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Mariano por sus continuos ánimos.
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A José Oñorbe, gracias por ayudarme a que la tesis haya quedado tan

bonita, por estar siempre disponible cuando te he necesitado, disfruta de
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Resumen

Los sistemas de magnéticos nanoestructurados, tales como nanopart́ıculas,

nanohilos, multicapas y redes de nanoelementos, son hoy en d́ıa de gran

interés debido a su relevancia tecnológica, especialmente por sus aplica-

ciones relacionadas con el almacenamiento magnético, miniaturización de

sensores y dispositivos magnetoelectrónicos. Estos sistemas se caracterizan

por tener al menos una de sus dimensiones más pequeña o del orden de

la longitud de canje, aproximadamente del orden del ancho de la pared

de dominio (t́ıpicamente decenas de nanómetros para metales de transición

magnéticos), lo que produce nuevos procesos de imanación, diferentes de los

del material masivo. Tanto desde el punto de vista de la implementación

de los dispositivos reales como desde el del progreso de la comprensión de

esta nueva fenomenoloǵıa, es importante utilizar procesos de nanoestruc-

turación fiables y repetitivos, combinados con una buena resolución a es-

cala nanométrica que minimice las imperfecciones qúımicas, estructurales

o morfológicas. Esto es crucial debido a que estos defectos generalmente

son incontrolables y pueden jugar un papel importante en las propiedades

magnéticas y mecanismos de imanación de los nanoelementos. Consecuente-

mente, es muy importante fabricar redes de nanoelementos bien controlados

en los que los procesos de imanación sean independientes de las imperfec-

ciones generadas durante la nanoestructuración.

Esta tesis estudia la influencia sobre los procesos de imanación de

las caracteŕısticas estructurales de redes de nanoestructuras con dos tipos

de motivos, nanohilos y antidots (agujeros no magnéticos), fabricados en

láminas epitaxiales de Au (001)/Fe (001)/Mg (001) de 25 nm de espesor

aproximadamente, crecidas mediante ablación de laser pulsado (PLD). Este

trabajo incluye una rigurosa tarea de fabricación de las redes mediante

diferentes técnicas de nanolitograf́ıa, haz de iones focalizado (FIB) y haz



ii Resumen

de electrones (EBL) tanto con resina positiva como negativa, aśı como una

detallada caracterización estructural y qúımica de las láminas y las redes

con una amplia variedad de técnicas: difracción y reflectividad de rayos

X (XRD y XRR), microscoṕıa de fuerzas atómicas (AFM), microscoṕıa

electrónica de barrido (SEM) y espectroscopia de fotoelectrones de rayos X

(XPS).

Los procesos de imanación de nanohilos, con anchuras y separación entre

hilos entre 100 y 1000 nm, se han estudiado con Efecto Kerr Magnetoóptico

(MOKE) y Magnetómetro de Muestra Vibrante (VSM). Se han realizado

también medidas de Resonancia Ferromagnética (FMR) para analizar la

existencia de anisotroṕıas diferentes de la magnetocristalina y la de forma

inherente a los hilos. Los resultados experimentales indican que sus procesos

de imanación evolucionan de enganche de paredes, para ángulos pequeños

entre el campo aplicado y el eje de los hilos, a una rotación de la imanación

básicamente uniforme, para ángulos grandes. Este comportamiento se puede

describir en términos de configuración de un único spin. La habilidad de

conseguir estos nanohilos de tan alta calidad y tan controlados ha permitido

desarrollar un modelo anaĺıtico basado únicamente en las propiedades

intŕınsecas del Fe y la forma y dimensiones de los hilos. Este modelo tan

simple presenta un buen acuerdo tanto cualitativa como cuantitativamente

con los resultados, poniendo en evidencia el papel practicamente irrelevante

de otros factores extŕınsecos en los procesos de imanación y, de acuerdo

con los resultados de resonancia ferromagnética, de otras contribuciones de

enerǵıa de anisotroṕıa.

El segundo tipo de nanoestructuras que constituyen el objeto de esta

tesis son redes de antidots. Dichos antidots se han fabricado con litograf́ıa

de haz de iones focalizado (FIB) y haz de electrones (EBL) en láminas

de Au/Fe/MgO, formando redes cuadradas de agujeros ciĺındricos, con

diámetro y separación entre 200 y 2000 nm y con la diagonal de las redes a

lo largo del eje fácil magnetocristalino de las láminas de Fe, (100) y (010).

Las inhomogeneidades de la imanación, que aparecen en la superficie lateral
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de los antidots para minimizar la enerǵıa dipolar, inducen una anisotroṕıa

interna de forma caracterizada por tener las direcciones fáciles a lo largo

de la diagonal, por lo que refuerzan la anisotroṕıa magnetocristalina de

las láminas. La caracterización de los antidots, realizada con efecto Kerr

magnetoóptico, se ha enfocado en la dependencia de la coercitividad con

el diámetro y separación. Como resultado principal, la coercitividad de

las redes es hasta 10 veces mayor que la de las láminas aumentando

rápidamente cuando la separación decrece, además de presentar una fuerte

dependencia con la coercitividad inicial de la lámina donde se han fabricado.

Se ha puesto de manifiesto la existencia de un escalado de la coercitividad

con el porcentaje de material magnético alrededor de los antidots que forma

estructuras inhomogéneas, evaluado mediante la longitud de correlación

magnetostática.

En resumen, en esta tesis se muestra la capacidad de fabricar

láminas delgadas y nanoestructuras de alta calidad, que ofrecen una

oportunidad única de estudiar procesos de imanación en sistemas modelo.

La optimización de los parámetros utilizados en cada uno de los

diferentes procesos de fabricación ha permitido producir redes de ĺıneas y

antidots cuyas propiedades magnéticas dependen casi exclusivamente de sus

caracteŕısticas morfológicas y sus dimensiones, con una mı́nima influencia

de las imperfecciones inherentes a los diferentes procesos de fabricación.





Abstract

Nanostructured magnetic systems such as nanoparticles, nanowires, multi-

layers and arrays of nanoelements have drawn a lot of attention in recent

years, mainly due to their technological relevance, specially for applications

related to magnetic storage, miniaturization of sensors and the so-called

magnetoelectronic devices. These systems are characterized by having at

least one of its morphological dimensions smaller or of the order of the ex-

change length, roughly corresponding to the domain wall width (typically

a few tens of nanometers for magnetic transition metals), which brings

about new magnetization processes, different from those occurring in bulk

materials. Both from the point of view of the implementation of actual

devices and of the progress in understanding this new phenomenology, it

is important to design reliable, repetitive nanostructuring processes, com-

bining good resolution in the nanometer scale with a minimum influence of

chemical, structural and morphological imperfections on the final magnetic

properties. These issues are crucial because those defects are generally un-

controlled and they might play a fundamental role in the magnetization

mechanisms of nanoelements. Consequently, it is highly desirable to cus-

tomize simple series of well controlled nanoelement arrays exhibiting mag-

netization processes independent of features arising from the imperfections

introduced upon nanostructuring.

This thesis studies the influence on the magnetization processes of the

structural features of different arrays of nanostructures with two types of

motifs, nanowires and antidots (non magnetic holes), fabricated in epitaxial

Au (001)/Fe (001)/Mg (001) films, 25 nm thick approximately, grown by

Pulsed Laser Deposition (PLD). This work includes a thorough task of

fabrication of the arrays by means of different techniques, Focused Ion

Beam (FIB) and Electron Beam Lithography (EBL) using either negative or
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positive resist, as well as a detailed structural and chemical characterization

of the films and the arrays with a wide variety of techniques: X-ray

Diffraction and Reflectometry (XRD and XRR), Atomic Force Microscopy

(AFM), Scanning Electron Microscopy (SEM) and X-ray Photoelectron

Spectroscopy (XPS).

The magnetization processes of the nanowires, with widths and inter-

wire separation between 100 and 1000 nm, were studied by means of Magne-

tooptic Kerr Effect (MOKE) and Vibrating Sample Magnetometer (VSM).

Ferromagnetic Resonance (FMR) measurements were also carried out to

analyse the eventual existence of anisotropy contributions different from

the magnetocrystalline and shape anisotropy inherent to the nanowires.

The experimental results indicate that their reversal processes evolve from

wall pinning, at low angles between the applied field and their long axis, to

basically uniform magnetization rotation, at high angles. This behaviour

can be described in terms of single spin configuration, thus ruling out the

formation of multidomain structures even at high angles. The ability of

achieving those high quality and well controlled nanowires allowed to de-

velop an analytical model taking into account just the intrinsic Fe properties

and the shape and dimensions of the wires. This simple approach provides

a very good qualitative and quantitative agreement with the experimental

results, thus evidencing the relatively poor role on their magnetization pro-

cesses of other extrinsic factors and, in agreement with the ferromagnetic

resonance results, of other eventual anisotropy energy contributions.

Antidots arrays constitute the second type of nanostructures studied

in this thesis. These arrays were fabricated by Focused Ion Beam (FIB)

and Electron Beam Lithography (EBL) on different Au/Fe/MgO thin films,

forming square lattices of cylindrical holes, with diameter and separation

ranging from 200 to 2000 nm and with the diagonal of the lattices coincident

with the easy magnetocrystalline axes of the Fe films, (100) and (010).

The magnetization inhomogeneities, appearing at the lateral surface of the

antidots to minimize the dipolar energy, induce an internal shape anisotropy



Abstract vii

characterized by easy directions along the diagonal, thus reinforcing the

magnetocrystalline anisotropy of the films. The magnetic characterization

of the antidots, carried out by magnetooptic Kerr effect, was focused on the

dependence of the coercivity on the diameter and separation of the arrays.

As a main result, the coercivity of the arrays is up to a factor of 10 above

that of the films and increases sharply with decreasing separation, although

it also presents a relatively strong dependence on the specific coercivity

value of the films on which they were fabricated. A general scaling of

the coercivity is evidenced by considering the percentage of the magnetic

material in the array around the antidots that forms the inhomogeneous

structures, evaluated from the magnetostatic correlation length.

In summary, this thesis has shown the ability to produce high quality

thin films and nanostructures offering a unique opportunity to study them

as model systems. Although different fabrication processes were employed,

the optimization of the parameters along each one of them allowed to

produce arrays of nanowires and antidots whose magnetic properties depend

almost exclusively on their morphology and characteristic dimensions, with

minimum influence of the imperfections inherent to the different fabrication

routes.
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As early as the 1950s, researchers had already envisioned the enormous

technological potential of magnetic thin films for applications as sensors and

information storage devices. Louis Néel made a number of contributions

in the late 1950s and 1960s to the understanding of the phenomenology

of magnetic thin films, mainly related with the Néel wall, surface

anisotropy, and exchange anisotropy [1]. However, it was soon realized

that difficulties in controlling sample quality, often due to the inevitable

chemical contamination resulting from the inadequate vacuum techniques

available for thin film growth and processing, limited the ability to control

the thin films properties and to perform reliable experiments in the search

for modified properties. Despite advances in surface science techniques and

thin film growth it was only in the late 1990s that the early dreams of a

new technology began to be truly fulfilled.

As the characteristic size of a magnetic system approaches key

length scales, such as the domain wall width or exchange length, new

magnetic properties arise. Before the single domain limit is reached,

the spin configuration of small elements is strongly modified. A lot of

research has been motivated by the demand for higher recording density

and new components for sensing applications. Much effort has been

recently devoted to fabricate patterned systems based on self-organization

[2, 3] and lithography techniques [4, 5]. Beyond this technological

motivation, the ability to achieve high quality and well controlled artificial

nanostructures offers a unique opportunity to improve our understanding

of low dimensional magnetism.

Since the 1990s different lithography techniques such as optical, electron

beam, X-ray or extreme ultraviolet lithography [6] and Focused Ion Beam

[7], have been substantially improved. These techniques provide very

good control during the fabrication of nanoelements, with a very narrow

distribution of shapes, sizes and distances. This improvement enables to

fabricate large arrays of nanoelements with a reduced dispersion in the

magnetic properties. A lot of studies about magnetic nanoelements were
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done in the last years. Figure 1.1 represents some important applications

for these nanoelements discovered recently as magnetic sensors [8], logic

gates [9], or racetrack memories [10].

Niobium layer

Insulating layer
GMR free layer
Spacer
GMR hard layer

(a) (b)

Figure 1.1: Some of the applications of magnetic nanoelements: (a)
magnetic sensors [8] and (b) racetrack memories [10].

This thesis is based on the study of two specific arrays of nanoelements

fabricated by electron and focused ion beam lithography. In particular, it

is focused in the study of planar nanowires and antidots lithographed in

epitaxial Fe thin films grown onto MgO substrates.

Most of the applications of the magnetic nanoelements rely on their

hysteresis behaviour. Since 1926, when the magnetization curves for the

principal crystalline axis in bulk iron were published [11], an exhaustive

study of the magnetic properties of iron was done, but until 1991 epitaxial

iron thin films were not studied in detail [12]. The magnetization processes

either for bulk materials or nanostructured thin films, result from the energy

landscapes due to the competing energy terms which include exchange,

magnetocrystalline anisotropy and magnetostatic energy among others.

The high saturation magnetization of Fe provides the possibility to have
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strong magnetostatic effects in artificially made nanostructures. On the

other hand, epitaxy provides a highly ordered crystalline structure, which,

in combination with the relatively high magnetocrystalline anisotropy of

Fe, leads to a very well defined configuration of magnetization easy and

hard axes.

This thesis presents the study of the magnetization reversal processes

of artificial nanostructured arrays, nanowires and antidots, lithographed

on very high crystalline quality epitaxial Fe (001) thin films grown onto

MgO substrates by means of pulsed laser ablation. These arrays of

nanostructures were lithographed with very good control of the lithography

parameters and with negligible influence on their magnetic properties by

the imperfections generated along the fabrication process. The magnetic

characterization of this nanostructures was focused on the dependence of

the hysteresis behaviour on their morphological dimensions.

The thesis is divided into five sections organized as follows:

Chapter 1: Introduction and motivation of the study of the magnetic

properties of magnetic nanostructures.

Chapter 2: A general description of the experimental techniques related

to thin film deposition, structural, morphological, chemical

and magnetic characterization and to the lithographic pro-

cedures is presented. The properties of the epitaxial Au

(001)/Fe (001)/MgO (001) thin films on which the nanostruc-

tures were lithographed are also discussed.

Chapter 3: The fabrication of Au/Fe/MgO planar nanowires with differ-

ent aspect ratios by FIB and EBL is reported. Structural

and morphological results are discussed in terms of the opti-

mization of parameters for each lithographic technique. The

dependence of the magnetization reversal processes on the

nanowires width and separation is analysed.
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Chapter 4: The fabrication of Au/Fe/MgO antidots with different diame-

ters and distances between them by FIB and EBL is reported.

The magnetization reversal processes of the antidots are dis-

cussed in connection to their morphological features.

Finally the main conclusions of this study are summarized.
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2.1 Growth Techniques

During this thesis two Physical Vapour Deposition (PVD) techniques have

been used for the growth of the thin films, Pulsed Laser Deposition (PLD)

and Molecular Beam Epitaxy (MBE)

MBE is a sophisticated growth technique extensively used nowadays to

grow a wide variety of materials because of its ability to produce very high

quality thin films of excellent crystallinity and very high purity. Using a

single crystal as a substrate it is possible to find adequate conditions for

which the growth is epitaxial, in such a way that the crystalline structure

of the layer is determined by the substrate. The MBE growth can be

performed with a Knudsen cell in the regime of very slow deposition rate,

1-5
◦
A/min, around 1 ML/min.

PLD technique consists of a three steps process: laser-material

interaction, plasma expansion and film nucleation and growth. A high

power pulsed laser is focused onto a target material that is going to be

ablated; the energy density in the focus point is high enough to create

the plasma. This plasma expands in the vacuum and it is deposited on a

substrate placed in front of the target, obtaining in this way the growth of

a thin film (figure 2.1). Generally the film thickness is proportional to the

number of pulses of the laser.

For low laser fluency (≈ 0.35 J/cm2) and/or low absorption at a given

wavelength, the laser pulse would simply heat the target, with the emission

of an ejected flux due to thermal evaporation of the target material. As the

laser fluency is increased, an ablation threshold is reached for which the

laser energy absorption is higher than that needed for evaporation. The

ablation threshold is dependent on the absorption coefficient of the material

and, thus, on the laser wavelength. At such high fluencies, absorption by

the ablated species also occurs, resulting in the formation of plasma at

the target surface. With appropriate choice of ablation wavelength and

absorbing target material, high-energy densities are absorbed by a small

volume of material, resulting in the emission of target material species that
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is not dependent on the vapour pressures of the constituent elements.

Figure 2.1: Sequence of events following the striking of a focused short laser
pulse (ca. 5 ns) on the surface of a solid sample. The thick arrow represents
the laser pulse and its length the pulse duration. e−, free electrons; i, ionic
species; a, atomic species; m, molecular species; ∗, excited species [1].

With this technique it is possible to deposit almost any material,

with a congruent transfer of stoichiometry from target to film. In most

PLD systems, a pulsed laser with wavelength in the ultraviolet region

(λ = 193 nm) is used due to the suitability for the growth of insulating

materials, specially those with wide energy gap. In the case of metals

deposition this wavelength effect is not so important because they have

no energy gap, so that a laser with visible radiation can be used (double

frequency Nd-YAG λ = 532 nm).

Many experimental PLD systems developed to prepare oxide thin films,

and, in particular, extensively used for high Tc superconductors, have a base

pressure in the high vacuum range (10−7 mbar). In this case, deposition is

performed under a controlled gas atmosphere with a partial pressure two

orders of magnitude higher than the base pressure [2]. However, in the case

of deposition of very pure metallic materials, which are more reactive, it is

advised to work under ultra high vacuum (UHV) conditions to avoid any

chemical modification of the material due to the residual atmosphere.

The system shown in figure 2.3 is the one used in this thesis for the

growth of Au/Fe/MgO (001) films. The single crystal MgO (001) substrates
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2ω
generator

(Au, Cu, Cr)

Figure 2.2: Scheme of the PLD system.

of 5 mm×5 mm×0.5 mm size were supplied by MaTeck GmbH, Germany,

with an orientation accuracy ≤ 0.5o and an average surface roughness of

1 nm (Rmax ≤ 5 nm).

The MgO substrates are placed in a set of sample holders specially

design during this thesis. They are fabricated with tantalum (Ta)

and molybdenum (Mo), which are refractory metals with high melting

temperatures and very low vapour pressures [3], so that the contamination

by the sample holder during the thermal annealing is minimized. The

sample holders are placed onto the stainless steel holder specially designed

for this system to allow sample transfer under vacuum. In figure 2.4 a

scheme of the sample holder is shown. Firstly, a Ta disc 0.25 mm thick

(2) is placed to avoid contact between the substrate and the stainless steel

holder (1), then a Mo disc 0.5 mm thick (3) with a square of 5.5 mm in the

centre where the substrate is placed, and finally another Ta disc (4) with
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Load-lock
ChamberIntermediate

Chamber

Growth
Chamber

Nd-YAG
Laser

De�ecting
Mirrors Vertical Vibrator

and Focussing Lens
Quartz

Window

Figure 2.3: UHV Pulsed Laser Deposition system used in this work (top)
and Nd-YAG laser, deflecting mirrors, vertical vibrator unit and focussing
lens (bottom).
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an square or patterned mask on top of the substrate. This last disc is used

to hold down the substrate and as a shadow mask when a pattern is used.

(2)

(1)

(3)
(4)

(2) (3)

(4)

Figure 2.4: Side and top views of sample holders used for PLD growth.

The PLD system is a home made equipment that consists of three

separate chambers:

I. The load-lock chamber that is used to load the substrates inside the

system from atmosphere,. This chamber has a sample parking stage

where three substrates can be loaded at the same time. It is pumped

with a turbo molecular pump backed with a rotatory pump reaching

a base pressure of 5 · 10−8 mbar.

II. The intermediate chamber, which has two parking stages: one for

samples once the holders are transferred from the load-lock chamber,

and another for targets, so that it is possible to exchange both

samples and targets without venting the growth chamber. This

chamber has also a radiative heater to do thermal treatments of the

sample. It is pumped by an ion pump achieving a base pressure below

1 · 10−9 mbar.

III. The growth chamber, also pumped by an ion pump, has a base

pressure of 8 · 10−11 mbar. Inside this chamber there is a Fe target

for PLD deposition, and two Knudsen cells with different metals (Au,

Cr) for MBE evaporation.
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The commercially available MgO substrates delivered by Mateck present

high quality in terms of surface defects, roughness and surface morphology.

Thus, to reduce any possible surface damage, MgO substrates are mounted

“as-received” without any acetone or ethanol ultrasonic cleaning. They

were outgassed at 150-200 oC for 30 minutes by placing them in front of

the heater in the intermediate chamber. To avoid W contamination of the

substrate a quartz tube is placed between the heater and the sample holder.

Then the substrate is transferred into the growth chamber.

A high power laser beam is focussed onto the Fe target surface after

passing through a quartz window to produce the ablation process. The laser

used is a Quantel Brilliant Nd-YAG with a second harmonic 2ω generator

(λ = 532 nm, τ = 4 ns), with a repetition rate of 10 Hz and a maximum

energy per pulse of 180 mJ.

In order to achieve the growth of high quality epitaxial Fe films it is

mandatory to optimize the parameters involved in the ablation process.

The most important problem in PLD growth is the droplet emission whose

density was minimized when the laser power was set to 0.25 W.

Another important issue to be considered is the homogeneous erosion

of the target [4]. A high purity Fe (99.99%) Johnson Mattey Ltd. target

with cylindrical shape has been used so that uniform erosion is done by

scanning the target surface across the laser beam upon translating and

rotating along its length, respectively. An additional third scan shifts the

laser beam vertically on the target surface by means of a vibrator on which

the focussing lens is mounted.

The ablation deposition rate is accurately controlled by the stability of

the laser power during the film growth. Most of the films studied in this

thesis were prepared by using a laser power of 0.25 W providing a rate of

4
◦
A/min. Fe/MgO films 24 nm thick are grown at room temperature for 1

hour.

It is well known that the growth mode and crystalline quality of Fe

depend on the deposition temperature [5]. Fe epitaxial films on MgO (001)
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substrates are obtained for RT growth and subsequent annealing at 400 oC.

In this particular case, the sample was annealed for 25 minutes.

In addition, a very thin capping layer of Au has been deposited to

preserve Fe chemical purity and prevent its oxidation. This Au layer is

thermally evaporated by a Knudsen cell in MBE regime. The deposition

rate is extremely stable and equal to 5
◦
A/min for the parameters used. The

thickness of the Au layer was 3 nm.

2.2 Structural and chemical characterization

2.2.1 X-ray Diffraction and Reflectometry

X-ray diffraction (XRD) is a very suitable technique to provide information

about crystalline structure because the wavelength of the radiation is of the

same order of magnitude that the characteristic distance between the atoms

of a solid.

Two different X-ray sources have been used for the diffraction

measurements performed in this thesis:

I. A laboratory Bruker D8 Advance diffractometer with Cu Kα radiation

(λ = 1.5405
◦
A) located at ICMM. The sample stage has a four circles

Eulerian cradle and three translations x, y, z axes (figure 2.5(a)):

ω Angle between the direction of the incoming beam and the

sample plane.

2θ Angle between the incoming light and the inspected diffraction

directions.

φ Angle defining the rotation around the axis normal to the sample

plane.

χ Angle of the tilt obtained by rotating around a horizontal axis

of the sample plane.
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Figure 2.5: Sample stage with Eulerian cradle.

II. Synchrotron radiation of wavelength λ = 0.8857
◦
A from the Spanish

beamline (SpLine, BM25) at European Synchrotron Radiation

Facility (ESRF).

A diffraction pattern is obtained by measuring the intensity of scattered

waves as a function of scattering angle. Very strong constructive

interference from crystallographic planes (hkl) of the lattice is obtained in

the diffraction pattern when scattered waves satisfy the Bragg condition:

2dhklsinθ = nλ (2.1)
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where dhkl is the interplanar separation, θ the angle of the incident and

the diffracted beam with the planes and λ the wavelength of the radiation

(figure 2.6).

Figure 2.6: Bragg reflection from a group of planes separated a distance d.

The Bragg-Brentano configuration is used to determine the interplanar

distance of the planes parallel to the sample surface (figure 2.7). This type

of scan is a symmetric θ-2θ (ω = θ) where the angle θ of the incoming beam

with respect to the sample surface is varied, while simultaneously keeping

the detector at an angle of 2θ with respect to the incoming beam.

Figure 2.7: Symmetric θ-2θ scan, Bragg-Brentano configuration.

Figure 2.8 displays the Bragg-Brentano scan of the Au/Fe/MgO (001)

thin film measured with λ = 0.8857
◦
A at SpLine beamline (ESRF). The
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Bragg peak at 2θ = 36.04o from the Fe (002) crystallographic planes,

provides an interplanar distance of dFe = 2.861
◦
A in good agreement with

the bulk Fe lattice constant aFe = 2.860
◦
A. The absence of any other (hkl)

diffracted beams confirms the preferential growth along (001) direction.

The same discussion applies to Au layer, which is also (001) textured. The

presence of well defined and sharp finite size oscillations around Fe (002)

and Au (002) reflections is a good indication of the high crystallinity of the

Au/Fe/MgO (001) films, which has to be verify.
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Figure 2.8: θ-2θ diffraction pattern from Au/Fe/MgO (001) thin films

measured by synchrotron radiation (λ = 0.885
◦
A).

X-ray reflectometry (XRR) measurements are based on a special type

of symmetric θ-2θ scans. Its principle is the same as the θ-2θ scan

described above, except for the fact that the measurement is performed

at grazing angles. In a standard θ-2θ experiment the distance between

crystallographic planes, which is of the order of 0.5-5
◦
A, is measured.

However, in XRR experiments the scattering of the X-rays now does not

occur at the individual atomic planes, but at the interface between the
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layers in the film due to their difference in electron density. This type of

measurement does not only allow to calculate the distance between adjacent

layers and the total thickness of a thin film, but also to determine the surface

and interfaces roughness.
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Figure 2.9: X-Ray reflectivity of the Au/Fe/MgO (001) thin film

(λ = 0.885
◦
A).

X-ray reflectometry measurements of Au/Fe/MgO (001) thin films are

shown in figure 2.9. The well defined oscillations and the “moderate” decay

of the reflected intensity confirms the abrupt and flat nature of the surface

and the interfaces. Besides, the superposition of long and short period

oscillations from the Fe/Au and MgO/Fe interfaces, respectively, can be

observed. A linear dependence of sinθi interference order niis obtained from

the angles θi at which each maximum appears. The linear fit of these values

by a least square method provides a slope, which is inversely proportional

to the film thickness, d (m = n/sinθ, d = λ/(2m)) (Eq. 2.1). Thus, this

analysis yields a total thickness of 27 nm, for the Au/Fe/Mgo (001) thin

films, where dFe = 23.8 nm and dAu = 3.2 nm.
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The film thickness was also calculated by SupReX, a software developed

by E. Fullerton and I. K. Schuller [6–8]. This program fits the X-

ray reflectometry pattern to obtain the film thickness and the interfaces

roughness. It uses a kinematic model for the diffraction pattern at high

angle and a dynamic model (Born approximation) based on optical theories

that do not consider the crystalline structure for the low angle regime.

Figure 2.10 displays the experimental data (black) and the theoretical

(red) XRR pattern simulated for a single Fe and Au bilayer. The excellent

agreement of both curves reproduces not only the position of the maxima,

but also the superposition of the long and short period oscillations and the

reflectivity decay. The best fit yielded thickness values of dFe = 23.3 nm

and dAu = 3.2 nm, in very good agreement with the previous results. In

addition, the roughness of the interfaces MgO/Fe, σMgO/Fe = 1.9
◦
A, and

Fe/Au, σFe/Au = 1.4
◦
A, are obtained.
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Figure 2.10: X-ray reflectivity of the thin film with the simulation made

with SupReX program [6–8] (λ = 0.885
◦
A).

A full crystalline structural characterization of the Au/Fe/MgO (001)
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films requires to study the existence of in-plane domains. This analysis

would allow to conclude whether the film is highly textured or epitaxial.

In the latter case, the relationship of the crystallographic direction with

the substrate are to be determined. This is done by measuring φ scans

for asymmetric reflections of substrate and thin film, which consist of the

rotation of φ at fixed χ, ω and θ angles. These experiments were performed

with the 4 circle D8 Advance system at ICMM, with a Cu Kα X-ray source

(figure 2.5(a)). φ-scans for the planes (110) of the Fe and MgO were

measured with χ = 45o and 2θ = 44.77o and 2θ = 62.50o for Fe and MgO,

respectively.

Figure 2.11(a) shows the epitaxial relationship of MgO and Fe lattices in

accordance with bulk constant values (aMgO = 4.203
◦
A and aFe = 2.860

◦
A,

aFe ≈ aMgO/
√

2) and the mismatch ((aFe − aMgO/
√

2)/aMgO/
√

2 = −0.038).

Due to this small mismatch difference one might expect the epitaxial growth

of Fe onto MgO (001) by means of an in-plane 45o rotation of the lattices.

This assumption is experimentally confirm as shown in figure 2.11(b), in

which the Fe (110) asymmetric reflections have four-fold symmetry indicat-

ing the presence of a single in plane domain. In addition, Fe (110) peaks

are 45o apart from the MgO (220) ones, in agreement with the expected

in-plane rotation of lattices with respect to one another. In summary, the

XRD characterization presented so far allows to conclude the growth of

Fe (001) on MgO (001) following the Fe (001)[100]//MgO (001)[110] epi-

taxial relation.

From previous wide angle XRD results, the Au capping layer of

the Au/Fe (001)/MgO (001) thin films is highly textured. One

might also expect a perfect epitaxy on Fe (001) films due to their

similar in-plane lattice constants (aAu = 4.08
◦
A≈ aMgO) and mismatch

(aAu/
√

2− aFe)/aFe = 0.009) by an additional 45 o rotation in registry

with the MgO lattice. However, φ-scans of Au asymmetric reflections are

difficult due to the very small thickness of this capping layer, which in-

tensity is would be hindered by the strong signal from the MgO substrate.
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(a)
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 MgO 220
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Figure 2.11: (a) Schematic view of in-plane Fe and MgO lattices and
epitaxial relationship: 45o rotation of the Fe lattice respect to the MgO
one and (b) asymmetric reflections for the MgO and Fe.



2.2 Structural and chemical characterization 25

Synchrotron based XRD experiments combining high photon flux and angle

resolution are mandatory to get insight on the crystalline structure of the

Au capping layer.

In addition to the peak position in a θ-2θ scan, the width of the peak

under investigation also contains valuable information. In case of a perfect

crystalline film, the width of the interference peak (as a function of θ) is

inversely proportional to its thickness. The full width at half maximum

(FWHM) of the peak is given by the Scherrer formula [9]:

FWHM =
0.94λ

< Lc > cos(θB)
(2.2)

where FWHM is expressed in radians, λ is the wavelength of the X-rays,

< Lc > is the thickness of the film and θB the Bragg angle of the reflection.

A non-perfect crystal can be divided into different crystalline domains (or

grains) with slightly different orientations. This is the case when long-range

stacking faults and other extended defects are present in the sample, and

< Lc > in the Scherrer formula is related to the out of plane crystallite

grain size.

The FWHM of the Fe (002) reflection in the diffraction pattern

displayed in figure 2.7 at θB = 18.02o is 0.27o. According to the Scherrer

formula (Eq. 2.2) the thin film has a perpendicular grain size of

< Lc >= 18.56 nm. This value can be understood as the coherence length

of the out of plane lattice constant. As it will be shown in section 2.2.2,

the mismatch at the interfaces generates a distortion of the Fe lattice, and,

consequently, < Lc > value must be smaller than the real Fe film thickness

evaluated by XRR.

Another type of scan closely related to a θ-2θ scan is a rocking curve

(RC) scan, from which it is possible to determine the mean spread in

orientation of the different crystalline domains of a non perfect crystal.

In order to obtain a rocking curve the detector position 2θ is fixed at the

Bragg angle of the corresponding reflection and the scan is then acquired
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by varying the angle θ by a range ∆ω around its central position. For

∆ω = 0 the sample and detector are at the exact positions for Bragg

condition. The RC corresponding to Fe (002) reflection have a FWHM of

0.57o and 0.71o, when measures with synchrotron radiation ((λ = 0.885
◦
A))

and Cu-Kα ((λ = 1.5405
◦
A)), respectively. These values are well bellow the

best ones reported in the literature for epitaxial Fe thin films [10], which

demonstrates the excellence crystallinity of the Fe films grown in this thesis.

2.2.2 Reciprocal Space Maps

Consider a set of points ~R constituting a Bravais lattice. The reciprocal

lattice can be characterized as the set of wave vectors ~K satisfying

ei
~K ~R = 1 (2.3)

For any family of crystal planes separated by a distance d, there are

reciprocal lattice vectors perpendicular to the planes, the shortest of which

has a length 2π/d.

Figure 2.12: Ewald’s geometric model. When the Ewald’s sphere intersects
a point of the reciprocal lattice, a vector to this point from the centre of
the sphere represents the diffracted beam ~ks.

A sphere of radius
∣∣∣~ki∣∣∣ = 2π/λ centred at a point defined by the incident
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vector ~ki with respect to the origin of the crystal, known as Ewald’s sphere

(figure 2.12), provides a very easy geometric interpretation of the directions

of the diffracted beams. When the end of the diffracted beam wave vector
~ks lies on the Ewald’s sphere and the scattering vector ~Q = ~ks − ~ki belongs

to the reciprocal lattice, ~Q = h~b1 + k~b2 + l ~b3, a diffracted beam is generated

and the family of planes [h, k, l] are in Bragg’s condition (h, k, l are the

Miller indexes of the scattering planes, and ~b1, ~b2, ~b3 form the base of the

reciprocal space)

Figure 2.13: The incident wave vector ~ki points to the origin of the
reciprocal space, the wave vectors ~ks lie in the cross sections between the
Ewald sphere and the crystal truncation rods; the diffracted waves (green)
penetrate into the sample and are not measurable in reflection geometry.

For diffraction purposes involving the surface (or thin film overlayer

with different periodicity), for which the system is two-dimensional periodic

(parallel to the surface), only the component of a wavevector parallel to

the surface is conserved with the addition of a reciprocal net vector. As a

consequence of the sharp truncation of the scattering system at the surface

the reciprocal lattice points are replaced by rods in the reciprocal space,

hence the name of Crystal Truncation Rods (figure 2.13) [11].

Reciprocal space maps have been measured at SpLine beamline (BM25)
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Figure 2.14: Scheme and picture of the six circle diffractometer installed at
SpLine beamline (ESRF).

in the European Synchrotron Radiation Facility (ESRF). The branch B

of this beamline is equipped with a single crystal diffraction endstation

[12]. Figure 2.14, shows the six circle diffractometer in vertical geometry

which allows to scan the reciprocal space: Three circles are dedicated to the

sample motion (θ, χ, ϕ), two circles are dedicated to the detector motion (δ,

γ) and the sixth one (µ) is coupled to the sample and the detector motion.

Therefore, it is possible to fix the values h and k of the ~Q vector, so that

crystal truncation rod measurements are performed by varying l (l-scans).

Reciprocal space maps (RSM) around a given reciprocal space point (h,k)

are performed by changing ∆h and ∆k at a fixed value of l.

In the particular case of Au/Fe/MgO samples, the MgO (001) substrate

was used as reference, so that all the (h,k,l,) values correspond to its lattice

and not to the thin film one.

Each point of the reciprocal space corresponds to a group of atomic
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Figure 2.15: Scheme of the theoretical plane of reciprocal space for l = 0.

planes, as displayed in figure 2.15 for l = 0. For each l integer value the

points of the MgO lattice are coincident with those of l = 0 (fig, 2.15).

However, the case of Au planes the reciprocal space points expand with

increasing l by a factor l ·1.03 (l integer) due to the ratio aMgO/aAu = 1.03.

Similarly, in the case of Fe planes the network expands with l by a factor

l = aMgO/aFe = 1.47. The almost identical lattice constant of MgO and Au

makes it difficult to resolve two different reflections due to the overlapping

of both MgO and Au peaks and the very strong signal of the MgO substrate.

Therefore, Au reflection is to be measured in l-scans by increasing l.

The experimental set-up can not measure l-scans or reciprocal space

maps for both h and k or l equal to zero. Figures 2.16(a) and 2.17(a)

display the simulations of the l-scans made with AnaRod, which is a

surface crystallographic code specially developed to describe the continuous

intensity distribution along rods perpendicular to the surface taking the

surface roughness into account properly [13]. From of these simulations

signals from substrate (black line) and Au/Fe thin film (red line) as well
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Figure 2.16: l-scans (11l) (a) simulation with AnaRod program [13] and
(b) experimental data for different incident angles.
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Figure 2.17: l-scans (20l) (a) simulation with AnaRod program [13] and
(b) experimental data for different incident angles.



32 Chapter 2. Experimental techniques and thin films

as its sum can be extracted for comparison with the experimental results.

Au reflections in the l-scan appear approximately at integer odd l values

for h = k = 1 and even values for h = 2, k = 0; Fe reflections appear at

l = (2n− 1) · 1.47 for h = k = 1 and l = 2n · 1.47 for h = 2, k = 0. The

experimental l-scans readily shows a good agreement with the previous

AnaRod simulations (figures 2.16(b) and 2.17(b))

Although Au reflections are on the high intensity tail of the MgO ones,

they can be clearly resolved for all l values due to the extremely good

experimental angular resolution (l-scans are measured in steps of 1.1 · 10−3

reciprocal space units).

Figures 2.16(b) and 2.17(b) show the l-scans (11l) and (20l) for different

incident angles, from 0.2 to 1.0 degrees. As the incident angle increases, X-

ray penetration also increases and depth information is obtained. Surface

sensitivity is mostly provided by lowest incident geometry.

The analysis of l-scans from Fe reflections taken at different incident

angles indicates a modification of the Fe vertical lattice constant with depth.

This fact is readily observed for the most grazing incidence (µ = 0.2o) l-

scans, in which, for h = k = 1, the Fe reflection at l = 1.5 is split in two

peaks. The first peak corresponds to the reflection observed at higher

incident angles providing the lattice constant of deep Fe atomic layers

(cFe = 2.82
◦
A) similar to the bulk Fe. However, there exist a second

contribution associated with smaller lattice constant which points out the

existence of vertical contraction in the outermost atomic layers of the film.

At this incidence angle of µ = 0.2o, below the critical angle (θc = 0.25o),

the penetration depth is about 2 nm in Fe.

Figure 2.18 shows a detail of the h = k = 1, l = 1.5 Fe reflection taken

at incident angle µ = 0.2o. This peak is fitted with two gaussians with

relative areas of 63.5% (A1) and 36.5% (A2). A2 corresponds to Fe atomic

planes near the Fe/Au interface. this means that 0.7 nm out of the 2 nm

penetration depth correspond to the Fe region distorted due to the Fe-

Au interface effects. These Fe atomic layers are contracted in the vertical
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Figure 2.18: l-scans (11l) of the Fe peak with µ = 0.2o with the fitting of
the two components.

direction yielding an effective lattice constant cFeFe/Au
= 2.72

◦
A.

Regarding the Au vertical lattice parameter, a value cAu = 4.1
◦
A was

obtained from the l-scans of figures 2.16(b) and 2.17(b). This parameter is

very close to those of section 2.2.1.

A full crystallographic characterization of the film is carried out by

the measurement of reciprocal space maps (RSM). Figure 2.19 displays

RSM for different families of planes to analyse the influence on the in-

plane structure of the epitaxial strain. RSMs will probe the existence of

structural distortions if present in the film. The notation in these maps is

referred to the reciprocal space units of the MgO substrate. Note that Fe

layer is rotated 45o with respect the MgO substrate, so that the in-plane

RSM of the Fe (101) directions correspond to the reciprocal space indexes

h = k = 1; the same argument accounts for Fe (112) for which h = 2, k = 0.

In figure 2.19(d) it can be seen the very sharp space map of the

MgO (111), characteristic of a high quality single crystal. Figures 2.19(a)
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Figure 2.19: Reciprocal space maps of the Au (001)/Fe (001)/MgO (001)
thin film for different families of planes: (a) Fe (101) and (b) Fe (112) in
logarithmic scale; and (c) Au (313) and (d) MgO (111).

and 2.19(b) evidence some degree of in-plane distortion in the iron layer.

Note that four different regions (labelled with numbers) of the reciprocal

space with useful information can be distinguished. Number 1 is the

contribution from the Fe planes at the MgO/Fe interface. It corresponds

to values of h = k = 1, equal to the reciprocal point of the MgO substrate,

which yields in-plane parameters of aFe1 = bFe1 = 2.97
◦
A, consistent with

the expansion of the in-plane lattice. This means that Fe grows expanded

in the film plane to accommodate a perfect epitaxy with the MgO substrate

lattice.

However, the maximum intensity of Fe (101) RSM is located at number
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2, for which h = k = 1.04. It corresponds to fully relaxed Fe planes with

lattice parameter aFe2 = bFe2 = 2.86
◦
A, similar to the bulk one. This means

that most of the Fe film has essentially been relaxed preserving its own bulk

lattice constant.

Numbers 3 and 4 are contributions from the interface Fe/Au for which

h = 1.04, k = 0.96, and h = 0.96, k = 1.04 respectively. These signals are

symmetric due to the cubic structure of the system and they correspond to

the same planes, yielding values of aFe3,4 = bFe3,4 = 2.96
◦
A for the in-plane

lattice parameters.

The volume of the unit cell for the relaxed Fe layer is obtained from

the in-plane lattice parameters determined by the reciprocal space maps

and the perpendicular one from the l-scan, VFe = aFe2bFe2cFe = 23.07
◦
A3.

The perpendicular lattice parameter of the Fe atomic planes at the Fe/Au

interface is also known from the l-scans taken at grazing incidence µ = 0.2o,

cFeFe/Au
= 2.72

◦
A. Assuming that the volume of unit cell is constant, the

in-plane lattice parameters leads to aFeFe/Au
= bFeFe/Au

= 2.91
◦
A, in close

agreement with the values obtained from the RSM maps. Similar result

is extracted for the perpendicular lattice parameter of Fe at the MgO/Fe

interface, cFeMgO/Fe
= 2.62

◦
A.

Figure 2.20 represents three profiles of the Fe (101) RSM; A is the h = k

profile, which has two peaks corresponding to the MgO/Fe interface and

the relaxed Fe contributions (1 and 2), respectively; B presents only the

contribution of the relaxed Fe (2); and C has three contributions, two from

the Fe/Au interface (3 and 4) and another more intense corresponding to

the MgO/Fe interface (1). A qualitative analysis of these three profiles

shows that the largest signal comes from the relaxed Fe followed by the Fe

atomic planes of the MgO/Fe and Fe/Au interfaces.

It could be noticed that at the interfaces the two in-plane Fe lattice

constants are equal and larger than the perpendicular one, a = b > c.

These results are consistent with the existence of tetragonal structural

distortion. This effect is more pronounced at the MgO/Fe interface
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Figure 2.20: Reciprocal space map of Fe (101) with three profiles to resolve
the Fe contributions.

(aFeMgO/Fe
= bFeMgO/Fe

= 2.97
◦
A, cFeMgO/Fe

= 2.62
◦
A) than at the Fe/Au

one (aFeFe/Au
= bFeFe/Au

= 2.96
◦
A, cFeFe/Au

= 2.72
◦
A). This is a direct

consequence of the mismatch between the lattices at those interfaces, which

is more severe for MgO/Fe (−3.8%) than for Fe/Au (0.9%). However, the

central Fe region has essentially relaxed Fe layers with the bulk lattice

parameters.

Figure 2.19(c) displays the RSM of the Au (313) planes. In this case

the Au in-plane lattice is rotated 45o with respect to the Fe, and in registry

with the MgO lattice. Due to the similar lattice constants of Au and

MgO, Au RSM are to be measure for high h and l values to clearly detect

any crystalline structural change if present. Au (313) RSM shows a single

contribution at h = 3.075, k = 1.025. This results when referenced to MgO

h = k = 1 provide h∗ = k∗ = 1.025 meaning that the Au has a square lattice

with aAu = bAu = 4.1
◦
A, equal to perpendicular lattice parameter obtained

from the l-scans. This evidences the cubic structure (aAu = bAu = cAu) of
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the Au capping layer and the negligible influence of Fe/Au interface.

Figure 2.21: Scheme of the thin film plane l = 0 of the reciprocal space.

With all the previous results the l = 0 plane of the reciprocal space

should be drawn as shown in figure 2.21. If this analysis is correct the

Fe signals in the Fe (112) RSM, which corresponds to (200) reciprocal

lattice point, referenced to the reciprocal units of the MgO substrate, should

appear in the following positions: (i) the relaxed Fe at h = 1.04 · 2 = 2.08,

k = 0; (ii) the Fe from the MgO/Fe interface at h = 1 · 2 = 2, k = 0; and

(iii) the two signals from the Fe/Au interface at h = 0.96 · 2 = 1.92, k = 0

and h = 1.04 · 2 = 2.08, k = 0 (same position of the relaxed Fe). These

calculated values are in good agreement with the those observed in the

Fe (112) RSM, corresponding to numbers 2, 1 and 3 and 4 of figure 2.19(b),

respectively.
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2.2.3 Atomic Force Microscopy

Atomic force microscopy (AFM) is a scanning probe method to investigate

the surface morphology and topography of a sample. It has a very high

lateral resolution, which makes it a valuable technique for studying micro-

and nano-structured surfaces. It uses a very fine tip on the end of a

cantilever to probe the surface contours. A laser beam is focused on the

backside of the cantilever, which is reflected onto a photodiode (figure 2.22).

When the cantilever moves up and down according to the surface landscape,

the laser beam gets deflected as well. Thus the deflection of the laser spot

on the photodiode is proportional to the relative height displacement from

the tip on the surface. Scanning the sample by means of xy piezos from

side to side across the cantilever it provides a 2D/3D image which reveals

information of morphology and roughness of the surface.

Figure 2.22: Scheme of the AFM operation.

The curvature of the cantilever tip, with dimensions of the order of

nanometers, defines the lateral resolution of the atomic force microscope.

The vertical or Z resolution is completely independent of the sharpness of

the tip, usually below 0.1 nm. It depends on the noise in the system, and

when feedback is enabled on the resolution limit of the actuating scheme,

including the piezoelectric actuator that moves the tip and the sample
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relative to each other in the vertical direction.
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Figure 2.23: AFM image of size 2×2 µm2 with the calculated roughness
(rms), and a vertical profile across the surface of the sample.

In this thesis the AFM was used to study the sample morphology and to

determine roughness of the surface. Different size AFM images were taken

in tapping mode by Dr. C. Munuera and Prof. C. Ocal (ICMM) with a

home-made AFM following the design by Kolbe et al. [14] and using an

electronic control unit from Nanotec. It is known that the roughness of

the image depends on the size of it [15]. The nominal roughness increases

with the image size until it gets to a constant value higher than the real

one. In the AFM used it is known that images of 2×2 µm2 provide a good

estimation for the roughness analysis.

The images were acquired and treated with the software WSxM from

Nanotec [16]. Figure 2.23 shows a 2×2 µm2 AFM image of the continuous

thin film Au(001/Fe(001)/MgO(001) surface. It can be seen that the

average height of the sample is 0.4 nm, the maximum height 1.4 nm and
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the rsm roughness 0.2 nm. These values show that the sample has a very

flat surface. The profile of the entire sample shows a change of height

of 8
◦
A in a very wide range, this result emphasizes the flatness of the

sample. The image also shows the surface homogeneity and continuity, in

good agreement with the previous X-ray structural characterization. These

results confirms the good quality of the thin film.

2.2.4 X-ray Photoelectron Spectroscopy

The X-ray Photoelectron Spectroscopy (XPS) is based on the photoelectric

effect. This technique is used to investigate the chemical composition at

the surface of the sample, from which electrons are emitted and filtered in

energy via a hemispherical analyser. The number of electrons (or intensity)

with defined kinetic energy (EK) are recorded by a detector. The resulting

spectrum exhibits resonance peaks at binding energies (EB) characteristics

of the electronic structure of the atoms present at the sample surface.

Therefore EB allows to identify not only the present element but also its

chemical state. The relationship between the parameters involved in the

XPS experiment is EB = hν − EK − φs, where hν is the photon energy and

φs is the sample work function (figure2.24).

While the X-rays may penetrate deep into the sample, the escape depth

of the ejected electrons is limited, providing surface sensitivity to the XPS

technique. By considering electrons with EK = 1000 eV that emerge at 90o

to the sample surface, 65% of the signal will emanate from a depth of less

than 1.7 nm, 85% and 95% from a depth of 3.3 nm and 5 nm, respectively.

XPS measurements have been performed in UHV system equipped with

a Specs Phoibos-100 electron spectrometer (Berlin, Germany), using a non-

monochromatic Mg-Kα (hν = 1253.6 eV) X-ray source.

This UHV system is also equipped with an ion gun from which Ar+

ions are accelerated at a given energy onto the sample surface. This ion

bombardment sputters the outermost layers of the sample by controlling

the ions current and the irradiation time. Depth profiling experiments are



2.2 Structural and chemical characterization 41

1s

2s

2p

Fermi
Level

Free
electron
Level

Conduction Band

Valence Band

X-ray,
energy hν

φs

s

E B

E   = E   - hν - φB

K

K

Ejected photoelectron,
E   kinetic energy

Work function

Binding energy

Figure 2.24: Energy diagram of XPS process.

done by measuring XPS spectra at different stages of ion sputtering and

sample thickness.

Depth profiling results in Fe/MgO thin films, grown in the same

conditions as Au/Fe/MgO samples, but with no Au capping layer are

displayed in figure 2.25. Each individual spectrum is taken at different

depth as the thin film atomic layers are sputtered off. Thus, chemical

composition of the thin film for different thickness can be extracted.

The sample was eroded with two different conditions: i) Low rate

(E=1 KeV, 0.08
◦
A/min) to study the presence of different oxidation states

and to follow the chemical composition changes at the outermost layers

of the thin film. ii) medium rate (E=1.4 KeV, 0.23
◦
A/min) to study the

cleanliness of the Fe layer and discard the existence of Fe-oxide phases

or contaminants in depth. The XPS spectrum of the as-grown samples

(black) shows the full oxidation of the Fe surface. Upon a very gentle ion

bombardment and the removal of a layer 0.7 nm thick, the emission of

metallic Fe is readily observed apart from the presence of Fe-oxides (red).

As ion sputtering proceeds, the increase of this metallic signal is clearly

evidenced until it reaches saturation. Fe-oxides contribution continuously
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Figure 2.25: XPS spectra of the Fe 2p region taken at different depths of
the thin film.

decreases from an effective depth of 2 nm (green) until 6 nm (dark blue),

form which there only exists the characteristic lineshape of metallic pure

Fe. The last spectrum (the upper one) corresponds to the Fe layers next

to the MgO/Fe interface, where a very low signal to noise ratio is obtained

since most Fe was removed.

The oxidation of the Fe surface might influence on the magnetic

properties of the thin film. Therefore, samples are to be protected or

passivated by the growth of a capping layer, which should prevent any

eventual chemical modification. In particular a Au layer 3 nm thick

has been deposited on the Fe/MgO (001) films. Similar depth profiling

experiments have been performed in Au/Fe/MgO samples. Once the Au

layer is plenty sputtered off, Fe 2p emission from pure metallic Fe is

only present, confirming the good properties of the Au layer for capping

purposes.
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2.3 Magnetic characterization

2.3.1 Magneto Optical Kerr Effect

The Faraday Effect, observed in 1845 in a piece of glass placed between the

poles of a magnet, was the first magneto-optical effect discovered. The

existence of this effect was a strong affirmation of the electromagnetic

nature of light. The phenomenon, a rotation of the plane of polarization of

linearly polarized light propagating in a medium in a magnetic field, was

rightly understood as implying a circular birefringence, that is, different

indexes of refraction for the left and right circularly polarized components

into which the linearly polarized wave could be resolved. The corresponding

effect in reflection, known as Kerr effect, was discovered by Kerr in 1876.

There are three different configurations to measure the Kerr effect with

a Magneto Optical Kerr Effect magnetometer (MOKE) (figure 2.26): the

longitudinal, in which the magnetic field is applied parallel to the sample

surface and to the incidence plane; the transverse, in which the magnetic

field is applied parallel to the sample plane but perpendicular to the

incidence plane; and the polar, in which the sample plane is perpendicular

to the applied magnetic field.

(a) (b) (c)

Figure 2.26: The three possible configurations to measure Kerr effect (a)
longitudinal (b) transverse and (c) polar.
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Both in the longitudinal and the polar cases the effect is simple and

occurs either for P polarized ( ~E0 parallel to the plane of incidence) or S

polarized ( ~E0 perpendicular to the plane of incidence) incident radiation.

The effect is that radiation incident in either of these linearly polarized

states is, on reflection, converted to elliptically polarized light. The major

axis of the ellipse is often rotated a small angle with respect to the incoming

polarization plane, this angle is referred to as the Kerr rotation (θk).

There is an associated ellipticity, called Kerr ellipticity (εk). The sign and

magnitude of these effects are proportional to ~M .

The reflected beam consists of two orthogonal electric fields: ~Er, with

the same polarization state of the incident beam, is large and proportional

to the usual Fresnel coefficient r,
∣∣∣ ~Er∣∣∣ = r

∣∣∣ ~E0

∣∣∣, where ~E0 represents the field

of the incident beam; ~Ek, perpendicular to ~Er, is small and proportional

the Kerr coefficient k,
∣∣∣ ~Ek∣∣∣ = k

∣∣∣ ~E0

∣∣∣ (figure 2.27). The reflected beam is

monochromatic plane wave with the frequency ω and the wave number kz

propagating in z direction that can be described in the following way:

~Eref = Re( ~Eref0e
i(ωt−kzz)), with ~Eref0 =

 Er

Ek

0

 (2.4)

Since k << r the complex Kerr rotation can be written as:

θk + iεk =
Ek
Er

(2.5)

The transverse case is quite different from the previous two. There is

only an effect for P polarized radiation, and in such a case, the reflected

radiation remains linearly polarized with just a slight change in the reflected

intensity of the order of 1% or less. The field of the reflected beam

results from the sum of two parallel vectors, ~Er, one whose magnitude

is proportional to the normal Fresnel coefficient,
∣∣∣ ~Er∣∣∣ = r

∣∣∣ ~E0

∣∣∣, and a small

vector, ~Ek, with its magnitude proportional to the Kerr coefficient, whose
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Figure 2.27: Decomposition of the reflected beam in the two orthogonal ~E
showing θk and εk.

Figure 2.28: Variation of the amplitude for Kerr transverse configuration.



46 Chapter 2. Experimental techniques and thin films

magnitude and direction depends on ~M . As ~M changes sign from + ~M to

− ~M the reflectivity changes from Rmax = |r + k| to Rmin = |r − k| as can

be seen in figure 2.28.

A more detailed theoretical explanation can be found in the literature,

for example in references [17] and [18].

Figure 2.29: Picture of the Kerr set-up.

In this thesis both the longitudinal and transverse configuration have

been used in a custom designed vectorial MOKE. It consists of a laser

diode with a wavelength of 640 nm, the laser beam passes through a first

polariser, S polarized for the longitudinal configuration and P polarized for

the transverse configuration. A magnetic field is applied to the sample,

for the longitudinal configuration it is applied with a pair of Helmholtz

coils, having a maximum field of 550 Oe, whereas for the transverse case

an electromagnet is used having a maximum field of 5 kOe. The polarized

laser beam is reflected by the magnetized sample and then passes through

a second polariser (analyser) P polarized for both configurations, the
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polarized reflection gets to a photodiode that measures its intensity. A

photo of the set-up is shown in figure 2.29. With this set up it is possible

to measure the magnetization parallel and perpendicular to the applied

magnetic field just by rotating 90o the polariser.

The longitudinal configuration was measured with S polarized radiation

and with the analyser almost perpendicular to the entrance one, thus

cancelling the ~Er component; just intensity variations associated with the

~Ek component are measured. The transverse configuration was measured

with P polarized radiation and with the analyser parallel to the first

polariser, in this case all the intensity is measured.
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Figure 2.30: Hysteresis loops for the easy and hard axes.

By means of this system, in the longitudinal configuration, the hysteresis

properties of the as deposited films were analysed. Figure 2.30 shows

the hysteresis loops of the easy and the hard axes. As expected, very

square hysteresis loop is obtained for the easy magnetocrystalline axes,

with remanence equal to saturation. The magnetization switches from +Ms

to −Ms in a single jump with a very narrow switching field distribution
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Figure 2.31: (a) Polar diagram of the angular dependence of the switching
fields in epitaxial Au (001)/Fe (001)/MgO (001) films (b) Detail of the two
jumps in the switching fields for the angular range between the easy and
hard magneto crystalline axes.
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(SFD), of 1 Oe approximately. This narrow switching process relies on

the nucleation of one or just a few reversed nuclei that sweep the whole

film when the field reaches the coercive force value [19, 20]. In contrast

the hard axis has a remanence of 0.7Ms, because the magnetization lies

along the easy axis (at 45o with respect to the hard axis) in absence

of any applied field. It exhibits the hysteresis loop typical of a hard

axis magnetization rotation mechanism, after the switching process, the

magnetization approaches saturation by means of reversible rotations. The

field required to reach the saturation is about 500 Oe, in agreement with

the anisotropy field. All these experimental data are a strong affirmation of

the excellent singlecrystalline nature of the Au/Fe/MgO (001) films [20, 21].
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Figure 2.32: Orthogonal hysteresis loops out of the easy or hard axes.

The in-plane hysteresis loops of the Fe films are characterized by the

existence of either one or two irreversible jumps. The loops measured along

the hard and easy axes or 10o, approximately, around the easy axis a single

jump occurs at H = Hs1, whereas for the rest of the cases the loops present

two jumps at Hs1 and Hs2, respectively. Figure 2.31(b) shows the evolution
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of both switching fields between an easy (45o) and hard (90o) axis the

smaller switching field, as the loops are measured closer to the hard axes

Hs1 decreases, whereas Hs2 exhibits a steep increase. Figure 2.32 exhibits

four hysteresis loops for orthogonal angles (75, 165, 255 and 345o) with

similar Hs1 and Hs2. Those behaviours are typical of films with four-fold

anisotropy.
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Figure 2.33: Angular dependence of the coercive field.

Even though the samples are fabricated under highly controlled

conditions, as the coercivity is an extrinsic parameter, they do not have

all the same coercive field. Most films have a coercive field around 40 Oe

in the easy axes and 35 Oe in the hard one, but there is a distribution of

values from 140 Oe to 10 Oe

To check the quality of the films the angular dependence of the quality of

the Au/Fe/MgO (001) films the angular dependence of the switching fields,

of the coercivity (Hc = Hs1) and of the remanence were studied along a

full 360o round, presented in figures 2.31(a), 2.33 and 2.34, respectively.

The three polar plots evidence an excellent four-fold symmetry with a Hc

from 47 to 48 Oe and from 33 to 34 Oe along the easy and hard axes, and
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Figure 2.34: Angular dependence of the remanence of the thin film.

Mr = 0.99Ms and 0.7Ms along easy axis and the hard axis, respectively, as

said above.

This study allows to discard the eventual existence of any uniaxial

anisotropy contribution superimposed to the biaxial anisotropy in the

Au/Fe/MgO (001) films, which is usually presented in many Fe films

reported in the literature. An example of this are the epitaxial Fe films

studied by Costa-Krämer et al. [22], which, although having a four-

fold symmetry due to their in-plane biaxial anisotropy, present different

coercivity and remanence values for the cases of loops measured at

orthogonal angles. The superimposed uniaxial anisotropy contributions

might be due to the many different causes, such as specific substrate surface

features (steps or miscuts) or the existence of uncontrolled magnetic fields in

the deposition systems (in the case of some magnetron sputtering systems).
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2.3.2 Vibrating Sample Magnetometer

The Vibrating Sample Magnetometer (VSM) uses an induction technique

for the measurement of magnetic moment by detecting the a.c. field

produced by an oscillating sample moment. The technique was first

highlighted by Simon Foner [23] and has since become universally

accepted as a research measurement technique for various magnetic and

superconducting applications.

VSM provides the full magnetic moment of the sample, while the

MOKE is a localized technique that provides a signal proportional to the

magnetization in the area illuminated by the laser spot and the penetration

depth of the incident beam (typically a few tens nanometers for visible light

in metals).

Figure 2.35: Scheme of the VSM: different chambers of the cryostat and
operation configuration.

In this work an Oxford Instruments MLVSM9 MagLabVSM was used

(figure 2.35). It consists of a vibrator that makes the sample oscillates with
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Figure 2.36: In-plane hysteresis loops taken at different temperatures from
10 to 290 K with magnetic field parallel to magnetocrystalline (a) easy and
(b) hard axes.
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a constant frequency (55 Hz) and amplitude (0.1-1.5 mm). A maximum

magnetic field of 9T is applied to the sample with superconducting coils,

parallel to the vibration direction. The oscillatory motion of the sample

changes the flux in the detection area, where four sense coils measure the

electromotive force induced by this flux change following the Faraday’s law,

being proportional to the magnetic moment of the sample.

This VSM has a cryostat with liquid He (LHe) surrounded by a chamber

with liquid N2 (figure 2.35). The LHe reservoir is connected to the sample

space by a needle valve that controls the flux of He gas around the sample.

The sample temperature can be varied from 300 K to 5 K by controlling

the He gas flow and powe of the resistive heater located near the sample.
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Figure 2.37: Out of plane hysteresis loops for different temperatures (10-
290 K) with magnetic field perpendicular to the thin film.

This VSM allows to measure the change of the sample magnetization as

a function of any combination of the following parameters, magnetic field,

temperature and time, with a resolution of approximately, 1 · 10−6 emu

and noise of 4 · 10−7 emu. Hysteresis loops of the Au/Fe/MgO (001) thin

film in three interesting directions (in-plane parallel and perpendicular to
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the magnetocrystalline easy axes, and perpendicular to the thin film) are

exhibited in figures 2.36 and 2.37.

In the out of plane hysteresis loops (figure 2.37) the value of the

saturation field obtained is Hsat = 2.5 T. The saturation magnetization

in-plane at room temperature is Ms = 9.4 · 10−4 emu, as the sample has

a volume of Fe of VFe = 5.76 · 10−7 cm3. The saturation magnetization

in emu/cm3 is then Ms = 1631.94 emu/cm3. The in-plane saturation

magnetization at room temperature, Ms = 2.05 T, is in good agreement

with the theoretical value, 2.15 T, and is equal to the one reported in [24].

2.3.3 Ferromagnetic Resonance

In a conventional Ferromagnetic Resonance experiment (FMR) a magnetic

system is simultaneously exposed to a variable static external field ( ~H0) and

to a sinusoidal electromagnetic field ( ~H1), with a fixed angular frequency,

ω, typically in the Gigahertz range (microwaves). The microwave pumping

field ~H1 exerts a small perturbing torque ~M × ~H1 tilting the magnetic

momentum ~M by a small angle θ out of its equilibrium, resulting in a

small amplitude harmonic oscillation of ~M around the static equilibrium

in the direction of total effective field ~Heff as shown in figure 2.38. This

magnetic field ~H1 of small amplitude and perpendicular to the static field,

gives rise to an oscillatory (magnetization) response of the same frequency

whose amplitude depends on ω and reaches a maximum at a value ω = ωr.

The resonance frequency, ωr, is determined by the effective field which

includes both external and internal fields. As a result of ~H0 and the internal

fields (magnetocrystalline anisotropy, dipolar fields, interface anisotropy,

etc) the magnetization is stabilized along a given direction corresponding

to an energy minimum.

The equation of motion of the magnetization, assumed to be homoge-

neous throughout a sample (what is known as ”saturated mode”), is given

by:

d ~M

dt
= − |γ|µ0 ~M × ~Heff (2.6)
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θ

Figure 2.38: Precession of ~M around the static equilibrium in the direction
of total effective field ~Heff .

Where γ is the gyromagnetic factor and ~Heff represents the effective field

acting on the magnetization, which comprises the applied field and the

internal fields. Although this equation includes no dissipative terms, it

allows to explain the main features of the resonance phenomenon. Upon

the application of the oscillatory, low amplitude field ~H1, magnetization

oscillations with the same frequency are induced along the direction of ~H1.

The susceptibility χ associated with these oscillations is:

χ =
C

1− (ω/ωr)2
(2.7)

C being a constant. As can be seen in figure 2.39(a), χ tends to infinity as ω

approaches the resonance frequency ωr. The resonance frequency depends

on the curvature of the energy landscape around the energy minimum and,

as a consequence, on the applied static field. It can be calculated by means

of equation 2.6 by taking into account the specific conditions of a given

sample: geometry, crystalline structure and magnetic anisotropy, intensity

and relative orientation of the applied field with respect to the crystalline

axes, etc. When dissipative (damping) terms are included in equation 2.6

the value of ωr remains essentially unchanged unless the dissipative terms
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are too large. Under resonance conditions the phase of the magnetization

oscillations is delayed π/2 with respect to the excitation field and maximum

absorption of the microwave radiation occurs.

0 1

 d i s i p a t i o n
 n o  d i s i p a t i o n

χ

ω/ ωr

(a) (b)

Figure 2.39: (a) Solid (dotted) line: evolution of the susceptibility with the
frequency when the dissipation terms are (are not) not taken into account
and (b) field derivative of the imaginary part of the susceptibility with the
field (Inset: Imaginary part of the susceptibility with the field with the
parameters corresponding to the main features.

In the specific case of singlecrystalline Au (001)/Fe (001)/MgO

(001) thin films, the resonance frequency can be calculated taking into

account the demagnetizing fields, associated with the demagnetizing factors

Nx = Ny ≈ 0 and Nz ≈ 1, where z corresponds to the (001) direction

(normal to the film), and the anisotropy field due to the magnetocrystalline

energy, a cubic anisotropy with anisotropy constant Kani and the in-plane

easy axes along the (010) and (100) directions. When the static field ~H0,

enough to saturate the sample, is applied in-plane, the resonance frequency

can be obtained either as [25, 26]:

(
ω

γ

)2

=

(
µ0Hr +

2Kani

Ms

)(
µ0Hr + µ0Ms +

Kani

Ms

)
(2.8)
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if ~H0 is parallel to an easy axis, (100) or (010), or as:(
ω

γ

)2

=

(
µ0Hr −

2Kani

Ms

)(
µ0Hr + µ0Ms +

Kani

Ms

)
(2.9)

when ~H0 is along a hard in-plane axis (110). In these expressions

Kani represents the magnetocrystalline anisotropy constant and Ms is the

saturation magnetization.

Regarding the experimental FMR set-ups, most of them use a microwave

excitation of constant frequency and drive the magnetic system through the

resonance condition by sweeping the external field ~H0. The measured FMR

signal is proportional to the field derivative of the imaginary part of the

susceptibility (dχ′′/dH0) (figure 2.39(b)), which, in turn, is proportional

to the absorption power. In other words, the FMR technique is based

on measuring microwave losses in a magnetic sample as a function of the

external d.c. magnetic field.

Iris

Iris
Turner

Sample
Stack

Microwave
radiation H1

H0
Static �eld

H1 �eld lines

E1 �eld lines E1 =~ 0

H1 H0

Figure 2.40: Resonance cavity of FMR.

The FMR studies included in this thesis were carried out in collabora-

tion with Professor Nikolai A. Sobolev at the Physics Department of Aveiro

University, Portugal. The set up consists of a resonant cavity TE102 in

which the sample is placed and exposed to microwave radiation of 9.8 GHz

and to a variable static field ~H0 (1.5 T maximum). The magnetic sample

is placed in the centre of the cavity, where the microwave and static mag-
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netic fields are perpendicular one to another as shown in figure 2.40. When

the resonance field is achieved the sample goes to maximum absorption,

which changes the quality factor of the cavity and increases the reflected

power. In order to enhance the signal to noise ratio an additional sinu-

soidal signal of small amplitude at 100 kHz, modulates the d.c. magnetic

field. This 100 kHz modulated part of the reflected signal is detected via

lock-in techniques improving the signal to noise ratio and the precision of

the measurement.

In addition, this set up is configured to measure the angular dependence

of the FMR. The sample can be placed with its surface plane parallel to

both magnetic fields (see figure 2.40) and rotated around its normal axis,

thus changing the angle between the in-plane easy axes and the applied

static field.

This type of measurement was used to study the anisotropy of the

as-deposited Au/Fe/MgO (001) films. Figure 2.41(a) shows the angular

dependence of Au (001)/Fe (001)/Mg (001) epitaxial thin film, prepared

at the PLD system described in section 2.1, similar to those employed to

fabricate the lithographic arrays that are going also to be studied by FMR

in this thesis. FMR spectra are taken for a complete 360o rotation with

5o step. A detailed analysis, 1o step, was carried out when the applied

field is close to the in-plane hard axis Fe (110), as shown in figure 2.42(a).

Resonance peaks are observed for fields about 100 mT, around angular

positions corresponding to the magnetocrystalline in-plane hard axes of this

particular sample, with a four-fold symmetry (90o periodicity), as depicted

in the polar plot of figure 2.41(b). This polar diagram was obtained by

fitting each spectra, such as the one represented in figure 2.39(b), to a

Dyson curve, equation 2.10 [27].
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Figure 2.41: (a) Angular dispersion of the FMR spectra for in-plane applied
magnetic field (b) Polar plot of the resonance field.
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I =I0 +A

(
c(H −Hr)

2 + c ·∆H2
pp − 2(H −Hr)(∆Hpp + c(H −Hr))

((H −Hr)2 + ∆H2
pp)((H −Hr)2 + ∆H2

pp)

+
c(H +Hr)

2 + c ·∆H2
pp − 2(H +Hr)(∆Hpp + c(H +Hr))

((H +Hr)2 + ∆H2
pp)((H +Hr)2 + ∆H2

pp)

)
(2.10)

The Dyson curve is a combination between the absorption and

dispersion of a symmetric Lorenztian function, where A is the amplitude of

the signal, ∆Hpp the width and Hr the resonance field.

The small amplitude signal observed at fields between 310 and 380 mT

is angle independent, and it was proved to be due to the paramagnetic

resonance of the substrate. The detailed analysis presented in figures

2.41(b) and 2.42(b) shows that the field matching the FM resonance

condition is 106 mT along the hard axis direction.

The field dependence of the resonance frequency was calculated ac-

cording to expressions 2.8 and 2.9 by using the gyromagnetic factor for

a free electron (g = 2, γ = 1.759 · 1011 T−1 s−1), the anisotropy con-

stant value reported in the literature for bulk Fe at room temperature

(Kani = 45 · 103 J m−3) and the saturation magnetization at room temper-

ature obtained by in-plane VSM measurements (Ms = 2.05 T). As can be

seen in figure 2.43, when the field is applied along an easy axis direction, the

value matching the resonance frequency of 9.8 GHz is close to zero, making

it impossible to observe the resonance peaks by experimentally sweeping

the field in our FMR set-up. Even for H0 = 0 mT a frequency higher than

9.8 GHz should be needed to observe the FMR absorption. On the con-

trary, when the field is applied along the in-plane hard axis (see inset of

the figure 2.43) the frequency of 9.8 GHz corresponds to a field value of

107.5 mT, in very good agreement with the experimental maximum ab-

sorption (106 mT). This result garanties the confidence on the used values

of the magnetocrystalline anisotropy constant and saturation magnetiza-

tion, in good agreement with the reported ones, with no extra anisotropy
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Figure 2.43: Resonance frequency as a function of the applied field
calculated by means of equations 2.8 and 2.9. The inset show a detail
of the curve obtained when the field is applied along the hard axis, around
the resonance condition.

contributions, as already confirmed by means of the results of section 2.3.1.

2.4 Lithography

Electron beam lithography (EBL) and lithography with focused ion beam

(FIB) are specialized techniques for creating micro and nanostructures.

A beam of electrons or ions is scanned in a well defined pattern across a

surface. There are various methods to transfer the scanned patterns into the

desired structure. In the case of the classical EBL the substrate is covered

with a resist film sensitive to electron irradiation. The exposed structure

can be developed (positive or negative) subsequently and transferred by

etching or deposition methods. In the standard operation mode of FIB

lithography the ion beam removes atoms from the surface at the spot
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where it hits the substrate (milling). Thus the pattern can be engraved

directly into the material. The main attributes of these technologies are the

very high spatial resolution to the nanometric level and the extraordinary

flexibility which can be applied to a broad variety of materials and an almost

infinite number of patterns.

2.4.1 Focused Ion Beam Lithography

In recent years several fabrication techniques using electrons and ions have

been develop to achieve a better control of nanostructures fabrication. The

FIB is one of the most promising techniques because it is a maskless

process providing great flexibility and simplicity. Apart from that, a

regular application of FIB is the preparation of specimens for cross-section

transmission electron microscopy (TEM) [28]. This technique has also a

very serious drawback due to the spatial extension associated with the

focused ion beam irradiation, which leads to radiation damage and ion

implantation in extensive areas that may change the properties of the

material, especially in systems with materials very sensitive to ion induced

effects [29].

A schematic diagram of a FIB ion column is shown in figure 2.44. The

structure of the column is similar to that of a scanning electron microscope,

the major difference being the use of a gallium ion (Ga+) beam instead of

an electron beam. A vacuum of 10−7 mbar is maintained inside the column.

The ion beam is generated from a liquid-metal ion source (LMIS) by the

application of a strong electric field. This electric field causes the emission

of positively charged ions from a liquid gallium cone, which is formed on

the tip of a tungsten needle. A typical extraction voltage and current are

7000 V and 2 µA, respectively, under normal operating conditions. The

ion beam energy is typically between 10 and 50 keV, with beam currents

varying, over four decades, between 1 pA and 10 nA. This allows both a fine

beam for high-resolution imaging on sensitive samples and a heavy beam

for fast and rough milling.
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Figure 2.44: Schematic diagram of FIB ion gun column [30].

The beam is focused to a fine spot, enabling a best resolution in the

sub 10 nm range. Blanking of the beam is accomplished by the blanking

deflector and aperture, while the lower octopole is used for raster scanning

the beam over the sample in a user-defined pattern. The multichannel plate

(MCP) is used to collect secondary particles for imaging.

Figure 2.45: Sputtering process during the FIB lithography [30].

The removal of sample material is achieved using a high ion current
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beam. The result is a physical sputtering of sample material, as illustrated

schematically in figure 2.45. By scanning the beam over the substrate,

an arbitrary shape can be etched. Redeposition occurs, which drastically

reduces the effective etch rate.

The main benefits of FIB nanofabrication are the high flexibility in

the shapes that can be lithographed, and the attainable resolution (below

50 nm). The size of the structures that can be obtained is limited by

the current; small structures require small current and a lot of processing

time. The slow processing is the main drawback of FIB. Hence only

relatively small structures (typically tens of micrometers) can be realized

within a reasonable time. This technique is best suited for small-scale post-

processing or prototype fabrication.

(a) (b)

Figure 2.46: (a) FIB Strata DB235 from FEI at the Nanotechnology
Platform (Barcelona Science Park) and (b) schematics of the ions and
electrons beams configuration.

During this thesis a dual-beam STRATA DB235 from FEI at the

Nanotechnology Platform of the Barcelona Science Park (figure 2.46(a)) was

used. The ion beam works at a constant energy of 30 KeV and the current

has been varied between 100 pA to 1000 pA depending on the size of the

nanostructure. Figure 2.46(b) shows a schematic view of the configuration
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of the two beams and sample position for SEM or FIB.

2.4.2 Influence of galium implantation on the magnetic

properties

As previously discussed, a disadvantage of this technique is the Ga+

implantation in the sample during the milling process. As shown in figure

2.47 some Ga+ ions, due to their high energy are implanted in the sides of

the fabricated structures (side-wall doping). Depending on the irradiation

conditions, this Ga+ implantation modifies the magnetic properties of the

material as reported in references [29, 31–33].

Figure 2.47: Implantation of Ga+ in the edges of the nanostructure
fabricated by FIB.

To study the effect of the implantation of Ga+ in the Au/Fe/MgO

films the FIB was used to irradiate them in twelve areas of 1.33×1.29 mm2

with different doses by varying both the intensity and the irradiation time.

Table 2.1 summarizes the irradiation conditions of the twelve areas in three

different films.

Some of these irradiated areas have been characterised by synchrotron

radiation XRD (λ = 0.8857
◦
A). These experiments were possible due to

the high intensity and small size of the beam available at SpLine beamline

(ESRF). These measurements allow to study whether Ga+ implantation

produces a distortion in the Fe lattice or the formation of Fe-rich Fe-Ga

alloys.
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Sample Intensity (nA) Time (min) Dose (×1015 ions/cm2)

1

0.841 10 0.21
5.70 5 0.71
5.68 10 1.41
5.70 35 4.25

2

2.92 40 2.91
6.38 20 3.18
6.35 32 5.06
6.34 40 6.37

3

0.932 30 0.7
0.942 60 1.41
0.920 120 2.85
0.950 420 7.03

Table 2.1: Doses of Ga+ in the irradiated thin films.

Figure 2.48 displays the equilibrium phase diagram of Fe-Ga alloys. The

first stable Fe-rich alloy at room temperature is α-Fe3Ga, which crystalline

structure L12 [34] is shown in figure 2.49. It is worth to mention that

implantation is an out of equilibrium process, and other Fe-Ga alloys could

be formed for the same Ga concentration due to the high energy of the

incoming Ga+ and the local temperature increase. Figure 2.49 shows the

crystalline structure D03 corresponding to the stable high temperature β-

Fe3Ga phase.

The diffraction patterns of these L12 and D03 structures have been

simulated and compared with the experimental XRD results to get

information of the presence of any contribution of Fe-Ga alloys in the

samples. Assuming that only part of the Fe layer is implanted with Ga

atoms and also that the majority formation of Fe-Ga alloy is L12 phase,

and D03 in minor contribution, the simulated diffraction pattern should be

similar to that shown in figure 2.50 (calculated for Fe 25%, L12 60% and

D03 15%). Most Fe3Ga Bragg peaks of these Fe3Ga phases are very close
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Figure 2.48: Equilibrium phase diagram of Fe-Ga alloys.

to the Fe ones, so that they are very difficult to be resolved. Both D03

and L12-Fe3Ga (220) Bragg peaks overlap with MgO (200) and Au (200)

of the epitaxial Au/Fe/MgO thin film, so that it would be very difficult

to observed them due to the large signal of the substrate. Also the (400)

peaks if a significant amount of crystalline Fe is left. However, L12-Fe3Ga

displays multiple Bragg peaks in the central region of the 2θ range with

missing reflections of substrate and thin film, which should appear in the

experimental diffraction patterns depending on its concentration.

The existence of D03 and/or L12-Fe3Ga crystallines structures would

lead to an asymmetry of the Fe (200) peak due to the small separation of

their (400) reflections (0.14 and 0.58 degrees, respectively) as seen in figure

2.50.
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Figure 2.49: Crystalline structures of the α− and β− Fe3Ga alloys.
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Figure 2.51: Normalized X-ray diffractograms of Au/Fe/MgO (001) samples
irradiated with Ga+.
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Figure 2.51 represents a selection of XRD results of the irradiated areas

with different Ga+ doses. It is readily observed a broad contribution

on the left side of the Fe (200) peak. This signal should come from

induced disorder, presence of intersticials, expansion of the unit cell and

nanocrystalline alloy formation, taking place during the Ga implantation

process. In addition, a small peak at 2θ ≈ 40o is present for doses above

2 · 1015 ions cm2, which might be assigned tentatively to the (420) Bragg

peak of the L12 phase.
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Figure 2.52: Normalized Fe (200) X-ray diffractograms of the three samples
upon Ga+ irradiation.

Figure 2.52 shows the broadening of Fe (200) peak as result of the

alloy formation. This effect is more important in sample 2, for which

higher values of Ga+ intensity were used and Ga implantation reaches the
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maximum dose. The right side of the Fe (200) peak remains the same as

Ga irradiation is performed. It means that <LFec > should not change and

the broadening might be due to the small contribution of Fe-Ga alloy at 2θ

values below the Fe (200) reflection. This peak asymmetry, towards higher

lattice parameters values, might correspond to emission from (400) peak of

the D03 structure, which also suggest the formation of Fe3Ga D03 phase.

If one assumes that the increase of FWHM of the Fe (200) Bragg peak

with Ga+ dose is only due to structural modifications in the Fe layer, the

variation of <Lc > calculated by Scherrer formula, equation 2.2, shows a

linear decay of the perpendicular coherence length (figure 2.53). This value

decreases by 2.3 nm, approximately, with respect to that of the Fe layer for

non-irradiated samples.
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Figure 2.53: Variation of the perpendicular coherence lenght of the Fe layer
in the Au/Fe/MgO(001) thin film with the Ga+ dose.

XRR measurements, similarly to the experiments performed in the non-

irradiated samples (figure 2.9), show very intense oscillations (figure 2.54).

The period of such oscillations yields a decrease of 3.5 nm of the effective



74 Chapter 2. Experimental techniques and thin films

thickness, approximately, as shown in figure 2.55. This loss of effective

thickness is in agreement with the value obtained for the perpendicular

coherence length decrease. These results might be explained in terms of

the effect of Ga sputtering and implantation. Nevertheless, some sputtering

effects can not be discarded.
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Figure 2.54: X-ray reflection diffractograms upon Ga+ irradiation.

In summary, although there are not significant changes in the crystalline

structure of the samples, Ga+ irradiation produces some degree of

structural disorder and the formation of both L12 and D03 Fe-rich FeGa

alloys. This is illustrated in figure 2.56, where the oscillations with well

defined periods are preserved, confirming the high quality of the irradiated

Fe layer. According to these results one might expect minor effects on the

magnetic properties of the Au/Fe/MgO (001) films upon Ga+ exposure for

the studied irradiation conditions.

As a general trend, the effects of ion irradiation of magnetic films

and multilayers are quite complex and depend on the characteristic

parameters of the beam, such as the mass and kinetic energy of the
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Figure 2.55: Variation of the effective thickness of the thin film with the
Ga+ dose.

ions and the total fluency (dose), as well as on the specific features

controlling the magnetization processes: the existence of high surface,

magnetoelastic anisotropy contributions or the presence of defects involved

in nucleation and pinning mechanisms. In the case of systems whose

magnetic properties arise from strong effects in the interfaces, the eventual

disorder and intermixing induced by irradiation usually lead to a substantial

modification of the magnetic anisotropy, even affecting their easy axes

configuration. Substantial modifications of the anisotropy might also

occur in the case of highly disordered systems, for which irradiation can

improve the chemical order or even induce the formation of new phases

-affecting the magnetocrystalline anisotropy- and, at the same time, relax

the residual stresses, decreasing the eventual magnetoleastic anisotropy

energy contributions. On the contrary, in the case of relatively ordered

systems the irradiation might increase the chemical disorder and also

generate new phases, usually leading to a decrease of the magnetocrystalline
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Figure 2.56: Normalized Fe (200) X-ray diffractograms in logarithmic scale
of the three samples upon Ga+ irradiation.

anisotropy but also to an increase of the density of nucleation sites and

pinning defects. From all these considerations it is evident that many

competing effects might take place upon irradiation that would affect

the overall magnetic behaviour of a system, rendering difficult the direct

interpretation of the eventual modifications of the hysteresis parameters

and of the magnetization mechanisms.

In the specific case of the Fe films studied in this thesis, the effects

of the Ga+ irradiation on the coercivity, remanence and saturation field,

Hsat, required to saturate them along the hard axis. Hsat, which provides

an indirect measure of the Kani/Ms ratio, was employed because the use

of the MOKE system precluded the direct measurement of the saturation

magnetization. However, the evidences of surface damage on the capping

layer upon irradiation did not allow using the reflectivity as a relative

measure of the saturation magnetization.

Figure 2.57 presents the hysteresis loops measured along the hard axis
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Figure 2.57: Hysteresis loops along the hard axis prior and after Ga+

irradiation with 6.37 · 1015 ions cm−2 dose.

of sample 2 prior to irradiation and after irradiation with the highest dose,

6.37 · 1015 ions cm−2, by using the highest current intensity, 6.34 nA. No

differences are observed in the reversible, approach to saturation region,

which indicates thatHsat is essentially unchanged. This, in turn, shows that

the structural modifications due to the irradiation process do not largely

affect the anisotropy and saturation magnetization (they are not strictly

proportional to one another). The structural analysis after irradiation

suggests that, at least, a given percentage of the Ga atoms implanted in the

Fe films produced Fe3Ga clusters. No evidences were found of a generalized

dilution of the Ga atoms into the Fe lattice leading to a metastable and

complete Fe-rich Fe-Ga alloy, although the appearance of local clusters of

such an alloy are not excluded. These facts are consistent with the negligible

variation of the intrinsic magnetic parameters involved in Hsat.

Regarding the coercivity and remanence of the films, as a first point it

is important to remark that the coercivity values measured along the easy
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Figure 2.58: Hysteresis loops along the easy (top) and hard (bottom) axes
of Ga+ irradiated sample 1.
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axis for the three Fe films were very different: 46, 23 and 11 Oe for samples

1, 2 and 3, respectively. Samples 1 and 2 evidenced the same qualitative

behaviour. Figure 2.58 shows the hysteresis loops of sample 1 along the easy

and the hard axis, respectively. The easy axis loop prior to saturation is

square, with remanence equal to saturation, and its demagnetization branch

is characterized by a single switching step that takes the magnetization from

+Ms directly to −Ms. After irradiation, the remanence remains equal

to saturation; the demagnetization takes place by means of a very large

irreversible step followed by a relatively broad distribution of switching

events until (negative) saturation is reached. The field corresponding to

the large switching step, taken as coercive field, decreases with increasing

the irradiation dose. When the loops are measured along the hard axis a

similar behaviour occurs, with the only difference that the remanence is

in all cases equal to 0.7Ms, approximately, due to the alignment of the

magnetization along the easy axis, at 45o with respect to the direction of

the applied field.

Sample 3, which presents a weak coercivity, about 11 Oe, exhibits a

very different behaviour upon irradiation. The hysteresis loops along the

easy axis (figure 2.59) are also square, with remanence equal to saturation.

However, in contrast to the case of samples 1 and 2, the coercivity and the

very narrow switching field distribution are not modified even with doses as

high as 7.03 · 1015 ions cm−2. It is important to remark that the irradiation

of sample 3 was carried out with very low current intensity, about 0.9 nA,

even for the highest doses (see table 2.1).

The magnetic parameter most sensitive to changes is the coercivity

Hc, because it depends strongly on the defect and grain structure and the

internal strains of the specimen. In addition, impurities incorporated during

deposition or ion implantation can increase Hc. Muller et al. [35] showed

a strong reduction in coercivity during the initial stage of irradiation in

electron-gun deposited films, that may be explained by the reduction in the

intrinsic stress; and an increase in Hc after high-fluence ion irradiation, that
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Figure 2.59: Hysteresis loops along the easy axis of Ga+ irradiated sample
3.

might be correlated to the large number of impurities generating pinning

centres in the damage cascades.

The behaviour of the coercivity of the three films is summarized in

figure 2.60. For samples 1 and 2 it decreases with increasing dose, about

37% and 43%, respectively, for the highest dose employed, whereas it

remains constant for sample 3. In the frame of a magnetization reversal

mechanism triggered by the nucleation of reversed nuclei, at regions

with reduced energy barriers, the decrease of the nucleation field Hn

required to launch the switching events can be tentatively interpreted as

due to the generation of local highly disordered centres. Their reduced

magnetocrystalline anisotropy, due to the loss of crystalline quality, would

easy their magnetization reversal. The long sequence of jumps that

conforms the broad switching field distribution of the demagnetization

curve is probably linked to the generation of defects involved in the pinning
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Figure 2.60: Variation of the coercive field of the Au/Fe/MgO (001) thin
films with the Ga+ dose.

of the propagating walls. The defects with associated pinning fields below

the nucleation field value are obviously not effective in impeding the wall

propagation. In the case of sample 3, the negligible modifications of the

hysteresis parameters suggest that the low current employed during the

irradiation process leads neither to the formation of the nucleation centres

nor to the defects involved in pinning. This interpretation is consistent with

the broadening at the low θ side of the Fe (002) reflection just for samples

1 and 2, but not for sample 3, as can be seen by comparing the Fe (200)

Bragg peak of the three samples in figure 2.52.

2.4.3 Electron Beam Lithography

The Electron Beam Lithography consist of scanning a fine focused beam

of electrons across a surface covered with a resist film sensitive to those

electrons, thus depositing energy in the desired pattern in the resist film.
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Figure 2.61: Scheme of the processes involved in the EBL (a) deposition
of the photoresist; (b) electron irradiation of the pattern; (c) development;
(d) ion etching; (e) lift-off (Positive resist in the upper and negative resist
in the lower part, respectively).

This technique involves a multistep process where either the chemical

composition of the sample or its crystalline structure can be modified as

shown in figure 2.61:

(a) Deposition of the photosensitive resist, positive (PMMA) or negative

(AZ nLOF 2070)

(b) Electron irradiation. In the positive resist it breaks polymer backbone

bonds, leaving fragments of lower molecular weight, more soluble in

the developer. In the negative resist it cause a cross-linking of the

polymer chains, rendering them less soluble in the developer.

(c) Development. It dissolves the more soluble part of the resist, leaving

the non-irradiated part in the positive resist and the irradiated part

in the negative one.

(d) Ion etching. The resist left in the sample works as a mask, removing

the part of the sample not covered with resist.

(e) Lift-off. Removes the resist left after the process, leaving the pattern
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(a) (b)

Figure 2.62: (a) Raith e-LiNE at the Nano+Bio Center of the Technical
University of Kaiserslautern and (b) Schematic drawing of the Zeiss
GEMINI field emission column: U1 - extractor voltage at first anode, U0 -
accelerator voltage at second anode, UB - booster voltage.

clean.

An electron beam lithography tool Raith e-LiNE system located at the

Nano+Bio Center of the Technical University of Kaiserslautern, has been

used to fabricate the patterns (nanowires, antidots). More details are given

in section 3.2. Figure 2.62 illustrates a schematic drawing of the Raith

e-LiNE electron column (Zeiss GEMINI), the main components of which

are the electron source and the magnetic lenses for focusing the beam. The

electron source is a thermionic emission element (a Schottky thermionic

field emission, SFE). The SFE combines the high brightness and low energy

spread of the cold field emitter with high stability and low beam noise. The

special electron beam path inside the Gemini column has been designed to

eliminate beam cross-over and ensure a field free specimen area.
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3.1 Introduction

Planar nanowires fabricated by different patterning procedures in contin-

uous films grown by deposition techniques such as sputtering, molecular

beam epitaxy (MBE) or pulsed laser deposition (PLD) lead to different

scenarios for their magnetization reversal mechanisms [1–7]. Very different

mechanisms may occur in nanowires with similar dimensions depending on:

1. Their specific intrinsic parameters, basically magnetocrystalline

anisotropy energy (MAE) and saturation magnetization Ms.

2. Their structural and morphological features, which include, among

others, their single or polycrystalline character, textures and aspect

ratio.

3. The quality of the nanowire-substrate interface (roughness, interdif-

fusion of chemical species, eventual presence of stresses due to the

lattice mismatch...)

4. Other factors such as residual stresses, impurities or defects inherent

to the fabrication technique.

One of the main issues of these mechanisms is the presence of either

quasi-uniform or non-uniform magnetization configurations associated with

the reversal. As an example, the reversal of nanowires based on low

anisotropy materials such as permalloy evolves with increasing wire

thickness from coherent rotation to more complex mechanisms based on

non-uniform magnetization [3]. Different mechanisms take also place in

polycrystalline cobalt nanowires with widths between 30 nm and 2 µm.

While the reversal of the widest wires is accomplished through the

generation of a multidomain state, that of narrower ones is due to the

propagation and pinning of walls nucleated at the ends of the wires, these

two mechanisms are represented in figure 3.1.
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Figure 3.1: MFM images and simulations of the reversal processes of Co
nanowires were t is the thickness and w the width of the wire [4].

Figure 3.2 represents the “phase” diagram of the switching mechanism

of Co nanowires as a function of their thicknesses and widths [4].

The crossover from nucleation-propagation to multidomain-based reversal

occurs for widths between 200 and 700 nm, approximately, when the

thickness increases from 15 to 30 nm, respectively. This transition has a

linear behaviour in the “phase” diagram. For a given thickness the reversal

process is based on a single domain structure for narrow wires and it changes

to multidomain when the width increases; the width value at which this

change occurs increases with the thickness.

On the other hand, the magnetization processes of singlecrystalline Fe

wires are strongly dependent on their crystalline orientation relative to the

axis of the wires. In epitaxial Fe (001) wires with the long axis, called

es in figure 3.3, along the magnetocrystalline hard axis (Fe (110)) and

widths in the micrometer range, the magnetization reversal process takes

place through a nucleation and propagation mechanism controlled by the
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Figure 3.2: Phase diagram of the switching mechanisms of Co nanowires
as a function of their thicknesses and widths. Experimental findings from
magnetoresistance measurements (triangles) and MFM imaging (squares)
are compared to theoretical values obtained from Monte Carlo simulation
(circles). Note that MFM was only performed in remanence. The lines
indicate the transition from multidomain switching (full symbols) to a
reversal process by domain nucleation and propagation (open symbols) [4].

local edge dipolar fields and the four-fold in-plane anisotropy, for applied

fields parallel to the axis of the wires, switching to a multidomain mediated

reversal for perpendicular fields [5]. Scanning Kerr microscope images of the

domain patterns for nanowires with thickness t=30 nm, length l = 500 µm,

width w = 15 µm and distance between the wires d = 8 µm, are represented

in figure 3.3. The contrast in the Hhs
c1 , Hes

c1 images is due to changes in the

magnetization component parallel to the applied field (M||), when the field

is applied perpendicular and parallel to the wires respectively.

In the case of epitaxial nanowires fabricated from Fe (110)/GaAs (110)

films with widths of the order of hundreds of nanometers a high, well defined

uniaxial in-plane anisotropy results from the superposition of the MAE
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d

Figure 3.3: Scanning Kerr microscope images of the reversal processes of
Fe epitaxial nanowires (t=30 nm, l = 500 µm, w = 15 µm, d = 8 µm) [5].

and a contribution due to the stress generated by the lattice mismatch

at the interface. When its easy axis is perpendicular to the wires, and

for sufficiently wide wires, the remanent magnetization can be stabilized

perpendicular to the wires. The magnetization switching processes that

spring out from the competing magnetostatic and anisotropy energy terms

are also mediated by the formation of multidomain structure. The Object

Oriented MicroMagnetic Framework (OOMF) simulations of these reversal

processes are represented in figure 3.4 [6].

In this chapter the magnetization reversal processes of Fe nanowires

lithographed in highly epitaxial Au(001)/Fe(001)/Mg(001) thin films by

using two different techniques, electron and focused ion beam lithographies

(EBL and FIB, respectively), are going to be analysed. For this
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(c)

T=4.2 K; w=2 µ µm T=4.2 K; w=2 m

T=4.2 K; w=250 nm

(a) (b)

Figure 3.4: Magnetoresistance curves and OOMF simulations of the reversal
processes of Fe (110) epitaxial nanowires [6].

purpose different studies were carried out: the coercivity and the angular

dependence of the reversal processes, FMR and scanning transmission X-

ray microscopy (STXM). Special emphasis was put on the influence of the

lithography techniques on the reversal processes.

3.2 Fabrication

During this thesis three different types of lithography have been used for the

nanowire fabrication, as explained in section 2.4. All the nanowires have

been lithographed with the Fe easy magnetocrystalline axes parallel and

perpendicular to the axis of the wire, which is coincident with the Fe (010)
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direction (and MgO (010)).

First, a set of arrays were lithographed by FIB. The ion beam had an

energy of 30 kV, and its intensity depends on the size of the structure. The

nanowires made in this work were lithographed with two different currents,

1000 pA when both the width of the wires and the separation between them

are 500 nm or larger, and 300 pA when at least one of the dimensions is

smaller.

The FIB lithographed arrays cover an area of 400×450 µm2 with

wires of different widths (w) and distance between them (d). After

the lithography of the nanowires a frame 3 µm wide was lithographed

surrounding the patterned area using an intensity of 3000 pA, leaving the

nanowires isolated from the continuous thin film.

For the positive resist EBL process, photoresist 950K poly-methyl

methacrylate (PMMA) was used in ethyl-lactate at a concentration of

4%, spin coated at 300 rpm and baked at 180 oC for 20 minutes, which

provides a 200 nm thick layer of photoresist. Then, a 5 nm thick layer

of Cr was deposited, making the surface conductive so it is possible

to lithograph without charge problems. For the e-beam irradiation the

beam was accelerated at 20 kV with an intensity of 0.15 nA, irradiating a

200 µC cm−2 dose. After the irradiation a 20 s treatment with a crometch

was carried out to get rid of the Cr layer. The development was performed

for 20 s in MIBK:IPA 1:3 and 20 s in pure IPA, removing the irradiated

resist.

Once the photoresist was developed an ion beam etching (IBE) was

performed, in a base pressure of 5.5 · 10−4 mbar to avoid contamination,

with an ion beam of Ar+ accelerated at 500 V with an intensity of 64 mA

for 45 s, to sputter the part of the thin film that was not covered with

photoresist. During the IBE the thin film was tilted 66o with respect to the

ion beam to avoid the retrodeposition of the sputtered material, and it was

kept rotating at 10 rpm for a more uniform etching. After this process

the thin film was immersed in acetone for the lift-off of the remaining
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photoresist. It was rinsed in deionized water and blown with dry N2 to

finish the cleaning.

In this case the patterned area is surrounded by the thin film, the ends

of the wires are not isolated so that the thin film may have some influence in

the magnetic properties of the nanowires. With this procedure a 2×2 mm2

area of wires was obtained.

The last set of nanowires was performed by EBL with negative resist.

The thin film was spin coated with AZ nLOF 2070 (Microchemicals),

thinned down with AZ EBR solvent (Microchemicals) 2:1 at 6000 rpm,

then it was baked at 100 oC for 2 minutes, providing a 260 nm thick layer

of photoresist, and a Cr layer was growth to avoid charge problems. The

e-beam lithography was performed at 20 kV with a beam current of 18 nA,

irradiating a dose of 18 µC cm−2. After the e-beam irradiation a 20 s

treatment with a crometch was carried out to get rid of the Cr layer, and

an image reversal step, that consists of a post-exposure bake at 110 oC for

1 minute, was done to harden the irradiated resist. The development was

made with MIF726 for 30 s, rinsed in deionized water and blown with dry

N2, leaving the resist that was not irradiated.

The dry etch via IBE is performed under the same conditions as the

positive resist. For the lift-off of the resist the thin film was soaked in 1-

Methyl 2-Pyrrolidone (NMP) for 15 hours and in an ultrasound bath for 3

minutes. Finally, it was rinsed in deionized water and blown with dry N2

to finish the cleaning.

With this procedure the 2×2 mm2 patterned area remains isolated with

no iron from the thin film around it.

In table 3.1 the dimensions of the arrays made by the different

techniques are detailed: width of the nanowires (w) and distance between

them (d).
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w (nm) \d (nm) 100 200 500 1000

140 FIB EBL Neg

200 EBL Neg EBL Neg

300 EBL Neg

500 FIB EBL Neg
FIB

FIB
EBL Pos

1000 EBL Neg

Table 3.1: Dimensions of the nanowires and lithography technique used.

3.3 Structural characterization

Morphological and crystalline structural characterization of the nanowires

have been performed by AFM and SEM and reciprocal space maps,

respectively.

(a)

(c) (d)

(b)

Figure 3.5: SEM images of different nanowires arrays fabricated by FIB.

SEM experiments have been made with the e-beam of the dual beam
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FIB system after lithography. In figure 3.5 four SEM images of the

nanowires taken at different magnifications are shown: (a) large area image

evidences the continuity of the nanowires and the long range repetitive

structures; (b) Closer view to inspect the quality of the edge and trench

of the nanowires showing a few defects on them; (c) Detail of the end of

the end of the nanowires in contact with the frame to isolate them from

the continuous film; (d) Nanowires of 500 nm width and 100 nm separation

(the smallest distance between nanowires fabricated with FIB, confirming

the good resolution of the FIB and good quality of the wires.
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Figure 3.6: AFM image of w=d=500 nm nanowires array.

The arrays fabricated by EBL were observed by AFM. As an example

figure 3.6 shows the image of one of the w=d=500 nm array. Bright spots

correspond to rests of resit left after fabrication of the array. The rests were

minimized with the cleaning after the lithography, but it was not possible
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to get rid of the resist completely. A zoom image taken on the nanowires

yields a rms roughness of 0.8 nm verifying the high flatness of the wires

even upon several steps done during EBL process.
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Figure 3.7: l-scans of w = d = 200 nm nanowires (a) (1-1l) (b) (22l).

The structural characterization of the nanowire array with w = d = 200 nm

made by EBL with negative resist has been performed by measuring l-scans

and reciprocal space maps with synchrotron radiation. These experiments

have been carried out at SpLine beamline (ESRF) with the same experi-

mental conditions as those of Au/Fe/MgO (001) thin film already explained

in section 2.2.2. Figure 3.7 displays l-scan measurement for the reciprocal

space point h = 1, k = −1 taken at two different incidence angles. This

l-scan (h = 1, k = −1) shows the characteristic signal from Fe (l = 1.5) and

Au (l = 1.1 and l = 3.3) similarly to the results obtained for the continuous

Au/Fe/MgO (001) thin film. It turns out that the array fabrication does

not destroy the good crystallinity present in the epitaxial thin film, even for

the extreme case of nanowires with very little amount of material due to the

small values of width (200 nm) and separation (200 nm) of this structures.
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Figure 3.8: Fe peak of the l-scan (1-1l) with four different incident angles.

Figure 3.8 a detailed l-scan of the Fe peak for h = 1, k = −1

measured at four different incident angles, µ = 0.2, 0.4, 0.6 and 0.8o.

In the case of surface sensitive conditions reached at the incidence angle

µ = 0.2o, there exists a second contribution to the main single peak

observed at higher incidence angles. This result was clearly obtained for

the continuous eptaxial thin film, although it is not so well resolved in the

present case. This second peak was discussed in terms of the contraction of

the perpendicular lattice parameter in the atomic planes of the near region

at the Fe/Au interface. This fact also confirms the apparent negligible

modification of the crystalline structure upon lithography.

To study in detail any possible disorder induced by lithography

processes in the central region f the Fe layer, RSMs with “bulk” sensitivity

are measured. This experiments might be more sensitive to crystalline

changes due to the large amount of material which maintains a relaxed

structure with lattice constant values of the bulk Fe.

Figure 3.9 displays RSM of Fe (101), Fe (112) and MgO (111) taken at
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Figure 3.9: Reciprocal space maps of different families of planes: (a) Fe
(101) and (b) Fe (112) in logarithmic scale; and (c) MgO (111).

µ = 1o. The comparison of these maps with those of the continuous thin

film (figure 2.19) and 2.19(b)) reveals that the epitaxial nature is preserves,

although minor disorder effects are not excluded. The Fe RSMs of the

nanowires present the same four features as the thin film. However, there

is an additional signal surrounding the most intense one, which means a

wider distribution of the Fe (101) and Fe (112) planes. This fact can be

clearly observed in figure 3.10 where nanowires and thin film Fe (101) RSM

and line-scan profiles are shown.

In summary, although some distortion of the lattice is present due

to the disorder induced during lithography, their second order effects do

not produce significant changes. Nevertheless, expected and apparent
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Figure 3.10: Reciprocal space maps of Fe (101) of the thin film and the
nanowires (w=d=200 nm). Line profiles comparison across certain position
of the RSMs.

destructive effects of the lithography might strongly modify not only the

crystalline structure on the edges of the wires but also the chemical

composition due to the oxidation of their Fe atoms exposed to air.

3.4 Magnetic characterization

3.4.1 Hysteresis behaviour

For the characterization of the hysteresis behaviour the most used technique

has been the vectorial Kerr effect, which can measure the arrays surrounded

by Fe film because it is a local technique that measures the area illuminated

by the laser. Even though the laser is focused to a spot of 300 µm

diameter, smaller than the arrays, the hysteresis loops measured for the

arrays lithographed by FIB or EBL with positive resist have some signal

from the continuous film. In the particular case of the arrays made by EBL
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with negative resist there is no contribution from the continuous film, and

these arrays have been used to study the temperature dependence of the

hysteresis with the VSM.

In this section it is presented the angular dependence of the hysteresis

behaviour as well as its dependence on the lithography technique employed.

Its evolution with the temperature of the EBL with negative resist arrays

is also presented.
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Figure 3.11: Hysteresis loop along the nanowires with w = 200 nm,
d = 500 nm and its SFD.

The coercivity of the arrays, measured with the field applied along

the long axis of the wires goes up to hundreds of Oe and presents a

broad switching field distribution (SFD), in contrast to the thin film with

coercivity around 40 Oe and a SFD of 1 Oe, approximately (the SFD of

a high remanence, square loop is basically proportional to the differential

susceptibility of its demagnetization branch [8]). Figure 3.11 shows the

hysteresis loop corresponding to an array with w = 200 nm, d = 500 nm

and the differential susceptibility, which is basically proportional to the SFD
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[8]. As can be seen, the remanence is equal to the saturation magnetization,

the coercivity is one order of magnitude higher than that of the continuous

films, 440 Oe for this particular array, and the width of the SFD is roughly

equal to half the coercivity. These features are common to all arrays.

When measuring the magnetization component perpendicular to the

axis of the wires of any of the arrays, when the magnetic field is parallel

to them, no signal was observed. This means that the magnetization is

parallel to the wires. Figure 3.11 shows that the magnetization component

parallel to the wires is saturated while the perpendicular one is null (inset).
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Figure 3.12: Coercivity of the nanowires depending on its width.

Figure 3.12 shows the evolution of the coercivity with the nominal width

of the nanowires, following a 1/w law, in agreement with previous results

[3, 4, 9–11]. It is essentially independent of the lithography technique

employed and of the interwire separation d. The coercivity of three arrays

with w = 500 nm, prepared by FIB with separation distances of 100, 500

and 1000 nm are 170, 145 and 190 Oe, respectively. These differences

can be attributed to many factors, for example slight variations of the
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real thickness of the Fe films and/or of the nominal width values of the

nanowires.

On the other hand, it is interesting to note that magnetostatic

interactions between the nanowires do not play a fundamental role in

modifying significantly the coercive force of the arrays. In fact, since the

magnetization remains parallel to the axis of the wires, magnetic poles

must be concentrated just at their ends which, added to the large interwire

separation, leads to weak dipolar fields [2].
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Figure 3.13: Coercivity versus temperature for different arrays of nanowires.

The coercivity of the different arrays made by EBL with negative resist

versus the temperature were measured by VSM. Figure 3.13 shows that

for all the arrays the coercivity decreases with the temperature. Following

the typical behaviour of the ferromagnetic materials [12, 13]. As a general

rule, if the system does not present any structural transformations with

the temperature, the relaxation time or the time that the system needs to

reach the equilibrium state decrease when the temperature increases. The

separation of the system from the equilibrium (energy barrier) depends

on its anisotropy, which decreases with increasing temperature, and the
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coercivity, considered as a measure of that separation, should also decrease

with the temperature [14].
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Figure 3.14: Comparison of the hysteresis loops along the wires fabricated
by three different lithography techniques.

Another important issue is related to the conditions of the ends of the

nanowires. Figure 3.14 shows the hysteresis loops corresponding to three

arrays with w = 500 nm fabricated using the three different techniques. The

FIB and EBL with negative resist fabricated arrays have their wire ends

isolated from the surrounding continuous film, whereas those fabricated by

EBL with positive resist are in direct contact with it. In spite of the different

conditions of their wire ends, which could lead to different nucleation

fields, all the arrays have essentially the same coercivity, remanence and

SFD. The magnetization switching of planar nanowires basically follows

a nucleation-propagation sequence: reversed nuclei generated at regions

where the energy barriers preventing the reversal present a local minimum,

usually the ends of the wires, expand along them through the displacement
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of their walls [4, 5]. If the field required for nucleation Hn is sufficiently low,

the pinning field Hp, the field necessary to overcome the wall pinning at

propagation hindrances, determines the coercivity. In the particular case of

the EBL with positive resist fabricated array the reversed magnetization is

nucleated at the continuous film at very low fields, about 20-40 Oe, before

reaching the wires, whereas its coercivity is about 160 Oe, almost equal to

the value of the other two arrays. This indicates that the magnetization

reversal of the arrays is controlled by a pinning mechanism. This also

confirmed by the angular dependence of the coercivity, which increases

with increasing angle θ between the axis of the wires and the applied field,

following the typical 1/cosθ behaviour associated to pinning up to about

θ = 60o as displayed in the inset of figure 3.15 [15].

Generally, during the FIB patterning procedure, if the dose of Ga+

exceeds a threshold value, local regions of low anisotropy and magnetization

may be generated at the lateral surfaces of the wires due to the implantation

of Ga, as explained in section 2.4.2 [16, 17]. The fact that arrays of wires of

similar dimensions display the same reversal mechanism with essentially the

same hysteresis parameters, irrespective of their fabrication route, suggests

that the imperfections generated in the lateral surfaces of the wires during

the lithography processes, after the optimization of the parameters, do not

alter their magnetic behaviour, so that the defects involved in the pinning

centres controlling the magnetization switching in all arrays are minimized.

Therefore, the ability to fabricate well controlled magnetic nanostructures

would provide not only reproducible hysteretic results but also it would

allow the proposal of model systems to be studied by means of simple

arguments as discussed next.

A different scenario appears for high values of the angle θ between

the applied field and the axis of the wires. For θ > 60o the efficiency

of the applied field to unpin a wall trapped in a pinning centre decreases

dramatically and other reversal mechanisms may become more effective.

Figure 3.16 presents the magnetization processes, for the field applied
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Figure 3.15: Angular dependence of the coercivity of a nanowires array
with w = d = 200 nm. Inset: Angular dependence of the coercivity (the
dotted line indicates 1/cosθ behaviour).

perpendicular to the axis of the wires (θ = 90o), corresponding to three

arrays, with w = 500 nm and w = 200 nm fabricated by FIB and EBL. As

can be seen, the magnetization increases linearly with the field until a high

susceptibility jump takes it to saturation at fields about 600 Oe and 1.8 kOe

for the wires 500 nm and 200 nm wide, respectively. This behaviour is

accompanied by a very little hysteresis, around the high susceptibility jump.

As in the case of the loops measured at low angles, the hysteresis parameters

measured in wires of similar widths are almost the same no matter what

fabrication technique is employed. The minor differences observed in the

two arrays of 500 nm width might be due to the different thickness of the

original films and/or to their real width being not exactly the nominal value

as discussed previously.

The inset of figure 3.16 shows the transverse component of the

magnetization, perpendicular to the applied field, corresponding to these
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loops. For large fields, when the magnetization is parallel to the field,

its transverse component is null. As the field decreases, it abruptly

switches towards the wire axis and its transverse component becomes

almost saturated. It was checked that the magnetization at remanence,

after saturation with θ = 90o, is almost parallel to the wires. As a

consequence, these arrays rule out the process that can be observed in

both polycrystalline, low anisotropy planar wires, or even in epitaxial

Fe wires with a different configuration of crystalline axes, whose uniform

magnetization breaks into a multidomain structure when the field decreases

[4–7, 10]. This is due to the relatively high anisotropy of Fe and the well

defined magnetocrystalline easy axes coincident, respectively, with the easy

and hard directions originated by the shape anisotropy in the nanowire

array.
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Figure 3.16: Hysteresis loops with the magnetic field applied perpendicular
to the nanowires. Inset: Transverse component of the magnetization
m⊥ (parallel to the axis of the wires) of the FIB fabricated sample with
w = 500 nm.
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For fields slightly out of the perpendicular, typically 75o < θ < 90o,

the loops present an irreversible low susceptibility region in which the

magnetization branch (red) crosses above the demagnetization one (blue)

and then drops back producing a characteristic hump. This occurs at about

500 Oe and 1.35 kOe for wires 500 nm and 200 nm wide, respectively, when

the field is applied 7o out of the perpendicular (θ = 83o), as shown in

figure 3.17. This hump comes along with a change of sign in the transverse

magnetization component (see inset in figure 3.17). After this hump the

widest wires reach saturation by means of a small irreversible jump whereas

the narrowest ones reach it through a reversible low susceptibility slope.
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Figure 3.17: Hysteresis loops with the magnetic field applied 83o to the
nanowires axis. Inset: Transverse component of the magnetization of the
FIB array with w = 500 nm.

All experimental results evidences that the magnetization processes at

high angles involve almost uniform magnetization configurations, which

would allow the use of single spin approach to study the trade off between

the Zeeman, magnetocrystalline and magnetostatic energy contributions.
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Figure 3.18: Sketch of the angles used for the hysteresis calculations.

This assumption is not fully realistic since the wires are neither perfect

rectangular prisms nor ellipsoids and, consequently, non-uniform dipolar

fields will be generated inside the wires which, in turn, will lead to non-

strictly uniform magnetization configurations. In spite of this, a single

spin approach accounts not only qualitative but quantitatively for the

main features of the reversal process. Considering that in the case of

planar nanowires with a large width-to-thickness ratio the magnetization

is mainly confined within the plane of the sample and that, superimposed

to the (biaxial) anisotropy energy associated with the (100) and (010) Fe

axes, there is an energy term due to the magnetostatic energy. This term

presents a minimum when the magnetization is parallel to the wire axis,

and maximum when it is perpendicular. Thus, the magnetocrystalline

anisotropy energy (MAE) EK, when restricted to the XY plane, can be

written as

EK = K1α
2
1α

2
2 = K1sen2ϕ−K1sen4ϕ (3.1)

where K1 is the first order anisotropy constant of Fe, α1 and α2 are,

respectively, the director cosines of the magnetization with respect to the

x (perpendicular to the wire) and y (parallel to the wire) axes, and ϕ is

the angle between the magnetization and the x axis (see sketch in figure

3.18). The simplest possible expression compatible with an energy term

EU having axial symmetry and with a minimum when the magnetization
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is parallel to the wire axis y is

EU = −Dsen2ϕ (3.2)

where D is a positive constant to be calculated by means of the usual shape

anisotropy expression,

D =
1

2
(Nperp −Npar)M

2
s (3.3)

where Npar and Nperp are the demagnetizing factors along the in-plane

longitudinal and transverse directions, respectively. By adding the Zeeman

energy, the total energy ET expressed in reduced form ER = ET/2K1 is

ER = Asen2ϕ− 1

2
sen4ϕ− hcos2 (ϕ− δ) (3.4)

with

A =
K1 −D

2K1
(3.5)

and where δ is the angle between the field and the x axis, h = H/HK is

the reduced applied field, (HK = 2K1/Ms is the anisotropy field and Ms

the saturation magnetization). Table 3.2 shows the calculated values of D

and A for planar wires 100 µm long, 25 nm thick and with widths varying

between 140 and 1000 nm, using the Ms and K1 values of Fe (2.15 T and

45 kJ m−3, respectively) and demagnetizing factors calculated from [18].

As can be seen, the uniaxial anisotropy constant D is well above that of the

Fe MAE, increasing with decreasing width from 75 to 337 kJ m−3, whereas

A varies from -0.33 to -3.24, approximately. By minimizing expression 3.4

the angle ϕ and the magnetization components, both parallel and transverse

to the applied field, can be calculated.

The hysteresis loops calculated for wires with w = 500 nm and

w = 200 nm with the field perpendicular to the wires are presented in

figure 3.19. They show all the features experimentally observed in figure

3.16: a central constant susceptibility region due to a slow magnetization
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w (nm) D (kJ m−3) A

140 337 -3.24
200 261 -2.40
300 194 -1.65
500 131 -0.95
1000 75 -0.33

Table 3.2: Calculated values of D and A depending of the width of the
nanowire.

rotation towards the field followed by an irreversible jump up to saturation;

the transverse component (inset in figure 3.16) decreases very slowly with

increasing applied field, evidencing that the magnetization remains almost

parallel to the axis of the wires, until it abruptly switches to zero when

the magnetization becomes perpendicular to the wires. Most remarkable,

the calculated fields corresponding to the irreversible jumps for the wires

with w = 500 nm and w = 200 nm are in very good agreement with the

experimentally measured values, as evidenced by comparing figures 3.16

and 3.19. Figure 3.20 shows the loops calculated with the field applied at

δ = 7o for the wires with w = 500 nm and w = 200 nm, which exhibit

the characteristic magnetization branch crossover and hump at fields,

respectively, about 700 Oe and 1.7 kOe, which are reasonably close to

those experimentally measured (500 Oe and 1.35 kOe, respectively). This

difference between the experimental and calculated values might be due to

many factors, for example, the misalignment of the Fe crystalline axes with

the axes of the wires or the real width of the wires being different from the

nominal value. It is also important to note that the calculated transverse

magnetization loops (insets of the figures) reproduces the experimental

results, including the switching when the hump takes place.

Figure 3.21 exhibits the high field region of the loops and polar

energy diagrams calculated when the field is applied at a small angle
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Figure 3.19: Calculated hysteresis loops with the magnetic field applied per-
pendicular to the nanowires. Inset: Transverse magnetization component
calculated for w = 500 nm wires.

from the perpendicular wires axis (δ = 3o). For the narrowest array,

w = 200 nm, there exist two minima A and B separated by an energy

barrier. The A minimum disappears with increasing field and the

magnetization switches from A to B. This jump produces a decrease in

the parallel-to-the-field component of the magnetization and a change of

sign in the transverse component, as experimentally observed (figure 3.17).

After it the magnetization rotates reversible to saturation. However, for

wider arrays, w = 500 nm, a third minimum C appears at higher fields

and a second irreversible jump from B to C takes the magnetization near

saturation, which again agrees with the experimentally observed behaviour.

The return path implies the jump back to C at lower fields, although the

low value of the energy barrier between B and C may again ease both B to

C and return jumps thus reducing the hysteresis present in the high field

region.
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Figure 3.20: Calculated hysteresis loops with the magnetic field applied
7o out of the perpendicular. Inset: Transverse magnetization component
calculated for w = 500 nm wires.

An important issue regarding our single spin approximation is related

to the biaxial and uniaxial anisotropy constant values employed. The value

used for the biaxial anisotropy was the bulk Fe (K1 = 45 kJ m−3) and

the demagnetizing factors used were the analytically calculated from [18]

to obtain the uniaxial constant, which results in a good qualitative and

quantitatively agreement with the experimental behaviour. Taking this

into account, other eventual sources of anisotropy that can be present in

the arrays seem to make up a minor contribution in the magnetization

processes. This contrasts with the case of very narrow wires [19], in

which the interfacial region between the Fe wires and the capping layer

gives rise to a very high anisotropy energy contribution that overcomes

all others; the total anisotropy and the coercivity of these wires can be

tuned, to a certain extent, by using different capping layer materials.

Another case in which the interfacial effects are important is that of
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Figure 3.21: High field region of the calculated hysteresis loops for the
magnetic field applied 3o out of the perpendicular in wires with w = 200
and 500 nm and energy landscapes corresponding to uniform magnetization
configurations and different values of the reduced field.

epitaxial nanowires lithographed on Fe(110)/GaAs(110) films [6], in which

the combination of the stresses generated by the two-fold symmetry lattice

and the mismatch at the wires-substrate interface originates an extra

uniaxial anisotropy contribution that, in some cases, allows stabilize the

remanent magnetization perpendicular to the wires. On the contrary, the

Fe and MgO lattices at the interface of the Fe(001)[100]//MgO(001)[110]

films from which our wires were fabricated posses four-fold symmetry and,

a priori, any eventual anisotropy contribution due to the lattice mismatch

would probably be biaxial. The fact that the calculations based just

on the Fe MAE and magnetostatic energy contributions account for the

magnetization processes, quantitative and qualitatively, clearly rules out

any other sources of anisotropy.
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3.4.2 Ferromagnetic Resonance

Section 2.3.3 describes the angular dependence of the FMR measurements

for the Au/Fe/MgO films used to fabricate the arrays of nanowires. When

the magnetic field is parallel to the easy magnetocrystalline directions no

signal is observed because even at zero applied field the resonance frequency

is above 9.8 GHz; on the contrary, four resonance peaks are observed when

the field is applied along the magnetocrystalline hard directions. After

the fabrication of the nanowires (by EBL with negative resist to produce

isolated wires with no surrounding continuous film) additional resonance

peaks appear in the 360o angular dispersion when the magnetic field is

applied near the perpendicular to the nanowires axis. Thus, the angular

dispersion of the FMR exhibit resonances when the field is applied either

along the Fe 〈110〉 and Fe (100) directions. As an example, the angular

dependence for an array with w = d = 200 nm is presented in figure 3.22.

Comparing it with figure 2.41, it presents the resonance peaks due to the

magnetocrystalline anisotropy with 90o fourfold periodicity, at the same

field value as the thin film, whereas there is an extra signal due to the

shape anisotropy of the nanowires at about 135o and 315o, corresponding

to the field applied perpendicular to the axis of the wires, at higher field

values for this particular array. The spectra around 135o and 315o have

a clear resonance region at fields between 125 and 225 mT and another

resonance almost superimposed to the paramagnetic signal of the substrate,

near 400 mT. In fact, all studied arrays, for different aspect ratio, exhibit

a similar structure of resonance peaks when the field is applied near the

perpendicular to the wires: a single, weak peak at relatively high fields

(between 350 and 550 mT, approximately, depending on the sample) and

a region comprising several peaks with complex structure at much lower

fields. This is shown in figures 3.27-3.32.

The analysis will start with the resonances occurring at field values

above 350 mT. Table 3.3 summarizes the main features and parameters: a

single peak appearing at angles around a central position with an dispersion
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Figure 3.22: FMR spectra angular dependence for nanowires of
w = d = 200 nm with in-plane applied magnetic field.

width of 7o, approximately, for all samples -see figures 3.27(d) to 3.30(d) and

3.32(d)- and a resonance field of a few hundred mT that is weakly dependent

on the wire width and that increases with increasing interwire distance (the

peak corresponding to the sample with w = 500 nm, d = 200 nm overlaps

with the paramagnetic signal from the substrate and it has been assigned to

a nominal value of 350 mT in table 3.3). It has to be considered that upon

applying fields of hundreds of mT, perpendicular to the wires, the samples

are fully saturated with essentially homogeneous magnetization. Thus the

resonance fields corresponding to these wires can be calculated by different

models, based on the saturated mode, that take into account the anisotropy

generated by the shape of the wires. These models [20] yield values that

decrease sharply with increasing width, from about 400 mT for the wires

with w = 140 nm to less than 100 mT for w = 1000 nm. In contrast to

this, the experimental variation by the high field resonances is very weak,

as shown in figure 3.23.
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d (nm) w (nm) Hr (mT) Angular width (o)

200
200 395 7
500 350 -

500

140 536 7
200 521 8
300 471 8
1000 487 7

Table 3.3: Resonance field and angular width of the resonances occurring
at high fields.

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 1 1 0 0
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0
5 0 0
5 5 0

 C a l c u l a t e d
 M e a s u r e d  ( d = 5 0 0  n m )
 M e a s u r e d  ( d = 2 0 0  n m )

H r (m
T)

w  ( n m )

Figure 3.23: Experimental and calculated values of the resonance field (only
high field resonances) as function of the width of the wires.
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An important issue to understand the origin of these resonances comes

from the total losses measured for each array. Figures 3.24 and 3.25

show the peaks corresponding just to the four arrays with wire separation

d = 500 nm and the losses associated with them, respectively. Since the

area of all arrays is the same (2×2 mm2), the total Fe volume in an array is

proportional to the percentage of its surface covered with Fe (from now on,

Fe coverage), which scales as w/(w + d). The Fe coverage of the arrays is

shown in table 3.4 and, surprisingly, the losses of the arrays with w = 140

and 200 nm are much larger than those of the arrays with w = 300 and

1000 nm, i.e., the losses are larger in the arrays with the lowest Fe content.

This result proves that these peaks are not related to a bulk dependent

property.
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Figure 3.24: High field resonance for the arrays with wire distance
d = 500 nm and field applied perpendicular to the wires.

A different point of view comes from the consideration of the density of

lateral faces existing in each array, calculated as 2/(w + d). All wires have

two lateral faces (100 µm long × 25 nm high each), the narrower the wires
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Figure 3.25: Losses corresponding to the resonances of figure 3.24.

the higher the number of lateral faces per width unit (lateral dimension) of

the array. The arrays with w = 140 and 200 nm present the highest density

of lateral faces and also the highest losses and peak intensities. This, in

addition to the weak dependence of the resonance fields on the aspect ratio

of the wires, indicates that these high field resonances are probably linked

to local properties associated with the lateral surfaces of the wires.

The resonance frequency is essentially a measure of the second derivative

of the free energy with respect to the angle around the local energy

minimum (the curvature of the free energy or stiffness due to the restoring

torque). When the magnetization is already oriented along an anisotropy

energy minimum, the applied field required to reach the desired stiffness

(corresponding to 9.8 GHz in this case) decreases. It might happen that

even with null applied field the curvature around the minimum is above the

required value and then no resonance peaks are observed. This is the case

of the spectra measured along the easy directions in the continuous films

(see section 2.3.3). On the contrary, when the magnetization is oriented
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w (nm)
Lateral Fe Total

density (nm−1) coverage % losses (arb.units)

140 3.12 · 10−3 22 2.03 · 106

200 2.86 · 10−3 28 1.5 · 106

300 2.50 · 10−3 37 4.3 · 106

1000 1.33 · 10−3 67 8.8 · 106

w (nm)
Peak Peak Peak

position (mT) intensity (arb.units) width (mT)

140 525 3.3 · 104 52
200 506 2.2 · 104 59
300 461 8.8 · 103 44
1000 473 1..4 · 104 57

Table 3.4: Parameters of the resonance peaks shown in figures 3.24 and
3.25.

along an anisotropy energy maximum the applied field required to reach the

desired stiffness increases. The high resonance field values measured from

the spectra clearly show that the free energy associated with the lateral

surfaces of the wires presents a sharp maximum when the magnetization is

perpendicular to these surfaces. The equivalent anisotropy field associated

with this maximum can be estimated from the usual resonance expressions

[20, 21], yielding values about 350-450 mT, well above the anisotropy field

of Fe (52 mT).

Another issue regarding these high field resonances is the decrease of

the resonance field values for the two samples with interwire separation

d = 200 nm (see Table 3.3). It has to be considered that upon applying

fields of hundreds of mT, perpendicular to the wires, the samples are fully

saturated with essentially homogeneous magnetization. This suggests that

the dipolar interactions between neighbouring wires play an important role

in the determination of this resonance field. This can be interpreted in a

qualitatively way by means of a simple model.

When the wires are well separated and saturated along the perpendicular
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Figure 3.26: Poles distributions for (a) well separated and (b) close wires.

(figure 3.26(a)), the dipolar field Hdip opposing the applied field is the de-

magnetizing field due to the poles generated just at the edges of each wire.

When the wires are close enough (figure 3.26(b)) a certain degree of pole in-

termixing takes place and the dipolar fields decrease. Since a given internal

field is required to match the resonance frequency of 9.8 GHz, the higher

the (demagnetizing) dipolar fields the higher the applied field needed. As a

consequence, higher resonance fields are expected in situation (a) compared

to (b).

A very different scenario appears at lower resonance fields, below

300 mT. A complex structure with multiple overlapping peaks can be

observed when the field is applied around the perpendicular to the wires,

as shown in figures 3.27 to 3.30 and 3.32, (a) and (c), and in figure 3.31 (a)

and (b). The black dots in these figures mark the position of the resonance

peaks obtained by means of a fitting procedure explained in section 2.3.3

based on linear combination of Dyson curves. As previously mentioned, the

perpendicular to the wires corresponds to 135o and 315o in our experimental

set up and the low field resonance peaks are confined in an angular region
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around these values whose width increases sharply with increasing wire

width, as presented in figure 3.33, from about 5o to 90o. In the specific

cases of the films with w = 500 and 1000 nm this angular region overlaps

with the region around to the (110) and (11̄0) axis, the magnetocrystalline

hard axes, in which the resonances measured in the continuous films are

visible (see figures 3.31(b) and 3.32(c)).
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Figure 3.27: FMR measurements for w = 140 nm, d = 500 nm (a) low and
(b) high field angular dependence, (c) and (d) the 2D plot of the intensity
of (a) and (b) respectively.

Figure 3.34 shows the spectra of all arrays when the field is applied at

315o, perpendicular to the wires. This figure confirms that the number and
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Figure 3.28: FMR measurements for w = 200 nm, d = 200 nm (a) low and
(b) high field angular dependence, (c) and (d) the 2D plot of the intensity
of (a) and (b) respectively.
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Figure 3.29: FMR measurements for w = 200 nm, d = 500 nm (a) low and
(b) high field angular dependence, (c) and (d) the 2D plot of the intensity
of (a) and (b) respectively.
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Figure 3.30: FMR measurements for w = 300 nm, d = 500 nm (a) low and
(b) high field angular dependence, (c) and (d) the 2D plot of the intensity
of (a) and (b) respectively.
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Figure 3.31: FMR measurements for w = 500 nm, d = 200 nm (a) low field
angular dependence, and (b) the 2D plot of the intensity of (a).

intensity of the resonances, as well as the field range in which they occur,

increase with increasing wire width. The dotted line sketched over each

spectrum indicates the field required to saturate the sample, which varies

from about 60 mT, for the widest wires, to more than 200 mT for the wires

with w = 140 nm. It is then obvious that just the resonance peaks occurring

at the highest field for each spectrum (marked with an arrow in the figure)

can be assigned to the saturated mode, in which the magnetization vector

is essentially parallel to the applied field. The rest of the peaks probably

correspond to unsaturated modes, where the magnetization vector is not

parallel to the applied field.

To properly locate the resonance peaks, all FMR spectra were fitted

using Dyson curves (equation 2.10), explained in section 2.3.3. The values

of the resonance fields for all peaks in the spectra were obtained from these

fits and, as said above, inserted as black dots in the 2D plots of figures 3.27

to 3.32.

Figure 3.35 shows the resonance field of the saturated mode for all

arrays. In contrast with the high field mode, the resonance field values
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Figure 3.32: FMR measurements for w = 1000 nm, d = 500 nm (a) low and
(b) high field angular dependence, (c) and (d) the 2D plot of the intensity
of (a) and (b) respectively.
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Figure 3.33: Dependence of the angular width with the nanowire width.

decrease sharply with increasing wire width. It is also important to note

that the resonance field seems not to be modified by the wire separation d,

which implies that the dipolar fields do not modify the energy landscape

around the minima linked to the saturated mode of the arrays. The

theoretical values of the resonance fields were calculated using the motion

equation 2.6, where the effective field used is the sum of the applied, the

dipolar and the anisotropy fields. In this calculations the demagnetization

factors given by Aharoni [18] were used. Figure 3.36 shows the comparison

between the calculated and measured resonance field, both exhibiting the

same behaviour but the measured values always are smaller than the

calculated ones. This means that the effective anisotropy is smaller than the

theoretical value, which might be due to the lattice distortion originated

by the lithography, as discussed in section 3.3. This distortion is more

significant for the narrowest wires, in which, indeed, the largest difference

is obtained.

The angular width of the low field resonance region increases with the
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Figure 3.34: Spectra corresponding to the low field region for all arrays and
field applied perpendicular to the wires. The arrows mark the saturated
mode resonance for each sample.

wire width (figure 3.33), as previously mentioned. It can be seen that

for the nanowires of w = 1000 nm the resonance region centered at the

energy maximum of the shape anisotropy has an angular width over 90o,

superimposed to that of the magnetocrystalline anisotropy. The number of

modes at low fields also increases with the width of the wires: when the

magnetic field is perpendicular to the wires the arrays with w = 140 nm

and w = 200 nm have three resonances, those with w = 300 nm present

four, whereas those with w = 500 nm and w = 1000 nm present five.

All the resonances occurring at fields below the saturation mode are

due to unsaturated modes, i.e. oscillations when the magnetization vector

is not parallel to the applied field. The analysis of the magnetization

processes for fields applied near the perpendicular to the wires (section

3.4.1) have revealed the existence of several energy minima associated with

the irreversible jumps at fields slightly below the saturation value, such

as those shown in figure 3.21. It is quite likely that the peaks measured
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Figure 3.35: Dependence of the resonance field with the nanowire width.

with the applied field close to the perpendicular to the wires and at values

slightly below that of saturation correspond to magnetization oscillations

around these minima. In addition to this, when the applied field is more

than roughly 20o-25o away from the perpendicular, the reversal mechanisms

are based on both homogeneous rotations and wall pinning. The coercive

force of the pinning sites, which is correlated with the depth of their energy

minima, increases sharply with decreasing wire width (figure 3.12) and also

as the applied field approaches the perpendicular to the wires (figure 3.15).

Domain walls in the array with w = 1000 nm are present in the range from

11 mT to 35 mT, approximately, when the applied field moves from parallel

to the wires to about 20o out of the perpendicular. The equivalent range

for the w = 500 nm arrays goes from about 15 mT to 60 mT. The large

number of low field components of the wires with w = 500 and 1000 nm

are probably linked to domain wall resonances. The high coercivity of the

narrowest wires, especially for applied fields at large angles with respect to

their axis, are indicative of the deep energy minima linked to their pinning
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Figure 3.36: Comparison of the calculated and measured resonance fields.

sites. The lack of eventual resonances linked to them can be tentatively

attributed to the fact that, as in the case of the resonances along the easy

axes, the corresponding frequency is above that of the experimental set up

(9.8 GHz) even at null applied field.

Some other FMR works had been done with magnetic nanowires. Two

examples are references [6, 22], but they do not have the same contribution

due to the uniaxial anisotropy of the wires. Guslienko et al. used permalloy

wires, and the calculations [23] were made neglecting all the anisotropies

of the thin film. In the case of this thesis, it is not possible because of

the large biaxial magnetocrystalline anisotropy of the Fe, contrary to that

of permalloy, small and isotropic. They have spin wave excitation when

the field is applied perpendicular to the wires out of plane, with very high

resonance fields, of about 1140 mT.

The FMR system used in this thesis can applied a maximum field of

1500 mT. Arrays were measured in out-of-plane geometry, and no signal

was obtained. Perhaps the magnetic field applied was not large enough to
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excite the spin waves in the singlecrystalline Au/Fe/MgO (001). Figure

3.37 represents the FMR angular dependence of the wires (w = 140 nm,

d = 500 nm) measured with the film rotated 90o which respect to the in-

plane measurements. 0o represents the spectra with the magnetic field

applied perpendicular to the film (out-of-plane). 90o and 270o represent the

spectrum with the magnetic filed in-plane perpendicular to the wires, which

are equivalent to the in-plane previous ones when the field is perpendicular

to the wires. The only difference is that in this case the microwave is

perpendicular to the film and the substrate, so that the paramagnetic MgO

signal is smaller in relation to the ferromagnetic one.
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Figure 3.37: Angular dependence of FMR measurements out of plane for
w = 140 nm, d = 500 nm.

The second example was done by Hassel et al. with wires made of

singlecrystalline iron, but with the long axis of the wires parallel to the hard

axis of the film. They observed an extra resonance peak in the continuous

film which is only present at the rim of the film, but not when the field is

perpendicular to the wires as the case presented here.



136 Chapter 3. Nanowires

3.4.3 Scanning Transmission X-ray Microscopy

Scanning Transmission X-ray Microscopy (STXM) experiments were

performed to visualize in-situ the reversal mechanism of nanowires with

spatial resolution in the nanometer range. STXM measurements were

carried in collaboration with Prof. Tolek Tyliszczak at beamline 11.0.2

in the Advanced Light Source (ALS) of the Lawrence Berkeley National

Laboratory (LBNL) [24, 25]. This beamline consists of a scanning

microscope with a focusing system based on Fresnel zone plates, with a

resolution about 30-40 nm, determined by spot size of the beam. A photon-

counting detector behind the sample records the intensity of the transmitted

radiation, generating an image pixel by pixel during the scan. The magnetic

signal is obtained by switching the circular polarization of the incoming

light from right to left and subtracting the corresponding images. X-ray

magnetic circular dichroism is a well established technique which provides

magnetic contrast with element sensitivity. Absorption change appears

when the photon energy is scanned through the absorption edge of the

inner core levels of the element whose magnetization is analysed. In the

particular case of the samples studied the energy was tuned to the Fe 2p3/2

and 2p1/2 levels which correspond to L3 and L2 absorption edges.

The STXM is an instrument working in transmission mode, so that a

new set of samples was fabricated on very thin membranes, transparent to

the X-ray beam. Au/Fe films were grown onto silicon nitride membranes

from Silson Ltd, 200 nm thick, and with a lateral size of 2 mm. These

films were grown with the same conditions as the Au/Fe/MgO (001) films

described in section 2.1. The main difference with respect to the Fe

deposited onto MgO is that, on these Si3N membranes, the Fe do grows

with nanocrystalline structure. After the thin film growth the samples

were lithographed with FIB with an intensity of 300 pA. Thus, the wires

fabricated have no competition between the shape anisotropy of the wires

and that due to the overall magnetocrystalline anisotropy. However, they

can be used to visualize the domain propagation along the wires when the



3.4 Magnetic characterization 137

field is applied parallel to them.

H=65 Oe H=69 Oe H=77 Oe

H=96 Oe H=116 Oe H=135 Oe

H=150 Oe H=160 Oe H=180 Oe

Figure 3.38: Sequence of STXM images of the nanowires with w = 300 nm,
d = 100 nm varying the magnetic field from -300 Oe to 300 Oe applied
parallel to them.

Figure 3.38 represents a set images of the nanowires array with

w = 300 nm, d = 100 nm, measured at a photon energy of 707.9 eV, (Fe L3

edge). These images were taken by sweeping the magnetic field along the

wires from -300 Oe to 300 Oe. To enhance the contrast of the magnetization

changes each image is divided by the previous one, so that they display

local events of magnetization changes between consecutive images. All the

previous images with some changes are added, which therefore, contain

the total magnetization reversal processes taking place in the nanowires.

It can be clearly seen in the first image (H = 65 Oe)the start of the

reversal process occurring in single wire. Consecutive stages of domain

wall propagation in this wire are visualized for fields H = 69, 77 and 96 Oe.

This propagation stops at some imperfections of the wires edges acting as

pinning centers, probably produced during the lithography process.

From H = 116 Oe there exists the simultaneous switching of several

nanowires, some of which reverse completely in a single event and others

propagate in steps due to the presence of pinning centers. This result

evidences the existence of the switching field shown in figure 3.11 with
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respect to the very narrow disribution of the continuous film.

Figure 3.39: STXM image of the nanowires with w = 300 nm, d = 100 nm
saturated (H = 300 Oe).

Figure 3.39 displays the STXM images of nanowires with w = 300 nm,

d = 100 nm under magnetic field saturation (H = 300 Oe). In this

case, all the wires present uniform contrast a a consequence of the

complete alignment of magnetization along their main axis. Under this

saturation conditions STXM provides complementary information not only

on the magnetization but also on the morphology of the nanowires.

This combination allows to correlate morphological features with reversal

mechanisms at nanometer scale.
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F. Cebollada and M. P. Morales, “Magnetic behaviour and percolation
in mechanically alloyed Fe-SiO2 granular solids” Journal of Magnetism
and Magnetic Materials 221 (1-2) 207–214 (2000).

[9] A. Fert and L. Piraux, “Magnetic nanowires” Journal of Magnetism
and Magnetic Materials 200 (1-3) 338–358 (1999).



140 Chapter 3. Nanowires

[10] B. Hausmanns, T. P. Krome, G. Dumpich, E. F. Wassermann,
D. Hinzke, U. Nowak and K. D. Usadel, “Magnetization reversal
process in thin Co nanowires” Journal of Magnetism and Magnetic
Materials 240 (1-3) 297–300 (2002).

[11] M. Brands, B. Leven and G. Dumpich, “Influence of thickness and cap
layer on the switching behavior of single Co nanowires” Journal of
Applied Physics 97 (11) 114311 (2005).

[12] O. Benda and V. Ac, “New approach to experimental investigation of
coercivity temperature dependence” IEEE Transactions on Magnetics
3 (3) 518 – 521 (1967).

[13] X.-J. Xu, Q.-L. Ye and G.-X. Ye, “Temperature dependence of
coercivity behavior in iron films on silicone oil surfaces” Physics
Letters A 361 (4-5) 429–433 (2007).

[14] A. Hernando and J. M. Rojo, F́ısica de los materiales magnéticos.
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4.1 Introduction

The aim of the present chapter is to obtain information about the

relationships between the extrinsic properties of the antidots and the

nature and characteristics of their magnetization reversal processes. An

antidot is a non-magnetic region, a hole, defined in an otherwise continuous

magnetic film. Highly regular antidot arrays with antidot sizes and

separations ranging from a few tens of nanometers up to the microns

range are candidate materials to implement magnetic sensors [1]. Different

lithographies, including those using X-rays, ions and electrons [2–4] as well

as anodic aluminium oxide membranes [5], have been used to produce

arrays of nanomotifs whose parameters were chosen aiming at different

hysteretic behaviours. The basic idea underlying the implementation of

antidot arrays is that related to the occurrence of spatial discontinuities

of the magnetization at the surfaces limiting the antidots. Those

discontinuities have associated magnetic poles originating an “internal

shape” effective magnetic anisotropy that can overcome by up to two orders

of magnitude that measurable in transition metal, continuous films of the

same composition. Importantly, the “internal shape” effective anisotropy

can be conveniently varied trough the modifications of the parameters

defining the geometry of the array which opens a way to vary its hysteretic

mechanisms and parameters. Previous results in this sense are the large

coercivity enhancement originated by the patterning into antidot arrays

[1, 4, 6, 7] and the observation of different effective magnetic anisotropy

symmetries for different symmetry arrays: square [7, 8] and hexagonal [8, 9]

arrays are linked to two-fold and three-fold effective anisotropies.

One of the main problems raised by the patterned films is that related

to the understanding of their demagnetization processes and, especially,

the relationship between those processes and the array geometry and

dimensions. Due to the dipolar energy minimizing structures at the

antidot surfaces, the films can exhibit significant spatial inhomogeneities

in the magnetic moment distribution which can largely influence the global
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behaviour of the system and make difficult the description in simple terms

of the magnetization reversal.

Two extreme regimes can be distinguished regarding the relationship

between the spatial density of antidots and the array magnetic behaviour:

1. Diluted: the antidots are far enough to be considered isolated and

do not appreciably alter the magnetic anisotropy [10]. In this case

the antidots act as pinning centrers for the domain walls propagating

through the array.

2. Highly concentrated: the antidots are close enough that the

magnetization structures that are created by the antidot surface

occupy the antidot region and create a highly inhomogeneous domain

structure [5, 6, 11–14]. In this regime the magnetic anisotropy

is dominated by the induced anisotropy resulting from the spatial

preference of the created structure.

The length of the magnetic structures created around the antidots is

determined by the exchange length in the considered material. Therefore,

in de diluted regime the separation between antidots is several times lager

than this length.

4.2 Fabrication

The antidots have been lithographed onto the singlecrystalline Fe thin films

by means of FIB and EBL with positive resist, as described in section 3.2.

The FIB lithography was performed with an intensity of 100 pA, and each

array was surrounded by a frame lithographed with an intensity of 3000 pA.

For the EBL PMMA was deposited and irradiated using a voltage of 20 kV

and an intensity of 0.034 nA, with a dose of 200 µC cm−2. In these thin

films the IBE was performed under the same conditions of the nanowires

for 105 s.
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Figure 4.1: Scheme of the antidots array.

With these two techniques antidots arrays with different characteristic

parameters were lithographed. Figure 4.1 represents an sketch of an

antidot array showing the main parameters, the antidots diameter, D,

and separation between their edges, λ, as well as the orientation of the

crystalline axes. The parameter parameter a, represented in this figure, is

the separation between the edges of the antidots along the diagonal of the

array and is given by the equation a = (D + λ)
√

2−D.

D (nm) \λ (nm) 200 300 400 500 750 1000 2000

200 EBL

300 EBL

400 EBL EBL EBL

500 FIB2

750 EBL

1000
FIB1

FIB2
EBL

Table 4.1: Dimensions of the antidots and lithography technique used.

Just three Fe thin films were used to fabricate all the arrays, table 4.1
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shows the dimensions of the arrays and the thin film in which they were

lithographed. All the EBL antidots were fabricated on the same thin film

whereas the FIB arrays were made in two different thin films, named FIB1

and FIB2 in the table.

4.3 Structural characterization

The structure of the antidots was characterized by microscopy techniques:

SEM and AFM. Other techniques such as the reciprocal space maps can not

be performed in these arrays because they are surrounded by the continuous

thin film, whose signal is larger than the one from the array. Only local

techniques can be used with the antidots.

(a) (b)

Figure 4.2: SEM pictures of a (a) large area and (b) detail of an antidot
array with D = 500 nm, λ = 500 nm.

The microscopy pictures are shown in figures 4.2 and 4.3. The SEM

pictures show the good control of the shape and dimensions of the arrays.

The AFM images are useful to measure the rms roughness of the area

between antidots and to check if it is damaged by the lithography. After

the lithography the rms roughness increases, compared to the thin film
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roughness (see Fig. 2.23), from 0.2 to 0.4 nm. Although the lithography

damages slightly the surface, it can be still considered a very flat surface.
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Figure 4.3: AFM image of the antidots array with D = λ = 500 nm, with
a profile of a row of antidots and a zoom of the area without antidots. The
rms roughness calculation in that area is also shown.

4.4 Magnetic characterization

4.4.1 Hysteresis behaviour

The purpose of this work is to continue the study of the antidots already

started [1, 4, 6] in singlecrystalline Fe films with the Fe (001) axes parallel

to the diagonal of the array lattice. The choice of the easy axes orientation

is meant to enhance the magnetocrystalline anisotropy through effective
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anisotropy axes parallel to the magnetocrystalline ones, as shown in figure

4.1. Just one array, with D = λ = 1000 nm, was lithographed rotated 45o,

with the Fe easy axes along the rows and columns, instead of the diagonal,

in the thin film called FIB1 in table 4.1.

The separations of the antidots that are going to be studied in this

chapter are not large enough to be in the diluted regime but still allow the

propagating domain walls to be fully accommodated into the inter-antidot

region, so they are neither in the highly concentrated regime. The antidots

arrays are in the so-called intermediate concentrated regime.

The hysteresis of these arrays has been characterized by means of Kerr

Effect in the longitudinal configuration. All the arrays are surrounded by

Fe thin film, so the hysteresis loops measured by Kerr have contribution of

the thin film added to the antidots one.
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Figure 4.4: Hysteresis loops of the antidots D = 1000 nm, λ = 2000 nm
lithographed with FIB with the field applied 15o with the hard axes.

This work has been focused in the differences of the hysteresis

parameters along the easy and the hard axes of array, because the angular



4.4 Magnetic characterization 151

dependence had been measured and simulated previously [15]. Only one

measurement was done out of these two axes to test if it is consistent

with the previous results. This measurement was done for the array with

D = 1000 nm, λ = 2000 nm, 15o out of the hard axes. Figure 4.4 shows the

comparison between the thin film and the antidots hysteresis loops. The

black loop represents the hysteresis loop with the laser spot centred inside

the antidots array, although part of it reaches the continuous film, so the

hysteresis loop has a contribution from the thin film; the red one represents

the loop with the spot centred between the antidots and thin film; finally,

the blue one is the thin film loop. From these three loops it is clear that

there is an extra switching field due to the antidots, Hs1a , higher than the

thin film one, Hs1, represented in the angular dependence of the thin film

(section 2.3.1). The antidots also increase the second switching field, Hs2,

of the thin film to Hs2a .

a

a

a

a

Figure 4.5: Calculated and experimental angular dependence of the
switching fields of the antidot arrays with D = λ = 440 nm [15].

This result is consistent with the simulation model associated to a
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nucleation of the demagnetisation process occurring outside the array,

represented in figure 4.5. According to this model, a first (Hs1a) irreversible

process takes place when the externally nucleated domain wall reaches the

array border and triggers an additional wall that propagates inside the

array. As that domain wall traverses the different inter-antidot regions,

the average magnetization of these regions changes to the intermediate

easy-axis direction. At the point for which the domain wall has already

swept the array, the external zone is completely reversed but the average

magnetization of the array is still aligned along the intermediate easy-axis

direction and this fact creates a domain wall in the outer array region pinned

at the antidot structure. A second (Hs2a) irreversible process occurs when

that wall gets unpinned from the outer line of antidots. Consequently,

the hysteresis loops calculated out of the easy and hard axes exhibit two

irreversible jumps with a higher switching fields than those of the thin films.
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Figure 4.6: Comparison of the coercive field vs separation for all the
antidots arrays, the horizontal lines correspond to the coercivities of the
thin films before the lithography.
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Contrary to the case of the nanowires the coercivity depends on the

surrounding thin film, assuming this model where the reversal process

starts outside of the array. This is in good agreement with figure 4.6, that

represents the coercivity of all the arrays. These arrays were lithographed

in three different thin films, with different coercive fields, as said in section

4.2. It is not possible to directly compare the coercivity of the antidots

lithographed in different films, because for arrays with similar dimensions

it strongly depends on the surrounding thin film. Even though the arrays

fabricated by FIB are surrounded by a frame the coercivity depends on the

original thin film. The reversal process should start in the film in contact

with the edges, the frame does not make a difference in the reversal process

of the antidots.

λ (nm) D (nm) Hc e.a. (Oe) Hc h.a. (Oe)

200
200 108 108
400 184 149

300
300 122 109
400 137 122

Table 4.2: Variation of the coercive field with the diameter for a fixed λ

It is clear that the coercivity increases while λ decreases for all the

arrays. Taking into account that the magnetization is stabilized around the

antidots, in a region of the order of 50 nm (correlation length), to minimize

the magnetostatic energy, a decrease of the distance between the antidots

increases the percentage of these stable magnetization regions, so does the

coercivity. However, the coercivity also depends on the diameter of the

antidots, it increases with the antidots diameter for a given separation, as

shown in table 4.2, because the percentage of the stable magnetization area

also increases.

One parameter to compare all the arrays could be the increment of

the coercivity with respect to that of the thin film. Representing this
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Figure 4.7: Comparison of the increment of coercive field vs separation for
the three antidots arrays.

increment versus the separation, figure 4.7, the global behaviour approaches

1/λ reasonably, taking into account that in this case the diameter has also

a contribution to the increment.

The antidots induce a shape anisotropy due to the magnetization

inhomogeneities, appearing at the lateral surface of the antidots to minimize

the dipolar energy, as shown figure 4.8. When the magnetization is along

one direction the edges of the antidots at the beginning and at the end of

the magnetization vector act as poles, creating a dipolar field against the

magnetization. When these poles are closer the dipolar field is higher, so

it is more difficult to have the magnetization along the minimum antidots

separation than along the maximum separation. That is why the easy axes

are along the diagonals and the hard axes along the rows and the columns

of the array.

It could be assumed that the magnetization inhomogeneities around the

antidots have a width of approximately 20 nm. Calculating percentage of
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Figure 4.8: Scheme of the dipolar interactions.
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Figure 4.9: Coercive field vs percentage of pinned region.
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pinned Fe and representing the coercivity field against it, shown in figure

4.9, all the arrays, but the D = λ = 200 nm one, follow a linear behaviour.

The adjustments were made for all the arrays (but the D = λ = 200 nm),

it could be seen that the hard axis increase more rapidly than the easy

one, which might be due to the increase of the shape anisotropy while the

percentage of pinned Fe increases.

As represented in figure 4.1, a and λ are the distances between the

antidots edges along the diagonal and the side of the array, respectively.

When the ratio a/λ increases, the relation between the distances separating

the poles along the diagonal ad the rows increase, thus increasing the shape

anisotropy due to the dipolar interactions explained above.
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Figure 4.10: Coercive field for antidots with D = 400 nm vs a/λ.

This increasing of the induced shape anisotropy with the ratio a/λ can

be seen comparing arrays with the same diameter and different λ. Figure

4.10 represents the coercivity of the easy and hard axis versus a/λ of three

arrays in the EBL thin film that fulfil this condition. When a/λ increases

the difference between the two coercivities increases, the easy axis coercivity
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increases more than the hard axis one. This shows that the shape anisotropy

increases with a/λ, as expected.

This behaviour is consistent with previous results presented by Torres

Bruna [16] for antidots with D = 1 µm and different λ, where the induced

anisotropy also increases with decreasing separations.
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Figure 4.11: Coercive field vs separation for EBL arrays with D = λ.

For the arrays with D = λ the ratio a/λ is constant, a/λ = 1.83, on the

EBL thin film there are five different arrays with this characteristic, with

D = λ = 1000, 750, 400, 300 and 200 nm. The arrays made by FIB with

the same characteristic are not comparable with them, as already explained,

because they were lithographed in different films. For all these arrays but

D = λ = 200 nm it is clear how while D and λ decrease both the easy and

hard axis coercive fields increase. Figure 4.11 represents this increase, it

can be seen how the difference between the two fields also increases when

the dimensions are decreasing, even though the slopes for both axis are not

very different. This might be because not only the ratio a/λ affects the

induced shape anisotropy, when the D is smaller the coercive field along
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the hard axis does not increase as much as the easy axis one because the

antidots are too close to each other making the magnetization harder to

align along that axis.

For D = λ = 200 nm a non expected behaviour occurs, both fields

decrease and are the same. Heyderman et al. show a dramatic change

in the magnetic domain configuration for square antidots of similar size

[17, 18]. The unexpected decrease of the coercivity observed for the EBL

arrays with D = λ = 200 nm might mark a start of change of tendency for

shorter antidot distances. Unfortunately, no arrays with λ < 200 nm were

fabricated during the works carried out in this thesis. Further studies for

the low λ range need to be conducted in order to confirm it.

The arrays with D = λ = 1 µm lithographed by FIB were in a very soft

thin film and isotropic, with a coercive field of 10 Oe either in the hard

and easy axis. The coercive fields of both arrays are almost equal and still

being isotropic. This should be because the antidots are far enough for

not inducing a shape anisotropy, even though the coercive field increase in

comparison to the thin film one. They make the film harder, but without

induced anisotropy.

4.4.2 Magnetic Transmission X-ray Microscopy

In order to get insight into the magnetization mechanism of the antidots

arrays, a set of arrays was fabricated on a silicon nitride membrane following

the procedure outlined in section 3.4.3. All the arrays were lithographed

by FIB, using the same intensity, 300 pA, and they were studied by the

magnetic transmission X-ray microscopy (MTXM) in collaboration with

Prof. Peter Fischer at beamline 6.1.2 in the Advanced Light Source (ALS)

of the Lawrence Berkeley National Laboratory (LBNL) [19]. The high

spatial resolution of MTXM (≈ 20 nm) and the possibility to acquire

images under applied magnetic fields allows to observe the fine details of

the magnetic spin configurations and the reversal behaviour of the arrays.

Figures 4.12 and 4.13 represent two sequences of MTXM images
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(a)

(b)

Figure 4.12: Dependence with the magnetic field of MTXM images of the
corner of the array D = λ = 1 µm (a) first and (b) second measurements.
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corresponding to an array with D = λ = 1 µm, obtained by sweeping the

in-plane magnetic field from 470 Oe to -470 Oe, approximately. This is

enough to run the magnetization from positive to negative saturation.

The magnetic contrast of these images results from the subtraction of the

images with both light polarizations (left and right circularly polarized)

and it scales with the projection of the local magnetization onto the photon

propagation direction (the membrane is not oriented perpendicular to the

propagation direction). The magnetization sensitivity direction (MSD)

is parallel to HA: Ferromagnetic domains with magnetic spins parallel

or antiparallel to the MSD appear black or white in the MTXM image,

respectively.

Figures 4.12 (a) and (b) show two sequences of the evolution of

the magnetization with the field in a region near the corner of the

array. Although both images were acquired under identical experimental

conditions, the configurations of domains and walls are different in these

sequences. From these figures it is clear that the the formation of the walls

takes place in the edge that is surrounding the array, in agreement with

the model by F. Garćıa Sanchez et al. [15]. In both sequences the first

domain appears at -116.7 Oe and the second one at -163.3 Oe. During the

first sweeping run (figure 4.12(a)) one domain starts its propagation at the

edge between the two bottom rows, at -163.3 Oe; at -186.7 Oe most of the

array is reversed, just the region between the edge and the top row remains

unswitched. This region is finally reversed between -210 Oe and -466.7 Oe,

leading to the full saturation of the array in the negative direction. During

the second run (figure 4.12(b)) a domain appears between the two top rows,

at -169.2 Oe; at -183.8 Oe new domains appear and at -186.7 Oe the array

is almost fully reversed, again with the exception of the area between the

edge and the top row. Finally, the array results fully reversed upon the

application of a field of -466.7 Oe.

These sequences suggest that the reversal processes starts at the edges

of the array and show that they are not strictly repetitive. In both cases
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the last part to reverse its magnetization is the region between the edge

and the top row of antidots.

Figure 4.13: Dependence with the magnetic field of MTXM images of the
array D = λ = 1 µm.

Figure 4.13 shows a sequence of images corresponding to a central

region, far from the edges of the array. In this case, some domains are

formed pointing along the diagonal of the array, between the remanent state

and -163.3 Oe. At -169.2 Oe a large reversed domain appears between two

rows which propagates partially to the next lower row and, when the field

increases up to -175 Oe, to the upper rows. part of the array is reversed.

At -180.3 Oe the magnetization reversal is almost complete, with just some

unreversed domains between the antidots requiring higher fields for the
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switching; at -350 Oe the array is fully saturated.

Figure 4.14: Hysteresis loop and MTXM images of the array
D = λ = 1 µm.

A quantitative analysis of the evolution of the magnetization with the

applied field can be carried out by measuring the area associated with each

domain along a sequence, by means of an image treatment software (e.g.

ImageJ). As a result, the demagnetization branch of a hysteresis loop can

be traced, associating the images prior and after each reversal event to its

magnetization jump. Image 4.14 shows the demagnetization branch of the

loop obtained for the array with D = λ = 1 µm using the images of figure

4.13.

The fact that the reversed domains are formed between the antidots
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rows, in all the arrays fabricated on Silicon Nitride membranes and analysed

by MTXM, is congruent with the observations of Heyderman et al. [11, 20]

in Co arrays, in spite of the different anisotropy constants of Fe and Co.

It is important to remark, however, that the Fe films deposited on Silicon

Nitride are polycrystalline, in contrast with the films deposited on MgO,

which are clarly singlecrystalline. In addition, the resolution of the images

shown in figures 4.12 and 4.13 is not good enough to visualize the domain

wall configurations. These considerations compel us to be cautious about

assuming that the evolution of the magnetization evidenced through the

MTXM images can be readily transposed to that of the arrays fabricated

on singlecrystalline films.

In all the different arrays the domains are formed in between the antidots

rows as it happens in the Co arrays of. The big different between the Co

and the Fe arrays is the magnetocrystalline anisotropy, this Fe thin films

are isotropic. The images shown in figures have not so good resolution to

see the configuration of the domain walls, so there can not be seen the

domain walls as they have reported and there might be some differences

due to the anisotropy.
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Conclusions

This thesis is devoted to the preparation, characterization and magnetic

properties of epitaxial Fe nanostructures. In particular, the magnetization

processes of artificial arrays of two types of motifs, planar nanowires and

antidots, are studied. The aim of this thesis was to produce several series of

these types of arrays by means of a reliable, controlled procedure allowing

to tailor their hysteresis behaviour basically through their morphological

features and the Fe intrinsic properties, with as little influence as possible

of other extrinsic factors. From this point of view, this thesis has a

very broad scope focused on each and every one of the stages required

to fabricate the high quality nanoelements studied: (i) the growth and

characterization of thin films, structural, chemical and magnetically; (ii)

the optimization of the lithography processes to avoid the generation of

undesired defects; (iii) the careful analysis of the correlation between the

crystallochemical structure and the magnetic properties of the arrays of

nanowires and antidots.

The main results of this work are summarized as follows:

• Regarding the preparation of thin films grown on MgO (001)

substrates, the ability to produce epitaxial Au (001)/Fe (001)

films with sharp and flat interfaces upon optimization of growth

conditions has been achieved. The crystalline characterization,

combining different high sensitivity techniques, evidenced their high

quality singlecrystalline character.

• Au/Fe grown films present well controlled magnetization reversal

processes with very narrow switching field distribution, and perfect

biaxial magnetocrystalline anisotropy with no evidences of extra

uniaxial contribution.
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• The optimization of Focused Ion Beam (FIB) and Electron

Beam Lithography (EBL) parameters has allowed the controlled

fabrication of well ordered arrays of nanowires and antidots in terms

of their shape and size, minimizing the influence of the unavoidable

imperfections inherent to them on the crystalline structure of the

Fe films, with negligible increase in roughness and lattice distortion.

• The magnetization processes of high quality Fe singlecrystalline

planar nanowires, with widths between 100 nm and 1 µm, have

confirmed that their reversal evolve from wall pinning, at low

angles between the applied field and their long axis, to basically

uniform magnetization rotation, at high angles. This behaviour has

been described in terms of single spin configuration, ruling out the

formation of multidomain structures even at high angles.

• The magnetic characterization of the antidots, with diameter and

separation between 200 nm and 2 µm, has shown that the coercivity

of the arrays is up to a factor of 10 above that of the films,

increasing sharply with decreasing separation. The dependence

of the coercivity on the diameter and separation arrays has been

analysed as a function of the percentage of magnetic material around

the antidots that forms inhomogeneous structures, evaluated from

the magnetostatic correlation length.

In summary, this thesis has shown that the magnetic properties of the

lithographed nanoelements, wires and antidots, depend almost exclusively

on their morphology and characteristic dimensions, with minimum influence

of the imperfections inherent to the different fabrication routes.
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En esta tesis se ha estudiado la prepración, caracterización y las propiedades

magnéticas de nanoestructuras de Fe epitaxial, en particular, los procesos

de imanación de redes artificiales con dos tipos de motivos, nanohilos planos

y antidots. El propósito de esta tesis es la fabricación de diversas series de

estas redes mediante un procesos controlados y reproducibles que permitan

diseñar a medida sus procesos de histéresis a través de sus caracteŕısticas

morfolǵicas y las propiedades intrińısecas del Fe, con la menor influencia

posible de otros factores extŕınsecos. Desde este punto de vista, esta tesis

tiene un amplio objetivo enfocado en cada uno de los pasos necesarios para

fabricar los nanoelementos de alta calidad: (i) el crecimiento de láminas

delgadas y su caracterización estructural, qúımica y magnética; (ii) la

optimización de los procesos litográficos para evitar defectos no deseados;

(iii) el cuidadoso análisis de la correlación entre la estructura cristalina y

qúımica y las propiedades magnéticas de las redes de nanohilos y antidots.

Los principales resultados de este trabajo se resumen de la siguiente

manera:

• Se ha conseguido la preparación de láminas epitaxiales de Au

(001)/Fe (001) sobre substratos de MgO (001) con intercaras

abruptas y planas tras la optimización de las condiciones de

crecimiento. La caracterización cristalina realizada mediante la

combinación de técnicas de alta sensibilidad, ha puesto de manifiesto

su alta calidad monocristalina.

• Las láminas de Au/Fe presentan procesos de la imanación contro-

lados con una distibución de campos de inversión muy estrecha, y

una anisotroṕıa manetocristalina biáxica perfecta, sin contribución

uniáxica.
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• La optimización de los parámetros en las litograf́ıas por haz de iones

(FIB) y de electrones (EBL) ha permitido la fabbricación controlada

de redes ordenadas de nanohilos y antidots en función de su forma

y tamaño, minimizando la influencia de imperfecciones inherentes a

estas técnicas en la estructura cristalina de la lámina delgada, con

efectos despreciables en el aumento de la rugosidad y del desorden.

• Los procesos de imanación en nanohilos planos de Fe monocristalino,

de anchuras entre 100 nm y 1 µm, confirman que su inversión tiene

lugar mediante el enganche de pared, para bajos ángulos entre el

campo aplicado y el eje largo de los hilos, y mediante un proceso

de rotación de la imanación basicamente uniforme a altos ángulos.

Este comportamiento ha sido descrito como una configuración de

un único spin, descartando la formación de estructuras de tipo

multidominio a altos ángulos.

• La caracterización magnética de los antidos, de diametro y

separación entre 200 nm y 2 µm, ha mostrado un aumento hasta

de factor 10 en la coercitividad de las redes respecto a la de la

lámina, aumentando rápidamente cuando la separación decrece. La

dependencia de la coercitividad con el diámetro y la separación

ha sido analizada en función del porcentaje de material magnético

alrededor de los antidots que forma estructuras inhomogéneas,

evaluado mediante la longitud de correlación magnetostática.

En resumen, esta tesis muestra que las propiedades magnéticas de

nanoelementos litografiados, hilos y antidots, dependen fundamentalmente

de su morfoloǵıa y dimensiones, con mı́nima influencia de las imperfecciones

inherentes a las diferentes técnicas de fabricación.
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