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Prefacio

Una pequeña historia cient́ıfica...

Supongo que al lector le estará resultando extraño leer un prefacio en el comienzo de

una tesis doctoral. Sin embargo me gustaŕıa poder mostrarles las dificultades y satisfac-

ciones que nos hemos encontrado en estos duros cinco años y medio de trabajo. Todo

el proyecto de tesis comenzó desde un planteamiento y área de trabajo completamente

distinto, que siendo ahora sinceros, no me satisfaćıa desde mi naturaleza óptica pero que

mi naturaleza electrónica se consolaba ante la posibilidad de jugar con switching. Con la

tozudez que aún no he conseguido aún dominar conseguimos ver conmutar luz pero no con-

trolarla. Aśı que hubo que tornar el camino del trabajo y después de un año comenzamos

de nuevo. Lo que en principio parece una desgracia fue una de las mayores fortunas que

ha acompañado este trabajo, y aśı, comenzamos el camino de jugar con emisores de luz

en la nano-escala y a descubrir las reglas del juego de la interacción de las nanopart́ıculas

de silicio y los iones de erbio. Volver a empezar fue duro, nueva literatura, nuevo sistema

experimental pero... ¡Fantásticos experimentos!, ¡sencillos planteamientos!, los mejores de

GPL aunque no te lo creas Rosaĺıa. Pero pagamos los platos rotos de cient́ıficos expertos

trabajando en un campo nuevo. ¡Cuántas veces debimos debatir Miguel la saturación de la

emisión! ¡Qué obvio es ahora! Ese segundo año estuvo lleno de medidas atosigadoras bus-

cando encontrar explicaciones a que ocurŕıa en nuestras muestras, con una caracterización

tediosa pero fundamental. Pero nadie dijo que fuese a ser fácil y entre el 2007 y 2008 las

tornas volvieron a cambiar, art́ıculos de Er3+ y nanopart́ıculas de Si marcaban nuevas

rutas de análisis espectroscópico y comenzaba el hundimiento de nuestra metodoloǵıa de

trabajo. Ya no llegaba con optimizar, hab́ıa que entender el porqué. Aśı que 2008 y

2009 han sido años horribles, pasando de cortos APL a estar inmersa en largos PRB con

ecuaciones y desarrollos que mezclaban cuántica con materiales y óptica. Aśı que tras

este segundo varapalo a mi evolución cient́ıfica, sola inmersa en algo que no controlaba

y entend́ıa, lo único que resid́ıa en mi corazón era abandonar y... surgió IOSA, con su

fuerza y entusiasmo me mantuvieron a flote, mostrándome que las cosas pueden cambiar,

trabajando se pueden hacer cambiar, ¡trabajando las hemos hecho cambiar chic@s!. Aśı

que cuando estaba en el ĺımite e IOSA ya no estaba resguardado bajo mis faldas, con 6

meses de financiación y sin apoyo institucional, apareció él, Pablo, un asturiano cabezota
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y escéptico pero con unas ansias enormes de aprender. En el momento clave, encontré mi

resonador cient́ıfico, aśı que él sin ser consciente me devolvió la pasión, me incitó a una

nueva evolución y este libro comenzó a crecer. 2009-2010 ha sido un año lectivo duro, unos

luchando por sobrevivir mientras algunos, sin poder evitarlo, se han ido para siempre. Sin

embargo no puedo dejar de tener ese sabor dulce de un año cient́ıficamente deslumbrador

a pesar de haberlo pasado rodeada de cascotes cayendo, mudanzas de despacho múltiples

o sin aire acondicionado.

No sé si sacaré rendimiento personal al gran esfuerzo realizado, la mayoŕıa pensarán

que ha sido una tonteŕıa, pod́ıa haber optado por un camino más sencillo. Pero yo y mi

alma cient́ıfica pueden sentirse satisfechas de lo que se refleja en cada una de las páginas

de este libro. Senoras y señores que después de todo esto se atrevan a leer este manuscrito,

espero que se diviertan lo mismo que lo he hecho yo jugando con Er3+.

NUSA66

Sara Núñez-Sánchez,

Madrid, Junio 2010.



Resumen

Esta tesis es el resultado de cinco años y medio de trabajo de investigación en el diseño

de nanoestructuras en lámina delgada de óxido de aluminio amorfo dopadas con iones

de erbio y nanopart́ıculas de silicio, con el fin de optimizar la distribución de dopantes

en la nanoescala para conseguir mejorar las propiedades de emisión a 1.5 µm. Este tra-

bajo se ha realizado en el Instituto de Óptica Daza de Valdés-IO bajo la supervisión de

la Profesora de investigación Rosaĺıa Serna Galán. Todas las estructuras estudiadas en

esta tesis han sido producidas en el sistema de deposición por laser pulsado del Grupo de

Procesado por Láser en el Instituto de Óptica. Aśı, el resto medidas de caracterización

óptica como elipsometŕıa o fotoluminescencia resuelta en tiemp, también han sido real-

izadas en las instalaciones del grupo Grupo de Procesado por Láser al cual pertenecen

la tesinanda y su directora de tesis. La caracterización qúımica y estructural mediante

técnicas de microscoṕıa electrónica de transmisión se realizaron durante una breve es-

tancia en el departamento Materials Science Division del Argonne National Laboratory

en Chicago-Illinois bajo la supervisión de la Profesora Amanda Petford-Long. El análisis

composicional tuvo lugar gracias a la colaboración del Doctor Javier Garćıa-López del

Centro Nacional de Aceleradores-CNA. Se llevaron a cabo medidas de catodoluminescen-

cia en la Universidad Complutense de Madrid con la ayuda de la Catedrática Bianchi

Mendez y el Doctor Emilio Nogales. El trabajo descrito en esta tesis ha sido publicado en

revistas cient́ıficas y conferencias internacionales que se citan a continuación.
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3. S. Núñez-Sánchez, R. Serna, J. Garćıa López, A. Petford-Long, M. Tanase, B. Kabius,
Tuning the Er3+ sensitization by Si nanoparticles in nanostructured as grown a-Al2O3 films,
Journal of Applied Physics 105 (2009)
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Enhancing the 1.53 µm emission in Er3+:a-Al2O3 as grown films by nanoscale con-
trolled codoping with Si nanoparticles, S. Núñez-Sánchez, R. Serna, M. Jiménez de Castro,
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9. 3rd Nanospain Workshop, Pamplona, Spain, 2006 Switchable optical properties on V OX :a-
Al2O3 nanocomposite thin films prepared by PLD, S. Núñez-Sánchez, R. Serna, M. Jiménez
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nanoscale, S. Núñez-Sánchez, P.M. Roque, R. Serna. Oral

Amorphous silicon nanoparticle 2D-distributions with high density for enhanced multi-
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2. 217th ECS Meeting, Vancouver, Canadá, 25-30 Abril, 2010 Tuning the RE sensitization by

Si NPs in nanostructured a-Al2O3 film, R. Serna, S. Núñez-Sánchez, P.M. Roque. Charla
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13. E-MRS 2005 Spring Meeting, Strasbourg, France, 2005. Pulsed Laser Deposition and optical

response of V OX :a-Al2O3 nanocomposite thin films, S. Núñez-Sánchez, R. Serna, M. Jiménez
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Margueritat, H. Fernández, V. Dı́ez-Blanco, V. Resta, S. Núñez-Sánchez, M. Jiménez de

Castro, C. N. Afonso. Póster.
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Chapter 1

Introduction

Since 1936 Allan Turing and colleagues established the fundament of the modern comput-

ing, the humans have been looking for the control and processing of the information in

order to create complex systems that could help us in our daily life and improve our social

welfare state.[1, 2] The basic design unit is the switch that allows us to define binary states

with which it is possible to compute and generate complex functions using algebraic func-

tions. The contributions of John Von Neumman defined the new computer architectures,

and the first general-purpose electronic computer ENIAC (Electronic Numerical Integra-

tor And Computer) was created at the 1946, occupying whole rooms and using thousands

of vacuum valves, crystal diodes, relays, resistors and capacitors and weighing 30 short

tons. [3, 4] From the discovery of the bipolar transistor in the 1947 by John Bardeen and

Walter Houser Brattain [5] and William Bradford Shockley [6] at the Bell Telephone Lab-

oratories and the development of the first monolithic integrated electronic circuit by Jack

Kilby [7] at Texas Instrument in the 1958 (with a size of 12mm x 1.5 mm2 approximately)

the number of integrated electronic components and the complexity of the circuits have

grown exponentially allowing to create the most advanced robots and reduced computers

from a miniaturized design unit, the semiconductor transistor.

A major challenge in the microelectronics industry is the reduction of the size of

the components, specially the transistor, in order to integrate more complex circuits in

the same area reducing the production cost per unit. However the reduction on size of

the individual components causes the appearance of new fundamental physical effects and

new physical properties that can not always be completely controlled. Although, there has

been an impressive advance at the device and technology level during the last decade, the

progress in the development of new system architectures dealing with billions of transistors

is scarce. In this sense, new architectures for parallel data processing are under still current

development.[8] In this context the development of integrated optical processing devices is

presented as a promising alternative due the specially properties of photons as coherence,

that allows to multiplex the optical signal at different wavelengths without interference

11
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between them. Moreover the new properties of reduced semiconductors at the nanoscale

such as quantum wells and quantum dots can be used to prepare active materials to develop

optical sources, detectors or to obtain complex functionalities. The work reported in this

thesis is a thoroughly study of the optical properties of an special nanoengineered material

in order to obtain an efficient optical gain medium that can be used to efficiently process

the light in a device of reduced size, produced by a fabrication technique compatible

with the microelectronic industry and that can be integrated with other optoelectronics

components.

1.1 Integrated Optics and the evolution of the microelec-

tronics technologies

The revolution in the modern optics was the invention of the laser by T.H. Maiman in

the 1960 at Hughes Research Laboratories in Malibu, which allowed fabrication of coher-

ent light sources with exceptional properties. The research on Integrated Optics started

when S.E Miller proposed the concept of integrated optics in the 1969 and he emphasized

the similarity between the planar optical technology and the microelectronic circuits. [9]

In the early of 70′s, various materials and processing techniques for optical waveguide

fabrication were developed. However at the end of the seventy decade the research on

integrated optical circuits decreased due to the difficulties on the design commercial struc-

tures in a short term and the expensive prize and difficulty of integration of lasers and

Light Emitting Diodes (LEDs). Moreover the materials required to the optical devices

are different from those used in microelectronics adding new difficulties. Therefore the

researchers and developers efforts were focused on the preparation of glass optical-fibers

and the enhancement of the performance of the electronic circuits, due their short-term

profits. [10] Actually the advances on the microelectronic techniques in order to produced

materials controlled at the nanoscale has driven the optoelectronics to the nanophotonics

and towards a plausible integration of photonic circuits.

It is outmost importance to realize that the background or the origin of the integrated

optics is different than the integrated electronics. While the integrated electronic started

with the obtention of the first integrated transistor to use it as design units, the optoelec-

tronics started when a broad branch of functionalities had been defined previously in the

electronic and are used in complex circuits. Thus, until now, despite the large number of

optical structures designed as power splitters, waveguide reflectors, directional couplers,

polarizers, phase modulators, etc; [11], a device including optical photon storage and pho-

ton amplification has not been developed in a switch device in order to obtain similar

control on the photon flux than the transistor acts on the electron flux in an electronic

transistor.
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Therefore in the Integrated Optics there are two design alternatives:

1. Find structures and materials that show similar behavior than the electronic tran-

sistor in order to profit of the previous development in high-level electronic design

automation tools.

2. Find structures and materials that reproduce the behavior of functions of complex

devices as amplification, rectification, etc. Thus, the complete circuit is considered

a black box, with inputs and outputs.

The development of the integrated optics technology requires new materials that can

be used as active medium to obtain complex functionalities, but these materials have be

able to compatible with the C-MOS technology and actual microelectronic industry. Thus

the processes involved in the material processing and in the structure fabrication have to

be easily incorporated in a microelectronic foundry and with reduced fabrication steps.

The evolution of the nanotechnology production techniques offers new alternatives in the

production of active structures applicable in integrated optics circuits. The nanomaterials

give new possibilities of photon flux control by defined refractive index periodic structures

or materials as nanocomposites and open the opportunity of obtain customized function-

alities in waveguide configurations. The aim of this thesis is to study the performance of a

new nanostructured material based on Er3+ and Si NP— doped a-Al2O3 with control of

dopants separation in the nanoscale and varying their content and distributions to enhance

the emission at 1.53 µm for potential amplification.

1.2 Amplification and Er3+ and Si NP doped systems. Con-

trol in the nanoscale

The more basic functionality in analogical electronics is the amplification. The MOS-FET

and bipolar transistor plays the role of limited amplifiers, therefore the tuned electronic

amplifiers make use of resonant circuits with resistances, inductors and capacitors to limit

the gain of the amplifier to the band of frequencies of interest. The Figure 1.1a shows

the circuit corresponding to the most popular operational amplifier µ741 composed by 22

bipolar transistors, 1 capacitor and 11 resistances.[12] The electrons injected to the input

signal comes from the continuous source connected between +VS and −VS .

In contrast, in optics, the underlying principle for achieving coherent amplification of

light is stimulated emission of radiation. Therefore the frequencies, work region and gain

values are established by the atomic levels of the atomic entities or bands of absorbers

and emitters used to dope the active medium.[13] The Figure 1.1b shows a scheme of an

Er3+ ion that acts as emitter tuned with the pump energy and the signal to amplify,
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thus when an electron is excited to the high atomic levels the photons from the incident

signal incite the des-excitation route that provoke the stimulated emission increasing the

coherence emission tuned the signal and proportional to the signal power.

(a) (b)

Figure 1.1: Comparison of fundamentals of the electronic and optical amplification. Figure
1.1a shows the circuit of the most used operational amplifier in analogical electronics, the
µ741. The green arrows represent the flux of electrons that is injected to the input signal.
The input and output is represented by the dark red arrows. Figure 1.1b shows a scheme
of the stimulated emission produced in an Er3+ ion when it is pumped by two resonant
wavelengths at different energies. The green arrows represent the pump flux and the dark
red arrows represent the amplified signal.

In an electronic amplifier the flux of electrons is increased for a band of frequencies of

interest, however in an optical amplifier we have to establish the working wavelength range

to amplify. During the information age a large industrial development and institutional

investment have been focused on bands of frequencies of interest for the telecommunica-

tions technologies based on silica fibers that have allowed the optical transmission over

long distances with low attenuation, a high-bandwidth and a low manufacturing cost. But

the wavelength bands were limited by the high transparency range of the silica established

in the telecommunication windows. In this technological revolution the fiber optical am-

plifiers based on silica doped with Er3+ (EFDA) have been essential due to the overlap

of the Er3+ emission band at 1.54 µm with the third window of optical communications.

Therefore Er3+ doped integrated waveguide in a reduced size is essential for the a com-

plete integration of optical circuits.

However, the development of integrated optical amplifiers waveguide is not trivial.

While in the Erbium doped fiber amplifiers (EDFA) high gain values are reached due the

possibility of large-doped optical fiber length, the integrated amplifiers require to obtain

a high gain in a few centimeters. In addition the absorption cross section of Er3+ is low
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(10−21 cm2) and high concentrations (1019−1020 Er/cm) of dopants are required in a small

device.[14, 15] One of the key points in design and production of materials for integrated

amplifiers is how to incorporate high concentrations of dopant without erbium aggregation

or Er3+ photoluminescence quenching (as coperative up-conversion, migration, etc) due

to the interaction between adjacent Er3+ ions. Therefore optimize the spatial distribution

of ions at the nanoscale is essential in order to obtain efficient amplifiers with a reduced

size.[16, 17]

(a)

Figure 1.2: Scheme of an Er3+ and Si NP randomly doped material and the interaction of
Si NPs and Er3+ ions.

Besides improving the distribution of Er3+ ions is necessary to optimize the pump

bandwidth of Er3+ that can be excited only in the range of very narrow wavelengths,

pumping wavelengths of 980nm and 1430nm in the most commonly traded devices. How-

ever the absorption of the Er3+ ions is poor with low absorption cross sections of 10−21 cm−2

orders of magnitude. In the last decade numerous studies about the possibility of used

silicon nanocrystals as sensitizers of Er3+ in based silica (SiO2) materials have been made

(see Figure 1.2).[18] The silicon nanocrystals absorb very efficiently photons in continu-

ous bands in the ultraviolet-visible with absorption cross sections from 10−19 cm−2 to

10−16 cm−2 that can be tuned by controlling the size of the nanocrystals and transfer

energy to closer Er3+ ions. [19, 20] Moreover it has been proved that it is possible to

obtain energy transfer from amorphous nanoparticles (NPs) to Er3+ ions and it is not

necessary to obtain crystalline nanostructures.[21] Therefore, the most recent works are

focused on the optimization of the fractions of Er3+ that could be excited through Si NPs

and the study of the physical properties of the Er3+-Si NP interaction in order to estimate

the fundamentals parameters to obtain an accuracy control on the energy transfer process.

Actually low fractions of excited Er3+ has been reported and only recently percent-

ages close to the 23% has been obtained while fractions of excited Er3+ higher than the

50% are necessary to achieve gain. [22, 23] Therefore, in order to optimize the number

of Er3+ ions is essential to develop techniques to control the spatial distribution of the

two dopants on the nanometer scale, whatever the composition of the host to control the
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region of contact of the Er3+ ions and the Si NPs.[24, 25] Moreover the control on the

nanoscale allow us to increase the concentration of ions without quenching phenomena

and improving the relationship of Si NP-ion coupling and controlling the pump band with

the size of the Si NPs.[17, 26]

The thin films in this work have been produced by alternate pulsed laser deposition

(a-PLD) that it is a well now deposition technique in the microelectronic industry. This

method of preparation allow us to control of the composition of the host independently

of the dopants, therefore all the results can be extrapolated to other host of different

compositions. Moreover the dopants are deposited in situ independently of the host and

thus their position in the depth profile can be fine controlled. Also, by a-PLD is possible

to obtain high density of Si NPs distributed in two dimensional plane (2D dopant distri-

butions) allowing a high percentage of contact between dopants when they are deposited

sequentially.

1.3 This thesis

The objective of this thesis is the design and preparation of nanostructured Si NPs sensi-

tized Er3+ films to enhance their emission at 1.53 µm. This objective involves two main

aspects. The first one from the materials point of view to determine the deposition con-

ditions, dopant concentration and specially their spatial distributions by controlling their

separation in the nanoscale. The second one is the thorough study of the energy exchange

between Si NPs and Er3+ through the analysis of the photoluminescence response from

the nanostructured films.

The method used to prepare the nanostructured films has been pulsed laser deposition

from separate targets. This is a technique that allows to deposit dense films with good

optical properties. The sequential deposition of the different components of the film from

separate targets allows to deposit in a single step process two dimensional distributions of

the dopants whose separation in the growth direction can be controlled accurately. This

has allowed in this work to focus the study of the Si NPs-Er3+ energy exchange on the

influence of the spatial distribution of dopants at the nanoscale. The independent depo-

sition from the Si target to deposit the Si NPs has enabled the formation of Si NPs with

different average sizes thus making possible the tuning of the Si NPs energy band-gap.

In this study the use of a-Al2O3 instead of the conventional SiO2 used in most works

has shown the additional advantage of allowing to differentiate the local environment of

the emitting Er3+ ions due to the different spectral characteristic of Er3+ light emission

embedded in a-Al2O3 or in Si/SiO2 hosts. This permits to obtain accurate information

on the Er3+ location below the nanoscale. Finally a special characteristic of this study

is that most of the photoluminescence characterization of the films performance in as
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grown conditions thus unwanted diffusion processes that can induce the modification of

the nanoscale engineered structures. This is very particular to this work since in most of

previous works annealing of the Si NPs-codoped systems as part of their synthesis process.

Only some annealing results will be discussed in order to add light to specific aspects of

the material properties or to show how indeed annealing can alter the Si NPs to Er3+

energy transfer in optimized structures up to the point to inhibit it.

The thesis manuscript has been divided in four parts and two special chapters, the

general introduction and the general conclusions. Every Chapter has a short preface and

introduction.

The beginning is Chapter 1 that corresponds to the global introduction. Part I de-

scribes our experimental approach. The Chapter 2 describes the first steps in the design

process of the Er3+ and Si NP doped a-Al2O3 host, the properties of the individual compo-

nents, the growth process and how it is possible to obtain a high accuracy in the nanoscale

by controlling in situ the the host, Si NPs and Er3+ deposition. In Chapter 3 the final

designs of the Er3+ and Si NP doped a-Al2O3 nanostructures are described. It includes

a first approximation to the Er3+ and Si NPs interaction system. It includes controlling

the local position of Er3+ and Si NPs dopants below the nanoscale, controlling the Er3+

and Si NP 2D-distributions and their correlation, and finally, optimizing the Si NP sizes

and the post-deposition treatments.

Previously to analyze the best parameters to optimize and tune the transfer process

from the Si NPs and Er3+ ions a thoroughly study about the 2D Si NP distributions were

done. Therefore Part II is focused on the properties of the amorphous Si NPs. Their

structural, chemical local properties are analyzed in Chapter 4. Due to the difficulties to

determinate a Si NP size through the electron microscopy images, we turned to the study

of their optical absorbtion in order to establish a Si NP size in Chapter 5. The direct or

indirect character and amorphous quality of the Si NPs are analyzed in order to obtain

a reliable relation between the absorption band-gap and size. Once the Si NP size was

established the parameters of the 2D distributions of Si NPs were determined in Chapter

6. Finally, in Chapter 7, the a-Al2O3-Si NP interface is analyzed in order to establish

the role of the surface defects on the Si NP photoluminescence and in the Er3+-Si NP

interaction mechanisms.

The Part IV reports the first attempt to optimize the energy transfer from Si NPs

to Er3+ ions maximizing the Er3+-Si NP contact. Thin films formed by Si NPs of the

same size but however with different separation distance between dopants are studied.

Therefore, in Chapter 8 we are able to conclude that the most efficient thin film dopant

configuration is when the Er3+ ions are in contact with the Si NPs. In Chapter 9 we study
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how to maximized the contact between dopants and how distances below the nanoscale

affects to the temporal response of the emission of Er3+. A thoroughly study about how

the physical processes inherent to the pulsed laser deposition affects the accuracy of the

control on the distance between dopants, and thus the interaction mechanism including

the back-transfer phenomena are shown in Chapter 10.

The extreme sensitivity of the Er3+-Si NP interaction to the Er3+-Si NP distances be-

low the nanoscale has been demonstrated in the Part IV. Therefore amorphous aluminium

oxide (a-Al2O3) nanostructured thin films doped by erbium ions (Er3+) and amorphous

silicon nanoparticles (Si NPs) of different Si NP sizes were produced in a maximized Er3+-

Si NP contact configuration in order to analyze the optimization of the Er3+ ions response

nano-engineering the 2D-distributions of the two dopants and analyzed in Part V. The

Chapter 11 shows that the amount of Er3+ excited dependent mainly on the fraction of

achievable Er3+ that can be controlled tuning the Si NP and Er3+ 2D-distributions that

define the percentage of Er3+ in contact with the Si NPs. A deep study on the mecha-

nisms involved in the Er3+ and Si NP extreme coupling regime is in Chapter 12. Moreover

the special features observed in the films doped with the smallest Si NPs are studied in

Chapter 13, we related it to the number of defects as a function of the Si NP size and the

deposition conditions that can be affected the priority of every interaction mechanisms.

In Chapter 14 the Er3+ excitation and des-excitation dynamics are modeled by kinetic

de-excitation equations obtaining fractions of excited Er3+ higher than 50% and closer to

geometric parameters of the 2D Si NP distributions.

Finally, thermal processing effects on the Er3+ emission and to the spatial configura-

tion of dopants is analyzed in Chapter 15 of the Part V.

At the end of the manuscript the Chapter 16 contains the global conclusions.
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Experimental approach. Designing

the Er, Si: a-Al2O3 nanostructures
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Chapter 2

Designing nanostructured doped

films

In this Chapter we discuss the fundamentals of nanoestructuring Si NPs-Er3+ doped thin

films. The experimental approach in this work has been as follows: first the distance

between Er3+ and Si NPs was optimized, second the Si NP average size and distribution

was studied. These studies have been performed embedding the dopants in an amorphous

aluminium oxide host (a-Al2O3)

20
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2.1 Nanostructuring the dopant distribution

Control the distance between the Si NPs and Er3+ ions requires synthesis methods that

allow an independent control of the Si NPs, Er3+ ions and host deposition conditions. An

accurate control of the Er3+ ion and Si NP distribution is very difficult to achieve with

most of the synthesis techniques.

(a) (b)

Figure 2.1: Figure 2.1a. Schematic of 3D dopants distributions. Figure 2.1b. Schematic of
2D dopants distribution. The orange drops correspond to the Si NPs and the green points
to the Er3+ ions.

Previous studies have shown that Si NP size and Er3+-Si NPs separation are critical

parameters that control the Er3+ sensitization by Si NPs, and therefore the luminescence

response of the system. Some dopant distribution as multilayered structures restrict the

dopants position in the plane so, their location is controlled in a random two dimensional

distribution (2D-distribution).[27, 28] However, even in this case, the control of the Er3+

location is limited because the Er3+ ions are deposited embedded in the host even in this

configuration. These layers are controlled in thickness and separation to the Si NP layers,

but the Er3+ are distributed randomly within a host layer therefore limiting the control

of the ions location respect to the Si NPs.[29] In addiction, in all these works, thermal

process was necessary for the silicon aggregation in order to induce the Si NPs formation.

The final Si NP size and the activation of the Er3+ ions are simultaneous controlled by

the temperature reached in the thermal process. Nevertheless these two processes might

not need the same conditions for optimization. Moreover the diffusion processes necessary

to form Si NPs cause a non controlled dopant distribution and the change of the degree of

relaxation-crystallization of the Si NPs is different as a function of the Si NP size [30]. For

these two reasons, techniques that imply annealing procedures are not suitable to obtain

thin films with a controlled location of dopants, and at the same time to form Si NPs with

quality independently of the Si NP size. [20]

The questions are: 1.- how to obtain a control on the Er3+-Si NPs separation? and 2.-

how to obtain a Si NP size controlled independently of the dopants location?. As it usually
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in physics, one way to solve a problem is reduce the number of degrees of freedom of our

system from 3D-distributions to 2D-distributions. Our experimental approach is to

eliminate the annealing process and restrict the dopant position in the plane, depositing

them independently and independently of the host and using the special features of the

PLD to control the distance between dopants below the nanoscale. The independent de-

position will also allow to select the Si NPs size without affecting the separation of the

Er3+ ions. Nevertheless Er3+ and Si NP random distributions in the plane are obtained.

Alternate pulsed laser deposition (PLD) offers the possibility of obtaining engineered

structured thin films in which the ion-ion and ion-NP separation can be controlled in

the nanometer range. The alternated Pulsed Laser Deposition (PLD) allows the in situ

formation of Si NPs and in situ deposition of optically active Er3+ [16] obtaining

a deposition of dopants initially not necessarily embedded in the host. The Si NPs are

formed during the deposition process over the a-Al2O3 layer surface follows a Volmer-

Weber growth process (see Figures 2.2a and 2.2b), as has been reported for metal NPs

such as Cu and Ag.[31, 32] . The instantaneously independent ablation of Er target allows

to deposit an in plane random distribution of Er3+ ions independently of host (see Figure

2.2c).[16] These especial features and the alternately instantaneous ablation of independent

targets allows us to control:

1. The composition of the host independently of the composition and content of dopants.

2. The deposition in situ and independently of Er3+ and Si NPs.

3. The dopants distribution in the depth profile.

And everything in situ in a one step process at room temperature and without uncon-

trolled diffusion due to annealing process, allowing to obtain well defined structures for

the study. This procedure opens a route to the development of one step low-temperature

processing for co-doped nanostructured integrated devices.

2.2 Properties of the thin film components

Prior to the preparation of the nanostructured films we have studied the optical properties

of Si and a-Al2O3 produced by PLD. So a thin layer of silicon has been deposited on a

glass substrate and a thin layer of a-Al2O3 on a silicon ones. Subsequently the optical

properties have been measured by spectroscopic ellipsometry. After that, the conditions

to produce Si NPs and the parameters to control the Si NP size are studied.

2.2.1 a-Al2O3 host

Although most studies on Si NPs-Er3+ co-doping have been performed for silica, further

understanding of the energy transfer from the Si NPs to the Er3+ ions may be achieved by
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(a) (b)

(c) (d)

Figure 2.2: X-section schemes of sequences of the single step deposition method. 2.2a The
Si NPs grew over the a-Al2O3 layer. 2.2b The Si NPs are cover by a thin a-Al2O3 layer.
2.2c Only one pulse was used to doped the nanostructure. 2.2d the Er3+ ions are separated
form the Si NPs by a thin a-Al2O3 layer.
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Figure 2.3: Real part of the refraction index and absorption of the a-Al2O3

produced by PLD

studying the efficiency of such energy transfer in non silica-based materials. Of these, we

have selected the amorphous aluminum oxide (a-Al2O3) because it has been demonstrated

to be an excellent host for Er3+ ions due to the high Er solubility and lower phonon energy

compared to silica. In addition, the a-Al2O3 is a material with a wide transparency range

(0.15-5.0µm).[33, 34] This allows us to have flexibility in the range of pumping the amplifier

will only bounded by the characteristics of our Si NPs and ions doping. Indeed a net optical

gain and losses have been reported for an Er3+implanted Al2O3 waveguide prepared by

sputter deposition[35] and more recent results have also demonstrated the fabrication of

integrated ring lasers. On the other hand it has a high refractive index with respect

to silica (∆n > 0.20), which allows the realization of planar guides on SiO2 with high

confinement and compatible with current silicon technology.

The Figure 2.3 shows the real and imaginary parts of the refraction index (n = n+ iκ)

fitted from the experimental ellipsometry raw data using a Cauchy model for the dispersion

equation. The absorption is negligible in all the optical range while the real part of

the refraction index decreases as a function of the wavelength. The low Er3+ content of

the thin films does not change the optical properties of the a-Al2O3, and it has not been

detected by ellipsometry or transmission measurements.

2.2.2 Silicon- Silicon NPs

a-Al2O3 thin films with Si NPs within were prepared by ablation from a pure poly-

crystalline Si target at room temperature. Therefore a first analysis of the optical proper-

ties of the silicon thin films produced by PLD will help us to establish an approximation

to the structure of the Si NPs. The Figure 2.4 shows the optical constants of silicon

produced by PLD (Si-PLD) and two reference materials, amorphous silicon (a-Si) and

crystalline silicon (c-Si).[34] The optical constants of the silicon produced by PLD have

been obtained by fitting spectroscopic ellipsometry data to a Tauc-Lorentz model. In the

Figure 2.4 it is clear that the optical properties of Si-PLD are similar to those of the a-Si,
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Figure 2.4: Real part of the refraction index and absorption for the crys-
talline silicon (c-Si, black dashed line), an amorphous silicon (a-Si, dark grey
dot line)[34] and the silicon deposited by PLD (Si-PLD, black continuous
line).

revealing the amorphous nature of the silicon deposited by PLD. The differences in the op-

tical properties between the two a-Si thin films as related to differences in the amorphous

quality (Figure 2.4). Thus, the Si nanostructures produced by PLD are going to

consist of amorphous silicon entities. This will be confirmed by transmission electron

microscopy in the Chapter 4.

2.2.3 Er3+ doped a-Al2O3 layers

Only one Er3+ pulse per layer is deposited to avoid clustering and prevent the formation of

very high in-plane Er density areas and therefore reduce the energy migration, co-operative

up-conversion and cross relaxation phenomena probabilities. The in-plane concentrations

are changed by the laser energy density used to ablate the Er target. The Er3+ absorption

is not detectable by optical measurements and therefore Er3+ content are obtained by RBS

data.

2.2.4 Growth process. Control of host and Si deposition

a-Al2O3 thin films doped with Si NPs and Er3+ have been produced by alternated-PLD.

The thin films have been grown in vacuum atmosphere (P∼ 10−6 Torr) and room

temperature on silicon and fused silica substrates. An ArF excimer laser was focused

alternately on the independent silicon, metallic erbium and ceramic Al2O3 targets. The

size of the Si NPs is controlled with the number of laser pulses used to ablate the Si target

in each Si NPs layer deposition (see Figures 2.2a and 2.2b). One pulse per layer is used.

The separation between the Si NP layer and Er3+ layer is controlled depositing an thin
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intermediate layer of a-Al2O3 (see Figures 2.2b and 2.2d).

The deposition process was controlled by in situ reflectivity measurements during the

thin films growth process. A diode laser at 670 nm was used to obtain the variations of

the light reflected by the (substrate + thin film)-set at this wavelength. The variation of

the intensity of the reflected beam was recorded in a computer using a silicon detector and

standard lock-in techniques. From these data it is possible to simulate the reflectivity of

the thin film as a function of the deposition time and then it is possible to determine the

deposition rate of every material (detailed elsewhere ). PONER TESIS AMELIA, poner

algo del cambio de ı́ndice.
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Figure 2.5: Evolution of the reflectivity of Si NP doped a-Al2O3 thin films
during the growth process for two thin films containing Si NPs of different
sizes. The parameter P is the number of pulses selected to form the smaller Si
NPs in this thin film series. The Figure 2.5b shows a detail of the reflectivity
evolution where the changes in the target are labeling with numbers.

In order to determine the initial amount of silicon to deposit and form Si NPs the

variation of the reflected beam intensity as a function of time during the silicon deposition

process was analyzed. The silicon calibration samples were grown on glass substrates. At

the early growth stages the reflected beam should not change and must remain constant
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due the diode emission wavelength at 670 nm. From the literature the band gap of amor-

phous Si NPs is from 1.5 eV to 4 eV (820nm-300nm),[36] then for the smaller Si NPs

the absorption band will be located bellow the diode wavelength emission (670 nm) and

only when a continuous silicon film is produced the reflectivity must show an increase.

Therefore this allows to define the limit to deposit Si NP in defined conditions.

The Figure 2.5a shows the temporal evolution of the reflectivity during the growth

for two a-Al2O3 thin films containing Si NPs of different sizes and therefore the time to

deposit the silicon was different. The value P represents the initial value of pulses used

to form the smaller Si NPs and selected in this thin film series. The reflectivity of the 4P

thin film reach the minima and maxima later than the 2P due to the differences in the

silicon deposition time. In addition the difference in the position of the Si NP band gap

affects the evolution of the reflectivity as a function of the deposition time. Therefore the

4P curve is attenuated as a function on time because the 4P thin film is formed by Si NPs

with a size that absorb in the laser diode emission wavelength while the Si NPs within in

2P are complectly transparent at 670 nm as it is observed by optical transmission mea-

surements (see Figure 2.6).
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Figure 2.6: Transmission measurements of Si NP doped a-Al2O3 thin films
with Si NPs of different sizes. The parameter P is the value of pulses selected
to form the smaller Si NPs in this thin film series.

The in situ reflectivity measurements also allows to determine the moment when the

Si NPs are covered by an a-Al2O3 layer. A zoom of a part of the Figure 2.5a is represented

in the Figure 2.5b. The curves have been displaced in vertical for a better observation.

From the time labeled 1 to the time labeled 2 the silicon is deposited. During this time

(1 to 2) the reflectivity increases slightly due to the higher refractive index of Si, however

during the a-Al2O3 deposition (from 3 to 4) the values of the reflectivity are recovered and

then it can be considered that the Si NPs are complectly covered by the a-Al2O3. The flat

from 2 to 3 points is just the time to change the targets pass through the Er3+ target.

The Si NP size can be tuned selecting the number of pulses to use to ablate the silicon
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target. The variation of the absorption of the Si NPs as a function of the Si NP average

size allows us to determine the average diameter of our Si NPs through transmission

measurements (Figure 2.6, the analysis method is detailed in the Chapter 5).

2.3 Summary

In this approach a route to obtain doped a-Al2O3 films with nanostructured Er3+ and Si

NP distributions has been defined. This is done by distributing each type of dopant in

2D-distributions, in which the Si NP size and host composition is controlled independently.

Finally the Er3+ ions are deposited initially not embedded in the host and the distance

between dopants is controlled by depositing intermediate a-Al2O3 layers with controlled

thickness.

The silicon deposited by PLD is amorphous and thin films doped by Si NPs with

different average sizes can be obtained by changing the number of the pulses used to

ablate the silicon target.



Chapter 3

Er3+, Si NPs: a-Al2O3

nanostructures and

post-processing treatments

In this chapter the nanostructures that will be studied are defined. The thin films are

optically active in as grown conditions, therefore our as grown thin films produced by

alternated-PLD are specially designed and useful to study the Si NP size dependence

on the Er3+ photoluminescence in Er3+-Si NP doped systems with no Si NP quality

dependence and changing the dopants distributions in the nanoscale. The nanostructured

a-Al2O3 thin films were designed changing parameters such as the number of pulses used

to ablate the silicon or the order of the dopants deposition in the deposition sequence.

Due to the fact that the Er3+ ions available to excited through the Si NPs can be

affected by the presence of defects in the as grown thin films, two post-processing annealing

procedures are suggested to improve the PL performance but trying to maintain the initial

dopant distributions.

29
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3.1 Controlling the Er3+ and Si NPs interaction distance

The films have been structured in the growth direction in order to maintain the Er3+

ions and the Si NPs in well-defined 2D-distribution layers with a controlled separation at

the nanoscale, and thus to potentially tune the energy transfer from the Si NPs to the

Er3+. The Si NPs are formed in situ during deposition, and the films have not been

annealed after deposition. As a result the Si NPs remain amorphous and the film is

not modified by diffusion processes that might modify the original structure, as in most

previous reports.[37, 38, 39, 40]

3.1.1 Test Er3+ and Si NPs doped a-Al2O3 system

The schematic structure of the films designed and prepared is shown in the Figure 3.1.

Each film consists of nine Si NP single layers, each of which is sandwiched between five

Er3+ layers on each side. The Er3+ layers are separated between them by 7 nm thick

a-Al2O3 layers in order to minimize quenching of the luminescence due to Er3+- Er3+

interaction.[17] Films with different nominal separations s=0, 4, 7, 11 nm between

the Si NP layer and the first Er3+ layer on either side have been prepared by depositing

a controlled amount of a-Al2O3. Note that the Er3+ ions are contained in the same layer

as the Si NPs for the s=0 nm film. A single pulse on the Er target has been used to

deposit the Er3+ ions.[26, 17] For the Si deposition 500 pulses on the Si target have been

used in order to induce the formation of Si NPs. Finally, in order to obtain films with the

same total thickness, and thus to compensate for the different values of s in each film, two

a-Al2O3 buffer layers of thickness t have been deposited, one next to the substrate and

another capping the film. The schematic structure of the film starting from the substrate

can be described as substrate / t-a-Al2O3 / 9×{5×a-Al2O3:Er / s-a-Al2O3 / Si NPs /

s-a-Al2O3} / 5×a-Al2O3:Er / t-a-Al2O3. For comparison purposes two reference films

have been prepared: a film doped only with Er (Er only) and a film doped only with Si

NPs (Si only), both with the same spatial distribution as the film with s=11 nm. The

Table 3.1 shows a list of the produced thin films with the characteristic design parameters.

The selection of the Si NP size was decided in order to obtain a broad absorption band

in the visible in the range of the available pump sources in the GPL laboratory. The value

obtained for EG is 1.7 eV associated to Si NPs with an average diameter in the range of

4-5 nm.[41, 42, 43, 44, 45]

3.1.2 Si NP - Er3+ interaction below the nanoscale

The PL analysis of the test system shows that only the Er3+ located at a distance below

the 1 nm is sensitized through the Si NPs (see Chapter 8). Therefore the next step

in our research was to study the interaction phenomena below the nanoscale. Our first
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Figure 3.1: X-section scheme of the film distribution of Er3+ ions and Si
NPs in the growth direction.

Label Substrate Er Si Design parameters
P/layer P/layer s (nm) t (nm)

S0 Si/Fused SiO2 1 500 0 103
S4 Si/Fused SiO2 1 500 4 68
S7 Si/Fused SiO2 1 500 7 37
S11 Si/Fused SiO2 1 500 11 4

Only − Si− S Si/Fused SiO2 1 0 11 4
Only − Er − S Si/Fused SiO2 0 500 11 4

Table 3.1: Table of thin films produced to study the dependence of interaction on dopants
distance. The thin film design parameters are listed.
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approximation was to analyze how the order of the deposition of the dopants (Si NPs and

Er3+) affects the Er3+ emission.

Dopants deposition order

The thin film nanostructures are formed by 20 Er3+ doped Si NP layers separated by

a 10 nm thick of a-Al2O3. The Si NP average diameter, amount of Er3+ thickness and

number of doped layers is maintained and only the order in which the Er3+ and Si NPs

are deposited has been changed. The deposition of dopants of the thin films is as follows:

1. SEφ2.6: Er3+ deposited before the Si NPs formation (see Figures 3.2c and 3.2d)

2. ESφ2.6: Er3+ deposited after the Si NPs formation. (see Figures 3.2a and 3.2b)

3. SESφ2.6: Er3+ deposited in the middle of the Si NPs formation (see Figure 3.2e).

In this case half of the number of the pulses on Si target for the Si NPs formation

are deposited, then 1 pulse on the Er target is deposited and, finally, the rest of the

pulses on the Si target to complete the Si NPs formation are deposited (see Figure

3.2f).

The Table 3.2 shows a list of the produced thin films with the characteristic design

parameters. The Figure 3.2 shows schematically the deposition sequences and the final

configuration of the films. Comparing the three different dopant configuration obtained

after the deposition of the a-Al2O3 capping layer (Figures 3.2d, 3.2f and 3.2b), the differ-

ences in the distances between Er3+ and Si NPs dopants are below the nanoscale in the

plane were the Si NPs rest. This special configurations obtained by the alternated depo-

sition of dopants and the special features of PLD as the Si NPs formed in situ and Er3+

deposited in situ will help us to determine the extreme sensitivity below the nanoscale of

the Si NPs to Er3+ transfer process and determine the fundamental mechanism involved

in the transfer process.

Label Substrate Er Si Design parameters
P/layer P/layer deposition order

SEφ2.6 Si/Fused SiO2 1 185 Si NPs - Er3+

ESφ2.6 Si/Fused SiO2 1 185 Er3+ - Si NPs
SESφ2.6 Si/Fused SiO2 1 185 Si NPs - Er3+ - Si NPs

Only − Er − 4 Si/Fused SiO2 1 0 Er3+

Table 3.2: Table of thin films produced to study the dependence of interaction on order of
the dopant depositions. The thin film design parameters are listed.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: X-section schemes of sequences of the single step deposition method changing
the Er3+ ions location bellow the nanoscale. 3.2a.- The Si NPs grew over the a-Al2O3 layer
and only one pulse was used to doped the Si NPs. 3.2b.- A high percent of Er ions are located
closer to the Si NPs or can be on them. 3.2c.- The Er ions were deposited in the previous
step deposition to the Si NPs formation. 3.2d.- The Si NPs are formed on the Er3+ doped
a-Al2O3 layer after the Er3+ deposition. 3.2e.- The Er ions are deposited in middle of the Si
NPs growth process. 3.2f.- When the Si NPs are formed there are Er3+ that can be inside
the Si NPs.
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Intermediate a-Al2O3 layer with thickness below 1nm

In order to determine a figure of merit of the PLD deposition in the control of the dopants

separation and how the Er3+ implantation can affect in the control of the dopant location

new thin films with intermediate a-Al2O3 layers between the dopants were grown. The

sequence of dopants was defined in the Figure 2.2. The nanostructured thin film are

formed by 20 Er3+ doped a-Al2O3 layers and 20 Si NPs doped layers. Two different sizes

were selected and for every size three thin films were prepared tuning the thickness of

the intermediate a-Al2O3 layer from 0 to 1nm. The Si NPs were always deposited in first

place. The Figure 3.3 shows schematically description of these thin films. As in the design

of the nanostructured of the Section 3.1.1 a top and bottom a-Al2O3 layer was grown to

obtain the same total thickness between thin films. The responsiveness of the Er3+ ions

to the local environment will allow us to understand the Si NP cover phenomena during

the PLD deposition and the Er3+ implantation depth.

Label Substrate Er Si Design parameters
P/layer P/layer s (nm) t (nm)

S(A− 0.0)Eφ2.2 Si/Fused SiO2 1 125 0 ?
S(A− 0.5)Eφ2.2 Si/Fused SiO2 1 125 0.5 ?
S(A− 1)Eφ2.2 Si/Fused SiO2 1 125 1 ?
S(A− 0.0)Eφ2.8 Si/Fused SiO2 1 210 0 ?
S(A− 0.5)Eφ2.8 Si/Fused SiO2 210 0 0.5 ?
S(A− 1)Eφ2.8 Si/Fused SiO2 1 210 1 ?
Only − Er − 4 Si/Fused SiO2 1 210 - ?

Table 3.3: Table of thin films produced to study the figure of merit of the PLD in the
control of location of dopants. The thin film design parameters are listed.

The Table 3.3 shows a list of the produced thin films with the characteristic design

parameters.

3.2 Controlling the Er3+ and Si NPs distributions

In the Chapter 8 will be observed that only the Er3+ that is closer to the Si NPs is

sensitive to be excited through the Si NPs. Therefore in order to study the dependence of

the Er3+ emission on the Si NP size properties independently of Si NP - Er3+ distances,

the Er3+ ions are deposited in situ following the Si NP formation (Figure 3.2a). In this

deposition sequence the Er3+ ions are deposited on top of the Si NPs or in the Si NP

inter-space (Figure 3.2b).
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Figure 3.3: X-section scheme of one Er3+ and Si NP co-doped thin film with
the Er3+ ions deposited at distances from the Si NPs below the nanoscale.
The orange entities represent the Si NPs and the green points represent the
Er3+ ions.

3.2.1 Optimizing the Si NP average size

The average diameter of the Si NPs was varied from 1.6 nm to 3.3 nm with the number

of laser pulses used to ablate the Si target in each Si NPs layer deposition. The number

of pulses on the Si target (P) has been varied from 300 to 1200 to produce three thin

films with different Si NP sizes. Only one pulse per layer over the metallic erbium target

is used to deposit the Er3+ ions, preserving the same Er content between thin films. A

thick 10 nm layer of a-Al2O3 is deposited after the Er3+ doped Si NP layer to cover them

and to embed them in the a-Al2O3 host. This sequence was repeated 20 times. Finally

the nanostructured co-doped a-Al2O3 is formed by 20 layers of Er3+ doped Si NPs sepa-

rated by 10 nm of a-Al2O3 (Figure 3.4). This thick a-Al2O3 layer is enough to avoid the

particle-particle interaction [20] in the depth direction. For analysis purposes an Er-only

doped reference film has been prepared preserving the Er3+ spatial dopant distribution.

In order to observe PL emission from the Er3+ ions in the co-doped films less than

20 Er3+ doped Si NPs layers are required, however to achieve enough PL signal from the

only Er3+ doped reference film a minimum of 20 layers is mandatory.

3.2.2 Changing the Er3+ content

The typical [Er3+] areal density obtained depositing a single Er3+ pulse is around ∼
5.0 1013 atm/cm2. Quenching of the Er3+ photoluminescence due to Er3+ clustering has

been demonstrated induced using more than one pulse per layer for Er3+ deposition. [26]
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Figure 3.4: X-section scheme of one Er3+ and Si NP co-doped thin film
with the Er3+ ions deposited following the Si NPs formation. The number of
pulses on Si target has been varied between thin films from 75 to 250 to tune
the size of Si NPs. The orange entities represent the Si NPs and the green
points represent the Er3+ ions.

The unique effective method to change the [Er3+] density is to deposit only one pulse but

using a higher laser energy density to ablate the Er target. Therefore, this has lead to

produce thin films doped by two different Er3+ concentrations, ∼ 5.0 1013 atm/cm2 and

∼ 8.0 1013 atm/cm2, in thin films with the same 2D-distributions of Si NPs. In the new

deposition conditions the number of pulses on the Si target (P) has been varied from 75

to 250. 1 The Table 3.4 shows a list of the produced thin films with the characteristic

design parameters.

3.3 Thermal treatment at low temperatures

The test films (Section 3.1.1) were processed by a low temperature thermal treatment.

This thermal treatment was used in order to optimize the PL emission is a conventional

furnace in air annealing at different temperatures for 1 hour up to 700oC (starting at 400,

500, 600, 650 and finishing at 700oC). This treatment is similar to that performed in our

previous works on Er doped a-Al2O3 films. All the thin films are characterized after every

thermal step at the different temperatures.

1At a half of the PhD period the excimer laser was replaced (from a LP 200 to LPX-Pro coherent.
The new laser beam size was different and then the density of energy reached at the a-Al2O3 target was
different changing the deposition conditions. All the system was re-aligned and calibrated to obtain the
same conditions however the deposition rates had changed.
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Label Substrate Er Energy Design parameter
(P/layer) (mJ/cm2) Si (P/layer)

SEφ1.0 Si/Fused SiO2 1 2.0 300
SEφ2.2−B Si/Fused SiO2 1 2.0 600
SEφ3.3−B Si/Fused SiO2 1 2.0 1200

Sφ1.0 Si/Fused SiO2 0 2.0 300
ErRef2 Si/Fused SiO2 1 2.0 0

SEφ1.6 Si/Fused SiO2 1 2.3 75
SEφ2.2 Si/Fused SiO2 1 2.3 125
SEφ2.6 Si/Fused SiO2 1 2.3 185
SEφ2.8 Si/Fused SiO2 1 2.3 210
SEφ3.3 Si/Fused SiO2 1 2.3 250

Only − Er − 4 Si/Fused SiO2 0 2.3 0

Table 3.4: Table of thin films produced to study the dependence of interaction on Si NP
sizes. The thin film design parameters are shown: number the Er3+ pulses per layer (Er-
P/layer), energy density (Energy) and number of pulses on Si target per layer (Si-P/layer).

3.4 Summary

The alternate PLD is a flexible deposition technique that allows create multiple nanos-

tructures to improve the emission of Er3+ ions using multi-dopants systems with control

below the nanoscale. This novel nanostructures will show special properties and unique

behavior that allow us to uncover new rewards and answers that will clarify some aspects

on the interaction between Er3+ ions and Si NPs.



Part II

Properties of the 2D-distributions

of amorphous Si NPs.
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During the experimental evolution of the fluorescence measurements different experi-

ments to characterized the physical properties of Si NPs was developed in parallel. How-

ever in the spectroscopic final analysis is fundamental to parameterize the distributions

of Si NPs and to establish the physical properties of the Si NP distributions before the

fluorescence analysis. For that reason, before the natural evolution of the experimental

program a new thesis part is described where the different experimental measurements on

the Si NPs properties have been described and analyzed.

The aim of this part is to characterize the physical properties of the amorphous silicon

nanoparticles (Si NPs) produced by alternate pulsed laser deposition (PLD) using different

experimental techniques: transmission electron microscopy and optical absorption. Once

the fundamental properties of the Si NPs as energy band-gap or average size are estab-

lished, the 2D-Si NP distribution parameters are determined using the RBS compositional

analysis. Finally the a-Al2O3- Si NPs interface is studied by the fluorescence properties

of the Si NP doped a-Al2O3 films. A relationship between the surface properties of the Si

NPs and the parameters of the 2D-Si NP distributions is established.

The parameters of the 2D-Si NP distribution and the analysis of the a-Al2O3- Si NP

interface will helps us to understand the Er3+ fluorescence behavior when it is localized

close to the Si NPs.
2

2The EFTEM image is a thermal LUT representation of a small region of the Figure 4.7b post-processed
by a background substraction and a band pass filter from 40 pixels to 2 pixels.



Chapter 4

Structural and chemical local

properties

The structural and chemical properties of the Si NPs are analyzed by electron microscopy

techniques. The transmission electron microscopy images reveals the amorphous nature

of the Si NPs before and after a annealing process. In addition the electron energy loss

spectroscopy gives us information about the chemical composition of the thin films com-

ponents and their evolution with the thermal process. The electron microscopy in addition

with the electron energy loss spectra allow us to determine the local chemical properties

of the Si NPs and obtain a first approximation about the average diameter of the 2D Si

NPs distributions.
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4.1 Thin films for electron microscopy

Transmission electron microscopy (TEM) images are a photo of our thin films in the

nanometer scale, where the information recorded is related to the electrons transmitted

through the specimens after interaction with the atoms that form the sample. Therefore

the structural properties of the Si NPs were determined by high resolution TEM (HRTEM)

that allow us determine the crystallinity quality of the Si NPs within amorphous a-Al2O3.

This work has been developed in collaboration with Amanda K. Pertford Long, Kabius

and M. Tanase from the Argonne National Laboratory at IL-USA during a two months

short stay. The electron microscope (Tecnai F20ST TEM operated at 200 kV with a

point-to-point resolution of 0.24 nm) included an energy loss spectroscopy (EELS) stage.

In the EELS measurements the electron beam emerging from the sample is passed through

a magnetic prism and the flight path of the electrons varies depending on their energy.

Recording these electrons at different positions with an electron spectrometer, it is possible

to obtain a intensity spectrum containing chemical information (as the atoms bonds) from

the thin films and Si NPs. TEM images formed only by electrons of particular kinetic

energies has been done to analyze the local chemical properties of the Si NPs using an

energy-filtered transmission electron microscopy (EFTEM) stage.

TEM microscopy requires special specimens, thin enough to allow the transmission

of electrons. Therefore two kinds of thin film structures have been prepared for specific

microscopy analysis, X-sections of the multilayer structures prepared by lift-out focus ion

beam (FIB) and monolayers of Si NPs (embedded and not embedded in a-Al2O3) deposited

on C-Mica substrates. The samples prepared on C-Mica substrates were separated from

the substrate by immersion in de-ionized water and were picked up with copper TEM grids

for observation. The multilayer structures were analyzed in the X-sections specimens but

the overlapping of Si NPs at different depths makes difficult the determination of Si NP

sizes.

4.2 Amorphous Si NPs embedded in amorphous Al2O3

The first specimen analyzed was an as deposited X-section of the test series (S7). The

Figure 4.1a shows a TEM image of the as grown thin film doped with Si NPs and Er3+ ions

with s=7 nm, whose Er3+ PL properties are analyzed in the Chapter 8. The image shows a

very low contrast between the Si NP layers and the Er3+ doped a-Al2O3 deposited between

them. The proximity in the atomic number between the silicon (Z = 14), aluminium

(Z = 13) and oxygen (Z = 8) atoms gives low mass contrast in the TEM microcopy

images. The image shows light ad dark layers. The lighter regions correspond to the

contribution of the Si NP layers plus the a-Al2O3 where the Si NPs are embedded. The

darker regions between them are associated to the presence of embedded Er3+ ions in the

a-Al2O3 which are quite heavy (Z = 68).
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(a) (b)

Figure 4.1: Figure 4.1a is a TEM image of a cross section of the S7 thin film. The Figure
4.1b shows the Fast Fourier transform of the image of Figure 4.1a

Using a large objective aperture to visualize the atomic-scale structure of the Si NPs,

no crystalline structure has been observed. The Figure 4.1b shows the fast Fourier

transform (FFT) of the TEM image of the Figure 4.1a showing the well defined multi-

layer structure. The light points indicated by arrows corresponds to the periodicity of

the nanocomposite layers, but there are not small rings that can be associated to any

crystalline structure.

The X-section specimens are very difficult to prepare and the superposition of Si NPs

at different depths difficults the Si NP identification and definition of Si NP edges. In

order to determine Si NP distribution parameters as Si NP size of Si NP density, a priori,

the most suitable method is to analyze the TEM plan view images. Therefore single layer

of Si NPs sandwiched between two a-Al2O3 layers has been deposited on C-Mica substrate

for different Si NP sizes. The Figure 4.2 shows a plan view HRTEM image of a Si NP

distribution similar to SEφ3.3 − B thin film. Nevertheless, the weak darker drops are

associated to the presence of Si NPs but the identification and measurement of size is not

possible due to the poor Si NP edges definition and moreover because only the bigger Si

NPs are detected. The Figure ?? shows a plan view from Si NP deposited on C-Mica

without a-Al2O3 with a Si NP average size equivalent to Sφ1.0. Dark small and spherical

Si NPs can be difficulty identified with sizes below the nanometer scale.

The TEM and HRTEM images show that there is no crystalline structure in either

the a-Al2O3 layers or the Si-rich areas, indicating the amorphous nature of both the a-

Al2O3 and the Si NPs for all the thin films. Determination of an average Si NP size and

morphology was not possible due to the low mass contrast between Al atoms and Si atoms.

The X-section images reveal the well defined layered structure.
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Figure 4.2: plan view image of one layer of Si NPs embedded in a-Al2O3

and deposited on C-Mica substrate. The Si NPs morphology corresponds
with the SEφ3.3−B thin film.

4.3 Chemical environment. Si and Al components

Local chemical analysis is necessary to identify and understand the local Si NP properties

of the 2D- Si NP distributions due to the difficulty of identifying sizes by TEM and HRTEM

images. Therefore EELS analysis is required before the EFTEM images acquisition to

determine the different element contribution for every specific specimen.

4.3.1 Chemical environment and EELS

The electron energy loss spectrum is composed by three main parts: the zero loss peak,

the low loss region and the high loss region. Every part gives us different information

about the chemical environment and the atoms bonding situation. [46]

1. The zero-loss peak is at 0 eV . It mainly contains electrons that still have the

original beam energy, i.e., they have only interacted elastically or not at all with the

specimen. The intensity of the zero-loss beam is high and only is useful to calibrate

the energy axis.

2. The electrons that have induced plasmon oscillations contributing to the low-loss

region (E < 100 eV ). The plasmon generation is the most frequent inelastic

interaction of electron with the sample and the intensity in this region increases

with specimen thickness. Therefore the contribution of the constituent elements

depends on their percentage in the structure.
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Figure 4.3: EELS spectrum of S7 in as grown conditions. The inset shows
the atom core loss spectrum after subtract the pre-edge background

3. When an electron interacts with an atom a specific minimum energy must be trans-

ferred in order to expel an inner-shell electron and to ionize the atoms. This critical

ionization energy is a energy threshold (EC), which leads to ionization edges in the

spectrum at energy losses that are characteristic for each element. Thus, EELS is

complementary to X-ray spectroscopy, specially in the detection of light elements

as in our case the silicon, aluminium and oxygen. Compared to the plasmon gen-

eration, the inner-shell ionization is a much less probable process, leading to a low

intensity of the peaks. In this high-loss region (E > 100 eV ), the amount of in-

elastically scattered electrons drastically decreases with increasing energy loss, thus

small peaks are superimposed on a strongly decreasing background. The critical

ionization energy EC is sensitive to the chemical situation of the element: e.g., the L

edge of Cu metal and CuO are shifted in respect to each other (chemical shift). Thus

this region, designated as ELNES (Energy-Loss Near-Edge Structure), mirrors the

DOS and provides information about the atom bonding situation.

4.3.2 Si and Al components in as grown thin films

The X-section are the very attractive specimens to measure the EELS spectrum because

it is possible to focus in a region of the sample without contribution from the substrate

and analyze the chemical environment.

The Figure 4.3 shows the EELS spectrum of the cross section S7 thin film. At low

energies the plasmon peak is observed at 22 eV while two smaller peaks are observed at

energies higher than 60 eV over the background contribution from the higher peak at

low energies. The Figure 4.4 shows the normalized low loss spectra of all the thin film

reference element components [47] and the low energy spectrum of as grown cross section

of S7 thin film. The maximum of the spectrum localized at energy of 22 eV is close to the

position of the maximum of the low loss spectrums for the Si atoms forming SiO2 or the Al

atoms forming Al2O3. The inflection points observed at 6.5 eV and 11.5 eV are due to the
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Figure 4.4: Normalized low loss spectra of GATAN references and S7 thin
film.[47]

contribution of the Er3+ atoms bond to the oxygen atoms within the a-Al2O3 host. There

are no detectable contributions from Al atoms bond to other Al atoms or Si in pure silicon.

In order to determine if the plasmon peak localized at 22 eV corresponds to silicon

oxidized or a-Al2O3 we have analyzed the high energy loss spectrum and obtained the en-

ergy loss edge structures. The inset of the Figure 4.3 shows the ELNES spectrum obtained

from the substraction of the background contribution to the spectrum at high energies.

The background was estimated assuming a power dependence of the EELS intensity with

the electron energy (Counts = AE−γ) in the region between 60 eV and the edge. Three

main peaks are observed at 79 eV , 99 eV and 123 eV and a hump at 85 eV . The energy

peaks positions and the spectra shape is similar to the the energy loss near edge structure

obtained for the a-Al2O3 in the references [48, 49]. Thus the EELS intensity comes mainly

from the a-Al2O3 contribution because of the content of silicon is a low percentage of the

total amount of atoms in the thin film being the silicon contribution shadowed/hidden by

the EELS intensity that comes from the Al atoms. Thus, the plasmon peak observed at

22 eV corresponds to the Al in the a-Al2O3 and the shift towards lower energies compared

to the reference spectrum (Figure 4.4)[47] is probably due to the amorphous nature of the

a-Al2O3.

Because the intensity in the low energy region increases with specimen thickness, in

order to distinguish contributions from chemical and atomic similar atoms as the alu-

minium and silicon is necessary to use samples where the content of the two elements

are equitable. Consequently the EELS spectra has been analyzed for a single layer of Si

NPs embedded on a-Al2O3 and deposited on C-Mica thin films and without Er3+ ions.

The low-loss spectrum shows a plasmon peak localized at 25 − 26 eV associated to the

carbon remaining on the sample after pick up the sample with TEM grids. The ELNES

peaks of carbon are localized for energies higher than 300 eV, thus the contribution of C s
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Figure 4.5: ELNES spectrum of a Si NP layer embedded in a-Al2O3 and
deposited on C-Mica. The numbers indicate the maximums founded in the
ELNES spectrum shape.

negligible in the spectrum region where the ELNES peaks of Al and Si atoms are localized

(100 eV - 200 eV). The Figure 4.5 shows the ELNES spectrum of a Si NP monolayer

thin film equivalent to the SEφ3.3 − B multilayer film where 5 peaks can be identified

(labeled 1, 3, 4, 5, 6) and a hump (labeled 2) associated to the energies (79, 97, 105,

127 and 83 eV) and 83 eV respectively. The peaks located at 79 (1), 97 (3) and 127 (5)

eV and the hump at 83 eV are related to the contribution from a-Al2O3 host because

the energy values are similar to the ELNES peaks obtained for the S7 film (see inset of

Figure 4.3). However the peaks located at 105, 127 and 158 eV are due to the EELS high

loss contribution from the silicon in the thin film in a oxidized state (SiO2) or pure (a-

Si). Therefore the presence of a-Al2O3 prevents us discerning the oxidation state of silicon.

In order to determine the ELNES spectrum of our silicon without the contribution

of the Al in a-Al2O3 that hides the silicon oxidation state, Si NPs were deposited on C-

Mica substrates without a-Al2O3 to analyze the EELS spectra of the silicon forming Si

NPs. The spectra have been normalized to the unit to compare spectrum shapes and peak

positions. Using the GATAN spectra as references [47], the thin film formed by smaller Si

NPs (average size equivalent to SEφ1.0) shows silicon oxidized while the thin film formed

with the bigger ones (average size equivalent to SEφ3.3−B) shows mainly silicon in pure

silicon (see Figure 4.6). Therefore the state of oxidation is Si NP size dependence and in

the plan view with the bigger Si NPs the Si NPs are oxidized only at the surface while the

core remains pure. We must emphasize that when the Si NPs are embedded in a-Al2O3

and then isolated from a reactive atmosphere, therefore less oxidation is expected. Thus

the Si NPs can be oxidized at Si-a-Al2O3 interface but the Si NP core remains formed by

pure a-Si. This has been shown for Cu nanoparticles of similar size. [31]

We have identified the oxidation state of the Si NPs reducing the a-Al2O3 contribution

in the electron microscopy specimens. Plasmon peaks are observed in the low-loss region

for all constituents of the thin films. They will be used to acquire EFTEM images from
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Figure 4.6: Normalized ELNES spectra of a Si NP layer deposited on C-
Mica of two films with different Si NP average size distributions (1.1 nm and
3.3 nm average diameter, φ). The ELNES spectra are compared with the
Si in Si and Si in SiO2 references.[47] The grey lines represent the raw data
and the black lines correspond to the GATAN references. The differences
between the reference spectrum of Si atoms in SiO2 host with the spectrum
of the Si NP layer of small average size (1.1 nm) are related to the difficulty
of estimation of the background contribution.

electrons of a particular energy.

4.4 Silicon forming agglomerates and distributed in layers

After analyzing the EELS spectra is possible to locate the different atoms in the sample

and relate it to its oxidation state forming the image with only the electrons within a small

range of energy. For that a slit is used to select the electrons diffracted for a specific energy

range and the image is formed only with these electrons. The images formed filtering the

energy of the electrons diffracted in the films are denominated EFTEM (Energy Filtered

Transmission Electron Microscopy) images and compositional maps of the Si-rich areas

was observed independently of their crystalline or amorphous structure.

The ELNES spectrum showed only contribution from the a-Al2O3 host and the ob-

tained composition maps based on the pre-edge and post-edge images have had no enough

definition. Furthermore, in the EELS spectrum obtained from the X-section of S7 thin

film the contribution of Si in Si plasmon peak is hidden by the Al contribution. However,

the EELS analysis of the plan view specimens shows that there is contribution from sili-

con in pure silicon in the high loss region. Consequently images filtering at the theoretical

energies values where is localized the plasmon peak of the Si in Si were acquired.[50, 51]

Therefore, EFTEM images filtering at 16 eV using a energy window width of 4 eV has been
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acquired (see Figure 4.7a) obtaining bright regions distributed in layers that correspond

to the presence of Si NP layers.

(a) (b)

Figure 4.7: The Figure 4.7a and the Figure 4.7b are two cross section EFTEM images of
the as grown S7 thin film. The Figure 4.7a shows the cross section filtering at plasmon peak
of silicon in pure silicon, the bright white regions are associated to the Si NPs contribution.
The Figure 4.7b have been obtained filtering at 57 eV using a 5 eV window width localized
at the aluminium in a-Al2O3 tail and outside of Si plasmon peak. Thus the black holes
correspond to the presence of Si NPs.

In order to determine the presence of Si NPs and estimate a average size value, several

intensity profiles in the Si NP layers have been obtained. However, due to the proximity

of the pure Si plasmon peak to the Al plasmon peak in a-Al2O3, there is contribution from

the a-Al2O3 deposited in the space between Si NPs and the determination of the Si NP

average size from this EFTEM images is difficult with a poor Si NP edges definition.

Considering that the contribution to the EELS spectrum of pure Si is low in compari-

son with the contribution of the Al atoms, filtering at energy ranges where the contribution

comes mainly from a-Al2O3 plasmon peak tail can be a route to obtain images where the

dark regions are associated to the Si. Therefore EFTEM images were obtained by filtering

in the energy range from 50 to 150 eV corresponding to the Al plasmon tail. The Figure

4.7b shows an image of the S7 X-section filtered at 60 eV and using an energy window

of 5 eV. The Si NPs can be identified as dark holes. It is possible to enhance the image

definition to localize the Si NPs using image filters in a post-acquisition process, but this

post-process can deceive and lead us to mistake in the measurements. The EFTEM image

shows in the abstract of this Part of the manuscript is a thermal LUT (color look up

table) representation of a small region of the Figure 4.7b post-processed by a background

substraction and a band pass filter from 40 pixels to 2 pixels.

Plotting intensity profiles in the images is possible to estimate the thickness of the

nanocomposite and the in-plane dimensions of the Si NPs. The bottom graph of the

Figure 4.8 shows a intensity profile in a line of 4 pixels width following the Si NP layers in

the image of Figure 4.7b while the top graph of the Figure 4.8 shows a intensity profile in
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Figure 4.8: Intensity profiles of the as grown S7 thin film parallels to the
nanocomposite layer (measured region indicated by an arrow line in the image
insets). The top figure shows a intensity profile in at a-Al2O3 intermediate
region of the image obtained filtering in the Al plasmon peak tail (Figure
4.7b). The bottom figure is the profile obtained in an Si NP layer using the
same image, therefore the holes shows the presence of Si NPs.

the a-Al2O3 intermediate layer. The a-Al2O3 profile shows a random intensity response,

however the region corresponding to the Si NPs shows holes with a significative absolute

intensity variation and a width median value around 6 ± 2 nm. The average in-plane

size has been determined assuming the width of the hole as the FHWM, note that the

sample is a X-Section specimen and thus the size is probably overestimated due to the

superposition of Si NPs in the same layer but at different depths.

The Figure 4.9 shows the in depth profiles of the S7 thin film obtained from images

recorded at the Al plasmon peak tail and the Si plasmon peak. Measuring the width of

the deeps of the intensity profile of the Al plasmon peak tail (top Figure of Figure 4.9)

and the width of the intensity peaks (bottom Figure of Figure 4.9) of the Si plasmon peak

it is possible to estimate the thickness of the Si NP layers. The median thickness obtained

value for the two types of profiles is 4.6± 0.7 nm.

Therefore using the EFTEM images from the as grown X-section thin films it has been

possible to estimate an average Si NP dimensions values.

4.5 Annealing. Amorphous Si NPs and a-Al2O3 stoichiome-

try.

As it has been described in the Chapter 3, the test films were processed by a low temper-

ature thermal treatment in order to optimize the PL response of the co-doped thin films.
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Figure 4.9: Intensity in depth profiles of the as grown S7 thin film (mea-
sured region indicated by an arrow line in the image insets). The top Figure
correspond to the intensity profile obtained from the image of the Figure 4.7b
filtered at the Al plasmon peak tail. The deeps correspond to the Si NP
layer. The bottom Figure shows the in depth profile obtained from the image
filtered at the Si plasmon peak.

The electron microcopy and the EELS spectroscopy gives us information about how the

annealing process affects to the composition, crystallinity and structure of the multi-layer

nanostructured thin films.

The Figure 4.10 shows two TEM images obtained from the annealed at 700 ı̈¿1
2C S7

film at different resolutions. The multi-layer structure is maintained after the slow ther-

mal process (see Figure 4.10a). However, observing the thin film in more detail (Figure

4.10b), two linear regions with a higher density are observed and two brighter lines appear

at both sides of the Si NPs layers.

HRTEM images have been recorded using small microscope apertures to enhance the

spatial resolution although at the detriment of the mass contrast, in order to determine

the crystallinity of the Si NPs. No crystalline structures have been detected in the Si NPs

layers and the a-Al2O3 host (see Figure 4.11). Therefore the multilayered structure and

the amorphous nature of the thin films is maintained after the thermal anneal process at

700 ı̈¿1
2C.

In order to determine the composition of the bright regions surrounding the Si NP

layers (Figure 4.10b) the low-loss EELS spectrum corresponding to the S7 annealed thin

film has been acquired and has been analyzed in conjunction with the ELNES spectrum.

Significant changes have been observed in comparison with the EELS spectrum of the as
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(a) (b)

Figure 4.10: The Figure 4.10a shows a TEM image of a cross section of the S7 thin film
annealed at 700 ı̈¿ 1

2
C. The Figure 4.10b shows a TEM image of a smaller region of the

Figure 4.10a where it is easily to observe two defined bright linear regions delimiting the Si
NP layers.

grown thin film. In fact, the complete EELS spectrum shows a more defined shape and

peaks than in the as grown thin film suggesting a better defined chemical environment

(Figure 4.12). The mean peak at low energies is shifted to higher energies at 25 eV, a

similar energy to the plasmon peak of the Al atoms in the α−Al2O3. However the shape

of the low energy loss is more similar to the Al atoms in poly-crystalline Al (with a hump

at higher energies) than the Al in α − Al2O3 and that can be related to a non stoichio-

metric a-Al2O3 with a slight excess of Al atoms. [52, 53] Furthermore, the contribution at

lower energies appears more defined than in the as grown film S7. Fitting the spectrum

at low energies (below 80 eV) to the sum of three main peaks one peak centered at 14 eV

has been identified, close to the Si plasmon peak in pure silicon. The ELNES spectrum

shows only information about the host properties, showing an ionization edge similar to

the α−Al2O3 (see inset of Figure 4.12) with isolated peaks at 79, 84, 99, 125 and 143 eV.

Figure 4.11: X-Section HRTEM image using a 5 nm scale from the S7 thin
film annealed at 700 ı̈¿ 1

2
C. Host and Si NP layers show amorphous structure.
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Figure 4.12: EELS spectrum of S7 after the slow anneal process. The inset
shows ELNES spectrum. The letters correspond to the images in the Figure
4.13.

No other contributions have been observed due to the low percentage of Si or Er atoms

in comparison with the Al that forms the host. But we would like to emphasize that the

ELNES spectrum suggests a relocation of atoms that seem to link locally to form a more

stable stable structure, these changes have to occur locally because the HRTEM images

(Figures 4.11 and 4.10b) only show amorphous structures. The local transformation to

crystalline Al2O3 has been observed previously in only Er3+ doped a-Al2O3 thin films only

after anneal process at temperatures higher than 850 ı̈¿1
2C.[33, 54] Thus, under annealing

at 700 ı̈¿1
2C, the host has not crystallized but the ionization edges reveals the reorientation

of the Al atoms, suggesting a configuration more close to the α−Al2O3 coordination.

According to the chemical information obtained from the EELS spectra stack EFTEM

images have been measured from 12 eV to 150 eV with a minimum of the energy window

width of 4 eV. Assuming that the peak observed below the 25 eV corresponds to the con-

tribution of Si atoms in a Si environment, the image formed filtering the electrons at 16 eV

(values for the Si in Si plasmon peak) will show the regions in the thin film formed by Si.

The Figure 4.13a shows the EFTEM image filtering at 16 eV where the silicon nanocom-

posite layers are bright. The EFTEM image formed filtering center at the plasmon peak of

Al in the a-Al2O3 at 24 eV shows surprisingly a higher concentration of Al atoms localized

in the border of the Si-nanocomposite layer as is reflected in the Figure 4.13b by the two

wavy bright lines close to the Si NPs. Taking into account that the new position of the

a-Al2O3 plasmon peak suggests a relocation of atoms to a α − Al2O3 configuration, it

seems that the Al atoms close to the Si NPs are in a more stoichiometric a-Al2O3. In fact,

the Si NP layers seem to act as a diffusion barriers to the oxygen atoms. However when

the we filter at higher energies in the tail of the Al plasmon peak at the beginning of the

plateau region of the hump at 28 eV, the image formed (see Figure 4.13c) shows a con-

tinuous contribution in all the a-Al2O3 intermediate layers between the Si nanocomposite

layers. This hump could be related to the presence of Al-Al bonds that can be caused
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by the decrease of oxygen atoms that have diffused towards the Si nanocomposite. The

contribution of different elements can be merged in a unique image forming a composite

map. The Figure 4.13d shows the RBG image composed by merging the previous images

assigning the colors red to silicon, green to the Al plasmon peak and blue to the its tail,

forming a composite map.

(a) (b)

(c) (d)

Figure 4.13: EFTEM images of the S7 thin film after the slow anneal process. The Figure
4.13a shows the contribution of pure silicon in the X-section, it was acquired filtering at 16
eV and using a window width of 4 eV. The Figure 4.13b was obtained filtering at the Al
plasmon peak in a-Al2O3 (24 eV using a window width of 4 eV). The Figure 4.13c shows the
image formed filtering in the tail of the Al plasmon peak in a-Al2O3 (28 eV- 4 eV width).
The Figure 4.13d shows the RBG image composed by merging the previous images assigning
the colors red to silicon, green to the Al plasmon peak and blue to the its tail, forming a
composite map

In order to determine the presence of nanoparticles and estimate an average size value

after the thermal process at 700 ı̈¿1
2C, several intensity profiles have been obtained. The

Figure 4.14 shows the intensity profiles obtained parallel to the Si NP layers. The a-Al2O3

contribution is a plateau profile shown in the top Figure of Figure 4.14 and obtained from

a a-Al2O3 inter-Si NP-layer region of the image recorded filtering at the tail of the plasmon
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Figure 4.14: Intensity profiles obtained parallels to the Si NPs layer in the
EFTEM images for the annealed S7 (direction of measurement indicated by
a white arrow in the image insets). The top Figure reports the profile in the
a-Al2O3 inter-Si NP-layer for the image recorded filtering at the tail of the
plasmon peak (Figure 4.13c). The bottom Figure reports the profile in the Si
NP layer for the image recorded filtering at the Si in Si plasmon peak (Figure
4.13a).

peak (Figure 4.13c). The presence of Si NPs is determined by the profiles drawn at the Si

NP layer in the image obtained filtering at the Si in Si plasmon peak (Figure 4.13a). The

average in-plane dimension of the Si NPs was estimated around 4± 1 nm measuring the

average width of the peaks intensity profile (bottom figure of Figure 4.14).

In depth profiles have been traced in the EFTEM images of Figures 4.13a , 4.13b and

4.13c in order to determine the thickness of the Si nanocomposite layer. The intensity

profile obtained from the image filtered at the Al plasmon peak in Al2O3 (Figure 4.15.a)

shows two peaks that correspond to the presence of stoichiometric a-Al2O3 delimiting the

Si NPs thus the Si nanocomposite layer thickness was estimated by the distance between

these two peaks. The intensity profile (Figure 4.15.b) obtained from the image of the

Figure 4.13c shows the stoichiometric a-Al2O3 as two small deeps closer to the large deep

due to the presence of the nanocomposite layer, thus the distance between the secondary

maxima defines the Si nanocomposite thickness. The in depth profile obtained from the

image filtered at the Si plasmon peak (Figure 4.15.c) shows clearly the contribution only

from the nanocomposite layer being the Si NP layer thickness measured by the FHWM of

the peaks. With all these measurements the Si-nanocomposite layers thickness estimated

is 3.8± 0.3 nm.

For the as grown thin films the Si NP in-plane average dimension is 6 ± 1 nm and

the Si nanocomposite layer thickness around 4.6± 0.7 nm were obtained. However in the
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Figure 4.15: Intensity in depth profiles of the annealed S7 thin film (direc-
tion of measurement indicated by a white arrow in the image insets). The
Figure 4.15.a corresponds to the intensity profile obtained from the image
of the Figure 4.13b filtered at the Al plasmon peak tail. The Figure 4.15.b
corresponds to the intensity profile obtained from the image of the Figure
4.13c filtered at the Al plasmon peak tail. The Figure 4.15.c corresponds the
in depth profile obtained from the image filtered at the Si plasmon peak.
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annealed thin film the in plane average dimension is 4± 1 nm and the Si nanocomposite

layer thickness is 3.8 ± 0.3 nm. If we also note that the EELS spectrum shows a more

defined shape suggesting a repositioning of atoms we can conclude that after the anneal

process the diffusion of oxygen and a relocation of atoms occurs and probably cause the

oxidation of the regions close to the Si NP surface while the pure a-Si core of the Si NPs

is reduced.

4.6 Conclusions

The electron microscopy analysis shows:

1. Well defined multilayer structures (FFT of multilayer is perfect)

2. Amorphous nature of all components before and after the annealing process

3. Presence of drops of silicon (formed Si NPs) in X-sections and plan views

4. Silicon oxidized in small Si NPs no embedded in a-Al2O3. Bigger Si NPs show

no oxidation, therefore low probabilities of total oxidation in Si NPs embedded in

a-Al2O3, only oxidation of the surface of Si NPs.

5. A first approximation of the Si NP size was obtained around nm for the S7 thin

film.

6. Formation of Al densification or accumulation in the Si NP layers after the anneal

process at 700̈ı¿1
2C. The Si NPs acts as a barrier to the Al diffusing thought the host

due to the excess of Al in the no stoichiometric a-Al2O3 thin films.

7. The host has no crystallize but the ionization edges reveals the reorientation of the

Al atoms to a configuration more close to the α−Al2O3 coordination.

8. EFTEM images after the annealing process suggest a reduction of the Si NP average

size after the annealing process.

9. No clear determination of size by microcopy due to the amorphous nature of host

and Si NPs in the cases of smaller Si NPs. Other techniques are required to a in

depth study.



Chapter 5

Morphological properties inferred

from optical response

The presence of amorphous Si NPs embedded in amorphous aluminium oxide host has

been observed by electron microscopy techniques. Therefore our Si NPs have 1 nm to 4

nm as average diameter showing quantum confinement. The analysis of the absorption

of the Si NPs seems to be the unique route to estimate an average size and therefore the

unique route to obtain the geometric parameters of the 2D-distributions at the nanoscale.

In this Chapter the different methods to obtain the band gap energy of the amorphous Si

NPs are discussed and a criteria to a average size estimation is established.

57
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5.1 Size dependent optical response of semiconductor Si

NPs

The HRTEM images has shown a weak presence of amorphous Si NPs embedded in a

amorphous aluminium oxide matrix while the EFTEM images has shown clearly the Si

NP formation during the growth process and their distribution in layers (Figure 4.2 and

Figure 4.7a). But the amorphous nature of Si NPs and a-Al2O3 host and the proximity

between the mass of silicon and aluminium makes difficult to identify the shape and size of

the Si NPs by HRTEM or EFTEM. A usual approach to obtain information of the size of

semiconductor Si NPs is based on the measurement on the PL response.[55] Nevertheless

in the Si NP doped as grown thin films no PL has been observed. This is probably because

of the high number of defects that act as non-radiative decay channels in the as deposited

thin films (discussed in detail in the Chapter ??). The absorption similarly to PL carries

information on the electronic structure, but unlike PL the absorption is not sensitive to

defects on Si NP surface or host. Therefore we have turned to the measurements of the

absorption spectra in order to provide us information about the electronic structure and

then about an average size of the Si NPs.

The thin films studied are a-Al2O3 thin films doped by Si NPs and Er3+ ions dis-

tributed in layers. The a-Al2O3 is transparent in all the UV-VIS range and the concentra-

tion of Er3+ is too low to be observed by optical absorption spectroscopy of the thin films.

Therefore the absorption spectra is only related to the presence of the amorphous Si Si

NPs. The Figure 2.6 shows the transmission of Si NP doped a-Al2O3 thin films obtained

by selecting the number of pulses used to ablate the silicon target. The absorption edge

shifts to longer wavelengths when the Si NP size is increased due to quantum confinement.

Therefore our Si NPs are an special system as they show quantum confinement behavior

being constituted by an amorphous indirect semiconductor. Before analyzing the relation

between the optical properties and the average size of the 2D Si NP distributions we have

to analyze the direct or indirect behavior of the amorphous Si NPs to understand the

optical response and then inferred the Si NP band structure.

5.2 Absorption in semiconductors

The optical absorption spectra of semiconductors could provide a rich information about

the semiconductor electronic properties such as band-gap, direct or indirect transitions,

distribution of states or defects and impurity levels [56, 57, 58]. In semiconductors the

photons can excite electrons from the valence band to the conduction band or/and interact

with phonons or electrons in localized defects. Our main purpose is to obtain information

about the band gap energy of the Si NPs, in fact only the region close to the fundamental

absorption edge have been examined.

The first step is to analyze the direct or indirect behavior of our amorphous Si NPs is
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to determine the mathematical approximation of the optical absorption edge that fits the

absorption and subsequently to obtain the band-gap energy. The absorption edge is mainly

related to the band to band transitions. These inter-band (band to band) transitions

must preserve the k-selection rule imposed by the conservation of momentum that implies

kγ + ki = kf where ki and kf are the wave vectors to the initial and final electron states

and kγ corresponds to the incident photon. Due to the small momentum of the photons

in the optical range (pγ = h/λ, kγ = 2π/λ), transitions involving only photons imply a

very small momentum change. Then it is possible to make the approximation ki ∼ kf ,

indicating that the inter-band transitions must preserve the wave vector.

This condition close to the band-gap involving only photons is possible when the semi-

conductor band diagram shows the minimum energy of the conduction band and the

maximum energy of the valence band with the same wave vector as in the direct semi-

conductors. In indirect semiconductors as silicon, the participation of single or multiple

phonons is necessary for the inter-band transition in the band-gap, thus the probability of

transition is reduced and the momentum conservation rule can be written as ki±kΩ = kf

where kΩ is the wave vector of the phonons involved. This difference is shown in the shape

of absorption spectra and the probability of photon emission in indirect semiconductors is

reduced.

5.2.1 Direct semiconductors

The absorption in the GAP is proportional to the probability of transitions and the joint

density of states. Considering the simple general case of parabolic bands and in the case of

allowed direct transition (direct semiconductors) in the region close to the band-gap,[58]

the absorption is proportional to the root square of the energy as in the equation 5.1:

α = 0, for ω < ωg

α ∝ (ω − ωg)1/2 =⇒ α ∝ (E − Eg)1/2 (5.1)

where Eg is the energy of the band-gap.

The shape of the square of absorption for an example of direct semiconductor (PbS)

is shown in Figure 5.1.[59] It is possible to obtain the value of the energy gap plotting the

square of the absorption coefficient as a function of the photon energy. Then the curve

shows a linear behavior and the intercept with the energy axis defines the direct energy

gap value. Alternatively, the energy gap can be estimated as intercept with the energy

axis in a semi-logarithmic plot of the multiplication of absorption coefficient for the energy.
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Figure 5.1: Plot of the square of the absorption coefficient of PbS as a
function of the photon energy.[59]

5.2.2 Indirect semiconductors

In indirect semiconductors the minimum of the conduction band and the maximum of

the valence band have associated different values of wave vector, then the presence of

phonons are required to the inter-band transition. The conservation of momentum requires

kf + kΩ = ki + kγ . As momentum of the photon is negligible, then the conservation of

momentum for an indirect transition can be expressed as kf − ki = ±kΩ.

Similarly, the conservation of the energy for the two cases of phonon emission and

absorption can be expressed as:

~ωγ,e = EC − EV + EΩ,emitted = Egap + EΩ,emitted (5.2)

~ωγ,a = EC − EV − EΩ,absorved = Egap − EΩ,absorved (5.3)

where EC and EV are the energy level at conduction band and valence band respec-

tively and the Eγ,e is the energy of the photon in the case of a emission of a phonon and

the Eγ,a is the energy of a photon in the case of the absorption of a phonon.

From equations 5.2 and 5.3 it is evident that the initial and final states of the electron

in the valence and conduction bands, can have an anergy range given by ~(ωγ ± ωΩ),

where ωΩ and ωγ correspond to the angular frequencies of the phonon and the photon

respectively. It defines two energy regimes, where the particular transitions conserve

the energy between the initial and the final states. The absorption is proportional to

the probability of transitions and the joint density of states in each energy regime (it is

possible to calculate by using the second order perturbation theory [57]). Then:

Transition with phonon absorption:

αa ∝ (E − Eg + EΩ)2 for Eγ > (Eg − EΩ) (5.4)
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Transition with phonon emission:

αe ∝ (E − Eg − EΩ)2 for Eγ > (Eg + EΩ) (5.5)

An example of the general shape of the absorption edge for an indirect-gap semicon-

ductor could be observed in the Figure 5.2 that shows the square root of the absorption

coefficient of silicon as a function of the photon energy [60]. It is clear the presence of

two linear regimes that can be analyzed independently. In fact, if the plots of
√
αe and

√
αa are extrapolated to the energy axis, the intersections associated gives as the values of

Ea = Eg−EΩ and Ee = Eg +EΩ. Then the band gap energy corresponds to the midpoint

between the two energies Eg = (Ea − Ee)/2.
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Figure 5.2: Dependence of the absorption constant on photon energy for
bulk silicon (reference [60])

5.3 Direct or indirect Si NPs?

The silicon as a indirect semiconductor is a poor light emitting material. As was explained

in the previous section 5.2 the indirect semiconductor needs the intervention of phonons

to observe a radiactive photon emission, as a consequence, the probability for radiactive

recombination is very low. The discussion about the use of silicon as an efficient emitter

is still controversial [61]. But this is a different debate that not only concerns the direct

or indirect character of silicon, and that involves other physical properties as defects, dan-

gling bonds and nanocrystal surface passivation or oxidation.

In the nineties there was a great discussion about the indirect or direct nature of silicon

nanoparticles (usually called quantum dots) to reduce the poor quality of silicon based

emitters and to understand the possibility of improvement of the quantum efficiency of sil-

icon in this systems. Theory works about how to turn the indirect character of the silicon

to direct character through the reduction of the size of the Si NPs were developed, but

still today no experimental evidence has been obtained of silicon direct character in small
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Figure 5.3: Behavior of the square and the root of the absorption a function
of the photon energy for an indirect or a direct semiconductor for a simulation
assuming the dependencies defined in the expressions 5.1 (Figure 5.3.a) and
5.5 (Figure 5.3.b).

nano-silicon.[41, 62, 63] Most standard quantum mechanics textbook explain the allowed

states of the charges generated associated to a Si NP as the states of a single particle in a

potential well but, however, in Si NPs the electrons and holes motion is governed by the

silicon band structure and then to the silicon indirect character causing an interesting and

complex physical problem to solve. In the most simple approximation of the electronic

states of the nanocrystals as discrete levels as in the atoms, the optical matrix element

that defines the allowed or nor allowed optical transitions must be evaluated. Therefore

the wave functions of the confined carriers (electron and holes) are spread in the wave-

vector space (k space) that breaks the usual k-selection rule (momentum conservation) for

special Si NP sizes. [63, 41] It is possible to define the wave-functions of the electrons in

the Si NP states as Fourier transform of the usual crystal basic function. These Fourier

component plays the same role in the Si NPs as the phonons in the bulk material and

then direct optical transitions become allowed (called zero-phonon transitions). In Si NPs

this zero-phonon assisted transitions are possible for size scales smaller than 2.0nm [63]

for crystalline Si NPs and 2.4 nm for amorphous Si NPs[64].

Our aim is to obtain the band-gap energy value to determine the Si NP average di-

ameter of the 2D-Si NP distributions. Actually there is no reasonably evidence about

the nanocrystal of silicon retain the indirect character [65, 66, 67] but, however, in other

indirect semiconductor with similar properties, as Germanium [68, 69], direct character

has been observed when the size is reduced enough. The electron microscopy analysis ex-

plained in the Chapter 4 shows the presence of very small Si NPs with sizes from 1 nm to
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4 nm. Therefore in order to establish a estimation method it is is necessary to analyze the

direct or indirect character of our the amorphous Si NPs from the absorption experimental

data. The Figure 5.3 shows the square and the root of the absorption as a function of

the photon energy for an indirect or a direct semiconductor, assuming the expressions 5.5

and 5.1. The linear behavior is only observed for the square of the absorption in a direct

semiconductor and the root of the absorption for an indirect semiconductor. Therefore

analyzing the linear tendency of the square or root of the absorption data it is possible to

identify the direct or indirect character of the Si NPs.

5.3.1 Si NP absorption and determination of band-gap energy

In order to obtain the absorption of the Si NPs, transmission and ellipsometry measure-

ments were performed in the thin films deposited on fused silica and silicon substrates,

respectively. Thereby a preliminary ellipsometry was performed in the optical range from

300 to 1700 nm. A BEMA (Bruggeman Effective Medium Approximation) model was

used to fit the optical constants of the nanocomposite layer including the absorption. The

BEMA model does not account the band-gap variation with the Si NP size because the

amorphous silicon used to fit the optical properties have the same optical properties be-

tween thin films. So the BEMA did not prove to be useful for obtaining the energy gap and

other models must be used as Tauc-Lorentz oscillators.1 However the optical constants

obtained by fitting the spectroscopic ellipsometry data to a BEMA model are useful to

estimate a range for the absolute value for the absorption and are helpful to corroborate

the absorption calculated from the transmission measurements.

The transmission of the films is an indirect measurement of the absorption, but is clear,

fast and non destructive method to characterize the optical properties. The Figure 2.6

of the Chapter 2 shows the transmittance from thin films embedding Si NPs of different

sizes deposited on a fused silica substrate (transparent in all the measurement range). It is

possible to observe how the absorption edge is shifted to lower energies when the number

of pulses used to ablate the silicon increases indicating a increase of the size of the Si NPs.

The transmittance is the fraction of incident light at a specified wavelength that passes

through a sample, T = I/I0, where I0 is the intensity of the incident light and I is the

intensity of the light coming out of the sample. At normal incidence conditions we assume

that the contribution of reflection is negligible, thus it is possible to use the Beer-Lambert

law Tfilm = Ie−αz, where z is the thickness of the absorber. Consequently it is possible

to obtain the absorption coefficient from transmission measurements using the expression

5.6.

1Actually this work is in progress by P.M. Roque at the IO-CSIC
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Figure 5.4: Logarithmic plot of the absorption coefficient as a function of
the photon energy for a thin film doped by Si NP with an average diameter
of 3.3 nm. The raw data correspond to the absorption obtained from the
transmission measurements and the black line shows the BEMA fit model
from the ellipsometry measurements.

α =
ln( 1

Tfilm
)

z
, where Tfilm = T/Tsubstrate. (5.6)

The expression 5.6 have been obtained assuming that the reflected beam at normal

incidence is zero. However the interference between the reflected beam and the transmitted

beam in the interface substrate-thin film generates oscillations as a function of wavelength

in the transmittance response that can make difficult identified the gap energy. Moreover

the transmission measurements (Figure 2.6) shows a displacement in the IR region to

lower values of transmission that affects more to the thin films with higher silicon content.

The estimation of the absolute zero for the absorption of the nanocomposite is essential

to obtain a correct band-gap energy value due that it is critical to determine the intercept

with the Photon energy-axis that define the GAP. Therefore it is essential estimate the

percentage of reflected beam at the air-thin film interface (Rair−t) and the thin film-

substrate interface (Rt−s). Taking into account that the thin film and the substrate form

a multilayer structure the absorption can be obtained by the expression 5.7:

α =
ln( FrealTfilm

)

z
. (5.7)

where Freal = (1 − Rair−t)(1 − Rt−s) and R1−2 is a function of the complex optical

constant of the mediums (nmedium) by the expression 5.8.

R1−2 = |nmedium−2 − nmedium−1

nmedium−2 + nmedium−1
| (5.8)
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Label Substrate z ncomposite Design parameter
(nm) Si (P/layer)

SEφ1.6 Si/Fused SiO2 15 1.97 + 0i 75
SEφ2.2 Si/Fused SiO2 26 2.03 + 0i 125
SEφ2.6 Si/Fused SiO2 44 2.05 + 0i 185
SEφ2.8 Si/Fused SiO2 50 2.10 + 0i 210
SEφ3.3 Si/Fused SiO2 70 2.40 + 0i 250

Table 5.1: Table of thin films produced to study the dependence of interac-
tion on Si NP sizes. The total thickness of the sum of all the nanocomposite
layers, the complex refractive index at 1.53 µm and the corresponding design
parameter for each thin film are shown.

The nthinfilm is valued as a weighted average of the a-Al2O3 and the nanocomposite

optical constants. The nanocomposite optical constants were obtained by the ellipsometry

analysis. The factor Freal varied form 0.92 to 0.95. The next issue is to identify the z

value that corresponds to the sum of the thickness of all nanocomposite layers forming

the nanostructured thin film because the a-Al2O3 and substrate are not absorbers in all

the optical range. The simulations obtained from the ellipsometry fitting using a BEMA

model gives us information about the thickness of each layer of Si NPs of the nanostruc-

tured thin films. As an example the Table 5.1 shows the z value and the optical constants

for a series of films formed by Si NP with different average diameter.

The Figure 5.4 shows the agreement between the EMA model fitted simulation without

interference oscillations and the absolute absorption obtained from transmission measure-

ments for a thin film with Si NPs embedded with a average size around the 3.3 nm.

Direct character

Once the absorption absolute magnitude is obtained from the transmission measurements

the shape and tendency of the curves are analyzed to determine the estimation of the

band-gap as indirect or direct Si NPs.

The Figure 5.5 shows the square of the absorption coefficient for a-Al2O3 thin film

doped with Si NPs with different average diameters. The curve of the absorption coef-

ficient does not show a linear behavior as a function of the photon energy as in direct

semiconductors. Note that almost all articles about direct semiconductor analyze the

absorption only in the knee region close to the fundamental absorption edge [59]. The

knee region closer to the absorption edge shows linear behavior at low absorption values.

However the simulations of the square of absorption for an indirect semiconductor show

closer to indirect than to direct semiconductor (see Figure 5.3), as a result the Si NPs in

this work show indirect semiconductor character and only in the case of the smaller size
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Figure 5.5: Square of the absorption coefficient for a-Al2O3 thin film doped
by Si NPs with different average diameters obtained from transmission mea-
surements.

the direct character is possible.

Indirect character

The root of the absorption of for a-Al2O3 thin film doped by Si NPs with different average

diameters is shown in the Figure 5.6. A linear behavior is observed and only it is modulated

due to the interference phenomena between the reflected and transmitted beam. The

inset shows clearly the linear behavior in the absorption data obtained from the fit of

the ellipsometry data using a BEMA model for the thin film with an average diameter of

3.3 nm superimposed to the experimental data from the transmissions. However in the

description of the absorption of indirect semiconductor (Section5.2.2) two regimes were

described one for the inter-band transitions that required the emission of phonons and

another for the inter-band transitions that required the absorption of phonons. Therefore

only one process of emission or absorption of phonons is observed. The Figures 5.2 and 5.6

suggest that the phonon absorption has been masked by the the free carrier absorption or

can be replaced by the intra-band transitions. This phenomena has already been observed

in previous works in bulk indirect semiconductors.[70] If we assume the lack of phonon

absorption, our band-gap energy estimation will be slightly higher than the real band-gap

energy.

Note that in the literature that refers to zero phonon transitions [63] or conversion of

an indirect optical transition into a direct one [41] a critical nanoparticle size is defined

as estimated below 2.0 − 1.5nm. Indeed the inversion of the semiconductor character

can be only observed in our films formed by the smallest Si NPs. The Figure 5.7 shows

the square and the square root of the absorption coefficient as a function of the photon

energy for the thin film formed by the smallest Si NPs. The shape of the curves suggests a

direct character, however the definition of indirect or direct character of this Si NPs is not

conclusive due to the spectral limitation of our measurement system and the oscillations
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Figure 5.6: Root of the absorption for a-Al2O3 thin film doped by Si NPs
with different average diameters. The grey empty square and circle points are
the root of the absorption data obtained from the transmissions and the black
lines the fitted linear behavior curves. The inset shows the root of absorption
obtained from transmission measurements and the BEMA fit model obtained
from the ellipsometry measurements.
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Figure 5.7: Square (black line) and the root (black dotted line) of the
absorption a function of the photon energy for the a-Al2O3 thin film doped
by the smallest Si NPs. The absorption was obtained from the transmission
raw data.

in the optical response inherent to the transmission measurement that can hide the real

absorption coefficient behavior.

In conclusion our Si NPs show a indirect semiconductor character for the thin films

doped by the higher Si NP sizes, except for the thin film doped by the smaller ones for

which it is not possible to obtain definitive conclusions. In order to be coherent in the

methodology to estimate the band-gap thin films between samples, all the a-Al2O3 thin

films doped by Si NPs were analyzed as indirect semiconductors. The band-gap values

obtained for the thin films described the Chapter 3 are shown in the Table 5.2.
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Figure 5.8: Average diameter of the Si NPs of the series to analyzed the
size dependence as a function of the energy gap assuming either crystalline,
amorphous or hydrogenated amorphous silicon qualities.

5.4 Energy band-gap and NPs average diameter

The energy gap gives us information about the electronic properties of our 2D-Si NP

distributions, but a definition about an average size is useful to estimate the geometric

properties at the nanoscale of the Si NP distributions.

In the tex-book the states for a semiconductor nanoparticle are defined as a number of

discrete states as the states of a atomic particle, and then a Dirac delta is associated for

every single state. Therefore the broad band observed for the absorption of our Si NPs

embbeded in a-Al2O3 are related to the sum of all the dirac delta associated to the states

of every Si NP size in a non monodisperse size distribution. The absorption of a quantum

dot can be defined as:

α(hν) ∼ 1

hν

∑
| < n|p|n‘ > |2δ(En,n‘− hν)

where | < n| is the state of the electron at the conduction band and the |n‘ > is the

final state of the electron at the valence band.[42] Obtaining a distribution of states with

a maximum shifted of the band-gap energy, as we have observed in the a-Al2O3 thin film

doped by the bigger Si NPs (see Figure 5.5). Our Si NPs distributions are not monodis-

perse and the absorption is the sum of the absorption of numerous Si NPs with various

shapes and sizes. The main effect of this size dispersion is a broadening of the absorption

spectrum of one Si NP. Therefore we define an average Si NP size or average Si NP di-

ameter associated to the average band-gap energy. The shape of our absorption edge is

similar to the theoretical as it can be observed in the reference [42] where for a Si NP with

an energy gap of 1.67 eV obtained a maximum of the absorption around 4.75 eV, that it

is a similar value of the absorption maximum obtained for the SEφ3.3 thin film with a Si

NP size around 3.3 nm but with a band-gap energy of 1.3 eV.
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Label EGAP φ (nm)

S0, S4, S7, S11, Only − Si− S 1.2 4.4

SEφ2.6, ESφ2.6, SESφ2.6 1.6 2.6

S(A− 0.0)Eφ2.2, S(A− 0.5)Eφ2.2, S(A− 1)Eφ2.2 1.7 2.2
S(A− 0.0)Eφ2.8, S(A− 0.5)Eφ2.8, S(A− 1)Eφ2.8 1.5 2.8

SEφ1.0, Sφ1.0 - 1.4
SEφ2.2−B 1.7 2.2
SEφ3.3−B 1.3 3.3

SEφ1.6 2.0 1.6
SEφ2.2 1.7 2.2
SEφ2.6 1.6 2.6
SEφ2.8 1.5 2.8
SEφ3.3 1.3 3.3

Table 5.2: Average diameters obtained form the absorption analysis for all
the Er3+ and Si NP doped films

The relation between the Si NP diameter and the Si NP emission energy band-gap

for crystalline, amorphous and amorphous hydrogenated nanoparticles have been theo-

retically estimated by Allan, Delerue and Lanoo in the 1997.[36] The Figure 5.8 shows

the average diameter for the Si NPs obtained for the thin films produced to analyze the

dependence of Er3+ PL on Si NP size as a function of the energy gap assuming either

crystalline, amorphous or hydrogenated amorphous silicon qualities. As it can be seen

the average size can change significantly depending on the nature of the silicon. For our

case taking into account that the absorption is a priori less sensitive to surface properties

than the photoluminescence, we have estimated our average Si NPs diameter as similar to

the Si NPs formed by hydrogenated amorphous silicon because the dangling bons are in

principle not going to contribute to the absorption edge. The average diameters obtained

form the absorption analysis are listed in the Table 5.2.

The film with the smallest Si NPs SEφ1.0 does not show absorption band in the

optical measurement range. In order to obtain a value of the Si NP average diameter, the

band gap dependence on the silicon content has been analyzed for the thin films prepared

specially to study the Er3+ PL dependence on the Si NP size. A linear behavior of the

band-gap as a function of the silicon content per layer is observed. Thus assuming a linear

dependence it is possible to estimate the average size for the SEφ1.0 thin film as 1.4 nm

(Table 5.2) extrapolating the absorption.
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Figure 5.9: The three principal regions of optical absorption in an amor-
phous semiconductor. Dashed is a extrapolation of the region A. [71]

5.5 Amorphous and quality Si NPs

A work of Wood and Tauc [71] published at the seventies explain the absorption tails ob-

served in the absorption edges of the amorphous semiconductors. They define three main

regions in the absorption edge (see Figure 5.9). One defined as A correspond absorptions

higher than 104 cm−1 and where the absorption usually follows a quadratic dependence

with the energy (~ωα ∼ (~ω − Eoptg )2). It is associated to transitions between the band

states.[72, 73] Two more regions are defined, one to the absorption from 1 to 104 cm−1 (re-

gion B) and the other to the very low absorbtion edge with α < 1cm−1 (region C). These

two regions are described with an exponential growth law (α ∼ e~ω/Et) and are associated

to the tail states. The exponential edges observed in some crystals as Urbach tails are

basically similar to the part B in the amorphous semiconductors. It seems therefore plau-

sible to associated this exponential edges with similar physical mechanism. However the

parte C are associated to deep potential fluctuations due to disorder, defects or impurities.

Observing the Figure 5.4 our Si NPs produced by PLD and embedded in a-Al2O3

does not shows the exponential tails and only the region A is obtained. This phenomenon

has been reported previously, and sharp absorption edges have been obtained when the

concentration of defects is small [74] and assuming that these tails states are associated

to absorption induced by defects. Thus, taking into account these arguments our Si NPs

shows an absorption edge that reveals a pure amorphous silicon with small number of

defects. It will be discussed in the Chapter ?? by photoluminescence and cathodolumi-

nescence measurements.

5.6 Conclusions

The absorption measurements show an indirect character for the amorphous Si NPs em-

bedder in a-Al2O3 except the Si NPs with the smaller average diameter whose indirect or
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direct character can be . The average diameters of all the designed 2D-Si NPs distribution

have been estimated assuming a indirect character for all the Si NP sizes. The analysis of

the absorption tails suggest the presence of pure amorphous Si NPswith reduced number

of defects.



Chapter 6

Determining parameters of Si NP

distributions

The Electron Microscopy has revealed the presence of Si NPs and their amorphous nature.

Assuming the amorphous nature of the Si NPs and the optical band gap values obtained

by the optical properties an average size of the Si NPs has been defined. Now, in this

Chapter, it is described how the parameters of the two dimensional distributions of Si

NPs have been determined from the Si content in the nanocomposite layer and the Si

NP size. The Si content in the layers have been obtained from Rutherford backscattering

spectroscopy (RBS) measurements and the values for the size of the Si NPs have been

estimated from the optical measurements.

72
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6.1 Compositional analysis by RBS

The Er- and Si-concentration depth profiles were determined by Rutherford backscatter-

ing spectrometry (RBS) using a 1.97 MeV 4He+ beam with the particle detector located

at a scattering angle of 165 ı̈¿1
2 . Simultaneously, in any special configuration we used a

detector of Si(Li) placed at 135 ı̈¿1
2 for PIXE measurements of the X-rays induced in

the elements of the sample during ion bombardment. The beam size was set at 1 mm2

to measure in a controlled point of the samples. The simulations of RBS spectra were

performed using the program SIMNRA. 1

The the low mass contrast between the two thin film components, silicon and alu-

minium, and the presence of silicon substrates or substrates based on silicon as fused

silica or silica glass, make complicated to determine the amount of deposited silicon con-

tent. In order to eliminate the presence of silicon atoms beyond the silicon forming the

Si NPs, our first experimental approach was to use special substrates for preparation of

calibration thin films2. Therefore two amorphous silicon thin films were grown on LiF

substrates, one at the begging of the production of the series and the other when the

fabrication procedure had finished. The amount of silicon deposited per pulse will be de-

termined by the mean of the silicon content per pulse between the two thin films in order

to rule out the effects of target rail wear.
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Figure 6.1: RBS spectrum of Si deposited on LiF substrate (black squared
points). The grey line correspond to the simulation generated by the
SIMNRA program.3

The Figure 6.1 shows the RBS spectrum of the thin film of 7500 pulses on Si deposited

on a LiF substrate. The silicon signal of the RBS spectrum is completely separate from

the signal of LiF substrate as it was predicted. The signal from fluor and silicon atoms

are observed besides a slightly signal associated to oxygen. This O2 peak can be related

to the presence of silicon native oxide formed at the surface of the thin film in contact

1The RBS analysis and measurements were performed at the CNA-CSIC at Sevilla by Javier Garc̈ı¿ 1
2
a

L̈ı¿ 1
2
pez y Yolanda Morilla Garc̈ı¿ 1

2
a

2In collaboration with M. Jimı̈¿ 1
2
nez de Castro
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Figure 6.2: RBS spectrum corresponding to S11 film with s=11 nm. The
surface channels of the different elements in the film are indicated.

with the air. For example the mean value of the Si deposition rate is 8.26 1012 cm−2 for

the thin films produced to optimize the Si NP average size. Taking into account the Si

deposition rate is possible to estimate the Si content deposited in each Si NP layer of the

thin films (see Table 6.1).

Despite the compositional and atomic structure similarities of the components of the

thin films, surprisingly, the RBS measurements performed for the multilayer nanostruc-

tures of the test thin films show clearly the presence of the Si NP layers. The RBS

spectrum from the film with s=11 nm (S11) is shown in the Figure 6.2. Pay attention in

the oscillations observed in the signals of Er which can be interpreted as a nonuniform in

depth distribution of dopants. In the low energy region of the spectrum, the Al+Si signal

contribution shows oscillations that are associated with the layered structure of the film.

In the Al signal region of the spectrum, nine minima are observed, which correspond to

the presence of the Si NP layers. Detailed quantitative interpretation of the RBS spectra

was undertaken with assistance of the SIMRA code. The analysis shows that the Er areal

density per layer is 3.4 1013 cm−2, which is similar to that reported in our previous work on

a-Al2O3:Er films.[26, 17] The Si areal density per layer is 7.0 1015 cm−2, which is equiva-

lent to an effective thickness of 1.4 nm, taking into account the density of the a-Si.[75] The

total film thickness is 510 ± 10 nm and the s values determined for the films are 0, 4.0, 7.0,

and 11.0 ± 0.5 nm, showing that a fine control of the deposited a-Al2O3 has been achieved.

The content of Si for the rest of Er3+ and Si NP co-doped thin films have been

determined by RBS measurements of the multilayer structures. The Er deposited per

pulse has been corroborated by PIXE analysis. The compositional content of the Si

nanocomposite layers is reflected in the Table 6.1. Due to an updating of the excimer

laser used in the ablation chamber that changes the spot size and energy density, the

material deposited by pulse is different between series under similar deposition conditions.

Nevertheless we would like to emphasize the reproducibility of the Si NP distributions.



Chapter 6. Determining parameters of Si NP distributions 75

When the content of silicon in a nanocomposite layer is the same for different thin films,

independently of the deposition rate, the energy band-gap is located at the same photon

energy. Thus it is assumed that the Si NP distribution (Si NP size, Si NP density, etc)

is maintained and the determination of the absorption edge will be used to estimated the

average size of the Si NPs.

Label Pulses [Si]layer
per layer 1015 cm−2

S0, S4, S7, S11, Only − Si− S 500 7.0

SEφ2.6, ESφ2.6, SESφ2.6 185 7.7
SEφ1.0 300 2.4

SEφ2.2−B 600 4.9
SEφ3.3−B 1200 9.8

SEφ1.6 75 3.1
SEφ2.2 125 5.2
SEφ2.6 185 7.7
SEφ2.8 210 8.8
SEφ3.3 250 10.4

Table 6.1: Table of RBS data of silicon content for all the thin films.

6.2 Densities, coverage and volume fractions of Si NP dis-

tributions

During the PLD process, the material is only deposited during a short time (a few mi-

croseconds) after the laser pulse, this special growth conditions lead to a higher density of

nuclei than for a traditional vapor deposition techniques. Early works of the Laser Pro-

cessing Group (LPG) about deposition of metal nanoparticles show how the diameter of

the nanoparticles is increased and the number of nanoparticles is reduced when the number

of pulses used to ablated the metal target is increased due to the coarsening and coales-

cence phenomena [32, 76]. Independently of the material from which the nanoparticles

are formed an higher areal density of small nanoparticles has been obtained for nanocom-

posite thin films produced by alternated PLD that in other deposition techniques. In this

section we are going to define the parameters of these high density Si NP 2D-distributions.

The areal density of Si NPs per layer can be estimated as in the expression 6.1

[SiNPs]2D =
[Si]

ρa−SiV1NP
, (6.1)

where [Si] is the areal density of Si, V1NP is the volume of an average NP and ρa−Si is

the density of amorphous Si [75]. The Si-concentration depth profiles were determined
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by Rutherford backscattering spectrometry (RBS) and the volume of an average NP has

been calculated assuming spherical Si NPs and using the value of the average diameter

(dNP ) obtained from the Si NP band gap (V1NP = π
6d

3
NP ).

Once the density of Si NPs and the average diameter is established it is possible to

determine the covered area (coverage), the volume fraction of silicon in the nanocomposite

layers and the distance between centers of Si NPs.

The covered area (coverage) represents the maximum area occupied by the nanopar-

ticles in a section of the film in the growth direction. It is the areal projection of the

nanoparticles over a in-plane section. If we considerer that the Si NPs are spherical, the

projection of the one Si NP in a plane parallel to the substrate is a circle with an area

ANP = πr2
NP where rNP us the average radio of the Si NPs estimated by the optical

absorption. Then, the percentage of coverage by the Si NPs in 1 cm2 of sample is given

by

fac[%] =
ASi

ATOTAL
= [SiNPs]2D ∗ANP , (6.2)

where ASi is the area occupied for all the Si NPs and ATOTAL is the total area considered.

Assuming spherical shape for the Si NPs is also possible to obtain the volume fraction

that corresponds to the volume occupied by the nanoparticles in the total volume of the

nanocomposite layer assuming that the thickness of the nanocomposite is the average

diameter of the Si NPs. In this way the volume fraction of nanocomposite layer has been

calculated by the expression 6.3.

fv[%] =
VSi

VTOTAL
=

[SiNPs]2D ∗ V1NP

dNP
. (6.3)

As an example the thin films produced to study the optimum Si NP average size are

analyzed in detail. The Si NP distribution parameters are listed in the table A.1. The cov-

erage obtained is large with values close to 100% for the thin films in which the number of

pulses on the Si target are larger an 185. Note that this has no physically meaning. This is

inconsistency and these values can be justified if we analyze the experimental data that we

are using to make the estimations. First, the density of our amorphous silicon has not been

measured and the reference used is from amorphous silicon obtained by implantation.[75]

Note that this choice was made because the PLD thin films are more dense that the thin

films produced by other deposition techniques such as sputtering[77], therefore a value of

amorphous silicon density more close to density of the amorphous silicon obtained by im-

plantation than to density of the amorphous silicon obtained by sputtering is expected. In

the case that a amorphous silicon density lower that the density for the implantation films

is asssumed, the value of fv and fac obtained by the expressions 6.1 and 6.2 will be higher
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than the previously obtained and the new density of Si NPs implies a coverage higher that

the 100% remaining a non physically possible value. Consequently, the Custer reference

[75] seems a good approximation of the density of the amorphous silicon produced by PLD.

Label φ [SiNPs]2D fac,raw fv,raw
(nm) (1013cm−2) (%) (%)

SEφ3.3 3.3 1.2 99 67
SEφ2.8 2.8 1.6 96 64
SEφ2.6 2.6 1.7 91 61
SEφ2.2 2.2 1.9 73 48
SEφ1.6 1.6 3.0 60 40

Table 6.2: Areal density ([SiNPs]2D), coverage (fac) and volume fraction
(fv) of Si NPs for the films prepared for the study of the Er3+ PL optimiza-
tion as a function of Si NP diameter obtained from raw RBS data.

All the calculations have been done assuming that all the silicon is forming Si NPs.

The RBS data gives us information about the content of every kind of atom in the thin

film with atomic resolution independently of if these atoms are forming aggregates or are

only distributed as individual atoms through the host. Previous LPG works [32] shown

that part of the deposited atoms are dissolved in the thin films [76] and therefore do not

form Si NPs. It has been shown that the content for other elements as Ag that are formed

aggregates deposited by PLD calculated through RBS data is overestimated in compari-

son to the information obtained from Transmission Electron Microscopy (TEM) images or

GISAXS data. Therefore the real content of Si that is formed nanoparticles is estimated

assuming that only an average 60% (60% ± 20% depending on size) of the silicon is form-

ing nanoparticles.[32] However note that the estimation of the average diameter from the

absorption data is correct due to the fact that only the silicon forming Si NPs affects to

the absorption of the nanocomposite layer and the silicon atoms distributed as individual

atoms through the host can contribute to the increase of the real value of the refraction

index but not to the absorption. Therefore, the new Si NP distributions parameters have

been calculated assuming that only the 60% of the silicon contributes to the formation of

the Si NPs and that the diameter is obtained from the absorption edge. The Figure 6.3

shows the real Si NP 2D-density and Si NP coverage percentage as a function of the Si

NP diameter.

The distance between Si NPs has been calculated assuming that the Si NPs are ho-

mogenously distributed in the a-Al2O3 surface, that the Si NPs are spheres and that the

partial area associated is a square centered at the Si NP. Then the distance between edges

of adjacent Si NPs is given by dedge−edge =
√
ANP /dNP , where dNP is the average diame-

ter of the Si NPs and ANP is the partial area associated to the Si NP (in an area of 1 cm2
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Figure 6.3: Si NP 2D-distribution parameters as a function of the Si NP
diameter

is given by the expression ANP = 1/[SiNPs]2D). The dependence of distances between

adjacent Si NPs on Si NP diameter is shown in the Table 6.3.

Label φ [SiNPs]2D fac fv dedge−edge

nm 1013cm−2 % % nm

SEφ3.3 3.3 0.7 60 40 0.47
SEφ2.8 2.8 0.9 57 38 0.53
SEφ2.6 2.6 1.0 54 36 0.52
SEφ2.2 2.2 1.1 44 29 0.75
SEφ1.6 1.6 1.8 36 24 0.76

Table 6.3: Areal density of Si NPs ([Si NPs]), coverage (fac) and volume
fraction (fv) associated to the thin films with different Si NP diameter cal-
culated from RBS corrected data.

6.3 Critical analysis of the parameters of the 2D-Si NP dis-

tributions

In order to determine the reliability of the approximations we have compared the Si:a-

Al2O3 nanocomposite system with the Ag:a-Al2O3, Cu:a-Al2O3 and Fe:a-Al2O3 systems

using the same deposition system and under similar deposition conditions [32, 33, 76]. In

the metal:a-Al2O3 systems we have the advantage of the direct TEM images. When the

Si NP coverage is is close to the 40% the number of the initial silicon nucleation sites is

similar to the Cu. For example, when the silicon coverage is a 36% the density of Si NPs

is 1.8 10−13 cm−2 and for the Cu at an coverage of 35% the density of nanoparticles is

1.0 10−13 cm−2 number, while for Ag at a coverage of 40% the density of Ag nanoparticles
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is 0.2 10−13 cm−2, and for the Fe nanoparticles the density is 7.8 10−13 cm−2 at an cov-

erage of 39%. This is due to the fact the different atomic species have different mobility

over the a-Al2O3 surface and is related to the affinity of the atoms that arrives over the

substrate to bond to oxygen atoms.

dG = dF + d(PV ) (6.4)

Material fac [NPs]2D -∆H ∆F
% 10−13cm−2 10−6J/Kgmol 10−6J/Kgmol

Ag 40 0.2 26-31 -11
Cu 35 1.0 155-167 -127 - -146
Si 36 1.8 438-911 -137 - -805
Fe 39 7.8 823-1122 -741 - -1015
Al – – 1675.56 -1577.61

Table 6.4: Heat and Free Energy of Formation of Oxides for different ma-
terials at 298K (room temperature).

The Gibs Free Energy (G) gives us information about the equilibrium and spontane-

ity condition for a chemical reaction at constant pressure and temperature. A reaction

is spontaneously when (-∆G) is negative. The Gibs Free Energy is related to the Free

Energy of Formation of Oxides by the expression 6.4. In our deposition conditions we

can considerer d(PV ) = 0 and then dG = dF . Therefore the Free Energy of Formation

of Oxides gives us information about the probability of a bond between an oxygen atom

and the corresponding element (Si, Cu, Ag or Fe). The table 6.4 shows the the Standard

Heat of Formation of Oxides (-∆H) and the Free Energy of Formation of Oxides (∆F)

for the possible oxides constituent of the nanoparticles materials. A relation between the

∆F and the number of density of nanoparticles is observed. The ∆F is negative for all

the oxides indicating spontaneity and when ∆F is decreased the density of nanoparticles

is increased indicating a dependence of number of nuclei centers with the affinity of the

atoms to the oxygen. The data obtained for the Si NP deposition is consistent with the

rest of materials what further supports the results obtained.

The degree of oxidation of the Si NPs can now were considered. In this way we have

to take into account the Standard Heat of Formation of the a-Al2O3. Our Si NPs are

embedded in an oxide, the a-Al2O3 and the atoms constituent of the nanoparticles has

to compete with the aluminium for the oxygen atoms. The Standard Heat of Formation

gives us information about the energy necessary to induce the reaction at constant pres-

sure and temperature. The -∆H is positive for all the studied oxides but the value for the
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Label [SiNPs]2D fac fv dedge−edge

1013 cm−2 % % nm

SEφ2.6, ESφ2.6, SESφ2.6 1.0 55 36 0.52
SEφ1.0 2.1 33 22 0.77

SEφ2.2−B 1.0 41 27 0.85
SEφ3.3−B 0.6 54 36 0.67

SEφ1.6 1.8 36 24 0.76
SEφ2.2 1.1 44 29 0.75
SEφ2.6 1.0 54 36 0.52
SEφ2.8 0.9 57 38 0.53
SEφ3.3 0.7 60 40 0.47

Table 6.5: Si NP distribution parameters of all the thin films.

a-Al2O3 is higher than all of then, as a result, the probability of oxidation of nanopar-

ticles embedded in a-Al2O3 is low. This has been demonstrated for the Fe and the Cu

NPs deposited by PLD that show negligible oxidation.[76, 31] Therefore, when the atoms

arrives to the substrate covered by the a-Al2O3 the number of nuclei is directly related

to the affinity of the atoms to react with the oxygen of the a-Al2O3 surface. Nevertheless

once the nanoparticles are formed further oxidation is not expected.

Applying the same analysis to the other series of samples, all the Si NP distribution

of all thin films can be parameterized, see Table 6.5 for further details.

6.4 Conclusions

The atomic content of the different components of the nanostructures have been obtained

by RBS. Combining the RBS data and the Si NP average diameter determined by optical

absorption, the characteristic parameters of the Si NP distributions have been determined

and corroborated by comparison with the distribution of metal nanoparticles.



Chapter 7

Defects in a-Al2O3 and surface of

the Si NPs.

The aim of this Chapter is to analyze the relevant properties of the Si NP surface and its in-

teraction with the a-Al2O3 embedding media (a-Al2O3-Si NP interface). These properties

will be derived from cathodoluminescence (CL) and photoluminescence (PL) measure-

ments. This analysis is a necessary step towards the interpretation of the Er3+ emission

when it is located close to the Si NPs.

81
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7.1 Introduction

Photoluminescence spectroscopy is a non-contact and non-destructive method of probing

the electronic structure of materials. Controlled light is directed onto a sample, where it

is absorbed in a process called photo-excitation. One way to dissipate this energy by the

sample is through emission of light (luminescence). In the case of photo-excitation, this

luminescence is called photoluminescence (PL). In our case, the PL spectrum provides

the transition energies, which can be used to determine electronic energy levels and the

band-gap of the Si NPs.

Thoroughly studies on the interface properties between bulk silicon and SiOX and

Al2O3 − Si oxides have been carried out for microelectronic applications because phe-

nomena at surfaces and interfaces tend to dominate the behavior of excitations and the

performance of the microelectronic devices. These works indicate that the Si-Al2O3 inter-

face are more robust than the Si-SiOX interface, with lower number of defects (specially

dangling bonds) and thinner layer of silicon oxidized at the interface, being the number of

defects more limited volumetrically. [78, 79] There are studies about Si nanocrystals-SiO2

interface defects but to our knowledge not for Si NPs embedded in a-Al2O3. [80]

Defects and impurities at interfaces provide new states for electrons and holes, altering

their motion, lifetime, and transition energies. [81] Therefore, control the surface proper-

ties of the Si NPs could be a route to improve their emission efficiency or the interaction

phenomena with the Er3+ ions. Consequently the study of the host and interface defects

of Si NPs embedded in a-Al2O3 is one key to understand and complete the analysis of

the energy exchange from Si NPs to Er3+ ions. Moreover a new host with different Si

NP-host interface properties than the usual SiO2 could provide a route to improve the

Er3+ performance at 1.53 µm.

7.2 Are the amorphous Si NPs dark?

The advantages of PL analysis derive from the simplicity of optical measurements and

the power to probe fundamental electronic properties. However the main drawback of PL

analysis is that the sample under investigation must emit enough photons. For example,

indirect-bandgap semiconductors as the silicon, have inherently low PL efficiency and non-

radiative recombination processes tend to dominate the relaxation of excited populations.

This problem can be increased by a poor interface quality, where discrete defect and

impurity states abound causing rapid non-radiative events. Nevertheless, once a PL signal

is detected, it can be used to characterize both radiative and non-radiative mechanisms

due to the fact that it is a very sensitive and selective probe of such states. [81]

As it has been explained in the Section 5.3.1 the absorption is a good probe of the over-

all band structure of a semiconductor system. Therefore, the combination of the PL and

the absorption measurements will give us information about the interface states of the Si
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NPs to understand the Si NP - Er3+ energy exchange mechanisms and its phenomenology.

The usual emission range for emission of Si NPs is from 400 nm to 1000 nm [82, 83]

and the peak emission band position and shape depend on the Si NP crystallinity degree,

Si NP size and the host where the Si NP is embedded in. The shifted position of the PL

spectra in relation with the absorption edge can be related to surface or interface defects

[84] and Si NP interactions [85]. Several deposition methods have been use to produce Si

nanoclusters embedded on oxide matrix (evaporation,[86] PECVD,[87, 88, 89, 90, 50, 82]

implantation,[55, 91, 84, 92, 93, 94, 95] sputtering,[83, 96] electron beam evaporation,[85,

97] or PLD [98, 99]) leading the formation of crystalline[86, 55, 91, 84, 87, 83, 88, 85, 97,

92, 93, 96, 98, 94, 95, 99] or amorphous[89, 90, 50, 100, 82] Si nanoclusters embedded in

SiO2,[86, 55, 91, 84, 87, 83, 88, 85, 89, 90, 50] Al2O3 [97, 92, 93, 96, 98, 94, 95, 100] or

other media as host[82, 99]. The PL peak position varied from 600 nm[55] to 1000 nm[83]

for crystalline Si NPs embedded on SiO2 from 450 nm [89] to 950 nm[50] for amorphous

structures. Moreover the PL peak position and shape was very different for Si nanoclusters

of similar sizes embedded in Al2O3 host with emission from 570 nm [93] to 750 [95] for the

crystalline Si NPs and 500 nm for the amorphous [95]. The nature of the PL emission of Si

nanoclusters in Al2O3 is still controversial due to a high contribution to the PL emission

associated to host defects or impurities. [92, 93, 94, 95, 100]

The PL response has been obtained pumping with an Ar+ ion laser tuned at 457.9

nm. The PL signal was detected at room temperature using an Acton 300i monochroma-

tor with grating for the VIS-NIR range, a Ge detector and standard lock-in techniques.

The Figure 7.2 shows the PL spectra from 600 nm to 1400 nm from a Si NP doped only

thin film (Only − Si − S - reference of the thin films prepared to test the Er3+ and Si

NPs doped a-Al2O3 system - Chapter 8) after different thermal treatments. These results

will be discussed later in the Section 7.4. The spectra was corrected by the germanium

detector curve response.

The black full line in Figure 7.2 shows the PL emission for the as grown Only−Si−S
thin film. No PL emission from Si NP has been detected in all the optical range. There

is only a very weak background signal, that seems to increase for short wavelengths and

can not be related to silicon emission. The same shape and intensity spectrum has been

observed for all as-grown thin films (co-doped by Si NPs and Er3+ ions, only Er doped a-

Al2O3 film and the a-Si nanolayer thin film). In fact, the same spectrum obtained despite

they are completely different samples suggests the presence of no emitting Si NPs also

called dark amorphous Si NPs. This definition was established by Kik et al. [101] to

define the Si NPs that are not emitting due to the presence of Er3+ ions that can act as

non radiative channels. In our case the emission is not observed in the usual region for the

Si NPs indicating that a high number of non radiative channels for the Si NPs are present.
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The production of the thin films at room temperature can justify the high number of Si

dangling bonds, host defects and a poor Si NP surface pasivation, that can act as the

non radiative channels. It has to be emphasized that no emission at 750 nm or 690 nm

was detected, which is usual associated to Cr3+ and Ti3+ host impurities, respectively,

pointing out the high purity of the a-Al2O3 produced by PLD. [93] In conclusion, a high

number of host and Si NP surface defects, as for example Si dangling bonds, are present

in the as grown thin films produced at room temperature. These defects are responsible

of the lack of emission from the dark amorphous Si NPs, however our a-Al2O3 host is free

of ions impurities that can give out any confusing PL signal.

7.3 Defects in the host

Photoluminescence occurs after excitation with light, but luminescence can be also ob-

served under excitation with an electron beam, and in this case it is called cathodolumi-

nescence (CL). This technique is usually used to investigate some characteristics of the

specimens, such as trace impurities or lattice defects, as well as to investigate the crystal

distortion. Also the CL allows to excite high energy states with the advantage that it is a

technique not selective in energy. The PL spectra emission spectrum for the as grown thin

films shows a background signal that suggest a possible emission at lower wavelengths. In

order to corroborate the possible presence of a Si NP emission band below the 600 nm

CL measurements were performed1. The samples were observed at 95 K, in a Hitachi

S2500 SEM (Scanning Electron Microscope) in the CL mode of operation, at an acceler-

ating voltage of 5-7 kV. The thickness of the thin films is 200 nm approximately, so the

optimum acceleration voltage applied to the electron gun was varied from 5 kV to 7 kV

to obtain a limited penetration of the electrons and to maximize the signal coming from

the active medium. Visible light was detected using a Hamamatsu R-928 photomultiplier,

and a cooled ADC germanium detector was used in the near infrared. More information

about the measurement system is detailed elsewhere.[102]

As grown a-Al2O3 thin films co-doped by Er3+ ions and Si NPs of different sizes have

been measured by CL (SEφ1.0, SEφ2.2 − B, SEφ3.3 − B) (not shown). The Figure

7.1 shows the typical emission spectrum for SEφ1.0. A peak emission in the green has

obtained for all the co-doped thin films centered about 550 nm that it is related to the

Er3+ 4I15/2 −2 H11/2 transition level. Also a broad UV-blue band extending from 300 to

500 nm was detected for all the films. Its emission band shape is independent of the Si

NP size.

In order to determine the origin of this broad UV-blue emission band, a-Al2O3 samples

1External collaboration with Bianchi Mı̈¿ 1
2
ndez and Emilio Nogales from the Group of Micro- and Nano-

characterization of electronic materials of the Material Science department of the Universidad Complutense
de Madrid.
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Figure 7.1: CL emission spectrum from as grown only Er doped film (dark
grey dot line-ErRef2), only Si NP doped film (light grey line-Sφ1.0) and the
corresponding Er and Si NP co-doped film (black dash line-SEφ1.0). The
spectrums have been displacement in the vertical direction to help the curves
visualization

doped with only Er (ErRef2) and doped only with Si NPs (Sφ1.0) were also measured

by CL. The Figure 7.1 shows the CL spectra for an only Er3+ doped film (ErRef2), the

Si NP and Er3+ co-doped thin film (SEφ1.0) and an only Si NP doped film (Sφ1.0) with

the same Si NP diameter (1 nm). The UV-blue emission band is present in all the films

independently of the Si NPs or Er3+ ions presence, therefore it has to be related to the

a-Al2O3 host.

Different types of defects for sapphire had been reported and analyzed from their lu-

minescence response. The same type of defects are expected in a-Al2O3. The oxygen

vacancy defects are the most common and are divided in: F centers (oxygen vacancy with

two electrons) that show an emission band centered at 413 nm, F+ centers (oxygen va-

cancy with one electron) that show an emission band centered at 326 nm, F2 centers (two

oxygen vacancies with four trapped electrons) that show an emission band centered at 516

nm, F+
2 centers (two oxygen vacancies with three electrons) that show and emission band

centered at 380 nm and F 2+
2 centers (two oxygen vacancies with two electrons) that show

and emission band centered at 563nm.[103, 104] The CL spectrum of the Sφ1.0 without

contribution from Er3+ ions was de-convolved by fitting three lorentzian-bands obtaining

maximums at 380.5 ± 1.3 nm, 427.3 ± 2.1 nm and 484.6 ± 3.1 nm, that can be related

to F+
2 centers, F centers and F2 centers, respectively.

In conclusion no emission related to the Si NPs has been detected in the visible and the

infrared range. Also no emission from color centers or impurities as Cr3+ and Ti3+ has

been observed. We have identified three main emission bands associated to F+
2 centers, F

centers and F2. Previous works on emission of Si NPs embedded on sapphire reported a

broad band centered at 570 nm associated to F2 center defects. This difference could be

related to the energy pump range that tunes the defects observed [105] and the amorphous

host that generates a lower number of high ionization defects.
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7.4 Annealing process and shinning amorphous Si NPs

The PL measurements along with the CL measurements give no clue of the presence of

amorphous Si NPs in the as grown thin films, they seem to be dark. Most of the proce-

dures to obtain efficient emission from Si NPs in crystalline or amorphous state require a

post-deposited thermal anneal treatment.[87, 86, 82] Our Si NPs are formed in situ but it

is expected that a low temperature anneal process could reduce the non radiative channels

of the Si NPs embedded in an a-Al2O3 host produced at room temperature.
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Figure 7.2: NIR emission spectra for a Si NP only doped thin film in as
grown conditions (black line) and after slow thermal annealing treatments at
400 ı̈¿ 1

2
C (light dash grey line), at 600 ı̈¿ 1

2
C (black dotted line) and 700 ı̈¿ 1

2
C

(dark grey dash-dot line). The emission band center around 950 nm is related
to the presence of the Si NPs and the emission band at 1131nm is from the
silicon substrate.

A thin film only doped by Si NPs with an average Si NP diameter of 4.5 nm (Only −
Si−S), has been annealed for 1 hour in 100 ı̈¿1

2C steps from 400 ı̈¿1
2C to 700 ı̈¿1

2C in an air

conventional furnace. The Figure 7.2 shows the NIR emission spectra for the Only−Si−S
film after every annealing process. The as grown thin film showed no emission band in the

range from 600-1200 nm (already discussed). After the first annealing at 400 ı̈¿1
2C, two

strong broad emission bands are observed, one centered at 973 nm and the other at 1131

nm. The latter corresponds to the emission peak of silicon substrate from levels near the

band-gap (1.12 eV, 1100 nm). The emission band centered at 973 nm is only observed

from the thin films with Si NPs. Furthermore, as the temperature of the anneal process

increases the emission band intensity increases. The peak position of the emission band

associated with the silicon substrate remains constant while for the band associated to the

Si NPs emission is shifted to shorter wavelengths from 970 nm to 910 nm at 600 ı̈¿1
2C. From

the EFTEM and EELS measurements the Si NPs remain amorphous after the annealing

process. Nevertheless a reduction in Si NP size was observed due to a surface oxidation

of the NPs and a defect passivation. The reduction in size can lead to the observed shift

to shorter wavelengths while the defect passivation can explain the increase in the PL
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intensity.[95] After the 700 ı̈¿1
2C anneal process there is a decrease of the PL intensity

while the peak position is shifted to longer wavelengths. This can be associated to a total

oxidation of the smaller Si NPs and therefore only the larger ones with a larger Si core

are able to emit light but their intensity is reduced. An Er only doped film has undergone

in the same thermal treatment and does not show band emission in the wavelength range

from 600 to 1000 nm, confirming the Si NPs related origin of this emission band.

Note that the emission band from the Si NPs is shifted more than usual to longer

wavelengths in comparison with the absorption edge. This can be related to Si NP inter-

action phenomena between adjacent Si NPs [85] and it is consistent with the high Si NP

density obtained in the Section ??.

Emission from the Si NPs have been observed in the 910 nm to 970 nm range as in

previous works about crystalline Si NPs embedded in SiO2 host [83, 88, 85, 50], but not

yet reported from amorphous Si NPs embedded in a-Al2O3 thin films.

In order to analyze the evolution of the oxygen vacancies defects of the a-Al2O3 after

the thermal processes, one annealed thin film doped with Er3+ and Si NPs with a 4.5 nm

average diameter has been measured by CL. The UV-Visible broad band observed for the

as grown thin films in the Figure 7.1 remains the shape and peak positions post-annealed

thin film, so the host F 2+
2 , F+

2 , F2, F+ defect centers are still present in the annealed

films. This indicates that the oxygen vacancy defects are not the responsible for the dark

state of the as grown amorphous Si NPs since the non radiative channels for the Si NPs

have been eliminated by the anneal process leading to shiny Si NPs. These results suggest

that the dark state of the as grown Si NPs is related to defects associated to the Si NPs

as Si dangling bonds or Si NP surface defects. During the thermal anneal process a re-

organization of the atoms on the Si NP surface occurs causing a reduction of the Si NP

non-radiative channels. In addition, in this re-organization of surface states of the Si NPs

a reduction of the Si NP size is suggested by the shift to shorter wavelengths (400 - 700

ı̈¿1
2C), however after the 700 ı̈¿1

2C anneal when the small Si NPs disappear in favor of the

big ones a shift to to longer wavelengths is observed.

The number of surface defects and dangling bonds of the Si NPs are size dependent

due to the fact that surface/volume ratio increases as the size of the Si NPs decreases.

Thus the behavior in as grown thin films is expected to be different as a function of size.

A special case of the smaller Si NPs is detailed in the Chapter 13.

We would like to emphasize that the defects on the Si NP surface embedded in a-

Al2O3 are reduced by low temperature anneal process while high anneal temperature

thermal process are usually necessary to reduce the surface defects of Si NPs embedded

on SiO2. It can be related to the interface a-Al2O3-Si NP where the defects are minimized

in comparison with the SiO2-Si NP interface.
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7.5 Conclusions

A high number of host defects and Si NP surface defects are present in the Si NP doped as

grown thin films. The host defects are related to oxygen vacancies and are still present in

the thin films after the thermal processes. However, the Si NP surface defects are reduced

from the 400 ı̈¿1
2C anneal to 600 ı̈¿1

2C and the emission from the Si NPs appears and

increases. After the 700̈ı¿1
2C annealing process the emission band intensity decreases and

is shifted to longer wavelengths probably due to the total oxidation of small Si NPs.

Note that although the as grown amorphous Si NPs do not show PL emission, however

it will be shown in the next Chapters that they are exceptional sensitizers to the Er3+

ions and efficient absorbers to exchange energy with the close Er3+ ions.



Part III

Control of location of Er3+ and Si

NPs below the nanoscale:

maximizing Er3+- Si NPs contact
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Chapter 8

Establishing the game rules for

the Si NPs - Er3+ interaction

Our first experimental approach was to check and determine how the separation between

the Er3+ ions and the Si NPs in the nanoscale affects to the Er3+ PL emission in a not

usual host, as the a-Al2O3. Films with 2D-distributions of Er3+ and Si NPs have been

designed and prepared as it has been explained in the Chapter 3. The distance between

the Er3+ and Si NPs has been varied from 0 to 11 nm by a a-Al2O3 intermediate layer.

It is shown that only the Er3+ close to the Si NPs emits and therefore the PL emission is

maximized when the Er3+ ions and the Si NPs are in the same layer.
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8.1 Introduction

The interaction between the Si NPs and the Er3+ ions occurs on the nanometer scale

and therefore is sensitive to the dopant distribution, [37, 38, 39, 106] and also can be

affected by the presence of atomic defects.[40] Previous works on silica-based systems,

Si has to diffuse upon thermal treatment in order that the Si NPs precipitate from the

initial mixed amorphous Si-SiO2 structure and thus there is little control over the Si NP

distribution.[37, 38, 39, 40] It is therefore desirable to develop preparation techniques that

allow the formation of the Si NPs in situ during film growth that reduce the number of

defects [40] and maintain the crystalline or amorphous degree between thin films with Si

NPs sizes within, as the alternated pulsed laser deposition.

The film structures have been defined in the Chapter 3 as the test films. They have

been structured in the growth direction in order to maintain the Er3+ ions and the Si

NPs in well-defined 2D-distribution layers with a controlled separation at the nanoscale

by an intermediate a-Al2O3 layer.

8.2 Thin films absorption

The Figure 8.1 shows the absorption spectra measured for the reference films (Only−Si−S
and Only − Er − S) deposited on fused silica, and doped only with either Er or Si NPs.

The oscillations are due to the light interference between the film surface and the film-

substrate interface. The reference film doped only with Er shows a negligible absorption

in the whole photon energy range. The spectrum for the reference film doped only with Si

NPs shows also a negligible absorption in the infrared region and a clear absorption band

in the visible region above 2 eV, due to the presence of Si NPs. The absorption spectra for

all the films co-doped with Er and Si NPs are similar to that of the reference film doped

only with Si NPs, further confirming that all films have the same Si content and linear

optical properties.
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Figure 8.1: Absorption spectra of the a-Al2O3 film doped only with Er and
the a-Al2O3 film doped only with Si NPs as a function of the photon energy
(bottom) and wavelength (top)
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The band-gap energy associated with the Si NPs has been estimated by assuming a

dependence for an indirect band-gap semiconductor and fitting the absorption spectrum

to the expression (αhν)1/2 −EG, where α, hν, and EG are the absorption coefficient, the

incident radiation energy, and the optical band-gap energy, respectively (detailed in the

Chapter 5.3.1). The value obtained for EG is 1.2 eV.1 Reports on experimental measure-

ments and calculations of EG as a function of the size of Si NPs embedded in SiO2 show

that the value obtained corresponds to Si NPs with an average diameter in the range of

4-5 nm.[41, 42, 43, 44, 45] This result is in very good agreement with the results obtained

from the EFTEM analysis (see Chapter 4), and therefore for analysis purposes from now

on it will be considered that the average diameter of the Si NPs in the films is 4.5 ± 0.5

nm.

8.3 Er excitation and emission

The PL spectra excited at 476.5 nm are shown in Figure 8.2. The reference film doped

only with Er shows no Er3+ related emission around 1540 nm, in agreement with the fact

that at 476.5 nm there is no resonant Er3+ energy level for absorption. An Er3+related

signal is also not seen for the films co-doped with Si NPs and Er3+, and with s=7 and

11 nm. In fact, the spectra for these two films are similar to those of the reference film

doped only with Si NPs. The spectra show a flat weak band extending from 1400 to 1650

nm, which is related to the presence of Si NPs. The origin of light emission from a-Al2O3

containing Si NPs is very controversial,[96, 93, 107] and further analysis was detailed in

the Chapter 7. In contrast, the film with s=0 nm shows a clear strong Er3+ emission with

the maximum at 1540 nm. The film with s=4 nm also shows a small Er3+related signal.

This result is an evidence for energy transfer from the amorphous Si NPs to the Er ions

for the films with s=0 and 4 nm. Under excitation at 514.5 nm and 488.0 nm, resonant

excitation on the Er3+ ions, all the Er-doped films show the characteristic Er3+ emission.

The Figure 8.3 shows the emission at the 1.54 µm peak as a function of the pump

wavelength at a fixed pump power (Photoluminescence excitation curves - PLE curves).

The peak intensity has been measured as the difference between the emission intensity at

1.54 µm and the emission intensity at 1.40 µm to eliminate the contribution of the weak

flat band that is related to the presence of Si NPs. The film where the Er3+ ions are in

the same layer than the Si NPs (s=0 nm) shows a decreased linear tendency of the PL

intensity at 1.54 µm independently of resonant and non resonant pump conditions for the

Er3+ ions. Only at 488.0 nm the indirect excitation contribution is noticeable. As the

thickness of the intermediate layer is increased (s= 4, 7, 11 nm) the emission intensity

decreased up to one order of magnitude for the s= 4 nm thin film and and it is no observed

no Er3+ resonant emission for s higher than 7 nm. The optical behavior is exactly the

same for the s= 11 nm and s= 7 nm and similar to the Er only doped film showing the

1chequear valores
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Figure 8.2: PL spectra for the Er3+ and Si NP co-doped a-Al2O3 films with
different values of s, and for the the films doped only with Er3+ or with Si
NPs. The value of s is indicated on the corresponding spectrum. The pump
power used was 500 mW under non resonant excitation conditions

only resonant energy injection to Er3+ ions. The contribution of the indirect excitation

film through Si NPs for the s=4 nm is only a 16 % while in the s=0 nm film the indirect

contribution at 488.0 nm is a 92 % (the analysis of the PLE curves is detailed in the

Appendix B). The higher indirect contribution in the s= 4nm film and the differences on

the PL peak intensity values with the s=0 nm shows the extreme dependence of the Si

NPs-Er3+ interaction on the dopant distances and then in the Er3+ excitation mechanism.
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Figure 8.3: Photoluminescence excitation spectra at 1.54 µm for the thin
films with differences thickness of the a-Al2O3 intermediate layers. A pump
power of 200 mW has been used in all the wavelengths.

The differences between the thin films with different s values in the efficiency of the

energy transfer process is maintained under different pump power regimes. The Figure

8.4 shows the intensity peak emission at 1.54 µm dependence on the pump power in non

Er3+ resonant pump conditions (476.5 nm). The only Er3+ doped film shows a linear be-

havior with an increase with the pump power at resonant pump wavelengths (not shown).

However the film with s= 0 nm shows a saturation behavior with the pump power at all

the wavelengths due to the sensitization of Er3+ ions by the Si NPs that causes a excited
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Er3+ fraction higher than in the Er3+ only film at lower pump powers. The saturation is

due to the fact that the excited Er3+ ions reach maximum available through Si NPs. In

this film the behavior is the same for all wavelengths. The s= 4 nm film shows a linear

tendency where the PL peak intensity increases with the pump power, similar to the Er3+

only doped film. In this film the saturation behavior is not reached in this pump range

due to the low percentage (16%) of the indirect contribution that is strong limited by the

distance between dopants.

In order to analyze the results, Figure 8.5 shows the PL intensity of the films at 1.54 µm

as a function of s, for excitation at 476.4 and 488.0 nm. It can be observed that for both

excitation wavelengths the PL intensity decreases sharply as s increases. For reference,

the PL intensity for the reference film doped only with Er at an excitation wavelength

of 488.0 nm is also shown on the y-axis. The PL intensity value for the film doped only

with Er is very weak, in agreement with our previous reports for Er:a-Al2O3 films which

show that in the as-grown condition the films exhibit a negligible emission, and that it

is necessary to anneal the films at temperatures higher than 750 ◦C for 1 h to achieve a

significant signal.[26, 17] For excitation at 488.0 nm the film with s=0 shows an emission

intensity that is one order of magnitude larger than that of the film doped only with Er.

The emission under excitation at 488.0 nm is slightly higher than that under excitation at

476.5 nm. This can be due to the additional emission of directly pumped Er3+ ions, i.e.,

those that cannot be excited through Si NPs (around a 8%). Indeed, due to the controlled

multilayer doping of the films it can be shown that not all Er3+ layers can be effectively

excited by the Si NPs. For the film with s=7 nm no Er3+ PL-related emission is observed

under pumping at 476.5 nm, which suggests that for the film with s=0 nm only the Er3+

layers in close contact contribute to the sensitized emission, since the next nearest Er3+

layers in the Er:a-Al2O3 doped region have been deposited at a distance of 7 nm from

the Si NP layer due to the film design. This means that only 18 layers out of the
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Figure 8.4: Intensity peak emission at 1.54 µm as a function of pump power
at 476.5 nm (no resonant wit the Er3+ ions) for the thin films with s= 0, 4,
11 nm.
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Figure 8.5: PL intensity as a function of s, excited at 476.5 nm (full grey
circles) and 488.0 nm (full black squares). The PL intensity for the film doped
only with Er excited at 488.0 nm is represented on the y-axis with a light grey
full triangle.

total of 50 Er3+ have the potential to be sensitized, i.e., only 36% of the total

Er in the film contributes to the sensitized signal. The results presented have interesting

technological implications since they demonstrate that amorphous Si NPs formed in situ

during the growth process are able to efficiently transfer energy to Er3+ ions. This shows

that there is no need for thermal treatment to activate the energy transfer, and opens

the possibility of fabricating devices co-doped with Er-Si NPs at low temperature. Note

that although it has recently been confirmed that amorphous Si NPs can sensitize Er3+

ions to enhance both the Er3+ PL and electroluminescence,[43] annealing at tempera-

tures in the range of 800-900 ◦C have been always required. Furthermore, in spite of the

presence of defects in the as-grown a-Al2O3 films, there is evidence of significant energy

transfer, indicating that although defects might modify the efficiency of the energy transfer

process, as has been suggested in the case of Si-rich silica films,[40] they do not preclude it.

The results show that the controlled nanostructure of the films allows the energy trans-

fer from the Si NPs to the Er3+ ions to be effectively tuned. It is also possible to estimate

the critical distance for energy transfer from the surface of a Si NP to Er3+ in a-Al2O3.

For this purpose it is important to analyze in detail the structure of the film with s=4 nm.

In this film there is still clear evidence of excitation through the Si NPs. The two Er3+

layers nearest to each Si NP layer have to be considered separately because the effective

Si NPEr3+ separation is different in each case. For the Er3+ layer deposited before the Si

NPs it is a good approximation to assume that the Er3+Si NP separation is the thickness

of the deposited a-Al2O3 layer, i.e., 4 nm. This separation will be the minimum separation

between an Er3+ ion and the lower surface of the subsequently deposited Si NP. In order

to estimate the Si NP - Er3+ separation for the Er3+ layer deposited after the Si NPs, the

thickness of the deposited a-Al2O3 layer must be considered, and also the volume of the Si

NPs that is embedded within the a-Al2O3. It can be assumed that the total thickness of
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the a-Al2O3 with embedded Si NPs is the sum of the effective thickness of the Si NPs 1.4

nm plus the effective deposited 4 nm thick a-Al2O3 layer, which yields a total thickness

of 5.4 nm. Since the Si NPs have an average diameter of 4.5 ± 0.5 nm, then the Si NPs

are totally covered before the next Er3+ layer is deposited. In this case the minimum

separation of an Er3+ ion to the upper surface of a Si NP underneath will be of 1 nm. For

Er3+ in silica-based systems characteristic energy transfer distances from 0.5 to 2-3 nm

have been reported,[38, 37, 39] and therefore for the film with s =4 nm it is suggested that

there is negligible energy transfer from the Si NPs to the Er3+ layers deposited before the

Si NPs, which are at a separation of 4 nm, and that the effective energy transfer is mainly

due to the Er3+ layer deposited after each Si NP layer. From these results it can thus be

estimated that there is effective energy transfer from Si NPs to Er3+ ions in a-Al2O3 for

a distance of 1 nm.

8.4 Conclusions

Efficient energy transfer from Si NPs to Er3+ ions in a non silica-based material a-Al2O3

has been demonstrated. The amorphous Si NPs are readily able to transfer energy effi-

ciently to the Er3+ ions. Efficient energy transfer between Si NPs and Er3+ ions without

the need for post-deposition annealing is demonstrated. The spatial distribution of the

Er3+ and Si NPs has been controlled at the nanoscale, and it has been shown that the

energy transfer depends critically on the Si NP - Er3+ separation and that it is optimized

when the Er3+ ions and the Si NPs are in the same layer. The control of the spatial

distribution of the Er3+ ions around the Si NPs at the nanoscale that has been achieved

allows the amount of Er3+ sensitized by Si NPs to be effectively tuned. The present results

suggest that a higher percentage of Er3+ ions can be sensitized by Si NPs if structures

are prepared with one Er3+ layer per Si NPs layer.



Chapter 9

Maximizing Er3+- Si NPs contact.

Role of the Er3+ and Si NP

location below the nanoscale on

the Si NP-Er3+ interaction

efficiency.

The previous Chapter ?? shows that only the Er3+ ions localized in the same layer than

the Si NPs are efficiently excited through the Si NPs. Nevertheless for the optimized film

structure (s=0 nm) two Er3+ ions doping layer were deposited close to the Si NPs: one

deposited before the Si NPs formation and the other deposited after the Si NPs formation.

In this Chapter new thin films have been designed depositing only one Er3+ ions doping

layer per Si NP layer. In order to control the local position of the Er3+ ions respect to the

Si NPs below the nanoscale the Er3+ ions were deposited following the next deposition

sequences: one pulse of Er3+ deposited before Si NPs formation (SEφ2.6), one pulse of

Er3+ deposited after Si NPs formation (ESφ2.6) and finally, one pulse of Er3+ deposited

in the middle of Si NPs formation (SESφ2.6). The PL Er3+ emission properties are

discussed as a function of the dopants location and related to the Er3+ and Si NPs

interaction mechanism.

97



98 Chapter 9. Maximizing Er3+- Si NPs contact

9.1 Introduction

Fifteen years ago, mixing Si NPs and Er3+ in oxide hosts was presented as an alternative

to enhance the Er3+ emission at 1.53 µm towards the development of infrared integrated

amplifiers pumped at low powers in the visible.[18] Works on complex deposition methods

using different atmospheres, different host components, optimizing post-deposited anneal-

ing procedures to optimize Si NP sizes and the number of possible Er3+ non radiative

channels have been performed. However, a few percent of Er3+ are achievable through Si

NP excitation[22] due to the short range Si NP-Er3+ interaction. Therefore controlling

both dopants concentration and their location in the nanoscale to place the Er3+ ions

close to the NP surface seems to be the unique route to design and produce useful active

structures.[25, 22]. Therefore we have performed a deposition procedure where the po-

sition of the dopants is restricted to a plane, working with localized 2D random dopant

distributions instead 3D random dopant distributions and for which the maximization of

the Er3+Si NPs contact is obtained by the in situ deposition of dopants by alternated

Pulsed Laser Deposition (PLD).

In the Chapter ?? efficient energy transfer from amorphous Si NPs to Er3+ ions has

been observed in as deposited thin films. The energy transfer depends critically on the Si

NP- Er3+ separation and it is optimized when the Er3+ions are in the same layer than

the Si NPs. Taking into account that in this test thin films only 18 Er3+ layer of a total

of 50 are emitting, the contact between Er3+ ions and Si NPs has to be maximized in

order to optimize the energy exchange from Si NPs to Er3+. Moreover, the thin film S4

whose minimum effective Er3+-Si NP separation was 1 nm shows a decrease up to one

order of magnitude in comparison with the thin film where the Er3+ ions are in the same

layer that the Si NPs. Therefore new thin films were been prepared depositing only one

Er3+ pulse per Si NP layer locating both layers next to each other.

However, it is possible to analyze the highly sensitivity of the Si NP- Er3+ interaction

phenomena below the nanoscale using the special features of the in situ independent

deposition of dopants. Therefore, a single Si NP size was selected (φ=2.6 nm) and the

order of deposition of dopants (Er3+, Si NPs) was changed between thin films as it has

been described in the Section 9 of the Chapter 3 following the deposition sequences:

1. SEφ2.6: Er3+ deposited before the Si NPs formation. Er3+ under the Si NPs.

2. ESφ2.6: Er3+ deposited after the Si NPs formation. Er3+ on top of the Si NPs.

3. SESφ2.6: Er3+ deposited when the Si NPs are not completely formed in the middle

of the Si NPs formation process. Er3+ partially under and on top of the Si NPs.

Comparing the schemes of the dopants in a single layer of Er3+ doped Si NPs between

thin films for the different deposition configuration (SEφ2.6, SESφ2.6 and ESφ2.6), and
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Figure 9.1: Transmission measurements for the a-Al2O3 doped by Er3+ and Si NPs films depositing the Er3+

before the Si NPs (ESφ2.6, black solid line) and the Er3+ deposited after the Si NPs (SEφ2.6, black dot line). The
a-Al2O3 film doped only with Er3+ (black dash line) is shown as reference. The dopant spatial configurations are
schematically detailed at the right diagrams.

taking into account that the average distance between edges of Si NPs in the plane has

been established around 0.5 nm for a Si NP average size around 2.6 nm (Chapter 6), the

differences on the Er3+ response are going to be only related to differences on the relative

Er3+-Si NP separation below the nanoscale. Moreover, this analysis allows us to show the

accuracy of the PLD to control dopants location and increase the probabilities to achieve

a higher amount of excited Er3+ than using other deposition techniques.

9.2 Maintaining 2D-dopant distributions

One pulse on Er3+ target was selected to obtain an areal density of 8.3 1013 atm/cm2.

In order to induce the Si NPs formation with a controlled average size, 185 pulses have

been used to ablate the silicon target for every Si NP layer. The Er and silicon content

per layer is maintained between thin films.

Figure 9.1 shows the absorption spectra measured for the two of the Er3+ and Si NP

co-doped films (SEφ2.6, ESφ2.6) deposited on fused silica substrates and the only Er3+

doped a-Al2O3 film (Only−Er−4). The only Er3+ doped film shows the usual negligible

absorption from the visible to the infrared in the measurement range. However, all the

Er3+ and Si NP doped films show the same absorption band in the visible region due

to the presence of the Si NPs of the same average size between thin films. It has been

obtained a band gap energy of 1.6 eV which corresponds to an average size of 2.6 nm. We

would like to emphasize the reproducibility of the 2D-Si NP distributions so the absorption

edge obtained is the same for different thin films.
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Figure 9.2: Normalized photoluminescence spectra to the maximum of intensity peak for only Er3+ doped film
and the thin films where the Er3+ ions were deposited after the Si NPs formation. Inset: Zoom in to the emission
peak region from 1515 nm to 1555 nm. The dopant spatial configurations are schematically detailed at the right
diagrams.

9.3 PL and PLE

All the co-doped films show the typical Er3+ PL emission spectrum in the infrared cen-

tered at 1533 nm. The Figure 9.2 shows the normalized spectra to the maximum of

intensity peak for the only Er3+ doped film an one of the Er3+ and Si NPs co-doped

film (SEφ2.6) pumped at resonant wavelength. The emission spectrum for the only Er3+

doped a-Al2O3 film is centered at 1530 nm whereas the emission spectra for the co-doped

films is narrower and shifted to longer wavelenghts. The Er3+ and Si NP doped films

show enhancement of the absolute PL intensity from 16 to 36 in comparison with the

only Er3+ a-Al2O3 doped film pumped at resonant wavelength. The photoluminescence

excitation spectrum (PLE) was measured for all the thin films (see Figure 9.3). The only

Er3+ doped a-Al2O3 thin film only shows significant emission at the resonant wavelengths

with the Er3+ energy levels (488.0 and 514.5 nm). The excitation spectra for the Er3+

and Si NPs doped films show a decrease as a function of the pump wavelength. Therefore

it is concluded that the Er3+ ions are mainly excited through the Si NPs. Indeed the

slope of the excitation spectrum is similar for all co-doped thin films and only a intensity

displacement is observed suggesting that the Si NP size determines the optical absorption

and the dependence on the wavelength pump.

9.4 Fraction of excited Er3+

The Figure 9.4 shows the evolution of the intensity peak at 1533 nm as a function of

the pump power at resonant wavelength (488.0 nm). Similar curves are obtained at non
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Figure 9.3: Photoluminescence excitation spectra for the a-Al2O3 film doped only with Er3+ (grey triangles-grey
solid line) and the a-Al2O3 doped by Er3+ and Si NPs films depositing the Er3+ before the Si NPs (ESφ2.6, empty
black squares-black solid line), the Er3+ in the middle of the Si NPs formation (SESφ2.6, empty grey circle-grey
dash line) and the Er3+ deposited after the Si NPs (SEφ2.6, empty black diamond-black dot line). A pump power
of 200 mW has been used in all the wavelengths. The dopant spatial configurations are schematically detailed at
the right diagrams.

resonant conditions. In the studied pump power range the PL intensity peak increases

linearly with the pump power for the only Er3+ doped film. However the Er3+ and

Si NP doped a-Al2O3 films seems to evolve towards a maximum intensity with different

saturation values.

Assuming that for this 2D-Si NP distributions the in plane distance between Si NPs

edges is 0.5 nm and taking into account that the interaction distance should be around

0.5-1nm for a resonance energy transfer (RET-Föster) interaction mechanism [37, 29] thus,

the 100% of Er3+ ions can be excited through Si NPs. However the different saturation

levels indicates a different maximum number or Er3+ ions that can be excited through

the Si NPs for the Er3+ and Si NP doped a-Al2O3 films obtained with different dopant

deposition sequences. Consequently, the number of excitable Er3+ ions through Si NPs

is strongly limited by the dopants location below the nanoscale, showing an extreme sen-

sitivity of the Si NP-Er3+ interaction to the spatial correlation between both dopants

distributions.

When the system is in equilibrium the PL intensity (IPL) that correspond to the tran-

sition from 4I13/2 level to the fundamental state could be approximated by the expression

B.1,

IPL ∼ fExc−Er NEr σa
τ

τrad
(9.1)

where NEr is the total concentration of Er3+, fExc−Er is the fraction of excited Er3+, σa

is the absorption cross section, τ is the measured lifetime and τrad is the lifetime in the

absence of radiation less transitions. The areal concentration of Er3+ ions, the radiative
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Figure 9.4: Intensity peak emission at 1.54 µm as a function of pump power at 488.0 nm the a-Al2O3 film doped
only with Er3+ (grey triangles-grey solid line) and the a-Al2O3 doped by Er3+ and Si NPs films depositing the
Er3+ before the Si NPs (ESφ2.6), the Er3+ in the middle of the Si NPs formation (SESφ2.6) and the Er3+

deposited after the Si NPs (SEφ2.6). The dopant spatial configurations are schematically detailed at the right
diagrams.

lifetime and the absorption cross section associated to the presence of Si NPs are the same

for the co-doped thin films due to the same host, same Er3+ and Si content and the same

absorption values between films. Therefore the decrease in the fraction of excited Er3+

respect to the film with the maximum emission can be estimated by the expression 9.2.

∆f = 1−
fEr−ESφ2.6

fEr−SEφ2.6
= 1−

IPL−ESφ2.6 τSEφ2.6

IPL−SEφ2.6 τESφ2.6
= {1−

IPL−ESφ2.6

IPL−SEφ2.6
}τSEφ2.6=τESφ2.6 (9.2)

The inset of the Figure 9.5 shows the decay curves of the three Er3+ and Si NP co-

doped a-Al2O3 thin films obtained pumping at non resonant wavelength (476.5 nm). All

the thin films shows the same response independently of the different dopants spatial con-

figuration. Therefore the decrease in the fraction of excited Er3+ is only related with the

ratio of the PL peak intensity. A 20% of the fraction of excited Er3+ is decreased from the

SEφ2.6 to SESφ2.6. Up to a percentage of 53% of the fraction of excited Er3+ is

decreased only by changing the deposition sequence of dopants (from Er3+ de-

posited before Si NPs to Er3+ deposited after Si NPs, see Figure 9.5) proving the extreme

sensitivity of the Si NP-Er3+ interaction to the spatial correlation between both dopant

distribution and suggesting that the efficient interaction mechanism is more sensitive to

the distance between dopants than the assumed Föster resonance energy transfer process.

9.5 Maximized Er3+ and Si NPs contact

We are going to analyze in detail the differences on the emission spectra shape in order

to determine the relevance of the control of dopants location below the nanoscale and the

significance of the accuracy in the Er3+ location to achieve a maximization of contact
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Figure 9.5: PL intensity peak at 1533nm for the three Er3+ and Si NP doped a-Al2O3 films obtained in non
resonant pump condition (λPUMP = 476.5nm) at 200 mW. The inset shows the decay curves for the three Er3+

and Si NP doped a-Al2O3 films at the same pump conditions. The dopant spatial configurations are schematically
detailed at the right diagrams.

between the Si NPs and Er3+ ions. The shape of the Er luminescence spectrum reflects

the local environment around the ion[108], hence differences in the Er3+ emission shape

could be related to different chemical composition associated to the host (a-Al2O3) or to

the Si NPs (silicon). The Figure 9.2 shows the normalized spectra to the maximum of

intensity peak for an Er3+ and Si NPs co-doped film (SEφ2.6) and the reference Er3+

only doped film. All the co-doped films show the same spectral behavior independently the

dopants deposition sequence. Nevertheless the spectra for Er only doped film is broader

than for the co-doped films ones, thus the Full With at Half Maximum (FWHM) is 50

nm for the Er3+ doped a-Al2O3 film in contrast with the 44 nm for the Si NP and Er3+

doped films. Moreover the peak intensity position in the co-doped films spectra is shifted

a few nanometers to longer wavelength values than the peak position of the only Er doped

film (from 1530 nm at Er3+ doped a-Al2O3 to 1533 nm in the Er3+ and Si NP doped

a-Al2O3 films). The bandwidth reduction and the shift to longer wavelengths for all the

co-doped films suggests that almost recollected emission comes from Er3+ localized in a

Si − O2 rich chemical environment rather than in an Al − O2 environment,[14] which is

consistent with the Er located at the surface of the Si NPs.

The maximized contact is confirmed by the PL temporal response. Prior works shows

the lifetime dependence on the Er3+ and Si NP separation observing modification of the

Er3+ radiative lifetime from the proximity to silicon nanoclusters by Purcell effect.[109]

For Si nanoclusters with a diameter around 2.6 nm, variations higher than a 50% are

estimated and observed for variations in the Er3+ and Si NPs separations below the

nanoscale. However in our case all the Er3+ and Si NP doped a-Al2O3 films show the

same temporal behavior (see inset Figure 9.5). Thus the Er3+ ions emit efficiently and

seem to be located in the at the same distance of the Si NPs. Analyzing the differences in
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the dopants distributions obtained by the changes in the order of the deposition of dopants

imply that only the Er3+ in contact is efficiently excited, in agreement with the spectra

shape behavior.

The a-Al2O3 host allow us to determine that only the Er3+ ions in contact with the

Si NPs are emitting. Izeddin et al. [25] described the main three mechanisms of energy

exchange between Si NPs and Er3+ ions (exciton interband recombination, relaxation of

hot carriers through intraband transitions and dipole-dipole interaction) estimating their

probability of excitation of Er3+. The most efficient process is through recombination

of confined electron and hole (interband transitions) but it is determined by the electron

and hole wave-function at the position of the Er3+ ion, therefore this interaction has a

contact character and only the Er3+ situated inside or at the surface of the Si NP have a

relevant role. The observed PL response suggests a extreme coupling between the Er3+

and Si NPs due to the high accuracy in the nano-scale of the Er3+ location by alternated

PLD deposition that allow us to locate the Er3+ on the surface of the Si NPs for the

SEφ2.6 film and thus to maximize the contact between the two 2D-dopant distributions

magnifying the transfer efficiency due through the maximization of the interband excita-

tion mechanism.

On the other hand, we would like to emphasize that the fact that there are no differ-

ences in decay curves suggest that the PL temporal response is imposed by the quantum

optical properties of the Si NPs that it is the same between thin films. Therefore, in

our maximized-contact thin films, the main exchange mechanisms and main rules on the

excitation and des-excitation of Er3+ ions are related to inter-band exciton recombina-

tion and intra-band electron relaxation and excitation, eliminating the complexity of the

resonance energy transfer (RET) and the Föster interaction distances, and opening a new

route to understand thoroughly the interaction mechanism between quantum dots and

dipole emitters.

9.6 Conclusions

The alternated PLD allow us to control the Er3+ ions and Si NPs location below the

nanoscale. Maximized contact is obtained in the thin films where the Er3+ ions are

deposited following the Si NPs formation, therefore most of the Er3+ ions are on the Si

NPs. The a-Al2O3 host reveals the Si−O2 rich chemical environment of the Er3+, thus

the emitting Er3+ ions are located in the surface of the Si NPs. The amount of achievable

excited Er3+ depends strongly of the dopants location below the nanoscale. However the

PLE curves and the temporal response depends fundamentally on the quantum properties

of the Si NPs and not on the separation between the two dopants. All the PL properties

reveals that in thin films with maximized-contact (extreme-coupling) the main exchange
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mechanism are related to inter-band and inter-band transitions and seems that the Föster

interaction mechanism does not contribute significantly establishing a new extreme Er3+-

Si NPs coupling regime.



Chapter 10

Er3+ as a probe of the film growth

mechanism involved in the Pulsed

Laser Deposition. PLD accuracy

Thin films with maximized Er3+ and Si NPs contact have been obtained depositing in

situ the Er3+ ions following the Si NPs formation as it has been described in the Chapter

9. However, a thoroughly study of the mechanism involved in the pulsed laser deposition

(PLD) process is required due to the sensitivity of the Er3+ and Si NPs interaction

mechanism below the nanoscale. In this Chapter we are going to analyze the accuracy of

the PLD process to control Er3+ and Si NPs location and the mechanism involved in the

Er3+ and Si NPs interaction processes.

106
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10.1 Introduction

The deposition process to obtain a maximized contact thin films has been described in the

Chapter 9 where the Er3+ ions are deposited following the Si NPs formation. Nevertheless

for the thin film with the Er3+ deposited before the Si NPs the fraction of excited Er3+

decreased a 53% in comparison with the Er3+ deposited after the Si NPs formation. Thus,

only changing the order of the Er3+ deposition after or before the Si NPs formation, a

large decrease on the fraction of the excited Er3+ occurs. Consequently a discussion about

what are the differences in the dopant location is still open. The Er3+ emission spectra

for the Er3+ and Si NP doped films suggest that only the Er3+ in the a-Al2O3-Si NP

interface is emitting. However, are really the Er3+ ions located on the Si NP surface or

could they be inside of the Si NP?, Is the energy transfer process possible for Er3+ ions

close the Si NPs but located in the a-Al2O3?

During the PLD process, a plasma plume is formed from the vaporized material gen-

erated by the ablation of the target. This plasma plume is constituted by a mixture of

energetic species (atoms, electrons and ions). The thin film grows through the collec-

tion of a fraction of material by a substrate placed in the path of the expanding plasma.

The plasma is characterized by the presence of species with a high kinetic energy species

(10-200 eV) in comparison with other ion beam techniques as sputtering (5-10 eV) or

thermal evaporation (∼ 0.1 eV). [110, 111] These high energetic species can influence the

growth process, in fact, their impact on the film surface can cause bond breaking, displace-

ment or removal surface atoms. Phenomena as shallow implantation, interfacial mixing or

re-sputtering have been reported:

• Implantation during the PLD depends directly on the mass of the atoms or ions

involved, therefore it affects mainly the Er atoms. In our system for laser energy

densities of a few mJ cm−2 the velocities of the ablated species are typically around

1.4 104 m s−1. [112] Taking into account the mass of Er the estimated kinetic energy

of the species arriving at the substrate can be as large as 175 eV. An implantation

depth of 1 nm have been obtained by TRIM simulations for laser densities around 3

J cm−2 and below 0.5 nm for laser densities around 2 J cm−2.[26]

• Mixing is a phenomenon that can occur when the mass of the previously deposited

material is similar to the achieving species. Therefore it is expected to be relevant

for the a-Al2O3-Si NPs interfaces.

• Re-sputtering affects to atoms with low adhesion energy to the substrate and it is

significant to the material deposited before. In our case, the silicon atoms that arrive

over the a-Al2O3 layer shows a hight affinity to bond to oxygen atoms, as shown by

the high density of Si NPs obtained. Therefore, low re-sputtering is expected.
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Our experimental approach is based on the study of the PL response of the thin films

prepared changing the dopant deposition order described in the Chapter 3 and Chapter

9, and the comparison of these results with the properties of the new thin films produced

with a thick intermediate a-Al2O3 layer between dopants with an associate thickness t of

0.5 and 1 nm and for two different Si NP sizes (see Chapter 3 Section ). The two different

average Si NP sizes studied are 2.2 nm and 2.8 nm and, they have been selected in order

to study the a-Al2O3 Si NP coverage process and how the Si NP size can be affect to the

Si NP and Er3+ transfer process at different Er3+ and Si NP separation. Also, an Er3+

only doped a-Al2O3 film was produced at the same deposition conditions and with the

same Er3+ dopant content and distribution.

We are going to use the Er3+ as a probe to analyze how implantation and mixing

phenomena fundamentally affects to the optimization of the Er3+ PL at 1.53 µm. Also

the possibility of Er3+ excitation through Si NPs for Er3+ located at the a-Al2O3 will be

shown and how it is possible to reduce the back-transfer phenomena from Er3+ to Si NPs

but at expense of a reduction in the fraction of excited Er3+ ions.

10.2 Energy transfer without Er3+ and Si NP contact

The Figure 9.2 of the Chapter 9 shows the normalized emission spectra for the Er3+ only

doped film and the thin film where the Er3+ ions were deposited after the Si NPs for-

mation (SEφ2.6). As it has been explained previously all the Er3+ and Si NPs doped

films (SESφ2.6, ESφ2.6) show the same emission spectrum shape than SEφ2.6 indicat-

ing a Si−O2 rich chemical environment. Therefore, after analyzing the spectra shape in

detail, we have concluded that only the Er3+ ions in contact with the Si NPs are emitting.

The Figure 10.1 shows the normalized spectra for the Er3+ and Si NP doped thin

films where the separation between Er3+ ions and Si NPs was changed by depositing an

intermediate a-Al2O3 of 0.5 nm and 1.0 nm thick layer. For instance, the Figure 10.1.a

shows the normalized spectra for the Er3+ and Si NPs doped thin films within Si NP

average size around 2.2 nm. The thin film where the Er3+ ions are deposited after the

Si NPs formation (S(A − 0.0)Eφ2.2, t=0 nm) shows the same spectra shape than the

SEφ2.6, centered at 1533 nm and with a FWHM of 44 nm indicating a SiO2-rich chem-

ical environment. However the thin films with an a-Al2O3 intermediate of 0.5 nm or 1.0

nm thick, S(A−0.5)Eφ2.2 and S(A−1)Eφ2.2 respectively, show an emission spectra peak

centered at 1530 nm and with a FWHM of 50 nm as the Er3+ only doped a-Al2O3 film.

Therefore the Er3+ ions are located in an a-Al2O3 chemical environment, and a layer of

a-Al2O3 with a thickness value of 0.5 nm is enough to cover the Si NPs and separate the

Er3+ ions from the Si NPs.
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Figure 10.1: Normalized photoluminescence spectra to the maximum of intensity peak for the Er3+ and Si NP
doped films with different t. The Figure 10.1.a corresponds to the thin films doped by 2D-Si NPs distribution with
an average size of 2.2 nm. The Figure 10.1.b corresponds to the thin films doped by 2D-Si NPs distribution with
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Figure 10.2: PL intensity as a function of t, excited at 488.0 nm at a 200 mW
pump power. The average diameter estimated for the 2D-Si NP distribution
are 2.2 nm and 2.8 nm. The PL intensity for the film doped only with Er is
indicated at a dashed line.
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The Figure 10.2 shows the PL intensity obtained at the emission peak at 1.5 µm for

all the thin films including the Er3+ only doped a-Al2O3 film. All the Er3+ and Si NP

co-doped films show PL enhancement in comparison with the Er3+ only doped film due

to the presence of the Si NPs, whose PL intensity value decreases as a function of the

thickness of the intermediate a-Al2O3 layer.

For the films with Si NPs embedded with an average size around 2.2 nm, the PLE

curves show the same slope between thin films and only a displacement in the absolute

value occurs (not shown - similar to Figure 9.3). Consequently the dependence of the Er3+

PL on the pump wavelength is mainly kept by the quantum properties of the amorphous

Si NPs and is not influenced by the separation of the Er3+ and Si NP dopants. However

the saturation curves (PL intensity as a function of the pump power at fix wavelength)

indicates that the number of the achievable excited Er3+ through the Si NPs is lower for

the films with an intermediate a-Al2O3 layer than the films with the Er3+ ions deposited

following the Si NPs formation. Therefore it is possible to maintain the energy exchange

between the Si NPs and Er3+ ions with PL enhancement factors higher than 10 by con-

trolling the separation of the Er3+ ions from the Si NPs by an a-Al2O3 layer. The PLE

curves are determined mainly by the Si NP size that determine their quantum properties

while the number of excited Er3+ is ruled by the Er3+ and Si NP separation.

In contrast, for the co-doped thin films with Si NPs with an average size around 2.8 nm,

the emission spectra shape is the same for the thin film whose Er3+ ions were deposited

following the Si NPs formation (S(A − 0.0)Eφ2.8, t=0.0 nm) and the Er3+ and Si NPs

doped a-Al2O3 film with an intermediate a-Al2O3 layer of 0.5 nm thick (S(A−0.5)Eφ2.8,

t=0.5 nm) (see Figure 10.1.b). Therefore it seems that the 0.5 nm of intermediate a-Al2O3

is not enough to cover the Si NPs and separate the Er3+ ions from the Si NPs. However

the S(A− 1)Eφ2.8 with an intermediate layer of 1 nm (t=1 nm) shows a Er3+ emission

spectrum shape associated to Er3+ ions located in a-Al2O3. In Figure 10.2 a strong de-

crease from t=0 nm to t=0.5 nm is observed and almost constant from t=0.5 nm to t=1.0

nm. The PLE curves show the same slope for all thin films and only a displacement in the

absolute value occurs for t=0 and t=0.5 nm films while the t=0.5 and t=1.0 nm thin films

shows the same tendency and PL values (not shown). In fact, the PL intensity saturation

curves (not show) show differences between the thin films where the Er3+ ions are located

at the same environment (Si02-rich) with a thickness t of 0.0 nm or 0.5 nm indicating a

lower fraction of excited Er3+ ions for the t=0.5 nm. Surprisingly for t= 0.5 and t=1.0

nm the amount of achievable excited Er3+ through the Si NPs are the same. This result

suggests that it is possible to obtain an efficient transfer process between Er3+ ions lo-

cated in different environments but located close to the a-Al2O3-Si NP without significant

reduction of the number of the excitable Er3+.
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10.3 Implantation depth and Si NPs covering process

In the Chapter 9 thin films with differences in the Er3+ and Si NP dopant configuration

below the nanoscale were studied (SEφ2.6, SESφ2.6, ESφ2.6). The emission spectra

shape reflect fundamentally a SiO2-rich chemical environment for the emitting Er3+ ions

. The small differences between the SEφ2.6 and ESφ2.6 suggests low percentage of inter-

facial mixing when the capping layer of a-Al2O3 is deposited. But the Er3+ ions can be

implanted inside the Si NPs when they are deposited following the Si NPs formation. But

other physical phenomena have to be taken into account as the self-purification mechanism

in semiconductors nanoclusters that could explain the spiting out of the Er ions implanted

in the Si NP core to the surface of the Si NP because this process is greater for smaller

nanoparticles.[113, 114] In fact, it has been recently corroborated that impurities within

a nanocluster can be energetically driven to the surface in Si nanocluster and Phosphor

impurities with a critical size around 2 nm.[115] Therefore, the combination of the self-

purification and the SiO2-rich chemical environment observed suggests that all the Er3+

emitting is mainly located on the surface of the Si NPs and not inside them.

However, a 56 % higher fraction of the Er3+ is excited when the erbium ions are

deposited following the Si NPs formation in comparison with the thin films where Er3+

ions are deposited before the Si NPs formation. This difference in the fraction of excited

Er3+ can be only be related to Er3+ implantation into the a-Al2O3 when the Er3+ ions

are deposited before the Si NPs formation. However the implantation phenomena inside

the Si NPs when the Er3+ ions are deposited after the Si NPs formation can be masked

by the self-purification or the possibility of no emitting Er3+ ions when they are in a

Si-Si chemical environment. Thereby the Er3+ implantation in a-Al2O3 occurs and it is

confirmed in the case of the S(A − 0.5)Eφ2.8 thin film. The intermediate a-Al2O3 layer

thickness used is 0.5 nm and the Er3+ ions penetrate in the a-Al2O3 cover layer showing

a SiO2-rich chemical environment.

Moreover the Er3+ ions of the thin film S(A− 0.5)Eφ2.2 shows an a-Al2O3 chemical

environment. Therefore the implantation depth of the Er3+ ions in the a-Al2O3 has to be

lower than 0.5 nm. However in the case of the S(A− 0.5)Eφ2.8 thin film, the Er3+ ions

deposited show a SiO2-rich chemical environment. The differences between the two thin

films with the same thickness of the capping layer are related to Si NP cover process during

the deposition of the oxide layer. The intersticial spaces between Si NPs are preferentially

filled while the Si NPs are cover by a thicker a-Al2O3 layer. As a result, in the case of

the larger Si NPs, the amount of a-Al2O3 required to fill the space between the Si NPs

is higher than for the smaller ones and, when the Er3+ ions are deposited, the capping

layer is not complete and the cover layer over the Si NPs is much thinner than 0.5 nm.

As a result the Er3+ ions penetrate the a-Al2O3 and contact with the Si NPs indicating
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Figure 10.3: Decay curves for the Er3+ and Si NPs doped thin films with different thickness of the intermediate
a-Al2O3 layer (t) and with a Si NP average size of 2.2 nm. The PL dynamic curves have been acquired pumping at
476.5 nm at a 200 mW pump power.

an implantation depth lower than 0.5 nm.

10.4 Er3+-Si NP separation versus Er3+ to Si NP back-

transfer efficiency

The Figure 10.3 shows the decay curves for the three Er3+ and Si NP doped a-Al2O3 films

with Si NP average size of 2.2 nm and measured at non resonant wavelength pump condi-

tions. The S(A− 0.0)Eφ2.2 and the S(A− 0.5)Eφ2.2 shows the same temporal behavior.

However the S(A − 1)Eφ2.2 shows a lifetime enhancement in comparison with the other

two Er3+ and Si NP co-doped films. The similarities between these co-doped films with

t=0.0 and t=0.5 nm can be related to the small separation between dopants. Taking into

account the expression 9.2, the amount of excited Er3+ is reduced in a 27% while, as it

has been explained in the Chapter 9, the reduction in the Er3+ excited fraction between

SEφ2.6 and ESφ2.6 is of a 56%. Consequently the amount of Er3+ that penetrate in the

intermediate a-Al2O3 layer and it is located close to the Si NPs is higher than the amount

of Er3+ that penetrates the a-Al2O3 before the Si NPs formation that causes a decrease

of the 56% of the excited Er3+ between the SEφ2.6 and ESφ2.6 films. Furthermore the

Er3+ excitation by Si NPs is efficiently controlled by Er3+-Si NPs separation. Therefore

the Er3+ and Si NPs interaction is extremely sensitive to the Er3+ separation below the

nanoscale, showing that techniques with a high accuracy in the dopant location require a

careful calibration below the nanoscale to obtain the maximum optimization of the Er3+

ions emission.

The lifetime values were obtained fitting a multi-exponential decay model with two
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components, obtaining a 0.26 ms for the t=0 and t=0.5 nm and 0.39 ms for the t=1

nm (the analysis is detailed at Appendix C). The lifetime enhancement observed in the

S(A − 1)Eφ2.2 can be interpreted in the frame of two phenomena: a reduction of the

back-transfer phenomenon from the Er3+ to the Si NPs or to changes in the radiative

probabilities by Purcell effects on the density of optical states.

Considering the Er3+ ions as donors and the Si NPs as acceptors and solving the rise

times and decays as multi-exponential curves with n=2, the efficiency of the back-transfer

process (EB−T ) can be estimated by the expression C.11:

EB−T = 1− (α1τ1 + α2τ2)DA
(α1τ1 + α2τ2)D

(10.1)

where the subscript DA corresponds to the Er3+ and Si NP doped film, the subscript D

corresponds to the Er3+ only doped film and the subscripts 1 and 2 correspond to the two

exponential components (see Appendix C). The percentage of back-transfer phenomena for

S(A−0.0)Eφ2.2 and S(A−0.5)Eφ2.2 is 53% while the back-transfer for the S(A−1)Eφ2.2

(t= 1 nm) is 33%. Thus, separating the Er3+ ions from the Si NPs reduces the back-

transfer from the Er3+ ions to the Si NPs because the Si NPs can act as non-radiative

centers for the Er3+ ions. However, not only the back-transfer phenomena is reduced and

the efficiency of the energy exchange from the Si NPs to the Er3+ ions is also decreased.

Following an alternative approach to understand the Er3+ de-excitation it is possible

to estimate the changes in the measured lifetime from changes in the probabilities of the

non radiative channels. The measured lifetime (τmeasured) is given by the expression 10.2

as a function of the Er3+ radiative lifetime (τrad) and the non-radiative lifetime (τnr).

1

τmeasured
=

1

τnr
+

1

τrad
(10.2)

Taking into account that the τrad � τnr, the change ratio in the τmeasured is given by:

τmeasured−1

τmeasured−2
=
τnr−2

τnr−1
. (10.3)

The lifetime values for the S(A − 0.0)Eφ2.2 and the S(A − 0.5)Eφ2.2 are the same,

therefore we can assume that when a Er3+ ion is close to a Si NP the preferential non

radiative exchange channel is the Si NP and not the a-Al2O3 defects that are mask by

the presence of the Si NPs. Thus the main non-radiative process is the back-transfer

phenomena. Furthermore the probability of an event is proportional to the inverse of its

lifetime and proportional to its efficiency therefore the non-radiative lifetime is going to be

proportional to the inverse of the back-transfer efficiency. Consequently the ratio between
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τmeasured between S(A− 0.0)Eφ2.2 (t=0 nm) and S(A− 1)Eφ2.2 (t= 1 nm) is given by

τmeasured−t=1

τmeasured−t=0
=
EB−T,t=0

EB−T,t=1
, (10.4)

where the relation of the lifetimes are the same that the relation of the back-transfer

percentages. The relation between the measured lifetimes is 1.5 and the relation between

the back-transfer percentages is 1.6. These similar values obtained are in agreement with

our hypothesis that the main decay channels for the Er3+ ions are the Si NPs and not

the a-Al2O3 defects.

The lifetime values between S(A− 0.0)Eφ2.2 (t=0 nm) and S(A− 0.5)Eφ2.2 (t= 0.5

nm) do not change and the same spectra shape for the two films (see Figure 10.1.a) indi-

cates the same Si − O2-rich environment. Therefore the emitting Er3+ ions are mainly

located on the Si NPs surface and the back-transfer efficiency is the same independently of

the excited Er3+ fraction. It is consistent with an Er3+des-excitation mechanism through

intra-band transitions that shows a dependence with the dopants separation proportional

inverse to the four power. However the PL intensity decreased rapidly with the thickness

of the a-Al2O3 spacer layer. Thus, taking into account the expression 9.2, the fraction of

excited Er3+ decreases a 27 % between S(A− 0.0)Eφ2.2 and S(A− 0.5)Eφ2.2, indicating

that the fraction of excited Er3+ depends strongly on the separation between Er3+ ions

and Si NPs below the nanoscale. It is consistent with an efficient Er3+ excitation process

that requires physical contact as Er3+ excitation through direct exciton inter-band recom-

bination. Therefore the main mechanisms that rule the interaction between Er3+ ions and

Si NPs are different for the excitation process and the de-excitation but not independents

(it will be discussed more in detail in the Chapter 12).

On the other hand the Purcell effect can affect to the radiative lifetime which is de-

creased when a dipole emitter (as Er3+) is close to an interface of materials with different

optical properties. However the small size of the Si NPs and the results based on the back-

transfer efficiency suggest that the lifetime behavior is mainly due only to a reduction of

the back-transfer mechanism.

10.5 Conclusions

Low percentage of interfacial mixing. Implantation depth lower than 0.5 nm that affects

strongly to the amount of excited Er3+ ions through Si NPs. The contact is not a taxa-

tive requirement and transfer energy from Si NPs to Er3+ ions is observed for Er3+ ions

located in a-Al2O3 environment.

Changes on the temporal response are observed for small Si NP-Er3+ distances due

to the reduction of back-transfer probability. All the results suggest that the most ef-

ficient Er3+ excitation process through Si NPs shows a contact character (inter-band
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transitions) and a the back-transfer phenomena is less sensitive to the Er3+ and Si NPs

distances (intra-band transitions).

Detailed knowledge of the processes involved during PLD deposition allows to imple-

ment the conditions for achieving a control of the dopants location below the nanoscale.

Therefore the Er3+ and Si NP doped systems where the Er3+ ions and Si NPs relative

separation can be customized, controlled and optimized are possible. It could be a promis-

ing route to achieve percentages of excitable Er3+ ions through Si NPs close to the 100%

of the Er3+ population.



Part IV

Nano-engineering Er3+ and Si NP

2D-distributions towards a 100%

of excited Er3+: extreme Er3+ - Si

NP coupling regime

116



Chapter 11

Extreme Er3+-Si NP coupling

regime

The extreme sensitivity of the Er3+-Si NP interaction to the Er3+-Si NP distances below

the nanoscale has been demonstrated in the Chapters 9 and 10. In this Chapter amorphous

aluminium oxide (a-Al2O3) nanostructured thin films doped by erbium ions (Er3+) and

amorphous silicon nanoparticles (Si NPs) of different Si NP sizes were produced using the

maximized Er3+-Si NP contact configuration. In the conditions of extreme coupling the

Er3+-Si NP separation can be considered well defined and unique, since only emission from

Er3+ in contact is observed. This allows to observe new effects such as the Er3+ response

as a function of the Si NP size. The diameter of the Si NPs was varied from 1.6 nm to

3.3 nm obtaining local densities of Si NPs one order of magnitude higher than the obtained

by traditional techniques. Assuming a characteristic interaction length of 0.4 nm, it can be

estimated by simple geometrical considerations that 100% of the Er3+ ions are potentially

excitable in the films due to the Er3+ - Si NPs maximized contact. The spatial correlation

between the two dopant distributions are estimated obtaining percentage of Er3+ ions in

contact with the Si NPs from 40% to a 60%. The spectral and temporal analysis of the

photoluminescence properties shows a extreme Er3+-Si NP coupling where the average

lifetime dependence on Si NP diameter is only related to the quantum properties of the

Si NPs, since in these conditions there is not a distribution of Er3+-Si NP separations.

showing that not only the distance between Er3+ and Si NP affects to the transfer process

efficiency and the relevance of maximized contact and nano-engineer the Er3+ and Si NP

2D-distributions.
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11.1 Introduction

Towards a complete optimization of the Er3+ photoluminescence properties by Si NPs

excitation it is necessary to engineer at the nanoscale the 2D-distribution properties such

as areal densities, the Si NP average size and the relative position between Er3+ and Si

NPs. The published research reports focused on the maximization of the Er3+ - Si NPs

coupling have shown that the main limitation of the Er3+ - Si NP doped systems is to

optimize the interaction distance between Er3+ ions and Si NPs to achieve a maximized

number of excited Er3+ ions.[37] In addition, Si NP densities higher than 1019 cm−3 close

to the optimized Er3+ ion concentrations are required in the volume where the Er3+ ions

are to obtain a high percentage of sensitized Er3+ and good [Er3+]/[Si NP] ratio.[22]. As

it has been demonstrated in the Chapters 9 and 10 it is possible to maximize the contact

between Er3+ ions and Si NPs depositing the Er3+ ions following the Si NPs formation

showing the Er3+ an Si NP energy transfer a strong sensibility below the nanocale. The

aim in this Chapter is to show how is possible to further nano-engineer the doped mate-

rial optimizing simultaneously the Er3+ and Si NP concentrations, Si NP diameters and

positioning the Er3+ and Si NPs very closely below the nanometer scale in high density

two dimensional (2D) distributions of sensitizers.

Our single step deposition method has been developed to produce extreme coupling

thin films in a vacuum atmosphere and at room temperature (RT). Moreover, anneal

procedures are not necessary to active the Er3+ ions and as a result, problems as Si NP

crystallization dependence on Si NP size, and the diffusion of Er3+ that are inherent

to high temperature annealing to produce the formation of Si agglomerates or activate

the Er3+ ions, are not present in our RT single step deposition method. Thus, the in

situ formation of amorphous Si NPs and the deposition of active Er3+ features of RT

alternated PLD will allow us to study the Er3+ photoluminescence (PL) properties of as

grown Er3+-Si NP extreme coupling a-Al2O3 thin films as a function of the Si NPs size

in equivalent chemical and structural environments for the Er3+ ions.

11.2 Er3+ and Si NP 2D-distributions deposited in a maxi-

mized contact configuration

As it has been explained in the Chapter 9 the coupling between dopants can be maximized

in a first step by depositing the Er ions following the Si NPs formation. In this chapter

the maximization of the coupling Er3+Si NP changing the distributions of the Si NPs and

tuning the sizes in distance optimizing a-Al2O3 thin films maintaining the nature of the

Si NPs (amorphous) is studied.

In order to tune the Si NP average size between thin films and change the Si NP 2D-

distributions. The size of the Si NPs is controlled with the number of laser pulses used to
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ablate the Si target in each Si NPs layer deposition. The number of pulses on the Si target

(P) has been varied from 75 to 250 to produce five thin films with different Si NP sizes.

The Si NPs are formed in situ and not cover before the Er3+ deposition. Only one pulse

per layer over the metallic erbium target is used to deposit the Er3+ ions, preserving the

same Er content between thin films. To obtain a maximized contact between Er ions and

Si NPs, the Er3+ are deposited following the Si NP deposition without an intermediate

a-Al2O3 layer. All thin films are formed by 20 layers of Er3+ doped Si NPs separated

by 10 nm of a-Al2O3 as it has been described in the Section 5.4 of the Chapter 3. For

analysis purposes an Er-only doped reference film has been prepared preserving the Er3+

spatial dopant distribution.

All the thin films are optically active in as grown conditions [16] independently of

the Si NP size thus the photoluminescence (PL) properties have been measured in the

as deposited thin films. Note that other procedures where annealing is needed to induce

the nanoparticle formation or Er3+ activation involve phenomena as diffusion or crystal-

lization of Si NPsṪhe diffusion processes cause a not controlled dopants location and the

change of the degree of relaxation-crystallization of the Si NPs is different as a function

of the Si NP size [30]. For these two reasons, the techniques that implies annealing pro-

cedures are not suitable to obtain thin films with a controlled location of dopants and

the same Si NP quality independently of the Si NP size. Due it, our as grown thin films

produced by alternated-PLD are specially designed and useful to study the Si NP size

dependence on the Er3+ photoluminescence in Er3+-Si NP doped systems in no Si NP

quality dependence.

11.2.1 Tuning Si NP 2D-distributions

The thin films deposited on a fused silica substrate have been used to obtain the absorbance

of the thin films through transmission measurements. Transmission and ellipsometry mea-

surements have been performed in the 240 nm to 1700 nm wavelength range using an

WVASE J.A.Woollam ellipsometer equipped with a xenon lamp and an UV-visible fiber

optic. The Figure 11.1 shows the absorption spectra obtained in optical density units

(O.D. = log( 1
T )). The Er3+ only doped film shows a negligible absorption in whole pho-

ton energy range and the oscillations observed in the spectra are only due to the finite

thickness of the thin film and the reflections at air-thin film and at thin film-substrate in-

terfaces. All the spectra for the Er3+ and Si NPs doped films show a negligible absorption

in the infrared region, however there are clear absorption bands in the visible range that

can only be explained by the presence Si NPs . The absorption border shifts to the blue

when the number of pulses on the Si target is decreased indicating a reduction in the Si

NP size. The average diameter (φ) of the Si NPs can be estimated through the value of

the optical gap as has been explained in the Chapter5.The relation between the deposition
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Figure 11.1: Absorption spectra of the nanostructured thin films. The
Er3+ only doped a-Al2O3 film is represented by a short dash black curve.
The average Si NP sizes of the Si NPs doped a-Al2O3 thin films are estimated
as a-Si:H Si NPs with indirect character.

parameters and the average diameter of the Si NPs is shown in the Table ??. Changing

the number of pulses used to ablate the silicon target in every deposition of Si NP layer

the average diameter of the Si NPs was tuned from 1.6 nm to 3.3 nm.

The Si NP coverage, the Si NP areal density, the Si NP volume fraction have been

estimated using the protocol defined at the Chapter 6. The results are shown in the Table.

11.2.2 Correlation between Si NP and Er3+ 2D-distributions

During the PLD process, the material is only deposited in a short time (a few microsec-

onds) after the laser pulse, this special growth conditions leads to a higher density of nuclei

than for traditional vapor deposition techniques. Therefore by PLD is possible to obtain

thin films with a higher density of Si NPs in comparison with other thin film deposition

techniques. The density of Si NPs obtained was varied from 0.7 1013 cm−2 to 1.8 1013

cm−2. These densities are areal densities nevertheless the majority of other groups’ works

report Si NP distributions in a volume with volume densities values around 1019 cm−3 by

ion implantation technique [101], 5−7 1017 cm−3 by reactive magnetron sputtering [37] or

2 1019 cm−3 by optimized reactive magnetron sputtering [28]. In order to compare these

values with the density of the PLD nanocomposite layer formed, the local volume density

has been estimated in our samples. Therefore assuming that the height of the nanocom-

posite is equal to the average diameter of the Si NPs, the volume Si NP density vary from

2.1 1019 cm−3 to 1.1 1020 cm−3 (see table 11.1). The volume density for the SEφ3.3 is

the lower for all the PLD thin films, but it is the equal to the maximum value obtained

by the other deposition techniques (optimized reactive magnetron sputtering [28]). It is

possible to reach values one order of magnitude higher in the case of the smallest Si NP

size (SEφ1.6), obtaining a volume Si NP density of 11.2 1019 cm−3. Then, it is possible
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Label φ [SiNPs]2D [SiNPs]3D dedge−edge [Er]/[NP ] [Er]/[NP ]on
nm 1013 cm−2 1019 cm−3 nm no units no units

SEφ3.3 3.3 0.7 2.1 0.47 11.1 6.7
SEφ2.8 2.8 0.9 3.3 0.53 8.9 5.1
SEφ2.6 2.6 1.0 4.0 0.52 8.1 4.4
SEφ2.2 2.2 1.1 5.2 0.75 7.2 3.1
SEφ1.6 1.6 1.8 11.2 0.76 4.6 1.7

Table 11.1: Areal density of Si NPs and volume density of Si NPs associated to the thin
films with different Si NP diameter.

to obtain one order of magnitude higher density of Si NPs than using other tech-

niques [101, 37, 28] in the volume where the Er3+ ions are randomly distributed in the

nanocomposite volume. Then the percentage of Er3+ ions that could be excited

can be enhanced one order of magnitude.

We have obtained a high density of Si NPs but we are interested in the correlation

between the ions and the Si NPs. Furthermore we have considered: (1) the in situ de-

position (2) the in plane random distributions. The Er3+ concentration is the same in

all the films with a value of 8.3 1013 atm/cm2 per layer and it is randomly distributed in

the total area. When the Er3+ ions are in situ deposited following the Si NP deposition

a percentage of ions is going to be deposited on the top of Si NPs, therefore the area of

contact between the Si NPs and the Er3+ ions is the projection area of the NPs over the

a-Al2O3 surface (Figure 11.2b). The Figures 11.2c and 11.2d show schematic diagrams of

Er3+ ions and spherical Si NPs in plane distributions for two extreme average diameters

(diameters of 3.3nm and 1.6 nm). A extreme coupling is expected due to the proximity of

this two high local density. Assuming that the Er3+ ions are distributed randomly, the

percentage of Er3+ in contact with the Si NPs is equal to the percentage of Si

NP coverage and is from 60% to 40% of the total Er3+ for the SEφ3.3 and the SEφ1.6

thin films, respectively.

The number of Er3+ ions per Si NP ([Er]/[NP ]) has been calculated assuming that

the Er3+ ions and Si NPs are homogeneous randomly distributed. The number of Er3+

ions deposited on the Si NPs has been calculated using the percentage obtained for the Si

NPs coverage in the Chapter 6. In order to determine if all the Er3+ ions present in the

thin films are potentially sensitized by the Si NPs we have to take into account the between

the edge of the Si NPs. The larger distance between Si NPs is 0.76 nm and correspond to

the SEφ1.6 thin film, this distance decreases when the Si NP average diameter and the Si

NP coverage increases. Note that all the models suggest a interaction distance below the

1nm or 0.5 nm (to amorphous Si NPs) [116, 37], therefore, in roughness aproximation the

100% of the Er3+ ions are located at a distance below the interaction distance
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(a) (b)

(c) (d)

Figure 11.2: 11.2a) A example of a Er3+ ions in plane distribution. 11.2b) The projection
of the Si NP in plane distribution for the film SEφ1.6. 11.2c The merger of the projection of
the Si NP in-plane distribution for the film SEφ1.6 and the Er3+ ions in-plane distribution.
11.2d) The merger of the projection of the Si NP in-plane distribution for the film SEφ3.3
and the Er3+ ions in-plane distribution.
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and they could be sensitized by the Si NPs.

However the Er3+ ions deposited in the interspace between Si NPs are located over the

a-Al2O3 layer. If the Si NPs are spherical the distance from the Er3+ ion to the Si NP edge

is higher than one half of the dedge−edge value. The worst Er3+ location is in the middle of

two Si NPs. The maximum real distance between Er3+ ions and Si NPs (dmax,real)can be

estimated using the pythagoras theorem by the expression 11.1 where φNP is the average

diameter of the Si NP distribution and dedge−edge is the distance between edges of adjacent

Si NPs. .

dmax,real =
1

2
(

√
2φNP

2 + dedge−edge
2

+ 2φNPdedge−edge − φNP ) (11.1)

The maximum distances obtained are from 0.88 nm to 0.63 nm, values lower than the

maximum established for Foster energy transfer (around 1 nm). Therefore we reassert

than the 100% of the Er3+ ions are located at a distance below the interaction

distance and they could be sensitized by the Si NPs.

11.3 PL emission and the Er3+ chemical environment

Information about the location of the Er3+ ions must be the key to determine the real

relevance of the correlation of the two dopant distributions and the accuracy in the Er3+

location and their relevance to obtain extreme coupling between the Si NPs and the Er3+

ions. Hence the shape of the Er luminescence spectrum reflects the local environment

around the ion[108], differences in the Er3+ emission shape could be related to different

chemical composition associated to the host (a-Al2O3) or to the Si NPs (silicon). The

emission spectra are similar to the observed in the thin films analyzed in the Chapter 9.

Therefore the spectra shape of Er only doped film is broader than the co-doped films ones

thus, the Full With at Half Maximum (FWHM) is 50 nm for the Er3+ doped a-Al2O3

film and 44 nm for the Si NP and Er3+ doped film. Moreover the peak intensity position

in the co-doped film spectra is shifted a few nanometers to higher wavelength values than

the peak position of the only Er doped film (from 1530 nm for the only Er3+ doped a-

Al2O3 to 1535 nm for the SEφ3.3through 1533 for the SEφ2.6). As it has been explained

previously, the bandwidth reduction and the shift to longer wavelength in the co-doped

film suggest that almost recollected emission comes from Er3+ localized at the surface of

the Si NPs corroborating the maximized contact between Er3+ and Si NPs indecently of

the dopants 2D-distributions. A detailed study of the spectra shape evolution is shown in

the Appendix A.
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Figure 11.3: Photoluminescence excitation spectra at 1.53 µm for the 250,
210, 75 and Er-only thin films. A pump power of 200mW has been used in
all the wavelengths. (Change to pump flux)

The most clear evidence of the phenomena of energy transfer from the Si NPs to the

Er3+ ions is given by the excitation spectra of the co-doped thin films presented at the

Figure 11.3. For comparison purposes, the excitation spectrum for the Er only doped film

is also shown, where only PL peak intensity was detected at resonant pump wavelengths

(488.0 and 514.5 nm, corresponding to the 4I15/2−4 F7/2 and 4I15/2−2 H11/2 transitions).

All the co-doped films show a high Er3+ PL emission intensity at the non-resonant ex-

citation wavelengths of 457.9, 476.5 or 501.7 nm. The excitation spectra shows a strong

linear decreasing tendency due to the fact that the Si NP absorption decrease linearly as

a function of the wavelength. Therefore all the Er3+ ions are mainly excited through the

Si NPs in the Si NP and Er3+ doped films corroborating the strong coupling between the

Er3+ ions and the Si NPs.

It is possible to estimate the percentage of Er3+ emission by indirect or direct pumped

as it is explained in the Appendix B. The indirect excitation is the dominant process in

all the pump wavelength range and it is responsible of the 88% to 95% (90% mean) of the

total PL at 488.0 nm and only the the 13%-5% (10% mean) is due to the direct contri-

bution. However the indirect excitation at 514.5 nm pump wavelength is negligible for all

the co-doped thin films, except for the thin film doped with the smallest Si NP where a

35% of indirect contribution (0% mean) has been obtained.

Recent works suggest a main excitation through luminescent centers showing a lin-

ear tendency independently of the silicon content of the thin films.[117, 118] In order to

compare the linear tendency between co-doped thin films the slope was calculated in the

pump wavelength range. The slope of the excitation spectra increases as the average di-

ameter of the Si NPs decreases revealing that the PL intensity dependence on the pump
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Figure 11.4: Photoluminescence peak intensity size at 1.53 µm as a function
of the nanoparticle average diameter pumped at 488.0 nm wavelength at 150
mW power.

wavelength is more noticeable for the thin films with smaller Si NPs in the measurement

range. In fact, it is remarkable that at this pump regime the PL enhancement factor

changes from 20 to 60 for the SEφ1.6 film in a small wavelength range variation. Inter-

estingly, all the co-doped a-Al2O3 thin films shows a linear slightly decreasing function as

a function of the wavelength except the SEφ3.3 thin film. It shows a flat linear response

in the studied wavelength range suggesting a saturation regime with the pump wavelength.

The Figure 11.4 shows the Er3+ 1.53 µm PL maximum intensity peak dependence

on the average diameter of the Si NPs pumped at Er3+ resonant wavelength (488.0 nm).

All the Er3+ and Si NPs co-doped thin films show improvement on the Er3+ emission

intensity at 1.53 µm in comparison with the Er3+ only doped film, in fact a enhancement

factor up to 40 has been reached for the film with the smaller Si NP embedded without

anneal process required. The absolute PL intensity increases when the diameter of the Si

NPs decreases, only PL peak shows a flat response for thin films with smaller NP average

diameter (1.6, 2.2 and 2.6 nm) and it decreases gradually as the diameter increases from

2.6 to 3.3 nm. Similar behavior is observed at a non resonant wavelength (476.5 nm, data

not shown).

Usually, the 1.53 µm PL peak intensity reported decreases as a function of the size

[27, 19] and does not show a flat response, but there are several parameters different from

the Si NP diameter that can affect the amount of Er3+ emission detected. When the

system is in equilibrium the PL intensity (IPL) that correspond to the transition from
4I13/2 level to the fundamental state could be approximated by the expression B.1,

IPL ∼ fExc−Er NEr σa
τ

τrad
(11.2)
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where NEr is the total concentration of Er3+, fExc−Er is the fraction of excited Er3+,

σa is the absorption cross section, τ is the measured lifetime and τrad is the lifetime in

the absence of radiation less transitions. When the Si NP sizes were tuned from 1.6 to

3.3 nm, the σa and τrad change due to the optical properties dependence on the size (see

Chapter5) but additionally the Er3+ ions locations are different regarding to the Si NP

distributions are different between thin films. At section 11.2.2 we have concluded that the

100% of the Er3+ ions could be sensitized, however at a specific pump power their prob-

ability of sensitization is going to depend on the distance to the Si NP surface, and then

the distribution between dopants are going to affect to the Er3+ peak intensity emission

obtaining different fExc−Er. Taking into account that the absorption and the refractive

index increase as a function the Si NP average diameter while the PL peak intensity value

is maintained or decreases as a function the Si NP average diameter, then, the fraction

of excited Er3+and the lifetime values are the mainly dominant parameters in the PL

intensity tendency.

The PL emission spectrum of all the co-doped films reveals that the Er3+ excited

through the Si NPs is in a Si-O environment. Also the PL excitation curves shows a

excitation mainly through the Si NPs and a clear dependence on the Si NP size. The

PL intensity dependence on Si NP size reveals that the PL intensity emission depends

mainly of the excited Er3+ fraction and the Er3+ lifetimes due to the extreme Er3+-Si

NP coupling that drops the importance of the absorption of the Si NPs.

11.4 PL decay curves and Er3+-Si NP extreme coupling

The dynamics properties of excitation and des-excitation are perhaps one of the most im-

portant characteristics of an emitter. The lifetime decays and rise times of the Er3+ ions

give us information about the how the Er ions interact with their environment, with other

ions, with the host characteristics or the silicon sensitizers, independently of the number of

ions emitting. Therefore the lifetimes and rise times will gives us a rich information about

the coupling properties between Er3+ and Si NPs in our nanocomposite material.[119]

Conventional analysis of Er ions lifetimes resolve the decay profile as a single-exponential

decay function as all the Er3+ are located in an optimized homogeneous environment. Het-

erogenous dopant distributions in an host with the non radiative channels minimized (by

post-deposition treatments) and/or without sensitizers show single-exponential rise and

decay times. However our extreme Er3+Si NP coupling a-Al2O3 thin films has been an-

alyzed in as grown conditions without post-anneal treatment and then a more complex

decay and rise profiles are expected. The Figure 11.5 shows the PL normalized intensity

decay curves for the Er3+ and Si NP co-doped a-Al2O3 films. The PL decay curves are not

well described by a single-exponential decay and our first approach was to fit a stretched
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Figure 11.5: Normalized photoluminescence intensity at 1.53 µm decays
pumping at resonant conditions at 488.0 nm and at 1.5W of power. The inset
shows the lifetime values as a function of the Si NP diameter at resonant
(488.0 nm) and non resonant (476.5 nm) pump conditions.

exponential function:

I(t) = I0e
−(t/τKWW )β , (11.3)

where I0 is the fluorescence intensity at time t=0, τKWW is the decay constant and β is

the inverse of the heterogeneity parameter (h = 1/β) with 0 < β ≤ 1 (more detailed in the

Appendix C). [120] The stretched exponential behavior is present in a largely number of

natural phenomena and their behavior have been associated to the stochastic geometry of

systems. As as Sturman said the stretched exponential is the quintessence of radomness

[121]. Our thin films contain 2D Er3+ and Si NP distributions randomly deposited over

the substrate surface, then the number or multiple alternative des-excitation routes are

randomly distributed and a stretched exponential tendency is expected. For a stretched

exponential function the average lifetime is defined by < τ >= τKWW
β Γ( 1

β ).

No difference between the lifetime pumped at resonant or non resonant conditions

(488.0 nm 476.5nm) has been observed (see inset Figure 11.5), therefore all the emission

recollected comes from ions that are excited by energy transfer from Si NPs to Er3+ ions

independently of the pump wavelength corroborating the Er3+ - Si NPs extreme coupling

conditions. The average lifetime values vary from 0.048 ms for the thin film with the

bigger Si NPs embedded (SEφ3.3) to 0.442 ms for the smaller ones (SEφ1.6).

11.4.1 Lifetimes distributions

As it is explained in the Appendix C from the parameters of the stretched exponential

decay curves is possible to obtain information about the Er3+ lifetimes distribution ρ(τ)
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Figure 11.6: Variation of the β parameter from the stretched exponential
fitting of the decay curves (Dark grey filled squares). Average time constants
< τ > for the decay PL curves (light grey) and the associated τKWW as a
function of the Si NP diameter (φ). The results correspond to the Er3+ and
Si NP co-doped a-Al2O3 thin films.

from β and < τ > values. Moreover, recently the stretched exponential model was de-

veloped to analyze the Er3+ lifetime and rise-time distributions and determining their

possible relation with β.[122] For every Er3+ ion it may reasonable to believe that the

relaxation or excitation response is exponential, but in co-doped systems there are a large

distributions of environments within the film, as Si NPs of different sizes, different relative

Er3+ - Si NP locations and then Er3+ - Si NP separation distances, each with different

characteristics.

The figure 11.6 shows that βdecay is constant and independent of the Si NP size while

the τKWW,decay decreases as the diameter of the Si NPs increases for the co-doped thin

films. Thus the lifetime distribution shape between co-doped thin films is similar (basi-

cally the same in a normalized lifetime representation) and only the curve is shifted to

lower lifetimes as the size increases in a non-normalized representation. Indeed, this low

variation in the βdecay parameter for all the co-doped film shows that the des-excitation

distributions are the same for all the sizes and only the lifetime value changes as a function

of the number of silicon dangling bonds or the back-transfer phenomena.

In addition, the βdecay value obtained for the Er only doped film is is lower with a

value of 0.618 versus 0.789-0.750 for the co-doped films. Thus the lifetime distribution of

the Er only doped film is broader than the lifetime distribution of the co-doped thin films.

Consequently the heterogeneity of the Er only doped film is higher than the heterogeneity

of the co-doped and therefore the Er3+ environment is more homogeneous in the extreme

coupling Er3+Si NPs thin films. The no differences observed in emission spectra shape

for all the co-doped films in the Section 11.3 and the no differences on the shape of the

lifetime distributions obtaining more homogeneous lifetimes distributions than the Er3+
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only doped film corroborated that the Er3+ ions emitting are localized in the same

environment in the co-doped thin films independently of Si NP size, thus they are

located on the surface of the Si NPs and the temporal response is only related to

the Si NP properties and not to the a-Al2O3 host demonstrating the extreme Er3+Si

NP coupling regime. Thus the contribution of the Er3+ ions emitting in contact with

the surface of the Si NPs is more homogenously that the Er only film where the presence

of defects or other Er3+ ions can expand the temporal response distribution of Er3+ ions.

11.4.2 Rise-times distributions

On the other hand the βrise is not constant and the values obtained from fitting the PL

rise curves increases as a function of the Si NP size. As the diameter of the Si NP increases

the βrise is more closed to the 0.8 value (Gaussian distribution) and reach the unit value

for the thin film with the larger Si NPs embedded, obtaining a mono-exponential PL

rise curve related to one unique excitation mechanism. The rise PL dynamic curves are

affected by the transfer process from the donors (Si NPs) to the acceptors (Er3+) and

then, by the Si NP excitation mechanism. In previous works the silicon nanoclusters show

stretched exponential decays with βdecay values around 0.7-0.8 and lower βrise values than

the βdecay.[122]

The maximized contact in the extreme Er3+-Si NP coupling thin films allow us to

excited higher Er3+ fractions than in other dopant configurations and the Er3+ emission

obtained comes from Er3+ ions located at the Si NPs surface. Thus, an especial β pa-

rameter behavior is expected in comparison with previous works. Kenyon et al. [122] did

a exhaustive study about the values of βrise and βdecay in a very Er3+ dissolved media

where the separation between the nanoclusters and Er3+ ions are higher than 0.5 nm and

only a 1%-4% can be excited through the Si NPs. In this work the values of βdecay are

higher than the βrise. This difference between the βrise and βdecay values were associated

that the rise curves values obtained are related to the excitation mechanism of the donors

(Si NPs) and the decay curves are affected only by the acceptors and then, only by the

radiative and non-radiative channels. In this thin film studied [122], the obtained rise-time

rates are a contribution of both near and far Er3+ ions. In our thin films the Er3+ ions

are located at the Si NP surface and then higher rise rates are expected and the rise time

values are going to be more affected by the energy exchange mechanism. Consistently, in

the extreme coupling thin films the β parameter tendency is completely different and

the βrise are higher than the βdecay and the rise rates correspond to an Er3+Si NPs

near location.

Note that the distribution shape associated to a higher βrise than the βdecay parameter

suggests a sharper rise-time distribution that defines a very well defined Er3+ excitation

mechanism, however a lower βdecay than a βrise parameter suggests a broader life-time
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distribution that can be related to the interference of the host in the Er3+ des-excitation

processes.

In summary the lifetime shape corroborate that the Er3+ ions emitting are located on

the surface of the Si NPs. Furthermore the dependence of the Er3+ lifetime on the Si NP

average diameter suggests a clear dependence of the transfer phenomena in the quantum

properties of the amorphous Si NPs. Also the higher values for the βrise than the βdecay

indicates a new Er3+ PL dynamic behavior causes by the Er3+-Si NP extreme coupling.

11.5 Conclusions

Extreme coupling thin films are possible nano-engineering Er3+ and Si NP 2D-distributions

due to the Er3+-Si NP maximized contact obtained by PLD. The excitation curves show

clear dependence on Si NP size in 2D-distributions of amorphous Si NPs without dif-

ferences in the crystallinity degree. The intensity of the emission obtained dependence

mainly in the fraction of achievable Er3+ that can be controlled tuning the Si NP and

Er3+ 2D-distributions that define the percentage of Er3+ in contact with the Si NPs.

Extreme Er3+-Si NP coupling thin films do not show lifetime distribution dependence on

Er3+-Si NP relative distances and new characteristic distribution parameters are obtained

and related to the energy exchange mechanism. Under this dopants’ spatial configuration

Er3+ fractions higher than the usual are achievable and percentages close to the 100% of

Er3+ in the samples can be able.



Chapter 12

Si NP-Er3+ interaction

mechanisms

In the previous Chapter a new coupling regime named extreme coupling has been obtained

through the maximized contact between the Si NPs and the Er3+ ions. In this new Chapter

we discuss the processes of energy exchange between the Si NPs and the Er3+ ions and

that are related with the maximized Er3+-Si NP contact dopants configuration. The

multi-exponential analysis of the temporal response reveals that main features of energy

transfer process are related to the quantum properties of the Si NPs. The percentage

of each interaction mechanism can be tuned with the Si NP size and the back-transfer

phenomena can be reduced to zero in the case of the thin films within the smaller Si NPs.
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12.1 Introduction

Applications of nanostructured silicon as absorbers for the incident photons are one of

the key-points in the research in solar cells production due to the large number of micro-

electronic process specializes in the production and manipulation os silicon. In compar-

ison with the bulk silicon, the silicon quantum dots (Si NPs) show new features which

gives new material properties increasing the emission efficiency and tuning the absorption

properties.[61] Moreover thoroughly studies in amorphous nano-structures produced at

room temperature and not annealed and their quantum properties are required due to the

reduction of cost in the fabrication and the simplification of the deposition procedures of

amorphous material. In order to increase the efficiency of the charge recollection in the

nano-structure by multi-exciton generation (MEG) or space separated quantum cutting

(SSQC), high density of Si NP distributions with separations between Si NPs below 1 nm

and without contact between the Si NPs are mandatory to improve the charge exchange

between adjacent Si NPs.[123, 124, 125]. Therefore our high density 2D-distribution of Si

NPs can be an ideal nano-device to used as solar cell absorber. In this chapter we used

the Er3+ ions as probe of the SSCQ phenomena in amorphous Si NPs and we analyze the

possibility of tuning the efficiency of the phenomena at a pump fixed rage as a function of

the diameter of the Si NPs.

Furthermore the maximized contact obtained between the Er3+ ions and the Si NPs

and the new extreme coupling regime observed can give us more precise information on

the internal exciton transitions between energy levels in the amorphous Si NPs, their de-

pendence on size and their interaction with the Er3+ ions. The extreme sensitivity of

the efficiency of the interaction with the Er3+ location studied in the Chapter 9 suggests

that the main energy transfer mechanism involved is the inter-band exciton recombina-

tion ruled by the contact character. However in a Si NP-Er3+ contact configuration the

intra-band exciton relaxation plays also a important role due to the SSQC phenomena.

In addition, since the nineties the discussion in Er3+ and Si NP doped materials about

the Er3+ temporal response dependence on the Si NPs size is still open. The non con-

trolled spatial dopant distribution and the thermal treatments needed to activate the Er3+

ions and/or to form the Si NPs have hindered the analysis of Er3+ lifetimes and rise-times

as a function of the Si NP size in Si NPs with the same quality. [126, 20] Recently, models

that related the differences on the parameters of the stretched exponential decay of the

Er3+ ions to different location of the Er3+ ions respect to the Si NP has been developed.

[122, 106] However the sum of Er3+ at different locations makes difficult to distinguish

the different interaction mechanisms. In this work we present a simple method based on

multi-exponential functions where two components are defined as a function of the in-

teraction mechanisms in the extreme coupling regime where it is assumed that only the

Er3+ in contact is emitting. This analysis method reveals us the percentage of excited
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Er3+ population by intra-band exciton relaxation and inter-band exciton recombination

as a function of the Si NP size depending strongly on the Si NP size. Therefore SSQC

phenomena is observed for first time in high density amorphous Si NPs and it can be tuned

with the relation between the band-gap of the Si NPs and the pump photon energy. The

thin films are active in the as-deposited and non-annealed conditions thus the properties

are only related to the quantum properties of the amorphous Si NP 2D-distributions with

the same quality in all thin films.

Previously to show how the Er3+ temporal response reveals the interaction mechanisms

in extreme coupling Si NP-Er3+ thin films, we explain the energy exchange processes

between Si NPs and Er3+ ions and the Si NPs and Er3+ roles as donors and acceptors.

12.2 Processes of energy exchange of Si NPs and Er3+

The Si NP mediated Er3+ excitation can proceed by a variety of physical processes as

exciton transfer, resonance transfer, dipole-dipole transfer, etc. The energy exchange pro-

cesses can be classified as a function of the distance between donor and acceptor and the

transfer process efficiency. In our a-Al2O3 doped system the Si NPs act as donors and

the Er3+ ions act as acceptors. The donors are the absorbers of the energy of incident

photons and they become in a excited state. Finally this energy will be transfered from

the donor to the acceptor by interactions ruled by the quantum electrodynamics. [127]

Finally, in our Si NP-Er3+ doped system, the acceptors turn in light emitters.

In order to explain the different interaction mechanism it is necessary to understand

the quantum properties individually of the Si NPs and Er3+ ions and their functions as

donors or acceptors. In the following sections the absorption and energy transfer processes

are described.

12.2.1 Si NPs as donors. Generation of excitons

The Si NPs are the absorbers of the incident photons. The photon absorption in a Si NP are

caused by inter-band, intra-band or excited-state absorption processes. These processes

are described schematically in the Figure 12.1. [128] The inter-band absorption process is

the only optical absorption possibility for an intrinsic semiconductor quantum-dot under

equilibrium. Our Si NPs are formed by an intrinsic semiconductor however, during the

pumping time to reach a absorption saturation level, the Si NPs are not in equilibrium and

the intra-band and excited-state absorption processes are posible. Even so, we discard the

the intra-band absorption and excited-state absorption from direct photons because the

photon energy range associated for these processes is mainly in the infrared rage while our

pump photon energy is in the visible. Nevertheless these absorption processes are present
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(a) (b) (c)

Figure 12.1: Schematic representation of the three different absorption processes in Si
NPs: 12.1a inter-band, 12.1b intra-band and 12.1c excited-state absorption. The purple
arrows indicate the direct photon absorption transitions and the blue arrow indicates the
optical pumping.[128]
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in the back-transfer phenomena when an excited Er3+ ion transfer its energy to a closer

Si NP and in the space-separated quantum cutting (SSQC) phenomena between adjacent

Si NPs when the exciton relaxes through intra-band transitions transferring its energy to

the adjacent Si NP. [128, 25, 124]

Considerer that the Si NPs are the absorbers of the incident photons whose photon

energy is larger than the band-gap of the Si NP by inter-band transitions, the exciton

generation and its related relaxation processes can be classified in three situations as a

function of the pump energy:

1. If the energy of the photon (Eγ) is large but similar to the Si NP band-gap (Eg),

Eγ & Eg, then an exciton (electron-hole coupling pair) is generated. See Figure

12.2a.

2. If the energy of the photon is larger than the Si NP band-gap but lower than two

times the band gap, 2Eg > Eγ > Eg, then an exciton in the high energy levels of

the Si NP is generated. This ”excited” exciton can relax to lower energy levels in

the conduction band and to higher energy levels in the valence band through intra-

band transitions. The intra-band transitions are allowed in the Si NPs due to the

relaxation of the k-rule due to the quantum confinement. See Figure 12.2b.

3. If the energy of the photon is larger than several times the band-gap energy of the

Si NPs, Eγ > nEg with n > 2, more than one exciton can be formed for only

one absorber photon by impact ionization and Auger recombination (Multi-exciton

generation - MEG).[129, 130, 131] See Figure 12.2c.

In our case MEG cannot be observed since we are pumping energy in the visible, from

2.3 eV to 2.6 eV.

12.2.2 Er3+ as acceptor. Energy exchange from Si NPs to Er3+ ions.

Once the pump light is absorbed by the Si NPs its energy can be transferred to the Er3+

ions by Auger process or dipole-dipole interaction. The transfer mechanism depends on

the distance between the Er3+ ion and the Si NP and in the excited state of the Si NPs.

As a function of the pump energy the energy exchange processes can be classified as:

1. When 2Eg > Eγ > Eg the energy can be transferred by dipole-dipole or Auger

process through exciton recombination.

2. When 2Eg > Eγ > Eg the exciton generated corresponds to an electron in a high

conduction band energy level and a low valence band energy level. Thus the Er3+

ions can be excited through exciton intra-band relaxation transitions and exciton

recombination. This process is named space-separated quantum cutting (SSQC)
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(a) (b) (c)

Figure 12.2: Schematic representation of the exciton generation and relaxation in Si NPs.
12.2a Eγ & Eg . 12.2b 2Eg > Eγ > Eg . 12.2c Eγ > nEg with n > 2. The blue arrows
indicate the incident photon energy, the black arrows and yellow arrows indicate the intra-
band transitions of electron and holes respectively. The black points are the electrons in the
conduction band and the yellow points the holes in the valence bands. The Si NP energy
levels correspond to the Si NPo states obtained by Bulutay et al. for crystalline Si NPs of
diameters of 1.36, 2.45 and 4 nm. [128]
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and is the ultra-fast division of the energy from an absorbed photon into two or

more spatially separated states through the intra-band transitions.[123] Therefore

when the energy of the incident photon exceed the band gap plus the first excited

Er3+ state energy, it is possible to excite more than one Er3+ ion per absorbed

photon (see Figure 12.3).

3. when Eγ > nEg with n > 2 several excitons are generated by MEG, and every

exciton can transfer energy to several Er3+ ions through the two transfer process

described above.

Figure 12.3: Schematic representation of the space separated quantum cut-
ting. One incident photon at the visible produces two photons in the infrared
range.

Summarizing, in order to determine the process involved in our Si NP-Er3+ extreme

coupling thin films it is necessary to take into account our energy pump range and the

ban-gap of the Si NPs. The band-gap of our Si NPs is from 1.3 to 2.0 eV and our pump

energy range is from 2.3 to 2.6 eV. Therefore, in our pump energy regime, the Er3+ can

be only exited through Si NPs excited by the excitons generated in the process 1 and

2, and the MEG process does not occur. Thus the Er3+ ions can be excited by
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exciton relaxation through intra-band transitions and by recombination of ex-

citon through inter-band transition by direct photon generation of one exciton.

12.2.3 Interaction mechanism as a function of the distance Er3+-Si NP.

The interaction mechanism can be classified as a function of the range of the interac-

tion distance that reveals the transfer mechanism. Moreover, the efficiency of the process

is stronger limited by the distance between donors and acceptors. Now, we classify the

interaction mechanisms in long-range, short-range and contact character and show their

relation with the photon absorption process in the Si NPs and the exciton subsequent

relaxation and recombination.

Long-range. Dipole-dipole interaction: FRET.

The Föster resonance energy transfer (FRET) is a spectroscopic process for which the

energy passes radiatively or non-radiatively from dipole donors (Si NPs) to dipole accep-

tors (Er3+) over long distances (1-10 nm) through dipole-dipole interaction. In Er3+ and

Si NPs system, the FRET interaction process is due the dipole-dipole interaction of an ex-

citon in the Si NP and an Er3+ ions located in the a-Al2O3. The donor must have a strong

absorption as the Si NPs and the acceptor must be able to absorb at the donor emission

wavelength. Föster show how to express this overlap in terms of oscillators strengths of

quantum spectroscopic dipoles, for that, he emphasized the term resonance in his theory

because the strong requirement is that the donors and acceptors be in resonance to bring

about energy transfer. The efficiency of this process and the characteristic interaction

distance (R0) can be estimated as a function of the donors’ photoluminescence properties

in the absence and presence of acceptors. In the first studies of the Si NP-Er3+ inter-

action process, the long-range dipole-dipole interaction has been proposed assuming that

the main contribution to the excitation of Er3+ through Si NPs comes from non-radiative

recombination of carriers in Si NPs.[132, 133, 134] So the differences on the Er3+ PL en-

hancement and the PL temporal response were analyzed as a function of different location

of the Er3+ ions to the Si NPs. The R0 value was estimated of 0.4 nm for crystalline Si

NPs and 1 nm for amorphous Si NPs. The complexity of the FRET and the differences

on the Er3+ temporal response as a function of the Si NPs and Er3+ ions did not allow

to study in detail others interaction mechanism independently. REF

Since the emission spectra shape and the lifetimes distributions discussed in the Chap-

ters 11 and 9 shown that the Er3+ ions emitting are localized at the surface of the Si

NPs, the Föster resonance energy transfer is discarded as one of the main mechanism in

the excitation of the Er3+ ions through Si NP.

Short-range. Er3+ excitation and de-excitation due to intra-band transitions.
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The Er3+ ions can be exited through intra-band relaxation of the excitons. This

mechanism is ruled by the Auger excitation of an Er3+ ion as a result of the intra-band

transitions of a hot carrier that has been generated from a photon absorbed with an energy

higher than the Si NP band-gap. This process is double sided and the Er3+ ions can

de-excite through intra-band absorption (see Figure 12.1b). Due to the degenerate states

of the Si NPs, the probability of Er3+ de-excitation should be higher for the processes

that does not require any phonons to be emitted or absorbed.

Er3+ excitation through relaxation of the excitons through intra-band transitions has

been estimated in the sub-microsecond regime for crystalline Si NPs. However the exciton

lifetime for amorphous Si NPs is two orders of magnitude higher than for the crystalline Si

NPs, thus a slower temporal response than the sub-microsecond regime is expected for the

Er3+ excitation trough amorphous Si NPs. The estimated distance range is from 0 to 1 nm.

Contact requirement. Er3+ excitation by the recombination of excitons.

Another way to transfer energy from a Si NP to an Er3+ ion is through the recombina-

tion of exciton by Auger recombination through inter-band transition. The band structure

of the Si NPs shows indirect character for thin films with Si NPs within with sizes above

the 1.5 nm. [41] In our a-Al2O3 thin films, only the SEφ1.6 film could show a direct

character, as a result, in most of the thin films the confined carriers recombination should

be accompanied by multiphonon emission process due to the momentum conservation rule

(k-rule). Therefore, in order to comply the momentum conservation rule, the Er3+ ions

should be at a distance below the lattice constant of silicon and the efficiency of the inter-

action is determined by the electron and hole wave-functions in the position of the Er3+.

Therefore the interaction requires the physical contact between the Si NPs and the Er3+

ions.[25].

It has been measured that the Er3+ ions that are excited by energy transfer from inter-

band recombination of the confined carriers at the microsecond regime for crystalline Si

NPs shown the natural Er3+ de-excitation behavior.

The efficiency of the transfer process (probability of an event-W) has been estimated

in two recent papers for a specific Si NP size.[135, 25] It can be varied up to five orders

of magnitude between energy transfer processes. These great differences are illuminating

and reveal the great differences in the efficiency of the process that justified the low

excited Er3+ fraction in previous works [22, 23, 136, 137] and the large excited Er3+

fraction obtained in the extreme coupling thin films (see Chapter 14). Considerer than

the maximum distance from the Er3+ ions to the Si NPs is half of the distance between

Si NPs surfaces and the exciton rate in an amorphous Si NP is 103 s−1,[36] the relation

of efficiencies can be estimated as the expression 12.1.

Winterband−recombination ≈ 103 Wintraband−relaxation ≈ 105 Wdipole−dipole (12.1)
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As a result the more efficient transfer process is the excitation of the Er3+ ions by inter-

band exciton recombination, in fact this process is 5 orders of magnitude more efficient

than the dipole-dipole interaction that it is the main transfer mechanism in the previous

works. [122, 22]

Since our maximized Er3+ and Si NP contact configuration has been obtained showing

a main emission from Er3+ ions in contact with the Si NPs and taking into account the

transfer process probabilities, the main interaction mechanisms should be related to ex-

citon Auger recombination (inter-band recombination) and Er3+ Auger excitation (intra-

band relaxation). Consequently we study thoroughly the temporal photoluminescence

response as a multi-exponential decay of two components that allow us to estimate the

back-transfer through intra-band transitions and it is linked with the dependence of the

excitation curves and the pump energy range used.

12.3 Er3+ temporal response and the multi-exponential de-

cay (n = 2)

The analysis realized in the Chapter 11 of the stretch exponential decay has gave us in-

formation about the emitted Er3+ location at the surface of the Si NPs and now, the

multi-exponential decay curves give us information about the interaction mechanism in-

herent to the energy transfer processes from Si NPs to Er3+ ions and from Er3+ ions to

Si NPs. It is consistent with the discussion about the distribution of lifetimes defined by

the stretched exponential, where there are contributions from fast and slow dynamic

components in a distribution with a mean lifetime. The photoluminescence mea-

surements have been performed pumping at 488.0 nm at 1.5 W. Therefore the experimental

photoluminescence decay and rise curves at 1.53 µm were fitted a multi-exponential decay

law with a discrete value n=2 (the analysis is detailed in the Appendix C). Each temporal

component of the dynamic response is associated to two different Er3+ environments and

then to two different excited Er3+ population. In addition, the multi-exponential decay

allow us to calculate the fractional contribution of each Er3+ population by the expression

12.2 where αi is the amplitude of each component at the initial time and τi the associated

temporal value.

fi =
αiτi

αiτi + αiτi
, where i, j = fast, slow (12.2)

The Table 12.1 shows the values of the two decays (τfast,slow) and the average lifetime

(τ̄decay,rise) associated and calculated by the expression C.10. The analysis shows one fast
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component from 0.48 to 0.168 ms for the decay lifetimes and from 0.044 to 0.140 ms for the

rise times. Furthermore the slow decay component is very similar for SEφ2.2, SEφ2.6 and

SEφ2.8, however the in the SEφ1.6 shows a extraordinary higher value and the SEφ3.3

shows a very short component specially in the rise curve. Since we have assumed that the

Er3+ ions are going to be excited mainly by exciton relaxation through intra-band tran-

sitions or by recombination of excitons through inter-band transitions, we assume that

this two temporal components are related to the inter-band and intra-band transitions

of excitons. For crystalline Si NPs the temporal response associated to the Er3+ exci-

tation by hot carriers intra-band transitions excitation is in the sub-microsecond regime

while the temporal response associated to Er3+ excitation by recombination of exciton

is in the micro-second regime.[25, 106] Therefore we assume that the fast component

corresponds to the Er3+ excitation through exciton intra-band relaxation and

the slow component to the Er3+ de-excitation through exciton recombination.

However, we considerer that we can measure the two temporal components due that ex-

citon recombination rate is two orders of magnitude lower for amorphous Si NPs than

crystalline ones.

Label τfast−decay τslow−decay < τ >decay τfast−rise τslow−rise < τ >rise

(±0.010 ms) (±0.010 ms) (±0.010 ms) (±0.010 ms) (±0.010 ms) (±0.010 ms)
SEφ1.6 0.168 0.699 0.605 0.140 0.596 0.502
SEφ2.2 0.084 0.346 0.260 0.075 0.281 0.165
SEφ2.6 0.081 0.338 0.202 0.069 0.263 0.134
SEφ2.8 0.074 0.334 0.209 0.063 0.279 0.128
SEφ3.3 0.048 0.304 0.098 0.044 0.044 0.044

Table 12.1: Lifetime and rise-time values from two components in a multi-exponential decay
law. Pumping at 488.0 nm at 1.5 W.

Besides the measurement of the lifetime and rise-time values, it is interesting to ana-

lyze different Er3+ populations emitting and exciting in the co-doped thin films to study

in depth the interaction mechanism between the Er3+ ions and the Si NPs in the extreme

coupling conditions. The pre-exponential factors αfast,slow (expression C.8) represent the

contribution of each component at the initial time thus they represent the contribution

of each Er3+ population to the ground-state in equilibrium. From the αfast,slow values

and the lifetime and rise times associated is possible to determine the fractional con-

tribution for each Er3+ population by the expression 12.2. The Figure 12.4 shows the

fractional contribution of the two Er3+ populations associated to the Er3+ and Si NP

doped a-Al2O3 thin films as a function of the Si NP diameter (φ) for the excitation and

des-excitation temporal response. Note that the rise-time shape of the SEφ3.3 shows

a single-exponential trend thus obtaining the same rise-time value for the fast and slow
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components and obtaining a 100% of excitation of the Er3+ ions by the fast process as

it has been observed in in the Chapter 11. In order to identify the two temporal com-

ponents with the two main energy exchange mechanism the excitation and des-excitation

are analyzed separately. Thus, we assume than the fast component corresponds to Er3+

excitation and des-excitation through intra-band transitions of the confined carriers and

the slow components can be related to Er3+ direct excitation by exciton recombination

through inter-band transitions and Er3+ natural des-excitation in the host media.
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Figure 12.4: Fractional contributions for the two temporal components
obtained the photoluminescence decay and rise curves. The ffast corresponds
to the fast component and the fslow corresponds to the slow component.

Excitation

There are four Er3+ excitation mechanism that can be affect to the excitation dynamics

pumping at 488.0 nm:[25]

1. By Er3+ direct absorption of a photon in a resonant energy with its atomic levels.

It is unlikely because only Er3+ excitation through Si NPs has been proved in our

extreme coupling thin films.

2. By energy transfer from inter-band exciton recombination in the Si NPs.

3. By intra-band transitions of carriers in the Si NPs with a a very strong non-radiactive

quenching.

4. By dipole-dipole interaction. It has low probability as shown previously due to the

maximized contact obtained in or extreme coupling thin films.
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The percentage of population of Er3+ ions excited through the fast mechanism (ffast,rise)

increases from 20% to 100% as a function of the diameter of the Si NPs increases. On

the other hand the percentage of population excited associated to the slow component

(fslow,rise) decreases as the diameter of the Si NPs decreases. Therefore there are two

excitation mechanism that are related to the diameter of the Si NPs and then in turn to

their quantum properties. The Figure 12.2 shows the energy levels for three Si NPs with

different energy gap (studied detailed in the reference [128] for crystalline Si NPs, similar

energy level structures have been obtained for amorphous Si NPs [138] where the amor-

phization reduces the fundamental gap increasing the absorption strength in the visible

range). When the size of the Si NP increases the band-gap energy is reduced, therefore

at a fixed pump photon energy for the largest Si NPs the exciton generated is located

at higher energy values with respect to the band edges where the intraband levels are

more closer and more numerous in comparison with the thin films with smallest Si NPs.

Therefore there are more likely intra-band transitions and the probabilities of transfer

energy to an Er3+ by relaxation of the excitons through intra-band transitions increases

with the Si NP size. As a result the increment in the fractional contribution of the fast

component to the excited Er3+ population as the Si NP size increases corroborates that

the fast component corresponds to the Er3+ excitation through intra-band transitions as

it was initially assumed.

Since we have assumed than due to the maximized contact between Er3+ and Si NPs

in the extreme coupling thin films the two main excitation mechanism are related to inter-

band transitions and inter-band exciton recombination, the slow component corresponds

to the Er3+ population excited through inter-band recombination. In this case, when the

pump energy is fixed and the size is reduced the exciton generated is energetically located

closer to the band edge and the probability of inter-band relaxation channels are reduced,

as it is observed with the reduction of the population of the slow component as a function

of the Si NP diameter increases.

Des-excitation

Because the unique transfer mechanism that it is double-sided is the confined carriers

relaxation or excitation through inter-band transitions, there are only two de-excitation

paths for the excited Er3+ ions:

1. Natural des-excitation emitting a photon at 1.53 µm in the embedding host media.

2. Des-excitation by carriers confined in the Si NPs.

The number of rapidly des-excited Er3+ ions (ffast, decay) increases from a 16% to a

51% as a function of Si NP diameter, thus the ffast, decay increases as the energy gap of

the Si NPs decreases. The similar behavior of the fast component in the excitation and

des-excitation suggests that the Er3+ population des-excited through the fast mechanism
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are related to the back-transfer process by intra-band transitions from the Er3+ ions to

the Si NPs. Consequently, the percentage of the Er3+ population excited by intra-band

transitions (ffast, rise) is higher than the percentage of the Er3+ population des-excited

through intra-band transitions (ffast, decay) (see Figure 12.4.a). In fact, the percentage of

the Er3+ ions des-excited through intra-band transitions has to be lower than the per-

centage of the Er3+ excited through exciton intra-band relaxation. [25]

The slow component population (fslow, decay) decreases from 84% to a 49% as the di-

ameter increases. This des-excitation mechanism is related to the natural des-excitation

of the Er3+ ions in the a-Al2O3-Si NP interface, therefore the lifetime associated to the

slow decay is very similar between co-doped thin films and only a 12% (from 0.346 to 0.304

ms) is reduced when the Si NP size is increased from 2.2 to 3.3 nm. However the slow

lifetime component obtained from the PL excitation time curves shows a decrease of a 73%

from 3.3 to 2.2 due to the sensitivity of the inter-band excitation process to the Si NP

band-gap, where the exciton recombination rate increases with the Si NP band-gap.[36]

The decrease of the 12% observed in the temporal component of the natural des-excitation

of the Er3+ as a function of the Si NP diameter is due to the presence of silicon dangling

bonds at the surface of the Si NPs whose number increases as a function of the Si NP

diameter. The SEφ1.6 is a special case and it will be explained in detail in the Chapter 13.

We have assumed that the fast component of the des-excitation temporal response is

related to the Er3+ des-excitation through intra-band transitions, thus the percentage of

population of this component has to be similar to the back-transfer efficiency (EB−T ) from

the Er3+ ions to the Si NPs. The EB−T can be estimated by the lifetime decay values and

the amplitude components of the Er3+ only doped films and the Er3+ and Si NP co-doped

thin films considering the Er3+ as the donor and the Si NPs as the acceptors (detailed

in the Appendix C). The Figure 12.5 shows the similarity if the back-transfer efficiency

mechanism and the percentage of fast component of the decay and the rise curves that it

is in agreement with our initial hypothesis of the relation between the fast components of

the decay and rise curves with the intra-band transitions.

Summarizing, the two temporal components have been obtained in the multi-exponential

analysis that are related to the two main process of energy exchange between the Si NPs

and Er3+ ions: the intra-band transitions and the inter-band exciton recombination and

generation. The fast components have been associated to the intra-band transitions and

corroborated by the back-transfer efficiency. The slow components are related to the

inter-band Er3+ excitation and the Er3+ natural relaxation for the rise and decay curves,

respectively.
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Figure 12.5: The fractional contribution of fast component in the Er3+

decay curves (ffast) taken from Figure 12.4.a and the back-transfer efficiency.
The SEφ1.6 does not show back-transfer phenomena due the tuning of the
band gap and the Er3+ ions levels allowing only inter-band transitions. The
percentage of the fractional contribution of the fast component for the SEφ1.6
is the same that the Er only ffast

12.4 Tuning the Si NP-Er3+ interaction mechanism

We have observed a well fitted multi-exponential curve with n = 2 for the decay and rise

curves of the temporal response of the Er3+ PL emission at 1.53 µm. We have associated

this two temporal components with the main excitation and des-excitation mechanisms.

The fractional contribution of each contribution of Er3+ population is varied as a function

of the Si NP size and in turn as a function of the band-gap of the Si NPs. In order to

study thoroughly the tuning of the interaction mechanism with the band-gap of the Si

NPs, the photon energy pump must be taken into account as selector of mechanism. The

excitation of the Er3+ ions by exciton relaxation through intra-band transitions is related

to the SSQC phenomena. The condition to obtain Er3+ excitation through intra-band

exciton relaxation is that the pump energy has to be higher than the sum of the energy of

the first excited state of the Er3+ and the band gap of the Si NP (see expression 12.3 and

Figure 12.3). Therefore the minimum pump energy to obtain Er3+ excitation through

inter-band exciton relaxation is Eγ,minimum = Eg + 0.8 eV .

Eγ > Eg + ∆E, where ∆Eminimum = 0.8 eV (12.3)

The Figure 12.6 shows the variation of the band-gap as a function of the Si NP diameter

and the higher and lower pump photon energy levels obtained using as pump source an
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Ar+ laser. At pump wavelength of 488.0 nm the Er3+ ions can be excited through inter

and intra band transitions for all the co-doped films except for the SEφ1.6 that shown the

lower fractional contribution of the fast component and that shows a special behavior with

temporal components higher than the Er3+ only doped film, as it has been explained in the

previous section. Taking into account the pump energy used and the Si NP band gap, in

our pump range, only the SEφ1.6 could shows an excitation mostly by inter-band exciton

recombination and the SEφ2.2, SEφ2.2, SEφ2.8, and SEφ3.3 show the two interaction

mechanism, transfer energy from Si NP to Er3+ ions by inter-band exciton recombination

and intra-band exciton relaxation transitions.
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Figure 12.6: Band gap energy of the Si NPs (Eg) and the minimum
pump energy to obtain Er3+ excitation through inter-band exciton relax-
ation (Eγ,minimum) as a function of the Si NP diameter. The photon energy
associated to the pump wavelengths 457.5, 488.0 and 514.5 nm are represented
as horizontal lines.

In order to corroborate this behavior we have compared the ratio of variation of the

effective absorption cross section and the ratio of variation of absorption per Si NP in

the pump range. The ratio of variation of the absorption cross section (σratio) can be

estimated by the slope relative of the PLE curves by the expression 12.4 (the estimation

of the SlopePLE is detailed in the Appendix B). The ratio of variation of the absorption

(αratio) is estimated from the absorption measurements and the density of Si NPs obtained

in the Part 5 by the expression 12.5. The ratio of variation of absorption cross section is

obtained by PLE measurements and therefore is related to the absorption cross section of

the system Si NP-Er3+, however the ratio in the absorption is only related to the presence

of the Si NPs.

σratio =
σ514.5

σ457.5
= (1− SlopePLE)

ϕ457.5

ϕ514.5
where ϕ = pump flux (12.4)

αratio =
α514.5

α457.5[SiNPs]
(12.5)
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The Figure 12.7 shows the ratio of variation of the absorption cross section as a function

of the ratio of variation in the optical absorption of the Si NPs. Two regimes can be defined

below and above the thin film with Si NP diameter around 2.2 nm. When the slope of the

curve changes it indicates that for the Si NPs of these sizes the increment of the absorption

cross section is higher in comparison with the absorbtion and therefore it indicates that

the number of photons generated at 1.53 µm is higher for the same number of incident

photons. Therefore when the slope of the curve of the Figure 12.7 increases the excitation

mechanism as exciton relaxation through intra-band transitions are playing a stronger role

and more than one photon at 1.53 µm per incident photon in the visible can be generated

increasing the ratio between absorption cross sections. In fact the thin films within Si

NPs with diameters higher than 2.2 nm, the condition to observe Er3+ excitation through

intra-band exciton relaxation (expression 12.3) is satisfied for all the pump wavelength

range.
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Figure 12.7: Ratio of variation of the absorption cross section as a function
of the ratio of variation in the optical absorption of the Si NPs per Si NP.
The diameter of the Si NPs is indicated with numbers.

In summary, when the pump photon energy range is fixed by the manufacturing re-

quirements it is possible to establish an adequate Si NP size to obtain the more efficient

transfer process, i.e. Er3+ excitation through inter-band exciton recombination, thanks

to the contact and de-tuning the probability of back-transfer mechanism not allowing the

exciton intra-band transitions.

12.5 Conclusions

Due to the maximized contact of the Er3+ ions and the Si NPs a modeling of the two

interaction mechanism related to the Si NP quantum properties and internal transitions of

the excitons in the energy levels of the Si NPs. The high PL emission efficiency observed

for the Si NP-Er3+ extreme coupling thin films is related to maximized contact that
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allows to select the most efficient transfer process by Auger recombination of the excitons

in the Si NPs that are impossible to reach by 3D random dopant distributions. The

Er3+ excitation through intra-band exciton relaxation increases as a function of the Si

NP size being the unique excitation mechanism in the thin film within the larger Si NPs.

However the intra-band des-excitation mechanism are also responsible for the back-transfer

efficiency. As a consequence it can be reduced to zero when the Si NP ban-gap is close

to the pump wavelength. The SSQC phenomena is observed for first time in amorphous

silicon Si NPs and it can be tuned with the relation between the pump photon energy and

the band-gap energy. The SSQC phenomena and the high density 2D Si NP distributions

with separation between Si NPs below the 1 nm (detailed in the Chapter 6) shows that

this amorphous nanostructures are specially useful to use as photon absorbers and carrier

generators for application in solar cells.



Chapter 13

Small a-Si nanoparticles: special

features

In the Chapter 12 the Er3+ and Si NP co-doped a-Al2O3 thin films within the smallest

Si NPs shows null back-transfer processes. Controlling the back-transfer phenomenon is

mandatory to obtain gain and improve the emission at 1.53 µm in the Er3+ and Si NP

co-doped system. In this Chapter the PL temporal response of this thin film (SEφ1.6) is

thoroughly studied as a function of the defects in the interface a-Al2O3-Silicon, the Si NP

size and the deposition conditions.

149
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13.1 Introduction

Controlling the surface properties of the Si NPs could be a route to improve their emis-

sion efficiency and the transfer energy exchange from Si NPs to Er3+ ions. It has been

shown how the defects generated by impact ionization reduced the number of Er3+ ions

available for the Si NPs mediated luminescence. [40] This reduction on the Er3+ and Si

NP pair coupling make impossible to achieve gain through Er3+ excitation by Si NPs.

Therefore a high accuracy control on the Si NPs surface defects and interface Si NPs-host

is a mandatory requirement to obtain large Er3+ excited fractions.

In order to reduce the number of defects and impurities on the Si NP surface, the

in situ formation and deposition of dopants could be the key to optimize the number of

Er3+ ions available. On the other hand use a host with better interfacial properties will

reduce the Si NP surface defects inherent to as grown deposited Si NPs. The Si-Al2O3

interface has shown to be more robust and with lower number of defects than the Si-SiO2

interfaces.[78, 79] Therefore the surface defects of Si NPs embedded on a-Al2O3 are ex-

pected to be reduced in comparison with a SiO2 host and the efficiency of the energy

transfer process improved.

In the Chapter 12 the back-transfer phenomenon of energy transfer from the Er3+ ions

to the Si NPs has been analyzed observing a negligible back-transfer in the case of the

SEφ1.6 thin film. Now in this Chapter we study the lifetime enhancement observed in this

thin film and its dependence on the surface defects, Si NP size and deposition conditions.

13.2 Nanoparticle size: lifetime enhancement

In the Chapter 11 the Figure 11.4 shows the Er3+ 1.53 µm PL maximum intensity peak

dependence on the average diameter of the Si NPs. All the co-doped films show PL inten-

sity enhancement, and the PL peak intensity of the SEφ1.6 increases as much as factor 60

at the non resonant pump wavelength of 457.9 nm (see Figure 11.3). The SEφ1.6 thin film

corresponds to the Er3+ and Si NP co-doped a-Al2O3 thin film with the smallest embed-

ded Si NPs, thus the absolute absorption of the thin film at this wavelength is the lower

of all the films. As a result the observed PL intensity enhancement has to be related to an

improvement either in the lifetime or in the excited Er3+ fractions. In this case both occur.

The Figure 13.1 shows the PL normalized intensity decay curves for the Er only doped

film and the co-doped films pumped at 488.0 nm. The lifetimes values obtained are very

short, from 0.605 to 0.098 ms for the co-doped thin films and 0.489 ms for the Er3+

only doped film. The measured lifetimes depend on the non radiative channels by the
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Figure 13.1: Normalized photoluminescence intensity at 1.53 µm decays
pumping at resonant conditions at 488.0 nm and at 1.5W of power for the
thin films with and Er areal content of 8.3 1013 atm/cm2. Energy density .

expression:

1

τmeasured
=

1

τrad
+

1

τnon−rad
(13.1)

where τmeasured is the measured lifetime, τrad is the radiative lifetime and τnon−rad is the

non-radiative lifetime. Previous works on Er3+ doped a-Al2O3 show that all the Er3+

deposited by PLD in as grown thin films are optically active [16] however there are a

high number of non-radiative channels in the as grown thin films that can be removed

by post-deposited heat treatments. REF AmeliaYB Thus, the existence of these non-

radiative decay channels justified the short τmeasured value obtained in the as grown thin

films. However all the co-doped films show a reduction on the lifetime due to the inter-

action with the Si NPs except the SEφ1.6 whose lifetime is surprisingly enhanced

with respect the Er3+ only doped film lifetime. The reduction of the lifetime is

the usually observed phenomenon and it was justified by presence of the Si NPs that act

as non-radiactive channels for the Er3+ ions or by the Purcell effect, where the Er3+

lifetime is reduced because is localized closer to an index contrast interface SiO2-Si NPs.

In our deposition configuration the Er3+ ions are located on the surface of the Si NPs thus

the Purcell effect doesn’t play any role. However, the function of Si NP as non-radiative

channel in a Er3+-Si NP contact configuration is strongly asserted and the transfer en-

ergy from Er3+ to Si NPs through intra-band transitions is highly efficient as shown in

the previous Chapter 12. In fact, the back-transfer phenomena from Er3+ ions to Si NPs

seems to be uncontrollable and unavoidable linked to the transfer energy from the Si NPs

to the Er3+ ions. Consequently the SEφ1.6 lifetime enhancement suggests that the back-

transfer phenomenon requires and intermediate entity.
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Si NP pasivation studies in Si-rich oxide show that the Si NP presence influence

the Er3+ properties acting a des-excitation non-radiative route through silicon dangling

bonds.[118] Therefore the lifetime behavior could be explained by the variation of the num-

ber of the silicon dangling bonds in the surface of our amorphous Si NPs as function of the

Si NP size. Larger Si NPs have a larger a-Si/a-Al2O3 surface and thus a larger number

of dangling bonds that imply a larger number of Er3+ non-radiactive channels shortening

the Er3+ decays. Assuming the role of dangling bonds as non-radiative channels we can

considerer that for the in the case of the SEφ1.6 the dangling bonds are reduced due to

the small size of the Si NPs.

Estimations about probabilities of defects interaction and recombination in crystalline

Si NPs can give us an estimation of their properties and the relation with the dangling

bonds. Let’s suppose a Si NP with a dangling bond. When the Si NP absorbs a photon an

electron and a hole are generated. Then there is a probability of interaction between the

neutral dangling bond and the electron-hole pair generated. This probability is expressed

as the the capture cross sections that have been calculated by Delerue et al.[42] and it

depends strongly on the size. The capture cross section is comparable to the exciton ra-

diative recombination in the Si NP. The non-radiative capture is higher than the radiative

recombination and thus dangling bonds are likely to quench the photoluminescence. How-

ever only for small crystallites (GAP higher than 2.6 eV) the non-radiative capture on

a silicon dangling bond becomes less efficient that the intrinsic radiative recombination.

Therefore the presence of one dangling bond at the surface of a crystallite must destroy

the radiative de-excitation properties for the larger Si NPs while for the smaller ones the

electron-hole pair is not affected. If the interaction between the Si NPs radioactive states

with silicon dangling bonds is reduced then the routes of interaction between Er3+ and

dangling bonds are affected and then the lifetimes could show different dynamics. These

arguments are corroborated by the model developed by Allan et al.[36] for amorphous Si

NP, where he energy levels as a function of the Si NP size confinement energy diagram

shows a intermediate defect level associated to the presence of dangling bonds (strongly

localized states). This intermediate state disappears for Si NPs with sizes below 1.5 nm in

not passivated thin films. That is a similar value of the Si NPs embedded in the SEφ1.6

thin film.

The discussion above explains why the films with the smaller Si NPs show longer life-

times. But, why is the lifetime value for the SEφ1.6 film higher than the lifetime value

for the Er only doped film? If the dangling bonds are reduced and this does not affect the

energy exchange, why are not the Er3+ ions of the SEφ1.6 affected in the same way by

the host defects?.

The superposition postulate [139] of the quantum mechanics, the states of a physical
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system belong to a vector state and, consequently, can be linearly overlapped. Therefore

the quantum probability of interaction between an electron in a Er3+ ion and the exciton

resides in the Si NP, the Si NP surface dangling bonds or the host defects that can be

defined as the integration in all the space of the superposition of the individual states. We

can define the wave function for the electron at the first excited state of the Er3+ ion as

| ΨEr >, the wave function for the exciton as | ΨNP >, the wave function for the silicon

dangling bond as | ΨDangling > and the wave function of a host defect as | ΨHost−defect >.

Also we can define the interaction operator as (Θ). The probabilities (P ) of interaction

are proportional to the application of the quantum operator of the interaction and the

quantum states involved by:

PDangling =<| ΨEr | Θ | ΨDangling >

PHost−defect =<| ΨEr | Θ | ΨHost−defect > (13.2)

PNP−exciton =<| ΨEr | Θ | ΨNP >

These probabilities (expressions 13.2) are defined as the integral in all the space of the

states implied and the interaction operator P =
∫
V Ψe−−Er(ΘΨdefect) dV . They are

strongly dependent on the spatial distribution of the states functions. The host defects

and silicon dangling bonds are very localized states and then only are going to affect to

the Er3+ ions localized closer them. In the Chapter 9 it has been demonstrated that only

the Er3+ in contact with the Si NPs are contributing to the PL emission, then the Er

ion is localized in the Si NP surface and then it interacts preferentially with the silicon

dangling and the electrons in the Si NPs. In fact the Er ion is dissociate itself of the host

defects, being affected only by the interaction with the Si NP states and the dangling

bonds (PHost−defect << PDangling, PNP−exciton). In the case of the thin films embedded

large Si NPs, the dangling bonds are going to interact with the Er3+ as a non-radiative

channel and then a reduction in the lifetime is observed. However in the co-doped thin

films with the smaller Si NPs embedded the surface dangling bond states disappear [36]

and then the only interaction route are the electrons in the Si NPs and controlled by

the confinement states reducing the non-radiative des-excitation routes and the lifetime

enhancement occurs.

In conclusion the extreme contact of the Er3+ in our thin films causes that the inter-

action with the Si NP is preferential and that the Er ion is dissociate of the host defects,

being affected only by the interaction with the Si NP states and the dangling bonds. The

presence of dangling bonds reduces the Er3+ decays in the thin films with large Si NPs

within and plays the role of interaction entity in the back-transfer phenomenon. The

strong reduction of the dangling bonds for small Si NPs and the strong location of their

states can be used to decrease the radiative recombination rate of the Er3+ ions as it has

been observed in the SEφ1.6 thin film.
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13.3 Control of defects by deposition conditions: lifetime

enhancement control
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Figure 13.2: Normalized photoluminescence intensity at 1.53 µm decays
pumping at resonant conditions at 488.0 nm and at 1.5W of power for the
thin films with and Er areal content of 5.0 1013 atm/cm2. Energy density .

In the previous section we have showed that the number of dangling bonds or Si NP

surface defects are reduced for a specific Si NP size range. However in the optimization of

Er3+ and Si NP co-doped system it is required a optimization of defects and improvement

of lifetime for the largest possible number of Si NP sizes in order to allow larger degree

of freedom in the nanostructures design specially in the selection of the absorption of

the system. It has been demonstrated that the ion bombardment or ion irradiation can

reduced the number of Er3+ ions available through indirect excitation by Si NPs.[40] The

high kinetic species generated in the plasma plume during the PLD process can damaged

the Si NPs surface in the Si NP covering process creating a large number of surface defects

and dangling bonds. In order to determine the influence of the deposition energy on the Si

NP surface defects we compare the lifetime behavior observed for the thin films produced

at 2.0 mJ/cm2 energy density and 2.3 mJ/cm2 energy density. The Figure 13.2 shows the

PL decay curves obtained at 1.53 µm and pumping at 488.0 nm for SEφ1.0, SEφ2.2−B,

and SEφ3.3 − B co-doped thin films and their Er3+ only doped film reference ErRef2.

The lifetime enhancement is not only observed for the thin film co-doped by the smallest

Si NP size and the SEφ2.2 − B within Si NP with 2.2 nm as average diameter shows a

decay curve slower than the Er3+ only reference film. In fact the SEφ3.3−B embedded

Si NPs with a average diameter of 3.3 nm shows a similar behavior than the Er3+ only

doped film and the lifetime is not reduced in comparison with the Er3+ only doped film.

Consequently the surface defects depend not only on Si NP size, but also on the deposition

conditions that control the kinetic energy of the species with which the atoms and ions

reach the substrate. Therefore selecting the correct deposition conditions is possible to
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reduce the back-transfer phenomena and induce a enhancement of the lifetimes values for

different sizes due to the strong localization on the Si NP surface of the function states

of the excited Er3+ ions that interact preferentially with the surface states of the Si NPs.

Similar effects are expected by pasivation of defects through annealing but this offers in

situ control.

13.4 Conclusions

For first time, an enhancement on the Er3+ lifetime has been observed in Er3+ and Si

NP co-doped system in comparison with the Er3+ only doped film. The Er3+-Si NP

extreme coupling regime allows to improve the Er3+ lifetime due to the localization of the

excited Er3+ on the Si NP surface that preferentially interacts with the Si NP exciton or

surface defects instead with the host defects. The surface defects and the back-transfer

phenomenon responsible of the shortening the decay times can be controlled with the

host composition, the Si NP size and the energy density used to ablated the targets.

Maximizing the Er3+ and Si NP contact it is possible to select the chemical environment

and the quantum environment controlling the Er3+ quantum radiative or non-radiative

channels’ probabilities. This procedure opens a high accuracy new route to improve and

to maximize the emission at 1.53 µm of the Er3+ and Si NP co-doped systems.



Chapter 14

Fractions of excited Er3+ higher

than 50%.

Prior Chapters as 11 and 12 show the extreme coupling regime properties and its relation

with the Er3+-Si NP interaction mechanisms. We have demonstrated that in thin films

with maximized contact the complexity of the Föster resonance energy transfer (FRET)

is eliminated and the temporal response depends only on the quantum properties of Si

NPs. The challenge is obtain fractions of excited Er3+ higher than 50% in order to obtain

population inversion and analyze the extreme coupling regime as the route to achieve gain

through Er3+ indirect excitation. In this new Chapter the Er3+ excitation dynamics and

the required properties to achieve gain using well know and reliable models are studied.

It is shown that Er3+ excited fractions up to 55% can be reached at low pump powers

in Er3+-Si NP extreme thin films without cooperative up-conversion and excited-state

absorption.
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14.1 Introduction

The special properties of the Er3+-Si NPs thin films in the extreme coupling regime suggest

that it is the unique doping route towards a 100% of excited Er3+ fractions. Fractions of

excitable Er3+ of few percents have been usually obtained [22, 140, 137] and only recently

a 23% has been reported,[23, 136] whereas a minimum of 50% of Er3+ population inversion

is required to achieve gain. The short range Si NP-Er3+ interaction was the main limiting

factor that required thin films with a high density of Si NPs to increase the percentage

of Er3+ in contact with the Si NPs. [37]. Also a fine nano-engineering of the dopants

location is required in order to place the Er3+ ions close to the NP surface.[25] Our work

shows how it is possible to nano-engine the doped material optimizing simultaneously

the Er3+ and Si NP concentrations, Si NP sizes and positioning the Er3+ and Si NPs

very closely on the nanometer scale. [24] Now we demonstrate that through Er3+-Si NP

extreme coupling we have solved the issue of low fraction of excited Er3+ and how we have

obtained fractions of excited Er3+ higher than 50% at low pump powers. The maximum

fraction of excited Er3+ will be also discussed.

A laser gain medium is a medium which can amplify the power of light, desirable

properties include: a high transparency of the host medium in this wavelength region,

a pump wavelength for which a good pump source is available with an efficient pump

absorption and for high gain, low threshold pump power that implies a high product

of emission cross section (σ) and upper-state lifetime (τ). The a-Al2O3 shows excellent

properties as a broad and hight transparency in the infrared (explained in detail in Chapter

2). Furthermore the incorporation of Si NPs increased the total absorption of the thin

films in the visible that it is a good wavelength range for integrated LED pump sources.

Therefore, in order to evaluate the performance of our thin films as gain material we

estimate the effective excitation cross section of the Er3+ and Si NPs and the pump

energy required to achieve the inversion of population defined by the pump threshold

beyond which the 50% fraction of excited Er3+ is obtained.

14.2 Er3+ excitation and des-excitation dynamics

In the Chapter 11 it has been shown that the temporal behavior and lifetimes are indepen-

dently of resonant or non resonant pump conditions. In order to use a pump wavelength

with a broad range of pump power, the PL measurements where performed at 488.0 nm

pump wavelength using an Ar+ ion laser at 300 mW and 1.5 W pump powers that cor-

respond to pump fluxes of 1.2 1020 s−1cm−2 and 6.0 1020 s−1cm−2 (area of the spot

beam ∼ 0.4 mm2), respectively. Taking into account the relation between the interaction

mechanisms and the temporal response modeled by a multi-exponential decay with n = 2

described in the Chapter 12, the analysis of decay times and rise times was realized as-

suming this multi-exponential temporal behavior.
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Figure 14.1: Figure 14.1.a.- Lifetimes values at 0.3 and 1.5 W pump powers
for the co-doped a-Al2O3 films. Figure 14.1.b.- Rise times values at 0.3 and
1.5 W pump powers for the co-doped a-Al2O3 films.

Figure 14.1.a shows the Er3+ lifetimes values obtained for the Er3+ and Si NPs co-

doped films as a function of the size of the Si NPs at the two different pump powers.

The reduction of the lifetimes when the size of the Si NPs is increased was related with

the increase of the number of the silicon dangling bonds that act as no-radiative chan-

nels and the back-transfer phenomenon that is increased when the energy band gap is

reduced. Similar decay times are obtained for all the co-doped films independently of the

pump power used except for the thin film with the larger Si NPs. As a result, no Er3+

quenching phenomena as cooperative up-conversion (CUP) phenomena or Er3+ excited

state absorption (ESA) is observed except for the SEφ3.3 thin film. Taking into account

that the Er3+ distribution in the plane is the same for all the thin films independently of

the Si NP size, the differences on the Er3+ lifetime value with the pump power for the

SEφ3.3 can be related to the Auger Er3+ des-excitation phenomenon or with an increase

in the ESA due to a high ratio [Er]/[Si NP ].[141] However, the fact that the PL shows no

saturation and the films with higher PL intensity at non resonant wavelength (476.5nm)

than at the resonant wavelength (488.0 nm) suggest that ESA is not the main mechanism.

The rise time values decrease when the excitation pump power increases (Figure

14.1.b). A reduction of the rise time values while the des-excitation rates are maintained

implies a higher excitation rates. Consequently an increase in the excited Er3+ fraction
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Figure 14.2: Schematic representation of Er3+ ions as two-level system.

with the pump power is expected and a larger value of effective absorption cross sections.

14.3 Er3+ effective excitation cross sections

In laser physics the transitions cross sections are used to quantify the likelihood of optically

induced transition events, as for example the absorption or stimulated emission. For a

laser ion in a certain electronic state, the transition rate (in events per second) is given as

the corresponding cross section (σ) times the photon flux (ϕ) (see expression 14.1).

R =
1

τ
= σϕ (14.1)

Therefore it is possible to define an absorption cross section and an emission cross

section. Since the natural emitters show fluctuations in the definition of the energy levels,

as the Er3+ ions that show Stark splitting thus one electronic level involves several Stark

manifolds, is convenient to use the effective cross sections which are the averages of the

cross sections of different sub-levels. The concept of effective cross sections is very useful,

particularly for media with strong spectral broadening as the Er3+ in our a-Al2O3. An

optimized material for gain applications requires high absorption and emission effective

cross sections in order to achieve a high ratio of absorption and emission events and be-

cause the gain is proportional to the effective excitation cross section.[142]

In the Er3+ and Si NP co-doped systems the Si NPs are the absorbers and the Er3+

ions are the emitters. We can only obtain information about the Er3+ photoluminescence

dynamics because the amorphous Si NPs are dark. Considerer the Er3+ ions isolated and

assuming their energy levels system as a two level system, discarding the presence of the Si

NPs on the Er3+-Si NPs doped system. The Figure 14.2 shows a schematic representation

of the Er3+ ions levels as two level system where the state 2 corresponds to the excited

Er3+ state (Er∗) and 1 to the Er3+ ground state (Er0).[122, 133] We can write the rate
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equation for the generation of an excited Er3+ as follows:

dN∗Er
dt

= σeffϕ(NEr −N∗Er)−
N∗Er
τPL

(14.2)

where N∗Er is the number of Er3+ in the excited state, ϕ is the pump photon flux, NEr is

the total concentration of Er3+, τPL is the lifetime of the Er3+ in the excited state (taking

into account the radiative and non radiative channels) and σeff is the effective excitation

cross section. This effective excitation cross section represents the cross section associated

to indirect excitation process of the Er3+ through the Si NPs. Solving the equation 14.3

the temporal evolution of the number of excited Er3+ is:

N∗Er =
σeffϕτPLNEr

σeffϕτPL + 1
{1− e−[(σeffϕ+ 1

τPL
)t]}. (14.3)

Taking into account that the photoluminescence (PL) intensity has to be proportional to

the number of excited Er3+, the behavior of the PL dynamic response is parameterized

as the increase of the excited Er3+ population. Thus the excitation rate is the exponent

of the exponential decay, obtaining:

Rrise = σeffϕ+
1

τPL
(14.4)

Since the excitation rate is the inverse of the rise time (τrise), the effective excitation cross

can be estimated by the expression 14.5.

σeff =
1

ϕ
(

1

τrise
− 1

τPL
) (14.5)

Figure 14.3 shows the σeff as a function of the Si NP size at a fixed pump power of

1.5 W that corresponds to 6.0 1020 s−1cm−2. In addition, the optical absorption values

at 488 nm obtained for the Er3+ and Si NPs co-doped films are represented in the right

axis (values obtained in the analysis of the Chapter 5.3.1). At 1.5 W pump power (ϕ =

6 1020 s−1cm−2 cm−2s−1), the values obtained are close to the excitation cross sections for

the Si NPs (σeff−NP ∼ 10−17 cm2) for all Si NP sizes and four orders of magnitude higher

that the emission cross section expected for Er3+ doped Al2O3 (σ ∼ 6 10−21 cm−2).[143]

The σeff is not the same for all the thin films and a clear increase with the Si NP size

is observed. The behavior of the optical absorption and the σeff as a function of the Si

NP size is the same indicating a direct relation between the absorption of the Si NPs at

488 nm and the observed σeff for the Er3+. The absorption is only due to the presence

of the amorphous Si NPs embedded on the a-Al2O3 host and the increase of its value as

a function of the size is related to the shift to higher Si NP gap energies when the Si NPs
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Figure 14.3: Left axis: Er3+ effective absorption cross sections for an exci-
tation pump power of 1.5W. Right axis: optical absorption for the Er3+ and
Si NP co-doped a-Al2O3 films caused by the presence of the Si NPs.

size is reduced. Thus, a physical property dependent in the quantum properties of the Si

NPs at 488.0 nm is transferred to the Er3+ ions due to the extreme coupling and contact

between Er3+ ions and Si NPs.

Einstein developed a quantum picture of the absorption and emission of radiation. His

analysis introduces the Einstein A (AE) and Einstein B (BE) coefficients associated to

the spontaneous and stimulated emission and absorption.[142, 144] It is found that the

stimulated emission coefficient should be proportional to the coefficient of the absorption

process for the same transition. That rule does not apply to effective cross sections,

where it is necessary to apply the McCumber theory where there is a direct relation

between the effective absorption cross section an the emission cross section (σemission(w) ∝
σabsorption(w)e~w/KBT ).[145] Therefore in a co-doped system where the Si NPs are the

absorbers and the Er3+ ions the emitters a direct relation between the effective excitation

cross section of the Er3+ ions and the effective absorption cross section of the Si NPs which

is directly related to the Si NP optical absorption of the Si NPsis expected. However, to

our knowledged, variation of the Er3+ effective excitation cross section as a function of Si

NP size has not been reported yet in thin films with Si NPs of different sizes and with the

same crystallinity quality and less related to the Si NP optical absorption. Furthermore,

the direct relation of Er3+ effective excitation cross section at 1.53 nm and the Si NP

absorption at 488.0 nm has never been proven experimentally.

14.4 Fractions of excited Er3+ higher than 50%.

In this section we discuss a model for the Er3+ and Si NP interaction based in well known

previous works.[22, 134, 133] The interaction model reported by Pacifici et al. [134] ap-

plied the rate-equation analysis to the Si nanocrystal-Er3+ material system, fundamentally
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Figure 14.4: Schematic description for the interaction model between Si
NPs and Er3+ ions.

based on the one of five levels of Er3+ ions interacting with a quasi-two-level scheme of

Si NPs (see Figure 14.4). In this model the coupling constant is the same for all of the

Si NPs interacting with Er3+, thereby assuming that each Si NP is separated from Er3+

by the same distance. These conditions are perfect for our extreme Er3+-Si NP coupling

regime, indeed the Er3+ ions show the same environment and the Er3+ emitted are in

contact with the Si NPs, therefore the same coupling constant is expected for all Er3+-Si

NP couples.

The Er3+ concentration values of the thin films analyzed in the model developed

in the reference [134] are large and as a result the cooperative up-conversion is present

and it is a energy loss path that tended to mask the underlying physics. Since the no

existence of differences on the Er3+ lifetime with the pump flux prove the no contribution

of phenomena as cooperative up conversion (shown in the Section 14.2). In our case, the

cooperative up-conversion is not a complicating factor due to the nano-structuring in the

depth profile of the Er3+ ions distributed in layers and only differences in the SEφ3.3 that

have been related to hot carriers generation.[17] Therefore, at the pump energy range used

the CUP or ESA can be neglected and we are going to considerer that their effects are taken

into account with the experimental Er3+ lifetime instead of the intrinsic decay. As the non

radiative transitions (4H11/2 −→4 I9/2-5 to , 4I9/2 −→4 I11/2-4 to 3 and 4I11/2 −→4 I13/2-3

to 2) are fast in the nano-second range (10, 10 and 2.5 ns respectively)[22] the Er3+ ions

excited in the higher energy excited states quickly relax and these relaxed ions contribute

to increase the Er3+ population at the first excited state (N3, N4, N5 −→ N2). Therefore

we can considerer the Er3+ as a quasi-two level system obtaining the Er3+ rate equation:

dN2

dt
= KETN

∗
NPN1 −

N2

τPL
(14.6)
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where the N2 is the Er3+ population in the first excited state, the N1 is the number of

Er3+ ions in the ground state, KET is the energy transfer coefficient and the N∗NP is the

Si NPs population in the excited state.

Taking into account that N3, N4, N5 −→ N2 then NEr = N2 + N1 and in the steady

state conditions (dN2/dt=0), it is possible to determine the excited Er3+ fraction solving

the equation 14.6. The solution shows that the fraction of excited Er3+ is given by the

expression 14.7.

fExc−Er =
N2

NEr
=

1

1 + 1
τPLKETN

∗
NP

(14.7)

Furthermore we can introduce the σeff of the Er3+ ions in the equation 14.7, obtaining

the fraction of excited Er3+ as a function of the pump flux and the temporal response of

the Er3+ ions (expression 14.8).

KETN
∗
NP = σeffϕ =⇒ fExc−Er =

ϕ

ϕ+ 1
σeff τPL

=
1

1 + τrise
τPL−τrise

(14.8)

Figure 14.5 shows the fractions of excited Er3+ ions for the Er3+ and Si NP co-doped

a-Al2O3 thin films pumping at 1.5 W as a function of the average diameter of the Si NPs.

The excitable Er fractions are close to the Si NPs coverage, indicating that the Er3+ ions

directly in contact with the Si NPs and localized at the surface are the preferentially excited

and the main contributing to the PL emission. This is confirmed by the fact that for the

co-doped films the maximum of the PL spectra is shifted to the IR and the bandwidth

decreases when compared to the Er only doped film PL spectrum, pointing out that the

PL emission in these films comes mainly from Er3+ localized in Si-O environment rather

than in an Al-O environment, which is consistent with the Er located at the surface of the

Si NPs. Therefore the excited Er3+ fractions seems to be controlled by the percentage

of Er3+ ions in direct contact with the Si NPs and it can explain the low percentage of

Er3+ ions observed in previous works.

The fractions of excited Er3+ ions vary from 17% to the 56% obtaining excited Er3+

fractions higher than the 50% in not PL saturable thin films. Since the more efficient

excitation mechanism is the inter-band exciton recombination that requires physical con-

tact between Er3+ and Si NPs, the coverage area should indicate the maximum value of

fraction of excited Er3+ achievable by this mechanism. Therefore the maximum fractions

of excited Er3+ achievable through inter-band exciton recombination ranges from 33% to

60%. However, other mechanism as excitation through exciton intra-band relaxation have

been proved to excite also the Er3+ ions therefore the Föster RET transfer can play a

role when the Er3+ in contact is saturated. In conclusion the coverage establishes the
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Figure 14.5: Fractions of excited Er3+ ions for the Er3+ and Si NP co-
doped a-Al2O3thin films at pump power condition of 1.5 W as a function of
the diameter of the Si NPs. The coverage area of the 2D-distributions of Si
NPs corresponding to the different thin films is also shown.

minimum of fraction of excited Er3+ that can be achievable by the most efficient transfer

process, through inter-band exciton recombination, and thus the fraction of Er3+ that can

be excited at low pump powers. However to establish the maximum fraction of excited

Er3+ achievable it is necessary to take into account the distance dependence of the other

mechanisms.

14.5 Maximum excited fractions

Taking into account the expression 14.7 we can model the maximum fraction of excited

Er3+ achievable by the Si NPs (fMax−Er). The maximum fraction of excited Er3+ is

defined as the fraction of excited Er3+ that we can obtain when the pump flux reachable

is infinite:

fMax−Er = lim
ϕ→∞

fExc−Er. (14.9)

However we need to obtain the density of excited Si NPs and its dependence on the pump

flux. The interaction model defined in the Section 14.4 the Si NPs act as donors and the

Er3+ ions as acceptors. We defined the energy levels and parameters of the donors that

are described as an quasi-two level system. A Si NP absorbs the incident pump photons

with an efficiency that it is related with their absorption cross section (σNP ) and the pump

flux (ϕ). The exciton generated will recombine and transfer energy to a close Er3+ ion

with an interaction efficiency defined by the energy transfer coefficient KET . The lifetime

associated to the Si NPs is defined as τNP . Therefore the rate equation for the Si NPs is
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defined as:

dN∗NP
dt

= σNPϕN
0
NP −

N∗NP
τNP

−KETN1N
∗
NP (14.10)

where N∗NP is the Si NPs population in the excited state, N0
NP is the density of Si NPs

in the ground state and N1 is the number of Er3+ ions in the ground state and that can

be excited through the Si NPs. The total density of Si NPs is related with these two

parameters by [SiNPs] = NNP = N∗NP +N0
NP .

In the steady state conditions (
dN∗

NP
dt = 0) the density of excited Si NPs is

N∗NP =
NNP ϕ

ϕ+ 1
σNP τNP

+ KETN1
σNP

. (14.11)

Taking into account the expression 14.9 and 14.8, we can establish the relation between

fMax−Er and fExc−Er as follows:

fExc−Er =
ϕ

ϕ+ 1
σeff τPL

= fMax−Er
ϕ

ϕ+ 1
σ∗
eff τPL

(14.12)

redefine the effective excitation cross section σ∗eff . Now we can insert the excited popu-

lation of Si NPs given by the expression 14.11 into the equation 14.7 and rearrange the

terms to obtain an sigmoidal curve of a two level system ( 1
1+x) in order to obtain the

values of the parameter σ∗eff and fMax−Er. As a result the fMax−Er is defined as follows:

fMax−Er =
1

1 + 1
KETNNP τPL

. (14.13)

The energy transfer coefficient KET depends on the interaction distance from the Si

NP to the Er3+. Regarding our dopants spatial configuration distributed in a plane and

where the Er3+ ions are deposited following the Si NPs formation we can define the

energy transfer coefficient for every Si NP using cylindrical coordinates, the Si NPs lie on

the plane z=0 and establishing the origin of the coordinates in the core of the Si NP. Two

regimes are defined one that correspond to the Er3+ ions deposited on top of the Si NPs

(K1) and other to the Er3+ ions located in the a-Al2O3 in the intersticial spaces between

adjacent Si NPs (K2):

KET (ρ) = K1(ρ) = K0 when ρ ≤ rNP (14.14)

KET (ρ) = K2(ρ) = K0e
−(ρ−rNP /r0) when ρ ≥ rNP [22] (14.15)

where rNP is the radius of the Si NP and r0 is the interaction distance defined by a

Föster Resonance Energy Transfer that is the long-range interaction mechanism. K0 is
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defined as the transfer coefficient when the Er3+ ions are closets to the Si NPs that has

been estimated in the literature as K0 = 3 10−15 cm3 s−1 for 3D dopants distribution.

In order to estimate this parameter for a 2D dopant distribution we use the relation

between the volume of one Si NP and its surface area K2D,0 = SurfaceNP
V olumeNP

K3D,0 obtaining

K2D,0 = 3
rNP

K0.

In order to estimate the maximum excited Er3+ fraction we have to integrate the

fraction of Er3+ ions excited per Si NP in all the interaction area that it is defined by

the the distance r0 from the surface of the Si NPs. Therefore the maximum of fraction of

excited Er3+ achievable through Si NPs by high density 2D-distributions is given by:

fMax−Er = NNP

∫ rNP+r0

0

∫ 2π

0

ρdρdθ

1 + 1
KETNNP τPL

. (14.16)

Replacing the energy transfer coefficient in the equation 14.16 there are two terms that

define the maximum Er3+ than could be excited through the Si NPs. The first term is

the maximum Er3+ that could be excited by exciton inter-band recombination and the

second term corresponds to the Er3+ excited through exciton intra-band relaxation or

Föster interaction.

fMax−Er =
πNNP r

2
NP

1 + 1
K2D,0τPLNNP

+ 2πNNP

∫ rNP+r0

rNP

ρdρ

1 + 1
K2D,0NNP τPLe

−(ρ−rNP /r0)

. (14.17)

Figure 14.6 shows the coverage area of the Si NPs and the maximum fraction of

excited Er3+ achievable in our dopant distributions i.e. first term. The first term of

the expression 14.17 shows similar values than the coverage, however taking into account

the Er3+ localized in the a-Al2O3 that separates the Si NPs represents by the second

term, fractions close to the 100% could be achieved at high pump fluxes (see Figure 14.6).

14.6 Conclusions

For the first time a direct relation between the optical absorption of the Si NPs and the

effective excitation cross section of the Er3+ ions coupled to Si NPs has been observed

experimentally. It proves that the physical properties and emission efficiency of the Er3+

only doped systems are different that the Er3+ and Si NP doped systems. Furthermore the

Er3+ effective excitation cross section increases with the Si NP size observing a clear rela-

tion between the Er3+ temporal response and the quantum properties of the amorphous

Si NPs. Fractions of excited Er3+ higher than the 50% has been obtained due to the max-

imized Er3+-Si NP contact for low pump flux proving the extreme coupling between the

Er3+ ions and the Si NPs. Fractions closer to the 100% are achievable due to the geomet-

rical properties and the high spatial correlation of the two dopant 2D-distributions. This

new nano-structured material is a suitable candidate as gain media at 1.53 µm pumping
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Figure 14.6: Maximum fractions of excited Er3+ ions for the Er3+ and
Si NP co-doped a-Al2O3thin films at pump power condition of 1.5 W as
a function of the diameter of the Si NPs. The coverage area of the 2D-
distributions of Si NPs corresponding to the different thin films is also shown.

in a broad band in the visible using low pump fluxes in waveguide configurations.



Part V

Low temperature thermal

post-processing
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Chapter 15

Si NPs-Er3+ interaction upon low

temperature thermal processing

The Er3+ ions are active after de deposition, but generally thermal treatments are applied

to Er3+ doped a-Al2O3 thin films to reduce the host defects and improve the emission at

1.53 µm. In the previous Section 8.1 it has been shown that is possible to obtain efficient

energy transfer between Si NPs and Er3+ ions in Er3+ - Si NPs co-doped a-Al2O3 films

without the need for post-deposition annealing and this energy transfer process depends

critically on the Si NPs - Er3+ separation and it is optimized for a characteristic interaction

distance below 1 nm. [24] In this Chapter an annealing procedure to further enhance the

photoluminescence (PL) performance (intensity and lifetime) of the Er ions in the films

are investigated and discussed. Note that as a contrast to the synthesis methods in which

annealing was required to form the Si NPs, in this work the Si NPs are already present in

the films before annealing.

The thermal treatment studied in order to optimize the PL emission is a conventional

furnace in air annealing at different temperatures for 1 hour up to 700oC (starting at 400,

500, 600, 650 and finishing at 700oC). This treatment is similar to that performed in our

previous works on Er doped a-Al2O3 films. All the thin films are characterized after every

thermal step at the different temperatures.
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15.1 Evolution of photoluminescence intensity

At resonant Er3+ excitation condition the PL spectra shape for all the thin films is similar

to the spectra measured at as grown film, only the contribution from the Si NPs by the

flat band is increased. This emission band is further analyzed in the Chapter 7.

The non resonant Er3+ excitation through Si NPs is lost after the first anneal proce-

dure at 400 oC except for the s=0 nm thin film (see Figure 15.2). Therefore the interaction

between Er3+ ions and Si NPs is only maintaining in the dopants configuration where the

Er3+ ions are closer to the Si NPs. From now, only the evolution of the PL emission of

the Er3+ ions for the s=0 and the only Er doped film is mainly analyzed.
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Figure 15.1: PL peak intensity as a function of the temperature of the
different steps of the annealing procedure. Up graph - black full circles s=0
film. Bottom - gray full squares Er only film. Note the different scales.

The Figure 15.1 shows the PL peak intensity at 1.54 µm a function of the temperature

achieved in the different steps of the annealing procedure for the s=0 film and the Er only

doped a-Al2O3 film. The PL intensity of the s=0 film increases up to 400 oC a factor 8

but it is slightly decreased as the temperature of the thermal treatment increases until

get at intensity values similar to the as grown thin film. This behavior is observed at

resonant (not show) and non resonant pump conditions showing a Er3+ excitation mainly

through Si NPs. In contrast the Er3+ only doped films shows no improvement of the PL

intensity until 600 oC where the Er3+ emission increases gradually. [17, 26] Consequently

the thermal annealing process improve the Er3+ ions environment but it affects to the

Si NPs or to the region of interaction Si NPs - Er3+ whose result is the reduction of the

energy exchange from the Si NPs to the closer Er3+ ions.

The energy transfer from Si NPs to Er3+ ions is reduced after the 400 oC annealing
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Figure 15.2: IPL peak intensity as a function of s parameter after 700oC
thermal treatment

process for the s= 4. In addition, at resonant pump conditions (514.5 nm), the PL intensity

achieved after the 700 oC is similar for all films between thin films except for the s=0 nm

for which the PL intensity is higher due to the significant contribution of the Er3+ ions

sensitized by Si NPs (see Figure 15.2).

15.2 Evolution of lifetime

The Figure 15.3 shows the intensity decays at 1.54 µm for four different thin films after

the thermal annealing process at 700oC. Strong differences have been obtained between

the the co-doped film with s=0 and the Er only doped film and the Si only doped film.

The only Er doped film shows a stretched exponential curve behavior that deviates little

from a single exponential behavior. In fact the 700 oC is not yet the optimum annealing

temperature and the number of defects in the host are not completely eliminated (analysis

detailed in Appendix C). The only Si doped film shows a fast decay associated to the

emission flat band that can not be measured because it has associated a temporal value

below the resolution of the system. The co-doped thin film with s=0 shows clearly two

decay independent components. The fast component can be associated to the flat band

emission related to the presence of Si NPs due to the similarity with the only Si doped film

decay curve, while the slow component is associated to the Er3+ ions emission. Note that

the decay curves obtained for the co-doped thin film are different for the pump wavelength

in resonant or non resonant pump conditions, however these differences are related to the

dependence of the intensity emission of the flat band on the pump wavelength and not in

differences in the Er3+ excitation mechanism. In fact the temporal behavior of the slow

and fast components are the same at different pump conditions.

The Figure 15.4 shows the lifetimes evolution as a function of the annealing temper-

ature. The Er3+ lifetimes values increases as the temperature of the annealing process
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Figure 15.3: Decay curves for the s=0 film at resonant (514.5 nm) and non
resonant (476.5 nm) pump conditions and for the Er only doped film and Si
only doped film after the 700 oC annealing process.

is increased. The behavior is the same between the two films revealing that the Er3+

de-excitation mechanism are affected by the thermal treatment in the same way inde-

pendently of the presence of Si NPs. Comparing the lifetime (Figure 15.4) with the PL

intensity evolution for only Er doped film (Figure 15.1), annealing induces the reduction of

the non-radiative channels and as a result both lifetime and intensity increase. In contrast,

for the co-doped film at 400 oC the PL intensity decreases while the lifetime increases.

This suggest there is a decrease of the non radiative channels too but also a reduction of

the number of the excited Er3+ induced by the annealing procedure.
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Figure 15.4: Lifetime values a function of the annealing temperature for
the only Er doped film and the slow component of the s=0 film.

15.3 Conclusions

The optimum dopant distribution in as deposited thin films has been determined in the

previous Section 8.1. The annealing process upon 400 oC is a successfully post-processing

treatment and an improvement in the PL intensity Er3+ emission closer to one order of
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magnitude is observed. After the annealing step at 400 oC the PL intensity decreases as

the lifetime increases indicating a reduction in the number of the excited Er3+ through

the Si NPs, so the Si NPs to Er3+ energy transfer is inhibited. Changes at the Si NP

surface upon annealing are suggested as the main responsible for the observed behavior.



Chapter 16

Conclusiones Generales

En esta tesis se han establecido las condiciones de diseño y preparación de láminas nano-

estructuradas de a-Al2O3 co-dopadas con nanopart́ıculas (NPs) de silicio e iones de Er3+

mediante la técnica de depósito por láser pulsado. El depósito de los dopantes de forma

independiente y la formación de las nanopart́ıculas in situ durante el crecimiento ha per-

mitido establecer las condiciones en las que se obtiene una emisión a 1.5 µm optimizada y

las caracteŕısticas particulares de los procesos de transferencia de enerǵıa de las NPs de Si

a los iones de Er3+. Esta transferencia de enerǵıa se ha estudiado por primera vez en NPs

amorfas formadas sin necesidad de tratamiento térmico. Este avance, que hemos podido

conseguir gracias a las caracteŕısticas únicas de nuestros procedimientos, ha permitido

variar el tamaño de las NPs sin modificar las propiedades de la matriz, determinando aśı

sus propiedades electrónicas. Otra caracteŕıstica relevante y singular de las condiciones de

crecimiento de las láminas ha sido la posibilidad de controlar la situación espacial de las

NPs y los iones dopantes, que ha arrojado nueva luz sobre los procesos de transferencia

en función de la distancia entre los dopantes, tanto en la nanoescala como por debajo de

ella. Esto incluye, de forma particularmente destacable, el contacto (s=0), que no se hab́ıa

demostrado nunca anteriormente en ningún sistema codopado NPs-Er3+.

Las conclusiones principales que se derivan de los estudios presentados en esta tesis

son:

• Las nanopart́ıculas de Si que se producen in situ durante el proceso de crecimiento

son amorfas y se encuentran distribuidas en capas bien definidas. Su tamaño y

el número de NPs por capa se controla variando el número de pulsos utilizados

para ablacionar el blanco de silicio durante el proceso de depósito de láser pulsado

obteniendo distribuciones de NPs muy densas (entre 11 1019 y 21019 cm−3) y de

diámetros variables entre 1.6 nm y 4.5 nm, mostrando confinamiento cuántico y alta

absorción en el visible.

• Se ha conseguido transferencia de enerǵıa eficiente de las NPS al Er3+ en láminas
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basadas en alúmina en muestras recién depositadas a temperatura ambiente en vaćıo

con factores de realce cercanos a dos órdenes de magnitud. La eficiencia de la

transferencia de enerǵıa de las NPs a los iones de Er3+ depende cŕıticamente de la

separación entre dopantes. La transferencia de enerǵıa más eficiente se ha obtenido

cuando existe contacto entre ambos, esto es, los iones de Er están situados en la

superficie de las NPs de Si. Aśı se establece que la condición para obtener láminas

optimizadas bajo depósito por láser pulsado secuencial es que los iones de Er3+

se depositen a continuación de la formación de las NPs de silicio en vaćıo y sin

interponer ninguna capa de a-Al2O3.

• En muestras con contacto entre NPs de Si e iones de Er3+ se ha observado y carac-

terizado un nuevo régimen de acoplo entre NPs y Er3+. En este régimen de acoplo

extremo se han analizado en profundidad las propiedades temporales de la emisión

a 1.53 µm. Éstas corroboran que los iones de Er3+ que emiten eficientemente están

localizado preferencialmente en la superficie de las NPs y que su respuesta tempo-

ral depende fundamentalmente de las propiedades cuánticas de las NPs y no de la

distancia del ión a la NP.

• Se han obtenido fracciones de iones de Er3+ excitado superiores al 50% siendo viable

excitar el 100% del Er3+ activo en muestras con acoplo optimizado entre las NPs

y los iones de Er3+. Esto demuestra la viabilidad y las prometedoras propiedades

de láminas de a-Al2O3 co-dopadas con Er3+ y NPs de Si en condiciones de acoplo

extremo para el desarrollo de materiales de ganancia.

• Se han estudiado en profundidad los diferentes mecanismos de interacción entre NPs

de Si e iones de Er3+ a partir de la respuesta temporal de fotoluminiscencia. Es

posible estimar el porcentaje de iones de Er3+ excitado mediante recombinación

directa excitónica inter-banda o por relajación excitónica por transiciones intra-

banda. Debido al contacto establecido entre los iones de Er3+ y las NPs el procentaje

de iones de Er3+ excitados mediante cada mecanismo se controla con las propiedades

cuánticas de las NPs y la sintonización de sus niveles de enerǵıa con los niveles

atómicos del Er3+. Gracias a la presencia de esos dos mecanismos de excitación es

posible optimizar la excitación de los iones de Er3+ mediante mecanismos de división

de enerǵıa como el ”Space separated quantum cutting” de forma que obtenemos

emisión de dos fotones a 1.53 µm a partir de la excitacón con un único fotón en el

visible optimizando la enerǵıa transferida al Er3+.

• El papel de los distintos defectos en las láminas ha sido analizado. Muestras dopadas

sólo con NPs de silicio recién preparadas y sin ser sometidas a tratamientos térmicos

muestran por catodoluminiscencia una cantidad elevada de defectos en la matriz. Por

otra parte los defectos en la superficie de las NPS que se generan durante el crec-

imiento de las láminas influyen en las propiedades fotoluminescentes de las láminas
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dopadas con NPs de Si. Aśı, sólo se observa emisión de las NPs cuando las muestras

son sometidas a procesos térmicos post-depósito.

• Los iones de Er3+ situados cerca de las NPs muestran una interaccion preferente con

estas y no con los defectos de la matriz. Esto explica la emisión eficiente observada

en muestras recién depositadas con una alta densidad de defectos en la matriz de a-

Al2O3Ėste resultado implica que es posible controlar las probabilidades de transición

de los iones de Er3+ mediante la reducción de los defectos superficiales de las NPs.

La reducción de defectos se consigue mediante la reducción de tamaño de las NPs y

el control de la densidad de enerǵıa usada en el láser de ablación durante el depósito.

Aśı en las muestras con NPs de menor diamétro medio se ha observado realce del

tiempo de vida del Er3+ para la emisión a 1.53 µm respecto a las muestras sólo

dopadas con Er3+.

• Se ha conseguido obtener un aumento de la emisión a 1.53 µm del Er3+ de un orden

de magnitud mediante procesos térmicos a baja temperatura (hasta 400 oC). Para

temperaturas superiores se pierde la transferencia de enerǵıa de las NPs al Er3+ por

posible pérdida de contacto que puede estar relacionada con el aumento del espesor

de la capa de SiO2 en la superficie de las NPs de Si. El trabajo futuro se orientará

en el estudio de procesos térmicos a bajas temperaturas para poder obtener altas

fracciones de Er3+ excitado sin pérdida de contacto y con menor enerǵıa de bombeo.



Appendix A

Analysis of the spectra shape.

Er3+ chemical environment

The degenerate energy levels of the Er 4f states will split due to the Stark effect when Er

is incorporated into a solid host. Hence the shape of the Er luminescence spectrum, which

is due to optical transitions between the various Stark levels, reflects the local environment

around the ion.[108]. We have used this feature to study the chemical environment of the

Er3+ ions and to help us to understand better their spatial location. It is going to be

shown how the use on a non Si-based host can be useful to provide information on the

Er-NPs interaction.

For example, the Figure (citar) of the Chapter 9 shows the normalized spectra to the

maximum of intensity peak for an Er3+ and Si NPs co-doped film (Si-185-Er) and the

reference Er3+ doped film. All the co-doped films shows the same spectral response inde-

pendently of the Si NP size, only the Er only doped film shows a different behavior. The

spectra shape of Er only doped film is broader than the co-doped films ones thus, the Full

With at Half Maximum (FWHM) is 50 nm for the Er3+ doped a-Al2O3 film and 44 nm for

the Si NP and Er3+ doped film. Moreover the peak intensity position in the co-doped film

spectra is shifted a few nanometers to higher wavelength values than the peak position of

the only Er doped film (from 1530 nm at Er3+ doped a-Al2O3 to 1535 nm in the Er3+ and

Si NP doped a-Al2O3 films). The bandwidth reduction and the shift to longer wavelength

in the co-doped film suggest that almost recollected emission comes from Er3+ localized

in Si-O chemical environment rather than in an Al-O environment,[14] which is consistent

with the Er located at the surface of the Si NPs.

Evaluation of 4I15/2 and 4I13/2 Stark-level energies

A thorough study about the spectra shape and Er3+ the emission lineshapes in the S, C

and L bands of the third telecommunication window was performed, specially in the C

band (the erbium window).

The Figure A.1 shows the Stark components of the 4I15/2 and 4I13/2 levels that had
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Figure A.1: Energy diagram showing the Stark components of the 4I15/2
and 4I13/2 manifolds and the assignment of observed fluorescence transitions.

been established in the reference [146] for an Er3+ doped aluminosilicate glass fiber. Play-

ing with the temperatures is possible to tune the number of transitions observed but at

room temperature all of them are going to be present, but the proximity between the fluo-

rescence peaks (F4-F9, F5-F10, F6-F11, F7-F12) allow us only to discriminate 7 emission

lines, as it is usually obtained for silica based fibers [145].

The shape of the emission lines is going to be determined by the homogeneous or inho-

mogeneous nature of the host. Homogeneous mechanism generally give rise to Lorentzian

lineshapes, while inhomogeneous processes tend to produce Gaussian spectral lines [147].

Our host is an amorphous material then Lorentzian lineshapes are expected but consid-

ering that we are going to compare with a nanocomposite material formed by Si NPs

and a-Al2O3 we are going to considerer inhomogeneous broadening. Also, our deposited

a-Al2O3 in as grown conditions contain lot of defects and excess of aluminium ions and

could be considerer and inhomogeneous media for the Er3+ ions.

Using loretzian lineshapes for the co-doped films the best fits have been obtained.

The Figure A.2-b shows all the lineshapes and the complete fit for the Si-75-Er thin film

and in the table appears the fitted peaks details. The loretzian adjustments suggest a

homogeneous broadening and then the all the emission that is detected comes from Er3+

in similar sites. Thus, taking into account the position of the emission peaks similar to

the silica fibers [145] we can conclude that almost the Er3+ emitting are sited in the Si

NP surface.

In the other hand, the Figure A.2-a shows the spectra decomposition for the Er only

doped film. Homogeneous broadening, but different positions for the peaks. The wave-

length positions can be associated to an a-Al2O3 chemical environment (see Table A.1).

[145]
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Figure A.2: Experimental emission cross section line shapes of 4I15/2 to
4I13/2 transition for an Er3+ only doped film A.2-a and for an Er3+ and Si
NP doped film (Si-75-Er) A.2-b. The dots are the experimental data, the red
lines the complete fit and the wine lines are the peaks that the fit is composed
of.

Er3+ and Si NP doped film
Peak position (nm) Width (nm) Height (a.u.) Area (a.u.)

1487 42 0.13 6.6
1512 50 0.27 16.9
1529 17 0.36 7.7
1533 12 0.56 8.2
1545 10 0.21 2.5
1556 32 0.59 23.8
1605 63 0.14 11.2

Only Er3+ doped film
1404 76 0.11 10.1
1474 45 0.13 7.5
1507 66 0.37 30.3
1530 15 0.76 13.9
1544 8 0.15 1.5
1555 41 0.61 31.2
1611 67 0.30 24.8

Table A.1: Peak positions and parameters of the descomposed components
of the an Er3+ and Si NP doped film



Appendix B

Analysis of the excitation

photoluminescence spectroscopy

One of the improvements of the Er3+ and Si NP co-doped systems is the widened pump

bandwidth in the visible wavelength range, where a lot of low cost light emission devices

are available (LED’S). While the co-doped systems can be pumped in all the visible range

where the Si NPs are strong absorbers, the only Er3+ doped systems can only be pumped

at the discrete wavelengths of the upper Er3+ ions energy levels (see Figure B.1) that have

associated low absorption cross sections. The intensity emission at the maximum peak

decreasing as a function of the pump wavelength is the most usual behavior in co-doped

systems. It is related to Si NP absorption dependence on the wavelength pump range

that it is passed on to the Er ions PL emission through the energy transfer phenomena.

In that way, the dependence of the emission at 1.53 µm as a function of the excitation

wavelength gives us rich information about the transfer energy phenomena and

it was analyzed in all the series. Low pump powers (200mW) was selected to obtain

enough energy at all available Ar+ visible emission lines to pump at the same photon flux

independently of the pump wavelength.

The PLE curves observed are going to depend on the size of the Si NPs and the dis-

tribution of the two dopants. So decreasing linear PLE curves has been observed (Figure

poner) showing a strong energy transfer process between Si NP and Er3+ and where the

slope is dependent on the Si NP size. Also, PLE spectra showing the linear decreasing

curve as a function os the wavelength but with singularities where a local higher emission

intensity was detected at wavelengths resonant with the Er3+ energy levels has been ob-

served, showing the contribution of the direct pumped Er ions and the indirect pumped

Er ions at the same time (Figure poner). And, finally only Er3+ emission has been de-

tected at resonant wavelengths in the films where the Si NP-Er3+ transfer phenomena is

not succeed (Figure poner). This analysis have been done for every series of thin films

and analyzed changing the parameters at the nanoscale (distance and size) and the post-

deposition treatments.

180



Chapter B. Analysis of the excitation photoluminescence spectroscopy 181

Figure B.1: Energy levels of Er3+Ḋata are shown both for the Er3+ free
ion, and for Er in a solid host

We are going to defined two different pump conditions and we are going to name

as resonant and non-resonant pump conditions. At non-resonant pump conditions the

Er3+ ions emission can only be due to the sensitization of the ions by Si NPs and then it

is going to be detected when the transfer process happen. At the resonant pump condi-

tions the Er ions could be excited directly pumped at the resonant energies with the Er3+

energy levels and in the case of co-doped systems the two phenomena are taking place.

It is possible to calculate the percentage of Er3+ emission by indirect or direct

pumped. To evaluate the the percentage of Er3+ emission obtained by indirect or direct

excitation we have assumed that the direct contribution to be negligible at 476.5 nm and

to have a similar value at 457.9 and 501.7 nm. Consequently the indirect contribution

has been obtained by the a linear slightly decreasing function defined by the intensity at

457.9 and 501.7 nm and shifted to the 476.5 nm intensity value. Assuming that this linear

function accounts for the indirect contribution in the whole studied wavelength range, the

indirect contribution for these three wavelengths has been obtained by subtracting this

direct contribution to the measured PL.

Assuming the relation of the equation B.1 it is possible to obtain a relation between

the emission cross sections at 1.53 µm pumped at different wavelengths for an specific thin
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film and to connect to the slope of the excitation curves.

IPL ∼ fExc−Er NEr σa
τ

τrad
(B.1)

To obtain the expression we have considered that the τrad is independent of the pump

wavelength due that the τrad depends on the index of nanocomposite at the emission

wavelength and, that the fExc−Er depends fundamentally from the geometry of contact of

the two distributions of dopants and it is proportional to the pump flux, then for a unique

thin film the ratio of excited fractions is only related to the pump fluxes. Assuming all

this hypothesis the relative slope of the excitation curves is given by expression B.2.

Sloperelative =
IPL−457.5 − IPL−514.5

IPL−457.5
= 1− φ514.5σa−514.5

φ457.5σa−457.5
(B.2)

The Sloperelative is decreased gradually from 0.33 to 0.61 as a function of the Si NP diam-

eter. Interestingly, the obtained values are close to the corresponding to the covered area

by the Si NPs suggesting that there is a physical relation between the PL intensity and

the absorption cross sections and that affects to the excitation curves shape.



Appendix C

Photoluminescence temporal

analysis

In this Appendix the different methods to analyze the rise and decay photoluminescence

(PL) curves are discussed. The PL dynamic models are applied to Er3+ and Si NP

doped a-Al2O3 thin film with different sizes. Similar average lifetimes and rise-times

values are obtained from the different methods however the information obtained about

the physical properties of the extreme Er3+Si NP coupling thin films is different but in

sound agreement.

C.1 Analysis of Er3+ excitation and des-excitation dynamics

(lifetimes and rise times)

Conventional analysis of Er ions lifetimes resolve the decay profile as a single-exponential

decay function as all the Er3+ are located in an optimized homogeneous environment.

Heterogenous dopant distributions in an host with the non radiative channels minimized

(by post-deposition treatments) and/or without sensitizers show single-exponential rise

and decay times. However our extreme Er3+Si NP coupling a-Al2O3 thin films has been

analyzed in as grown conditions without post-anneal treatment and then a more complex

decay and rise profiles are expected. Determining the best fit function could provide us

fundamental information about the interaction mechanism between Er3+ and Si NPs but

always that have to can be justified from a physical point of view.

C.1.1 A rough approximation. Single-exponential function

Assume a co-doped film excited by pump photons at visible. This results an initial Er3+

excited population. When the pump beam disappears the excited state population decays

with a rate Γ + knr according to the expression C.1, where N(t) is the number of excited
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Er3+ at time t, Γ is the emissive rate1, and knr is the non radiative decay rate.

dN(t)

dt
= (Γ + knr)N(t). (C.1)

The Er3+ emission is a random event, in a homogeneous media each ion has the same

probability of emitting in a given period of time. Thus the emission rate and the non

radiative decay rate can be considered constants and the excited state population follows

a exponential decay, N(t) = N0 e
−t/τ where N0 is the initial excited population.

In a photoluminescence experiment we do not observe the variation of excited state

population as a function of the time, but the intensity of PL is proportional to this

magnitude (expression B.1), then the for an indeterminate number of excited ions the

intensity shows a exponential decay dependence (equation C.2) where τ is the inverse of

the total decay rate τ = (Γ + knr)
−1.

I(t) = I0e
−t/τ (C.2)

The lifetime is the average of the time that a excited Er3+ ion remains in this excited

state. Calculating the average time (expression C.4) in the excited state and assuming a

exponential temporal dependence of the photoluminescence intensity, the life time is the

inverse of the total decay rate < t >= τ .

< t >=

∫∞
0 tI(t)dt∫∞
0 I(t)dt

(C.3)

(C.4)

All the mathematical modeling is useful for the rise-times taking into account that

IFit−rise(t) = 1− IExperimental(t).

In summary, in a media with a homogeneous distribution of non-radiative channels and

sensitizers the decay and rise time curves can be fitted by a single-exponential function.

The Figure C.1 shows the decay and rise curves for a co-doped a-Al2O3 thin film at 1535

nm. It is clear that the time dependence of the erbium photoluminescence is not

well fitted by a single exponential. Thus, the as grown PLD a-Al2O3 extreme coupling

thin films shows a more complex behavior due to the heterogeneous Er3+ location and

the single-exponential approximation is only useful to estimate the rough average lifetime

and rise-time values.

1es lo mismo que emission rate?
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Figure C.1: Decay and Rise curves for the Si125Er thin film at 1535nm.
The grey lines are the raw data and the black dash lines are the best fits using
a single exponential for both curves.

C.1.2 Simplifying the lifetimes and rise-times estimations: 1/e.

In order to eliminate considerations about the shape of the PL dynamics and simplify the

estimation of the lifetime and rise-times values it is possible to characterize the dynamic

response by the time that the photoluminescence intensity decays 1/e of its initial value.

The Figure C.2 shows the logarithmic plot of the photoluminescence decay and rise curves

for the Si125Er thin film at 1535nm. If we consider the origin of time axis as in the

beginning of the fall of the photoluminescence intensity, the intersection between the

normalized raw data curve and the straight line that represents the constant value 1/e

gives us the value of the 1/e lifetime.
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Figure C.2: Logarithmic plot of the decay and rise curves for the Si125Er
thin film at 1535nm. The black dot line symbolize the 1/e value.

The Figure C.3 shows the logarithmic plot of the photoluminescence rise curves for

different co-doped thin films. The value of the 1/e rise-time increases as the Si NP diameter
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decreases (values at table ??) however the differences between the PL rise curves are

magnify for longer time domains. Thus the simplification of the dynamic curves by the

1/e estimation does not give enough information as it does not account for the longer

lifetime/rise-time events.
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T i m e  ( m s )
Figure C.3: Logarithmic plot of rise curves for the co-doped thin film at
1535nm. The black dot line symbolize the 1/e value.

Moreover, the longer lifetime/rise-time events are essential for the analysis of the decay

and rise times. The gradual increment of the separation of the curves with the time is em-

phasized when the decay and rise curves are compared for the same thin film. The Figure

C.3 shows the logarithmic plot of the PL decay and rise curves for the Si-125-Er thin film

at 1535 nm. The PL rise curve and the decay curve are very similar for times below in-

tersection point and the difference between the curves is found in the curve tails for t > τe.

< τ >decay Single-exponential τe Stretched exponential Multi-expo
(±0.010 ms) (±0.010 ms) (±0.010 ms) (±0.010 ms))

Only − Er − 4 0.321 0.200 0.265 0.489
SEφ1.6 0.470 0.373 0.413 0.605
SEφ2.2 0.175 0.108 0.147 0.260
SEφ2.6 0.179 0.102 0.108 0.202
SEφ2.8 0.167 0.102 0.108 0.209
SEφ3.3 0.130 0.057 0.046 0.098

Table C.1: Lifetimes values obtained from single, stretched and multi expo-
nential fits and 1/e approximations

C.1.3 Stretched exponential. Lifetimes and rise-times dispersions

In fluorescence the most common method to analyze the dynamic curves is the multi-

exponential function but there are many other situations in which a limited number of
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discrete decay times does not expected and a continuous distribution of lifetimes is ob-

tained. An alternative approach to fit complex photoluminescence dynamic curves is

employing the stretched exponential function:

I(t) = I0e
−(t/τKWW )β , (C.5)

where I0 is the fluorescence intensity at time t=0, τKWW is the decay constant and β is

the inverse of the heterogeneity parameter (h = 1/β) with 0 < β ≤ 1. [120] A further

advantage of the stretched exponential model is that describes the variations in the pho-

toluminescence intensity without the need for making assumptions about the number of

discrete components in a multiple-exponential model.

One motivation to apply the stretched exponential function is that, the stretched

exponential curves can be expressed as a continuous distribution of lifetimes. From the

mathematical point of view a stretched exponential is a superposition of uncoupled Debye

processes defined by the expression C.6:

e−(t/τKWW )β =

∫ ∞
0

e−(t/τ)ρ(τ)dτ, (C.6)

obtaining a distribution of Debye relaxation times ρ(τ).[148]. Often, the parameter τKWW

is refereed as the average relaxation lifetime but τKWW is a characteristic property of the

lifetimes distribution ρ(τ) but it is not the first order momentum. Taking into account

the expression C.4 the average lifetime is defined as

< τ >=
τKWW

β
Γ(

1

β
) (C.7)

Now, the objectives are to apply the stretched exponential model to the Er3+-Si NPs

extreme coupling thin films and to find what ρ(τ), τKWW , < τ > and β physically means.

The lifetimes distribution ρ(τ) is the probability distribution of lifetimes and gives

us information about the probability of des-excitation of a emitter with a lifetime value

determined. The < τ > is the mean value of this lifetime distribution and τKWW is a

parameter characteristic of the lifetime distributions that gives us information that the

lifetime is going to be equally likely to be less than τKWW as to be greater within a ±20%.

[149] But the most relevant parameter for the lifetimes distributions is β. The hetero-

geneity parameter is defined by h = 1/β and is related to the stretching of the decay

process being a direct measure of the width of the lifetime distribution.[150] However, the

statistic definition of the width of ρ(τ) is ∆s =
√

(s2)average − (saverage)2. Moreover the

interpretation of β as the full width at half maximum (FWHM) has been proved not useful

as physical interpretation and β can be related to the logarithmic FWHM of ρ(τ) but not
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to the FWHM itself. [149]

Figure C.4: Figure 2(a) from Johnston et al. [149]. Linear plot of the
probability density of lifetimes (P (s, β) is the normalized ρ(τ, β)) versus the
normalized relaxation rate s = λ/λ∗ = τKWW /τ

One of the best method to understand the β meaning is analyzed the shape of the

lifetime distributions. The figure C.4 shows the theoretic lifetime distributions obtained

by Johnston in his work in the 2006 [149]. When β = 1 the stretched exponential is a pure

exponential with < τ >= τKWW and the lifetime distribution is a Dirac δ function. When

β decreases the maximum of the lifetime is shifted to values higher than the τKWW and

the lifetimes distribution is broader. Also, the absolute contribution of shorter lifetime

components is reduced while lifetime components with larger lifetime are possible.

The stretched-exponential function (KWW2 function) has been used as an alternative

model to fit the fluorescence decay due the complexity of our material and because re-

cently was developed to analyze the Er3+ lifetime and rise-time distributions.[122] For

every Er3+ ion it may reasonable to believe that the relaxation or excitation response

is exponential, but in co-doped systems there are a large distributions of environments

within the film, as Si NPs of different sizes, different relative Er3+ - Si NP locations and

then Er3+ - Si NP separation distances, each with different characteristics. These dif-

ference leads variations in the relaxation and excitation times, and in the experimental

measurements can be reflected as an stretched exponential decay.[151]

2Khohlrausch-Williams-Watts
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C.1.4 Multi-exponential decays (n = 2)

In a multi-exponential model the temporal dependence of the photoluminescence intensity

is assumed as a sum of individual single exponential decays[119]:

I(t) =
n∑
i=1

αie
−t/τi , (C.8)

where τi are the decay times, αi the amplitude of the components at t = 0, and n is the

number of decay times. This is the most commonly model used in biological fluorescence

but the physical meaning of the parameters (αi and τi) depends on the system being stud-

ied.

The values of αi and τi can be used to determine the fractional contribution (fi) of

each Er3+ population to the steady-state intensity. The fractional contribution for the

environment i is given by

fi =
αiτi∑
j αjτj

. (C.9)

The multi-exponential decay is perhaps the most powerful model. Almost any

intensity decay can be fit using the expression C.8 independently of its complexity and

taking into account the expression C.4 for a two component decay the average lifetime can

be calculated by the expression C.10.

τ̄ =
α1τ

2
1 + α2τ

2
2

α1τ1 + α2τ2
(C.10)

Furthermore, the efficiency of one transfer process from a donor to an acceptor can

be calculated from the lifetimes and the amplitude parameters of every component. The

efficiency of the back-transfer process (EB−T ) is given by the expression C.11:

EB−T = 1− FDA
FD

= 1−
∫∞

0 IDA(t)dt∫∞
0 ID(t)dt

= 1− (α1τ1 + α2τ2)DA
(α1τ1 + α2τ2)D

(C.11)

where the subscript DA correspond to the co-doped thin films (donor and acceptor) and

the subscript D correspond to the only donor doped film.3

3Buscar en el Lakowicz − book − 2006 la nomenclatura exacta para FDA, podŕıa ser el PL yield?
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Two dynamic components and the intra and inter band transitions

Surprisingly the experimental photoluminescence decay and rise curves fit a multi-exponential

decay law with a discrete value n=2 for all the thin films, including the reference Er3+

only doped film. For values of n higher than two, the decays and rise-times takes similar

values that can be reduced to two unique lifetimes. It is consistent with the discussion

about the distribution of lifetimes defined by the stretched exponential, where there are

contributions from fast and slow dynamic components in a distribution with a mean life-

time. The analysis of the stretch exponential function gives us information about the

Er3+ location and the multi-exponential decay curves will give us information about the

interaction mechanism inherent to the energy transfer processes from Si NPs to Er3+ ions

and from Er3+ ions to Si NPs.
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Sara Núñez-Sánchez

191



Bibliography

[1] A. M. Turing. Computing machinery and intelligence. Mind, 59:443–460, 1950.

[2] http : //en.wikipedia.org/wiki/alanturing.

[3] http : //en.wikipedia.org/wiki/johnvonneumann.

[4] http : //en.wikipedia.org/wiki/eniac.

[5] John Bardeen and Walter H. Brattain. Three electrode circuit element utilizing

semiconductor materials, 1950.

[6] William Schockley. Circuit element utilizing semiconductive materials, 1951.

[7] Jack S. Kilby. Integrated semiconductive circuit structure, 1967.

[8] J. M. Martinez Duart, R.J. Martin Palma, and F. Agullo Rueda. Nanotechnology

for microelectronics and optoelectronics. Elseiver, EMRS, 2006.

[9] S E. Miller. Integrated optics: an introduction. Bell System Technical Journal,

48:205969, 1969.

[10] Hiroshi Nishihara, Masamitsu Haruna, and Toshiaki Suhara. Optical Integrated

Circuits. McGraw-Hill Optical and Electrooptical Engineering Series. Mc Graw-Hill

Book Company, 1995.

[11] Gines Lifante. Integrated photonics: fundamentals. John Wiley and Sons, 2003.

[12] http : //es.wikipedia.org/wiki/amplificadoroperacional.

[13] B. E. A. Saleh and M. C. Teich. Fundamentals of photonics, 2007.

[14] A. Polman. Erbium implanted thin film photonic materials. Journal of Applied

Physics, 82:1–39, 1997.

[15] Buchal Ch, Siegrist Th, D. C. Jacobson, and J. M. Poate. 1.5 µm photoluminescence

of er3+ in yf3, luf3, and laf3 thin films. Applied Physics Letters, 68:438–440, 1996.

[16] R. Serna and C. N. Afonso. In situ growth of optically active erbium doped al2o3

thin films by pulsed laser deposition. Applied Physics Letters, 69:1541–1543, 1996.

192



BIBLIOGRAPHY 193

[17] R. Serna, M. Jimenez de Castro, J. A. Chaos, C. N. Afonso, and I. Vickridge. The

role of er3+ − er3+ separation on the luminescence of er-doped al2o3 films prepared

by pulsed laser deposition. Applied Physics Letters, 75:4073–4075, 1999.

[18] A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt. Optical-properties of

pecvd erbium-doped silicon-rich silica - evidence for energy-transfer between silicon

microclusters and erbium ions. Journal of Physics-Condensed Matter, 6:L319–L324,

1994.

[19] Minoru Fujii and Masato Yoshida. Photoluminescence from sio2 films containing si

nanocrystals and er: Effects of nanocrystalline. Journal of Applied Physics, 84:4525,

1998.

[20] M. Fujii, K. Imakita, K. Watanabe, and S. Hayashi. Coexistence of two different

energy transfer processes in sio2 films containing si nanocrystals and er. Journal of

Applied Physics, 95:272–280, 2004.

[21] G. Franzo, S. Boninelli, D. Pacifici, F. Priolo, F. Iacona, and C. Bongiorno. Sensitiz-

ing properties of amorphous si clusters on the 1.54 µm luminescence of er in si-rich

sio2. Applied Physics Letters, 82:3871–3873, 2003.

[22] B. Garrido, C. Garcia, S. Y. Seo, P. Pellegrino, D. Navarro-Urrios, N. Daldosso,

L. Pavesi, F. Gourbilleau, and R. Rizk. Excitable er fraction and quenching phe-

nomena in er-doped sio[sub 2] layers containing si nanoclusters. Physical Review B

(Condensed Matter and Materials Physics), 76:245308, 2007.

[23] K. Hijazi, R. Rizk, J. Cardin, L. Khomenkova, and F. Gourbilleau. Towards an

optimum coupling between er ions and si-based sensitizers for integrated active pho-

tonics. Journal of Applied Physics, 106:024311, 2009.

[24] S. Nunez-Sanchez, R. Serna, J. Garcia Lopez, A. K. Petford-Long, M. Tanase, and

B. Kabius. Tuning the er3+ sensitization by si nanoparticles in nanostructured

as-grown al2o3 films. Journal of Applied Physics, 105:013118–5, 2009.

[25] I. Izeddin, D. Timmerman, T. Gregorkiewicz, A. S. Moskalenko, A. A. Prokofiev,

I. N. Yassievich, and M. Fujii. Energy transfer in er-doped sio[sub 2] sensitized

with si nanocrystals. Physical Review B (Condensed Matter and Materials Physics),

78:035327, 2008.

[26] R. Serna, M. Jimenez de Castro, J. A. Chaos, A. Suarez-Garcia, C. N. Afonso,

M. Fernandez, and I. Vickridge. Photoluminescence performance of pulsed-laser

deposited al2o3 thin films with large erbium concentrations. Journal of Applied

Physics, 90:5120–5125, 2001.



194 BIBLIOGRAPHY

[27] V. Y. Timoshenko, M. G. Lisachenko, O. A. Shalygina, B. V. Kamenev, D. M.

Zhigunov, S. A. Teterukov, P. K. Kashkarov, J. Heitmann, M. Schmidt, and

M. Zacharias. Comparative study of photoluminescence of undoped and erbium-

doped size-controlled nanocrystalline si/sio2 multilayered structures. Journal of

Applied Physics, 96:2254–2260, 2004.

[28] F. Gourbilleau, M. Levalois, C. Dufour, J. Vicens, and R. Rizk. Optimized conditions

for an enhanced coupling rate between er ions and si nanoclusters for an improved

1.54-mu m emission. Journal of Applied Physics, 95:3717–3722, 2004.

[29] F. Gourbilleau, C. Dufour, R. Madelon, and R. Rizk. Effects of si nanocluster size

and carrier-er interaction distance on the efficiency of energy transfer. Journal of

Luminescence, 126:581–589, 2007.

[30] Hirasawa Makoto, Orii Takaaki, and Seto Takafumi. Size-dependent crystallization

of si nanoparticles. Applied Physics Letters, 88:093119, 2006.

[31] R. Serna, D. Babonneau, A. Suarez-Garcia, C. N. Afonso, E. Fonda, A. Traverse,

A. Naudon, and D. E. Hole. Effect of oxygen pressure on the optical and structural

properties of cu : al2o3 nanocomposite films. Physical Review B, 66:205402, 2002.

[32] J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-

Garcia, C. N. Afonso, and D. Hole. Structural studies of ag nanocrystals embedded

in amorphous al2o3 grown by pulsed laser deposition. Nanotechnology, 13:465–470,

2002.

[33] R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, J. P. Barnes, A. K. Petford-

Long, R. C. Doole, and D. Hole. Structural studies of pulsed-laser deposited

nanocomposite metal-oxide films. Journal of Microscopy, 201:250–255, 2001.

[34] E.D. Pallik. Handbook of Optical Constants of Solids. Academic Press, San Diego,

1985.

[35] G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and

M. K. Smit. Photoluminescence characterization of er-implanted al2o3 films. Applied

Physics Letters, 62:3065–3067, 1993.

[36] G. Allan, C. Delerue, and M. Lannoo. Electronic structure of amorphous silicon

nanoclusters. Physical Review Letters, 78:3161, 1997.

[37] B. Garrido, C. Garcia, P. Pellegrino, D. Navarro-Urrios, N. Daldosso, L. Pavesi,

F. Gourbilleau, and R. Rizk. Distance dependent interaction as the limiting factor

for si nanocluster to er energy transfer in silica. Applied Physics Letters, 89:163103,

2006.



BIBLIOGRAPHY 195

[38] J. H. Jhe, J. H. Shin, K. J. Kim, and D. W. Moon. The characteristic carrier-er

interaction distance in er-doped a-si/sio2 superlattices formed by ion sputtering.

Applied Physics Letters, 82:4489–4491, 2003.

[39] T. Kimura, H. Isshiki, S. Ide, T. Shimizu, T. Ishida, and R. Saito. Suppression of

auger deexcitation and temperature quenching of the er-related 1.54 mu m emission

with an ultrathin oxide interlayer in an er/sio2/si structure. Journal of Applied

Physics, 93:2595–2601, 2003.

[40] S. Y. Seo, H. Jeong, J. H. Shin, H. W. Choi, H. J. Woo, and J. K. Kim. Effect

of ion-irradiation induced defects on the nanocluster si/er3+ coupling in er-doped

silicon-rich silicon oxide. Applied Physics Letters, 91, 2007.

[41] T. Takagahara. Theory of the quantum confinement effect on excitons in quantum

dots of indirect-gap materials. Physical Review, 46:15578–15581, 1992.

[42] C. Delerue. Theoretical aspects of the luminescence of porous silicon. Physical

Review B, 48:11024–11036, 1993.

[43] K. Sun, W. J. Xu, B. Zhang, L. P. You, G. Z. Ran, and G. G. Qin. Strong en-

hancement of er3+ 1.54 µm electroluminescence through amorphous si nanoparticles.

Nanotechnology, 19, 2008.

[44] B. Garrido Fernandez, M. Lopez, C. Garcia, A. Perez-Rodriguez, J. R. Morante,

C. Bonafos, M. Carrada, and A. Claverie. Influence of average size and interface

passivation on the spectral emission of si nanocrystals embedded in sio[sub 2]. Jour-

nal of Applied Physics, 91:798–807, 2002.

[45] L. W. Wang and A. Zunger. Electronic-structure pseudopotential calculations of

large (approximate to 1000 atoms) si quantum dots. Journal of Physical Chemistry,

98:2158–2165, 1994.

[46] http : //www.microscopy.ethz.ch/elmi− home.htm.

[47] GATAN. EELS Atlas.

[48] D. Bouchet and C. Colliex. Experimental study of elnes at grain boundaries in

alumina: intergranular radiation damage effects on a1-l-23 and o-k edges. Ultrami-

croscopy, 96:139–152, 2003.

[49] http : //www.cemes.fr/ eelsdb/index.php?page = home.php.

[50] Iacona Fabio, Bongiorno Corrado, Spinella Corrado, Boninelli Simona, and Priolo

Francesco. Formation and evolution of luminescent si nanoclusters produced by

thermal annealing of sio[sub x] films. Journal of Applied Physics, 95:3723–3732,

2004.



196 BIBLIOGRAPHY

[51] C. Single, F. Zhou, H. Heidemeyer, F. E. Prins, D. P. Kern, and E. Plies. Oxi-

dation properties of silicon dots on silicon oxide investigated using energy filtering

transmission electron microscopy. Journal of Vacuum Science and Technology B,

16:3938–3942, 1998.

[52] L. Escobar-Alarcon, A. Arrieta, E. Camps, S. Romero, M. Fernandez, and E. Haro-

Poniatowski. Influence of the plasma parameters on the properties of aluminum

oxide thin films deposited by laser ablation. Applied Physics a-Materials Science

and Processing, 93:605–609, 2008.

[53] F. Caridi, L. Torrisi, A. M. Mezzasalma, G. Mondio, and A. Borrielli. Al2o3 plasma

production during pulsed laser deposition. European Physical Journal D, 54:467–472,

2009.

[54] M. J. de Castro, R. Serna, J. A. Chaos, C. N. Afonso, and E. R. Hodgson. Influence

of defects on the photoluminescence of pulsed-laser deposited er-doped amorphous

al2o3 films. In 10th International Conference on Radioation Effects in Insulators

(REI-10), pages 793–797, Jena, Germany, 1999. Elsevier Science Bv.

[55] B. Garrido, M. Lopez, O. Gonzalez, A. Perez-Rodriguez, J. R. Morante, and

C. Bonafos. Correlation between structural and optical properties of si nanocrystals

embedded in sio[sub 2]: The mechanism of visible light emission. Applied Physics

Letters, 77:3143–3145, 2000.

[56] Pallab Bhattacharya. Semiconductor optoelectronic devices. Prentice Hall, 1994.

[57] Peter Y. Yu and Manuel Cardona. Fundamentals of Semiconductors. Physics and

Materials Properties. Physics and Astronomy. 3rd edition, 2003.

[58] D. Jaque J. Garcia Sole, L.E. Bausa. An introduction to the optical spectroscopy of

inorganic solids. Wiley, 2005.

[59] R. B. Schoolar and J. R. Dixon. Optical constants of lead sulfide in the fundamental

absorption edge region. Physical Review, 137:A667, 1965.

[60] G. G. Macfarlane and V. Roberts. Infrared absorption of silicon near the lattice

edge. Physical Review, 98:1865, 1955.

[61] L. Pavesi. Silicon-based light sources for silicon integrated circuits. Advances in

Optical Technologies, 2008, 2008.

[62] Shang Yuan Ren. Quantum confinement of edge states in si crystallites. Physical

Review B, 55:4665, 1997.

[63] M. Hybertsen. Absorption and emission of light in nanoscale silicon structures.

Physical review letters, 72:1514–1517, 1994.



BIBLIOGRAPHY 197

[64] Kengo Nishio, Junichiro Koga, Toshio Yamaguchi, and Fumiko Yonezawa. Theoret-

ical study of light-emission properties of amorphous silicon quantum dots. Physical

Review B, 67:195304, 2003.

[65] A. Yoffe. Semiconductor quantum dots and related systems: electronic, optical,

luminescence and related properties of low dimensional systems. Advances in physics,

50:1–208, 2001.

[66] M. Ben-Chorin, B. Averboukh, D. Kovalev, G. Polisski, and F. Koch. Influence of

quantum confinement on the critical points of the band structure of si. Physical

review letters, 77:763, 1996.

[67] W. Wilson. Quantum confinement in size-selected, surface-oxidized silicon nanocrys-

tals science. Science, 262:1242–1244, 1993.

[68] C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and

C. H. Tung. Optical properties of ge self-organized quantum dots in si. Physical

Review B, 57:8805, 1998.

[69] S. Ren. Quantum confinement in semiconductor ge quantum dots. Solid State

Communications, 102:479–484, 1997.

[70] M. C. Bost and E. Mahan John. An investigation of the optical constants and band

gap of chromium disilicide. Journal of Applied Physics, 63:839–844, 1988.

[71] D. L. Wood and J. Tauc. Weak absorption tails in amorphous semiconductors.

Physical Review B, 5:3144, 1972.

[72] E. A. Davis and N. F. Mott. Conduction in non-crystalline systems .5. conductivity,

optical absorption and photoconductivity in amorphous semiconductors. Philosoph-

ical Magazine, 22:903, 1970.

[73] J. Tauc, R. Grigorov, and A. Vancu. Optical properties and electronic structure of

amorphous germanium. Physica Status Solidi, 15:627, 1966.

[74] T. M. Donovan, W. E. Spicer, J. M. Bennett, and E. J. Ashley. Optical properties

of amorphous germanium films. Physical Review B, 2:397, 1970.

[75] J. S. Custer, O. Thompson Michael, D. C. Jacobson, J. M. Poate, S. Roorda, W. C.

Sinke, and F. Spaepen. Density of amorphous si. Applied Physics Letters, 64:437–

439, 1994.

[76] G. T. Fei, J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, and J. Gonzalo.

Structure and thermal stability of fe : Al2o3 nanocomposite films. Journal of Physics

D: Applied Physics, 35:916–922, 2002.



198 BIBLIOGRAPHY

[77] C. N. Afonso, J. Gonzalo, R. Serna, and J. Solis. Laser ablation and its applications.

Springer Verlag, 2006.

[78] A. Stesmans and V. V. Afanas’ev. Paramagnetic defects in annealed ultrathin layers

of siox, al2o3, and zro2 on (100)si. Applied Physics Letters, 85:3792–3794, 2004.

[79] A. Stesmans and V. V. Afanasev. Interlayer-related paramagnetic defects in stacks

of ultrathin layers of siox, al2o3, zro2, and hfo2 on (100)si. Journal of Applied

Physics, 97, 2005.

[80] M. Jivanescu, A. Stesmans, and M. Zacharias. Inherent paramagnetic defects in

layered si/sio2 superstructures with si nanocrystals. Journal of Applied Physics,

104, 2008.

[81] Timothy H. Gfroerer. Photoluminescence in analysis of surfaces and interfaces. In

R.A. Meyers, editor, Encyclopedia of Analytical Chemistry, pages 9209, 9231. John

Wiley & Sons Ltd, Chichester, 2000.

[82] N. M. Park, T. S. Kim, and S. J. Park. Band gap engineering of amorphous silicon

quantum dots for light-emitting diodes. Applied Physics Letters, 78:2575–2577, 2001.

[83] Shinji Takeoka, Minoru Fujii, and Shinji Hayashi. Size-dependent photoluminescence

from surface-oxidized si nanocrystals in a weak confinement regime. Physical Review

B, 62:16820, 2000.

[84] C. W. White, J. D. Budai, S. P. Withrow, J. G. Zhu, E. Sonder, R. A. Zuhr, A. Mel-

drum, D. M. Hembree, D. O. Henderson, and S. Prawer. Encapsulated semiconduc-

tor nanocrystals formed in insulators by ion beam synthesis. Nuclear Instruments

and Methods in Physics Research Section B-Beam Interactions with Materials and

Atoms, 141:228–240, 1998.

[85] M. Glover and A. Meldrum. Effect of ”buffer layers” on the optical properties of

silicon nanocrystal superlattices. Optical Materials, 27:977–982, 2005.

[86] M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing. Size-

controlled highly luminescent silicon nanocrystals: A sio/sio2 superlattice approach.

Applied Physics Letters, 80:661–663, 2002.

[87] Iacona Fabio, Franzo Giorgia, and Spinella Corrado. Correlation between lumi-

nescence and structural properties of si nanocrystals. Journal of Applied Physics,

87:1295–1303, 2000.

[88] Vinciguerra Vincenzo, Franzo Giorgia, Priolo Francesco, Iacona Fabio, and Spinella

Corrado. Quantum confinement and recombination dynamics in silicon nanocrystals

embedded in si/sio2 superlattices. Journal of Applied Physics, 87:8165–8173, 2000.



BIBLIOGRAPHY 199

[89] Y. Q. Wang, W. D. Chen, X. B. Liao, and Z. X. Cao. Amorphous silicon nanopar-

ticles in compound films grown on cold substrates for high-efficiency photolumines-

cence. Nanotechnology, 14:1235–1238, 2003.

[90] S. Boninelli, F. Iacona, G. Franzo, C. Bongiorno, C. Spinella, and F. Priolo. Thermal

evolution and photoluminescence properties of nanometric si layers. Nanotechnology,

16:3012–3016, 2005.

[91] M. L. Brongersma, A. Polman, K. S. Min, E. Boer, T. Tambo, and H. A. Atwater.

Tuning the emission wavelength of si nanocrystals in sio[sub 2] by oxidation. Applied

Physics Letters, 72:2577–2579, 1998.

[92] L. Ferraioli, M. Cazzanelli, N. Daldosso, V. Mulloni, P. Bellutti, S. Yerci, R. Turan,

A. N. Mikhaylov, D. I. Tetelbaum, L. Pavesi, and Ieee. Dielectric matrix influ-

ence on the photoluminescence properties of silicon nanocrystals. 2006 3rd IEEE

International Conference on Group IV Photonics. Ieee, New York, 2006.

[93] S. Yerci, U. Serincan, I. Dogan, S. Tokay, M. Genisel, A. Aydinli, and R. Turan.

Formation of silicon nanocrystals in sapphire by ion implantation and the origin of

visible photoluminescence. Journal of Applied Physics, 100:074301, 2006.

[94] D. I. Tetelbaum, A. N. Mikhaylov, O. N. Gorshkov, A. P. Kasatkin, A. I. Belov,

D. M. Gaponova, and S. V. Morozov. Ion beam synthesis of si nanocrystals in silicon

dioxide and sapphire matrices - the photoluminescence study. Vacuum, 78:519–524,

2005.

[95] D. I. Tetelbaum, A. N. Mikhaylov, A. I. Belov, A. V. Ershov, E. A. Pitirimova,

S. M. Plankina, V. N. Smirnov, A. I. Kovalev, R. Turan, S. Yerci, T. G. Finstad,

and S. Foss. Properties of al2o3: nc-si nanostructures formed by implantation of

silicon ions into sapphire and amorphous films of aluminum oxide. Physics of the

Solid State, 51:409–416, 2009.

[96] L. Bi and J. Y. Feng. Nanocrystal and interface defects related photoluminescence

in silicon-rich al2o3 films. Journal of Luminescence, 121:95–101, 2006.

[97] Q. Wan, T. H. Wang, M. Zhu, and C. L. Lin. Resonant tunneling of si nanocrystals

embedded in al2o3 matrix synthesized by vacuum electron-beam co-evaporation.

Applied Physics Letters, 81:538–540, 2002.

[98] P. P. Ong and Y. Zhu. Strong photoluminescence with fine structures from sandwich-

structured films of silicon nanoparticles embedded in al2o3 matrices. Physica E-Low-

Dimensional Systems and Nanostructures, 15:118–123, 2002.



200 BIBLIOGRAPHY

[99] L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio. Photo-

luminescence of silicon nanoclusters with reduced size dispersion produced by laser

ablation. Journal of Applied Physics, 87:3829–3837, 2000.

[100] D. I. Tetelbaum, O. N. Gorshkov, A. V. Ershov, A. P. Kasatkin, V. A. Kamin, A. N.

Mikhaylov, A. I. Belov, D. M. Gaponova, L. Pavesi, L. Ferraioli, T. G. Finstad, and

S. Foss. Influence of the nature of oxide matrix on the photoluminescence spectrum

of ion-synthesized silicon nanostructures. Thin Solid Films, 515:333–337, 2006.

[101] P. G. Kik, M. L. Brongersma, and A. Polman. Strong exciton-erbium coupling in si

nanocrystal-doped sio[sub 2]. Applied Physics Letters, 76:2325–2327, 2000.

[102] J. A. Garcia, R. Plugaru, B. Mendez, J. Piqueras, and T. J. Tate. Resonant exci-

tation of er ion luminescence in a nanocrystalline silicon matrix. European Physical

Journal-Applied Physics, 27:75–79, 2004.

[103] Y. Song, C. H. Zhang, Z. G. Wang, Y. M. Sun, J. L. Duan, and Z. M. Zhao. Photo-

luminescence of inert-gas ion implanted sapphire after 230-mev pb ion irradiation.

Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions

with Materials and Atoms, 245:210–213, 2006.

[104] T. Mohanty, N. C. Mishrab, F. Singh, S. V. Bhat, and D. Kanjilal. Color cen-

ter formation in sapphire by swift heavy ion irradiation. Radiation Measurements,

36:723–727, 2003.

[105] K. H. Lee and J. H. Crawford. Luminescence of the f center in sapphire. Physical

Review B, 19:3217, 1979.

[106] I. Izeddin, A. S. Moskalenko, I. N. Yassievich, M. Fujii, and T. Gregorkiewicz.

Nanosecond dynamics of the near-infrared photoluminescence of er-doped sio2 sen-

sitized with si nanocrystals. Physical Review Letters, 97:207401, 2006.

[107] C. J. Park, Y. H. Kwon, Y. H. Lee, T. W. Kang, H. Y. Cho, S. Kim, S. H. Choi, and

R. G. Elliman. Origin of luminescence from si−-implanted (11̄02) al2o3. Applied

Physics Letters, 84:2667–2669, 2004.

[108] Albert Polman. Erbium as a probe of everything. Physica B: Condensed Matter,

300:78–90, 2001.

[109] Peter Horak, Wei H. Loh, and Anthony J. Kenyon. Modification of the er3+ radiative

lifetime from proximity to silicon nanoclusters in silicon-rich silicon oxide. Opt.

Express, 17:906–911, 2009.

[110] D.B. Chrisey and K.G. Hubler. Pulsed Laser Deposition of Thin Films. John Wiley

and Sons, 1994.



BIBLIOGRAPHY 201

[111] C. N. Afonso and J. Gonzalo. Pulsed laser deposition of thin films for optical ap-

plications. Nuclear Instruments and Methods in Physics Research Section B-Beam

Interactions with Materials and Atoms, 116:404–409, 1996.

[112] J. Gonzalo, F. Vega, and C. N. Afonso. Plasma expansion dynamics in reactive and

inert atmospheres during laser ablation of bi(2)sr(2)ca(1)cu(2)o(7 - y). Journal of

Applied Physics, 77:6588–6593, 1995.

[113] G. M. Dalpian and J. R. Chelikowsky. Self-purification in semiconductor nanocrys-

tals. Physical Review Letters, 96, 2006.

[114] G Dalpian and J Chelikowsky. Dalpian and chelikowsky reply. Physical Review

Letters, 100:1, 2008.

[115] T. L. Chan, M. L. Tiago, E. Kaxiras, and J. R. Chelikowsky. Size limits on doping

phosphorus into silicon nanocrystals. Nano Letters, 8:596–600, 2008.

[116] Jhe Ji-Hong, H. Shin Jung, Kim Kyung Joong, and Moon Dae Won. The character-

istic carrier–er interaction distance in er-doped a-si/sio[sub 2] superlattices formed

by ion sputtering. Applied Physics Letters, 82:4489–4491, 2003.

[117] O. Savchyn, F. R. Ruhge, P. G. Kik, R. M. Todi, K. R. Coffey, H. Nukala, and

H. Heinrich. Luminescence-center-mediated excitation as the dominant er sensitiza-

tion mechanism in er-doped silicon-rich sio2 films. Physical Review B, 76:10, 2007.

[118] O. Savchyn, P. G. Kik, R. M. Todi, and K. R. Coffey. Effect of hydrogen passivation

on luminescence-center-mediated er excitation in si-rich sio2 with and without si

nanocrystals. Physical Review B, 77:11, 2008.

[119] Joseph R Lakowicz. Principles of Fluorescence Spectroscopy. Springer, 2006.

[120] Jan Siegel, Daniel S. Elson, Stephen E. D. Webb, K. C. Benny Lee, Alexis Vlandas,

Giovanni L. Gambaruto, Sandrine Leveque-Fort, M. John Lever, Paul J. Tadrous,

Gordon W. H. Stamp, Andrew L. Wallace, Ann Sandison, Tim F. Watson, Fernando

Alvarez, and Paul M. W. French. Studying biological tissue with fluorescence lifetime

imaging: microscopy, endoscopy, and complex decay profiles. Appl. Opt., 42:2995–

3004, 2003.

[121] B. Sturman, E. Podivilov, and M. Gorkunov. Origin of stretched exponential relax-

ation for hopping-transport models. Physical Review Letters, 91:176602, 2003.

[122] A. J. Kenyon, M. Wojdak, I. Ahmad, W. H. Loh, and C. J. Oton. Generalized rate-

equation analysis of excitation exchange between silicon nanoclusters and erbium

ions. Physical Review B (Condensed Matter and Materials Physics), 77:035318–9,

2008.



202 BIBLIOGRAPHY

[123] Randy Ellingson. Solar cells: Slicing and dicing photons. Nat Photon, 2:72–73, 2008.

[124] D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz.

Space-separated quantum cutting with silicon nanocrystals for photovoltaic appli-

cations. Nat Photon, 2:105–109, 2008.

[125] Joseph M. Luther, Matthew C. Beard, Qing Song, Matt Law, Randy J. Ellingson,

and Arthur J. Nozik. Multiple exciton generation in films of electronically coupled

pbse quantum dots. Nano Letters, 7:1779–1784, 2007.

[126] Kei Watanabe, Minoru Fujii, and Shinji Hayashi. Resonant excitation of er3+ by

the energy transfer from si nanocrystals. Journal of Applied Physics, 90:4761–4767,

2001.

[127] Lukas Novotny and Bert Hecht. Principles of Nano-optics. Cambridge university

press, 2007.

[128] C. Bulutay. Interband, intraband, and excited-state direct photon absorption of

silicon and germanium nanocrystals embedded in a wide band-gap lattice. Physical

Review B, (20), 2007.

[129] Matthew C. Beard, Kelly P. Knutsen, Pingrong Yu, Joseph M. Luther, Qing Song,

Wyatt K. Metzger, Randy J. Ellingson, and Arthur J. Nozik. Multiple exciton

generation in colloidal silicon nanocrystals. Nano Letters, 7:2506–2512, 2007.

[130] Richard D. Schaller, Milan Sykora, Jeffrey M. Pietryga, and Victor I. Klimov. Seven

excitons at a cost of one: redefining the limits for conversion efficiency of photons

into charge carriers. Nano Letters, 6:424–429, 2006.

[131] R. D. Schaller and V. I. Klimov. High efficiency carrier multiplication in pbse

nanocrystals: implications for solar energy conversion. Physical Review Letters,

92:186601, 2004.

[132] G. Franzo, V. Vinciguerra, and F. Priolo. The excitation mechanism of rare-earth

ions in silicon nanocrystals. Applied Physics a-Materials Science and Processing,

69:3–12, 1999.

[133] A. J. Kenyon, C. E. Chryssou, C. W. Pitt, T. Shimizu-Iwayama, D. E. Hole,

N. Sharma, and C. J. Humphreys. Luminescence from erbium-doped silicon

nanocrystals in silica: Excitation mechanisms. Journal of Applied Physics, 91:367–

374, 2002.

[134] Domenico Pacifici, Giorgia Franzo, Francesco Priolo, Fabio Iacona, and Luca Dal Ne-

gro. Modeling and perspectives of the si nanocrystals-er interaction for optical am-

plification. Physical Review B, 67:245301, 2003.



BIBLIOGRAPHY 203

[135] A. A. Prokofiev, A. S. Moskalenko, and I. N. Yassievich. Excitation of er3+ ions in

sio2 with si nanocrystals. Semiconductors, 42:971–979, 2008.

[136] P. Noe, H. Okuno, J. B. Jager, E. Delamadeleine, O. Demichel, J. L. Rouviere,

V. Calvo, C. Maurizio, and F. D’Acapito. The evolution of the fraction of er ions

sensitized by si nanostructures in silicon-rich silicon oxide thin films. Nanotechnology,

20:8, 2009.

[137] S. Minissale, T. Gregorkiewicz, M. Forcales, and R. G. Elliman. On optical activity

of er3+ ions in si-rich sio2 waveguides. Applied Physics Letters, 89:171908–3, 2006.

[138] Roberto Guerra, Ivan Marri, Rita Magri, Layla Martin-Samos, Olivia Pulci, Elena

Degoli, and Stefano Ossicini. Silicon nanocrystallites in a sio2 matrix: Role of

disorder and size. Physical Review B, 79:155320, 2009.

[139] Claude Cohen-Tannoudji, Bernard Diu, and Franck Laloe. Quantum Mechanics,

volume One of Textbook physics. 1997.

[140] C. Garcia, P. Pellegrino, Y. Lebour, B. Garrido, F. Gourbilleau, and R. Rizk. Max-

imum fraction of er3+ ions optically pumped through si nanoclusters. Journal of

Luminescence, 121:204–208, 2006.

[141] C. J. Oton, W. H. Loh, and A. J. Kenyon. er3+ excited state absorption and the low

fraction of nanocluster-excitable er3+ in siox. Applied Physics Letters, 89:031116,

2006.

[142] Clifford R. Pollock. Fundamentals of Optoelectronics. Casson, Tom, 1 edition, 1995.

[143] Gerlas N. van den Hoven, Jan A. van der Elsken, Albert Polman, Cor van Dam, Koos

W. M. van Uffelen, and Meint K. Smit. Absorption and emission cross sections of

er3+ in al2o3 waveguides. Applied Optics, 36:3338–3441, 1997.

[144] Joseph T. Verdeyen. Laser Electronics. Solid state physical electronics. Prentice

Hall, New Jersey, third edition edition, 1995.

[145] E. Desurvire. Erbium-Doped Fiber Amplifiers, Principles and Applications. Wiley-

Interscience, 2002.

[146] E. Desurvire and J. R. Simpson. Evaluation of 4i15/2 and 4i13/2 stark-level energies

in erbium-doped aluminosilicate glass fibers. Opt. Lett., 15:547–549, 1990.

[147] Jose Garcia Sole, Luisa Bausa, and Daniel Jaque. An Introduction to the Optical

Spectroscopy of Inorganic Solids. 2005.

[148] F. Alvarez, A. Alegra, and J. Colmenero. Relationship between the time-domain

kohlrausch-williams-watts and frequency-domain havriliak-negami relaxation func-

tions. Physical Review B, 44:7306, 1991.



204 BIBLIOGRAPHY

[149] D. C. Johnston. Stretched exponential relaxation arising from a continuous sum of

exponential decays. Physical Review B (Condensed Matter and Materials Physics),

74:184430, 2006.

[150] K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones,

K. Dowling, M. J. Lever, and P. M. W. French. Application of the stretched expo-

nential function to fluorescence lifetime imaging. Biophysical Journal, 81:1265–1274,

2001.

[151] http : //en.wikipedia.org/wiki/stretchedexponentialfunction.


	PORTADA
	Prefacio
	Resumen
	Contents
	Chapter 1. Introduction
	1.1 Integrated Optics and the evolution of the microelec-tronics technologies

	Part I. Experimental approach. Designingthe Er, Si: a-Al2O3 nanostructures
	Chapter 2. Designing nanostructured doped films 
	2.1 Nanostructuring the dopant distribution
	2.2 Properties of the thin film components
	2.2.1 a-Al2O3 host
	2.2.2 Silicon- Silicon NPs
	2.2.3 Er3+ doped a-Al2O3 layers
	2.2.4 Growth process. Control of host and Si deposition

	2.3 Summary

	1.2 Amplification and Er3+ and Si NP doped systems. Con-trol in the nanoscale
	1.3 This thesis

	Chapter 3Er3+, Si NPs: a-Al2O3 nanostructures and post-processing treatments 
	3.1 Controlling the Er3+ and Si NPs interaction distance
	3.1.1 Test Er3+ and Si NPs doped a-Al2O3 system
	3.1.2 Si NP - Er3+ interaction below the nanoscale

	3.2 Controlling the Er3+ and Si NPs distributions
	3.2.1 Optimizing the Si NP average size
	3.2.2 Changing the Er3+ content
	3.3 Thermal treatment at low temperatures
	3.4 Summary


	Part II. Properties of the 2D-distributions of amorphous Si NPs.
	Chapter 4. Structural and chemical local properties
	4.1 Thin films for electron microscopy
	4.2 Amorphous Si NPs embedded in amorphous Al2O3
	4.3 Chemical environment. Si and Al components
	4.3.1 Chemical environment and EELS

	4.4 Silicon forming agglomerates and distributed in layers
	4.5 Annealing. Amorphous Si NPs and a-Al2O3 stoichiome-try.
	4.6 Conclusions

	Chapter 5. Morphological properties inferred from optical response
	5.1 Size dependent optical response of semiconductor SiNPs
	5.2 Absorption in semiconductors
	5.2.1 Direct semiconductors
	5.2.2 Indirect semiconductors

	5.3 Direct or indirect Si NPs?
	5.3.1 Si NP absorption and determination of band-gap energy

	5.4 Energy band-gap and NPs average diameter
	5.5 Amorphous and quality Si NPs
	5.6 Conclusions

	Chapter 6. Determining parameters of Si NP distributions 736.1 Compositional analysis by RBS
	6.1 Compositional analysis by RBS
	6.2 Densities, coverage and volume fractions of Si NP dis-tributions
	6.3 Critical analysis of the parameters of the 2D-Si NP distributions
	6.4 Conclusions

	Chapter 7. Defects in a-Al2O3 and surface of the Si NPs.
	7.1 Introduction
	7.2 Are the amorphous Si NPs dark?
	7.3 Defects in the host
	7.4 Annealing process and shinning amorphous Si NPs
	7.5 Conclusions


	Part III. Control of location of Er3+ and SiNPs below the nanoscale:maximizing Er3+- Si NPs contact
	Chapter 8. Establishing the game rules for the Si NPs - Er3+ interaction
	8.1 Introduction
	8.2 Thin films absorption
	8.3 Er excitation and emission
	8.4 Conclusions

	Chapter 9. Maximizing Er3+- Si NPs contact. Role of the Er3+ and Si NP location below the nanoscale on the Si NP-Er3+ interactione efficiency.
	9.1 Introduction
	9.2 Maintaining 2D-dopant distributions
	9.3 PL and PLE
	9.4 Fraction of excited Er3+
	9.5 Maximized Er3+ and Si NPs contact
	9.6 Conclusions

	Chapter 10. Er3+ as a probe of the film growth mechanism involved in the Pulsed Laser Deposition. PLD accuracy 
	10.1 Introduction
	10.2 Energy transfer without Er3+ and Si NP contact
	10.3 Implantation depth and Si NPs covering process
	10.4 Er3+-Si NP separation versus Er3+ to Si NP back-transfer efficiency
	10.5 Conclusions


	Part IV. Nano-engineering Er3+ and Si NP2D-distributions towards a 100%of excited Er3+: extreme Er3+ - SiNP coupling regime
	Chapter 11. Extreme Er3+-Si NP coupling regime
	11.1 Introduction
	11.2 Er3+ and Si NP 2D-distributions deposited in a maxi-mized contact configuration
	11.2.1 Tuning Si NP 2D-distributions
	11.2.2 Correlation between Si NP and Er3+ 2D-distributions

	11.3 PL emission and the Er3+ chemical environment
	11.4 PL decay curves and Er3+-Si NP extreme coupling
	11.4.1 Lifetimes distributions
	11.4.2 Rise-times distributions

	11.5 Conclusions

	Chapter 12. Si NP-Er3+ interaction mechanisms
	12.1 Introduction
	12.2 Processes of energy exchange of Si NPs and Er3+
	12.3 Er3+ temporal response and the multiexponential de-cay (n = 2)
	12.4 Tuning the Si NP-Er3+ interaction mechanism
	12.5 Conclusions

	Chapter 13. Small a-Si nanoparticles: special features
	13.1 Introduction
	13.2 Nanoparticle size: life time enhancement
	13.3 Control of defects by deposition conditions: lifetime enhancement control
	13.4 Conclusions

	Chapter 14. Fractions of excited Er3+ higher than 50%.
	14.1 Introduction
	14.2 Er3+ excitation and des-excitation dynamics
	14.3 Er3+ e ective excitation cross sections
	14.4 Fractions of excited Er3+ higher than 50%.
	14.5 Maximum excited fractions
	14.6 Conclusions


	Part V. Low temperature thermal post-processing
	Chapter 15. Si NPs-Er3+ interaction upon low temperature thermal processing
	15.1 Evolution of photoluminescence intensity
	15.2 Evolution of lifetime
	15.3 Conclusions

	Chapter 16. Conclusiones Generales

	Appendix A. Analysis of the spectra shape.Er3+ chemical environment
	Appendix B. Analysis of the excitation photoluminescence spectroscopy
	Appendix C. Photoluminescence tempor alanalysis
	Agradecimientos
	Bibliography

