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SUMMARY 

Chronic lymphocytic leukemia (CLL) shows unique features when compared with other types of 

malignancies. The majority of tumor cells are arrested in G0/G1 phase and only a small number of 

proliferating cells are observed in special anatomical structures known as proliferation centers (PCs) that 

can be found mainly in lymph nodes of CLL patients. This fact highlights the importance of the interactions 

between tumor cells and their microenvironment. Therefore, we were interesting in studying the 

composition of PCs as well as the nature of these interactions, in paraffin embedded samples. We 

described two different stroma populations that we called Actin Dendritic Cells (ADC) and STAT1 positive 

macrophages (STAT1 macrophages). Moreover, we identified PCs as the place where NF-ĸB activation 

takes place (indicated by nuclear localization of p50, p52 and Rel B), which is a well known altered pathway 

in CLL.  

Although a large proportion of the patients achieve complete response with current therapies, many of 

them develop resistance and indeed, CLL remains an incurable disease. We have extrapolated our 

knowledge of the mechanisms involved in the pathogenesis of CLL to the field of new therapeutic targets 

and active compounds. With this purpose, we have tested a panel of four rationally selected compounds 

(calmidazolium, R406, TW-37 and ETP-39010) in ex-vivo CLL cultures. Variable sensitivity was observed, 

reflecting the molecular heterogeneity of the samples. In addition, we identified some candidate 

biomarkers and resistance mechanisms that can help to predict drug sensitivity. Briefly, our data showed 

that BCR signaling inhibition has a negative effect on cell viability. Moreover, samples sensitive to R406 

(SYK inhibitor) showed higher expression levels of MUM1/IRF4 while resistant samples showed enrichment 

of pathways related to the microenvironment. We also identified Mcl-1 as a candidate biomarker for 

sensitivity to TW-37 (small molecule inhibitor of the Bcl-2 family) showing that sensitive samples presented 

higher protein levels. Finally, ETP-39010 (PIM kinase inhibitor) induced apoptosis in samples that presented 

markers of bad prognosis such as unmutated IGHV, ZAP70 positivity and higher expression levels of 

lipoprotein lipase (LPL). Inhibition of PIM kinases affected gene transcription and metabolic processes. This 

type of studies may contribute to the better understanding of the individual molecular features underlying 

drug sensitivity. 
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RESUMEN 

La leucemia linfocítica crónica (LLC) es una enfermedad que presenta unas características únicas en 

comparación con otros tipos de cáncer. La mayoría de las células tumorales se encuentran arrestadas en fase 

G0/G1 y sólo se observa un pequeño número de células que proliferan en estructuras anatómicas especiales 

localizadas en los ganglios linfáticos de pacientes conocidas como centros de proliferación (CP). De ahí nuestro 

interés en estudiar los CPs en muestras incluidas en parafina. Así, hemos descrito por primera vez dos tipos de 

poblaciones del estroma dentro de los CPs que hemos denominado Células Dendríticas que expresan Actina 

(CDA) y macrófagos con STAT1  nuclear (macrófagos STAT1). Además, hemos identificado los CPs como el lugar 

donde tiene lugar la activación de NF-ĸB (definida por la localización nuclear de p50, p52 y Rel B), que es una de 

las vías de señalización comúnmente alteradas en LLC. 

Por otro lado, aunque la mayoría de los pacientes alcanzan una respuesta completa con los tratamientos 

actuales, muchos de ellos desarrollarán resistencias, por lo que la LLC sigue siendo una enfermedad incurable. 

En este trabajo, hemos extrapolado nuestro conocimiento de los mecanismos implicados en la patogénesis de 

LLC al campo de la identificación de nuevas dianas terapéuticas. Con este objetivo, hemos probado cuatro 

compuestos escogidos racionalmente (calmidazolium, R406, TW-37 y ETP-39010) en cultivos de LLC ex vivo. 

Hemos observado una variabilidad en la sensibilidad a estos compuestos que refleja la heterogeneidad de las 

muestras. Además, hemos identificado una serie de posibles biomarcadores y mecanismos de resistencia que 

podrían ayudar a predecir la sensibilidad a estos compuestos. Brevemente, nuestros datos indican que la 

inhibición de la vía del receptor de células B tiene un efecto negativo sobre la viabilidad celular. Además, las 

muestras sensibles a R406 (inhibidor de SYK) presentan niveles de expresión más altos de MUM1/IRF4, mientras 

que las muestras resistentes tienen un enriquecimiento de las vías de señalización relacionadas con las 

interacciones con el entorno tumoral. También hemos identificado Mcl-1 como un posible marcador de la 

sensibilidad a TW-37 (inhibidor de la familia de Bcl-2) mostrando que las muestras más sensibles presentan 

niveles de proteína más altos. Finalmente, observamos que ETP-39010 (inhibidor de la familia de quinasas PIM) 

induce apoptosis en las muestras que presentaban marcadores de mal pronóstico (IGHV no mutada, ZAP70 

positivas y niveles más altos de expresión de la lipoproteína lipasa). La inhibición de estas quinasas afecta a 

procesos relacionados con la transcripción génica  y el metabolismo. En definitiva, este tipo de estudios pueden 

contribuir a un mejor conocimiento de las características moleculares individuales que subyacen a la 

sensibilidad a diferentes compuestos activos. 
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1.1. The immune system and development of mature B cells 

The immune system is a bodywide network of specialized cells, tissues and organs that has 

evolved to protect the organism against disease caused by pathogens. It is made up of the 

lymphatic vessels, the spleen, the thymus, the lymph nodes and the bone marrow. The first 

challenge of the immune system is to identify pathogens and distinguish them from the cells of 

the own organism. This protection against foreign attacks is exerted primarily via an innate 

immune response, a first line of defense that includes physical barriers as well as cell 

responses exerted by neutrhophils, macrophages and granulocytes. Later in the infection 

process, the adaptive response mounts a more specific defense mediated mainly by lymphoid 

cells (B and T cells) that are assisted by other immune cells such as dendritic cells. Disorders in 

the immune system can lead to immunodeficiencies, autoimmune diseases or even cancer.   

B cells are central players of the adaptive immune response that secrete antibodies, molecules 

that bind pathogens allowing their recognition by phagocytes and the activation of the 

complement system. Antigen binding to the B cell receptor (BCR) elicits different responses 

depending on the maturation stage of the B cell.  In order to understand the context in which 

normal (and tumor) cells develop, the next paragraphs will summarize the development of B 

cells and the most important controls that they must undergo before becoming fully mature B 

cells (see Figure 1). 

 B cells differentiate from pluripotent cells known as common lymphoid progenitors in the 

bone marrow. Along the development, the expression of an appropriate B cell receptor, 

composed of a surface immunoglobulin (Ig), will play a key role in the cell fate. Ig embedded in 

the surface membrane has the function of recognizing and responding to exogenous antigens 

and is made of two heavy and two light chains, each of them presenting a constant and a 

variable region. Antigen recognition takes place via the variable (V) regions, which differ in 

sequence from one B cell to another, and provide a complete catalog of potential antigen-

combining sites. The Ig locus includes several V, D and J segments. Rearrangement at the DNA 

level of these regions produces the extreme diversity of the BCR (Tonegawa, 1983). In fact, Ig 

selection takes place from the potentially functional genes of an unrearranged repertoire that 

includes 51 VH genes divided into 7 families (VH1–VH7), 27 D genes, and 6 JH genes. This 

recombinatorial process is mediated by proteins encoded by the recombination-activating 
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genes RAG1 and RAG2 (Lewis and Gellert, 1989). BCR diversity is even greater because the 

junctions of VH to D and D to JH are imprecise, with the deletion by exonucleases of templated 

nucleotides or the insertion by terminal deoxytransferase (TdT) of nontemplated nucleotides 

in a random manner (Desiderio et al., 1984). As a consequence, three highly variable regions 

known as complementarity-determining regions (CDR) are generated after VDJ recombination. 

The CDR3 shows the highest variability and is mainly responsible for the virtually unique 

antigen recognition capacity of any given lymphocyte. 

 

Figure 1. Normal B cell development. Hematopoietic stem cells found in the bone marrow differentiate 

to mature B cells that circulate in the blood until they encounter an antigen. Then, they enter the lymph 

nodes where they acquire increased antigen affinity and start to proliferate giving rise to long-lived 

memory cells that will circulate in the blood or to plasma cells, which home to the bone marrow where 

they produce immunoglobulins (Ag, antigen; Ig, immunoglobulin; TI, T-independent; BCR, B cell 

receptor). 

 

Rearrangement of the VDJ genes of the heavy chain of the immunoglobulin takes place in the 

stage of pro-B cells (still progenitor cells but with limited self-renewal capacity). B cells express 
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then an incomplete BCR or pre- B cell receptor (BCR) on the surface and therefore B cells at 

this stage are called pre-B cells. The pre-BCR is made of a successfully rearranged heavy chain 

and a surrogate of the light chain. This pre-BCR generates signals that will stop rearrangement 

of the heavy chain, induce several rounds of division and allow the cell to progress to the next 

stage of development in which the rearrangement of the light chains of the Ig takes place. 

Once a light-chain gene is assembled and a complete IgM molecule is expressed on the 

surface, the cell is defined as an immature B cell. Up to this point, B cell development is 

antigen independent. Now, immature B cells undergo negative selection for self-tolerance and 

abandon the bone marrow. B cells in the periphery are known as naïve B cells. They will 

circulate in the peripheral blood until they encounter a foreign antigen. There are several 

checkpoints in B-cell maturation. Failure to produce a functional immunoglobulin induces 

apoptosis, as does an autoreactive specificity. Escape from apoptosis can occur by rearranging 

the other allele, most commonly the light chain. This process is known as receptor editing. 

Once naïve B cells encounter an antigen that fits their BCR, they migrate into the center of 

primary follicles inside the lymph nodes and proliferate. At this stage they are known as 

centroblasts. Together with a network of follicular dendritic cells and CD40L+ T cells, they form 

the so called germinal center (GC) structures where somatic hypermutation of the Ig genes and 

class switch processes take place. These are mechanisms to further increase the diversity of 

the B-cell repertoire. The rate of introduction of base pair changes in the Ig genes during the 

process of somatic mutation is on the order of 10–4–10–3 per generation. The mutations tend to 

cluster in the CDRs (regions of high variability found between VD and DJ segments), possibly 

because these regions are essential for antigen specificity. A further genetic arrangement is 

necessary for Ig class switching from IgM plus IgD to IgG, IgA, or IgE. The choice of isotype is 

cytokine determined (Stavnezer et al., 1985). Centroblasts mature to centrocytes that express 

an Ig with an increased antigen affinity. They then differentiate either into long-lived memory 

B cells that circulate in the peripheral blood or plasma cells that home to the bone marrow 

where they will secrete immunoglobulins. Naïve B cells can also mature outside of the GC as a 

result of a T-independent stimulation, upon binding of T-independent antigens (mainly 

polysachrides from bacteria or nucleic acids) that induce B cells to produce antibodies in the 

absence of T cell help. These centroblasts then may mature directly into short-lived plasma 

cells, enter a GC or mature to memory cells. 
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The peripheral blood B cells of normal individuals comprise 60% naïve cells with unmutated 

IgVH genes and 40% memory cells that carry somatically mutated IgVH genes and express 

surface CD27 (Klein et al., 1998). Only a small proportion of naïve cells express CD5 

(Brezinschek et al., 1997), although this proportion is higher in early life. 

1.2. Chronic lymphocytic leukemia 

1.2.1 Lymphomas/Leukemias  

B cell and T/NK cell neoplasms are clonal tumors that develop from immature or mature B, T 

or NK cells.The clonal expansion of tumor cells leads in the case of lymphoid cells not only to 

an uncontrolled proliferation of the malignant clone with the consequent invasion of healthy 

tissues, but also to a dysfunction of the immune system, which is accompanied by a defective 

protection against infections. These neoplasms form a complex group of malignancies that 

includes more than 30 subtypes.  The World Health Organization (WHO) classifies them 

according to a combination of morphological and immunophenotypical characteristics, 

including recently also some genetic features and molecular parameters that contribute to 

refine this classification. According to the SEER (Surveillance and Epidemiology End Results) the 

incidence rate of lymphomas and leukemias in 2009 was 42.3 per 100,000 men. B cell 

neoplasms comprise over 90% of all lymphoid neoplasms worldwide. Precursor lymphoid 

neoplasms are primarily a disesase of children while mature B cell neoplasms comprise over 

90% of lymphoid neoplasms worldwide and represent 4% of new cancers each year.  

The distinction of the lymphoma subtype is not only relevant in terms of lymphoma 

pathogenesis but it also defines different clinical behaviors and therefore, determines diverse 

treatment strategies. This is the main reason that moves clinicians together with researchers 

to join efforts in order to find the most accurate lymphoma classification. B and T/NK 

neoplasms recapitulate the different stages of development of normal healthy immune cells, 

and are to some extent classified according to these stages. 

1.2.2 Chronic lymphocytic leukemia: definition and immunophenotype 

Chronic lymphocytic leukemia (CLL) is a malignant lymphoproliferative disorder of mature B 

lymphocytes, recognized as a clinical entity since the early 1900s (Turk, 1903; Osler, 1909), 

although cases resembling CLL had already been described by Virchow and Bennett in 1845. 

Based on their similar morphological and immunophenotypic features, the most recent World 
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Health Organization (WHO) classification scheme for hematopoietic malignancies considers 

CLL and Small Lymphocytic Lymphoma (SLL), a type of low grade non-Hodgkin lymphoma, to 

be different manifestations of the same disease and combines these entities into one disease 

category (CLL/SLL) (Jaffe, 2009). The term SLL is used for non-leukemic cases with the tissue 

morphology and immunophenotype of CLL. 

CLL/SLL is characterized by a pathological accumulation of B cells within peripheral blood and 

lymphatic tissues. This neoplasm is composed of small, round to slightly irregular B 

lymphocytes in the peripheral blood (PB), bone marrow (BM), spleen and lymph nodes. The 

lymph nodes involved by CLL/SLL usually show a diffuse effacement of the architecture by a 

proliferation of small lymphocytes. A variable number of prolymphocytes with central nucleoli 

are always present and in some cases aggregates with larger cells called paraimmunoblasts are 

also found. These lymphocytes appear intermixed with accompanying cells and T cells in 

structures known as proliferation centers (PC), because proliferating CLL cells tend to 

accumulate in these areas. 

 Immunophenotypically, malignant cells express IgM/IgD, CD20, CD22, CD19, CD79a, CD5, 

CD43, CD11 (weak) and CD23 (which allows distinction from mantle cell lymphomas). There is 

also no or weak expression of FMC7, CD22, and CD79b. The accumulation of monoclonal B 

lymphocytes leads to leukocytosis, bone marrow failure, recurrent infection and is sometimes 

associated with autoimmune diseases such as hemolytic anemia. 

1.2.3 Epidemiology 

CLL is the most common leukemia of adults in Western countries (USA and Europe) together 

with acute myeloid leukemia. It shows a very low incidence rate in far Eastern countries 

(Japan, Singapore, China and India), even in migrant populations suggesting a role for racial 

differences and in favor of a genetic predisposition (Dores et al., 2007). The incidence of CLL is 

around 4.2 cases per 100,000 men and women per year. It increases with age reaching an 

incidence of 12.8/100,000 at the age of 65, which is the mean age at diagnosis. CLL/SLL has a 

male: female ratio of 1.5-2: 1. Mortality was 7.3 per 100,000 men and women from 2002 to 

2006 (Data diagnosed between 2003 and 2007. Surveillance, Epidemiology and End Results, 

National Cancer Institute, http://seer.cancer.gov/statfacts/html/clyl.html). 
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1.2.4 Progression and transformation 

The disease may be stable for a long period of time in the initial stages without a requirement 

for treatment. After a variable period of time the tumor may progress to stages in which 

patients require treatment. Clinical progression of the disease is usually associated with an 

increase of lymphocytes, a more diffuse pattern of infiltration in bone marrow and 

extramedullary tissue involvement. Transformation into a more aggressive tumor occurs only 

in 2-10% of the patients and is known as “Richter’s syndrome”. The two most common forms 

of transformation are diffuse large B-cell lymphoma (DLBCL) and, less frequently, Hodgkin’s 

lymphoma. 

1.2.5 Clinical management of CLL patients 

CLL shows an extremely variable clinical course. Some patients have and indolent disease that 

may never require treatment while others present a progressive clinical course. Patients with 

slowly progressive disease will only start chemotherapy when the disease causes symptoms 

(infections, swollen lymph nodes or spleen, weight loss and tiredness among others) and they 

will show an average survival from diagnosis of 5 to 10 years. However, patients with a 

progressive clinical course are often resistant to standard treatments and show a reduced 

average survival of only 24 months or less. The cornerstones to predict prognosis are the 

clinical staging systems of Rai and Binet (see Tables 1 and 2). In general, early and intermediate 

stages (Rai 0-II, Binet A and B) that are characterized by lymphocytosis with or whithout 

lympho-and/or organomegaly can be distinguished from advanced stages (Rai III-IV, Binet C) 

that present anemia or thrombocytopenia additionally. Survival may range from 10 years or 

more in early stages to 1-2 years in advanced stages. While treatment is always recommended 

in this last situation, immediate therapy in patients with early stage CLL (Binet et al., 1981; Rai 

et al., 1975), i.e. Rai 0 or Binet A, has failed to prolong survival so far (Dighiero et al., 1998; 

Shustik et al., 1988). 

Table 1- Rai staging system 

STAGE 
Lymphocytosis (>15 

x 10
3
/µL ) 

Lymphoadenopathy 
Hepato-

/splenomegaly 
Hemoglobin Plateletets 

0 Yes no No >11 g/dL >100 x 10
3
/µL 

I Yes yes No >11 g/dL >100 x 10
3
/µL 

II Yes irrelevant Yes >11 g/dL >100 x 10
3
/µL 

III Yes irrelevant irrelevant <11 g/dL >100 x 10
3
/µL 

IV Yes irrelevant irrelevant irrelevant <100 x 10
3
/µL 
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Table 2-Binet staging system 

STAGE 
Lymphocytosis (>4 x 

10
3
/µL) 

Involved lymphoid 

tissue regions 
Hemoglobin Platelets 

A Yes < 3 regions involved >10 g/dL >100 x 10
3
/µL 

B Yes ≥3 regions involved >10 g/dL >100 x 10
3
/µL 

C Yes Irrelevant <10 g/dL or <100 x 10
3
/µL 

Nevertheless, these clinical stages have some limitations. For example, progressive and 

indolent forms of the disease cannot be predicted in early stages. This fact has become of 

great importance in the last years because currently, the majority of patients with CLL are 

diagnosed in asymptomatic, early stages as a consequence of the increasing practice of routine 

blood analysis. On the other hand, the mechanisms responsible for cytopenias, which define 

advanced stages, are not taken into consideration (cytopenias of automminue origin may have 

a better outcome than those due to bone marrow infiltration). Finally, these systems are not 

able to predict the response to the treatment.  

In order to refine clinical staging, there has been an intensive work on biological factors and 

their prognostic relevance. Among these, cytogenetic alterations and the mutational status of 

the variable region of the heavy chain of the immunoglobulins have been shown to be of great 

value in outcome/response to treatment predictions and have shed light into the molecular 

mechanisms of the disease. Other prognostic factors still under validation for the clinical 

practice, include ZAP70, CD38 (discussed in the next sections), CD49D (integrin alpha4) (Gattei 

et al., 2008), LPL (lipoprotein lipase) (Oppezzo et al., 2005) and CLLU1 (CLL upregulated gene 1) 

(Buhl et al., 2006). 

1.2.5.1 Cytogenetic alterations 

Multivariate analysis revealed an independent prognostic relevance of genomic abnormalities 

in CLL patients (Dohner et al., 2000).  Deletion in 13q14 as a single aberration was associated 

with long median survival (133 months), while deletions in 11q22-q23 and particularly in 

17p13 were associated with a poor prognosis (median survival time of 70 and 32 months 

respectively). Intermediate survival times were found for CLL cases without aberrations or with 

trisomy 12 (111 and 114 months respectively) (Figure 2). 

Next, the most frequent genomic abnormalities will be described in more detail (for a 

summary, see Table 3). 



Introduction 

 

 

10 

 

13q14 deletion is the most frequently found chromosome alteration in CLL. Although several 

candidate tumor suppressor genes and microRNAs are located in this region (RB1, RFP2, 

DLEU1, DLEU2, miR15a, miR16-1) their possible role in CLL pathogenesis has not been fully 

elucidated. Recently, a mouse model lacking the miR56/16 and DLEU2 locus has recapitulated 

a monoclonal B-cell lymphocytosis disorder as well as CLL and DLBCL in some cases, suggesting 

a role of these microRNAs and DLEU2 in the pathogenesis of the disease (Scaglione et al., 

2007). In addition, DLEU7, also localized in the minimal deleted region, has been shown to 

inhibit NF-ĸB and NFAT transcription factors that are deregulated in CLL (Palamarchuk et al., 

2010). Furthermore, an epigenetic suppressor mechanism has been described in this locus that 

could deregulate several genes simultaneously (Mertens et al., 2009). When the 13q deletion 

is present as a sole abnormality, however, patients show a favorable course. 

 

Figure 2. Survival from the date of diagnosis among the patients with CLL showing different genetic 

alterations. The median survival times for the groups with 17p deletion, 11q deletion, 12q trisomy, 

normal karyotype, and 13q deletion as the sole abnormality were 32, 79, 114, 111, and 133 months, 

respectively (Taken from (Dohner et al., 2000)). 

Deletions in 11q22-q32 affect the ATM gene (Ataxia telangiectasia mutated) in almost all 

cases. ATM is a master controller of cell cycle checkpoint signaling pathways that are required 

for cell response to DNA damage and for genome stability. This deletion is associated with 

more rapid progression (shorter treatment free intervals and survival times) and was found to 

be an independent adverse prognostic factor (Austen et al., 2007). ATM mutations in the 

residual allele have been observed in 36% of CLL cases with 11q deletion. This has been 
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associated with an even greater reduction in patient survival. Inactivation of ATM is likely 

associated to genomic instability and secondary resistance due to an impaired DNA damage 

response. Other genes associated with this deletion are NPAT (cell cycle regulation), CUL5 

(ubiquitin dependent apoptosis regulation) and PP2R1B (component of cell cycle and apoptosis 

regulating PP2A) (Kalla et al., 2007). 

Trisomy 12 has been associated with an intermediate prognosis.  A specific gene or genes 

associated with trisomy 12 has not been identified. Some candidates are CDK4, GLI and MDM2 

(Huang et al., 1994). However, their pathogenic role remains to be determined. 

Deletion of 17p13 is found in 4 to 9% of CLL patients and always involves the TP53 gene, which 

encodes for the tumor suppressor protein p53 that responds to diverse cellular stresses and 

induces cell cycle arrest, apoptosis, senescence, DNA repair, or changes in metabolism. The 

incidence of TP53 mutations in the remaining allele is much higher in cases with 17p deletion, 

where more than 90% of cases show mutations.  Although the number of patients showing 

17p deletion is relatively small in first-line treatment situations (4-9%), its detection is of 

enormous importance because these patients are unlikely to respond to conventional 

chemotherapy and alternative treatments should be chosen (Dohner et al., 2000). 

Table 3-Genomic abnormalities found in CLL and their clinical relevance 

Genomic 

alteration 

Percentage of CLL 

patients 
Genes affected Prognosis Prognosis in treatment 

13q- 55% 
DLEU2 DLEU7, 

miR15, miR16 
- - 

13q single 36% 
DLEU2,DLEU7 

miR15, miR16 
Good prognosis - 

11q- 18% ATM 
Rapid progression, 

poor prognosis 

Patients are refractory to 

DNA-damaging drugs 

+12q 10-20% CDK4, MDM2, GLI Intermediate  

17p- 4-9% TP53 
Rapid progression, 

poor prognosis 

No response to 

conventional treatment 

6q- 7% - Intermediate risk - 

 

Deletion of 6q is observed in around 7% of CLL patients. It has been described that this 

genomic abnormality may confer a high incidence of atypical morphology, classical 

immunophenotype with CD38 positivity and intermediate incidence of IGVH somatic 
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hypermutation. Clinicobiological features and outcome show that this cytogenetic subset of 

CLL should be allocated in an intermediate-risk category (Cuneo et al., 2004). 

1.2.5.2 Immunoglobulin variable heavy chain gene mutational status 

About 40-50% of patients with CLL present in their tumor cells somatic hypermutation of the 

variable genes of the heavy chain of the immunoglobulin genes (IGHV). This IGHV mutational 

status can differentiate two different clinical forms of the disease. If the homology with the 

germ line gene is higher than 98%, patients are considered to have umutated IGHV genes. This 

threshold, although arbitrary, was chosen because polymorphisms, which are quite common in 

VH genes, can account for that degree of disparity (Matsuda et al., 1993).  

Patients with unmutated IGHV genes (U-CLL patients) have a more aggressive condition, 

including advanced, progressive disease, adverse cytogenetic features and resistance to 

therapy, than those with mutated IGHV genes (M-CLL patients) (Damle et al., 1999; Hamblin et 

al., 1999). Cases in the borderline (i.e. cases with an IGHV homology of 97-98%) seem to have 

an intermediate prognosis (Hamblin et al., 2008). This clinical diversity underlines some 

biological differences between the two groups. They show different levels of ZAP70 (see 

section 2.4.3), different telomere lengths and different likelihood of carrying genetic lesions. 

The prognosis significance of IGHV mutations is independent from other factors, particularly in 

early stages of the disease. Although the role of IGHV mutational status in guiding therapy 

should not be used as a criteria to guide treatment decisions in a routine daily setting, its use 

in current and future randomized clinical trials will allow its validation prospectively. However, 

its determination is expensive and time-consuming to be introduced in the clinical routine and 

therefore there have been many attempts to identify a surrogate marker. 

1.2.5.3 ZAP70 expression 

ZAP70 is a tyrosine kinase involved in signaling through T cell receptor. Strikingly, a group of 

CLL patients also expresses ZAP70. This group of patients shows a more aggressive disease. 

ZAP70 expression has been associated with unmutated CLL cases and has been described as a 

better predictor of the need of treatment (Rassenti et al., 2004). However, up to 25% of cases 

present discrepancy with the mutational status of IGHV, probably due to the difficulty to 

standardize ZAP70 measurement. Although the current available evidence is not strong 
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enough to incorporate this parameter in the routine practice, this marker may be helpful in 

providing further information and is routinely determined in prospective clinical trials 

1.2.5.4 CD38 expression 

Expression of CD38 on leukemic cells was the first marker to be correlated with IGHV 

mutations (Damle et al., 1999). Nevertheless, eventually it was found that the relationship is 

not absolute and according to some studies, CD38 expression may vary over the time. 

Consequently, this prognostic marker is considered only in the context of clinical trials but not 

in the clinical routine. 

1.2.6 Treatment 

CLL patients show an extremely variable course. While some have a life expectancy similar to 

that of the general population, others show a rapidly fatal course and die months after 

diagnosis. Up to half of all patients with early-stage disease eventually will require treatment. 

In the last few years, there has been a remarkable increase in the Complete Resoponse (CR) 

rate (assessed by physical examination and complete blood count) that has increased from less 

than 10% with the use of alkylators to 60-70% with modern chemoimmunotherapy regimens 

(Bosch et al., 2008; Tam et al., 2008). These advances are extremely relevant because CR, 

although not sufficient to reach disease eradication, is associated with longer survival. Patients 

in CR can carry up to 1010 malignant cells that define the so called minimal residual disease 

(MRD), which is the level of disease that can be detected by the most sensitive available 

technique. MRD status seems to predict the outcome of the disease (Bosch et al., 2008; 

Moreton et al., 2005) but its utility has not been yet fully validated and should not be used as a 

basis for treatment decisions outside clinical studies. 

In spite of the development of new prognosis markers, treatment is initiated only if the disease 

is symptomatic or progressive, or if complications such as bone marrow failure occur. In fact, 

randomized trials have shown no survival advantage using chlorambucil in early stage CLL (Rai 

0, Binet A) (Chemotherapeutic options in CLL: a meta-analysis of the randomized trials. CLL 

Triallists’ Collaborative Group, J Natl Cancer Inst. 1999; 91:861-8).  

DNA-damage agents such as chlorambucil were initially used to palliate symptoms in CLL 

patients. However, chlorambucil treatment yielded less than 10% CR and therefore purine 
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analogs were introduced. Fludarabine showed an increase in overall response and CR but 

failed to impact on overall survival. Subsequently, combinations of fludarabine and 

cyclophosphamide (with non-overlapping mechanisms of action) demonstrated to be more 

potent than fludarabine alone, although this again did not translate into improved survival. 

New treatment options such as chemotherapy combined with immunotherapy or stem cell 

transplantation (in the case of young and/or fit patients) that have been developed during the 

last ten years result in complete remissions in  almost 50% of the patients and a treatment-

free time of more than 5 years (Table 4).  

One of the challenges in CLL treatment is to overcome the myelosuppression and the 

opportunistic infections in older patients. Some alternatives showing lower toxicity are 

alemtuzumab (anti-CD52 antibody), bendamustine (hybrid purine analog/alkylator drug) or 

lenalidomide. Treatment must be tailored to the fitness level of the patient in order to tolerate 

more toxic combination therapies. Other of the challenges of CLL therapy is the management 

of relapsed CLL patients, which is greatly dependent on TP53 and ATM alterations and 

interaction of tumor cells with the microenvironment. In these cases, alternative therapies 

such as glucocorticosteroids or alemtuzumab (anti-CD52) are chosen. 

Table 4. Outcomes with front-line therapies in CLL (adapted from Updates in chronic lymphocytic 

leukemia, Michael J Keating, Emili Montserrat, 2009) 

 

Chemotherapeutic agent Overall response 
Complete 

response 

MRD-negative 

response 

Remission 

duration 

Chlorambucil (alkylating agent) 40-60% <10% Not expected 1-2 years 

Fludarabine (purine analog) 60-80% 10-20% <15% 1.5-3 years 

Fludarabine and 

cyclophosphamide 
80-90% 25-35% 15-25% 3-4 years 

Fludarabine , cylophosphamide 

and rituximab 
95% 72% 40-50% 6-7 years 

 

Finally, in the absence of any other therapies capable of improving outcome, the treatment of 

choice for younger patients with poor-risk CLL may indeed be allogeneic stem cell 

transplantation. 

Considering the increasing knowledge at the molecular level of the disease and the factors that 

may determine the response to treatment, CLL treatment is moving toward an increasingly 

personalized therapy (Hallek, 2009). Despite of the considerable progress that has been made 
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in investigating the biology and genetic alterations of the disease, treatment outcomes are still 

unsatisfactory and survival prolongation has not yet been achieved (Brenner et al., 2008). 

1.3. Why CLL?  

Considering the long periods of stable disease and the multiyear survival of the patients who 

eventually require treatment, it is striking that CLL still attracts a remarkable amount of 

interest in the scientific community. CLL accounts only for less than 1% of all new cancers and 

all cancer deaths in the United States per year, compared to 12.9% for lung cancer, the most 

lethal cancer. The interest shown by the scientific community can be underlined by the striking 

number of publications that are yielded after Pubmed search on “Chronic lymphocytic 

leukemia” (8721). Among the factors that render CLL an interesting subject for basic and 

clinical research, the most obvious are the ease of obtaining blood and bone marrow samples 

repeatedly with little discomfort or risk to patients and the possibility of achieving long-term 

follow-up studies due to the prolonged survival of the patients. Other factor that has 

contributed to the expansion of the research in the field of CLL is the development of 

molecular techniques such as flow cytometry and microarrays. Furthermore, the expansion of 

monoclonal antibodies has allowed the study and characterization of complex cellular 

populations,t heir differentiation and activation stages as well as their proliferation potential. 

This fascination at the molecular level has extended to the expansion of clinical trials in order 

to discover new treatment strategies that could be chosen considering the individual patient 

characteristics. Furthermore, CLL constitutes a model to study how genetic and epigenetic 

alterations, antigenic stimulation and microenvironment stimuli (see below) can cooperate in 

cancer pathogenesis. Finally, CLL represents a challenge in translating this knowledge at the 

molecular level into the clinical practice. 

1.4. Biology of chronic lymphocytic leukemia 

1.4.1 Cell of origin 

The fundamental molecular defects and events that result in transformation of a single normal 

B cell into an expanded clonal population of long-lived CLL cells are largely unknown. This has 

made the establishment of the cellular origin of CLL difficult.  Originally, it was thought that CLL 

cells derive from CD5+ B cells because leukemic cells always express CD5 and all mouse models 

that mimic human CLL show an accumulation of tumor CD5+ B cells. However, it is still unclear 
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whether mouse CD5+ population of B cells is analogous to human CD5+ B cells. In mouse, CD5 

expression identifies a distinct lineage (B1-B cells) that produces mainly IgM of low affinity and 

with a broad specificity for bacterial components (T independent antigens) (Montecino-

Rodriguez et al., 2006). However, CD5+ B cells in human are functionally not different from the 

rest of B cells (Dighiero, 1997). Moreover, CD5 expression can be modulated upon different 

stimuli (Caligaris-Cappio et al., 1989; Nakamura et al., 1988). These data suggest that CD5 

expression might be just a reflection of the fact that CLL cells might have been activated at 

some point of their natural history. Thus, the immunophenotype of CLL cells (IgM+, IgD+, 

CD27) corresponds to the one of memory B cells that must have experienced antigen 

interaction (Damle et al., 2002).  

In addition, either patients with mutated or unmutated IGHV showed a gene expression 

pattern that was most similar to memory B cells than to naïve CD5+ cells (Klein et al., 2001). 

Although these two groups of patients do not represent two different diseases, they seem to 

have chosen different pathways of differentiation that determine in a major way the outcome 

of the disease (see above) and the behavior of tumor cells themselves. Several findings suggest 

that mutated CLLs (M-CLL) derive from post-GC B cells. First, somatic hypermutation is a 

process that takes place mainly in the context of germinal center reactions. Second, one third 

of M-CLLs carry mutations in BCL6, the master regulator of GC differentiation, something that 

happens only in cells that have undergone GC somatic hypermutations (Pasqualucci et al., 

2000). In addition, some M-CLL cases also carry IgG1 or IgG3 subtypes, typically associated 

with the class switching process of the GC (Hashimoto et al., 1995).  On the other hand, 

unmutated CLL cells (U-CLL) express poly and autoreactive antibodies, suggesting that they 

derive from B cells that have been activated in a T independent manner or via T dependent 

autoantigens (Catera et al., 2008; Chu et al., 2008; Lanemo Myhrinder et al., 2008). These B 

cells that are chronically stimulated may be prevented from undergoing apoptosis due to the 

acquisition of primary transforming events and might acquire characteristics of activated 

memory B cells without undergoing GC reactions. 

1.4.2 CLL B cell microenvironment 

The importance of the microenvironment in CLL is easily appreciated by the fact that despite 

their longevity in vivo, CLL cells undergo spontaneous apoptosis under in vitro conditions 

(Collins et al., 1989). This process can be prevented by co-culture with stroma cells 
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(Panayiotidis et al., 1996), “nurse-like cells” (adherent cells found in peripheral blood of CLL 

patients that are able to provide survival cytokines -APRIL, BAFF, CXCL12- to leukemic cells) 

(Burger et al., 2000) or the presence of cytokines or T-cell related molecules such as CD40L 

(Ghia et al., 2005). These data suggest that the resistance to apoptosis and the survival 

advantage of CLL cells is not only an intrinsic characteristic, but it also depends on external 

survival stimuli. The interactions with the microenvironment take place within lymph nodes 

and bone marrow in the so called proliferation centers or pseudofollicles (Figure 3). 

 

Figure 3. Scheme of a proliferation center in a lymph node. Interaction of CLL B cells with cells from the 

microenvironment provides survival signals  

These are special anatomic structures observed in CLL but not in any other lymphoid neoplasm 

where leukemic cells with a blast-like phenotype show a high proliferative activity (indicated 

by Ki67 staining). Interestingly, proliferation centers can also be found in some systemic 

autoimmune diseases, supporting the importance of microenvironment interactions. 

Correlations between size and number of PC and the lymphocyte doubling time strongly 

indicate that PC are the reservoir of dividing leukaemic cells (Pileri et al., 2000), which 

demonstrates that CLL is not a static disease as it had been considered, but a dynamic one 

(Messmer et al., 2005) 
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CLL cells may create a microenvironment composed of T and stroma cells that supports their 

own survival. T cells provide short-term antiapoptotic signaling via IL10, IFNα and IFNγ 

production while stromal cells secrete cytokines and chemokines that attract CLL cells and help 

to maintain a supportive microenvironment (Ghia et al., 2005). The homing of tumor cells to 

PC is dependent on the expression of functional chemokine receptors on CLL cells such as 

CXCR4 which binds CXCL12 and CCR7 which binds CCL19 and CCL21(Burger et al., 1999; Till et 

al., 2002). 

Considering these observations, it is hypothesized that the small lymphocytes circulating in the 

blood are the offspring of a proliferating pool present in the tissues.  

1.4.3 Pathways involved in CLL pathogenesis 

In the last years, our knowledge about the biological basis of CLL has been substantially 

improved and has further described CLL as a multifactorial disease that cannot be explained 

either by a unique genetic alteration or a well defined accumulation of pathogenic hits. On the 

contrary, it seems that biology is showing a complex puzzle not yet fully understood in which 

different signaling pathways seem to be involved. Some of them will be described in this 

section. 

1.4.2.1 B cell receptor 

BCR signaling plays two major roles in B cells: first, it is essential to decide cell fate and second, 

it presents the antigen to the T cells in order to allow a complete immune response. The BCR is 

a complex made up of two Ig heavy and two light chains coupled to two signaling components, 

CD79A and CD79B (also called Igα and Igβ)  (Niiro and Clark, 2002). Upon antigen binding LYN 

and SYK kinases are activated. LYN phosphorylates the ITAM (immunoreceptor tyrosine-based 

activation motifs) domains in the cytoplasmic tails of CD79A and CD79B, which in turn 

facilitates the activation and recruitment of SYK to the signaling complex. Also FYN, LCK and 

FGR, members of the Src family of kinases, participate in these initial steps. Signaling continues 

by phosphorylation and activation of the tyrosine kinase BTK and some adaptor proteins such 

as VAV3 and BLNK. These events lead to activation of different signaling pathways that include: 

i. Phospholipase Cγ2 (PLCγ2). It generates inositol 1, 4, 5 trisphosphate and 

dyacilglycerol, both second messengers that are required for the release of 

intracellular calcium and the activation of protein kinases C (PKC). Subsequently, 
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calcium flux and PKC activation lead to activation of mitogen activated protein kinases 

(ERK and p38) and transcription factors (NF-kB and NFAT) 

ii. Phosphatidylinositol 3 kinase (PI3K). It generates phosphatidylinositol 1, 4, 5 

trisphosphate and facilitates the recruitment of BTK, BAM32 and PLCγ2 to the BCR 

complex. PI3K also activates the protein serine/threonine kinase AKT, involved in 

survival signaling. 

iii. RAS/RAF pathway. 

In order to modulate the intensity and duration of BCR signaling, some phosphatases (SHP1 

and SHIP) can be recruited to the immunoreceptor tyrosine-based inhibitory motifs (ITIMs) of 

several BCR co-receptors such as PIRB, FcγRIIB or CD22.  

Antigenic stimulation has been recognized as a key player in the pathogenesis of CLL, as it is 

demonstrated by the fact that the IGHV mutational status is able to classify CLL patients in two 

groups with different prognosis. M-CLL cells must have encountered an antigen, as indicated 

by their mutational status, and appear to be unresponsive resembling a B cell that has become 

anergic after antigen stimulation. On the other hand, although U-CLL cells have not undergone 

the typical SHM process in the context of GCs, also express competent BCR that can be 

stimulated in vitro.  

Moreover, CLL cells express a restricted IGHV repertoire, which is an unexpected situation 

considering that the chances that two independent B cell clones might carry identical Ig are 

virtually negligible (1:10-9 to 1:10-12). In fact, some unrelated CLL patients share closely 

homologous Ig molecules that have been defined as “stereotyped receptors”. These are 

defined by the usage of the same IGHV/D/J germline genes, the usage of the same IGHD gene 

reading frame and a VH CDR3 amino acid identity of 60% or higher (Messmer et al., 2004). The 

third heavy chain complementary determining region (CDR3) is one of the 3 highly variable 

stretches which form loops in the Ig three dimensional structure and interacts directly with 

antigens. It is formed during the rearrangement process at the junction of the V, (D) and J 

genes and has the highest variability. The presence of similar stereotyped receptors argue in 

favor of the possibility that a limited set of discrete antigenic elements may actually be 

responsible for the selection and further expansion of the CLL clone.  
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Several studies have shown that the specificity is often autoreactive, against ssDNA, 

cardiolipin, myoglobin, actin or Ig themselves (rheumatic factors) (Ghiotto et al., 2004; Jang 

and Stollar, 2003; Stamatopoulos et al., 2007). In addition, some Igs are directed against 

microbial epitopes (Loomes et al., 1984). Strikingly, 26% of CLL patients carry one of more than 

100 stereotyped receptors that have been described in CLL and approximately 1% carries 

virtually identical Ig (Murray et al., 2008; Stamatopoulos et al., 2007). Stereotypy occurs in U-

CLL with a higher frequency (40% vs 11% in M-CLL (STAMATOPOULOS) which is in accordance 

with the observation that these cases usually express polyreactive BCR to autoantigens and 

have been stimulated in a T-independent manner. BCR sequences from M-CLL show more 

restricted antigen specificity. Nevertheless, in the absence of mutations, these sequences 

would also show autoreactivity, suggesting that both CLL groups originate from a precursor 

with autoreactivity (Herve et al., 2005). Furthermore, some stereotyped receptors seem to be 

related to prognosis. This is the case of IGHV3-21 BCR that also shares almost identical amino 

acid sequences of the VH CDR3 region and is biased to express lambda light chain isotype. This 

BCR is able to identify a subset of CLL patients with inferior outcome independently of 

mutational status (Lin et al., 2003; Thorselius et al., 2006). 

CLL cells exhibit a functional BCR pathway (Mockridge et al., 2007) that seems to be more 

easily activated in the group of U-CLL, probably due to the fact that this group usually 

expresses also higher levels of ZAP70, an apical kinase of the pathway, and CD38. Some 

elements of the BCR pathway have been shown to be constitutively activated in B CLL cells: Lyn 

tyrosine kinase activity is high (Contri et al., 2005), levels of SYK are higher in cells with a 

proliferative response upon BCR stimulation and p38 is constitutively active (Sainz-Perez et al., 

2006)  as well as NF-kB and NFAT transcription factors (Furman et al., 2000; Schuh et al., 1996). 

Taken together these observations provide a rationale for pharmacological inhibition of BCR 

signaling in CLL. Currently, there are more than 50 clinical trials targeting BCR regulatory 

molecules (Pleyer et al., 2009) that will better determine its value as therapeutic strategy. 

1.4.2.2 Apoptosis 

Initially, CLL was considered a static disease caused by the accumulation of lymphocytes with 

defective apoptotic mechanisms. Although it has been shown that there is a pool of CLL B cells 

that proliferate actively, defects in apoptosis still play an important role in the maintenance of 

the malignant cells.  
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Since apoptosis is essential during development and tissue homeostasis, it is a tightly regulated 

process that once initiated triggers permeabilization of the outer membrane of the 

mitochondria, caspase activation and cell death. A variety of signaling cascades regulate a 

complex network composed mainly by proteins of the Bcl-2 family. The core of this system is 

made of the proapoptotic members Bax and Bak. They are regulated by antiapoptotic proteins 

such as A1, Bcl-2, BCLXL and Mcl-1 and also by “BH3-only” proteins. The latter group is further 

divided in sensitizer/derepressors (BAD, BIK, Noxa, PUMA) and direct activators (BID and BIM) 

(Chipuk et al., 2010). Binding of BH3-only proteins to pro-survival proteins is highly selective 

and varies widely in affinity (Chen et al., 2005). For example, Bim, Puma and Bid bind to all the 

pro-survival proteins but Bad binds only to Bcl-2, Bcl-xL and Bcl-w and Noxa binds to Mcl-1 and 

A1.  

CLL cells constitute a paradigm of cells with deregulated apoptosis, not only at the level of Bcl-

2 proteins but also upstream of Bcl-2 proteins, at the level of deregulated signaling leading to 

exacerbated apoptosis. In fact, one of the hallmarks of CLL is the high expression of Bcl-2. 

Although, the mechanisms that trigger this overexpression are not well known, different 

explanations have been proposed including loss of miR15 and miR16 (i.e. patients with 13q 

deletions) (Cimmino et al., 2005), expression of nucleolin (Otake et al., 2007) or 

hypomethylation of the promoter (Hanada et al., 1993). Also expression of Mcl-1, BAG-1, Bax 

and Bak was commonly found in circulating CLL cells (Kitada et al., 1998). Interestingly, loss of 

Mcl-1 results in apoptosis of CLL cells and its overexpression prolongs survival of leukemic cells 

treated with apoptotic stimuli (Pedersen et al., 2002). Recent data have shown a relationship 

between Mcl-1 expression and other commonly used prognostic markers such ZAP70, CD38 

and IGHV mutational status (Pepper et al., 2008) and Mcl-1 protein levels could predict 

response to chemoimmunotherapy (Awan et al., 2009).  

The balance between different members of the Bcl-2 family has also been shown to be altered 

by hyperactivation of different non-death receptors such as CD40, which is usually stimulated 

in the context of proliferation centers, triggering upregulation of Mcl-1, A1 and BCL XL among 

others (Smit et al., 2007). Moreover, signaling through BCR (see above) can induce Mcl-1, via 

PI3K/AKT pathway (Longo et al., 2008; Ruiz-Vela et al., 2008). Defects in death receptor 

sensitivity have also been described in CLL. In fact, CLL cells are resistant to CD95/Fas  

crosslinking, probably as a consequence of the overexpression of TOSO, a CD95 regulator 

(Proto-Siqueira et al., 2008; Tinhofer et al., 1998). 
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1.4.2.3 NF-kB pathway 

The NF-kB proteins are a family of structurally related transcription factors that regulate 

differentiation and survival in B cells (Liou et al., 1994). In mammals this protein family 

includes p50 (NF-kB1), p52 (NF-kB2), p65 (Rel A), c-Rel, and Rel B. In the inactive state, NF-kB 

proteins occur as homodimeric or heterodimeric complexes in the cytoplasm, in some cases 

bound to inhibitor proteins (IkB). Upon different stimuli, including BCR signaling, IL4, BAFF or 

CD40 engagement, NF-kB proteins can be activated via the classical or the alternative 

pathways. Stimulation via the former one leads to phosphorylation of IĸB, which is then 

ubiquinated and degraded allowing translocation of NF-kB subunits (Rel A and p50) to the 

nucleus and transcription of NF-kB target genes. Activation of the alternative pathway 

promotes processing of p100 and p105 to p52 and p50 respectively and allows their 

translocation into the nucleus.  

Induction of NF-kB activity protects cells from apoptosis induced by a variety of stimuli 

including exposure to TNF-α, chemotherapy, and ionizing radiation (Beg and Baltimore, 1996),  

but it has also been shown to inhibit apoptosis (Furman et al., 2000).  The antiapoptotic 

function of NF-kB resides in its capacity to activate the transcription of proteins that inhibit 

both the mitochondrial and the death receptor apoptosis pathways, such as Bcl-2 family of 

proteins (Bcl-2, Mcl-1, BCL-XL and A1/BFL1) and endogenous inhibitors of apoptosis (survivin, 

IAP1, IAP2, cFLIP, TRAF1 and TRAF2). NF-kB additionally promotes lymphocyte proliferation by 

inducing several cytokines and other ligands such as IL-2, IL-6 or CD40L.  

Several studies have demonstrated that the NF-kB pathway is constitutively activated in CLL 

cells as compared with normal B lymphocytes (Cuni et al., 2004; Furman et al., 2000). 

However, the mechanisms of NF-kB activation remain uncertain and no genetic alterations 

have been identified. On the contrary, NF-kB activation is likely related to the interaction of 

leukemic cells with the tumor microenvironment. In fact, T cells found in proliferation centers 

in lymph nodes express CD40L that upon CD40 engagement triggers PI3K/AKT mediated NF-kB 

signaling (Cuni et al., 2004; Decker et al., 2000; Ghia et al., 2002). VEGF is another 

microenvironment factor that could mediate activation of NF-kB via CD40. CLL cells express 

not only VEGF receptors but also VEGF, suggesting an autocrine stimulation of the pathway 

(Farahani et al., 2005). Finally, BAFF and APRIL, both cytokines produced by NLC support in 

vitro survival o B CLL cells by activation of NF-kB (Endo et al., 2007).  
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Recent work has shown that p65 DNA binding ability measured in blood  CLL cells is associated 

with advanced Binet stage and is an independent predictor marker of overall survival and time 

to subsequent treatment (Hewamana et al., 2008a). Moreover, ZAP70 levels correlate with 

p65 phosphorylation status and its DNA binding capacity (Lopez-Guerra et al., 2009), 

underlining the relevance of this pathway in the biology and development of treatment 

resistance in CLL. 

In this context, inhibition of NF-kB could be a promising therapeutic strategy, which has been 

shown to induce apoptosis of CLL cells (but not normal B cells) and to bypass the p53 

alterations observed in patients with bad prognosis and the discovery of useful prognostic 

markers could help in the patient selection (Lopez-Guerra et al., 2009). 

1. 5.2.4 PIM kinases 

The identification of PIM1 protein (Proviral Integrations of Moloney virus) in murine lymphoma 

models (Cuypers et al., 1984) suggested a role of this kinase in cancer biology. Now, we know 

that three proteins (PIM1, PIM2 and PIM3) comprise this family of well conserved serine 

threonine kinases. Subsequent studies have shown that PIM kinases can cooperate with other 

oncogenes such as MYC and BCR/ABL, mainly in lymphomagenesis (Breuer et al., 1989; 

Nieborowska-Skorska et al., 2002; Zhang et al., 2008; Zippo et al., 2007) and are also involved 

in the development of chemotherapy resistance (Mumenthaler et al., 2009; Xie et al., 2008) 

Reinforcing this observation, high levels of PIM1 and PIM2 have been detected in 

haematological malignancies, including CLL (Amson et al., 1989; Cohen et al., 2004; Huttmann 

et al., 2006) and high levels of PIM3 have been described in solid tumors(Fujii et al., 2005; Li et 

al., 2006; Zheng et al., 2008). Compensatory effects among the different members of the 

family, although described have not been well characterized. They are regulated not only at 

the transcriptional level, but also at the post-transcriptional level. Upstream regulators, 

although not well characterized, include JAK/STAT, PI3K/AKT and NF-ĸB pathways that can be 

activated via growth factor receptors, IL receptors, TNFα receptors and proteins from Epstein 

Bar virus among others.  

Their role in tumorigenesis has been related to a variety of cellular processes. PIM kinases 

regulate apoptotic cell death through regulation of members of the Bcl-2 family such as the 

proapoptotic protein BAD, which once phosphorylated is targeted for degradation. Also 
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p21CIP/WAF1 and p27KIP1 cell cycle regulators have been shown to be phosphorylated by PIM 

kinases allowing G1-S transition.  Cooperation with MYC is mediated by modification of the 

Cdc25A cell cycle phosphatase and by phosphorylation of H3 that in turn allows transcription 

of c-MYC targeted genes. Protein-protein interaction screens have recently provided a wider 

list of putative PIM substrates that includes transcription regulators such as NFAT1, p65, 

RUNX1, RUNX3, apoptosis regulators such as NUMA, and other molecules involved in different 

cell processes (PTPR0, SOCS1, SCOS3 and AKTS1 among others). Taken together, these 

observations supported the rationale for the development of PIM kinase inhibitors that have 

already been proved to be effective in in vitro and in vivo models (Chen et al., 2009; Lin et al., 

2010; Morwick, 2010). 

1.5.4 Monoclonal B cell Lymphocytosis 

Clonal B lymphocytes with CLL immunophenotype have been detected in 3.5% of the general 

population and their frequency increases with age, up to >7% in individuals older than 70. This 

situation is known as Monoclonal B cell Lymphocytosis (MBL) and is distinguished from CLL 

because less than 5000 monoclonal lymphocytes per mm3 (although with the same 

immunophenotype) are  detected for more than 3 months in the absence of enlarged lymph 

nodes/spleen or other lymphoproliferative disorders (Marti et al., 2005).  

Higher frequencies of MBL have been detected in relatives of patients with CLL, regardless of 

their age (Rawstron et al., 2002), although its incidence is 100 times higher than CLL incidence 

(Marti et al., 2007). Moreover, MBL clones often carry genetic lesions typical of CLL such as 

13q14 deletion, suggesting that MBL might be a precursor state of CLL. On the other hand, 

MBL clones carry almost always somatic mutations (Landgren et al., 2009). This might be 

related to the fact that U-CLLs that have a more aggressive behavior might not persist as a 

stable situation, but progress more rapidly to the stage of leukemia. Although still 

controversial, these observations might support MBL as the original cell carrying some sort of 

advantage in which other abnormalities may take place and lead to development of some 

cases of CLL.  

1.6. Translating biological insights into treatment  

Over recent years, the understanding of biological mechanisms in CLL has dramatically 

developed, but we are only starting to use the increasing knowledge of biological subgroups to 
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alter the clinical management of CLL. One disadvantage in this process is that the clinical 

course is generally benign in the majority of patients and therefore clinical endpoints are 

slowly reached. This makes the translation of biological insights into clinical practice more 

difficult. In spite of this, the growing number of new therapeutic approaches that act 

differently from classical chemotherapy shows great promise. Some examples include drugs 

that target different molecules of the BCR pathway (Dasatinib, Imatinib, PP2 and others), Bcl-2 

family (Oblimersen, GX15-070 and ABT-263 among others (Kang and Reynolds, 2009)) or the 

microenvironment (thalidomide and lenalidomide) (for a review see (Pleyer et al., 2009)). In 

fact, there are currently 1041 clinical trials on CLL all around the world (871 in USA and 131 in 

Europe) that aim at demonstrating the value of new therapeutics and comparing them with 

the classical treatments and drug combinations. The development of new targeted treatments 

in the clinic must be supported by pre-clinical studies. In spite of the existing CLL animal 

models (Bichi et al., 2002; Planelles et al., 2004; Zapata et al., 2004) that seem to resemble 

CLL-like diseases, not enough preclinical in vivo drug studies have been carried out. 

Fortunately, primary CLL cells can easily be obtained from peripheral blood samples and 

cultured in vitro. Since these in vitro models underestimate the role of the microenvironment 

in the pathogenesis of the disease and in the drug sensitivity mechanisms, a lot of interest has 

moved to the development of xenograft models using CLL patient samples (Durig et al., 2007) 

and to the study of the microenvironment of CLL cells on paraffin embedded samples from CLL 

biopsies. 

Since the development of microarray studies, it has been demonstrated that all CLL patients 

share a characteristic gene expression signature and therefore CLL is considered a unique 

entity (Rosenwald et al., 2001). However, it has also been shown that groups of patients with 

different characteristics from a biological point of view (i.e. M-CLL and U-CLL) have also some 

differences at the level of gene expression profile. Further studies have revealed that this 

molecular heterogeneity observed at the gene expression level can define the variable clinical 

course of this disease. Thus, previous work from our laboratory has shown that a specific gene 

signature is able to identify three groups with different treatment-free survival probabilities 

(Rodriguez et al., 2007). These findings are of special interest in the context of clinical settings 

because still, one of the main challenges in CLL management is the distinction at initial clinical 

stages of those patients with higher risk of progressing to a more aggressive stage. These gene 

expression profiling studies could also be used to identify molecular mechanisms underlying 
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resistance and sensitivity, being helpful in the choice of more individualized and successful 

treatments. 

In the last decade, a strategy to link clinical characteristics of a disease, genomics (including in 

vitro and in vivo models) and drug development has been pursued. Some successful attempts 

include the development of gene-signatures that can help to predict cancer prognosis 

(Mamma Print, Agendia, Oncotype DX, Genomic Health, H/I test, AviaraDx) or the 

development of bioinformatic tools that try to connect gene expression profile (GEP) 

databases and drug effectiveness (Connectivity map). 

The final aim in this field will be to identify CLL subgroups that are defined by specific biological 

characteristics with the goal of improving both response rates and overall survival. 
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Chronic lymphocytic leukemia (CLL), the most frequent form of adult leukemia in western 

countries, is characterized by a highly variable clinical course.  

Increasing evidence shows that the defective apoptosis of CLL cells can be ascribed not only to 

intrinsic defects of the neoplastic cells, but also to extrinsic factors found in the 

microenvironment that influence the behavior of the neoplastic cells. 

The recognition of novel molecular variables identified through the use of high-throughput 

molecular analytical techniques could contribute to a better knowledge of the pathogenesis of 

the disease, the development of more accurate biological predictive factors and the 

identification of new therapeutic targets in CLL. Initial gene expression profiling analysis of CLL 

suggested that all CLL cases could be considered as a single entity with a homogeneous 

signature (Klein et al., 2001). However, the differences shown by immunoglobulin variable 

region (IGHV) mutational status and B cell receptor (BCR) signaling among other features 

suggest a level of heterogeneity that should be considered (Rodriguez et al., 2007) for the 

proposal of therapeutic targeting.  

Hence, the objectives of this work were the following: 

a. To study the microenvironment of CLL cells in lymph node samples, the interactions 

with other cell populations and to analyze the relevant pathways that could be 

involved in the pathogenesis of the disease, in particular the NF-ĸB pathway.  

b. To select some potentially active compounds in CLL following a rational approach 

based on the acquired knowledge of the molecular basis of the disease, and to develop 

an experimental procedure to test them using ex vivo culture of CLL cells. 

c. To investigate whether the variable sensitivity of CLL cells to these compounds can be 

explained by the molecular heterogeneity of the samples. 

d. To propose markers for patient stratification and determination of the activity of each 

compound. 
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2.1. Collection and processing of primary samples 

2.1.1 Patient samples 

For the first project, a group of 72 paraffin-embedded consecutive B-CLL cases submitted for 

diagnosis or second opinion to the CNIO pathology laboratory between 2000 and 2007 was 

analyzed. Forty-eight of these cases were included in a Tissue Microarray (TMA), whereas the 

24 additional cases were analyzed on whole tissue-sections. The majority of CLL tissues were 

lymph nodes, with the exception of one bone marrow, spleen, skin and breast tissue samples. 

For immunofluorescence staining, frozen tissue from some of these samples was used. Criteria 

for the diagnosis of CLL were based on WHO recommendations (WHO 2008). For the second 

project, a total of 50 blood samples from CLL patients were obtained from different spanish 

hospitals. The median age of the series was 74, with a male: female ratio of 1.7: 1, which is 

representative of the disease. Sample characteristics are summarized in Table 5. 

All samples were collected by the Tumor Bank at CNIO. The whole project was supervised by 

the Ethical Committee of the Instituto de Salud Carlos III and patients signed an informed 

consent.  

2.1.2 Processing of blood samples and storage 

All blood samples were collected in tubes containing Heparin as anticoagulant. Thirty of them 

were processed by gradient purification of peripheral blood mononuclear cells (PBMC) in Ficoll 

(GE Healthcare). Briefly, samples were laid slowly on to an equal volume of Ficoll in a falcon 

tube and centrifuged at 700 g for 20 to 30 minutes at room temperature (RT). Then, the ring in 

the interphase containing the PBMCs was washed wiht PBS. When erythrocytes were observed 

in the pellet, an erythrocyte lysis was performed with Buffer EL, (Quiagen, Hilden, Germany) 

for 10 minutes on ice. Then, the sample was centrifuged and washed again with PBS. 

Twenty blood samples were processed either by Microbeads B (Miltenyi) cell negative 

selection kit or by B cell selection Rosette Sep kit (Stem Cell), according to manufacturer 

recommendations as briefly describe here. Final concentration of B cells was always >95%. 

B cell isolation Kit II (human) (Miltenyi Biotec, Germany). Cells were resuspended in 40µL 

buffer (PBS containing 0.5% bovine serum albumin and 2mM EDTA) per 107 total cells.  Then, 

10µL of Biotin-Antibody Cocktail per 107 total cells were added and incubated at 4ºC 10 
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minutes. 30 µL of buffer per 107 total cells and 20µL of Anti-Biotin Microbeads were added and 

followed by 15 minutes incubation at 4ºC. Cells were resuspended up to 108 cells 500µL of 

buffer. This suspension was applied onto a MACS column (after it had been rinsed with buffer), 

properly placed in the magnetic field of a suitable MACS separator. Unlabeled cells that pass 

through the column were collected. Also cells recovered after some additional washes. 

RosetteSep® kit for B cell negative selection. RosetteSep® Human B Cell Enrichment Cocktail 

was added at 50 μL/mL of whole blood to the sample and mixed well. After 20 minutes 

incubation at room temperature, the sample was diluted with an equal volume of PBS + 2% 

FBS (fetal bovine serum), mixed gently and layed on top of the density medium (Ficoll, GE 

Healthcare, or RosetteSep® DM-L, Stem cell Technologies Inc.). The mixture was centrifuged 

for 20 minutes at 1,200 x g at RT, with the brake off. The enriched cells were then removed 

from the plasma interface and washed with PBS. If necessary, red blood cells were lysed as 

described above.  

Between 20 and 40 million cells were frozen per cryotube in freezing medium containing 30% 

of RPMI medium, 60% of fetal bovine serum (FBS) and 10% of DMSO and stored up to long 

periods in liquid Nitrogen. Also aliquots for DNA (kept at -20ºC) and RNA extraction (stored at -

80ºC in Trizol reagent) were separated. 

2.1.3 B cell purity determination after selection 

Aliquots of freshly purified B cells (100 µL) were separated in cytometer tubes. Cells were 

labeled with CD19-PE (Miltenyi Biotec, # 130-091-247) or CD3-FITC (BD, Biosciences, San José, 

CA, USA) antibodies for 15 minutes at RT, washed with PBS and fixed with 2% of 

Paraformaldehyde (PAF) for 10 minutes at RT. After a final PBS washing, cells were 

resuspended in 200 µL of PBS, 10,000 events were acquired using a FACScalibur device and 

analyzed with CellQuest Pro software (BD Bioscience, Franklin Lakes, NJ, USA). If acquisition 

could not be carried out immediately after labeling, samples were kept at 4ºC up to several 

days until acquisition. 

2.2. Immunohistochemistry 

2.2.1 Tissue microarray construction 

Representative areas from 48 formalin-fixed, paraffin-embedded lymph nodes infiltrated by 

CLL were selected on H&E-stained sections and two 1-mm-diameter tissue cores were 
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obtained from each specimen. The tissue cores were arrayed into a new paraffin block using a 

tissue microarray (TMA) workstation (Beecher Instruments, Silver Spring, MD) following 

described methods (Cuni et al., 2004). The TMA construction was carried on at the 

Immunohistochemistry Unit of CNIO 

Tabla 5. Peripheral blood samples collected. ND, no data available. M, mutated; U, unmutated. 

Sample 

code 
Stage 

Lymphocyte 

count 

CD19+/ 

CD5+ 
Cytogenetics ZAP 70 

Mutational 

status of 

IGHV 

CD38 

70446 A0 10200 73.0% ND ND U - 

70447 A0 24500 62.0% No TP53 mutations ND M - 

70448 ND ND ND No TP53 mutations ND M ND 

80002 AI 41760 66,9% 13q14 deletion - M - 

80003 AI 11600 32.0% ND + ND + 

80005 A0 54600 90.0% 13q14 deletion - M - 

80047 AI 8080 25.0% Chromosome 12 trisomy ND M - 

80048 AI 10500 34.0% Normal - M - 

80049 AI 5300 23.0% ND ND ND - 

80091 A0 ND ND 17p deletion ND U ND 

80102 AI 14000 80.0% 11q and 13q deletions 

IGH+ rearrangement 

- ND - 

80113 ND ND 70.0% No TP53 mutations - ND - 

80117 BI 29700 25.0% 11q22 deletion + U - 

80138 A0 13810 ND 11q deletion ND M - 

80139 A0 21440 ND 13q and 17p deletions ND U - 

80194 A0 5600 ND 13q deletion + M - 

80197 A0 5880 ND Normal + U ND 

80230 A0 13390 ND Normal + U ND 

80231 A0 61500 ND 13q deletion - M - 

80232 A0 5260 ND 13q deletion ND M + 

80239 ND ND 36.1% ND - ND - 

80254 A0 22000 81.0% 13q14 deletion - U - 

90007 A0 7881 65.0% ND + ND + 

90025 A0 15340 79.0% 13q14 deletion - M - 

90082 A0 14590 90.0% No TP53 mutations - M - 

90272 A0 12880 82.0% 13q14 deletion - M - 

90393 A0 6714 56.0% No TP53 mutations - M - 

90784 A0 ND ND No TP53 mutations - M - 

90903 AI 57000 93.0% No TP53 mutations ND ND - 

90904 A 10400 33.1% No TP53 mutations ND M ND 

90905 A0 ND ND No TP53 mutations ND M - 

90906 A0 180000 90.0% IGH+ rearrangement + U - 

90907 AI 55000 80.0% 13q14 deletion - M - 

90908 A0 40000 90.0% 13q14 deletion - M - 

90909 BII 170000 94.0% c-MYC trisomy, 13q 

deletion 

+ ND - 

90921 A 11000 43.0% No TP53 mutations ND M ND 

90923 A0 9300 39.0% Normal + ND + 
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90978 ND ND ND No TP53 mutations ND M ND 

90994 A0 9180 35.0% Normal - M - 

91066 A0 16400 60.0% 13q14 deletion - ND - 

91069 BII 53000 93.0% Chromosome 12 trisomy + U - 

91071 A0 15400 84.0% No TP53 mutations ND U ND 

91072 ND 13600 58.5% 17p deletion ND M - 

91103 A0 171000 96.0% 13q14 deletion - M - 

91207 AIII 121600 82.0% No TP53 mutations - U ND 

100003 A0 ND ND SILENT mutation in TP53 - M - 

100004 A0 ND ND No TP53 mutations - ND - 

100008 A0 ND ND No TP53 mutations ND M ND 

100018 BII 17900 59.3% 11q deletion + U ND 

100019 A0 ND ND No TP53 mutations ND M ND 

100021 A0 ND ND No TP53 mutations ND U ND 

100030 A0 ND ND No TP53 mutations + M + 

2.2.2 Immunohistochemical staining 

Immunohistochemical staining of both TMA and whole tissue sections was performed by the 

Endvision method with a heat-induced antigen-retrieval step at the Immunohistochemistry 

Unit of CNIO. Sections were immersed in boiling 10 mM sodium citrate at pH 6.5 for 2 min in a 

pressure cooker. Antibodies analyzed in this series are shown in Table 5. Reactive tonsil tissue 

was included as an external control. The primary antibodies were omitted to provide negative 

controls. 

2.2.3 Immunohistochemical scoring 

In this study, the immunohistochemical staining of every protein studied was analyzed in 

parallel with hematoxilin and eosin staining of paraffin-sections of each case to clearly identify 

PCs. The scoring was done by Dr Socorro María Rodríguez-Pinilla. Staining was considered 

positive for each marker taking into account both the percentage of positive cells as well as the 

cellular component where they were expressed. Cases were considered positive if distinct 

appreciable staining was present in the cytoplasm, membrane or nucleus (depending on the 

specific marker, Table 6) in a majority of the examined cells. A staining score was recognized 

for most of the proteins analyzed depending on the percentage of positive cells; 0=0-5%, 1=15-

50% and 2=50-100%. 

2.2.4 Double immunoenzymatic staining 

Double immunoenzymatic labeling of paraffin sections was performed using the following 

protocol. In the first reaction, immunostaining was performed using the EnVision peroxidase 

kit (Dako, Denmark) and diaminobenzidine (DAB) chromogen-substrate (Dako K5507, Dako). In 

the second reaction, immunostaining was performed using the alkaline phosphatase kit (Dako 
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K5355, Dako) and chromogen provided therewith. Briefly, after identifying positivity for SDF-

1α, actin, CD40, STAT1 and CD68 in PCs, multiple combinations between these markers were 

done to further characterize the positive cells. 

Table 6. Primary antibodies used for the immunohistochemical study of proliferation centers. 

Antibody Description Clone Source Dilution 

Actin Mesenchymal cell marker 1A4 Dako 1:1500 

BAFF 

Member of the TNF family of ligands, is expressed in T 

cells, macrophages, monocytes and dendritic cells. BAFF is 

involved in stimulation of B and T cell function, and is an 

important survival and maturation factor for peripheral B 

cells. BAFF signals through three different TNF receptors 

TACI, BCMA and BAFF-R 

Rabbit 

polyclonal 
Chemicon 1:100 

Bcl-2 Anti-apoptotic member of the Bcl-2 family 124 Dako 1:50 

BCL6 
A sequence-specific repressor of transcription known as a 

maker of germinal centers 
A8 

Monoclonal 

Ab CNIO 
1:300 

CD10 Marker for germinal center B cells 56C6 
Novocastra 

/DAKO 
1:10 / 1:1 

CD1a 
Marker for Langerhans cell histiocytosis (LCH) found on 

interdigitating cells 
010 

Master 

Diagnostic 
1:1 

CD20 

Commonly used marker for B cells. Initially expressed on B 

cells after CD19/CD10 expression and before CD21/CD22 

and surface immunoglobulin expression; retained on 

mature B cells until plasma cell development. It delivers 

early signal in B cell activation, allowing resting B cells to 

respond to later antigens 

L-26 Dako 1:300 

CD21 
Marker of follicular dendritic cells. Also expressed in 

normal B cells (particularly in marginal and mantle cells) 
1F8 Dako 1:10 

CD23 

Also known as low affinity IgE receptor, Fc fragment of IgE 

receptor. After physiologic germinal cell development, the 

follicular dendritic cell meshwork expands and follicular 

dendritic cells in the light zone of the germinal center 

become CD23+. It is a B cell growth and activation factor, 

promoting differentiation into plasma cells. Used to 

differentiate SLL/CLL (CD23+) vs. mantle cell lymphoma or 

MALT lymphoma (CD23-) 

MHM6 Dako 1:25 

CD25 
Also called IL-2 receptor alpha chain, TAG. Considered to 

be an activation antigen 
4C9 Novocastra 1:50 

CD3  

Cytoplasmic expression at early T cell differentiation. 

Complex of delta, epsilon, gamma, zeta and eta chains of 

integral membrane glycoproteins that associates with TCR, 

and is required for TCR cell surface expression and signal 

transduction 

SP7 Neomarkers 1:200 

CD38 

A type II trans-membrane glycoprotein that synthesizes 

cyclic ADP-ribose, a metabolite with potent calcium 

mobilizing properties independent of IP3. It is also a 

positive and negative regulator of cell activation and 

proliferation, depending on the cellular environment. It is 

involved in adhesion between human lymphocytes and 

endothelial cells. Poor prognosis marker in CLL 

VS38 Dako 1:100 

CD4 

Expressed on surface of T helper cells; it serves as co-

receptor in MHC class II-restricted antigen induced T cell 

activation 

4B12 
Master 

Diagnostic 
1:3 

CD40 

It plays a central role in regulating cell-mediated immunity 

and antibody mediated immunity. It also mediates T cell 

dependent immunoglobulin class switching, memory cell 

Poly-

rabbit 
Abcam 1:2 
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development and germinal center formation 

CD57 
Marker for NK cells and a subgroup of follicular helper T-

cell (TFH). Glycoprotein with cell adhesion functions 
NK-1 

BD 

Pharmingen 
1:200 

CD68 

A classical macrophage marker.  A 110-Kd trans-membrane 

glycoprotein expressed by human monocytes and tissue 

macrophages but not restricted to the macrophage lineage 

(also expressed in fibroblasts).  More frequently positive 

than the other examined macrophage markers, and 

proved to be almost as reliable as the recently discovered 

CD1a 

KP1 Dako 1:2000 

CD8 

A transmembrane glycoprotein that serves as a co-

receptor for the T cell receptor (TCR), usually expressed in 

cytotoxic T cells 

C8/144B Dako 1:25 

cREL Member of the NF-ĸB family of transcription factors B6 Santa Cruz 1:200 

CXCL13  

B lymphocyte chemoattractant that functions in the 

homing of B cells into the follicles. Expressed by TFH and 

follicular dendritic cells. 

Polygoat R&D Systems 1:25 

D2-40 O-linked sialoglycoprotein found in lymphatic endothelium D2-40 Dako 1:1 

Desmin 
Intermediate filament. Marker for mesenchymal cells with 

myogenic differentiation 
D33 DAKO 1:25 

FOXP3 
Forkhead family transcription factor expressed by 

regulatory T cells 
206D/67 

Monoclonal 

Ab CNIO 
1:1 

Granzym

e B 

Serine protease that mediates apoptotic signaling in 

cytotoxic T lymphocytes and natural killer cells. 

Synthesized as inactive proenzyme, stored within cytolytic 

granules and released by effector cells during 

degranulation. It cleaves and activates caspase-3, caspase-

6, caspase-7 and caspase-9 

GrB-7 Dako 1:10 

Ki67 
Nuclear protein that is associated with and may be 

necessary for cellular proliferation 
MIB-1 Dako 1:1000 

Mcl-1 Anti-apoptotic member of the Bcl-2 family 
Rabbit 

polyclonal 
Sigma 1:500 

MUM1/ 

IRF4 
Marker expressed from centrocytes to plasma cells Poly-goat Santa Cruz 1:150 

NFATc1 

A family of transcription factors characterized by the 

presence of highly conserved calcineurin- and DNA-binding 

domains. NFAT proteins are activated in the cytoplasm by 

the calcium-dependent phosphatase calcineurin 

7A6 
BD 

Pharmingen 
1:300 

 p50 Member of the NF-ĸB family of transcription factors 
Rabbit 

polyclonal 
GeneTex 1:1 

 p52 Member of the NF-ĸB family of transcription factors  Upstate 1:1000 

p65 Member of the NF-ĸB family of transcription factors F-6 Santa Cruz 1:2000 

PD1  
Type I trans-membrane protein that negatively regulates 

TCR signaling. Also expressed by B cells 
NAT-105 

Monoclonal 

Ab CNIO 
1:2 

Perforin 

Cytolytic protein found in the granules of CD8 T-cells and 

NK cells. Upon degranulation, perforin inserts itself into 

the target cell's plasma membrane, forming a pore.  

5D10 Novocastra 1:10 

Rel B Member of the NF-ĸB family of transcription factors 
Rabbit 

polyclonal 
GeneTex 1:1250 

S100  

Calcium binding protein. An marker for a subset of 

dendritic cells, the interdigitating reticulum cells (IDRCs), 

which are mainly located in T-dependent areas of 

lymphoid tissues 

Poly-

rabbit 
Dako 1:2000 

SDF1 Chemokine, also known as CXCL12 - 
Courtesy of Dr 

José Alcami 
1:25 

STAT1 

Member of the Signal Transducers and Activators of 

Transcription family of transcription factors. Involved in 

up-regulating genes due to a signal by either type I or type 

II interferons 

C-136 Santa Cruz 1:10 
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Survivin 

Member of the inhibitor of apoptosis (IAP) gene family, 

which encodes negative regulatory proteins that prevent 

apoptotic cell death 

Rabbit 

polyclonal 
RD Systems 1:1000 

TCL1 

Proto-oncogene that interacts with the Akt pleckstrin 

homology domain, enhancing Akt kinase activity. It 

enhances cell proliferation, stabilizes mitochondrial 

membrane potential and promotes cell survival 

Poly 

(rabbit) 
Cell Signaling 1:100 

TIA1 

Type I trans-membrane protein that plays a central role 

mediating viral immunity. Found in the granules of 

cytotoxic lymphocytes 

2G9 
Master 

Diagnostic 
1:1 

TRAF1 

 TRAF proteins associate with, and mediate the signal 

transduction from various receptors of the TNFR 

superfamily. This protein and TRAF2 form a heterodimeric 

complex, which is required for TNF-alpha-mediated 

activation of MAPK8/JNK and NF-kappaB. The protein 

complex formed by this protein and TRAF2 also interacts 

with inhibitor-of-apoptosis proteins (IAPs) 

H-3 Santa Cruz 1:300 

VEGF Dimeric glycoprotein with a role in angiogenesis SP28 Abcam 
Predilute

d 

ZAP70 

Tyrosine kinase usually present as part of the TCR 

pathway. However, CLL B cells also expressed ZAP70 

aberrantly 

BC.2F3.2 Biocare 1:50 

2.2.5 Immunofluorescence staining 

Slides from frozen samples were fixed with 4% PAF and permeabilized with 0.5% Triton. Then, 

they were blocked 2 minutes with FCS (Australian Foetal Calf Serum, Life Technologies Inc., 

USA) and incubated for 30 minutes at room temperature with primary antibodies diluted in 

PBS plus 10% FCS. Slides were washed in PBS and incubated 30 minutes with fluorochrome-

conjugated antibodies against the corresponding Ig isotypes, (1:200 dilutions in PBS 

(MolecµLar Probes, Leiden Netherlands) in the dark. Following washing, antifading (Qbiogene, 

Illkirch, FR) and DAPI (MolecµLar Probes, Leiden Netherlands) were added. Fluorescence 

images were captured with an Axiocam charge-coupled device camera (Carl Zeiss, Jena, 

Germany) and Axiovision software (Imaging Associates, Bicester, UK), and adjusted using 

Photoshop software (Adobe, San Jose, CA, USA).  

2.3. Statistical data analysis  

For some analysis and graphics, the GraphPad software (GraphPad Software Inc., La Jolla, CA, 

USA) was used. To study associations between our continuous variable (EC50 values) and 

categorical ones (mutational status of IGHV, ZAP70) parametric (Student t-test) or non-

parametric (Mann Whitney) methods available on the GraphPad software were used. 

D’Agostino method implemented in GraphPad was used to determine the normality of each 

series of data. The study of correlations between two continuous variables (for example, gene 
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expression data and EC50 values) was performed applying a Pearson correlation using Excel 

and SPSS (IBM Company, Chicago, Illinois, USA). 

2.4. Methods for cell culture and treatments 

2.4.1 Reagents for cell culture 

Complete medium was prepared using commercial RPMI (GIBCO, Invitrogen, Peisley, UK) 

supplemented with 10% of FBS and antibiotics (100 U/mL Penicilin and 100 µg/mL of 

Streptomycin, GIBC, Invitrogen, Peisley, UK ).  

Calmidazolium was purchased from SIGMA. TW-37 was a kind gift of Dr Shaomeng Wang 

(Michigan University). R406 was obtained from Rigel laboratories. ETP-39010 was produced by 

the Therapeutics Program at CNIO. All drugs were resuspended in DMSO (XXXX) and 

subsequent dilutions were made in culture medium. 

2.4.2 Primary samples defreezing 

1mL cells were defreezed in a water bath at 37ºC. 500 µL cells were laid onto 1mL Ficoll 

density medium in a 2 mL eppendorf. Cells were centrifuged 10 seconds up to maximum 

speed. Eppendorfs were turned 180º and centrifuge 1 minute at 12,000 rpm. After being 

turned 180º again, eppendorfs were centrifuged an additional minute at 12,000 rpm. The ring 

containing the living cells was recovered, washed with PBS and resuspended in complete 

medium. Cells were counted and plated at an appropriate concentration, usually at 106/mL, for 

further experiments. They were allowed to stabilize 3 hours before any assay was performed. 

2.4.3 Cell viability assays 

Primary cells were plated at a final concentration of 106 cells/mL in black 96 well-plates with 

flat bottom, treated for tissue culture (BD Biosciences Europe, Belgium). Routinely, 105 cells 

were plated in 90 µL of complete medium. Then, 10 µL of the appropriate concentration of the 

drug or vehicle (DMSO) were added. One plate was usually used to assay 3 drugs per sample or 

alternatively, for 3 samples treated with one of the drugs. After 3 hours incubation at 37ºC to 

allow stabilization, cells were treated with a range of concentrations of the drug under study 

(Calmidazolium: 2.5 nM- 50 µM; R406: 2.5 nM-50 µM TW-37: 1 nM-20 µM; ETP-39010: 5.1 

nM-100 µM). The highest dose was prepared 10 times concentrated by diluting the drug in 

culture medium. The subsequent concentrations were prepared by 1:3 dilutions in complete 

medium. The concentration of DMSO for R406 was always 0.5% to ensure solubility. Drugs 

were pipetted using the Laboratory Automation Workstation Biomek® NXP (Beckman Coulter). 
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Controls without the drug and with the highest concentration of vehicle were also plated. After 

72 hours incubation, plates were equilibrated at RT for 30 minutes. Then, 100 µL of Cell Titer 

Glo Reagent from the CellTiter-Glo® Luminescent assay (Promega) were added per well using a 

multichannel pipette. This reagent contents a stable form of luciferase and its substrate 

(luciferine). The reaction of luminescence depends on the availability of ATP in the medium, 

which reflects the presence of metabolically active cells.   Luminiscence was recorded using the 

Envision™ 2104 Multilabel reader (Perkin Elmer, Massachusetts, USA).  

Cell viability was calculated as a percentage. Cells treated with the vehicle were used as 

control. Some samples were especially sensitive to DMSO. In those cases, the percentage of 

viable cells was calculated using cells without DMSO as control and the data from the highest 

concentration of the drug were not used for the EC50 calculation. With these data, a sigmoidal 

dose-response curve (X axis: concentration in log; Y axis: cell viability in percentage) and an 

EC50 value were obtained using the GraphPad software. Experiments with an r2< 0.9 were not 

included for further analysis. 

2.4.4 R406 treatment and BCR engagement 

After defreezing and stabilization (3 hours at 37ºC, at a 106/mL concentration), CLL primary 

cells at a 107/mL concentration were treated with 5 µM R406 (i.e. 5 µL of 1 mM R406 in 1 mL 

of cells) or vehicle for 30 minutes on a water bath at 37ºC. Then, BCR was stimulated with 10 

µg/mL of mouse F(ab’)2 anti-human IgM (µ chain specific) (SouthernBiotech, Bitmingham, 

USA) for 5 minutes. Reaction was rapidly stopped by addition of ice cold PBS and 

centrifugation. After washing, pellets were frozen at -80ºC or directly lysed for protein 

extraction. 

2.4.5 ETP-39010 treatment for gene expression studies 

Cells were defreezed as previously described and a minimum of 5 x 106/mL cells were plated at 

a concentration of 106/mL in appropriate flasks. After 3 hours stabilization at 37ºC, paired 

samples were treated with 5 µM ETP-39010 or 0.1 % of vehicle alone (DMSO) for 8 hours. 

Then, cells were washed with PBS and pellets were resuspended in Trizol and stored at - 80ºC 

several days until RNA extraction was performed.  

2.4.6 Time courses for apoptosis and cell cycle assays after drug treatment 

Cells were defreezed and 106 cells were plated in 1mL complete medium in 24-well plates (BD 

Falcon). After 3 hours stabilization at 37ºC, several concentrations of the drug under study or 
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vehicle were added (usually 1µL of 1000 times concentrated drug). 300 µL aliquots at 24, 48 

and 72 hours from the same well were taken for AnnexinV/PI analysis. When cell cycle assays 

were performed in parallel, 2 x 106 cells were plated in 2 mL medium and aliquots were taken 

for apoptosis and cell cycle assays from the same well. 

2.5. DNA and RNA based methods 

2.5.1 DNA extraction 

Between 2 and 5 million cells from CLL samples were lysed using 500 µL of Tissue and Cell lysis 

solution (EPICENTER, Biotechnologies, Madison, WI, USA)  and 7 µL of K proteinase (at 50 

µL/µL concentration), EPICENTER Biotechnologies, Madison, WI, USA) by shaking at 65ºC 

overnight. Then, 500 µL of the Protein Precipitation reagent were added. Samples were 

vortexed 10 seconds and centrifuged at 10,000 rpm 10 minutes. The supernatant was 

recovered in a fresh eppendorf, and 1 mL of isopropanol was added to precipitate. After 

several inversions, samples were centrifuged at 4ºC, 10000 rpm for 10 minutes. The pellet was 

washed with 70% ethanol, allowed to dry at RT or at 65ºC and eluted in 50-100 µL of water. 

DNA was quantified with the Nanodrop 1000 (Thermos scientific, Wilmington, DE, USA) and 

quality was checked (260/280 and 260/230 ratios). 

2.5.2 Mutational status determination of the variable region of the immunoglobulin 

heavy chain  

The variable region of the heavy chain of the immunoglobulin was amplified by PCR using 

AmpliTaq Gold® DNA polymerase (Applied Biosystems, Framingham, MA, USA) following 

manufacturer recommendations. A multiplex PCR was set with 6 IGHVFR1 forward primers and 

the JH consensus reverse primer (Table 7), all recommended by the BIOMED-2 consortium 

(van Dongen et al., 2003). 200 ng of genomic DNA from CLL samples was used. PCR conditions 

were as follow:  initiation step: 94ºC, 10’; denaturation step: 94ºC, 45’’; annealing step: 60ºC, 

45’’; elongation step: 72ºC, 10’ (repeated 35 cycles) and final hold: 4ºC, ∞.  

The products of interest showed an expected size of around 300 base pairs, depending on the 

rearrangement and the length of the CDR and were purified either by PCR purification kit 

(Quiagen, Hilden, Germany) or by 3-4% agarose gel excision with the Quiagen kit (Hilden, 

Germany) if two bands were amplified. In the last situation, both amplified products were 

further analysed. They were sequenced, first with IGHVJH consensus reverse primer and then, 

when the IGHV usage was determined, with the appropriate IGHVFR1 primer in order to obtain 
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a consensus sequence. For visualization of sequencing results, Chromas Lite software 

(Technelysiun Pty Ltd) was used. For the analysis of somatic hypermutations, IMGT source 

(http://imgt.cines.fr/) was used and the percentage of homology with the germinal IGHV as 

well as the rearranged V, D, J segments were obtained. Only rearranged productive sequences 

were considered. For further studies, samples with >98% of homology were considered 

unmutated and samples with <98% homology mutated. 

2.5.3 TP53 sequencing 

When no cytogenetic data were available for the samples of our series (a total of 19 samples), 

TP53 most frequently mutated exons were sequenced. As 90% of patients with 17p deletions 

also present mutations, we used these as a surrogate marker of genomic abnormalities 

affecting TP53 (Dohner et al., 1995). Exons 5, 6, 7 and 8 were amplified using Platinum® Taq 

DNA polymerase (Invitroge, Carlsbad, CA, USA) and sequenced for detection of possible 

mutations. Primers are shown in table 7. PCR conditions were: 

• Exon 5. Initiation step: 94ºC, 5’; denaturation step: 94ºC, 30’’; annealing step: 55ºC, 

30’’; elongation step: 72ºC, 30’’ (repeated 35 cycles) and final hold: 4ºC, ∞. 

• Exons 6, 7 and 8. Iinitiation step: 94ºC, 5’; denaturation step: 94ºC, 30’’; annealing 

step: 58ºC, 30’’; elongation step: 72ºC, 30’’ (repeated 35 cycles) and final hold: 4ºC, ∞. 

 

Table 7. Primers used for the determination of IGHV mutational status and sequencing of exons 5, 6, 

7, and 8 of TP53 gene in DNA samples from CLL patients (fw, forward primer; rev, reverse primer). 

 

Name Sequence Application 

VH1-FR1 GGCCTCAGTGAAGGTCTCCTGCAAG IGHV mutational status 

VH2-FR1 GTCTGGTCCTACGCTGGTGAAACCC IGHV mutational status 

VH3-FR1 CTGGGGGGTCCCTGAGACTCTCCTG IGHV mutational status 

VH4-FR1 CTTCGGAGACCCTGTCCCTCACCTG IGHV mutational status 

VH5-FR1 CGGGGAGTCTCTGAAGATCTCCTGT IGHV mutational status 

VH6-FR1 TCGCAGACCCTCTCACTCACCTGTG IGHV mutational status 

JH consensus CTTACCTGAGGAGACGGTGACC IGHV mutational status 

E5fw TCCTCCCTCTTCCTACAG Exon 5 of TP53 

E5rev ACCCTGGGCAACCAGCCCTGT Exon 5 of TP53 

E6fw ACAGGGCTGGTTGCCCAGGGT Exon 6 of TP53 

E6rev AGTTGCAAACCAGACCTCAGGCG Exon 6 of TP53 

E7fw TCCTAGGTTGGCTCTGACTGT Exon 7 of TP53 

E7rev AGTGGCTCCTGACCTGGAGTCT Exon 7 of TP53 

E8fw GGGACAGGTAGGACCTGATTTCCTT Exon 8 of TP53 

E8rev ATCTGAGGCATAACTGCACCCTTGG Exon 8 of TP53 
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PCR products were purified using a kit from (Quiagen, Hilden Germany). Exon sequences were 

compared with those available at Ensembl using the CLC sequence viewer (CLC bio company, 

Aarhus, Denkmark). If necessary, products were sequenced with forward and reverse primers. 

Only one nucleotide change was found in sample 10003 and its relevance was checked at the 

International agency for research on cancer (IARC) TP53 data base (http://www-p53.iarc.fr/). It 

corresponded to a silent change that did not represent a change of aminoacid and has not 

been described as affecting protein function. 

2.5.4 RNA extraction 

Five to 10 million cells were stored in 1mL Tri®reagent (SIGMA-ALDRICH, Steinheim, Germany) 

at -80ºC. After defreezing, they were disaggregated using a 1mL syringe and a needle. The 

suspension was kept 10 minutes at RT and then, 200 µL of chloroform were added. Samples 

were mixed thoroughly 15 seconds and maintained 10 additional minutes at RT.  After 15 

minutes of centrifugation at 8000g, the aqueous phase was recovered in a fresh tube. The 

same volume of isopropanol and 2 µL of lineal acrilamide were added and samples were left at 

-20ºC overnight. Next day, samples were centrifuged at 12,000 g, 15 minutes, at 4ºC. Pellets 

were washed with 70% cold ethanol and resuspended in RNAase free water. For a higher 

purity, the RNeasy® Mini Kit from Quiagen (Hilden, Germany) was used following manufacturer 

instructions, including the DNAase treatment. Finally, RNA was resuspended in 20-35 µL. 

 

If necessary, RNA was precipitated again with 1 µL lineal acrilamide, 0.5 volumes of AcNH4 

7.5M and 2.5 volumes of ethanol overnight. After 20 minutes centrifugation, the pellet was 

washed with 70% ethanol, allowed to dry and resuspended in an appropriate volume. RNA was 

quantified using the Nanodrop 1000 device (Thermos scientific, Wilmington, DE, USA) and 

visualized on a 1% agarose gel. 

2.5.4. Microarray hybridization 

2.5.4.1 cDNA synthesis from total RNA 

2 µg of total RNA was mixed with 2 µl of a 5,000-fold dilution of Agilent's Two-Color Spike-in 

RNA control and amplified using Agilent Low RNA Input Fluorescent Amplification Kit (Agilent 

Technologies, Inc., Santa Clara, CA). The mixture in a final volume of 6.5 µl (total concentration 

at least 5 ng/µl) was mixed with 5µl of T7 promoter primer. The primer and the template were 

denatured by incubating the reaction at 65OC for 10min and placing on ice for 5min. Following, 
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8.5 µl of cDNA Master Mix was added and the samples were incubated first at 40OC in a 

circulating water bath for 2 hours and then at 65OC in a heating block for 15 minutes to 

inactivate MMLV-RT. Following that time, the samples were incubated on ice for 5 minutes. 

cDNA Master Mix composition: 4 µl of 5X First strand buffer, 0.1M DTT 2 µl, 10 mM dNTP mix 1 

µl, 1 µl of MMLV-RT  and 0.5 µl of RNaseOUT. 

2.5.4.2 Fluorescent cRNA synthesis: in vitro trasnscription and incorporation of 

fluorochromes 

To each sample tube, either 2.4 µl of 10 mM cyanine 3-CTP (sample) or 2.4 µl of 10 mM 

cyanine 5-CTP (Stratagene Universal Human Reference RNA) was added and mixed. Following, 

to each sample, 57.6 µl of Transcription Master Mix was added an incubated in a circulated 

water bath at 40OC for 2 hours. Following amplification and labeling, each sample was assessed 

on the Nanodrop ND-1000 to measure yield and specific activity. 

Transcription Master Mix composition: 15.3 µl of Nuclease-free water, 20 µl of 4X 

Transcription buffer, 0.1 M DTT 6 µl, 8 µl of NTP mix, 50% PEG 6.4 µl, 0.5 µl of RNase OUT, 0.6 

µl of Inorganic pyrophosphatase and 0.8 µl T7 RNA Polymerase. 

2.5.4.3 Hybridization 

cRNA target was prepared as follows: 0.75 µg cyanine 3-labeled, linearly amplified sample 

cRNA was mixed with 0.75 µg cyanine 5-labeled, linearly amplified reference pool cRNA, 50 µl 

of 10X control targets and Nuclease-free water to final volume of 240 µl. The hybridization 

solution was prepared by adding 240 µl of 2X target solution to 10 µl of 25X fragmentation 

buffer. The mixture was incubated at 60OC in the heating block for 30min. Following, 250 µl of 

2X hybridization buffer (from In situ Hybridization kit) to the final volume of 500 µl, mixed, 

spinned and 490 µl of the hybridization solution was applied to 60-mer Agilent 4X 44K  Human 

Whole Genome oligonucleotide microarrays or 8x 15K CLL-specific oligonucleotide microarrays 

and assembled in microarray hybridization chamber (G2534A). Once fully assembled, the 

chambers were loaded into the hybridization rotator rack and set to rotate at 4 rpm. The 

hybridization was performed in a rotating oven at 60OC for 17 hours. 

All the washing steps were performed at room temperature. First the sandwiched slides were 

submerged in Wash Solution 1 to remove oligo microarray slide. The slides were washed for 

1min in the Wash Solution 1 with the magnetic stir. The slides were then transferred to the 
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staining dish containing Wash Solution 2 and washed for 1 minute. Following, the slides were 

transferred to the staining dish containing the Wash Solution 3 and washed for 30 seconds. All 

steps were performed in the dark. The dried slides were scanned with a G2565BA Microarray 

Scanner System (Agilent Technologies, Palo Alto, CA). 

Wash solution 1 composition: 6X SSPE, 0.005% N-Lauroylsarcosine, deionized nuclease free 

water. 

Wash solution 2 composition: 0.06X SSPE, 0.005% N-Lauroylsarcosine, deionized nuclease free 

water. The buffers 1 and 2 are passed through a 0.2 µm sterile filtration unit before use. 

Wash solution 3 composition: The Agilent Stabilization and Drying Solution contains an ozone 

scavenging compound dissolved in acetonitrile. 

2.5.4.4 Data normalization and preprocessing 

Data were extracted with the use of Feature Extraction (v.10) software (Agilent Technologies, 

Santa Clara, CA, USA). Arrays were normalized using global loess method implemented in 

GEPAS (Gene Expression Pattern Analysis Suite), available at http://gepas.bioinfo.cipf.es/. 

Preprocessing was also performed using the bioinformatics tools provided by GEPAS. 

Inconsistent replicates were eliminated, replicates were merged and genes with less than 70% 

of the values were filtered. For some analysis, missing values were input using the K-Nearest 

Neighbors method (K>15). 

2.6 Protein based methods 

2.6.1 Total protein extraction 

Total protein extracts were prepared by lysing cells in RIPA lysis buffer (Sigma-Aldrich) 

containing protease inhibitor cocktail set III (Calbiochem, San Diego, CA) plus protease 

inhibitor cocktail set VIII (Calbiochem) for 20 minutes on ice. Cell debris was removed by 

centrifugation (10,000 x g, 10 minutes, 4OC). The supernatant (protein extract) concentration 

was measured using Protein assays reagents A, B, and S (BioRad, Hercules, CA) following the 

manufacturer’s instructions using bovine serum albumin (BSA) as a standard. Briefly, 1 ml of 

Agent A was mixed with 20 µl of Agent S. First, the adequate amount of either standard (BSA) 

or sample was applied to each well of 96-well plate, following 25 µl of previously prepared 

mixture was added. Finally, 200 µl of Agent B was added and the whole preparation was 

incubated for 15 minutes at RT and measured at a wavelength of 750 nm. 
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Composition of RIPA buffer: 150 mM NaCl, 1.0% IGEPAL® CA-630, 0.5% sodium deoxycholate, 

0.1% SDS, and 50 mM Tris, pH 8.0. Just before use the protease inhibitor cocktail was added:    

0.1 mM sodium vanadate, 5 µg/ml leupeptine, 5 µg/ml aprotinine, 1 mM 

phenylmethylsulphonyl fluoride (PMSF). 

2.6.2 Western blotting 

Following primary antibodies have been used for Western Blot (WB) analysis: Mcl-1 (S-19, 

Santa Cruz Biotechnology), Bcl-2 (235J/E1, produced in the Monoclonal Antibodies Unit at 

CNIO), p-AKT (p-Ser 473, Cell Signaling), p-BLNK (p-Tyr 84, MBL, Woburn, MA, USA), total AKT 

total (#9272, Cell Signaling), BLNK (Sc-8003, Santa Cruz Biotechnology), PIM2 (H-73, Santa Cruz 

Biotechnology). As loading control an antibody to GAPDH (clon 273A/B9, produced in the 

Monoclonal Antibodies Unit at CNIO) was used.  

Western Blotting was performed according to standard protocols. First, the protein extracts 

were subjected to electrophoresis on sodium dodecyl sulfate polyacrylamide (SDS-PAGE) gels 

using the acrylamide concentration adequate for the size of the detected proteins (10-15% ) 

using Mini-Protean 3 system (BioRad). 

Following electrophoresis, the proteins were wet-transferred onto nitrocellulose membranes 

(Whatman, Dassel, DE) using Mini Trans-Blot Cell equipment (BioRad). Transference was 

performed at 40 mA during 12-20 hours at room temperature or 400 mA during 1.5 hour at 

4OC. 

Membranes were blocked with 5% BSA or Milk in PBS-T (phosphate-buffered saline with 0.1% 

Tween-20) during 1 hour with shaking and sequentially immunoprobed with primary 

antibodies at adequate dilution. Primary antibodies were diluted in 5% BSA in PBS-T. Antibody 

detection was performed using fluorescent-labeled secondary antibodies (Alexa 680λm and 

Alexa 800λm, Rockland, Gilbertsville, PA, USA) and scanned with Odyssey Infrared System 

Scanner (LI-COR Biosciences, Lincoln, NE, USA). Band intensities were quantified using the 

ImageJ 1.34S software (National Institute of Health, Bethesda, MD, USA). 

Electrophoresis buffer 5X composition: TrisHCl 0.13 M, glycine 0.95 M, SDS 0.5%. 

Sample buffer (Laemmli buffer) 4X composition: 62.5 mM TrisHCl pH 6.8, glycerol 20%, SDS 

2%, 2-mercaptoethanol 5%, bromophenol blue 0.025%. 

Transference buffer 10X composition: TrisHCl 0.025M, glycine 0.2 M, 20% of methanol 
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2. 7 Cell biology methods 

2.7.1 Apoptosis measurement: Annexin V/Propidium iodide assays 

Routinely, 3 x 105 cells were collected, washed with PBS and resuspended in 200 µL of Binding 

Buffer 1X (diluted with water from Binding Buffer 10X, BD Biosciences, Franklin Lakes, NJ, 

USA). Then, 4 µL of APC-labeled Annexin V (BD Biosciences, Franklin Lakes, NJ, USA) and 0.5 µL 

of propidium iodide (PI) (from a 1 mg/mL PI solution, SIGMA-ALDRICH, Steinheim, Germany) 

were added and samples were incubated 10 minutes at RT, in the dark. FACSCalibur or 

FACSCanto devices (BD Biosciences, Franklin Lakes, NJ, USA) were used for acquisition of 

10,000 events. Data were analyzed using the CellQuest Pro software (Becton Dickinson). For 

apoptosis analysis, Annexin V positive/PI negative cells were considered early apoptotic cells 

whereas Annexin V positive /PI positive cells were considered late apoptotic cells. In some 

experiments, only Annexin V staining was used. In all time courses, the percentage of death 

was calculated considering the basal death of each sample as follows: (% death - % basal 

death)/ (100 - % basal death) 

2.7.2 Cell cycle analysis 

Between 3 and 5 x 105 cells were washed with PBS in a falcon tube and were resuspended in 

330 µL of cold PBS. Cells were permeabilized by addition of 670µL of cold 100% ethanol (stored 

at -20ºC) drop by drop against the wall of the flacon tube. Samples were kept at least 30 

minutes at 4ºC or up to one week at -20ºC. After washing with PBS, samples were incubated at 

37ºC for 30 minutes with 500 µL of PBS containing 1 µL of Dnase-free Rnase A (Quiagen, Inc., 

Valencia, CA) and 50 µg/mL of PI. 10000 events were acquired using a FACSCalibur device (BD 

Biosciences, Franklin Lakes, NJ, USA). Parameters were set up to detect G1 phase at 200 and 

G2/M phase at 400 units in the FL-3 channel. Data were analyzed using the CellQuest Pro 

software (Becton Dickinson). 

2.8 Bioinformatics methods 

2.8.1 Connectivity Map 

This bioinformatic tool was used to generate new hypothesis of candidate drugs that could 

reverse the gene expression profile of CLL cases with bad prognosis (Lamb et al., 2006). Two 

lists of genes differentially expressed (up and down regulated genes) between two groups of 

CLL samples (either with short or long time of treatment free survival) were applied to the c-

Map (versions .01 and .02). The c-Map relies on a  data base of gene expression values from 
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previous experiments that include 6 -hour treatments of several cell lines with a panel of up to 

1500 drugs (for version 0.2) ever licensed for human use by the FDA  This tool is able to look 

for connections between the gene expression data base and the gene-query.  

2.8.2 Differentially expressed genes 

The following bioinformatic tools were used to look for genes differentially expressed between 

two conditions (for example, treated versus non-treated samples), depending on the number 

of samples and genes to be analyzed. Student t-test implemented in the T-rex tool of GEPAS 

was used to study genes differentially expressed between control and ETP-39010 treated 

samples (hybridized on a 4X 44K platform). These genes were further included in functional 

groups using the FatiGO tool implemented in Babelomics (http://babelomics.bioinfo.cipf.es/). 

For analysis of samples hybridized on the 8X 15K platform, t-test limma (not permutation 

based) available at ASTERIAS (http://www.bioinformatics.org/asterias/wiki/Main/HomePage) 

was applied. In some cases, Significant Analysis of Microarrays tool developed at the University 

of Stanford was chosen. 

2.8.3 Sample clustering 

In order to cluster samples on a gene base, two different tools were employed. First, CLUSTER 

software (University of Stanford) was used to hierarchically cluster the samples (using the 

average linkage method). Genes were adjusted to the mean, in order to emphasized 

differences between different samples. For data representation, the Tree View tool (University 

of Stanford) was employed. Second, consensus Clustering tool (Broad Institute) available at 

http://www.broadinstitute.org/cancer/software/genepattern/index.html was used in order to 

confirm clustering. 

2.8.4 Gene set enrichment 

Gene Set Enrichment Analysis (GSEA) is a computational method that determines whether an a 

priori defined set of genes (i.e. genes grouped in pathways) shows statistically significant, 

concordant differences between two biological states (in our study, between sensitive and 

resistant samples or treated and control samples). The metric used in all analysis was t-test 

and the number of permutations depended on the microarray platform employed (200 

permutations for 8-pack arrays and 1,000 permutations for 4x44K arrays). 
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3. RESULTS I 

 

Proliferation centers in chronic lymphocytic leukemia: the niche 

where NF-ĸB activation takes place 
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3.1 Identification of Proliferation Centers and morphological description 

CLL/SLL lymph node infiltration has as distinctive characteristic the presence of the so called 

pseudofollicles or proliferation centers (PCs). They are more rarely described in the white pulp 

of the spleen and bone marrow. PCs are newly formed structures, and have not been 

described in reactive lymphadenitis or other lymphoproliferative conditions.  

We found PCs in all 72 cases analyzed, except for one bone marrow sample, although their size 

and number varied from sample to sample. They can be easily identified using the H&E 

staining (see Figure 4) because they appear as vaguely nodular areas that can be recognized 

against a monotonous background of small mature-looking lymphocytes. Therefore, they are 

clearly visible at low magnification (Schmid and Isaacson, 1994). PCs contain a continuum of 

small, medium and large cells consisting of prolymphocytes, which are small to medium-sized 

cells with relatively clumped chromatin and small nucleoli, and paraimmunoblasts, which are 

larger cells with round to oval nuclei, dispersed chromatin, central eosinophilic nucleoli and 

slightly basophilic cytoplasm. These morphological differences have allowed us to identify 

which was the cell type that expressed a specific cell marker without the need of double 

staining. 

MUM1 Ki67H&E
 

Figure 4. Description of PCs. H&E staining identifies several types of tumor and accompanying cells. All 

PCs were stained with MUM1/IRF4 and Ki67 antibodies 

As two major SLL/CLL subtypes showing different clinical outcomes and somehow biological 

behavior have been described (U-CLL and M-CLL), we asked whether PCs were different in 

both groups. Data of IGHV mutational status were available only for 40 samples included in the 

TMA. No differences either in PC number, size or cell composition could be found in our series. 

All PCs showed Ki67 staining, revealing a pool of proliferating cells made of the large B cell 

population. Moreover, MUM1/IRF4 expression was also found in the large B cells of all PCs, 

confirming the findings of previous studies (Soma et al., 2006).  
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3.2 Description of cell composition of the microenvironment 

The study in depth of the PCs showed the presence of specific cellular subpopulations inside 

these anatomical structures. We identified several types of accompanying cells including 

reactive small T cells, dendritic cells, macrophages and endothelial cells in addition to tumor B 

prolymphocytes. 

3.2.1 Stroma cells: macrophages and dendritic cells 

Double immunohistochemistry combinations using a large panel of markers for dendritic cells 

and macrophages revealed the presence of at least two different populations of stroma cells 

(Table 6 for marker description). We could identify two groups of stroma cells. The first one 

expressed Actin and SDF1 (also known as CXCL12). We have named this type of cells as actin-

positive dendritic cells (ADCs).  The second group of stroma cells identified, herein called 

STAT1-positive macrophages (STAT1-Ms) was composed by macrophages positive for STAT1, 

CD68 and CD40 (Figure 5). Some ADCs were also positive for D2-40 and CD23, but not for CD21 

(follicular dendritic markers). No immunoreactivity was found for STAT3, STAT4, CD1a 

(dendritic marker), S100 protein (marker for interdigitating dendritic cells), desmin or TRAF1. 

Electron microscopy studies confirmed our findings and showed the presence of at least these 

two types of non-lymphoid cells in PC. 

Actin

SDF1

CD68

STAT1

*
**

CD40

CD23

*

 

Figure 5. Stroma cells found inside PCs.  Upper panel shows double immunohistochemical staining of 

ADCs and STAT1-Ms. CD40 is expressed by ADCs (morphologically different).Lower panel shows electron 

microscopy images of ADCs (left) and STAT1-Ms. Inset (x 25000) of ADCs depicts a detail of the main cell 

showing a cytoplasmic process with desmosomes (one asterisk) and thin filaments (two asterisks). 

Histiocyte-like cell presented an organelle-rich cytoplasm and some lysosomes. Some ADCs, 

distinguished by the long dendritic processes, expressed also CD23. 
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 The percentage of ADCs was stable among all cases while the percentage of STAT1-Ms 

seemed to be higher in some specific samples. 

3.2.2 T cells 

When compared with the surrounding tissue, it was apparent that PCs contained an increased 

number of T cells. Accordingly, small CD3-positive cells were found intermixed among the 

CD20-positive proliferating prolymphocytes. Bystander T cells inside PCs were mostly CD4 

positive, while CD8 cells were found equally distributed (Figure 6). CD3-positive T cells inside 

PCs expressed CD40L (Figure 9). Markers for different T cell subpopulations were observed in 

the T cell population found inside the proliferation centers including FOXP3, CD25, PD1, CD57 

and CXCL13 (Figure 6), confirming a great immunophenotypical complexity. Neither positive 

cells for CD10, BCL6 nor cytotoxic markers (TIA1, granzyme B and perforin) were found. 

CD4 CD8 FOXP3 CD25

PD1 CD57 CXCL13 Perforin

 

Figure 6. Markers for T cells in lymph node samples of CLL patients. Higher proportion of CD4-positive 

T cells was observed inside PCs (see also lower magnification, on the left corner of CD4 panel). T cells of 

PCs are positive for several markers of different CD4 phenotypes and negative for CD8 markers such as 

perforin, TIA1 and granzyme B (not shown). 

3.3 Relevant pathways found activated in PCs that could be involved in 

the maintenance and proliferation of tumor cells 

3.3.1 NF-ĸB pathway 

Since it has been described that CLL cells have constitutively activated NF-ĸB, which appears to 

enhance leukemia cell survival, we decided to study the expression of the different NF-ĸB 

subunits in our series. Interestingly, we could identify nuclear expression of any of the 

members of the NF-ĸB family in all PCs. p50, p52 and Rel B were found exclusively in the 

nucleus of B prolymphocytes that were identified according to their morphology (Figure 7). 
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Nuclear p50 was found in the B prolymphoctyes of nearly all cases and those negative for 

nuclear p50 expressed either p52 or Rel B (percentages of positive cases for each marker in 

Figure 8). Although in most cell types and conditions the p50 subunit forms a dimer with p65, 

it is well known that other subunit complexes also participate in the regulation of cellular 

processes and tumorigenesis. 

Mcl-1

p50 p52 Rel B

Bcl-2BIRC5c-Rel

p65

 

Figure 7. NF-ĸB status in CLL cells inside PCs. p50, p52 and Rel B were observed in the nucleus of CLL 

cells, indicating activation of this family of transcription factors. However, p65 showed cytoplasmic 

localization and c-Rel was not expressed in the majority of the cases. 

In order to confirm the activation of the pathway, also the expression of some NF-ĸB targets 

was investigated. We found that Mcl-1 and BIRC5 (also known as Survivin), survival and 

antiapoptotic mediators, were also expressed exclusively in malignant cells found in the PCs 

(and not outside) in the majority of the cases (91.94% and 100% respectively). Bcl-2 was also 

found in PCs, but not in an exclusive manner as it was also seen outside of the PCs. 

3.3.2 BAFF signaling  

We were also interested in the upstream pathways that could be responsible for the NF-ĸB 

activation. For that reason, we studied the expression of the cytokine BAFF, which has been 

shown to present an NF-ĸB consensus sequence in its promoter and is known to be important 

for CLL cell survival. We observed BAFF expression in B lymphocytes only inside the PCs (88.7% 

of all cases) (Figure 8). Surprisingly, stroma cells did not express BAFF. 

3.3.3 CD40 pathway 

However, BAFF expression alone could not explain the NF-ĸB activation in all cases. Therefore, 

we investigated the role of CD40, a member of the TNF receptor family that activates both the 

classical and alternative NF-ĸB pathways in normal lymphocyte development. Thus, it has been 
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shown that blocking the CD40 pathway through anti CD40L mAb in vitro results in NF-ĸB 

inhibition and increases cell death of CLL cells (Furman et al., 2000).   One third of all cases 

from our series (33.9%) showed expression of CD40 exlclusively in B prolymphocytes of PCs 

(Figure 8). 

88.7% (55/62)

100% (62/62)

24.6% (14/57)

56.71% (38/67)

33.9% (21/62)

100% (65/65)

91.94% (57/62)

100% 67/67)

67.2% 39/58)

95.08% (58/61)
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IRF4/MUM1  VEGF Rel B CD10 

MCL1  ZAP70 NFATc1 GCET1 

PD1  CD23  CD30 

Ki67  CD38  BCL6 

 
Figure 8. Expression of different markers in PCs. A) Percentage of positive cases in B-prolymphocytes 

for each marker analyzed. In brackets, the number of positive cases out of the total of valorable 

samples. B) Different patterns of staining were observed and are summarized here. 1, positive markers 

exclusively in PCs. 2, positive markers in PCs and in small non-proliferating neoplastic cells outside PCs 

with lower intensity in PCs. 3, positive markers in PCs and in small non-proliferating neoplastic cells 

outside PCs. 4, localization change, from cytoplasm to the nucleus in PCs. 
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In order to confirm the activation of the pathway, we studied by immunofluorescence the 

expression of its natural ligand (CD40L, also known as CD154) in T cells. The double labeling 

(CD3, CD40L) showed that T cells surrounding B prolymphocytes actually expressed CD40L 

(Figure 9). 

BAFF CD40

TRAF1 VEGF NFATc1

CD20 CD23 CD38

ZAP70 TCL1 BCL6

CD40L

CD3

 

Figure 9. Activated pathways, prognostic and germinal center markers inside proliferation centers are 

shown. Immunofluorescence was performed on frozen tissue. Arrows indicate ZAP70-positive B-

prolymphocytes (blue) or T cells (black). 

The antiapoptotic effect of CD40 ligation in CLL is known to be mediated by VEGF. Both VEGF 

and CD40 engagement are essential for NF-ĸB activation in B CLL cells (Farahani et al., 2005). In 

agreement with this, we found that VEGF was overexpressed in the cytoplasm of B 

prolymphocytes of PCs in 88.63% of the cases of our series 
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Our observations were consistent with a previous work (Basso et al., 2004), in which B cells, 

upon CD40 ligation, acquired a specific signature that included genes such as MUM1/IRF4, p50 

and TRAF1. Interestingly, transgenic mouse overexpressing TRAF2DN and Bcl-2 in B cells 

develop a CLL-like lymphoproliferative disease. TRAF2DN mutant lacks the N-terminal RING 

and zinc finger domains and therefore, it mimics TRAF1. For these reasons, we decided to 

study the expression of TRAF1 in our series. We observed TRAF1 only in B prolymphocytes of 

the PCs. The staining was positive in the nucleus and cytoplasm of 34.4% of the cases, 

exclusively in the nucleus of 28.1% of the cases and only in the cytoplasm of 10.9% of them, 

making a total of 73.4% positive cases (TRAF1). The presence of nuclear TRAF1 expression was 

demostrated using both immunohistochemistry on paraffin-embedded tissues and 

immunofluorescence on frozen samples (data not shown). 

3.4 Other findings 

We also studied other proteins that could play a role in the proliferation of CLL/SLL cells 

exclusively inside the PCs and we found overexpression of PD1 (43.8%) and NFATc1 (67.2%) in 

tumor cells. 

On the other hand both PCs and non-proliferating small B cells of CLL samples were positive 

for some markers such as CD20, SYK, Bcl-2, TCL1, CD38, CD23 and ZAP70 (Figure 9). PCs in 

most cases showed a weaker staining for Bcl-2 and TCL1 (shown to be reduced in proliferating 

compartments). No immunoreactivity was found for germinal center markers such as BCL6 

(Figure 9), GCET1 and CD10 or other markers such as CD30 (data not shown).  
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4. RESULTS II 
 

 

New insights into the relationship between molecular features 

of chronic lymphocytic leukemia and sensitivity to rationally 

selected compounds (calmidazolium, R406, TW-37 and ETP-

39010): an ex vivo approach 
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4.1 Rational selection of compounds to be tested on primary samples 

Since it has been shown that antigen selection and BCR signaling are important in the 

pathophysiology of CLL (Caligaris-Cappio and Ghia, 2008), we decided to functionally explore 

this pathway at different levels. For that, we collected a variety of gene expression data and 

analyzed them with the BCR pathway as the main focus. Our main objective was to study the 

molecular heterogeneity of CLL patients and how this could influence the response to some 

selected compounds. 

First, we used an in silico approach by means of the connectivity Map (c-Map) developed by 

the Broad institute and available at: 

http://www.broadinstitute.org/science/projects/connectivity-map/connectivity-map. 

 This bioinformatic tool is based on the creation of a large reference catalogue of gene 

expression data from cultured human cells perturbed with many chemicals. The c-Map aims at 

connecting gene patterns that characterize a disease with gene patterns produced by drugs or 

genetic approaches. 

Gene expression profiles from 160 CLL patients generated previously in our group were used 

(Rodriguez et al., 2007). These patients were classified into two groups, according to long or 

short treatment free survival. Genes differentially expressed between these groups were 

obtained using the public available tool T-REX (GEPAS). Two lists of genes upregulated (74 

genes) or downregulated (43 genes) in the group of poor prognosis were generated and 

applied to the c-Map version 0.1. This version included data for 164 distinct bioactive small 

molecule compounds and 564 gene expression profiles. Table 9 shows the compounds 

retrieved by the programme. A negative score indicates that the drug is able to reverse the 

gene profile that has been inquired. Thus, compounds with scores close to the highest 

negative score (-1) were selected. Interestingly, the mechanisms of action of several of these 

drugs were related to calcium signaling. Calmidazolium inhibits calmodulin-dependent 

phosphodiesterase and Ca2+-transporting ATPase but it can also cause elevation of intracellular 

calcium independent of calmodulin inhibition. Felodipine is a calcium channel blocker that 

decreases the intracellular levels of calcium inhibiting many cellular processes. Other 

compounds obtained in the c-Map analysis act through dopaminergic, adrenergic, cholinergic 

or histaminic receptors triggering calcium signaling upon receptor engagement.  
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Table 9. c-Map results obtained with version 0.1. Score range is from -1 to 1. Negative scores indicate 

that the drug reverses the gene signature provided. HL60, acute myeloid leukemia cell line; MCF7, 

human breast cancer cell line; PC3, human prostate cancer cell line. HDAC, histone deacetylase. Sources 

used were DrugBank and PubMed 

c-Map name Description Dose Cell line Score 

calmidazolium Inhibitor of calmodulin 5 µM MCF7 -1 

trifluoperazine 

Antiadrenergic, antidopaminergic, and 

minimal anticholinergic effects. Protein 

binding is dependent on calcium 

10 µM MCF7 -0,904 

felodipine 
Calcium channel blocker used to control 

hypertension 
10 µM MCF7 -0,889 

thioridazine 
Central adrenergic-blocking, dopamine-

blocking and minor anticholinergic activity 
10 µM MCF7 -0,878 

resveratrol 

Suppresses NF-kB. Anti-inflammatory and 

antioxidant effects. Potential anticancer 

properties 

10 µM MCF7 -0,871 

prochlorperazine 

It blocks D2 dopamine receptors, 

anticholinergic and alpha-adrenergic 

receptors 

10 µM MCF7 -0,845 

felodipine 
calcium channel blocker used to control 

hypertension 
10 µM MCF7 -0,762 

prochlorperazine 

It blocks D2 dopamine receptors, 

anticholinergic and alpha-adrenergic 

receptors 

10 µM MCF7 -0,744 

resveratrol 

It suppresses NF-kB. Anti-inflammatory and 

antioxidant effects. Potential anticancer 

properties 

10 µM MCF7 -0,725 

sirolimus 

Immunosuppressant . It binds the cytosolic 

protein FK-binding protein 12 (FKBP12) and 

inhibits the mTOR Complex1 

100 nM MCF7 -0,654 

rottlerin 
It inhibits protein kinases with some 

specificity for PKC 
10 µM MCF7 -0,682 

sirolimus 

Immunosuppressant. It binds the cytosolic 

protein FK-binding protein 12 (FKBP12) and 

inhibits the mTOR Complex1 

100 nM HL60 -0,6 

trichostatin A HDAC inhibitor 1 µM MCF7 -0,588 

wortmannin 
Inhibitor of phosphoinositide 3-kinases 

(PI3Ks) 
1 µM MCF7 -0,567 

trichostatin A HDAC inhibitor 100 nM MCF7 -0,562 

trichostatin A HDAC inhibitor 1 µM MCF7 -0,562 

trichostatin A HDAC inhibitor 100 nM PC3 -0,536 

wortmannin Inhibitor of phosphoinositide 3-kinases 10 nM HL60 -0,536 

trichostatin A HDAC inhibitor 1 µM MCF7 -0,529 

trichostatin A HDAC inhibitor 100 nM MCF7 -0,522 

sirolimus 

Immunosuppressant . It binds the cytosolic 

protein FK-binding protein 12 (FKBP12) and 

inhibits the mTOR Complex1 

100 nM MCF7 -0,513 

sirolimus 

Immunosuppressant . It binds the cytosolic 

protein FK-binding protein 12 (FKBP12) and 

inhibits the mTOR Complex1 

100 nM MCF7 -0,508 
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These results suggested that a way to reverse the bad prognosis gene signature/phenotype 

might be the modulation of the calcium mediated pathways. In fact, calcium is an essential 

mediator in the signaling through the BCR. Levels of calcium can be sensed by calmodulin, 

which interacts with protein kinase C and in turn activates NF-kB as well as the transcription 

factor NFATc (Beals et al., 1997). Therefore, the well known calmodulin inhibitor 

calmidazolium was chosen to be tested in our study. 

Other drugs of interest obtained by the c-Map analysis were resveratrol, siroliums and 

rottlerin. Especially interesting for us was resveratrol, a phytostrogen found in red wine and a 

variety of plants that is known by its anti-inflammatory and antiproliferative effects mediated 

by the modulation of cyclooxigenase and the transcription factor NF-kB, respectively. The 

impact of the latter one in the maintenance of CLL cells is well described and resveratrol was 

therefore considered a reasonable candidate to be used in our study. However, this compound 

exerts many effects and since we wanted to focus on the BCR pathway, we decided to choose 

compounds that were structurally closely related to resveratrol but have a more restrictive 

effect, such as piceatannol. This compound is a potent but not specific inhibitor of the apical 

Syk kinase (Bullington et al., 1998), whose inactivation in turn inhibits NF-kB activation in B 

cells. The inhibition of NF-kB via BCR signaling inhibition fits with previous data of the group 

that show that CLL patients with a poor prognosis show an increased expression of  a BCR 

signature (Rodriguez et al., 2007).  At this time, a new specific Syk kinase inhibitor known as 

R406 was generated by Rigel Pharmaceuticals Inc (South San Francisco, California) and 

therefore this compound was finally selected to be tested in our series of patients. As it has 

been already suggested, SYK kinase might be the bottle neck of the signaling through the BCR 

signaling, and R406 offered a good opportunity to further dissect this pathway (Baudot et al., 

2009; Gobessi et al., 2009).  

Recently, a new expanded version of c-Map has been released (c-Map v.02). This new version 

includes 7,000 gene expression profiles representing 1309 compounds and now also some 

genetic reagents. When our CLL signature was applied to the v.02, the drugs obtained were 

different from those proposed in the c-Map v. 01, which was expected considering the 

increase in the data catalogue. However, among the compounds with highest negative scores, 

we could again find drugs whose mechanism of action affects calcium trafficking (lebovulonol -

score -0.9-, apomorphine -score -0.8-, maprotiline -score -0.8-, among others) and drugs that 

are direct calcium blockers (prenylamine, nitrendipine and nifendipine), confirming our initial 
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hypothesis. Moreover, the majority of the compounds retrieved by the previous version were 

also obtained with the actualised version (wortmanin, resveratrol, trichostatin A, etc.)  

On the other hand, two additional drugs were selected for our study following a more classical 

analytical approach. One of the main features of CLL cells is that they have impaired apoptosis 

(Hamblin and Oscier, 1997). In fact, several pathways, including BCR cascade but also CD40 

signaling, CD95 and TRAIL receptors, contribute to modify the balance of pro and antiapoptotic 

molecules. Several drugs and antisense molecules that target different members of the Bcl-2 

family are already at clinical trials. Many of them target antiapoptotic members of this 

network such as Bcl-2 or are BH3 mimetics that block Bcl-2. However, several lines of evidence 

show that another antiapoptotic member of this family, Mcl-1, may have a greater relevance in 

the regulation of the balance between survival and death signals in CLL cells (Ruiz-Vela et al., 

2008). Interestingly, when the gene expression profile of 16 CLL cases was investigated for 

several members of the Bcl-2 family we observed a variability in the levels of the different 

members of the family and that cases with higher expression of antiapoptotic  proteins (Mcl-1, 

Bcl-2, Bcl-xL) also displayed a lower expression of proapoptotic  proteins (Bax, Bak).  

Nevertheless, Bcl-2 was highly expressed in all samples (Figure 10A). Taking this data into 

account, we decided to test a new compound known as TW-37 that derives from the natural 

compound gossypol (Wang et al., 2006). It is a nonpeptidic small-molecule inhibitor that binds 

to the BH3-binding groove of Bcl-2, Bcl-xL and also Mcl-1 interacting with the same amino acid 

side chains as the natural Bim. Inhibition of this network allows us the interference of one of 

the latest events in the survival signals delivered in B cells. 

A B

 

Figure 10. Gene expression profile of CLL samples. Data represented were normalized with lymph 

nodes and tonsils (Agilent platform, 4x44K). A) Heterogeneous expression of proapototic (Bax and Bak) 

and antiapoptotic members (Mcl-1, Bcl-2 and Bcl-xL, also known as BCL2L1) was observed. B) PIM1 and 

PIM2 variability in expression levels was observed in CLL cases. 

Finally, the examination of gene expression profiles from CLL samples confirmed previous data 

that indicated that PIM kinases might be deregulated in this malignancy. Our data showed that 
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PIM2 kinase is overexpressed in practically all CLL samples when compared with normal tissues 

(lymph nodes and tonsils), though at different levels (Figure 10B). PIM1 kinase showed even a 

greater variability among different samples. These kinases have been extensively related to B 

cell development and tumorigenesis and represented a novel therapeutic target in CLL. Also 

recent data from others suggest that inhibition of PIM kinases might be of therapeutic interest 

in CLL (Chen et al., 2009). In order to further explore this pathway, we decided to test a new 

pan-Pim kinase inhibitor that has been developed at the Experimental Therapeutics 

Programme of CNIO. 

4.2 Measurement of compound sensitivity on CLL samples 

Our main interest at this point was to study the drug sensitivity of every primary sample, in 

order to obtain a standard value that could be used to compare sensitivity of different samples 

to every compound. Before starting the screening, we decided to carry out some pilot 

experiments. To look for the best conditions for further assays, initial tests of basal cell viability 

were performed. Seven samples of PBMCs from CLL patients were assayed for spontaneous 

apoptosis (using Annexin V staining) at several time points after plating the cells. A 

considerable increase in cell death along time was observed (data not shown). Since we 

wanted to measure the decrease of cell viability upon drug treatment, it was important to 

maintain the lowest levels of basal cell death. Taking this and previous reports into 

consideration (Krutzik et al., 2008), we decided to plate the cells and let them rest only 2-3 

hours at 37ºC before addition of the active compounds. 

Another factor to consider was the time of incubation after drug dispensation. Preliminary 

experiments with two of the drugs (calmidazolium and R406) showed that a time and dose 

dependent increase in apoptosis could be observed for the sensitive samples, while resistant 

samples presented only a small induction of apoptosis (data not shown).  However, Annexin V 

assays are time consuming and demand relatively high number of cells. Therefore we decided 

to use a commercial cell viability assay (Cell Titer GLO, Promega) that allowed us to minimize 

the number of cells required per experiment and therefore the use of a wider range of 

concentrations. Taking into account these factors, we decided to perform the cell viability 

assays using the following procedure: we let cells stabilize 2-3 hours after defreezing, we 

added the active compound using an automated dispensation protocol and measured cell 

viability at 72 hours. 



Results II 

 

 

68 

 

4.3 Study of sensitivity to calmidazolium (inhibitor of calmodulin) in 

primary CLL cells 

4.3.1 Effect of calmidazolium on cell viability 

A first series of 21 samples was used to establish calmidazolium (CZ) sensitivity. This series 

included samples of PBMCs from CLL patients. EC50 values obtained were between 909 µM 

and 6,779 µM (summarized in Table 10) and revealed variability in drug sensitivity up to 6 fold. 

We were interested in knowing if this variability could correlate with some clinical parameters 

that are related to patient prognosis, being the mutational status of IGHV one of the most 

robust ones. However, t-test comparison between M-CLL and U-CLL showed no statistically 

significant differences between these groups (data not shown).  

As PBMCs samples presented a variable percentage of tumor cells that could somehow 

masked the EC50 values, a second series of 14 purified B cells was used to assay calmidazolium 

sensitivity (Table 11). In spite of the heterogeneous drug response observed (with EC50 values 

between 650 nM and 28555 nM) no statistical difference was found between M-CLL and U-CLL 

samples. 

4.3.2 Gene expression patterns define response to calmidazolium in CLL cells. 

If these parameters could not explain drug response variability, we asked whether more 

complex features could explain sensitivity/resistance to calmidazolium. To explore this 

possibility, we used gene expression profiling (using a custom 8-pack array platform) of 12 

purified B cell samples for which we had also calculated EC50 values. As an approximation, we 

considered that samples with EC50 values above the median (2,777 nM) of the series were 

resistant (6 samples), while those below the median were sensitive (6 samples) (Figure 11).  

Since the number of genes (around 900) and samples (12) is limited, t-test analysis did not 

retrieve genes statistically different between both groups. Therefore, we decided to analyze 

gene expression patterns rather than single gene expression values. For that, we studied if 

there were positive or negative correlations between EC50 values and gene expression values. 

This means, if increasing EC50 values correlated with increasing or decreasing values of gene 

expression among the samples. 
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Table 10. Series of PBMC from CLL patients. EC50 values and clinical parameters are shown. ND 

indicates no available data. M, indicates IGHV with <98% homology with germinal gene; U, indicates 

IGHV with >98% homology with germinal gene. % of IGHV homology data provided by some hospitals 

was not available. No TP53 mutations indicates that there were not mutations in exons 5, 6, 7 or 8, but 

no FISH data are available. 

Sample 

code 

EC50 (nM) 

 CZ 
CD19 SHM % IGHV homology FISH/TP53mut ZAP70 

80232 909 ND M ND 13q deletion ND 

80113 956 70% ND ND 
No TP53 

mutations 
- 

80091 1,395 ND U 99.6 17p deletion ND 

90921 1,397 43% M 96.34 
No TP53 

mutations 
ND 

80102 1,511 80% ND ND 

11q and 13q 

deletions. IGH+ 

rearrangement 

- 

80005 1,586 90% M 86 13q14 deletion - 

80117 1,781 25% U 99.6 11q22 deletion + 

90082 1,833 90% M 93.17 
No TP53 

mutations 
- 

80230 1,938 ND U ND Normal + 

90533 2,220 ND ND ND ND ND 

90905 2,423 ND M 96.73 
No TP53 

mutations 
ND 

70446 2,605 73% U 100 ND ND 

90978 2,732 ND M 96.02 
No TP53 

mutations 
ND 

90025 2,924 79% M 93.63 13q14 deletion - 

80002 3,102 66.9% M 94.74 13q14 deletion - 

80048 3,178 34% M 90.65 Normal - 

80139 3,187 ND U 99.6 
13q and 17p 

deletions 
ND 

90393 3,371 56% M 90.76 
No TP53 

mutations 
- 

80254 3,398 81% U 100 13q14 deletion - 

80047 3,786 25% M 95.53 
Chromosome 12 

trisomy 
ND 

80197 5,046 ND U ND Normal + 

80194 5,267 ND M ND 13q deletion + 

70448 5,614 ND M 87.9 
No TP53 

mutations 
ND 

80231 5,812 ND M ND 13q deletion - 

80138 6,032 ND M 93.55 11q deletion ND 

70447 6,779 62% M 93 
No TP53 

mutations 
ND 
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Table 11. Series of purified B cell samples from CLL patients. EC50 values and clinical parameters are 

shown. ND indicates no available data. M, indicates IGHV with <98% homology with germinal gene; U, 

indicates IGHV with >98% homology with germinal gene. CD19 a. Purif, indicates CD19 purity of samples 

after B cell selection. No TP53 mutations indicates that there were no mutations in exons 5, 6, 7 or 8, 

but no FISH data are available. MR, gene expression microarray (8 x 15K). 

Sample code EC50 CZ CD19 
CD19 a. 

Purif 
SHM 

% IGHV 

homology 
FISH/p53mut ZAP70 Assays 

90903 650.3 ND 99.8% ND ND No TP53 mutations ND MR 

100008 666.1 ND 99.7% M 89.16 No TP53 mutations ND MR 

91103 873.8 96% 97.7% M 92.77 13q14 deletion - MR 

100018 1,277 59.3% 96% U 99.18 11q deletion + MR 

91066 1,796 60% 99.8% ND ND 13q14 deletion - MR 

91072 2,750 58.5% 97% M 93.95 17p deletion ND MR 

91207 2,777 82% 97% U 99.59 No TP53 mutations - MR 

90908 3,131 90% 99.5% M 96.4 13q14 deletion - MR 

90994 3,619 35% 99.7% M ND Normal - MR 

90909 3,678 94% 98.4% ND ND 
c-MYC trisomy, 13q 

deletion 
+ MR 

90906 3,759 90% 99.8% U 99.6 
IGH+ 

rearrangement 
+ MR 

91069 4,346 93% 96.3% U 99.18 
Chromosome 12 

trisomy 
+ MR 

90907 4,817 80% 99.5% M 94.3 13q14 deletion - MR 

100004 28,555 ND 99.5% ND ND No TP53 mutations - - 

Using this approach, we obtained 46 genes with Pearson coefficient >0.5 or <-0.5 and p values 

<0.05.  These genes were able to cluster (CLUSTER, Stanford University) our samples into two 

groups that corresponded to the ones previously defined as resistant or sensitive.  Then, we 

compared gene expression of these 46 genes between the two groups (t-test Limma, Asterias, 

CNIO) and 14 were differentially expressed (FDR-independent <0.05). These genes were also 

able to classify our samples in sensitive and resistant (Figure 12B). Moreover, consensus 

Clustering (Gene pattern, Broad Institute) confirmed these results (Figure 12C). The 14-gene 

signature included the following genes: BMP7, DIAPH2, XIAP, ADAM17, MALAT1, MOSPD2, 

RPL23, UPK2, RPL4, TLE4, PRKCE, BIRC6, MBTD1 and ZSCAN29 
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Figure 11. EC50 values for calmidazolium of B-CLL cells. Purified CLL samples that had been hybridized 

in gene expression microarrays were divided into sensitive or resistant cells considering the median of 

the series (2,777 nM). 
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Figure 12. A 14-gene signature defines response to calmidazolium. A) Hierarchical cluster of CLL 

samples using the initial 46-gene signature. B) Hierarchical cluster of CLL samples using the 14-gene 

signature. C) Consensus Clustering with the same genes as in B) defines the same two groups of 

samples. 

 

4.4 Study of sensitivity to R406 (SYK inhibitor) in primary CLL cells 

4.4.1 R406 effect on cell viability 

R406 cytotoxic effect was measured in a series of 22 PBMC CLL samples (Table 12). 

Unfortunately, the response to the drug did not adjust to a sigmoidal curve, as it is necessary 

for EC50 calculations. However, two groups of samples could be distinguished. The first one 

showed no effect on cell viability upon drug treatment while the second one showed a 

reduction in cell viability after R406 treatment. As R406 is a compound that targets the SYK 

kinase involved in BCR signaling, it could be especially active in the B-cell population. 

Therefore, we decided to assess cell viability in a new series of 9 purified B CLL samples. We 
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again observed two groups of samples with different sensitivity (Table 13). One group included 

4 samples that were very sensitive to R406, showing EC50 values ranging from 270 nM to 1498 

nM while a second group was made up of 5 samples that were resistant and did not show a 

measurable reduction of cell viability, even at the higher dose used (50 µM).  

Table 12. Series of PBMC from CLL patients. EC50 values and clinical parameters are shown. ND 

indicates no available data. M, indicates IGHV with <98% homology with germinal gene; U, indicates 

IGHV with >98% homology with germinal gene. No TP53 mutations indicates that there were not 

mutations in exons 5, 6, 7 or 8, but no FISH data are available. R indicates, resistant sample with no 

measurable decrease in cell viability. D*, effect on cell viability but not adjusted to a sigmoidal curve. 

Sample code 

R406 

EC50 

(nM) 

CD19 SHM 
%IGHV 

homology 
FISH/TP53mut ZAP70 

70447 R 62.0% M 93 No TP53 mutations ND 

70448 R ND M 87.9 No TP53 mutations ND 

80002 R 66.9% M 94.74 13q14 deletion - 

80003 D* 32.0% ND ND ND + 

80005 R 90.0% M 86 13q14 deletion - 

80047 D* 25.0% M 95.53 Chromosome 12 trisomy ND 

80048 D* 34.0% M 90.65 Normal - 

80091 D* ND U 99.6 17p deletion ND 

80113 D* 70.0% ND ND No TP53 mutations - 

80138 D* ND M 93.55 11q deletion ND 

80139 D* ND U 99.6 13q and 17p deletions ND 

80194 R ND M ND 13q deletion + 

80197 D* ND U ND Normal + 

80230 D* ND U ND Normal + 

80231 R ND M ND 13q deletion - 

80232 D* ND M ND 13q deletion ND 

80254 R 81.0% U 100 13q14 deletion - 

90025 R 79.0% M 93.63 13q14 deletion - 

80117 751.9 25.0% U 99.6 11q22 deletion + 

70446 D* 73.0% U 100 ND ND 

80102 D* 80.0% ND ND 
11q and 13q deletions. IGH+ 

rearrangement 
- 

90393 D* 56.0% M 90.76 No TP53 mutations - 
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Table 13. Series of B cell purified samples from CLL patients. EC50 values and clinical parameters are 

shown. ND indicates no available data. M, indicates IGHV with <98% homology with germinal gene; U, 

indicates IGHV with >98% homology with germinal gene. CD19 a. Purif, indicates CD19 purity of samples 

after B cell selection. No TP53 mutations indicates that there were not mutations in exons 5, 6, 7 or 8, 

but no FISH data are available. R, resistant sample. MR, gene expression microarray (8 x 15K); F, 

Western Blot in F(ab’)2 stimulated cells. 

Sample code 

R406 

EC50 

(nM) 

CD19 

CD19 

a. 

Purif. 

SHM 
%IGHV 

homology 
FISH/p53mut ZAP70 Asssays 

90906 270.8 90% 99.8% U 99.6 
IGH+ 

rearrangement 
+ MR, F 

90909 R 94% 98.4% ND ND 
c-MYC trisomy, 

13q deletion 
+ MR 

91072 R 58% 97% M 93.95 17p deletion ND MR 

91103 R 96% 97.7% M 92.77 13q14 deletion - MR, F 

90903 257.8 ND 99.8% ND ND 
No TP53 

mutations 
ND - 

91207 R 82% 97% U 99.59 
No TP53 

mutations 
- MR 

100004 R ND 99.5% ND ND 
No TP53 

mutations 
- F 

100008 600.1 ND 99.7% M 89.16 
No TP53 

mutations 
ND MR 

100018 1,428 59.3% 96% U 99.18 11q deletion + MR, F 

 

4.4.2 R406 inhibits BCR signaling in primary CLL samples and induces apoptosis 

It has been well described, that in vitro stimulation of primary B-CLL cells with anti-IgM is able 

to initiate BCR signal transduction. R406 has been described to inhibit SYK, one of the apical 

kinases of the pathway. Therefore, we decided to check the activity of this compound by 

monitoring the phosphorylation of some of its direct (BLNK) or indirect (AKT) targets in a set of 

B-CLL samples. Cells were plated, incubated 3 hours after defreezing and treated with 5 µM 

R406 (Chen et al., 2008) or vehicle (DMSO) for 30 minutes. Then, cells were stimulated with 

F(ab’)2 for 5 minutes. Reaction was rapidly stopped with ice cold PBS and cells were 

centrifuged and washed. Surprisingly, BLNK phosphorylation showed neither substantial 

induction after BCR stimulation or inhibition upon R406 treatment (Figure 13). On the 

contrary, AKT phosphorylation was induced after F(ab’)2 treatment in all tested samples, 

although phosphorylation induction was minimal in one of the resistant samples. Interestingly, 

sensitive samples (90906 and 100018) already showed phosphorylated AKT in basal conditions, 

indicating that the pathway may be already activated. Moreover, these samples were ZAP70 

positive, which is in agreement with published data that show that these CLL cells were more 
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sensitive to ligation of sIgM than leukemic cells that lacked ZAP70 expression (Chen et al., 

2002). R406 treatment was able to completely inhibit AKT phosphorylation in all samples, even 

the basal phosphorylation levels (see sample 90906). We then decided to test R406 induced 

apoptosis in one representative sample of each group (sensitive or resistant). R406 was able to 

induce apoptosis in the sensitive sample that presented increased BCR signaling (sample 

100018) while the resistant one (sample 100004) showed no substantial induction of 

apoptosis. 
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Figure 13. R406 effect on BCR signaling and apoptosis. Inhibition of SYK in resistant or sensitive samples 

inhibits BCR signaling. Cells were treated with R406 at 5 µM concentrations for 30 minutes. Stimulation 

was performed with 10 µg/mL F(ab’)2, 5 minutes (a-IgM, anti-IgM). 

 

4.4.3 Gene expression signature of R406 resistant and sensitive samples 

In order to further investigate the molecular differences between resistant (90909, 91072, 

91207, 91103) and sensitive (90906, 100008, 100018) samples, we performed microarray 

analysis of 7 B-CLL samples using 8-pack custom microarrays. SAM analysis showed two 

differentially expressed genes (p<0.01) between both subgroups, MUM1/IRF4 and FAM107A, 

which presented higher levels in the group of sensitive samples (Figure 14A). We also 

performed Gene Set Enrichment Analysis (GSEA) in order to generate hypothesis that could 

explain drug resistance (Figure 14B). For that, we used Biocarta pathways that have been 

curated for pathways especially relevant in lymphomas (Aggarwal et al., 2009). Interestingly, 

the two significant pathways (FDR<0.25) were chemokine and cytokine signaling pathways. 
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Although with a lower significance, other pathways found to be enriched in resistant samples 

were VEGF and TNF pathways. 

Pathway Size Genes enriched

Chemokine signaling 18
PLCG2, PI3CG, MAPK11, MAPK14, MAPK3, MAPK13, MAP2K2, 

CCL7, MAPK8, JUN, CAMK2B

Cytokine-Cytokine

receptor interaction
21

LTA, TNFSF13B, TNFSF10, TNFSF11, IL2RA, CCL7, TNFRSF4, IL2, 

IL1A

VEGF signaling

pathway
15

SHC1, PLCG2, PIK3CG, MAPK11, MAPK3, PIK3R2, MAPK13, 

MAP2K2, PXN

TNFR pathway 38
MAP3K14, LTA, IKBKB, TNFAIP1, TNFRESF1A, RELA, TRAF2, TRAF5, 

MAPK8, JUN, MADD
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Figure 14. Gene expression analysis of R406 sensitive and resistant CLL samples. A) FAM107A and 

MUM1/IRF4 distinguished sensitive from resistant samples. B) Pathways enriched in resistant CLL 

samples (GSEA). 

 

4.5 Study of sensitivity to TW-37 (small molecule inhibitor of Bcl-2 

family) in primary CLL cells 

4.5.1 TW-37 effect on cell viability 

Following a similar approach to the one described in previous sections, 29 PBMC CLL samples 

were used to calculate EC50 for the Bcl-2 family inhibitor. The range obtained was between 

32.82 nM and 753.1 nM, being sample 80113 an outlier with an EC50 value of 24,191 nM 

(Table 14). When IGHV mutational status was used to classify samples, no difference in EC50 

values was found (Figure 15A). However, when samples with alterations affecting TP53, i.e. 

samples with 17p deletion, were excluded from the analysis  (samples 80139 y 80091), a 
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statistical tendency (p value 0.07) was observed showing that U-CLL cases have lower EC50 and 

in consequence were more sensitive to the drug (Figure 15B).  

 

Table 14. Series of PBMC from CLL patients. EC50 values and clinical parameters are shown. ND 

indicates no available data. M, indicates IGHV with <98% homology with germinal gene; U, indicates 

IGHV with >98% homology with germinal gene. No TP53 mutations indicates that there were no 

mutations in exons 5, 6, 7 or 8, but no FISH data are available. 

Sample code 

TW-37  

EC50 

(nM) 

CD19 SHM 
% IGHV 

homology 
FISH/p53mut ZAP70 

70446 32.82 73% U 100 ND ND 

90978 70.35 ND M 96.02 No TP53 mutations ND 

80002 73.56 66.9% M 94.74 13q14 deletion - 

90082 77.84 90% M 93.17 No TP53 mutations - 

80230 87.04 ND U ND Normal + 

80003 101.3 32% ND ND ND + 

80117 129.8 25% U 99.6 11q22 deletion + 

80231 130.9 ND M ND 13q deletion - 

90921 131.4 43% M 96.34 No TP53 mutations ND 

91071 142.1 73% U 99.6 No TP53 mutations ND 

80138 168.5 ND M 93.55 11q deletion ND 

80197 169.9 ND U ND Normal + 

8000537 192.3 90% M 86 13q14 deletion - 

80194 204.1 ND M ND 13q deletion + 

80254 222.8 81% U 100 13q14 deletion - 

80139 236.4 ND U 99.6 13q and 17p deletions ND 

80047 251.9 25% M 95.53 Chromosome 12 trisomy ND 

70447 262.4 62% M 93 No TP53 mutations ND 

90533 278.2 ND ND ND ND ND 

70448 292.7 ND M 87.9 No TP53 mutations ND 

90923 329.1 39% ND ND Normal + 

90025 395.1 79% M 93.63 13q14 deletion - 

80232 397.5 ND M ND 13q deletion ND 

80102 417.2 80% ND ND 
11q and 13q deletions. IGH+ 

rearrangement 

- 

80048 476 34% M 90.65 Normal - 

90393 556 56% M 90.76 No TP53 mutations - 

90904 705.5 33.13% M 91.27 No TP53 mutations ND 

90905 705.5 ND M 96.73 No TP53 mutations ND 

80091 740.6 ND U 99.6 17p deletion ND 

90903 753.1 ND ND ND No TP53 mutations ND 

80113 24,191 70% ND ND No TP53 mutations - 
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Figure 15. TW-37 sensitivity is associated with mutational status of PBMCs CLL samples. A) Sensitivity 

to TW-37 in U-CLL samples versus M-CLL (including all samples with cytogenetic data available). No 

significant difference was observed. B) Samples with alterations affecting TP53 were excluded from the 

analysis. A tendency (t-test, p: 0.07) of U-CLL samples to present lower values of EC50, being more 

sensitive to the drug, was observed. 

 Table 15. Series of purified B cell samples from CLL patients. EC50 values and clinical parameters are 

shown. ND indicates no available data. M, indicates IGHV with <98% homology with germinal gene; U, 

indicates IGHV with >98% homology with germinal gene. CD19 a. Purif, indicates CD19 purity of samples 

after B cell selection. No TP53 mutations indicates that there were no mutations in exons 5, 6, 7 or 8, 

but no FISH data are available. MR, gene expression microarray (8 x 15K); W, Western Blot (basal protein 

levels); A, apoptosis time course; C, cell cycle time course. 

Sample 

TW-37 

EC50 

(nM)  

CD19 
CD19 a. 

Purif 
SHM 

% IGHV 

homology 
FISH/p53mut ZAP70 Assays 

91066 310.5 60% 99.8% ND ND 13q14 deletion - MR, W 

100018 381.8 59.3% 
 

U 99.18 11q deletion + MR, W, A 

90784 459.4 ND 95.2% M 96.75 
No TP53 

mutations 
- - 

91103 495.6 96% 97.7% M 92.77 
13q14 deletion 

- 
MR, W, 

A, C 

90994 544.1 35% 99.7% M ND Normal - MR 

90906 650 90% 99.8% U 99.6 
IGH+ 

rearrangement+ 
+ MR, W, A 

91072 1,496 58.5% 97% M 93.95 17p deletion ND MR, W 

100008 2,422 ND 99.7% M 89.16 
No TP53 

mutations 
ND MR, W, A 

90909 2,489 94% 98.4% ND 0 
c-MYC trisomy, 

13q deletion 
+ MR, W, A 

100004 2,846 ND 99.5% ND ND 
No TP53 

mutations 
- W, A 

91207 8,620 82% 97% U 99.59 
No TP53 

mutations 
- MR, W, C 

90907 9,741 80% 99.5% M 94.3 13q14 deletion - MR, W 

90908 9,760 90% 99.5% M 96.4 13q14 deletion - MR, W 
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These results suggested that samples from patients with unmutated  IGVH genes (with a more 

aggressive clinical course) are the most sensitive to the inhibitor TW-37 and that  the 

sensitivity to the drug was p53 dependent (Figure 15).  

These results prompted us to expand our study. Therefore, we evaluated cell viability in a 

series of 14 purified B cell samples (see Table 15). However, differences in EC50 values 

between U-CLL and M-CLL samples could not be confirmed (data not shown), probably due to 

the small size of the series (only 9 samples had available IGHV mutational status data).  

 

4.5.2 TW-37 induces apoptosis in CLL cells and has no effect on cell cycle 

TW-37 has been shown to induce apoptosis mediated by caspases 3 and 9 (Mohammad et al., 

2007) and to mediate S-phase cell cycle arrest (Ashimori et al., 2009). Therefore, we decided to 

study both cellular mechanisms in our purified CLL samples.  Apoptosis was measured by 

Annexin V/PI staining. Cells were defreezed, plated at a concentration of 106/mL in 24-well 

plates and allowed to stabilize for 3 hours before addition of the drug. Considering previous 

EC50 data, we decided to monitor apoptosis at 24h, 48h and 72h using four different drug 

concentrations (100 nM, 500 nM, 1 µM and 10 µM), except for samples 90906 and 90909 that 

were treated only with 100 nM, 500 nM and 1 µM concentrations due to sample limitations. 

As shown in Figure 16A, those samples with EC50 below the median of the series (1496 nM) 

and therefore considered sensitive (90906, 91103 and 100018) presented an increase in 

apoptosis that was time and dose dependent. However, those samples with higher EC50 

values (90909, 100004 and 100008) presented no apoptosis (samples 90909 and 100008) or a 

limited apoptosis induction reached only at higher doses and longer time exposure (sample 

100004). 

Cell cycle analysis was performed in parallel, using the same drug concentrations (100 nM, 500 

nM, 1 µM and 10 µM). As expected, CLL cells in basal conditions were arrested in G0/G1 phase 

and showed a striking reduced S-phase. Upon TW-37 treatment, no remarkable effects on cell 

cycle were observed. In figure 16B, control (DMSO) and the drug concentration corresponding 

approximately to the median EC50 of the series are shown. Reduction of G0/G1 phase in the 

sensitive sample (91103) at 72 hours was the consequence of the increase in sub G0 phase, 

which represents an increase in cell death. Therefore, we concluded that TW-37 exerts its 

antitumor activity by apoptosis induction. 
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Figure 16. Effect of TW-37 in apoptosis and cell cycle. 

 A) Apoptosis time course with different doses and time points. All values were normalized with DMSO 

(see Material and Methods). Left panel shows more sensitive samples while right panel shows samples 

with very high EC50 in which apoptosis is not induced or induced at high concentrations.  

B) Cell cycle analysis of a sensitive (91103) and a resistant (91207) sample. 
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4.5.3 TW-37 candidate biomarkers 

TW-37 has been described to bind to Bcl-2, Bcl-xL but also to Mcl-1 (which distinguishes this 

small molecule inhibitor from other members of this drug family). This binding blocks their 

heterodimerization with the  propapoptotic members of the Bcl-2 family and expands the pool 

of proapototic effectors allowing induction of apoptosis.  
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Figure 17. Inverse correlation between Mcl-1 protein levels and response to TW-37. A) Mcl-1 and Bcl-2 

basal levels measured by WB in CLL samples. B) Correlation between EC50 values (nM) and Mcl-1 levels 

(represented as arbitrary units) normalized with GAPDH levels. 

Bcl-2 levels were very high in all CLL samples studied (Figure 17A) and could not explain why 

some samples were more resistant, requiring doses up to 9 µM to reach the 50% reduction in 

cell viability. The use of TW-37 was especially interesting in our series because it also inhibits 

Mcl-1 binding.  Since patients with higher levels of Mcl-1 present a worse clinical course 

(Pepper et al., 2008) this compound could potentially be useful in the context of CLL. 

Considering this, we hypothesized that Mcl-1 levels could explain TW-37 response. We 

performed Western Blot of 11 purified B-CLL samples and quantified basal Mcl-1 levels 

normalizing with GAPDH levels (Figure 17B). As patients with mutations and/or deletions in 
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TP53 show decreased survival and clinical resistance to chemotherapeutic treatment (Dohner 

et al., 1995) and our previous data suggested that TW-37 acts on a p53 dependent manner, we 

excluded those samples of further analysis. A Pearson correlation between EC50 values in our 

TW-37 and basal Mcl-1 protein levels in B-CLL samples showed a coefficient of -0.5, indicating 

that samples with higher Mcl-1 levels showed lower EC50 and therefore were the most 

sensitive ones (Figure 17A).  

4.5.4 TW-37 gene signature for resistant B-CLL samples 

Furthermore, we were interested in studying if molecular differences in gene expression could 

define sensitive (6 samples) and resistant samples (5 samples).  The two groups of samples 

were defined by the median EC50 of the whole B-CLL series (1,496nM).  
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Figure 18. Analysis of gene expression profile of TW-37 sensitive and resistant CLL samples. A)  

Classification of samples in sensitive or resistant according to the median EC50 of the series (1,496 nM). 

B) Hierarchical cluster of the samples using the set of 38 genes obtained as described in the text. 

Asterisks indicate samples that do not belong to the group, as it had been defined in A). C) Consensus 

clustering using the same 38-gene signature. 
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Samples presenting EC50 values below the median were considered to be sensitive while 

samples with EC50 values above the median were considered to be resistant (Figure 18A). 

We correlated patterns of expression of every gene among the different samples with EC50 

values and obtained 38 statistically significant (p<0.05) genes with a Pearson coefficient higher 

that 0.5 or lower than -0.5. These genes were used to cluster our samples (CLUSTER, Stanford). 

We obtained two groups, corresponding to sensitive and resistant samples (Figure 18B). 

However, some of the samples showing intermediate EC50 were not classified as expected. 

Analysis using consensus Clustering (Gene Pattern) confirmed these results, showing two 

defined groups (Figure 18C). The first included the most resistant samples (90907, 90908 and 

91207) while the second was made up of a mixture of sensitive samples and samples with 

intermediate sensitivity to the drug. This analysis revealed that the threshold used to define 

sensitivity to TW-37 was not the most appropriate. In fact, the mean value of EC50 (3,093 nM) 

could better stratify samples into sensitive and resistant ones. Genes highly expressed in the 

resistant samples included GADD45B, PRKAK2B, PP3P, MLC1, PRKCO, GRIN 2C, PIK3CB, CD8 B, 

LAIR 2, FAS AND KCNJ6. On the other hand, some genes such as TNFIAP2, TDRKH, TNP2, RAC2, 

REL B, CSK, NFASC, FCER 2, TAS1R2, SLC 3811, MDR4, MAP3K5, RAB19, NOC3L and IL2RB were 

less expressed in resistant samples compared to sensitive ones. Taken all together, these data 

show that TW-37-resistant samples can be defined by a 38-gene specific signature. 

4.6 Study of sensitivity to ETP-39010 (PIM kinases inhibitor) in primary 

CLL cells 

4.6.1 ETP-39010 effect on cell viability in primary CLL cells 

As previously shown, heterogeneity in the PIM gene expression levels has been observed in 

CLL samples. Accordingly, variability in drug sensitivity was also evident when we used the PIM 

inhibitor ETP-39010 in 15 PBMCs CLL samples, ranging from less than 1 µM to 13.6 µM (Table 

16). As patients with unmutated IGHV show a worse clinical course, we were interested in 

investigating differences between M-CLL and U-CLL; however, no statistically significant 

difference was observed. 

Due to the background provided by non-tumor cells, we decided to expand our study including 

16 CLL samples of purified B cells (Table 17). The calculated EC50 values ranged from 1,276 nM 



Results II 

 

 

83 

 

to 22,648 nM, showing a slight increase in absolute values compared with our previous PBMCs 

series but revealing also wider variability (up to twenty times). 

Table 16. Series of PBMC from CLL patients. EC50 values and clinical parameters are shown. ND 

indicates no available data. M, indicates IGHV with <98% homology with germinal gene; U, indicates 

IGHV with >98% homology with germinal gene. CD19 a. No TP53 mutations indicates that there were no 

mutations in exons 5, 6, 7 or 8, but no FISH data are available. 

Sample code ETP-39010 EC50 (nM) CD19 SHM 
% IGHV 

homology 
FISH/TP53mut ZAP70 

90903 765.2 ND ND ND No TP53 mutations ND 

80138 1,120 ND M 93.55 11q deletion ND 

70446 1,503 73% U 100 ND ND 

90978 1,536 ND M 96.02 No TP53 mutations ND 

91071 1,734 73% U 99.6 No TP53 mutations ND 

80002 1,828 66.9% M 94.74 13q14 deletion - 

90082 2,790 90% M 93.17 No TP53 mutations - 

90025 2,794 79% M 93.63 13q14 deletion - 

90923 2,911 39% ND ND Normal + 

90921 3,076 43% M 96.34 No TP53 mutations ND 

80091 3,348 ND U 99.6 17p deletion ND 

80139 4,404 ND U 99.6 
13q and 17p 

deletions 
ND 

80197 6,484 ND U ND Normal + 

90905 8,375 ND M 96.73 No TP53 mutations ND 

90904 13,607 33.1% M 91.27 No TP53 mutations ND 

When we studied whether the differences in sensitivity correlated with prognostic parameters, 

we observed that samples from U-CLL showed a tendency to be more sensitive to ETP-39010 

(p value 0.09). Moreover, ZAP70 positive samples (also a bad prognosis parameter, related 

with the absence of somatic IgVH mutations), were also more sensitive to ETP-39010 inhibitor 

(p value < 0.05) (Figure 19). 
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Figure 19. Sensitivity to ETP-39010 and prognostic parameters. U-CLL and ZAP70 positive samples are 

more sensitive to the PIM inhibitor. For this analysis a series of purified B CLL samples and PBMC 

samples containing more than 80% tumor cells was used. Mann-Whitney t-test was applied. 
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Table 17. Series of purified B cell samples from CLL patients. EC50 values and clinical parameters are 

shown. ND indicates no available data. M, indicates IGHV with <98% homology with germinal gene; U, 

indicates IGHV with >98% homology with germinal gene. CD19 a. Purif, indicates CD19 purity of samples 

after B cell selection. No TP53 mutations indicates that there were not mutations in exons 5, 6, 7 or 8, 

but no FISH data are available. MR, gene expression microarray (8 x 15K); M44, gene expression 

microarray (4 x 44K);W, Western Blot (basal levels); A, apoptosis time course; C, cell cycle time course. 

Sample 

code 

ETP-39010 

EC50 

(nM)  

CD19 

CD19 

a. 

Purif 

SH

M 

% IGHV 

homology 

FISH/TP53 

mut 
ZAP70 Assays 

100008 1,276 ND 99.7% M 89.16 
No TP53 

mutations 
ND MR, M44, W 

100018 1,484 59% - U 99.18 
11q 

deletion 
+ 

MR, M44, W, 

A 

90906 1,890 90% 99.8% U 99.6 

IGH+ 

rearrange

ment 

+ MR, W, A 

91069 1,931 93% 96.3% U 99.18 

Chromoso

me 12 

trisomy 

+ MR, W 

91207 2,151 82% 97% U 99.59 
No TP53 

mutations 
- 

MR, M44, W, 

A, C 

100004 3,304 ND 99.5% ND ND 
No TP53 

mutations 
- M44,W, A 

90908 4,583 90% 99.5% M 96.4 
13q14 

deletion 
- MR, W 

100021 5,585 ND 99% U 99.19 
No TP53 

mutations 
ND MR, M44 

90909 5,605 94% 98.4% ND ND 

c-MYC 

trisomy, 

13q 

deletion 

+ MR, W, A 

100030 5,854 ND - M 93.83 
No TP53 

mutations 
+ - 

91103 5,896 96% 97.7% M 92.77 
13q14 

deletion 
- MR, W, A, C 

91072 6,400 58.5% 97% M 93.95 
17p 

deletion 
ND MR, M44, W 

91066 8,926 60% 99.8% ND ND 
13q14 

deletion 
- MR, W 

90784 9,108 ND 95.2% M 96.75 
No TP53 

mutations 
- - 

90994 11,245 35% 99.7% M ND Normal - MR 

90907 22,648 80% 99.5% M 94.3 
13q14 

deletion 
- MR, W 

4.6.2 ETP-39010 induces apoptosis and has no effect on cell cycle 

Other PIM inhibitors have been recently tested in in vitro studies using primary CLL samples. It 

is well known that tumor CLL cells found in the blood are arrested in G0/G1 phase and 

therefore, the effect of the drug is probably not exerted via cell cycle regulation. Recent 
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studies using another inhibitor of PIM kinases have demonstrated that inhibition of these 

kinases can induce apoptosis and decrease new RNA synthesis (Chen et al., 2009). In order to 

further investigate whether ETP-39010 works in a similar manner, we have assessed apoptosis 

by Annexin V/ PI in a panel of purified B-CLL samples.  
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 Figure 20. Effect of ETP-39010 on apoptosis and cell cycle. A) Apoptosis time course with different 

doses and time points. B) Cell cycle analysis of a sensitive (91207) and a resistant (91103) sample. 

A time course assay was designed including different drug concentrations (1 µM, 5 µM, 10 µM 

and 50 µM) and three time points (24h, 48h and 72h). Two samples (90906 and 91207) were 

treated only with 1 µM, 5 µM and 10 µM concentrations due to sample limitations. As shown 

in Figure 20A, an increase in apoptosis that was time and dose dependent was observed in all 
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assayed samples, except in 90909 and 91072 samples (that showed EC50 values higher than 

the median EC50 of the series). This confirmed that inhibition of PIM kinases is able to induce 

apoptosis in B-CLL samples. 

On the other hand, we analysed the cell cycle in two CLL samples at 1 µM, 5µM, 10 µM and 50 

µM concentrations and 24, 48 and 72 hours. Figure 20B shows representative histograms of 

control and CLL samples treated with 5 µM concentration of ETP-39010 (median EC50 of the 

series). As primary CLL samples are already arrested in G0/G1 phase, we did not observe any 

consistent effect of ETP-39010 on cell cycle. 

4.6.3 PIM2 levels positively correlate with sensitivity to ETP-39010 

PIM2 is the member of the family with the highest expression levels in CLL samples (see Figure 

8)and therefore, we wondered whether basal PIM2 protein levels could explain drug 

sensitivity. We performed Western Blot analysis, quantified PIM2 protein levels and studied a 

possible relationship with EC50 values, excluding again those samples with alterations in TP53 

(Figure 21A).  
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Figure 21. Direct correlation between PIM2 protein levels and response to TW-37. A) Mcl-1 and PIM2 

basal levels measured by WB in B-CLL samples. B) Correlation between EC50 values (nM) and PIM2 

levels (represented as arbitrary units) normalized with GAPDH levels. 

A positive correlation (Pearson coefficient 0.7) between both was found, indicating that higher 

levels of drug might be necessary to inhibit the pathway in those cells expressing higher PIM2 

protein levels (Figure 21B). When the whole series (Figure 21A) was considered, samples with 

higher PIM2 levels seemed to have also higher Mcl-1 levels. 
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4.6.4 Gene signature of sensitive and resistant B-CLL samples. 

In order to study the gene expression signature of the ETP-39010-sensitive (EC50 < Median 

EC50) and ETP-39010-resistant CLL samples (EC50 > Median EC50), we studied the correlation 

between gene expression patterns and EC50 values. We obtained 55 genes with statistically 

significant (p<0.05) Pearson values (higher than 0.5 or lower than -0.5).  
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Figure 22. Analysis of gene expression profile of ETP-39010 sensitive and resistant B-CLL samples. A) 

Classification of samples in sensitive or resistant according to the median EC50 of the series (5585 nM). 

B) Hierarchical cluster of the samples using the set of 15 genes obtained as described in the text. 

Asterisks indicate samples that do not belong to the group, as it had been defined in A). C) Consensus 

clustering using the same 15-gene signature. Samples in grey were not considered to be in the expected 

group, according to the definition set in A). 

Then, we performed t-test (Limma, Asterias) of these genes between the three most sensitive 

and the three most resistant samples (in blue in Figure 22A) and 15 of them were found to be 

differentially expressed (FDR_ind < 0.05). This set of genes was able to distinguish sensitive 

and resistant samples, with some exceptions that corresponded to samples with EC50 values 

around the median (Figure 22B). These genes were: LPL, WSB2, MYCBP, CRY1, LDHB, PAWR, 
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RAC2, RUVBL1, TCTA, TRADD, AICDA, AKAP12, CHID1, BCL3, HDAC8 and ADSL. Consensus 

clustering verified the existence of two groups including mainly sensitive or resistant samples, 

but again showing some exceptions (Figure 22C). 

4.6.5 ETP-39010 mechanism of action in B-CLL cells 

The physiological function of PIM kinases is still under study. It has been shown that they play 

an important role in cell growth and survival, as well as in maintenance of transformed 

phenotypes (Brault et al., 2010).  Nevertheless, the upstream events leading to their activation 

are not so well established and neither are the downstream targets of this family of kinases.  
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n
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p

B
Pathway Percentage Genes

Regulation of 

transcription, 

DNA.dependent

21.2
MYBBP1A, TBX3, UBP1, MCM7, FOXD4, CDCA7, TFB2M, 

FOXE3, FOXJ3, FOXM1, GATA1TBX19

Transcription from RNA 

polymerase II promoter
10.1

GATA1, BRD8, UBP1, FOXE3, TBX3, TBX19, ELF3, POLR2B, 

DDX20

Apoptosis 8.7
CLU, CLDN15, EI24,  TNFRSF21, DDX20, STK17A, FADD, LRDD, 

DFFA, CCAR1

Nucleobase, nucleoside, 

nucleotide and nucleic 

acid metabolic process

36.45

NAP1L1,  PARP15,  GATAD1 , BRD7,  PARN,  EXOSC1,  MYCBP2,  

IMP4,  TARBP1,  JMJD2C,  RAD18,  ATP5G1,  INTS7,  POLR3D,  

SNAPC5,  PHB, ZBTB26,  FOXK2, POP4,  NDUFA10,  ADSL, 

TFB1M SFRS7 EXOSC3 RCOR3  

Protein metabolic process 30.84

PFTK1 , KCTD7,  AP2A2,  PDK3,  HPRT1,  PIGP,  FBXL20,  LAP3,  

IDE,  HDAC3,  EPRS,  MTIF3,  MAPKAPK3,  TLR6,  TRIAD3,  

CDC16,  STAMBP,  JAK3,  DNAJC19,  DNAJC16,  UQCRC2,  VRK3,  

LCMT1,  STK10,  SCYL3,  VPS16,  NCSTN,  CCT7,  DARS2,  PTEN,  

PARP15, TRIM5

Transport 18.69

KHDRBS1, NUP155, COPE, PCM1, CHMP4A, CLTB, RUFY1, 

DYNC1I2, SEH1L, SNUPN, ACTR1A, NFKBIE, VPS4B, BSPRY, 

GHRL, CBLL1, SNX1, KCTD7, AP2A2, ABCD2, ATP11C, SFT2D2, 

ATP5D, SLC33A1, SEC23IP, DNAJC19, UQCRC2, VPS16, SNX14, 

FXC1, KCNAB3, RER1, SNX2, ATP5G1, VTI1B, ABCB4 SLC30A6, 

TCIRG1, ELMO1, VPS29, ATP5S, AQP11, NUPL2,  SFXN2

Signal transduction 12.46

NPY5R, SH3BP1, PRKAA1, IL9R, FIBP, IFNAR1, RAB28, ARL10, 

MLLT7, KHDRBS1, BTLA, FGD3, GUCY2C, MICAL1, IL18BP, 

GHRL, RHOQ, LTB, IDE,  RFXANK, SPRY3, MAPKAPK3, TLR6, 

STAMBP, JAK3, NCSTN, INVS, SNX14, PTEN, BRD7, ELMO1, 

TLR1, RIPK1, CD19, PHB, CSNK1A1L, BTRC

Cellular biosynthetic 

process
10.59

MTIF3, TLR6, AGPAT1, ASL, MAT2A, DARS2, ATP5G1, GALNT7, 

TLR1, ADSL, ZDHHC2, ADK, MTR, TMLHE, ATP5G2, MRPL30, 

RABGGTA, EIF3S1, EIF3S12, PFKFB1, PRKAA1, IFNAR1, MTIF2, 

GUCY2C, NCOA5, COQ7, HPRT1 

Cell cycle process 5.3
HDAC3, NBN, RAD9B, CDC16, CCT7, PTEN, PPP6C, POLR3D,  

SUPT3H, PCAF, RBM5, CDC27, MLLT7, CLASP2, KHDRBS1, RBL1

 

Figure 23. Gene expression profile induced by ETP-39010 treatment. A) Mcl-1 gene expression levels in 

treated and control cells. B) 1420 genes were differentially expressed between not treated and treated 

samples. C) Gene Ontology functions in which these genes were grouped. 

We were interested in revealing the mechanism of action of our ETP-39010 in the context of 

CLL, considering that PIM kinases activity seems to be tissue dependent. 

For that, 12 CLL samples were cultured at a 106/mL concentration and treated with a 5 µM 

concentration of the ETP-39010 compound (which was approximately the median of the whole 

series) for 8 hours. This early time point was chosen in order to investigate the direct targets 
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altered upon inhibition of PIM kinases. Controls were treated with the corresponding 

concentration of vehicle (DMSO). At the end, RNA from 6 pairs of samples (DMSO and ETP-

39010 treated) reached the high quality criteria for microarray hybridization (Agilent, 44K) and 

were further analysed. Around 28,000 genes were left after normalization and preprocessing 

of the data. We then assessed comparison of controls and ETP-39010 treated samples using 

the t-test implemented in the T-REX bioinformatic tool (GEPAS). A list of 1,420 genes was 

differentially expressed (p<0.01), being 819 overexpressed and 601 downregulated upon ETP-

39010 treatment (Figure 23A).  These genes were submitted to FatiGo (Babelomics) for a 

description of gene function and the results are shown in figure 23B. 
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Pathway Size Genes

Complement and 

coagulation cascades
63

KLK3, F3, A2M, SERPINF2, C1QB, PROC, FGB, C4BPB, CFI, FGG, PLAT, F2, KNG1, C3, 

C4BPA, TFPI, CFH, SERPINE1, THBD, SERPING1, SERPINA5, PLAUR, PLAU, F2R, CPB2, 

BDKRB1, F5, FGA, BL2, SERPINA1, C1QC, F7, C1R, C4B, F10, MASP1, SERPIND1, CD59, 

C8B, CFB, C2, KLKB1, SERPINC1, C1S

ECM receptro interaction 75

ITGA1, COL2A1, VWF, SDC2, THBS1, DAG1, ITGA8, ITGA2, LAMB1, ITGA6, FN1, COL5A1, 

COL4A2, COL5A3, LAMA1, LAMA4, TNN, SV2B, ITGA11, LAMC2, COL1A2, ITGB3, LAMC2, 

SDC4, TNC, SDC3, IBSP, VTN, ITGA3, COL6A2, SDC1, LAMB2, ITGA7, GP1BB, HSPG2, 

SPP1, LAMB3, RELN, COL6A1, ITGA2B, COL11A1, COL11A2, TNXB, COL5Q2, FNDC4, 

ITGB4, COL1A1, ITGA9, SV2A, THBS4, THBS3

Oxidative-phosphorylation 106

NDUFB2, UQRC2, TCIRG1, NDUFA10, ATP5D, LHPP, ATP5G2, ATP5G1, NDUFB1, NDUFB5, 

NDUFS7, NDUFA3, NDUFB3, COX17, UQCRC1, NDUFB8, ATP5E, ATP5I, NDUFA13, 

NDUFS2, SDUFA1, ATP5J2, NDUFA11, NDUFS1, NDUFB10, NDUFA2, NDUFA9, ATP5A1, 

UQCRQ, COX7C

Pyruvate metabolism 37 ME2, PDHB, ACYP1, PDHA1, DLD, ALDH9A1, ACSS2, ACACB, ACAT2

Aminosugars metabolism 27 NAGK, RENBP, LHPP, CYB5R1, MTMR1, NPL, HEXA, AMDHD2, GNPDA1

Propanoate metabolism 30 ACADM, PCCB, MLYCD, ECHS1, ALDH9A1, SUCLG2, HIBCH, ACSS2, PCCA, ACACB, ACAT2

Valine, Leucine and 

Isoleucine degradation
43

ACADM, PCCB, ACAA1, DLD, ECHS1, OXCT1, HADHSC, HADHB, ALDH9A1, BCKDHB, 

HIBCH, BCAT2, PCCA, MCCC1, ACAT2

Aminoacyl-tRNA 

biosynthesis
35

EPRS, DARS2, LARS, YARS2, MARS2, GARS, TARSL1, AARS, VARS, IARS, AQRS, CARS, 

HARS, TRAS, MTFMT

Toll-like receptor signaling 93

IFNAR1, TLR1, TLR6, LY96, RIPK1, IRAK4, MAPK13, CCL3, CCL4, MAP3K7, TRAF6, PIK3CG, 

STAT1, TIRAP, TLR2, TLR7, TLR9, MAPK1, MAP2K2, TNF, MAP2K6, IFNA10, MAP2K7, 

IKBKE, LBP

Fatty acid metabolism 42 ACOX3, ACSL5, ACADM, ACAA1, ECHS1, HADHSC, HADHB, ACADSB

 

Figure 24. GSEA pathways related to chemical inhibition of PIM. Pathways significantly (FDR< 0.25) up 

or downregulated upon ETP-39010 treatment, indicating genes in which the pathway is enriched.  

We were also interested in analyzing which were the changes induced by ETP-39010 in a 

pathway-related manner. We submitted our data to GSEA (including 28,346 genes) together 

with the gene sets obtained from KEGG data base (Figure 24). Among the pathways found to 

be downregulated after ETP-39010 treatment (FDR<0.25) there were several related with 

aminoacid, lipid and energetic metabolism as well as antigen processing and presentation. 

Interestingly also the proteasome and the ubiquitin mediated proteolysis pathways were 
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downregulated upon treatment. Significant upregulated pathways were complement and 

coagulation cascades and ECM-receptor interactions. 
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5.1 Proliferation centers in chronic lymphocytic leukemia: the niche 

where NF-ĸB activation takes place. 

5.1.1 Proliferation centers in CLL 

Tumor promoting signals coming from the microenvironment are known to play a very 

important role in a number of lymphoid malignancies (Herreros et al., 2008) and CLL is a 

paradigm of the dependence of tumor cells on external stimuli. PCs are a hallmark of CLL and 

cannot be found in any other lymphoid malignancy but in some autoimmune diseases 

(Corcione et al., 2005; Takemura et al., 2001), suggesting that these structures could be the 

place where (auto)antigen stimulation takes place. Previous studies of PCs had proposed that 

the immunophenotype of the large CLL cells seemed to mimic activated of B lymphocytes as 

shown by Ki67, HLA-DR, BIRC5 and MUM1/IRF4 expression, among other markers (Soma et al., 

2006; Swerdlow et al., 1984). However, this is the first work that includes a large series of 

samples and markers, in an attempt to better characterize PCs.  

The presence of numerous and prominent PCs has been related with atypical CLL cases, which 

have been associated with poor prognosis (Bonato et al., 1998). However, we did not find any 

relation between number or size of PCs and IGHV mutational status (also related to poor 

prognosis) in our series. One possible explanation for this could be that the samples analyzed 

had been submitted to the Molecular Pathology Program at the CNIO for diagnosis, being 

probably biased towards more severe or atypical cases. On the other hand, mutational status 

of IGHV was available only for a limited number of samples that were included in the TMA, and 

therefore, the size of the series was relatively small. 

Proliferating large B cells (Ki67 positive) were observed mainly inside PCs where the complex 

microenvironment might induce proliferation and inhibit apoptosis (see next sections). PCs are 

also characterized by the expression of MUM1/IRF4, a transcriptional regulator that is induced 

by NF-ĸB and that plays a role in response to B cell signaling or CD40 engagement (Shaffer et 

al., 2009).  Its expression in B cells of all PCs has been previously reported (Soma et al., 2006) 

and could again be an indication of BCR activation. Moreover, no differences were found in the 

expression of either the prognostic marker ZAP70 or SYK between large cells inside PCs and 

small cells surrounding PCs. Determination of BCR activated status in patient samples is a 

difficult issue that has not been solved yet due to the difficulties to detect phosphorylated 

proteins in paraffin embedded patient samples. Around the proliferating B cell population, an 
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accumulation of small B cells with more condensed chromatin that might represent the 

offspring of the proliferation compartment was observed, as it had been previously described 

(Swerdlow et al., 1984). 

5.1.2 Microenvironment composition of CLL cells inside PCs 

CLL cells undergo spontaneous apoptosis when cultured in vitro, highlighting the importance of 

the microenvironment for survival of leukemic cells.  However, the exact composition of these 

interactions is not well known and the possibilities of studying it using in vitro models are 

limited. Furthermore, none of the in vivo CLL mouse models developed (Bichi et al., 2002; 

Planelles et al., 2004; Zapata et al., 2004) presents PCs in the lymphoid tissue or bone marrow 

and therefore, its functional relevance cannot be easily addressed. Interesting attempts to 

characterize the non-tumor populations that contribute to CLL survival have been carried out. 

Tsukada et al. described the existence of some stroma cells that could differentiate in vitro 

from the peripheral blood of CLL patients in the so called “nurse-like cells” (NLC) (Burger et al., 

2000; Tsukada et al., 2002). These cells were able to provide survival signals mediated mainly 

by secretion of cytokines such as SDF1 (Burger et al., 2000), BAFF and APRIL (Nishio et al., 

2005). Nevertheless, NLC present in the peripheral blood were functionally immature, as they 

had to differentiate in vitro in order to support CLL cells. This may indicate that NLC must exert 

their protective role after differentiation in a distinct compartment, as PCs found in lymphoid 

tissues or bone marrow could be.  

Herein, we have defined two different stroma populations that were immunophenotypically 

distinct from the NLC and may represent the functional accompanying cell types of PCs in vivo. 

They did not show the typical immunophenotype of either follicular dendritic cells or other 

types of dendritic cells. The ADC population that expressed SDF1 could be responsible of the 

migration of circulating CLL cells into lymph nodes via CXCR4, its receptor that is expressed in 

leukemic cells (Burger et al., 1999). Once inside the proliferation centers, NF-ĸB activation may 

induce BAFF secretion that can favor survival of CLL cells. Surprisingly, no BAFF expression was 

observed in the stroma component, as it has been described for the NLC. On the other hand, 

we could speculate that STAT1-Ms could activate T cells found in the surroundings and play a 

role in the presentation of autoantigens to CLL cells. STAT1 translocation to the nucleus with 

its consequent activation can be induced upon cytokines such as VEGF, which binds VEGFR2 

and activates JAK proteins and STAT transcription factors (Bartoli et al., 2000). Interestingly, 

VEGF was expressed by prolymphocytes in PCs of almost all cases analyzed. Therefore, it is 
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possible that not only stroma cells may have an impact on tumor cells, but also CLL cells could 

attract and activate macrophages and other accompanying cells in order to create a supportive 

environment. 

Additionally, B cell-T cell interactions seem to be essential for CLL cells survival (Ghia et al., 

2005). We demonstrated that T cells in close contact with tumor cells, expressed CD40L. 

Moreover, CD4 T cells found intermixed with CLL cells inside PCs expressed a variety of 

markers characteristic of different subpopulations of T cells, suggesting that the environment 

is able to modulate the plasticity of T cells. These T cells showed an activated phenotype 

according to the expression of CD25 and PD1. 

5.1.3 Proliferation centers are the niche where NF-ĸB activation takes place 

CLL cells from peripheral blood samples express abundant levels of nuclear NF-ĸB DNA-binding 

activity, often elevated compared to normal B cells (Furman et al., 2000; Romano et al., 1998).  

Moreover, variable levels of the phosphorylated IĸB inhibitor have been observed in involved 

lymph node samples of CLL patients (Rodriguez et al., 2004). This constitutive activation seems 

to be linked to environmental signaling such as CD40L stimulation (Cuni et al., 2004)  or BCR 

engagement (Bernal et al., 2001). In fact, NF-ĸB  enhances survival of leukemia cells and 

chemical inhibition of the pathway at different levels induces apoptosis (Hewamana et al., 

2008b; Pickering et al., 2007) and may represent a therapeutic alternative, even for patients 

resistant to conventional treatments such as fludarabine (Lopez-Guerra et al., 2009). 

However, the place and mechanisms that trigger NF-KB activation in vivo are not well 

understood. We hypothesized that interactions occurring inside PCs could lead to activation of 

NF-ĸB and enhance survival/proliferation. In fact, we observed nuclear localization of p50 (a 

well stablished marker for NF-ĸB activation) in CLL cells inside PCs but not in the other lymph 

node compartments. Other NF-ĸB family members found in the nucleus of CLL cells of PCs 

were p52 and Rel B. Although in most cell types and conditions p50 –p65 heterodimers have 

been described, NF-ĸB  family members are promiscuous and other subunit complexes can 

participate in the regulation of cellular processes and tumorigenesis (Budunova et al., 1999). 

Recently, nuclear p65  expression  has been reported in circulating CLL cells (Hewamana et al., 

2009). In that report, a different method for NF-ĸB subunits detection was used and this could 

explain the differences with our study. As stimuli leading to NF-ĸB activation in PCs may not be 

present in peripheral blood, it is also possible that the NF-ĸB activation intensity or pattern 
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could change in circulating CLL cells, an issue that remains unknown but deserves further 

investigation. Mcl-1, and Survivin (both known NF-ĸB targets) have been shown to be 

upregulated upon BCR engagement (Bernal et al., 2001; Gobessi et al., 2009) and were found 

highly expressed in this pool of CLL cells inside PCs. Moreover, Mcl-1 has been shown to be an 

essential inhibitor of BCR mediated apoptosis (Ruiz-Vela et al., 2008). All these data confirm 

the idea that antigen stimulation can lead to NF-ĸB activation and enhanced survival inside a 

specific microenvironment as PCs. 

 

 

Figure 24. Relevant pathways in CLL cells inside PCs. NF-ĸB seems to be the common target of a variety 

of signaling cascades that are activated in the microenvironment of the PC. Some of these are BCR, CD40 

and BAFFR. 

In addition, other stimuli can trigger NF-ĸB activation such as the cytokines BAFF and CD40L. 

BAFF belongs to the tumor necrosis factor (TNF) ligand family and plays crucial roles in 

homeostasis of B cells, tolerance, and malignancy. We observed BAFF staining only in 

prolymphocytes of PCs. This finding is in agreement with previous reports on circulating CLL 

cells in which leukemia cells themselves are reported to produce BAFF that can enhance 

survival (Bojarska-Junak et al., 2009; Kern et al., 2004). Furthermore, NF-ĸB  and NFAT 
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transcription factors (the latter one also observed only in prolymphocytes inside PCs) can 

induce BAFF expression creating a positive feed-back loop (Fu et al., 2006).  

CD40 signaling is known to activate both the canonical and non-canonical NF-ĸB  pathways 

(Siebenlist et al., 2005) in normal lymphocyte development and CLL cells. Our findings suggest 

that PCs are the place where engagement of CD40 receptor by CD40L-expressing T cells takes 

place, triggering NF-ĸB activation. Interestingly, many of our observations confirmed gene 

expression data obtained upon CD40 activation of B cells. In fact, CD40 stimulation generated 

a specific gene signature that included MUM1/IRF4, p50 and TRAF1 (Basso et al., 2004; Saito et 

al., 2007), all of them specifically expressed in PCs. High levels of TRAF1 in CLL and other 

lymphoid malignancies had already been observed and have also been related to NF-ĸB  

activation (Munzert et al., 2002). TRAF1 nuclear localization was striking, a phenomenon that 

so far  has only been described in Hodgkin Reed-Sternberg cells (Izban et al., 2000). However, 

its biological meaning remains unknown and deserves further investigation. 

5.1.4 Similarities and differences with normal germinal centers 

Germinal centers are the physiological structures inside lymph nodes where B-cell proliferation 

takes place upon antigen encounter. In this sense, PCs may resemble GCs. Moreover, Ki67, 

BAFF, CD40, VEGF, Mcl-1 and BIRC5 are expressed both in GCs and PCs. On the contrary, Bcl-2 

and TCL1 are downregulated in both contexts, as it has been described in proliferating cells 

(Herling et al., 2007; Herling et al., 2006).  

However, NF-ĸB activation occurs only in a minority of B cells inside GCs, while it seems to be a 

general phenomenon in prolymphocytes of PCs.  Also MUM1/IRF4 and TRAF1 expression is 

relatively specific of PCs, as they are only expressed by a small population of B cells in GCs. 

Regarding morphology, PCs are not compartmentalized in two different zones (dark and light) 

as GCs and they lack CD21+ follicular dendritic cells and the characteristic rim of follicular T 

helper cells that occupy the outer zone of the GC. On the contrary, we observed specific 

subpopulations of SDF1 ADCs and STAT1-Ms. Dendritic cells in GCs also express SDF1, which 

attracts normal lymphocytes into the lymph node. GC B cell markers (CD10, GCET1 and BCL6) 

were not expressed by B cells of PCs.  
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Figure 24. Schematic representation of a physiologic germinal center in A) and a proliferation center 

typically found in CLL lymph nodes in B). Anatomical differences, as well as differences in cell 

populations and activation status of B cells are observed. 

In summary, we believe that PCs represent the supportive environment to which CLL cells are 

attracted and where they proliferate via multiple interactions that trigger NF-ĸB activation. PCs 

are different from GCs as tumor cells seem to modulate cellular interactions creating a new 

favorable microenvironment that avoids apoptosis controls. 

5.2 New insights into the relationship between molecular features of 

chronic lymphocytic Leukaemia and sensitivity to rationally selected 

compounds (calmidazolium, R406, TW-37 and ETP-39010): an ex vivo 

approach 

5.2.1 Rational selection and investigation of new agents for CLL treatment 

CLL presents an extremely variable clinical course with a survival time that can range from 

months to years after diagnosis.  Although 80-90% of CLL patients achieve overall response 

and up to 70% complete response, the vast majority of patients are prone to relapse after 

primary treatment. Moreover, those patients who relapse after first-line treatment with 

purine analogs and rituximab or those carrying high-risk genomic abnormalities such as 

del(11q22) and del(17p13) usually show bad responses to alternative therapies and have a 

median survival of less than a year. CLL is a disease of elderly and treatment should be tailored 

in an attempt to obtain maximum efficacy with minimum toxicity. Taken together, these data 

suggest that preclinical studies on new therapeutic strategies are warranted.  

In this work we were interested in analyzing how sensitivity to rationally selected compounds 

can be determined by molecular characteristics. The successful development of targeted 
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therapies in cancer is best illustrated by antibody-based therapies for the treatment of ErbB-2-

/Her2 positive breast cancer (Slamon et al., 2001), and the use of Gleevec (STI571/imatinib) as 

a kinase inhibitor for the treatment of Bcr-Abl-positive chronic myeloid leukemias (Druker, 

2002). In this work, we have used a double approach to rationally select the compounds to 

test. First, with the use of connectivity Map (Lamb et al., 2006) we have looked for connections 

between a characteristic gene signature of CLL patients with poor prognosis and small 

molecules that could potentially revert this signature. From this analysis we have chosen 

calmidazolium and R406. Second, based on previous experimental evidences, we have selected 

two compounds that interfere with Bcl-2 family members (TW-37) and with PIM kinases (ETP-

39010) respectively. 

 Unfortunately, animal models or cell lines do not fully recapitulate the complexity of the 

disease and consequently, have not been routinely applied to investigate the utility of new 

compounds in CLL. Therefore, we have chosen an ex vivo model using primary CLL cells from 

blood specimens in order to test the selected active compounds. The employment of xenograft 

models has been limited due to inefficient or short-term engraftment. However, recent studies 

(Durig et al., 2007) have reported successful xenografts using CLL samples that could be useful 

for further studies. 

5.2.2 B cell receptor signaling 

In order to dissect the BCR pathway, we assayed two compounds that exert their effects at 

different levels of the signaling cascade: calmidazolium and R406. 

Calmidazolium is a well known calmodulin inhibitor. Calmodulin is known to mediate many 

cellular processes by sensing calcium presence. One of these processes is BCR signaling via 

interaction with calcineurin phosphatase and calmodulin dependent protein kinase II that 

trigger NFATc translocation to the nucleus and activation of NF-ĸB translocation by activation 

of IKK. The fact that CLL samples showed a variable sensitivity to calmidazolium may reflect 

differences in the status of calcium dependent pathways. 

We did not observe differences between subgroups of samples defined by mutational status of 

IGHV or ZAP70 expression. There are several possible explanations for this. First, the presence 

of non-tumor cells in the PBMC samples could mask the results on cell viability. Nevertheless, 

when we analyzed data from a new series of purified B-CLL cells, again no differences could be 

found between subgroups of samples. On the other hand, calmodulin is involved in many 
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cellular processes in addition to BCR signaling, which could also be essential for CLL cells and 

that are not reflected in this classification.  

Microarray analysis revealed that sensitive and resistant samples (defined by the median EC50) 

could be differentiated using a small group of genes. Among the genes found to have higher 

expression levels in resistant samples were BIRC6, which inhibits apoptosis by facilitating the 

degradation of apoptotic proteins by ubiquitination and PRKCE that is able to activate NF-ĸB 

transcription factor. In fact, PRKC can be activated by second messengers, calcium and 

diacylglycerol, without the requirement of calmodulin explaining the compensation 

mechanism that can lead to activation of survival pathways independently of calmodulin and 

conferring resistance to calmidazolium treatment. 

R406 is a SYK kinase inhibitor (Braselmann et al., 2006), developed by Rigel. It was initially used 

to inhibit this kinase in activated mast cells, macrophages and B cells in rheumatoid arthritis 

and a new derivative known as R788 is already in phase II clinical trials. R788 is also starting 

phase II clinical trials for immune thrombocytopenic purpura as well as B and T cell 

lymphomas. Surprisingly, R406 was not able to induce 100% cell death in most of the PBMCs 

samples even at the highest concentration of 50 µM, although some samples were indeed 

sensitive to the drug. However, purified B cells were clearly more sensitive to the drug showing 

EC50 values around 1µM or lower, which is in accordance with recent published work (Gobessi 

et al., 2009). Several explanations for this are possible. As R406 is directed against SYK kinase, 

non-tumor cells for which SYK may not be essential for survival would not undergo cell death. 

On the other hand, the non-tumor component of the sample might be delivering survival 

signals independent of the BCR to CLL cells. Our data indicated that samples with increased 

BCR signaling, even in absence of F(ab’)2 stimulation, were sensitive to R406 while samples 

with no basal BCR activity were resistant to R406. As measurement of BCR signaling we used 

phosphorylated AKT because, surprisingly, no consistent phosphorylation of BLNK was 

observed in our experiments. This could be due to the experimental conditions used (as BLNK 

is the first substrate of SYK, a stimulation of 5 minutes might be too long). AKT kinase can be 

activated via other receptors apart from BCR (growth factor and cytokine receptors among 

others). However, in our experimental setting phosphorylation of AKT was induced only upon 

BCR engagement. Some recent data (Davis et al., 2010) have claimed that R406 compound 

could also inhibit other kinases apart from SYK. In fact, initial reports on R406 already indicated 

partial effect on other kinases such as Lck or Lyn, though with a lower specificity compared to 
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SYK kinase (Cha et al., 2006). However, the relevance of this inhibition has not been fully 

addressed in CLL cells. 

 At the gene expression level, sensitive samples could be distinguished from resistant samples 

by the higher expression of MUM1/IRF4 and FAM107A. Interestingly, MUM1/IRF4 was also 

found expressed specifically in CLL cells inside PC, where antigenic stimulation and NF-ĸB 

seems to take place. Furthermore, MUM1/IRF4 is essential for B cell activation (Mittrucker et 

al., 1997), indicating that blood CLL cells with high MUM1/IRF4 levels might be constitutively 

activated and consequently were sensitive to R406, which confirms our previous data on basal 

phosphorylated AKT levels. Considering this, the value of MUM1/IRF4 as a surrogate marker of 

B cell activation and sensitivity to R406 should be further investigated. On the other hand, 

although the exact function of FAM107A is not completely understood, it has been shown to 

be lost in several types of cancer indicating a role as tumor suppressor (Wang et al., 2000). CLL 

samples with higher FAM107A might be therefore, more prone to respond to R406 treatment. 

Another evidence of the importance of the interactions with the non-tumor cells was that 

R406 resistant samples showed an enrichment of chemokine and cytokine pathways. This 

seems to indicate that the resistance mechanism might be related to an increased response to 

microenvironmental stimuli that were able to compensate for the interference of the survival 

signals coming from BCR.  

Considering calmidazolium and R406 together, approximately half of the samples (4 out of 7) 

could be assigned to the same group of resistant or sensitive samples, indicating that the 

efficacy of these compounds did not overlay. Genomic abnormalities, the lack of specificity of 

calmidazolium and the fact that it only inhibits the calcium dependent events occurring after 

BCR engagement could explain the discordance in the rest of the samples. 

5.2.3 Bcl-2 family 

Bcl-2 proteins play a critical role in the regulation of apoptosis in CLL. Accordingly, Bcl-2 and 

Mcl-1 overexpression has been widely described and related not only to the etiology of CLL but 

also with resistance to treatment. Several strategies have been used to interfere with Bcl-2 

family members and some are already in clinical trials. For example, Oblimersen is an antisense 

oligodeoxynucleotide that targets Bcl-2 mRNA. Phase III clinical trial using oblimersen in 

combination with fludarabine/cyclophosphamide have shown an increase in 5-year survival in 

CLL patients (O'Brien et al., 2009). Moreover, several small molecule inhibitors that directly 
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interact with antiapoptotic Bcl-2 proteins have been developed and are already in phase I or II 

clinical trials for CLL patients (ATB-737, Gossypol, FX15-070) (for a review see (Kang and 

Reynolds, 2009)). In this work, we have tested the TW-37 compound, a new pan-Bcl-2 inhibitor 

that binds at the BH3 binding groove of Bcl-2, Bcl-xL and with higher affinity at Mcl-1. In doing 

so, TW-37 is able to block their heterodimerization with proapoptotic proteins such as Bax, Bid 

and Bak (Wang et al., 2006). Mcl-1 expression has recently been shown to correlate with stage 

of disease, lymphocyte doubling time, IGHV mutational status, CD38 and ZAP70 expression. 

Moreover, high Mcl-1 expression correlated with in vitro fludarabine resistance (Pepper et al., 

2008). Since TW-37 also targets Mcl-1, this compound was especially interesting to be tested in 

CLL samples. Actually, PBMCs samples were all sensitive to TW-37 with EC50 values lower than 

1µM. In accordance with the role of Mcl-1 in the poor prognosis group, we observed that U-

CLL samples were more sensitive to TW-37 than M-CLL. Interestingly, those samples with 

defective p53 pathway (17p deletion) showed higher EC50 values. This seems to indicate that 

TW-37 may induce a p53 dependent cell death mechanism. 

Purified B-CLL samples showed an increase in the median EC50 compared to PBMCs samples 

(from 236 nM to 1496 nM). This could support the idea that some non-tumor cells present in 

the sample are providing alternative survival signals. However, the heterogeneity of the PBMC 

series regarding the proportion of tumor cells does not definitively allow confirming this idea. 

Furthermore, we observed a greater variability in TW-37 sensitivity when CLL cells were used 

(from 310.5 nM to 9760 nM), indicating that maybe other factors related to the sample 

composition could mask drug sensitivity of tumor cells. As expected, TW-37 was able to induce 

apoptosis in a time and dose dependent manner.  On the other hand, TW-37 did not affect cell 

cycle progression as it had been observed in other models (Ashimori et al., 2009), probably 

because CLL cells found in the peripheral blood are known to be quiescent in the absence of 

external stimuli (Liu et al., 2010). 

We observed that samples with higher levels of Mcl-1 protein but not Bcl-2 protein were more 

sensitive to TW-37. This is in accordance with the mechanism of action of the compound that 

shows high affinity for Mcl-1 and displaces Bak from the Mcl-1-Bak heterodimer (Mohammad 

et al., 2007).  Therefore, Mcl-1 protein levels could be used as a biomarker of TW-37 

sensitivity, although this observation should be further validated in an independent series of 

samples. Finally, we identified a group of genes that could distinguish TW-37-resistant 

samples. Although the median of the series was used initially to divide the series in resistant 
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and sensitive samples, it became clear that only the three samples with the highest EC50 

values were actually resistant (shown by consensus clustering). These samples were defined by 

a higher expression of genes involved in several survival pathways. So, GADD45B is activated 

upon DNA damage and can trigger activation of p38/JNK pathway; PPBP (also known as CXCL7) 

is a chemokine that can modulate the composition of the microenvironment; VAV2 has been 

related to angiogenesis and promotes calcium flux as part of the BCR pathway inducing 

activation of the transcription factor NFAT; PKCO (also known as PKCQ) activates NF-ĸB upon 

BCR signaling; PIK3CB (p100 β) has a well known role in cell growth, proliferation and survival. 

Finally, FAS induces apoptosis and can simultaneously activate NF-ĸB via FLIP. In summary, the 

cooperation of several pathways seems to confer a resistant phenotype to TW-37 treatment. 

5.2.4 PIM kinases 

Chemical inhibition of PIM kinases has been recently shown to be effective inducing apoptosis 

in T cell leukemia cell lines and xenograft models and CLL samples (Chen et al., 2009; Lin et al., 

2010). The rationale for the use of PIM kinase inhibitors in CLL is based on the observation that 

elevated PIM1 and PIM2 mRNA levels can be observed in CLL samples compared with lymph 

nodes and tonsils (Cohen et al., 2004). Pim kinases have been related to apoptosis, cell cycle 

progression, transcription and survival pathways. Its role as oncogenes and the resolution of 

their tridimensional structure have made them candidate druggable targets.  

We have tested the ETP-39010 compound developed at the Experimental Therapeutics 

Program of CNIO that inhibits the three members of the family, though with different IC50 

values (0.024 mM for PIM1, 0.089 mM for PIM2 and 0.025 mM for PIM3). Either PBMCs 

(median EC50 2794 nM) or purified B-CLL samples (median EC50 5595 nM) were sensitive to 

the compound at the low µM range. CLL samples presenting parameters of bad prognosis 

(unmutated IGHV and ZAP70 expression) had lower EC50 values, indicating that they were 

more sensitive to the compound. 

As previously described, we observed induction of apoptosis upon ET-39010 treatment that 

was time and concentration dependent. However, no changes in cell cycle were detected 

(Chen et al., 2009; Lin et al., 2010).  

Surprisingly, PIM2 levels were positively correlated with ETP-39010 EC50 values. Our data 

indicated that samples with bad prognosis markers were more sensitive to the drug and recent 

published work has shown that CLL patients with poor prognosis present higher levels of PIM2 
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(Huttmann et al., 2006). At least, two possible explanations are possible. First, as the PIM 

inhibitor is an ATP competitive molecule, it could be that higher PIM levels would require 

higher concentrations of the compound to be inhibited. Second, IC50 values for PIM2 are 

higher than IC50 values for other PIM isoforms. Thus, it is possible that the heterogeneity in 

drug sensitivity is due to PIM1 levels or that CLL cells are more dependent on PIM1 than PIM2. 

However, due to sample limitations and the difficulty to detect PIM1 by WB, we could not 

correlate PIM1 protein levels with EC50 values. 

Gene expression analysis revealed a gene signature of ETP-39010 sensitivity. One of the most 

interesting genes included in this signature was LPL. Its expression has been previously 

described as a bad prognostic indicator in CLL providing even better prognostic assessment 

than ZAP70 at advance stages of the disease (Oppezzo et al., 2005). Interestingly, LPL was 

found to be more expressed in the group of ETP-39010 sensitive samples, which also showed 

other bad prognostic factors such as ZAP70 expression and unmutated IGHV. Other genes 

showing higher levels in sensitive samples were TRADD, which is an adaptor molecule of TNF 

signaling that induces cell death, PAWR, a transcriptional repressor that can inhibit NF-ĸB and 

downregulate Bcl-2 and HDAC8, a histone deacetylase related to epigenetic repression and 

regulation of transcription.  

Some of the genes regulated after ETP-39010 treatment were related with gene transcription 

and its regulation. In fact, PIM kinases have been shown to interact with several transcription 

factors inducing transcriptional activation (MYC, NF-ĸB ) (Hammerman et al., 2004; Zippo et al., 

2007) or repression (FoxO1a and FoxO3a) (Zhang et al., 2007). The balance between both 

actions leads to a controlled growth and survival. Moreover, interference of PIM kinases leads 

to inhibition of phosphorylation of Bad (blocking the degradation of this proapoptotic 

molecule) and FoxO3a (which in turn, upregulates proapoptotic Bim and PUMA) inducing 

apoptosis (Fox et al., 2003; Yan et al., 2003).  On the other hand, transcription of PIM kinases is 

induced upon cytokine activation via JAK/STAT mediators triggering cell growth and survival 

(Hammerman et al., 2005). Therefore, PIM inhibition in our series of samples leaded to a 

downregulation of genes involved in processes of protein metabolism, byosinthetic processes 

(Babelomics analysis) and other energetic and metabolic pathways (GSEA analysis). 

Further studies in an extended panel of samples could reveal more hints about mechanisms of 

resistance, providing a rationale for more effective drug combinations. 
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5.2.5 Overview and open questions 

Our study showed the molecular heterogeneity underlying differences in drug sensitivity. It 

sheds light into possible resistance mechanisms and therefore, could be the rational base for 

studies of drug combinations and targeted therapies in order to improve treatment outcome 

in CLL. The integration of gene expression and chemical compound activity data could facilitate 

the identification of useful agents for cancer treatment in a more individualized manner.  

 

One fundamental issue to consider when new compounds are intended to be introduced in 

clinical trials is the selection of biomarkers. Ex vivo approaches are a useful tool for preclinical 

studies that is facilitating the identification and validation of new therapeutic targets before 

entering expensive and long-term clinical trials. Herein, we propose some biomarkers that 

could help in the patient stratification (Mcl-1, MUM1/IRF4, LPL, p-AKT) or monitorization of 

the activity of the active compounds (p-AKT). Nevertheless, their utility in a clinical setting 

should be further validated. 

 

In this field, one important question to address is the relevance of the interactions between 

CLL cells and the microenvironment. As the pool of proliferating cells seems to localize inside 

the lymph tissues, it would be interesting to study the effect of new therapeutic agents on 

tumor cells in this context. The inefficacy to target tumor cells in these niches could explain the 

discordance observed between preclinical studies and clinical trials. 

 

The final aim of studies like the one presented here will be to shift from the administration of 

widely cytotoxic drugs towards a more personalized approach, in which each patient is treated 

according to the specific molecular alterations of the tumor (based on gene mutations, gene 

expression data, proteomic profiles or deregulated pathways). Individualized treatments based 

on the knowledge about molecular pathogenesis of cancer may be the best approach to treat 

cancer in the future.  
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Conclusions 

1. Proliferation centers observed in lymph node samples of patients with chronic lymphocytic 

leukemia (CLL) showed a special cell composition distinct from the physiological germinal 

centers. We identified two different populations of stroma cells that we called Actin 

Dendritic Cells and STAT1 macrophages. They may contribute to the homing and survival of 

leukemic cells. 

 

2. Proliferation centers are the niche where NF-kB activation takes place. NF-ĸB pathway was 

activated exclusively in CLL cells found inside the proliferation centers, as demonstrated by 

nuclear localization of p50, p52 and Rel B subunits. 

 

3. Activation of NF-ĸB inside proliferation centers appeared to be associated with changes in 

the microenvironment, including CD40, BAFF and VEGF signaling. 

 

4. Molecular signatures of the neoplastic cells in CLL suggested multiple potential therapeutic 

targets that could be tested in ex vivo culture of primary cells. 

  

5. CLL samples presented a variable sensitivity to calmidazolium, a calmodulin inhibitor. This 

variability was underline by a molecular heterogeneity as more resistant samples showed a 

differential expression of some genes such as BIRC6 and PKCE. 

 

6. Sensitivity to SYK inhibition using the compound R406 was associated with increased basal 

levels of phosphorylated AKT and MUM1/IRF4 gene, a well-established NF-kB target. R406-

resistant samples were enriched in pathways related to microenvironment interactions 

such as cytokine and chemokine pathways. 

7. Sensitivitity to Bcl-2-family inhibition using the TW-37 compound was associated with 

higher levels of MCL1 proteína, a potential candidate biomarker of TW-37 sensitivity. 

Moreover, resistance to this compound seemed to be related to differential expression of 

GADD45B, VAV2, PKCO, PIK3CB and FAS. 

 

8. Inhibition of PIM kinases by ETP-39010 induced apoptosis and had no effect on cell cycle in 

CLL samples. Sensitive samples presented unfavorable prognosis markers such as 

unmutated immunoglobulin heavy chain (IGHV) as well as increased expression of ZAP70 

and LPL. 
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Conclusiones 

1. Los centros de proliferación observados en ganglios linfáticos de pacientes con 

leucemia linfocítica crónica (LLC) presentan una composición especial y diferente de 

los centros germinales fisiológicos. En estos centros de proliferación hemos 

identificado dos poblaciones diferentes de células del estroma que hemos 

denominado Células Dendríticas que expresan Actina y Macrófagos STAT1. Ambos 

tipos celulares parecen contribuir a la atracción y supervivencia de las células 

tumorales. 

2. Los centros de proliferación son el nicho dónde tiene lugar la activación de NF-kB. La 

vía de señalización de NF-kB aparece activada exclusivamente en las células de LLC que 

se encuentran en dichos centros de proliferación, como demuestra la localización 

nuclear de las subunidades p50, p52 y Rel B. 

3. La activación de NF-kB en los centros de proliferación parece estar relacionada con 

eventos del microambiente tumoral, como la señalización vía CD40, BAFF y VEGF. 

4. La firma molecular de las células tumorales en LLC sugiere varias dianas terapeúticas 

potenciales cuyo valor puede ser investigado mediante cultivos ex vivo de células 

primarias. 

5. Las muestras de LLC presentan una sensibilidad variable a calmidazolium, un inhibidor 

de calmodulina. Esta variabilidad se explica por la heterogeneidad molecular 

observada, de modo que las muestras más resistentes a calmidazolium se diferencian 

del resto por la expresión de algunos genes como BIRC6 y PKCE. 

6. La sensibilidad de las muestras primarias a la inhibición de SYK mediante el compuesto 

R406 se asocia con niveles basales más altos de AKT fosforilado y una mayor expresión 

de MUM1/IRF4, un conocido gen diana de NF-kB. Las muestras resistentes a R406 

presentan un enriquecimiento de vías de señalización relacionadas con el 

microambiente, como las  relacionadas con citoquinas y quimiocinas. 

7. La sensibilidad a la inhibición de la familia de Bcl-2 mediante el compuesto TW-37 se 

está asociada con niveles más altos de la proteína Mcl-1, que proponemos como 

candidato a biomarcador de la sensibilidad a dicho compuesto. Además, la resistencia 
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a TW-37 está relacionada con la expresión diferencial de GADD45B, VAV2, PKCO, 

PI3KCB y FAS. 

8. La inhibición de las quinasas de la familia PIM mediante ETP-39010 induce apoptosis 

en células primarias de LLC pero no ejerce ningún efecto sobre el ciclo celular. Las 

muestras sensibles presentan marcadores de prognosis no favorable como la 

presencia de mutaciones en la región variable de la cadena pesada de las 

inmunoglobulinas (IGHV), la alta expresión de ZAP70 y  una mayor expresión de LPL. 
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