns out that the hydrodynamic regime, i.e. that range of momenta in which the
dispersion relation is well approximated by (6.62), is very narrow for temperatures just
below the critical one since the speed of sound vanishes at Tc. Fits to the hydrodynamic
form at a high temperature T ≈ 0.9999Tc are plotted in figure 6.5 for the O2-theory, the
results for the O1 theory are qualitatively similar.

The speed of second sound is shown in figure 6.6. We have a good numerical agreement
with the thermodynamic value of the second sound velocity given in [75]. This nicely
confirms validity of our method. In particular, within our numerical precision we find that
the value of the square of the speed of sound tends to v2

s ≈ 1/3 in the O1 theory and
to v2

s ≈ 1/2 in the O2 theory3. However, the numerics becomes rather unstable for low
temperatures, especially for the O1 theory. Near but below the critical temperature we

3In [158] it was argued that conformal symmetry implies v2
s = 1/2 at zero temperature. Due to the

divergence in the order parameter for the O1 theory conformal symmetry could be broken and allow thus

for a different value.
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Figure 6.5: Fits of the real and imaginary part of the hydrodynamic modes in the broken phase

to the lowest order approximation ω = vsk − iΓsk2. The left figure shows the real part and the

right one the imaginary part. The thick lines are the numerical results and the thin lines are the

linear and quadratic fits. The fit is done for a temperature just below the critical one where the

range of the approximation is rather small.

find

v2
s ≈ 1.9

(
1 − T

Tc

)
O1 − Theory , (6.63)

v2
s ≈ 2.8

(
1 − T

Tc

)
O2 − Theory . (6.64)
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Figure 6.6: The plots show the squares of the speed of sound as extracted from the location of

the lowest quasinormal mode in the broken phase. The left figure is for the O1 theory and the

right one for the O2 theory. We also indicate the linear behavior close to Tc. As can be seen the

numerics for the O1 theory becomes somewhat unstable for low temperatures.

Moreover, as a benefit of our effort considering the fluctuations, we are also able
to extract non-thermodynamic quantities in this channel. Specifically we examine the
attenuation of the second sound mode as shown in figure 6.7. The curve shows how
attenuation smoothly asymptotes to zero as the superfluid becomes more and more ideal
at low temperatures. This effect is however much stronger in the O2 theory. Near Tc

the attenuation is growing. Within our numerical precision it seems however that the
attenuation constant is taking a finite value at the critical temperature. Numerically we
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find

Γs = 1.87Tc at T = 0.9991Tc O1 − Theory , (6.65)

Γs = 1.48Tc at T = 0.9998Tc O2 − Theory . (6.66)

A similar behavior has been observed in [162], where the attenuation of the normal sound
mode asymptotes to a finite value near a phase transition.
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Figure 6.7: The plots show the attenuation constants of second sound as extracted from the

location of the lowest quasinormal mode in the broken phase. The left figure is for the O1 theory

and the right one for the O2 theory. Again it can be noticed that the O1 theory is numerically

more challenging at low temperatures.

(Pseudo) diffusion mode The vector diffusion mode from the unbroken phase turns
into a (pseudo) diffusion mode below Tc

4. For not too low temperatures and not too large
momenta the dispersion relation for this mode is well approximated by

ω = −iDk2 − iγ(T ) , (6.67)

with a gap γ ∈ R in imaginary frequency direction. Thus the pole is shifted from its
unbroken phase position such that it does not approach zero at vanishing momentum any
more, i.e. it is not anymore a hydrodynamic mode.

In figure 6.8 we have plotted the gap γ as a function of the reduced temperature and
we can see that it vanishes linearly near Tc.

γ ≈ 15.4Tc

(
1 − T

Tc

)
O1 − Theory , (6.68)

γ ≈ 8.1Tc

(
1 − T

Tc

)
O2 − Theory . (6.69)

Figure 6.9 shows the dispersion relation for the diffusion pole at different temperatures.
The offset at k = 0 is the gap size γ depending linearly on T only near Tc. This implies

4An analytical result obtained for second sound in a non-abelian model [159] also shows the appearance

of a pseudo diffusion mode with a gap that vanishes as the condensate goes to zero.
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Figure 6.8: The plots show the gap of the pseudo diffusion mode as a function of reduced

temperature. On the left the O1 theory and on the right the O2 theory.

that the relation (6.67) asymptotes to the ordinary diffusion equation near the critical
temperature. As expected the highest temperature curve T = 0.999Tc (black) matches
the hydrodynamic approximation (thin line) very well at small momenta. That agreement
becomes worse around k ∼ 0.25. Also as the condensate grows below Tc the behavior of
this (pseudo) diffusion mode becomes less hydrodynamic.
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Figure 6.9: The plots show the dispersion relations for the pseudo diffusion mode at different

temperatures and the diffusion dispersion relation with D = 3/(4πT ) (note that even in the

unbroken phase the latter approximates the diffusive quasinormal mode only for small momenta).

On the left we have the O1 theory at temperatures T = 0.999Tc (black), T = 0.97Tc (red) and

T = 0.91Tc (green). On the right the same for the O2 theory at temperatures T = 0.999Tc (black),

T = 0.97Tc (red) and T = 0.87Tc (green).

Higher quasinormal modes

In addition to the hydrodynamic sound modes and the pseudo diffusion mode there are
higher quasinormal modes. We have not studied them in detail, however, we have traced
the prolongation of the second and third quasinormal modes in the scalar sector from the
unbroken phase into the broken phase.

The former scalar modes evolve continuously into higher modes of the coupled system
through the phase transition as seen from the two kinked dashed (unbroken phase) and
solid (broken phase) lines in figure 6.10. The kink indicates that the poles move con-
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tinuously but change direction at the critical temperature. We show only the plot for
the theory with the dimension two operator, similar results hold for the O1 theory. At
the critical temperature the locations of the quasinormal frequency calculated with the
Frobenius method in the unbroken phase and by the method of finding the zeroes of the
determinant spanned by the solutions match with impressively high precision. We might
take this as a highly non trivial test of the accuracy of the numerical integration method.

We expect that all quasinormal frequencies are shifted continuously in the complex
frequency plane across the phase transition. This means that there are no jumps in any
of the dispersion relations. There is simply an infinite set of poles corresponding to the
degrees of freedom of the system which are continuously shifted when parameters are
changed.

Our numerical invesigations also reveal poles developing an increasing real part with
decreasing temperature which most likely originate from the longitudinal vector modes in
the unbroken phase. Note that we have not shown these modes for simplicity.

The two higher modes shown in figure 6.10 move parallel to the real axis and to each
other with decreasing temperature 5. At low temperatures their real parts are almost
the same. This is also true for the longitudinal vectors as far as we can tell within our
numerical uncertainties. We suspect that this alignment of higher poles has to do with the
appearence of the conductivity gap showing up at low temperatures [66].
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Figure 6.10: Movement of the higher poles in the complex frequency plane at vanishing mo-

mentum k = 0. Scalar modes 2 (blue) and 3 (green) in the unbroken phase (dashed) evolve

continuously into the higher poles of the broken phase (solid). The right end points are evaluated

for T/Tc = 0.25.

5Note that this behavior is very different from the behavior usually found in five-dimensional holographic

setups when temperature is decreased [139,140,163].
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6.4 Conclusions

We have studied the hydrodynamics of a holographic model of a superfluid. The model is
an Abelian gauge field model with a charged scalar field in a four dimensional AdS black
hole background.

As is well known by now the holographic dictionary allows to interpret the quasinormal
frequencies as the poles of the retarded Green functions of the dual field theory. By
calculating the low lying quasinormal frequencies numerically in the broken and unbroken
phases we were able to identify the hydrodynamics. We found that at high temperatures,
T > Tc there is only one hydrodynamic mode representing the diffusion of the conserved
U(1) charge. As one lowers the temperature reaching the critical temperature Tc two of
the quasinormal frequencies of the charged scalar field approach the origin of the complex
frequency plane. Precisely at the critical temperature at the onset of the phase transition
these modes become massless, giving rise to new hydrodynamic variables. We also have
calculated the residue of these modes and found that it stays finite at T = Tc resulting in
a divergence of the order parameter susceptibility, as expected.

Below the critical temperature these modes stay massless and show a dispersion relation
with a linear real part and a quadratic imaginary one, allowing an interpretation as the
modes of second sound in the superfluid. On the other hand the diffusion mode starts to
develop a gap and stops to be hydrodynamic. The counting is therefore one hydrodynamic
mode at high temperatures, three at the critical temperature and two at low temperatures.

In the low temperature phase we were able to calculate the speed of sound as well
as its attenuation constant as a function of temperature. Also the gap in the pseudo
diffusion mode has been determined. We have also been able to follow some of the higher
quasinormal modes through the phase transition and found that they evolve continuously
albeit non-smoothly with temperature in the complex frequency plane, showing a sharp
kink at the critical temperature.

On a technical side we have developed a method to determine the quasinormal fre-
quencies and the holographic Green functions for systems of coupled differential equations
and without using gauge invariant variables. The quasinormal frequencies correspond sim-
ply to the zeroes of the determinant spanned by a maximal set of linearly independent
solutions. We have furthermore seen that the poles of the Green functions stemming from
bulk gauge fields are gauge invariant as expected.

There are now several interesting questions that should be investigated in the future.
The most obvious one is to apply the methods developed here to the model where the
backreaction of the matter and gauge field onto the metric are properly taken into account.
Due to the presence of the metric fluctuations the hydrodynamics of such a model is
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certainly much richer. In addition to the diffusion and second sound modes found here
one expects also shear and sound modes stemming from bulk metric fluctuations. The
corresponding system of differential equations promises to be rather involved. However
there should be no principal obstacle to apply our methods also in these cases.

Another interesting direction of research should be to reinterpret the results obtained
here and analogous ones for related models with different scalar mass and living in different
dimensions from the point of view of dynamical critical phenomena [164]. We have seen
already that the speed of sound scales with exponent one half, whereas the gap in the
pseudo diffusion mode scales with exponent one. The situation for the sound attenuation
is unfortunately less clear. As far as our numerics indicates the sound attenuation reaches
a finite value at T = Tc. An extensive study of related models possibly with enhanced
numerical efforts might give new insights here.

Of course an effort should also be undertaken to extend the results at hand to models
of p-wave superconductors [69]. For infinitesimal condensates and analytic study of the
hydrodynamics has already been done in [159]. It might be of interest to supplement
these analytical result with a numeric study that allows to go further away from the phase
transition point deep into the broken phases. Another very interesting class of holographic
p-wave superconductors are the ones realized on D7 brane embeddings [70, 72, 151]. Due
to the presence of fundamental matter these should be especially interesting to study.



Summary and Outlook

Let us summarize the main results of this work and the some possible future research
directions related to them.

We have seen that the quasinormal spectra of black holes, and thus of the poles of
corresponding retarded correlators, are related to geometric properties of the black holes,
in particular to its causal structure. In the large frequency limit the location of the sin-
gularities of thermal correlators can be explained in terms of null geodesics bouncing in
the singularities and the boundaries of an eternal AdS black hole. This computation is re-
lated to the Schwinger-Keldish formalish up to identification of the fields living in different
boundaries with insertion of operators in different pieces of the SK path. An interesting
extension of this work is to study whether the geometric analysis of null geodesics can
be generalized to other backgrounds like rotating or charged black holes, or to other ge-
ometries like asymptotically flat spaces where there is no boundary like in aAdS, so the
space does not act like a box. It can also be interesting to study the effects of quantum
corrections to the background, what implies to go beyond the large N limit or equivalently
to introduce higher curvature corrections.

We have seen that the response to small external perturbations is completely deter-
mined by the poles of the retarded propagators and their associated residues and used
it to study the linear response of the plasma phase of the strongly coupled N = 4 SYM
theory. This allows us to explore the validity of the hydrodynamic regime, based on in-
tegrating out all the modes but the hydrodynamic ones, in two different ways: defining a
hydrodynamic time and legth scales that measure from when on the contribution of the
hydrodynamic modes becomes dominant and by analyzing in which range of wavelengths
and frequencies the hydrodynamic modes alone give a reliable description of the system.
The very short hydrodynamic times obtained indicate that the perturbed plasma ther-
malises extremely fast, a result that can be used as an indication of fast thermalization
at RHIC. The breakdown of the hydrodynamic approximation is somehow built into the
theory: when decreasing the wavelength, more and more quasinomal modes have to be
taken into account to describe the system. The weight of collective excitations in the
plasma depends crucially on the value of the residues. For the shear and R-charge diffu-
sion modes, it shows an oscillatory decaying behavior, signaling their decoupling at small
momentum. It would be interesting to examine if that behavior is universal of hydrody-
namic diffusion modes. A priori there is an indication that something drastic happens at
short wavelength coming from the observation that causality is preserved but at the same
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time first order hydrodynamic (that is acausal) is reproduced at long wavelengths. At
RHIC there are processes taking place that cannot be described within the linear response
theory. Therefore it would be of high interest to go beyond this approximation in order to
have a more meaningful definition of the hydrodynamic scale that might be relevant for
RHIC experiments in which the scale of thermalization is crucial. All the discussion only
contains adjoint matter. To really have a predictive model relevant for real world experi-
ments it would be nice to repeat the analysis including fundamental matter, achieved by
the addition of new sets of branes in the string background.

Finally, we have studied the hydrodynamic behavior of the holographic superfluid given
by an abelian gauge model with a massive scalar field in a fixed AdS black hole background.
The lowest quasinormal mode of the charged scalar field becomes tachyonic at a certain
value of the temperature. This instability indicates that the scalar field condenses and
the system undergoes a second order phase transition. At the phase transition this scalar
mode is massless and its susceptibility diverges, so it can be identified with the Goldstone
boson appearing at the SSB. Below the critical temperature this mode is identified with
the second sound. Using holography, we have been able to compute reactive transport
coefficients as the speed of second sound, computed directly from thermodynamic consid-
erations in other works, and also non-thermodynamic quantities like absorptive transport
coefficients, as is the case of attenuation of the second sound or the diffusion constant. As
a side result, we have developed a method to compute the physical quasinormal modes
of coupled systems in terms of the non-gauge invariant variables. In this analysis the
backreaction due to the presence of the scalar and gauge fields has been neglected. An
obvious extension is to consider the backreacted model in which metric fluctuations are
allowed and the dynamics of the system is richer. In that model even for a neutral scalar
field there exist a phase transition at a finite temperature due to the instability of the
background. For small charge of the scalar two competing mechanisms responsible of the
condensation are present, the coupling to the gauge field and the instability of the metric.
It will be interesting to find which mode is the order parameter of the phase transition for
each case and what happens in the broken phase in the second case. It is also interesting
the study of the interplay between normal and second sound. The complete investigation
of the backreacted case hopefully will shed some light on the origin of the conductivity
gap in these models. Another natural extension of this model is to consider high curva-
ture corrections to examine whether or not the phase transition takes place and how the
phase diagram is modified. Another extension of interest would be the explicit breaking
of conformal invariance introducing for instance a mass deformation and study how the
transition is affected.
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A.1 Computing quasinormal modes and residues

Let us explain how to compute quasinormal modes and their residues numerically in a
holographic setup. Concretely, we present the cases of fluctuations of the metric and
of a vector field in a Schwarzschild-AdS background given by the metric (2.14) up to
dimensional reduction on the 5-sphere. This corresponds to find the quasinormal spectrum
of energy-momentum and R-charge excitations, respectively, in the dual gauge theory. In
the following we will use the coordinate u = r2

H/r2 such that the horizon sits at u = 1 and
the boundary at u = 0.

Energy-momentum tensor.

The equations of motion for the diffeomorphism-invariant quantities defined in (5.18) are

Z ′′
1 +

(w2 − q2f(u))f(u) − uw2f ′(u)
uf(u)(q2f(u) − w2)

Z ′
1 +

w2 − q2f(u)
uf(u)2

Z1 = 0 , (A.70a)

Z ′′
2 − 3w2(1 + u2) + q2(2u2 − 3u4 − 3)

uf(u)(3w2 + q2(u2 − 3)
Z ′

2 +

+
3w4 + q4(3 − 4u2 + u4) + q2(4u5 − 4u3 + 4w2u2 − 6w2)

uf(u)2(3w2 + q2(u2 − 3))
Z2 = 0 , (A.70b)

Z ′′
3 +

1 + u2

uf(u)
Z ′

3 +
w − q2f(u)

uf(u)2
Z3 = 0 . (A.70c)

Both the boundary and the horizon are regular singular points. At the horizon (u = 1),
there are two possible local solutions

Z(a) ( (1 − u)−iw/2 ϕin
(a) + (1 − u)iw/2 ϕout

(a) , a = 1, 2, 3. (A.71)

As explained in section 3.1, in order to compute the retarded Green function, we must
pick infalling boundary conditions ϕout

(a) ≡ 0. According to the holographic prescription
the retarded Green function is proportional to the ratio of the connection coefficients,
(3.19), that relate the local solution at the horizon with ingoing boundary conditions to
the non-normalizable (Aa) and normalizable (Ba) solutions at the boundary (u = 0)

Z in
(a) = A(a)ϕ

1
(a) + B(a)u

2ϕ2
(a) . (A.72)
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The Green functions in the different channels are determined by three scalar functions
G(a) given by

G(a) = −π2N2T 4 B(a)

A(a)
. (A.73)

The quasinormal modes are normalizable solutions where A(a) = 0. The ratio B(a)/A(a)

follows from demanding that the solution is smooth at a matching point in the interior of
the interval (0, 1)

B(a)

A(a)
=

Z in
(a)(Z

1
(a))

′ − (Z in
(a))

′Z1
(a)

Z2
(a)(Z

in
(a))

′ − (Z2
(a))

′Z in
(a)

. (A.74)

We have computed the Frobenius series up to order 50. Matching the series expansions,
we see that the ratio (A.74) remains constant for a fair interval in the radial coordinate.
We have chosen x = 0.53 to evaluate the ratio.

The residue Rn for the quasinormal mode wn can be computed as

Rn =

[
∂

∂w

(
Aa

Ba

)∣∣∣∣
w=wn

]−1

. (A.75)

Global current.

The equations of motion for the gauge invariant combinations (section 5.3) of the plane-
wave vector field perturbations are

E′′
T +

f ′(u)
f(u)

E′
T +

w2 − f(u)q2

(uf(u)2
ET = 0 , (A.76a)

E′′
L +

w2f ′(u)
f(u)(w2 − f(u)q2)

E′
L +

w2 − f(u)q2

uf(u)2
EL = 0 . (A.76b)

Defining (α) := (T,L) as the two gauge-invariant components components, we can follow
the same procedure as with the energy-momentum tensor components. The infalling
solution can be expanded at the boundary in the non-normalizable and normalizable modes

Ein
(α)(u) = A(α) E1

(α)(u) + B(α) E2
(α)(u) , (A.77)

where E2
(α)(u) ∼ u. The retarded Green function is determined by the longitudinal and

transverse polarization

Π(α) = −N2T 2

8
B(α)

A(α)
, (A.78)

which are proportional to the ratio between the connection coefficients

B(α)

A(α)
=

Ein
(α)(E

1
(α))

′ − (Ein
(α))

′E1
(α)

E2
(α)(E

in
(α))

′ − (E2
(α))

′Ein
(α)

. (A.79)
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We have computed the Frobenius series up to order 50. Matching the series expansions,
we see that the ratio (A.79) remains constant for a fair interval in the radial coordinate.
We have chosen x = 0.53 to evaluate the ratio and have checked that the spectral function
agrees with previous numerical (for non-zero momentum) and exact (for zero momentum)
results [139,165,166]. The quasinormal modes correspond to the frequencies where there
is a pole A = 0. We can apply equation (A.75) to compute the residues.

A.2 Zeros of hydrodynamic residues

We have seen that the residues of the diffusion and the shear mode have an oscillatory
behavior with the momentum. We now show how to find the location of the zeros of the
residues. We will use that the equations of motion for the for the vector field and vector
component of the metric are Heun equations (c.f. [102,137])6

y′′(x) +
(

γ

x
+

δ

x − 1
+

ε

x − 2

)
y′(x) +

αβx − Q

x(x − 1)(x − 2)
y(x) = 0 . (A.80)

In the case of the vector field, we define V0(z) = A′
0(z), VL(z) = A′

L(z). In the
x = 1 − z2 coordinate, the Heun equations are found using the new variables

V0(x) = x−iw/2(x − 1)1/2(x − 2)−w/2y(x) ,

(A.81)
VL(x) = x−1−iw/2(x − 1)1/2(x − 2)−1−w/2y(x) .

In both cases we find the same parameters for the Heun equation

α = −w

2
(1 + i) , β = 2 −

(w
2

(1 + i)
)

, Q = q2 − (1 + 3i)
w

2
− (2 − i)

w2

2
,

(A.82)
γ = 1 − iw , δ = 1 , ε = 1 − w .

For the shear component we use the gauge-invariant variable ψV proposed in [167]. The
Heun equation is found for the new variable

ψV (x) = x−iw/2(x − 1)3/4(x − 2)−w/2y(x) , (A.83)

with parameters

αβ =
w

2
(1 + i)

(w
2

(1 + i) − 3
)

, Q = q2 − (1 + 5i)
w

2
− (2 − i)

w2

2
,

(A.84)
γ = 1 − iw , δ = 2 , ε = 1 − w .

6There is a factor of two difference with the conventions used here for the frequency and the momentum.
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The coefficients of the Frobenius series at x = 0 should satisfy the recursion relation

2(n + 2)(n + 1 + γ)an+2 + An(w, q) an+1 + Bn(w, q) an = 0 , n ≥ 0 , (A.85)

where

An(w, q) = −((n + 1)(2δ + ε + 3(n + γ)) + Q) , (A.86)

Bn(w, q) = (n + α)(n + β) , (A.87)

and 2γa1 − Qa0 = 0. This recursion relation has in general a unique solution. However,
when the continued fraction

rn =
an+1

an
= − Bn(ω, q)

An(ω, q) + rn+1
(A.88)

converges, Pincherle’s theorem states that an extra solution to the three term recursion
relation (A.85) exists [91,94,168]. This is equivalent to finding a solution that is analytic
both at the boundary and at the horizon. Notice that at the horizon (x = 0), the critical
exponents are 0 and 1 − γ = iw, so the analytic solution usually corresponds to the
first solution, that is the one associated to infalling boundary conditions. However, when
w = −ik, with k = 1, 2, . . . , the analytic solution will be in general the outgoing solution,
since it corresponds to the largest integer critical exponent, while the infalling solution
will have a logarithmic contribution. This is reflected in the recursion relations, since the
coefficient of the an+2 term vanishes when n + 2 = k, implying that the series start at xk.
The reason for this is that the first k recursion relations form a closed subsystem of linear
equations for k unknowns. Then, the general solution to the Heun equation will be of the
form

y(x) = α1x
k

∞∑

n=0

anxn + α2

( ∞∑

n=0

bnxn + c(q) log(x)xk
∞∑

n=0

anxn

)
. (A.89)

In principle, there could be special values of the momentum where the coefficient of the
logarithm vanishes c(q) = 0 and the two solutions at the horizon are analytic. This
actually happens when the rank of the subsystem of the first k recursion relations is zero.
In that case, we can find trivially two solutions satisfying the recursion relations without
having to check the convergence of (A.88).

The diffusion and shear modes are located at negative imaginary values of the fre-
quency, larger as the momentum is increased. This implies that for some large enough
value of the momentum, the frequency will have the special value w = −ik. However, the
mode has to be analytic at the boundary and the horizon, so the value of the momentum
when the special value is reached must be determined by the condition c(q) = 0. When we
compare the analytic result with the numerical computation, we find that this is indeed
the case, the first points are (iw, q2) = (1, 1/2), (2,

√
3− 1), (3,

√
6− 3/2) for the diffusion



A.3 Front velocity 119

mode and (iw, q2) = (1,
√

6), (2, 3.2266), (3, 3.91764) for the shear mode. On the other
hand, at the special point the analytic solution that is found as the limit of the hydro
mode w → −ik is a linear combination of the normalizable and non-normalizable modes.
This implies that the pole disappears from the retarded Green function or in other words,
that the residue is zero.

A.3 Front velocity

Wave propagation in dispersive media has been studied long ago in the classic work of
Brillouin and Sommerfeld [169–171]. It has been pointed out there that the group velocity
vg = dω/dq is not a reliable indicator if one wants to study the question of how fast can
a signal be transmitted through the dispersive medium. In fact it is the so called front
velocity which limits the speed of propagation of a signal through the medium. The front
velocity is defined as the velocity with which the onset of a signal travels. In dispersive
media this is not yet sufficient to guarantee that the signal travels with this speed and
therefore one also has to define a signal velocity, which is the speed with which practically
usable signals travel. This signal velocity is always smaller than the front velocity. For
matters of principle, i.e. answering the question if causality is preserved it is therefore
the front velocity that is important. We will briefly review here the reasoning leading to
the definition of the front velocity. We want to study how fast a perturbation can travel
through the medium, for this purpose we will switch on a periodic signal with frequency
ν at time t = 0. We model this by a source of the form Θ(t)e−iνtδ(x).7 To compute
the response of the system we expand the retarded Green function in its poles in the
complexified momentum plane (for simplicity we will also restrict our considerations to
effectively 1 + 1 dimensions)

〈Φ(x, t)〉 = −
∫

dω

2π
dq

2π

∑

n

Rn(ω, q)
q − qn

i

ω − ν + iε
e−iωt+iqx . (A.90)

The poles in the momentum k have real and imaginary parts qn(ω) = qR
n (ω) + iqI

n(ω)
and from [102, 137] we know that they have to lie symmetrically in the first and third
quadrants. We consider therefore only the region with x > 0 since the response in x < 0
is just the mirror image. Assuming x > 0 we have

〈Φ(x, t)〉 = −
∫

dω

2π

∑

n

Rn(ω, qn)
i

ω − ν + iε
e−iωt+iqR

n x e−qI
nx . (A.91)

To pick up a non vanishing signal we have to close the contour of integration now in the
lower half plane. This demands however that limω→∞(t − x qR

n (ω)
ω ) ≥ 0 showing that we

7For simplicity we chose to localize the source in space, it is not important for the general argument.
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can pick up the first front of the signal only at space time points where x/t ≤ vF, where
we have defined the front velocity 8

vF := lim
ω→∞

ω

qR
. (A.92)

It follows that causality is preserved if the front velocity is smaller that the speed of light
vF ≤ c. Results for the complex momentum modes for the shear channel and the diffusion
channel in [102, 137] and for the sound channel in figure 5.7, show that the imaginary
parts go to zero if we extrapolate to the large frequency limit, i.e. ω → ∞, while the
real part approaches from below the dispersion relation ω = q. Moreover, the evolution of
the hydrodynamic modes in this limit is the same as the evolution of the higher modes,
finding numerically that limω→∞

ω
q = 1. This provides a numerical proof that the strongly

coupled N =4 plasma behaves causally even when we take into account the hydrodynamic
modes.

8Since this implies a linear relation between ω and q for large frequencies and (real) wave numbers it

is usually written as vF = limq→∞
ω
q . It also follows that the diffusion equation violates causality since

from the dispersion relation we find ω = 2Dq2 and therefore ω/q = 2Dq with no finite limit for the front

velocity.
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Introducción

Esta tesis doctoral versa sobre la aplicación de la correspondencia AdS/CFT a la dinámica
de teoŕıas gauge en acoplo fuerte, prestando una atención especial al comportamiento
hidrodinámico de las mismas. En particular estamos interesados en el estudio de la re-
spuesta del plasma de quarks y gluones fuertemente acoplado frente a perturbaciones
pequeñas empleando técnicas holográficas aśı como en examinar la validez de la aproxi-
mación hidrodinámica en dicho sistema. También estamos interesados en el estudio del
régimen hidrodinámico de superconductores de alta temperatura en el marco de la duali-
dad gauge/gravedad.

La corespondencia AdS/CFT establece una equivalencia entre teoŕıas cuánticas de
campos y teoŕıas de cuerdas en espacios curvos con la peculiaridad de ser una dualidad de
acoplo fuerte/débil. Cuando la constante de acoplo gauge es grande, la teoŕıa de campos
se encuentra en un régimen no perturbativo, mientras que la teoŕıa de cuerdas puede
aproximarse por su ĺımite clásico a bajas enerǵıas, supergravedad. La correspondencia
nos proporciona una herramienta teórica con la que describir la dinámica de teoŕıas gauge
en interacción fuerte. Particularmente interesante es el caso del plasma de quarks y gluones
fuertemente acoplado (sQGP) descubierto en el Relativistic Heavy Ion Collider (RHIC).
El sQGP se comporta prácticamente como un fluido perfecto y puede ser descrito en
términos hidrodinámicos en el ĺımite de bajas enerǵıas. El acelerador RHIC crea un medio
de materia muy densa y caliente, constituida de quarks y gluones, mediante colisiones de
núcleos pesados. La ‘bola de fuego’ creada termaliza rápidamente, se expande y se enfŕıa
volviendo al estado de gas de hadrones, pero mientras tanto, cuando es un plasma de
quarks y gluones, reproduce las condiciones del plasma primordial existente durante los
primeros microsegundos posteriores al Big Bang. Al final de la era de Gran Unificación
(10−36 segundos) el universo estaba hecho de una ‘sopa’ de part́ıculas que se expand́ıa
y enfriaba. Aproximadamente 10−11 segundos tras la explosión, la fuerza electrodébil se
desacopló de la fuerza nuclear fuerte y las interacciones entre part́ıculas fueron lo bastante
energéticas como para permitir la formación de part́ıculas pesadas como los bosones Z y
W . El Universo Primitivo estaba entonces ocupado por el plasma de quarks y gluones, aún
en expansión y enfriamiento, hasta que éste alcanzó una temperature de unos 200 MeV,
que son unos 2× 1012K, cuando la transición de fase confinamiento/deconfinamiento tuvo
lugar. El QGP hadronizó formando protones y neutrones una decena de microsegundos
después del Big Bang. Transcurridos unos minutos, la temperatura fue lo bastante baja
como para permitir la formación de enlaces entre nucleones y los primeros núcleos ligeros
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aparecieron. El estado del Universo Primitivo justo antes de la transición de fase entre
quarks y hadrones se reproduce aproximadamente en RHIC y pronto lo será también en
el experimento ALICE en el LHC. Estos experimentos proporcionan información de gran
valor sobre la fase de deconfinamiento de QCD y sobre la f́ısica del plasma primordial.
Obtener un entendimiento teórico de éstos es una tarea complicada e interesante además
de un reto, y parece que la correspondencia puede ser de gran ayuda en esta empresa.

Recientemente, la correspondencia AdS/CFT se ha revelado como una herramienta
muy útil también en el marco de la f́ısica de la materia condensada, dado que ésta nos
proporciona un gran número de sistemas fuertemente correlacionados que no pueden ser
tratados empleando los paradigmas convencionales, como es el caso de los sistemas cŕıticos
cuánticos. Existen muchos materiales fuertemente acoplados que pueden ser manipulados
y estudiados en laboratorios, dificilmente tratables desde el punto de vista de materia con-
densada y para los que parece posible que la dualidad gauge/gravedad pueda ser de ayuda
para llegar a comprender mejor su comportamiento. Es de esperar que los superfluidos y
los superconductores de alta temperatura pertenezcan a esta familia de sistemas de ma-
teria condensada a los que pueden ser aplicadas técnicas holográficas. Por otro lado, este
gran número de sistemas de materia condensada nos proporciona una gran variedad de
Lagrangianos efectivos, de modo que empleando técnicas experimentales podŕıa ser posible
‘crear’ un material cuyo dual holográfico sea conocido, dando lugar a un AdS/CFT experi-
mental que podŕıa permitir un mayor entendimiento de la gravedad cuántica a través de la
f́ısica atómica, invirtiendo la dirección habitual del uso de la correspondencia. Por tanto,
la correspondencia AdS/CM aparece como un tema de estudio muy rico e interesante. En
esta tesis nos limitaremos a emplear la correspondencia para modelizar sistemas simples
de materia condensada y ver que información podemos obtener de ella.

La tesis está organizada en dos partes. La primera parte está dedicada a presentar
los ingredientes y herramientas básicos que serán empleados más adelante, es decir, los
sistemas fuertemente acoplados a los que pretendemos aplicar la correspondencia aśı como
las técnicas hológraficas que emplearemos para ello:

Caṕıtulo 1: Presentamos las caracteŕısticas principales de los sistemas en acoplo
fuerte, centrándonos en la fase de sQGP de QCD, exponiendo algunos de los resultados
más relevantes de RHIC que apuntan a que el plasma formado se encuentra fuertemente
acoplado, y en el fenómeno de ‘criticalidad cuántica’ especialmente en el caso de super-
conductores de alta temperatura y superfluidos. También presentamos algunos conceptos
básicos relativos a la teoŕıa de respuesta lineal y a la hidrodinámica, que son las principales
herramientas para el estudio de perturbaciones en estos sistemas.
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Caṕıtulo 2: Este caṕıtulo está dedicado a explicar los conceptos básicos de la corres-
pondencia AdS/CFT, evitando en la medida de lo posible entrar en detalles que no serán
útiles a continuación. Nos centramos en aquellos aspectos de la correspondencia y sus
extensiones más relevantes para sus aplicaciones a los sistemas antes mencionados: cómo
añadir temepratura y cómo añadir potenciales qúımicos a la teoŕıa gauge.

Caṕıtulo 3: El poder de la dualidad gauge/gravedad radica en su capacidad para
realizar cálculos en tiempo real. En este caṕıtulo presentamos la que será la herramienta
de cálculo principal en el resto de la tesis: una prescripción para calcular holográficamente
correladores a temperatura finita. También se presentan algunos resultados de la corres-
pondencia relativos a las singularidades de los propagadores y al espectro de modos cuasi-
normales de agujeros negros, aśı como las restricciones que la estabilidad impone en su
localización.

En la segunda parte de esta tesis, presentamos varias aplicaciones de la correspondencia
para el estudio de la f́ısica de sistemas con interacción fuerte:

Caṕıtulo 4: Se examina una propiedad muy interesante de la dualidad relacionada
con el espectro de modos cuasinormales de un agujero negro: en el ĺımite de largas fre-
cuencias, la localización de los polos de propagadores retardados puede ser explicada en
términos de rayos nulos ‘rebotando’ en una geometŕıa de agujero negro, de modo que el
espectro de modos cuasinormales está relacionado con la estructura causal del agujero
negro. Esta relación es consistente con la prescripción dada en el caṕıtulo anterior para el
cálculo de correladores.

Caṕıtulo 5: La f́ısica de procesos cerca del equilibrio en la teoŕıa gauge esta cod-
ificada en funciones de correlación de operadores a dos puntos en tiempo real y está
completamente determinada por las singularidades de éstos, que en el caso holográfico son
simplemente polos. Calculamos el espectro de modos cuasinormales y los correspondientes
residuos de distintos tipos de perturbaciones para medir la contribución de cada uno de
los modos colectivos que se propagan en un plasma de gluones. Presentamos los resulta-
dos para los modos hidrodinámicos y estudiamos el régimen de validez de una descripción
hidrodinámica basada sólo en estos modos. También somos capaces de definir un ĺımite
inferior para el tiempo de termalización del plasma.

Caṕıtulo 6: Se estudia el modelo holográfico de superfluido más simple: la ruptura
espontánea de una simetŕıa global mediante la formación de un condensado de Bose es
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realizada holográficamente a través de un campo escalar cargado condensando en un es-
pacio asintóticamente AdS con un agujero negro cargado. A bajas temperaturas el escalar
adquiere un valor esperado y el sistema entra en la fase superfluida. Encontramos el bosón
de Goldstone esperado en la ruptura de una simetŕıa U(1) y lo seguimos en la fase su-
perfluida. Por debajo de la temperatura cŕıtica se propaga como el sonido: el llamado
segundo sonido de la componente superfluida.

La primera parte de este trabajo es básicamente un compendio de múltiples art́ıculos y
estudios sobre los temas correspondientes. El trabajo original aqúı presentado corresponde
a la segunda parte de esta tesis doctoral y está basado en nuestras publicaciones [1–4].
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Hemos visto que el espectro de modos cuasinormales de un agujero negro, y por lo tanto
los polos del correspondiente correlador retardado, está relacionado con las propiedades
geométricas del agujero negro, en particular con su estructura causal. En el ĺımite de
frecuencias largas la localización de las singularidades de correladores a temperatura finita
pueden ser explicados en términos de geodésicas nulas rebotando en las singularidades y
en las fronteras de un agujero negro eterno en AdS. Este cálculo está relacionado con el
formalismo de Schwinger-Keldish bajo la identificación de los campos viviendo en difer-
entes fronteras con la inserción de operadores en diferentes segmentos del contorno de SK.
Una extensión interesante de este trabajo es estudiar si el análisis geómetrico basado en
geodésicas nulas puede ser generalizado a otro tipo de geometŕıas como la dada por un
agujero negro en rotación o cargado, o incluso para espacios asintóticamente planos en los
que no hay una frontera como en aAdS, de modo que el espacio no actua como una caja.
También podŕıa ser interesante estudiar el efecto de correcciones cuánticas, que implica
introducir correcciones al ĺımite de N grande o equivalentemente a la curvatura.

Hemos visto que la respuesta frente a perturbaciones pequeñas está completamente de-
terminada por los polos de los propagadores retardados y por sus correspondientes residuos
y lo hemos usado para estudiar la respuesta lineal de la fase de plasma de N = 4 SYM
en acoplo fuerte. Esto nos permite explorar la validez de la aproximación hidrodinámica,
basada en integrar out todos los modos salvo los modos hidrodinámicos, de dos formas dis-
tintas: definiendo escalas hidrodinámicas de tiempo y distancia que miden a partir de que
momento la contribución de los modos hidrodinámicos pasa a ser dominante y analizando
en que rango de longitudes de onda y frecuencias los modos hidrodinámicos proporcionan
una descripción fiable del sistema. Los tiempos hidrodinámicos obtenidos indican que el
plasma perturbado termaliza extremadamente rápido, resultado que puede considerarse
como un indicativo de rápida termalización también en RHIC. El fin de la validez de la
aproximación hidrodinámica forma parte de la propia teoŕıa: a menor longitud de onda de
la perturbación, más y más modos cuasinormales tienen que ser considerados para describir
el sistema. El peso de las excitaciones colectivas en el plasma depende de modo crucial
del valor de los residuos. Para los modos de cizalladura y de difusión de carga, el residuo
muestra un decaimiento oscilatorio, señalando que se desacoplan para momento pequeño.
Seŕıa interesante estudiar si este comportamiento es universal de los modos hidrodinámicos
que describen difusión. A priori hay una indicación de que algo drástico ocurre a longi-
tudes de onda cortas que viene de la observación de que se preserva causalidad mientras
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al mismo tiempo al ir a longitudes de onda largas se reproduce hidrodinámica a primer
orden, que es acausal. En RHIC tienen lugar procesos que no pueden ser descritos dentro
de la teoŕıa de respuesta lineal. Por lo tanto, seŕıa de gran interés ir más allá de esta
aproximación para poder tener una definición de la escala hidrodinámica más significativa
que pudiese ser relevante para los experimentos en RHIC, para los que fijar la escala de
termalización resulta crucial. Toda la discusión sólo contiene materia en la representación
adjunta. Para poder realmente tener un modelo predictivo relevante para experimentos
del mundo real, estaŕıa muy bien repetir el análisis incluyendo materia en la fundamental,
lo cual desde la teoŕıa de cuerdas se consigue introduciendo nuevos sets de branas.

Finalmente, hemos estudiado el comportamiento hidrodinámico de un superfluido
holográfico dado por un modelo gauge abeliano con un campo escalar masivo cargado
en un espacio AdS con un agujero negro. El modo cuasinormal más bajo del campo
escalar cargado se convierte en taquiónico a un cierto valor de la temperatura. Esta in-
estabilidad indica que el campo escalar condensa y el sistema sufre una transición de fase
de segundo orden. En la transición de fase este modo escalar no tiene masa y su suceptibili-
dad es divergente, de modo que puede identificarse con el bosón de Goldstone que aparece
en la ruptura espontánea de simetŕıa. Por debajo de la temperatura cŕıtica este modo
puede identificarse con el segundo sonido. Empleando holograf́ıa hemos sido capaces de
calcular coeficientes de transporte como la velocidad de propagación del segundo sonido,
calculado directamente a partir de consideraciones termodinámicas en otros trabajos, pero
también cantidades no termodinámicas como coeficientes de transporte ‘absortivos’, como
la atenuación del segundo sonido o la constante de difusión. Como resultado complemen-
tario hemos desarrollado un método para calcular los modos cuasinormales f́ısicos de un
sistema acoplado en términos de las variables no invariantes gauge. En el análisis la back-
reaction debida a la presencia de los campos gauge y escalar ha sido despreciada. Una
extensión obvia es considerar el modelo en el que su efecto es tenido en cuenta y en el cual
las fluctuaciones de la métrica śı estan permitidas dando lugar a una dinámica mucho más
rica. En este modelo la transición de fase a temperatura finita puede ocurrir incluso para
un escalar neutro debido a la inestabilidad de la propia geometŕıa. Cuando la carga del
escalar es pequeña dos mecanismos responsables de la condensación compiten, el acoplo
al campo gauge y la inestabilidad de la métrica. Seŕıa interesante encontrar cuál es el
parámetro de orden de la transición de fase para cada caso y qué es lo que ocurre en
la fase superconductora en el segundo caso. También resultaŕıa interesante estudiar la
relación entre el sonido normal y el segundo sonido en dicha fase. El estudio completo
del caso con backreaction podŕıa arrojar luz sobre el origen del gap en la conductividad
en estos modelos. Otra extensión natural de este modelo es considerar correcciones a la
curvatura para examinar cuándo o cuándo no tiene lugar la transición de fase y cómo se
ve afectado el diagrama de fases. Otra extensión interesante seŕıa romper explicitamente
la invariancia conforme y estudiar cómo afecta a la transición.
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