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RESUMEN  

Más del 50% de las leucemias agudas mieloides (LAM) presentan al diagnóstico 

alteraciones cromosómicas recurrentes. La mayoría producen translocaciones 

equilibradas que generan proteínas de fusión, las cuales alteran el perfil 

transcripcional estableciendo el ambiente que permite la transformación leucémica. 

Entre las translocaciones más frecuentes están la t(8;21)(q22;q22) y la 

t(9;11)(p22;q23), que producen respectivamente las proteínas de fusión AML1-ETO y 

MLL-AF9. Mediante estudios de ChIP-chip en progenitores hematopoyéticos que 

expresan la oncoproteína AML1-ETO hemos identificado nuevos genes diana asociados 

con modificaciones de la cromatina. La desacetilación de la histona H4 y el aumento de 

H3K9me3 en los genes diana de AML1-ETO identificados afectan a genes involucrados 

en vías de señalización esenciales en la diferenciación y auto-renovación de los 

progenitores hematopoyéticos. La represión inducida por estas marcas de la cromatina 

se mantiene en muestras primarias t(8;21), y está directa y reversiblemente inducida 

por la presencia de AML1-ETO. Además, encontramos que más del 50% de los genes 

diana de AML1-ETO presentan un motivo de unión de Sp1 e identificamos que la 

proteína Sp1 es crítica para las LAMs dirigidas por AML1-ETO. Estos resultados nos 

permiten proponer el estudio de terapias dirigidas contra Sp1 en este subtipo 

leucémico. Por otro lado, observamos  que bajas concentraciones del inhibidor de 

HDACs panobinostat (LBH589) produce toxicidad celular y cambios rápidos en la 

expresión génica de células leucémicas que expresan la proteína de fusión MLL-AF9. 

Estudios de ChIP-seq demostraron una hiperacetylacion de histonas consistente con el 

perfil transcripcional de estas células. Además, más del 50% de los genes diana de 

MLL-AF9 identificados, presentan H4ac coincidente con la metilación de H3K4 y H3K79 

asociada a MLL-AF9. En este contexto, el tratamiento con panobinostat aumenta la 

presencia de H4ac e induce la activación de genes indirectamente silenciados por MLL-

AF9.  Sin embargo, mediante arrays de expresión identificamos un aumento de la 

transcripción de dianas de MLL-AF9, como HOXA9 y MEIS1. Estos resultados dan 

nuevas pistas sobre el papel de las HDACs en el desarrollo de las LAMs y revelan la 

sobre-expresión de genes diana de MLL-AF9 como un nuevo mecanismo de acción del 

panobinostat.  
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ABSTRACT  

Cytogenetic aberrations can be detected in over 50% of newly diagnosed acute 

myeloid (AML) patients. The majority gives rise to nonrandom chromosomal 

translocations that often result in fusion proteins, which alter the gene expression 

profile laying the groundwork for leukemic transformation. Among the most 

frequently found in AML patients are the t(8;21)(q22;q22) and the t(9;11)(p22;q23), 

which generates the AML1-ETO and the MLL-AF9 fusion proteins respectively.  

 By ChIP-chip analysis of human hematopoietic stem/progenitor cells transduced 

with the AML1-ETO fusion gene we identify new chromatin-modified AML1-ETO target 

genes. We observed that the presence of either AML1-ETO/HDAC1 complex or 

increased H3K9me3, on the promoters of AML1-ETO targets, was involved in the 

repression of hematopoietic differentiation genes and important AML signaling 

pathways. This silencing is maintained during AML development, as it was also 

observed on a set of t(8;21) primary samples, and was directly and reversibly induced 

by AML1-ETO presence. Interestingly, we found a Sp1 binding site in over 50% of AML1-

ETO targets and identified that Sp1 protein is critical in myeloid leukemia driven by 

AML1-ETO, suggesting a role for Sp1 targeted therapy in this leukemia subtype.  

 Secondly, we investigated the response of AML cells to the pan-HDACi 

panobinostat (LBH589) and found that low concentrations of panobinostat lead to 

MLL-AF9 cell toxicity and rapid changes in gene expression. ChIP-seq analysis revealed 

massive hyperacetylation of histones that was consistent with the transcriptional 

profile in the presence of MLL-AF9 fusion protein. Furthermore, in over 50% of the 

identified target genes, H4ac was present along with the known MLL-AF9-induced 

H3K4me3 and H3K79me2 chromatin marks. In this context, treatment with 

panobinostat further increases acetylation in H4ac, thus inducing a transcriptional 

activation of indirectly silenced MLL-AF9 genes. However, by gene expression arrays we 

also observed increased transcription of active MLL-AF9 target genes such as HOXA9 

and MEIS1. Thus, our results provide new insights into the role of HDACs in the 

leukemogenic process and reveal boosted up-regulation of MLL-AF9 direct targets to be 

a novel mechanism of action of panobinostat in MLL-rearranged leukemia.  
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INTRODUCTION 

1. Acute myeloid leukemia 

 Acute myeloid leukemia (AML) is a clonal hematopoietic disorder resulting from 

genetic alterations in normal hematopoietic stem/progenitor cells. These alterations 

disrupt normal differentiation and/or cause excessive proliferation of abnormal 

immature leukemic cells known as blast [1]. As the disease progresses, blast cells 

accumulate in blood and bone marrow being the presence of over 20% of blast in bone 

marrow a main criteria for AML diagnosis[2]. Finally, the excessive abnormal 

hematopoiesis will interfere with the production of normal blood cells, leading to 

fatigue, infection, bleeding, and organs failure.  

 AML accounts for approximately 25% of all leukemia diagnosed in adults, with an 

incidence of 3 to 4 new patients per 100 000 men and women per year. The median 

age of diagnosis ranges from 66 to 71 years[3]. This myeloid malignancy can arise de 

novo or secondarily either due to the progression of a bone marrow stem cell disorders  

(such as a myelodisplastic or a myeloproliferative syndrome) or as a consequence of a 

previous treatment with cytotoxic agents (referred to as therapy-related AML or tAML) 

[4, 5]. 

 AML is characterized by a complete disruption on normal adult hematopoiesis due 

to a heterogeneous spectrum of genetic and epigenetic abnormalities. The production 

of blood is a tightly controlled cell system with remarkable cellular turnover that 

constantly regenerates from very few hematopoietic stem cells, with self-renewal 

capacity, through cell divisions and differentiation. The process is driven by early and 

lineage-specific growth factors and their receptors, which work coordinately with a set 

of transcription factors and chromatin remodeling genes that regulate the expression 

of lineage specific genes governing the differentiation decisions. Thus, transcription 

factors and chromatin remodeling genes are part of a highly regulated network of 

signaling transduction pathways and inherent cellular programs, which are necessary 

for the orchestrated regulation of gene expression that defines the phenotype of a 

given blood cell [6]. Genetic abnormalities on key hematopoietic genes lead to 

leukemia initiation and progression. 
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Figure 1. Altered mechanisms on Acute Myeloid Leukemia. (A) The differentiation 

hierarchy of normal myeloid lineage is shown, starting from left to right. In red the abnormal 

undifferentiated blast cells are depict. (B) In AML the normal hematopoietic balance between 

proliferation and differentiation is disrupted, and an increase proliferation with a blockage of 

differentiation is observed. 

2. The importance of genomic characterization on AML 

  2.2. AML genetics as a prognostic factor 

 Prognostic factors may be subdivided into those related to patient characteristics 

and general health condition and those related to characteristics particular to the AML 

clone. The former subset usually predicts treatment-related mortality (TRM) and 

becomes more important as patient age increases while the latter predicts resistance 

to, at least, conventional therapy. AML-related prognostic factors includes white blood 

count (WBC), existence of prior myelodisplastic syndrome (MDS), previous cytotoxic 

therapy for another disorder, and cytogenetic and molecular genetic changes in the 

leukemic cells at diagnosis. High degree of heterogeneity with respect to chromosome 

abnormalities, gene mutations and changes in expression of multiple genes and 

microRNAs is observed in AML[2]. Various other factors, such as splenomegaly and 

elevated serum lactate dehydrogenase (LDH) levels, have been reported to confer 

some prognostic effect but with variable consistency among studies [7]. The 
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significance of a prognostic factor is always dependent on the therapy given to a 

patient.  

 Cytogenetic aberrations play a central role in the leukemic development: they can 

be detected in approximately 50% to 60% of newly diagnosed AML patients[8]. The 

majority of AML cases are associated with nonrandom chromosomal translocations 

that often result in gene arrangements.  The European LeukemiaNet (ELN) proposes a 

standardized reporting system for genetic abnormalities when presenting data 

correlating genetic findings with clinical outcome that allows for a better comparison of 

data among studies (Table 1). This standardized report includes data from cytogenetic 

analysis and from mutation analyses of the NPM1, CEBPA, and FLT3 genes[7]. 

Nowadays it is well established that karyotype is an independent predictor, and 

together with the patient´s age, the most important prognostic factors for predicting 

complete remission (CR) rate, relapse and overall survival (OS). Indeed the ELN 

classification divides AML patients into 4 risk groups according to genetic and genomic 

characterization (Table 1). This classification reflects the high variability among 

different prognostic groups, ranging from a CR of 80% to 95% in the favorable risk 

group to only 30% of patients categorized in the adverse-risk group[3].  

Table 1. AML classification risk groups according to the European LeukemiaNet (ENL) 

(modified from Schlenk, 2013). 

Genetic group Subset  

Favorable 

t(8;21)(q22;q22); RUNX1-RUNX1T1 
inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFΒ-MYH11  
Mutated NPM1 without FLT3-ITD (CN-AML) 
Mutated CEBPA (CN-AML) 

Intermediate-I 
Mutated NPM1 and FLT3-ITD (CN-AML) 
Wild-type NPM1 and FLT3-ITD (CN-AML) 
Wild-type NPM1 without FLT3-ITD (CN-AML) 

Intermediate-II 
t(9;11)(p22;q23); MLLT3-MLL AML  
Cytogenetic abnormalities not classified as favorable or adverse 

Adverse 

inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1 
t(6;9)(p23;q34); DEK-NUP214 
t(v;11)(v;q23); MLL rearranged AML with maturation 
-5 or del(5q); -7q; abnl(17p); complex karyotype 
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 Furthermore, during the last years, new whole-genome sequencing studies have 

offered insights into the pathogenesis of AML relapses by identifying specific mutations 

along the clonal evolution. In some patients the founding clone in the primary AML 

have been found to gain mutations and evolve into the relapse clone; in other cases a 

subclone of the founding one survives initial therapy, gains additional mutation, and 

expands[9]. In both scenarios, to know the genetic background in each step of the 

disease will allow to design better the patient´s treatment and an impact in prognostic 

classifications is expected. 

 2.2. Fusion proteins as a molecular mechanism of AML development 

 A total of 1.603 chromosomal aberrations have been catalogued in AML (data from 

august 2013, available at: http://cgap.nci.nih.gov/Chromosomes/Mitelman [10]). The 

frequencies of the 4 most common translocations are between 3% and 10%, while for 

others the prevalence is significantly smaller (Table 2). It was early realized that most 

AML-typical chromosomal alterations cause fusion genes that involve transcription 

factors as AML1 or essential genes for myeloid differentiation as MLL.  The resulting 

fusion protein interferes with the normal function of the wt protein.  Frequently the 

oncofusion protein retains the DNA-binding motifs of the wild type transcriptional 

regulator and gains the capacity to interact with corepressors and/or coactivators 

through its fusion moiety [11]. These findings have set the paradigm that AML is a 

disease of transcriptional control in disarray: the aberrant silencing or constitutive 

activation of target genes essential for myeloid development lays the groundwork for 

leukemic transformation. Thus, the potential targeting of this interaction has become a 

major focus for the development of novel therapeutics.    
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Table 2. Most prevalent AML-associated oncofusion proteins and their specific clinical 
features (modified form Kumar, 2011; Scandura, 2002) 

Translocations 
Oncofusion 

proteins 

Frequency 
of occurrence 

(% of AML) 
Clinical features 

t(8;21) AML1-ETO 10% 

Primary AML. Good prognosis when 
patients receive high-dose cytarabine 

consolidation therapy, common in older 
children and younger adults 

t(15;17) PML-RARa 10% 

Primary AML. Remission induction with 
ATRA, sensitive to anthracyclines. 

Common in older children and younger 
adults, good risk 

inv(16) CBF-MYH11 5% 

Primary AML. Good prognosis when 
patients receive high-dose cytarabine 

consolidation therapy. Common in older 
children and young adults. 

der(11q23) MLL-fusions 4% 

Primary or secondary AML, t-AML 
associated with exposure to 

Topoisomerase II inhibitors, depending 
on the fusion. Poor risk 

t(9;22) BCR-ABL1 2% 
Secondary AML arising from blastic CML, 

present with leukocytosis, poor risk. 

 

 The present thesis has focused on two of the most frequent chromosomal 

translocations: t(8;21) and t(9;11) which generates AML1-ETO and MLL-AF9 fusion 

proteins respectively (Figure 2A and 3A).  

 AML1-ETO fusion protein results from the chromosomal translocation 

t(8;21)(q22;q22) appearing in approximately 15-10% of all AML. It is included on the 

favorable risk group of the ENL, and its phenotype is defined by the French-American-

British (FAB) classification as an M2 subtype with granulocytic differentiation [12, 13]. 

Patients with t(8;21) leukemia have a relative favorable prognosis compared with other 

types of AML patients (Table 1), with 60% overall survival at 5 years [3, 14].   

 Genomic rearrangements of the human chromosomal band 11q23 involving MLL 

gene are frequent events in leukemia, appearing in more than 80% of infant acute 

lymphoblastic leukemia (ALL) and approximately 10% of AML cases [15]. MLL-

rearranged AML is included on the intermediate-II genetic risk group of the European 

LeukemiaNet recommendations and is recognized as a distinct disease entity in the 

WHO classification [12, 13]. The most common MLL gene rearrangement, which is seen 
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in 49% of MLL-positive AML patients, involves the translocation t(9;11)(p22;q23), 

which generates the MLL-AF9 fusion protein (also known as the MLL-MLLT3) [15]. 

3. Epigenetics and chromatin dynamics 

 The aberrant recruitment of the epigenetic machinery, as chromatin modifiers, by 

the oncofusion proteins to the promoters of key differentiation genes plays a central 

role in triggering AML[16, 17]. This aberrant presence of epigenetic modifiers will 

either induce the silencing, maintenance and/or increase of gene expression 

depending on the oncofusion and cellular context. Thus, the aberrant gene expression 

patterns observed in AML with balanced chromosomal translocations are being 

increasingly attributed to specific epigenetic modifications induced by the protein 

complexes recruited by each of the fusion proteins [18-21].  

 Chromatin is the macromolecular complex of DNA and histone proteins, which 

provides the scaffold for the packing of the entire genome. The basic functional unit of 

chromatin is the nucleosome that contains 147 base pairs of DNA wrapped around a 

histone octamer, formed by histones H2A, H2B, H3, and H4. All chromatin components 

(DNA and histones) are subjected to covalent modifications, which fundamentally alter 

its organization and function. At least four different DNA modifications and 16 classes 

of histone post-translational modifications (histone PTMs) have been described[22]. 

Such modifications are dynamically laid down and removed by DNA- or chromatin-

modifying enzymes in a highly regulated manner. It has been generally accepted that 

histone PTMs correlate with either positive or negative transcriptional states (Table 3). 

Two mechanisms for how histone PTMs affect transcription have been proposed, (1) 

chromatin packing is altered directly (either by change in electrostatic charge or 

through internucleosomal contacts) to open or close the DNA polymer, thus controlling 

access of DNA-binding proteins such as transcription factors; (2) the attached chemical 

moieties alter the nucleosome surface to promote the association of chromatin-

binding proteins [16, 23].  
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Table 3. Examples of chromatin modifications. Well-characterized sites with regard to residues 
within histones for PTMs in mammals (modified from Berger, 2007) 

Histone PTM 
Transcriptionally relevant 

sites* 
Transcriptional 

role 

Acetylated lysine (Kac) H3 (9,14,18,56), H4 
(5,8,13,16), H2A, H2B 

 

Activation 

Phosphorylated serine/threonine 
(S/Tph) 

H3 (3,10,28), H2A, H2B Activation 

Methylated lysine (Kme) H3 (4, 36, 79) 
H3(9,27), H4(20) 

Activation 
Repression 

Ubiquitinated lysine (Kub) H2B (120) 
H2A (119) 

Activation 
Repression 

 

 The great diversity in histone modifications introduces a remarkable complexity 

that is slowly being elucidated. Typically, in response to cytoplasm signaling, 

transcription factors recruitment of enzymes leads to establishment of positive-acting 

chromatin marks across promoters and open reading frames. In turn, negative-acting 

marks are laid down across genes during repression by DNA-bound repressor 

recruitment or across heterochromatic regions of the genome [23]. An extension of 

this idea is that simple combinations of consistently behaving marks correspond to 

definable and predictable outcomes of transcription. However, these modification 

patterns are not static entities but a dynamically changing and complex landscape that 

evolves in a cell context-dependent fashion. Moreover, active and repressive 

modifications are not always mutually exclusive, as evidenced by “bivalent 

domains”[22]. There are plenty of examples of how histone modifications are 

implicated on leukemia development [16]. Among them, it is well establish that AML1-

ETO oncoprotein functions as a transcriptional repressor by recruiting 

NCoR/SMRT/HDAC complexes[14], inducing a histone deacetylation landscape on its 

target genes; while MLL-AF9 fusion protein alters the histone methylation profile 

inducing an abnormal transcriptional profile of its targets[15]. Thus, only histone 

acetylation and methylation have been uncovered in this section. 
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3.1. Histone acetylation and deacetylation  

 Acetylation of lysine residues is a major histone modification involved in 

transcription, chromatin structure and DNA repair. Acetylation neutralizes lysine´s 

positive charge and may consequently weaken the electrostatic interaction between 

histones and negatively charged DNA. Thus, it has been generally associated with 

transcriptional activation, both initiation and elongation, while deacetylation results in 

relative closed chromatin conformation that often leads to repressed transcription[17].  

It is a reversible process, controlled by the equilibrium between histone acetyl 

transferase (HAT) and histone deacetylase (HDAC) activities. HAT enzymes transfer an 

acetyl group to the lysine residues of histones, neutralizing the positive charge of the 

histone and conferring a state associated with an “open” chromatin conformation. 

HATs are primarily nuclear and can be broadly classified into the GNAT, MYST, and 

CBP/p300 families [22]. Consistent with this, ChIP-seq analyses have confirmed the 

distribution of histone acetylation at promoters and enhancers and, in some cases, 

throughout the transcribed region of active genes[24]. Importantly, lysine acetylation 

also serves as the nidus for the binding of various proteins with bromodomains (BRD) 

and tandem plant homeodomains (PHD) fingers, which recognize this modification [25]. 

It is clear that global histone acetylation patterns are perturbed in cancers, but it is 

important to mention that several nonhistone proteins, including important 

oncogenes and tumor suppressors such as MYC, p53, and PTEN, are also dynamically 

acetylated [22]. 

  In contrasts, the reestablishment of the positive charge in the amino-terminal tails 

of histones, catalyzed by HDACs, tightens the interactions between histones and DNA, 

conferring a “close” chromatin state. There are 18 HDACs identified which are 

subdivided in four classes, depending on sequence homology: class I (HDAC1-3 and 

HDAC8), class II (HDAC4-7 and HDAC9-10) and class IV (HDAC11) are zinc-dependent 

amidohydrolases; whereas class III (the so-called Sirtuins) requires NAD+ for the 

deacetylation reaction [22]. Analogous to the HATs, HDACs target both histone and 

nonhistone proteins.  
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 Interestingly, genome-wide mapping has revealed that binding of both HATs and 

HDACs occurs at regulatory regions positively correlated with gene expression. HDACs 

are thus proposed to have an important role in the transcription regulation of genes 

modified or “primed” for transcription by the presence of the histone H3 lysine 4 

(H3K4) methylation. At these primed regions HDACs may act as fine tuners of 

transcription, avoiding aberrant transcription to proceed [26]. 

3.2. Histone methylation and demethylation 

 Histones are methylated on the side chains of the arginine, lysine and histidine 

residues, but the best-characterized sites are those that occur on lysine residues. 

Methyltransferases (HMTs) are much more specific than the acetyltransferases. They 

usually transfer a methyl group to a single residue, thus leading to transcriptional 

activation or repression depending on the modified amino acid residue. Moreover, 

methylation, unlike acetylation, does not alter the overall charge of the molecule, and 

lysines may be mono-, di-, or tri-methylated. Although many lysine residues on the 

various histones are methylated, the best studied are histone H3 lysine 4 (H3K4), H3K9, 

H3K27, H3K36, H3K79 and H4K20. Of these H3K4, H3K36, and H3K79 are often 

associated with active genes in euchromatin, whereas H3K9, H3K27, and H4K20 are 

associated with heterochromatic regions in the genome [22]. Furthermore different 

methylation states on the same residue can also localize differently (e.g. H3K4me2/3 

are usually present at TSS of active genes and H3K4me1 is associated with active 

enhancers); or be associated with different chromatin states (e.g. H3K9me1 is found in 

active genes, whereas H3K9me3 is associated with gene repression). 

 Enzymes such as EZH2 and MLL family members that contain a conserved SET 

domain, with methyltransferase activity, or DOT1L, the only exception that has not SET 

domain, catalyze lysine methylation [27].  It is now known that histone lysine 

methylation is not a stable, nondynamic modification as it was believed. Two classes of 

lysine demethylases have been characterized: the LSD1 (KDM1A) that catalyze the 

demethylation of mono- and dimethyllysine; and the Jumonji classes, which can 

demethylate all three methyl lysine states. Moreover, the various states of lysine 

methylation are read and interpreted by proteins containing different specialized 
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recognition motifs. Broadly speaking the aromatic cages that engage methyl lysine can 

be divided into two major families, the Royal Family (Tudor domains, Chromo domains 

and MBT domains) and PHD fingers [25].   

 
4.  Fusion Proteins and Chromatin Modifications 

 Although the molecular pathogenesis of AML has been studied with the use of 

cytogenetic analysis for more than three decades, the relationship between a specific 

fusion proteins and the epigenetic phenotype is not clear. A more complete 

understanding of the crosstalk between genetics and epigenetics is relevant not only to 

better understand the pathogenesis of AML but also, to find better approaches to 

therapy. 

4.1 AML1-ETO Fusion Protein 

 a) Core Binding Factor AML 

 The Core Binding Factor (CBF) is a heterodimeric transcription factor, composed by 

a non-DNA-binding CBFβ protein and a DNA-CBFα binding protein. The DNA-CBFα is 

formed by one of Runt-related transcription factors: RUNX1 or AML1; RUNX2 or AML3; 

or RUNX3 or AML2. They have a conserved 128-amino acid Runt domain, so-called 

because of its homology to the Drosophila runt gene, which plays a role in the 

segmented body pattering. All three Runx proteins bind to a common DNA motif 

TGT/cGGT and heterodimerizes with the CBFβ, which makes no direct contact with 

DNA, but rather increases DNA binding to Runx proteins. Both DNA binding and 

heteromerization with CBFβ are mediated by the Runt domain. Runx genes are 

essential for the development of specific tissue in vertebrates, and AML1 has a primary 

role in the development of all hematopoietic cell types (definitive erythroid cells, 

granulocytes, macrophages and lymphoid cells) [28]. The DNA-binding of AML1 

promotes the expression of essential target genes for the development and 

differentiation of all hematopoietic lineages [29]. 

  This AML1/CBFβ transcriptional regulatory complex is commonly targeted by 

translocations, deletions, or point mutations in acute leukemia. The t(8;21)(q22;q22), 
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t(16;21)(q24;q22), and t(3;21)(q26;q22) fuse the AML1 gene, which is located on 

chromosome 21, with ETO (a gene located on chromosome 8), MTG16 (a member of 

the ETO-gene superfamily, located on chromosome 16), and the MDS/ EVI-1 gene 

(located on chromosome 3) to create AML1-ETO, AML1-MTG16, or AML1-MDS/EVI-1 

fusion proteins, respectively. All of these fusion proteins retain the DNA binding 

domain (and thus the DNA sequence specificity) of the wild-type AML1 protein [30]. 

The CBFβ gene is rearranged by the inversion 16 abnormality, which juxtaposes CBFβ to 

the myosin heavy chain MYH11 gene, generating a CBFβ-MYH11 fusion protein [31]. It 

has been hypothesized that the CBFβ-MYH11 fusion inhibits AML1 function by binding 

and sequestering AML1 in the cytoplasm, thereby preventing its action in the nucleus. 

However, CBFβ-MYH11 can also be found in the nucleus and can further stimulate 

AML1 repressor activity by interacting with corepressor molecules and by the presence 

of its own repression domain [32]. These activities would further explain its ability to 

repress the transcription of AML1–dependent genes.  

 In AML1-ETO fusion, the DNA-binding domain of AML1 is joined to almost full 

length ETO protein (Figure 2B-C) [33]. Consequently, AML1-ETO functions as a 

transcriptional repressor by recruiting NCoR/SMRT/HDAC complexes, through its ETO 

moiety, to DNA sequences containing multiple AML1 transcription factor binding sites 

(TFBS) [34-38]. The oncofusion exerts a dominant inhibitory effect on AML1 function, 

thereby interfering with normal hematopoietic differentiation and inducing a 

preleukemic condition. Such idea was further supported by the results of gene targeted 

mouse models: mice heterozygous for an AML1-ETO allele show a near identical 

phenotype to AML1 knockout mice [39, 40]. Moreover, AML-ETO has been described to 

interact and repress a number of other transcription factors (e.g. E proteins, ETS 

proteins), hypothesizing to target DNA through other motives, such as E-Box motifs, as 

the result of these physical interactions [41-43]. 
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Figure 2. AML1-ETO translocation and correspondent AML1 and ETO regions. (A) 

Normal and derivative chromosomes of the chromosomal translocation t(8;21)(q22;q22). (B-C) 

A schematic representation of the protein domains of AML1 wild-type protein (B), and AML1-

ETO fusion protein(C). BPR= break point region. TA= transactivation domain. ID= Inhibitory 

domain. TAF= transcription activation interaction domain. ZF= Zinc finger. 

 In murine models, full-length AML-ETO alone appears not to be sufficient for 

leukemogenic transformation, and requires additional genetic events [44-46]. Indeed, 

other chromosomal aberrations are detected in approximately 70% t(8;21), including 

del(9q); as well as mutations in KIT (up to 40%), in FLT3 (2-7%) or RAS (10%) genes [30]. 

In line with this, transgenic o conditional expression of AML1-ETO in human 

hematopoietic stem/progenitor cells (HSPC) did not cause leukemia in 

immunodeficient mice, but has profound effects: it blocks myeloid cell differentiation 

at a more immature stage as well as extends their self-renewal potential, thus 

predisposing to leukemia [44, 47, 48].  

 b) AML1-ETO & aberrant epigenetic transcriptional silencing. 

 Although, there are several examples of AML1-ETO upregulation of target genes, 

the importance of this mechanism is sparse [49, 50] and it is the association of AML1-

ETO DNA-binding with chromatin silencing marks the most widely accepted condition 

related to this fusion protein. On specific loci, histone H4 deacetylation and K9 

trimethylation of histone H3 (H3K9me3) have been functionally validated chromatin 

marks already described as direct repressive effects of AML1-ETO presence [51]. 

Primary through the NHR2 and NHR4 domains of C-terminal ETO, AML1-ETO recruits 

NCoR/SMRT/HDAC complexes to AML1 DNA target genes, inducing a repressive 
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chromatin structure (Figure 3B). The H4 deacetylation is catalyzed, among others, by 

histone deacetylase 1 (HDAC1) that forms part of the interaction complex. Additionally, 

the lysine methyltransferase enzyme suppressor of variegation 3-9 homolog 1 

(SUV39H1) has been shown to interact with AML1 wt [52]. It has been postulated that 

this interaction will be maintained on the presence of AML1-ETO at specific target 

promoters, implicating that SUV39H1 could be the responsible enzyme for the 

observed H3K9me3. This chromatin mark correlates with transcriptional silencing 

through the formation of high-affinity binding site for heterochromatin protein 1 (HP1) 

[53].  

 Interestingly, the AML1-ETO oncofusion itself is also postranslational modificated 

by the histone acetyltransferase p300. It has been described that p300 directly 

interacts through the ETO-NHR1 domain, resulting in AML1-ETO acetylation on lysine 

43. This protein acetylation is an essential step required for AML1-ETO leukemogenic 

effects, as it is necessary for fusion protein stabilization and for bringing p300 to 

chromatin to acetylate residues [54]. 

 

 

Figure 3. Both AML1 and AML1-ETO proteins binds DNA, but recruit different 

complexes. (A) The CBF heterodimer formed by AML1/CBF binds to specific binding sites and 

induces histone acetylation by its interaction with coactivators as CBP/p300. (B) AML1/ETO 

binds to AML1 binding sties but interacts with corepressors generating a histone deacetylation 

landscape. (C) The presence of AML1-ETO has also been associated with a repressive H3K9me3 

chromatin modification. 
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4.2. MLL-AF9 Fusion Protein 

 a) MLL-rearranged leukemia 

 MLL1 gene (also called MLL, KMT2A or ALL1) is one of the six mixed-lineage 

leukemia (MLL) family histone methyltransferases in mammals. It is the ortholog of the 

Drosophila melanogaster trithorax (Trx) gene, involved in the transcriptional activation 

of the homeobox (Hox) genes [55]. It is located on the chromosome 11q23 and 

encodes for a large protein which is proteolitically processed into 2 fragments (MLLc  

and MLLN) that interact to form the full MLL protein [56]. It contains several domains, 

including two regions of homology to the TRX protein: the conserved 200 amino acid 

SET domain and a Plant homeodomain (PHD) zinc fingers, that are involved in protein-

protein interactions; and a N-terminal AT-hook and several Zinc finger domains which 

binds to DNA regions (Figure 4B) [57, 58]. Through the evolutionary conserved SET 

domain MLL catalyzes mono-, di- and trimethylation of histone H3 on K4 [59]. Both 

MLL and H3K4me localize across gene promoters, transcription start sites (TSS) and 5' 

transcribed regions of target genes and facilitate transcription initiation [60]. In 

addition mouse studies have shown that MLL is essential for fetal and adult 

hematopoiesis by regulating the expression of Hox genes (e.g. Hoxa) and other 

transcription cofactors promoting hematopoietic stem cell expansion [61-63].  

Figure 4. MLL-AF9 translocation and correspondent MLL and AF9 regions. (A) Normal and 

derivative chromosomes of the chromosomal translocations t(9;11)(p22;q23) are shown. (B-C) 

A Schematic representation of MLL wild-type protien (B) and MLL-AF9 fusion protein (C). 
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 MLL is known to form part of a large multiprotein complexes composed among 

others of (1) Menin protein, which makes a bridge between MLL N-terminal domain 

and the lens epithelium-derived growth factor (LEDGF) chromatin associated protein 

[64]; (2) histone deacetylases (HDACs) and (3) members of the SWI/SNF chromatin-

remodeling complex [57]. Moreover, the regulation of MLL activity is unique since the 

MLL SET domain has extremely low histone methyltransferase activity, which is 

dramatically enhanced upon assembly into a core complex with three other proteins: 

WDR5, ASH2L and RbBP5 [65].  

 The MLL gene was the first trithorax-like gene identified as a proto-oncogene [66]. 

Deregulation of this gene accounts for 5%-10% of acute myeloid leukemia (AML) in 

adults and almost 70% of acute lymphoblastic leukemia (ALL) in infants [67]. The most 

common rearrangements are balanced MLL translocations, in which one MLL allele is 

truncated and fused in frame with over 60 partners to produce oncogenic fusion 

proteins. The aberrant protein therefore retains the MLL N-terminal domains but 

looses it’s C-terminal part, where the methyltransferase SET domain is located (Figure 

4C). Interestingly, the wild type MLL is also required for the MLL fusion protein-

mediated leukemogenesis in vivo: knocking out MLL allele leads to loss of the leukemic 

transformation capacity of MLL-AF9 cells [68]. This indicates a necessity of the H3K4 

methylase function for leukemia pathogenesis. Moreover, the MLL-PHD3-Bromo 

cassette (also called PHD domain) has the ability to recruit HDACs implicating that 

HDACs may be recruited to MLL-bound promoters resulting in gene expression 

silencing [69]. In MLL-fusion proteins the PHD the fusion partner replaces domain, and 

its loss has been confirmed to be required for the transforming activity [70].  

 b) MLL-AF9 & aberrant epigenetic signature 

Whereas MLL translocations can be found in either ALL or AML, particular 

translocations show lineage specificity. For example, the t(4;11) is found most often in 

ALL while the t(9;11) in AML [15]. Mechanistic studies showed that some of the most 

common MLL fusion partners are able to interact with the transcription machinery by 

recruiting a variety of chromatin modifiers to the target genes. The MLL-AF9 

oncoprotein is one of those fusion partners (others are AF4, ENL and ELL), which are 
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known to recruit elongation factors in conjunction with epigenetic cofactors, resulting 

in an aberrant transcriptional elongation [71]. These protein complexes directly 

stimulate the transcription elongation by recruiting cofactor complexes such as the 

polymerase associated factor complex (PAFc) [72]; the positive transcription elongation 

factor b (pTEFb), that regulates and phosphorylates RNA polymerase II [20, 73] and the 

histone methyltransferase DOT1L, which catalyzes the histone H3 on lysine 79 

methylation (H3K79me2) [74, 75]. MLL-AF9 leukemia is largely the result of epigenetic 

and transcription elongation deregulation which may be sufficient for initiation and 

progression of leukemogenesis (Figure 5). 

 Moreover, the polycomb gene CBX8 has been shown to mediate the interaction 

between MLL-AF9 and the histone acetyltransferease TIP60. This member of the MYST 

family is associated with transcription elongation, and is able to catalyze, among 

others, H4K5, K8, K12 and K16 residues at promoters and gene bodies of active genes. 

The presence of Tip60 on MLL-AF9 cells positively contributes to the leukemic 

transformation, and has been implicated at least in HOXA9 gene transcription 

regulation [76]. However, the presence and function of histone acetylation associated 

to MLL-AF9 binding remains elusive.  

 Hematopoietic stem and progenitor cells (HSPCs) retroviral expressing MLL-AF9 

have been able to model the initiation and progression of AML on both xenograft and 

pure murine genetic models [77-79]. However, as knock-in mice models containing 

MLL-AF9 fusion gene under control of the MLL promoter spontaneously develop AML 

with a latency of 4 months to > 1 year, the requirement for a second genetic event 

during leukemogenesis has been postulated. Identification of mutations in FLT3 and 

RAS in MLL-rearranged leukemia further supports this idea [80]. 
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Figue 5. MLL and MLL-AF9 induced chromatin landscape. (A) The MLL wt protein, formed 

by MLLc /MLLN, binds DNA and induces H3K4me3 at promoter regions, allowing Pol II presence. 

This is associated with transcription initiation (B) MLL-AF9 presence is able to interact with 

DOT1L, which induces H3K79me2 along the gene bodies. The presence of MLL wt is also 

necessary, establishing a H3K4me3 mark on promoters. In this situation a chromatin landscape 

associated with transcription elongation is established.  

5. Treatment and outcomes in AML  

 Most adults with AML die from their disease. The standard treatment paradigm for 

AML is remission induction chemotherapy with an anthracycline/cytarabine 

combination, followed by either consolidation chemotherapy or allogeneic stem cell 

transplantation, depending on the patient's ability to tolerate intensive treatment and 

the likelihood of cure with chemotherapy alone. A complete remission (CR) can be 

achieved in 65% to 75% of younger adult patients (<60 years) and in approximately 40 

to 60% of older patients (>60 years) [3]. Several strategies have been employed to 

intensify the induction regimen in the hope of improving the remission rate; however, 

none have provided a clear advantage to induction therapy with cytarabine and 

anthracycline [81-83]. Recently the combination of bortezomib with daunorubicin and 

cytarabine in induction resulted in an encouraging remission frequency of 65% in older 

patients. A similar remission frequency was previously observed in patients with 

relapsed AML using this combined regimen [84] .  

 Though, even with the most recent approaches the chemotherapy-based therapy 

has changed little in the last three decades. Because of toxicity and intrinsic disease 

resistance, cytotoxic chemotherapy has reached its limit in the treatment of AML 

patients: we need new therapeutic strategies. It is why there is a need for increased 

understanding of AML pathogenesis and better molecular genomic technologies. Big 
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efforts are being done in those directions, leading to novel drug targets and the 

development of personalized, risk-adapted treatment strategies. 

5.2. New therapeutic strategies for t(8;21) and t(9;11) AMLs  

 The simplest therapeutic strategy will be targeting the fusion protein itself, as well 

as its aberrant interactions with cofactors. This has been clearly demonstrated in 

patients with acute promyelocytic leukemia [5]. Regarding AML1-ETO, a small molecule 

that allosterically inhibits RUNT/CBFβ binding has already been developed [85], but 

there are reports indicating that the transforming activity of AML1-ETO is independent 

of CBFβ interaction and such therapies might not be sufficient.  

 On the other hand, big efforts are being done to target the MLL or the MLL-

rearranged leukemia complex. Several compounds that inhibit most of its components 

are under development. For example, targeting the P-TEFb core component CDK9 is a 

possibility using flavonoids such as flavopiridiol [86]. Furthermore, the exposure of 

leukemic cells to the selective DOT1L inhibitor EPZ004777 results in selective killing of 

those cells bearing the MLL gene translocation, with little effect on non-MLL-

translocate cells [87]. Recently, inhibition of MLL methyltransferase activity using a 

newly developed MM-401 inhibitor that blocks MLL-WDR5 interaction has also shown 

promising results in vitro [88]. However, yet there is not a good molecular candidate 

with good toxicity-effectiveness ratio.  

5.2.  Histone deacetylase inhibitors (HDACi)   

 Another promising possibility is the pharmacological targeting of chromatin 

alterations. Epigenetic inhibitors of DNA methylation, histone deacetylation and 

histone methylation may have a better chance to reset the deregulated transcription in 

AML, and there are been widely study in several AML subtypes including t(8;21) and 

t(9;11) AMLs [80].     

 Histone deacetylase inhibitors (HDACi) are a novel class of anticancer agents that 

blocks HDAC activity, with a significant activity against different tumors. Seven classes 

of HDACi have been characterized to date, and currently, the US Food and Drug 

Administration (FDA) has approved two, vorinostat and romidepsin, for the treatment 
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of cutaneous T-cell lymphoma[89, 90]. Others, as panobinostat (or LBH589) are 

showing promising results in Phase I/II clinical studies in patients with advanced 

hematologic malignancies [91]. Panobinostat is a potent pan-HDACi with greater 

inhibitory activity of HDACs than current approved agents [92]. This new class of drugs 

is promising but there is an urgent need to better understand their mechanisms of 

action and to find biomarkers that may predict the clinical response. 

 Finally, an important consideration that must be taken into account is the genetic 

heterogeneity of AML: it is very unlikely that the already established or new agents 

(including combination therapies) will be equally effective in all genetic subgroups. 

Therefore, the identification of the genetic determinants of response to treatment, 

including achievement of a CR and survival end points, is of high importance. Thus a 

better characterization of the genome wide effects of oncofusion proteins as AML1-

ETO and MLL-AF9 is highly needed. 
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AIMS 

 Nonrandom chromosomal translocations resulting in gene rearrangements are 

primary genetic events in AML that determine leukemic cells phenotype and clinical 

outcome [8]. These rearrangements lead to the production of new fusion genes that 

involve essential genes for myeloid development, modifying their capacity to interact 

with corepressors and/or coactivators through its fusion moiety [11]. The aberrant 

silencing or constitutive activation of fusion protein target genes lays the groundwork 

for leukemic transformation. This aberrant gene expression is largely attributed to the 

epigenetic modifications induced by each specific fusion protein on the malignant cells 

[16]. Integrated analysis of expression signatures, global DNA fusion protein binding 

pattern and induced chromatin modifications will provide a framework for 

improvement of new AML therapies. 

PROJECT I: AML1-ETO fusion protein: DNA Binding Map and Chromatin modifications 

1. To map the DNA binding pattern of AML1-ETO/HDAC1 complex characterizing 

and quantifying the associated chromatin modifications.  

2. To identify the DNA binding motives of the AML1-ETO target regions. 

3. To correlate the aberrant epigenetic modifications and AML1-ETO expression 

signatures.  

4. To determine the reversibility of AML1-ETO induced chromatin modifications.  

 

PROJECT II: Targeting Acetylation on MLL-Leukemia 

1. To evaluate the in vitro sensibility of AML cell lines to the HDAC inhibitor 

panobinostat. 

2. To map the MLL-AF9 DNA binding and induced chromatin modifications. 

3. To correlate the aberrant epigenetic modifications with MLL-AF9 expression 

signature. 

4. To determine the correlation between chromatin acetylation and 

transcriptional modifications after panobinostat exposure on MLL-AF9 leukemia 

models. 
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MATERIALS AND METHODS 

1. Cell cultures, plasmids and patient samples 

 Umbilical cord blood CD34+ cells selected using immunomagnetic beads (Miltenyi 

Biotech), stable transduced with retroviruses expressing empty vectors (HSPC control), 

the MLL-AF9 (HSPC-MA9) or the AML1-ETO (HSPC-AE) fusion protein cDNAs. For AML-

ETO knockout two loxP sites were located on both sides of the AML1-ETO construct, 

and the Cre recombinase cDNA was subcloned on the same MIGR1 retroviral 

expression. All cellular models were kindly provided by Dr. Mulloy (Cincinnati Childrens 

Hospital Medical Center, OH, USA). Previous studies describe and characterize these 

models in depth have been reported elsewhere [93]. In both models the MIGR1 vector, 

in which the murine stem cell virus long terminal repeat, known to be optimally 

expressed in human CD34+, drives the expression of the cDNA, was used (Figure 6). 

The HSPC cultures were maintained in IMDM, 20% with fetal Bovine Serum (FBS) for 

HSPC-MA9 or with the serum substitute BIT for HSPC-AE, β-mercaptoetanol, and the 

following cytokines: TPO, SCF, IL3, IL6 and FLT3-L (10ng/ml of each). The THP-1, NOMO-

1 and K562 cell lines were maintained in RPMI with 10% FBS; while 20% FBS was used 

for SKNO1. All cell lines were obtained from the DSMZ repository.  

The leftover material of 15 de novo AML t(8;21)(q22;q22) samples after diagnosis at 

the cytogenetic laboratories of the Universidad de Navarra (Pamplona, Spain) were 

used for RNA extraction. Informed consent was obtained according to the Declaration 

of Helsinki (October 

2008).  

 

 

 

Figure 6. Schematic 

representation of all the 

constructs used. 

HSPC-AE 

HSPC-control  

YFP 

AE
fl/fl

 

Cre-YFP 

loxP AML1-ETO IRES GFP loxP 

Cre IRES YFP 

loxP IRES YFP loxP 

AML1-ETO IRES GFP HA pMSCV 

pMSCV IRES GFP 

HSPC-MA9 MLL-AF9 IRES GFP pMSCV 
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2. In vitro studies 

2.1. Antibodies 

 The antibodies used for immunoblotting and/or chromatin immunoprecipitation 

assays were the following: anti-HA (clone H9658) and GAPDH (monoclonal antibodies, 

CNIO); HDAC1 (PA1-860) from Affinity BioReagents; H4ac (06-598), H3k79me2 (04-

835); H3K4me3 (17-614); and Sp1 (17-601) from Millipore; H3K9me3 (ab8868), 

SUV39H1 (ab12405), RNA polII (ab5408) from Abcam; MLL N-terminus (A300-086A) 

and AF9 C-terminus (A300-597A) from Bethyl; and CDKN1A (sc-397) from Santa Cruz. 

2.2. Immuoblotting 

  Whole cell lysates were loaded onto SDS-PAGE gels. After transfer, PVDF 

membranes (Millipore) were incubated with primary antibodies for 1h or overnight, 

followed by either DyLight conjugated secondary antibodies (Thermo Scientific) and 

LICOR platform analysis (Biosciences) or Chemiluminiscence HRP substrate (Luminata-

Western, Millipore). 

2.3. Quantiative RT-PCR 

 RNA was isolated using the RNeasy Mini Kit (Qiagen), then reverse-transcribed 

using TaqMan® Gold RT-PCR Kit (Applied Biosystems). cDNA was analyzed using 

quantitative PCR with SYBR Green thechnology (Applied Biosystems) with the 7900HT 

Fast Real-Time PCR System (Applied Biosystems). Pre-developed TaqMan Assays 

(Applied Biosystems) and in house designed primers purchased from Sigma-Aldrich 

were used. All the analysises were normalized to endogenous PGK or GAPDH gene 

expression. The relative or absolute mRNA levels using ΔCt method or quantity referred 

to the standard curve was calculated. Standard curves were performed to assess the 

good quality of the primers. When using SybrGREEN dissociation curves were 

performed for each set of primers. All primer sequences used are shown in tables 1 

and 2. 
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Table 4. Pre-developed Taqman Assays to study AML1-ETO target genes. 

Assay ID Gene 

Symbol 

Target Exons Context Sequence 

(the nt seq surrounding the probe) 

Dye 

Hs00231079_m1 AML1 5 GTCGACTCTCAACGGCACCCGACCT FAM 

Hs00923894_m1 CDKN2A 2 GGTCCCTCAGACATCCCCGATTGAA FAM 

Hs00736972_m1 YES1 1 TCCTGCTGGTTTAACAGGTGGTGTT FAM 

Hs00180312_m1 MLLT3 9 ACCAACAACAACCAGATTCTTGAAG FAM 

Hs00902008_m1 CTCF 11 ACAGAACCAGCCAACAGCTATCATT FAM 

Hs01046830_m1 MAPK1 6 GCTGACTCCAAAGCTCTGGACTTAT FAM 

Hs01009006_m1 SIRT1 8 AGATTAGTAGGCGGCTTGATGGTAA FAM 

Hs00357218_g1 RPS19 1 CGGAGGCCGCACGATGCCTGGAGTT FAM 

 

Table 5. qRT-PCR primers used to study MLL-AF9 target genes. 

Gene symbol Forward Reverse 

PGK GGGAAAAGATGCTTCTGGGAA TTGGAAAGTGAAGCTCGGAAA 

MEIS1 GCATGAATATGGGCATGGA CATACTCCCCTGGCATACTTTG 

HOXA9 AAAACAATGCTGAGAATGAGAGC TATAGGGGCACCGCTTTTT 

PBX3 CAATCACAGGTGGATACCCTC GGAGAAGTCACAGAAGATGGAG 

JMJDC1 AATGGCATTCTCTCAAAAGCAG CTTGTCAACATCTTTCCCAGC 

ARID2 TATAGAGCAAGTCCAAACCCAG GAGCATTTAGCCACTGACAAG 

SATB1 CTTTAAAACACTCGGGCCATC CCTTTCTCACCAGCACAAATTC 

GATA2 TTCAATCACCTCGACTCGC GCTGTGCAACAAGTGTGG 

ALDH1A1 AGCAGGAGTGTTTACCAAAGA CCCAGTTCTCTTCCATTTCCAG 

DNMT3B CCCATTCGAGTCCTGTCATTG TTGATATTCCCCTCGTGCTTC 

 

2.4. Flow cytometry 

  Cells were analyzed on FACSCanto II (BD Biosciences, San Jose, California, USA). 

Anti-human CD11b and CD14 were from BD Biosciences. DAPI was used to exclude 

nonviable cells.  

2.5. Cell cycle and analysis of apoptosis  
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 Apoptosis was analyzed using DAPI staining, FITC annexin V and annexin V binding 

buffer (BD Biosciences). The cell cycle was analyzed using ethanol fixation and 

treatment with 100 ug/ml ribonuclease and 50 ug/ml propidium iodine (Sigma-Aldrich, 

St. Louis, Missouri, USA).   

2.6.Chromatin immunoprecipitation (qChIP)  

 Cells were harvested and subjected to chromatin immunoprecipitation (ChIP), as 

described previously [94]. Antibodies against specific histone modifications, AML1-ETO 

or MLL-AF9 were used to precipitate DNA fragments associated with those modified 

histones or proteins respectively. The immunoprecipitation was done using Protein A/G 

Plus-Agarose beads (Santa Cruz) and DNA was purified with phenol/clorophorm 

extraction followed by ethanol precipitation. Eluted DNA fragments were analyzed by 

quantitative PCR using promoter specific primers. Quantitative PCR (qPCR) of ChIP 

products was performed on an ABI 7900HT sequence detection system with Power-

SYBR Green master mix (Applied Byosistems). The percentage of immunoprecitipated 

DNA relative to input was calculated for each experiment. Primers and cover promoters 

used as positive controls for the different antibodies are included in table 3. 

Table 6. Primers used as positive control for each antibody in the qChIP expermiments. 

The transcript reference or the oligomer sequences of each is shown. 

Antibody 
Promoter cover by the 

primer 
reference / sequence 

H3K9me and SUV39H1 
SATa (heterochromatic 

region)  
NC_000001.10 (+)1A SABiosciences 

H3K4me3, H3K79me2 , H4ac 
and RNA pol II GAPDH 

Forward:TACTAGCGGTTTTACGGGCG 
Revese: TCGAACAGGAGGAGCAGAGAG 

MLL-AF9 HOXA11 NM_005523.5 (+)01Kb SABiosciences 

AML1-ETO CDKN2A 
NC_000009.10 (–)01A SABiosciences 

 

 ChampionChIP One-Day kit (SABiosciences Corporation) was used for HA-AML1-

ETO ChIP, according to manufacturer’s protocol. In order to determine a reliable 

baseline for enrichment of AML1-ETO binding, we used the media of three negative 
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controls (ELA2, IRF2, and DLEU2) (ref. taken from Gardini et al [41]). The primer 

sequences used are shown in Table 4 and 5. 

Table 7. Primers used for qChIP validation of AML1-ETO target genes  Further 

information about the primers can be found at SAbiosciences website. 

Gene symbol Chromosome RefSeq Primer reference Assay position 

(from TSS) MAPK1 NC_000022.9 GPH022094(+)01A 681 

CTCF NC_000016.8 GPH005067(+)01A –18 

MLLT3 NC_000009.10 GPH026139(+)01A 836 

RPS19 NC_000019.8 GPH006636(+)01A –399 

AML1 NC_000021.7 GPH021919(–)01A –743 

SIRT1 NC_000010.9 GPH001660(+)01A –393 

YES1 NC_000018.8 GPH019642(+)01A –387 

CDKN2A NC_000009.10 GPH026158(–)01A –446 

ELA2 NC_000019.8 GPH006142(+)01A 601 

DLEU2 NC_000013.9 GPH017330(–)1A –801 

IRF2 NC_000004.10 GPH023603(–)1A –515 

SATa NC_000001.10 GPH110005C(+)1A -508 

GSK3 NC_000019.8 GPH020330(-)1A -420 

OCLN NC_000005.8 GPH010205(-)1A -348 

SOX18 NC_000020.10 GPH1022261(-)1A -568 

 

Table 8.  Primers used for qChIP validation of MLL-AF9 target genes. 

Gene symbol Forward Reverse 

MEIS1 TCACCACGTTGACAACCTCG CAGCTGGAGTGGCAGAAAGC 

MEIS1 (at TSS) GGCGCAAAGGGTACGTATTA  CGGCTTTAGGAGCCTCATTT 

HOXA9 GCATTAAACCTGAACCGCTG GGAGAACCACAAGCATAGTCAG 

PBX3 GGATGGACGATCAATCCAGGATGC TGGTCATGATCTGGTGGAGGAT

GT 
SATB1 TGGAGACCTTGTCCGCAGTGATTT TGAGCTGTACACTGTGATGGTG

CT 
BMI1 AAACGGGACCCATAGATGTGGTGA TGTATGCACTGCACTCCAGCAAT

C 
DLEU1 CAACGCTGCGAGAGCAAATGACAA AGGTTGTAGCGGGCTCTTAGGA

AA 
SOX4 AGAGCGCTCGTGAACTGGAATCAA TGCTGGTTGCTGAAGCTTCCAA

TG 
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JMJDC1 TACTTTCCCGCGGCCCTCTTCATTT AACCACCGCAGACGGAAAGTA

GT 
ARID2 AGCAGCACCATGTTGAATCGCGT AATCGGAGCGAAACTAGAAGG

GCA 
GATA2 AGACATGCCACACACTGCTACAGA TGGAAATGGTTGTGCGTCCCTT

TG 
 

2.7. Dug studies 

 Cells were plated in triplicate with titrating doses of panobinostat (purchased from 

Selleck) (range, 0 µM to 1 µM) for 72 hours. After adding WST1 cell proliferation 

reagent (Roche, Basel, Switzerland) plates were read at 450 nm to measure optical 

density. Three independent HSPC-MA9 clones were used for gene expression profiling 

after culture with 30 nM panobinostat for 6 and 24 hours, RNA extraction, and quality 

assessment with the Agilent 2100 Bioanalyzer. 

3. High-throughput studies 

3.1. Gene expression analysis 

 Sureprint G3 Human Gene Expression 8x60v2 microarrays were hybridized (Agilent 

Technologies) in NIMgenetics (Madrid, Spain). Arrays were examined using the DNA 

Microarray Scanner C (Agilent Instruments) and images were extracted with Agilent 

Feature Extraction software (v10.5). The transcript profiling data from HSPC-MA9 

(n=9), HSPC-AE (n=5) and HSPC control samples (n=3) (GSE8023)[77, 95], MLL-

rearranged primary samples (n=11) and control cells (peripheral blood and bone 

marrow aspirates from normal donors) (n=8) (GSE1159)[96] were downloaded from 

Gene Expression Omnibus repository (http://www.ncbi.nlm.nih.gov/geo). Differentially 

expressed genes were obtained using Bioconductor's limma package [97] 

(Bioconductor project). The estimated significance level (p value) was adjusted using 

the Benjamini & Hochberg False Discovery Rate (FDR) correction. Those genes with a 

FDR <0.05 were selected as differentially expressed between conditions. 

3.2. Characterization of AML1-ETO/HDAC1 DNA binding and induced Chromatin 

modifications 

 3.2.1. Chromatin immunoprecipitation with microarray technology (ChIP-chip) 

http://www.ncbi.nlm.nih.gov/geo
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  Three biological replicates of 10 million 9-weeks-cultured cells per ChIP 

experiment were prepared and hybridized on the same array set. The products were 

amplified using the GenomePlex® Complete Whole Genome Amplification Kit (Sigma) 

and labeled using the Bioprime® DNA-Labeling System protocol (Life Technologies) with 

random priming and Cy5/Cy3 fluorescent dyes. One microgram of each labeled DNA 

was mixed and hybridized in Human Proximal Promoter ChIP-chip 244k arrays (Agilent 

Technologies) for up to 40 hours at 65°C at 20 rpm. Agilent scanner was used and 

images processed with Agilent Feature Extractor software application (v.9.5.3.1). 

 ChIP-chip data were analyzed using Agilent´s ChIP Analytics 1.3 software package, 

incorporating the Whitehead Error Model. The significance threshold for a probe to be 

considered significant was set at a normalized log ratio> 0.7 and p(X)<0.001. The 

transcript or gene ID nearest to each probe was calculated using simple proximity 

heuristic and the human genome Hg17 (May 2004) as reference. For each ChIP-chip 

experiment (HA-AML1-ETO, HDAC1, H4Ac, or H3K9me3), probes common to HSPC-AE 

and HSPC control were removed (see Results). The relationship between each probe 

and the nearby gene or transcript identified is defined (assuming a 10kb window) as: 

“promoter” (when the probe is upstream the TSS), “inside” (when the probe is inside 

the gene), or as “divergent promoter” (when the probe is upstream of two genes that 

are transcribed in opposite directions). The HSPC-AE filtered gene lists derived from 

each experiment were crossed to find the overlapping genes. 

 3.2.2. Sequence analysis of AML1-ETO-binding regions 

 Gene data sets identified in the ChIP-chip approach were analyzed through the 

oPOSSUM motif search system [98] to identify AML1 transcription factor binding sites 

(TFBS). An area of –5 kb to +5 kb around the TSS was scanned using the vertebrate-

specific PSSMs in the JASPAR database [99]. A predicted binding site was considered as 

PSSM score of <85% and a minimum human-mouse conservation of 70% was observed. 

To identify other TFBS targeted by complexes that include the AML1-ETO fusion protein 

and other DNA-binding factors, two unsupervised prediction methods were used, 

namely, the STAMP [100] and PSCAN [101] algorithms. For the multiple alignment 

motif study with the STAMP algorithm, the nucleotide sequences were extracted using 
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the University of California Santa Cruz genome browser (UCSC, human database release 

Hg18, March 2006) using the standard settings. Each input motif was compared with 

JASPAR and TRANSFAC using the STAMP algorithm (Sandelin and Wasserman test) to 

recognize potential similarity with other known TFBS. The obtained list was crossed 

with the list of known AML1 or ETO interacting proteins downloaded from the STRING 

database and BioGRID database to select the putative AML1-ETO-complexed 

transcription factors .The TFBS information was also extracted using the PSCAN web 

tool, analyzing an area of 1kb upstream the TSS of each gene. Two lists of known TFBS 

were obtained, one using the JASPAR database  and the other using TRANSFAC. Both 

tables are on Annex I. 

3.3. Characterization of Mll-AF9 DNA binding and induced Chromatin modifications 

 3.3.1. Chromatin immunoprecipitation sequencing (ChIP-seq) protocol  

 We performed ChIP-seq assay to study the MLL-AF9 oncoprotein DNA binding and 

induced chromatin modifications. The ChIP precipitated DNA of ~10 million cells with 

the different antibodies were independently processed into sequencing libraries with 

the ChIP-Seq sample preparation kit (Illumina), in accordance with the manufacturer´s 

instructions (Illumina). Libraries were prepared from ~200bp DNA fractions. Input 

samples from HSPC-MA9 and HSPC controls were pooled in a single library. Libraries 

were sequenced in a Genome Analyzer IIx (GA2, Illumina) single 36-base read run. Raw 

sequences were defined as reads passing purity filter before genome alignment. 

Alignment was performed with BWA versus the human sequence assembly 

GRCh37/hg19 (Feb 2009) under default settings permitting alignments with 1 mismatch 

in 36 base reads.  

 3.3.2. ChIP-seq Analysis 

 Findpeaks 3.1 [102] was used to identified ChIP-seq MLL and AF9 binding regions. 

Calibration was performed with the control input, and peaks with a confidence less 

than 99.9 % were rejected. Subpeaks (0.7) and trim (0.95) were enabled. A custom 

program was run to search Ensembl database and to find the first gene that lays in 

sense and antisense direction taking as reference point the defined peaks. Thus, a 
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window of 5000 nt upstream and 200 nt downstream of the origin of transcription for 

each gene was defined and the closer gene to the short reads peak was taken. The 

process was done on sense an antisense strand of the chromosome. The maximum 

number of genes associated to a peak was two (one in sense and the other in 

antisense). Software SICER 1.1 [103] was used to analyze the ChIP-enriched signals for 

the histone modifications H3K4me3, H3K79me2 and H4ac on HSPC-MA9 and HSPC 

cells. It was used following developer’s technical recommendations for histone 

modifications (200-bp window/ FDR≤ 0.01). The software pipeline for finding 

differential peaks in pair-wise comparisons (HSPC-MA9 vs HSPC) was applied and 

significant ChIP-seq peaks were filtered at FC<1.5 and FDR ≤ 0.001.  

 The generated bed files were uploaded to the USCS genome browser 

(http://genome.ucsc.edu/) to visualize the enrichment peaks obtained with both 

Findpeaks and Sicer analyses. Venn diagrams used for gene set comparisons were 

performed at http://bioinfogp.cnb.csic.es/tools/venny/index.html 

4. In silico data analysis 

 Gene lists were functionally annotated using Ingenuity Pathways Analysis software 

(Ingenuity® Systems, www.ingenuity.com). Enrichment of genes associated with specific 

biological functions and canonical pathways was determined relative to the Ingenuity 

knowledge database, specifying the 244k human promoter platform (Agilent) used as 

reference for ChIP-chip gene sets. The significance level cut off used was p <0.05 after 

Benjamin-Hoechberg multiple testing correction (B-H p-value). Gene Set Enrichment 

Analysis (GSEA) software [104] was used to determine the global effect of gene 

transcription. Gene sets were considered to be significantly associated with expression 

when a FDR less 0.25 was present; using a ttest permutation (1000 permutations) of 

gene sets comparison. The enrichment score from the gene set after it has been 

normalized across analyzed gene set (the so called NES) was also shown.  

5. Accession numbers 

 All the high-troughput data generated have been deposited in GEO 

(http://www.ncbi.nlm.nih.gov/geo/) and can be retrieved as GSE27663 

http://genome.ucsc.edu/
http://bioinfogp.cnb.csic.es/tools/venny/index.html
http://www.ingenuity.com/
http://www.ncbi.nlm.nih.gov/geo/
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RESULTS 

PROJECT I. AML1-ETO fusion protein: DNA Binding Map and Chromatin 

modifications  

1. Identification of AML1-ETO target genes associated with chromatin silencing marks 

1.1. Analysis of ChIP-chip arrays 

 Three HSPCs independent clones from human CD34+ umbilical cord blood samples 

stably expressing the AML1-ETO fusion protein were studied by ChIP-chip. This HSPC-

AE model, previously characterized, shows after 5-weeks, in culture a progressive 

differentiation blockage with a significant increase of CD34+ cells with an immature 

myeloid morphology, compared to the control cells which predominantly complete the 

terminal differentiation [44]  

 In order to identify those AML1-ETO target genes where histone deacetylation 

occurs and to determine the role of HDAC1 in that process, ChIP-chip experiments with 

antibodies against the HA-tagged fusion protein, HDAC1 and the chromatin mark H4Ac 

were performed. ChIP-chip data analysis enabled the identification of 1168 unique 

genes (Table S1) and 6 miRNAs bound by AML1-ETO, and 1826 genes and 10 miRNAs by 

HDAC1 protein (p (X)<0.001; Normalized Log Ratio>0.7) (Tables 9 and 10). Interestingly, 

only 10% of the 1168 identified AML1-ETO targets showed a significant increase on 

H4Ac compared to the HSPC control cells, indicating the presence of a global 

deacetylation process. However, only 103 AML1-ETO target genes were identified 

associated with HDAC1 binding. This result suggests that other HDAC class I enzymes 

may be playing a role inducing the observed deacetylation signature, confirming 

previous studies that proposed a combinatory effect of HDAC class I enzymes on the 

generation of a repressive chromatin landscape.  
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Figure 7. Characterization of the cellular models used (B-E are modified from Mulloy, 2002 & 

Wei, 2008 ). (A-B) Whrigh-Giemsa staining of nonadherent cells after 5 weeks in culture 

showing macrophague morphology in the HSPC cultures and an immature myeloid phenotype 

in the HSPC-AE (A), or in cytospins of long term cultured HSPC-MA9 cells under myeloid and 

lymphoid conditions (B). Magnification is 1000x. (C-D) Growth curve charts the differences in 

proliferative capacity between HSPC (MIGR1) and HSPC-AE (MIGR1-AE) (C) or HSPC (MIG) and 

HSPC-MA9 (MA9) cells (D). (E) qRT-PCR of AML1-ETO expression levels at 48 hours upon 

removal of AML1-ETO in the HSPC-floxed system. 

 

Table 9. Summary of the results obtained in each ChIP-chip experiment.  

Samples studied  

(Array sets analyzed) 

3 HSPC-AE (1) 

3 HSPC (1) 

3 HSPC-AE (1) 

3 HSPC (1) 

3 HSPC-AE (1) 

3 HSPC (1) 

3 HSPC-AE (1) 

3 HSPC (1) 

Antibody against HA-tag HDAC1 

Histone 4 

lysine 5, 8, 12, 

and 16 

acetylation 

Histone 3 

trimethylated 

lysine 9 

Cre-YFP - + - +
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Aim 

Analysis of 

AML1-ETO 

binding in 

human 

promoters 

Correlation of 

AML1-ETO 

and HDAC1 

binding in 

human 

promoters 

Correlation 

between 

AML1-ETO-

HDAC1 and the 

loss of the 

H4Ac active 

chromatin 

mark 

Correlation 

between AML1-

ETO and the 

presence of the 

H3K9me3 

inactive 

chromatin mark 

Significant peaks specific to 

HSPC-AE   
1525 3990 1468 3376 

Unique genes identified  1168 1826 943 1202 

Unique miRNAs identified 6 10 7 22 

Unknown peaks 16 39 18 61 

  

 Among the 103 genes co-occupied by both AML1-ETO and HDAC1, 75% showed a 

distance of less than 1200bp between AML1-ETO and HDAC1 probes. Thus, these 103 

genes could be considered AML1-ETO/HDAC1 complex functional target genes 

(Figure8B; Table S3). To explore the histone H3 lysine 9 trimethylation (H3K9me3), 

another previously known AML1-ETO related silencing chromatin mark [51], ChIP-chip 

analysis of HSPC-AE samples was performed. An enrichment of the chromatin mark 

H3K9me3 on 1102 promoter regions compared to the HSPC control was observed 

(Table 9).  

Table 10. List of the miRNAs identified in each independent ChIP-chip experiment.  

ChIP-chip miRNAs Total Number 

AML1-ETO 
hsa-mir-124a-3, hsa-mir-193a,  hsa-mir-203, hsa-mir-424, 

hsa-mir-607, hsa-mir-345 
6 

HDAC1 

hsa-let-7i, hsa-mir-137, hsa-mir-15b, hsa-mir-17, hsa-mir-

193b, hsa-mir-23a, hsa-mir-301, hsa-mir-594, hsa-mir-7-1, 

hsa-mir-7-2 

10 

H4Ac 
hsa-mir-497, hsa-mir-659, hsa-mir-142, hsa-mir-193a, hsa-

mir-594, hsa-mir-642, hsa-mir-99b 
7 
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H3K9me3 

hsa-mir-124a-3, hsa-mir-124a-2; hsa-mir-137, hsa-mir-

148a, hsa-mir-149, hsa-mir-212, hsa-mir-335, hsa-mir-

339, hsa-mir-340, hsa-mir-424, hsa-mir-498, hsa-mir-512-

1, hsa-mir-512-2, hsa-mir-515-1, hsa-mir-517a, hsa-mir-

519d, hsa-mir-520a, hsa-mir-520e, hsa-mir-526b, hsa-mir-

594, hsa-mir-615, hsa-mir-638 

22 

  

 The simultaneous presence of H3K9me3 and AML1-ETO occupancy was observed 

for 2 miRNAs and 264 unique genes, with 91.7% of the probes located closer than 

1200bp (Figure 8C; Tables 10 and S5). Only 22 of these 264 AML1-ETO-H3K9me3 target 

genes were coincident with the 103 AML1-ETO/HDAC1 functional target genes, 

suggesting that the presence of H3K9me3 and deacetylated histone H4 are exclusive 

repressive mechanism. 

 

Figure 8. Number of overlapping target genes identified by ChIP-chip analysis. Each 

Venn diagram represents comparisons between the AML1-ETO, HDAC1, H4ac or H3K9me3 

ChIP-chip results. H4ac-neg stands for those regions that showed significant H4ac presence in 

HSPC controls but not on HSPC-AE. 

 

 

 

1.2. Analysis of biological functions and pathways directly altered by AML1-ETO  
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 The functional classification of the AML1-ETO/HDAC1 and the AML1-ETO-

H3K9me3 identified target genes revealed an enrichment of categories like 

tumorigenesis, differentiation, gene expression, and hematological system function 

and development (B-H p-value <0.05) (Table S2-S6) according to IPA (Ingenuity® 

Systems, www.ingenuity.com). Furthermore, among the 103 targets of the AML1-

ETO/HDAC1 complex the TGF-β pathway (i.e. MAP3K7, MAPK1, RUNX3, SMAD7) and 

ERK/MAPK pathway (i.e. ELK3, PPP1R12A, YWHANG) were found enriched (Figure 9 

and Tables S4a-b); while the AML1-ETO-H3K9me3 associate with genes within the 

canonical Wnt/β-catenin pathway (i.e. AXIN2, GSK3A, PPARD, SOX18, SOX7, WNT9A) 

and canonical stem cell pluripotency pathway (i.e. BMP2, FGFR1 GNAS, SMAD7, 

WNT2B) (Figures 8B and 9; Tables S6a-b). In light of these data, we conclude that the 

presence of the H3K9me3 or deacetylated histone H4 at the AML1-ETO target genes 

are enriched on different biological pathways but targeting the same functional 

categories. 

Figure 9. Functional characterization of AML1-ETO target genes in the presence of 

silencing chromatin marks. The number of genes significantly associated on biological 

functions (left) and canonical pathways (right) of each gene sets are shown 

1.3. qChIP validation of AMl1-ETO functional targets  

 Hematopoietic differentiation blockage was the main feature observed on the 

functional characterization of the HSPC-AE cellular model [44] and one of the 

specifically enriched functions among the AML1-ETO functional targets. Thus, for 

validation purposes seven selected genes, identified as AML1-ETO/HDAC1 functional 

targets and involved in cell differentiation (CTCF, MAPK1, SIRT1, YES1, AML1, MLLT3, 

Figure 1 

0 10 20 30 40
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and RPS19), were analyzed using qChIP. In all the genes studied, the HSPC-AE samples 

were found significantly enriched for the co-occupancy of AML1-ETO and HDAC1 with a 

loss of H4 hyper-acetylation compared to the HSPC controls (Figure 10A-C). These 

results further confirm the simultaneous presence of both proteins at the same 

genomic location, even for those genes where the ChIP-chip analysis revealed a 

distance between the fusion protein and the HDAC1 over 800bp (Table S3). 

Interestingly, no differences on the occupancy of HDAC1 at MLLT3 promoter was 

observed between HSPC-AE and HSPC controls, suggesting an independency between 

HDAC1 and AML1-ETO binding at this target gene. The qChIP analysis at the promoter 

of 5 selected genes (MLLT3, RPS19, GSK3, SOX18, OCLN) among the list of AML1-ETO-

H3K9me3 targets confirmed the significant enrichment of H3K9me3 in HSPC-AE cells 

compared to HSPC controls (Figure 10D), but no significant differences were observed 

for the co-occupancy by SUV39H1 in the identified AML1-ETO-H3K9me3 target genes 

(data not shown). Therefore our results identified an enrichment of the H3K9me3 in 

the presence of the fusion protein at target loci, but no conclusion about the 

methyltransferase activity linked to AML1-ETO could be made. Further studies are 

needed to identify the effect and proteins involved in the H3K9 methyltransferase 

activity associated with AML1-ETO.  
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 Figure 10. qChIP analysis of AML1-ETO  target genes in HSPC-AE and HSPC cells. qChIP 

was performed on the promoter of selected AML1-ETO identified target genes using antibodies 

against (A) HA-tagged AML1-ETO, (B) HDAC1, (C) H4Ac, and (D) H3K9me3. The negative control 

for the enrichment of HA-AML1-ETO binding was calculated using the media of  three negative 

controls (ELA2, IRF2, and DLEU2) taken form Gardini et al. The p14ARF promoter was used as 

positive control for figures A-C; heterochromatic SATa region was used as postive control for 

figure D. Each experiment was replicated at least twice. Bars represent standard error.  

 

2. DNA binding sequence analysis of functional AML1-ETO targets  

2.1. DNA Sequence Analysis 

 The AML1-ETO DNA bounded regions were found equally distributed along the 5.5 

kb upstream and the 2.5 kb downstream of the transcription start site (TSS). AML1-ETO 

binds DNA through the AML1 RUNT domain, mainly at AML1 transcription factor 

binding sites (TFBS), although association with other motifs (e.g. E-box motifs) has 

been previously described [34]). In our study, an AML1 TFBS was identified at over 30% 

of AML1-ETO functional targets (Figure 11B-C; Table S1), suggesting that the AML1-ETO 

-

-
-
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DNA association may rely on additional transcriptional complexes with different 

sequence specificity.  

 Detailed sequence analyses using unsupervised methods (Tables S7 and S8) 

identify an enrichment of Sp1 TFBS among AML1-ETO target genes. The supervised 

analysis of Sp1 TFBS, in a region covering +2 kb to –2 kb of the TSS using the oPPOSUM 

motif search system, revealed that 50% of the AML1-ETO target genes present this 

binding motive (Fisher score= 3.59E-13). This finding is of particular interest, since Sp1 

is known to interact with AML1-ETO through the RUNT domain and is an essential 

transcription factor involved in hematopoietic differentiation [105].  

2.2. Analysis and validation of the association between Sp1 at AML1-ETO fusion 

protein  

 The functional classification of the 625 AML1-ETO target genes in which an Sp1 

motif has been identify revealed an enrichment of categories like development and 

gene expression (B-H p-value <0.05) according to Ingenuity Systems Analysis. 

Furthermore, the canonical Wnt/β-catenin pathway (i.e. AXIN2, CCND1, CDH3, FZD7) 

and canonical stem cell pluripotency pathway (i.e. BMP2, FGFR1, WNT2B) were found 

enriched. A significant enrichment of Sp1 presence in all the promoters studied was 

confirmed in the HSPC-AE samples compared to HSPC controls (Figure 11C). The fold 

increase assessed in this assay was independent of the presence of an AML1 or a non-

AML1 TFBS on the studied target. This finding further supports the previous data of 

AML1-ETO and Sp1 protein interaction, and indicates that AML1-ETO and Sp1 bind DNA 

as a complex[106]. Furthermore, our study indicates that this DNA binding mechanism 

occurs in a genome wide manner. 

 

 



 

69 

Figure 11. Transcription factor binding sites analysis identified Sp1 binding presence 

in AML1-ETO target genes. (A) Distribution of the identified TFBS among the 103 AML1-

ETO/HDAC1 target genes with deacetylated histone H4. A known motif was found in 68% 

(71/103) of the genes. (B) 264 AML1-ETO target genes with the H3K9me3 chromatin mark. A 

known motif was found in 58% (153/264) of the genes. (C) qChIP was performed using an anti-

Sp1 transcription factor antibody on 2 HSPC-AE and 2 HSPC-control cells. The DHFR gene was 

used as a positive control. Error bars represent standard errors. 

2.3. Role of Sp1 transcription factor in AML1-ETO expressing cells  

 The biological importance of Sp1 on t(8;21) AML was further studied by lentiviral 

shRNA knockdown system. Interestingly, the HSPC-AE cells were highly sensible to Sp1 

knockdown. The stably suppression of Sp1 leads to a complete abrogation of self-

renewal of two independent HSPC-AE clones, and no viable cells were obtained after 2 

weeks upon Sp1 knockdown (Figure 12A). To further study this effect the AML1-ETO 

derived cell line SKNO-1 and the MLL-AF9 cell line THP-1 were analyzed. A significant 

inhibition on Sp1 expression was obtained with lentiviral transduction on both cell lines 

with 2 selected shRNA sequences  (Figure 12B). In SKNO-1 this silencing resulted in a 

significant growth decline and increased apoptosis, while no effect were observed on 

THP-1 (Figure 12C-E). Moreover, HSPC-AE and SKNO-1 cells showed high sensitivity to 

titrating concentrations of Mithramycin a, a previously known DNA binding inhibitor of 

Figure 2 
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Sp1 protein [106], while THP-1 cells were fairly affected (Figure 13). Interestingly, we 

identified that Sp1 protein levels were augmented on AML1-ETO expressing cells 

compared to normal HSPC (Figure 12E-D), while no mRNA upregulation was found 

(data not shown). These results indicate that Sp1 protein is critical in myeloid leukemia 

driven by AML1-ETO. Further studies are needed to evaluate the mechanisms and the 

efficiency of Sp1 protein targeting drugs (as proteasome inhibitors like Bortezomib) in 

AML patients.  

Figure 12. Sp1 knockdown impairs AML1-ETO cell survival and proliferation. (A) 

Lentiviral Sp1 knockdown impairs proliferation on two independent HSPC-AE clones after 

puromycin selection.(B) Sp1 immunoblot demonstrated the efficiency of Sp1 knockdown (sh08 
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& sh48) on SKNO-1 (left) and  THP-1 cells (right). (C) Cells were selected with puromycin and 

then platted and grown in normal media; at the indicated times WST-1 mix was added. 

Averaged normalized OD values to day 0 are shown. (D) Two independent Sp1-knockdown and 

NT SKNO-1 cells were stained with annexin V were analyzed by flow cytometry. The averaged 

fold changes of 3 experiments are shown.(E)Immunoblot analysis of Sp1 protein on three 

independent HSPC-AE and HSPC clones. NT= non-targeting sequence. 

3. Integrative analysis of AML1-ETO functional targets and transcriptional 

modifications 

3.1. GSEA Analysis 

 To confirm the transcriptional repression conferred by the studied inactive 

chromatin marks a Gene Set Enrichment Analysis (GSEA) was performed. The HSPC-AE 

expression signature was cross-compared with the AML1-ETO targets with associated 

chromatin modifications. As expected, a significant enrichment of downregulated 

genes was confirmed among the 1068 AML1-ETO target genes (FDR<0.0001). 

Interestingly, those deacetylated genes, with and without HDAC1 binding, showed the 

most significant correlation with repressed genes (FDR<0.0001 and FDR<0.001, 

respectively) pointing to H4 deacetylation as the most significant epigenetic mark 

induced by AML1-ETO binding (Table 11).  

Table 11. Statistical significance of the Gene Set Enrichment Analysis. 

Gene set list No. of genes FDR 

AML1-ETO target genes 1168 0.001 

AML1-ETO/HDAC1/H4Ac-neg 103 0.0001 

AML1-ETO/H4Ac-neg 1063 0.0001 

AML1-ETO/H3K9me3 264 0.01 

AML1-ETO/H4Ac-neg/H3K9me3 222 0.005 

 
 

 



 

72 

Figure 13. Sp1 pharmacological inhibtition. HSPC-AE, SKNO-1 and THP-1 cells were 

exposed 72 h to serial dilutions of Mithramycin a followed by WST-1 addition. Averaged 

normalized OD values to vehicle are shown. 

3.2. Validation studies at selected genes on the HSPC model and primary samples 

 Individual analysis confirmed a significant downregulation (p<0.0001) of 6 out of 7 

selected candidate genes previously studied for AML1-ETO, HDAC1, and Sp1 occupancy 

in HSPC-AE samples (Figure 14A). No differences were observed with regard to the 

presence of an AML1 or a non-AML1 TFBS. Consistent with our qChIP result, no 

differences were found in MLLT3 mRNA levels, as a similar occupancy level of HDAC1 

protein was observed in HSCP-AE and control cells (Figure 10B).  The expression status 

of these selected genes was analyzed in a set of 15 AML primary samples expressing 

the AML1-ETO oncoprotein. All the genes studied were found downregulated on the 

primary samples compared to the controls (Figure 14C), supporting the relevance of 

AML1-ETO epigenetic silencing of key genes on the leukemic process. However, 

different levels of significance were observed between the genes studied. 

 All the genes containing an AML1 binding site (i.e. AML1, YES1 and MLLT3) were 

found as the most significantly downregulated (p<0.005) and a large variability 

between patients was observed for the identified target genes without an AML1 TFBS 

(Figure 14B). For genes containing an Sp1 TFBS (i.e. CTCF and SIRT1) only a moderate 

decrease on the mRNA levels was observed (Figure 14C). Further studies are needed to 

better characterize if the variability on transcriptional repression induced by this fusion 
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protein is relative to different mechanisms of AML1-ETO DNA binding, the levels of 

AML1-ETO or Sp1 proteins, or the presence of secondary events. 

Figure 14. In vivo transcriptional analysis of AML1-ETO targets.  (A) mRNA expression of 

7 AML1-ETO/HDAC1 target genes on HSPC samples (*p=N.S.). (B) Schematic representation of 

the AML1 and/or Sp1 TFBS present in the 7 selected genes. (C) Box-plot representing the 

expression levels of the selected genes in 15 t(8;21) AML primary samples and CD34+ cells 

(controls). Error bars represent standard error. 
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4. Analysis of the reversibility of AML1-ETO induced transcriptional repression  

4.1. AML1-ETO knockout HSPC model 

 To further characterize the importance of AML1-ETO direct epigenetic repressive 

effect on the survival and proliferation of the HSPC-AE cells, a Cre-loxP AML1-ETO 

system was generated. HSPC cells were transduced with AML1-ETO constructs flanked 

by two loxP sites and a Cre-recombinase expression vector. AML1-ETO mRNA levels was 

found absent after 48 hours but no effect on HSPC proliferation was observed until day 

10 (J.C. Mulloy, personal communication). Thus, we examine the expression levels of 

the AML1-ETO target genes at days 4, 6, and 8. AML1-ETO knockout significantly 

restored the expression of the SIRT1, AML1, CTCF, RPS19, YES1, GSK3A and MAPK1 

genes at day 8, but no effect was observed in the MLLT3 gene (Figure 15). The absence 

of MLLT3 reactivation further confirms the previous observation of an independency of 

HDAC1 and AML1-ETO DNA binding at that promoter on the HSPC-AE model (Figure 

10B). The transcriptional activation observed on the genes studied further support the 

direct and reversible repressive epigenetic effect mediated by AML1-ETO DNA binding, 

on the presence of an AML1 or non-AML1 TFBS. 

4.2. Pharmacological inhibition of Sp1 DNA binding 

 The role of Sp1 in AML1-ETO target gene reversible repression was further 

elucidated by treating HSPC-AE clones with Mithramycin a. This exposure led to a 

decrease in RNA transcription only on those genes with an Sp1 TFBS at their promoter 

(CTCF and SIRT1) but showed no effect on those genes with also an AML1 TFBS (AML1 

and YES1) (Figure 16), supporting our hypothesis of Sp1 driving a reversible AML1-ETO 

binding and silencing to genes where Sp1 but not AML1 TFBS is present.  
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Figure 15. Knockout of AML1-ETO restores the expression of its target genes. 

qRT-PCR analysis shows increased expression levels in 6 of the 7 genes studied upon 

AML1-ETO knockout. Measurements of two independent AML1-ETO-ko clones were 

taken at indicated time points. Error bars represent standard error. 
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Figure 16. Mithramycin a restores the expression of AML1-ETO target genes with an 

Sp1 TFBS.  qRT-PCR analysis upon Mytramicin A treatment (150 ng/ml). KIT mRNA levels were 

used as a control. of two independent AML1-ETO clones were taken at indicated time points. 
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PROJECT II. Targeting Histone Acetylation In MLL-AF9 Leukemia 

1. In vitro analysis of efficacy of the HDAC inhibitor LBH589 on AML HSPC models and 

cell lines 

1.1. Functional analysis of cell proliferation, apoptosis and cell cycle  

 Recent promising studies using HDAC inhibitors (HDACi) in several AML models 

[107] prompted us to evaluate the sensitivity to the pan-HDACi panobinostat of the 

HSPC expressing either MLL-AF9 (HSPC-MA9) or AML1-ETO (HSPC-AE). Unexpectedly, 

we observed that HSPC-MA9 clones showed a higher sensitivity (IC50HSPC-MA9≈30 nM) 

than HSPC-AE (IC50HSPC-AE≈200 nM) (Figure 17A). This finding was confirmed in the 

MLL-AF9-derived cell lines THP-1 and NOMO-1 (IC50≈5 nM) (Figure 17A). Additionally, 

cell viability in THP-1 and NOMO-1 was compared with the effects on the resistant BCR-

ABL–derived cell line K562. No differences were observed at 6 hours. However, at 

24 hours, massive induction of apoptosis was observed in MLL-AF9 cell lines, while no 

effects were found in K562 cells (Figure 17B). In parallel, with low doses (10 nM) and 

high doses (30 nM) of panobinostat, no differences in cell cycle were observed after 

6 hours of treatment. However, after 24 hours at low doses, a G1 cell cycle blockage 

was observed in the MLL-AF9 cell lines, with no significant changes in the K562 cells 

(Figure 17C). Consistent with this G1-blockage effect, CDKN1A protein levels were 

induced in HSPC-MA9 cells after 24 hours of exposure to 30 nM of panobinostat (Figure 

17D). When the cell lines were treated with high doses, the proportion of sub-G0 cells 

increased in THP-1 and NOMO-1, and a G1 cell cycle blockage was then observed in the 

K562 cell line (Figure 17C). 
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Figure 17. MLL-AF9 cells are highly sensitive to the HDAC inhibitor panobinostat. (A) 

HSPC-MA9, HSPC-AE, THP-1, and NOMO-1 cells were exposed for 72 hours to serial dilutions of 

panobinostat followed by addition of WST-1. Averaged normalized optical density (OD) values 

are shown compared to vehicle. (B) Cells exposed to 30 nM of panobinostat stained with 

annexin V for 6 and 24 hours were analyzed using flow cytometry. The plot shows the averaged 

fold changes of 3 independent experiments compared to vehicle. (C) PI incorporation of AML 

cell lines treated with vehicle and 10 or 30 nM of panobinostat for 24 hours. (D) Total CDKN1A 

immunoblotting of HSPC-MA9 cells exposed to 30 nM panobinostat for the indicated time 

points. 

P<0.01

P<0.005

n.s.
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1.2. Analysis of MLL-AF9 fusion protein stability  

HDAC inhibitors trigger protein degradation by deacetylation of key residues, a 

mechanism that has been described for AML1-ETO [108]. Thus, we checked whether 

deacetylation and MLL-AF9 degradation could also account for the sensitivity of HSPC-

MA9 cells. Using qChIP with anti-AF9 C-terminal antibodies in THP-1, we found that 

MLL-AF9 was present on HOXA9 and MEIS1 promoters after treatment exposure 

(Figure 17E). These results indicate that MLL-AF9 fusion protein is able to bind its 

target genes after treatment with HDAC and led us to rule out protein degradation as 

the cell death–inducing mechanism. 

1.3.Transcriptional changes induced by panobinostat exposure 

 We performed gene expression analysis to gain insight into the molecular 

consequences and mechanisms underlying the high sensitivity of HSPC-MA9 to 

panobinostat. We evaluated H4 acetylation to confirm the effectiveness of the drug 

and observed a global increase (Figure 18A). Significant upregulation of 90 and 249 

genes (FC>2; FDR<0.05) was observed after 6 and 24 hours, respectively, of treatment 

with panobinostat (Figure 18B, Table S9); 60% of the early-activated genes (52 genes) 

were also activated at 24 hours. As previously reported using HDACi (ie, SAHA and 

depsipeptide) [109], we also observed significant transcriptional downregulation of 26 

and 139 genes after 6 and 24 hours, respectively, with 27% of the early downregulated 

genes (7 genes) also silenced at 24 hours (Figure 18B). 

 We performed gene set enrichment analysis (GSEA) to determine whether our 

previous observations of cell cycle blockage and increased apoptosis in MLL-AF9 cells 

(Figure 17B-C) were mediated by downregulation of gene expression. A significant 

association was observed between upregulated genes and apoptosis-related gene set 

[110] (NES 1.66; FDR<0.01) (Figure 18C), and between downregulated genes and cell 

cycle genes [110] (NES 2.74; FDR<0.0001) (Figure 18D). Additionally, a significant 

association was also detected between upregulated genes and terminal myeloid 

differentiation [111] (NES 1.61; FDR<0.02) (Figure 18E), and THP-1 PMA induced 

monocytic differentiation signatures [112] (NES -2.19; FDR<0.0001) (Figure 18F). We 

performed morphological and flow cytometry analysis of THP-1 and the AML1-ETO–



 

80 

derived cell line SKNO-1 after exposure to panobinostat. Both cell lines have the 

capacity to differentiate in vitro [113, 114]. A monocytic phenotype (Figure 18G) and a 

significant increase in the percentage of CD11b+ cells were observed in THP-1 without 

changes in SKNO-1 cells (Figure 11H).  

Figure 18. HDAC inhibition leads to transcriptional deregulation. (A) H4ac 

immunoblotting of HSPC-MA9 exposed to 30 nM of panobinostat at the indicated time points. 

(B) Total significantly modified genes at the indicated time points on 30 nM panobinostat-

treated HSPC-MA9 cells compared to vehicle (FC>2; FDR<0.05). Three independent HSPC-MA9 

clones were studied in duplicate. (C-F) GSEA plots using genes related to apoptosis (C), cell-

cycle genes (D), granulocyte “fingerprint” signature genes (E), and gene signature of PMA-

induced macrophage differentiation of THP-1 in panobinostat–treated HSPC-MA9 cells (F) (for 

gene sets see Table S10). (G) Wright-Giemsa staining of THP-1 and SKNO-1 cells treated with 10 
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nM of panobinostat for 24 hours. (H) Representative FACS analysis show CD11b+ THP-1 cells 

(top) or CD14+ SKNO-1 cells (bottom) after treatment with 10 nM of panobinostat.  

 As a second approach, we also performed IPA (Ingenuity Systems) of the 

differential expression signatures. After 24 hours of pan-HDAC inhibition with 

panobinostat, we also identified significant changes in functions such as cell cycle, cell 

death, and DNA replication and repair (B-H p value<0.05), with abnormal upregulation 

of genes such as CDKN1A and FOXO1 and repression of E2F1, RAD51, and TERT (Table 

12). Thus, our data show that panobinostat mediates its effects by transcriptional 

deregulation by rapidly inducing aberrant expression of the genes involved in apoptosis 

and myeloid differentiation and by repressing genes implicated in the cell cycle. 

TABLE 12. Functions significantly overrepresented on HSPC-MA9 hyperacetylated genes 

(B-H p-value <0.05) 

Category B-H p value Molecules 

Cell Cycle  1.08E-02-8.67E-02  FOXO1↑, CDKN1A↑, FOXM1↑, CHEK1↓  

DNA Replication, Recombination, 

and Repair  

1.08E-02-8.67E-02  RAD51↓, XRCC3↓, CHEK1↓  

Cell-To-Cell Signaling and 

Interaction  

1.59E-02-1.59E-02  FOXO1↑, E2F1↓  

Cell Death and Survival  5.44E-02-6.57E-02  RAD51↓, CDKN1A, TERT↓, SLC19A1, 

GLI1↑  

 

 

2. Integrative map of MLL-AF9 induced chromatin modifications. 

2.1. ChiP-seq analysis of the histone acethylation pattern 

 As the acetylation profile associated with MLL-AF9-expressing cells that could 

explain their response to panobinostat was unknown, we compared HSPC-MA9 and 

normal HSPC ChIP-seq data using anti-H4 acetylation antibody. The histone acetylation 

regions were located primarily in the promoter regions defined as 1 kb around a 

transcription start site (TSS) and moderately span gene body regions (Figure 19 and 

S1). Among the peaks with a less than 5-kb distance from an annotated TSS, we 



 

82 

identified 3494 genes (including 44 miRNAs) with histone H4 hyperacetylation (20% of 

the total number of peaks) and 475 genes (including 8 miRNAs) with histone H4 

hypoacetylation (17% of the total number of peaks) (FC>1.5, FDR<0.001) (Table S11 

and S12). These observations showed that only expression of MLL-AF9 fusion protein in 

HSPC cells induced a global aberrant acetylation profile across the genome. 

 

Figure 19. Genome wide 

ChIP-seq peak density. ChIP-

seq peaks obtained for MLL, 

AF9 and all the chromatin 

modifications studied on HSPC-

MA9 cells are plotted related to 

their position to a TSS 

(FDR<0.1). A 5kb window to TSS 

is shown 

 

 

2.2. Histone acetylation and HSPC-MA9 transcriptional profile 

 The identified hyperacetylated gene set (n=3494) showed a significant enrichment 

among HSPC-MA9–transcribed genes, while the hypoacetylated gene set (n=475) was 

found to be negatively correlated with HSPC-MA9 active genes compared with HSPC 

controls (GSEA analysis, FDR<0.0001) (Figure 20A-B). Furthermore, quantitative mRNA 

expression of 3 hyperacetylated genes (PBX3, SATB1, and ARID2) showed maintained or 

higher expression in HSPC-MA9 cells than in normal HSPC, whereas hypoacetylated 

genes (ie, GATA2, DNMT3B, and ALDH1A) were significantly silenced (Figure 20C-D). 

Interestingly, the genes found to be hyperacetylated were significantly implicated in 

critical signaling pathways, such as ERK, B-cell receptor, Rho A, p38 MAPK, and mTOR 

(Table S13) (IPA, B-H–corrected p value <0.05), and no significant association with 

canonical pathways was found for the hypoacetylated gene set (data not shown). Taken 
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together, these data suggest involvement of H4 hyperacetylation in the MA9-HSPC a 

aberrant gene expression profile.  

Figure 20. The H4ac profile is involved on the MLL-AF9 aberrant gene expression 

profile GSEA plots (A) hyper-acetylated and (B) hypo-acetylated genes were compared to 

HSPC-MA9 expression profiles. (C-D) qRT-PCR was performed by triplicate on HSPC and HSPC-

MA9 cells (C) Relative mRNA levels on hyper-acetylated genes and (D) hypo-acetylated genes. 

PGK gene was used for normalization. Error bars represent standard error 

 

2.3. ChiP-seq analysis of MLL-AF9 target genes 

In order to define the direct contribution of MLL-AF9 fusion protein to induction of 

aberrant histone acetylation, we performed ChIP-seq using antibodies against AF9 C-

terminus and MLL N-terminus. We found MLL and AF9 bound to 188 and 260 promoter 

regions (5000 nt upstream and 200 nt downstream of a TSS), respectively. By 

combining both, we identified 66 MLL-AF9 bound promoters (FDR<0.01), including 
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well-known MLL-AF9 targets, such as HOXA9 and MEIS1, and other less well-defined 

genes, such as PBX3, JMJD1C, and MEF2C (Table S14). qPCR analysis of ChIP DNA  

(qChIP) enabled us to validate selected targets on independent samples (Figure 21A-B). 

Moreover, the MLL-AF9 target genes identified were significantly associated with genes 

overexpressed in HSPC-MA9 (NES 1.18; FDR< 0.21) and in t(9;11) primary cases [96] 

(NES 1.90; FDR<0.0001) (Figure 22A-B) 

Figure 21. qChIP validation of selected targets. HSPC-MA9, HSPC (CD34+) and CD34- cells 

using antibodies agains (A) MLL N-terminal, (B) AF9 C-terminal, (C) H3K4me3 and (D) 

H3K79me2 on selected regions. The average of two experiments is shown. Error bars represent 

standard error. 
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Figure 22. MLL-AF9 targets are associated with active transcription. GSEA plots of (A-B) 

the identified MA9 target genes on (A) t(9;11) primary samples and (B) HSPC-MA9 expression 

profiles. (C-D) those MA9 target showing all the studied chromatin marks (H3K4me3, 

H3K79me2 and H4ac) on (C) t(9;11) primary samples and (D) HSPC-MA9 expression profiles (for 

gene sets see Table S10). 

2.4. Histone acetylation presence on MLL-AF9 targets 

 More than 70% of the MLL-AF9 bound regions (48 genes) identified showed a 

significant H4ac presence (Table S6, Figure 22). However, when comparing only the 

differentially acetylated regions with the HSPC normal cells, we found H4 

hyperacetylation at 50% of MLL-AF9 target genes (31 genes) and H4 hypoacetylation at 

6% of MLL-AF9 target genes (4 genes) (Figure 23A). These observations were confirmed 

by qChIP (Figure 23B). Furthermore, at HOXA9 and MEIS1 promoters, the H4ac 

increase correlated with an increase in RNA polymerase II binding (Figure 23D-E). These 

results indicate an aberrant acetylation pattern directly associated with fusion protein 

DNA binding 
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Figure 23. MLL-AF9 expression induces an aberrant histone acetylation pattern that 

correlates with transcription. (A) Venn diagrams of the overlapping MA9 target genes 

indentified with H4 hyperacetylated (top) or H4 hypoacetylated (bottom) genes on HSPC-MA9 

cells (FC>1.5; FDR<0.001). (B) qChIP fold enrichment of H4ac in HSPC, HSPC-MA9, and THP-1 

cells in selected regions. GATA2 was hypoacetylated on MA9 cells and thus used as a negative 

control. The average of at least 3 experiments is shown. (C-D) H4ac and RNA Pol II qChIP fold 

enrichment on MA9 target genes. Average of 3 experiments is shown. Error bars represent 

standard error 

2.5. ChiP-seq analysis of the chromatin methylation marks 

 MLL-AF9 fusion protein causes an epigenetic lesion defined by an abnormal 

pattern of H3K4me3 and H3K79m2 on its target genes [21]. We then investigated 

whether the histone H4 acetylation pattern observed on HSPC-MA9 cells correlated 

with H3K4 and H3K79 methylation marks at MLL-AF9 target loci. ChIP-seq analysis was 

performed using H3K4me3 and H3K79me2 antibodies in HSPC controls and HSPC-MA9 

cells. The genome-wide distribution of H3K4me2 was found mainly in promoter 

regions, while H3K79me2 occupied the gene bodies (Figure 22). On MLL-AF9 target 

Figure S5



 

87 

genes, an abnormal amount and distribution of H3K79me2 was also found along the 

gene body, and no severe changes were observed in H3K4me3 (Figure 24 and S2, Table 

S14). These findings were further validated by qChIP (Figure 14C-D). Interestingly, 36 of 

the 66 identified MLL-AF9 target genes presented the three studied chromatin marks 

(Table S14). GSEA revealed a high correlation with overexpressed genes on t(9;11) 

primary cases [96] and HSPC-MA9 (Figure 22C-D). Together, these findings indicate that 

histone H4 acetylation at MLL-AF9 target loci coincides with H3K79me2 and H3K4me3 

chromatin marks.  

Figure 24. Schematic representation of ChIP-seq peaks obtained on HSPC-MA9 (MA9) 

and HSPC (CB) cells with the antibodies shown on the right in MLL-AF9 target genes. Each bar 

represents a peak (FDR<0.01) and is plotted according to its distance from a TSS. The total 

number of peaks and genes for each condition is shown on the left. 

 

3. Integrative analysis of chromatin modifications and expresion signatures induced 

by HDAC inhibition 

 GSEA was performed to determine the transcriptional status of genes upregulated 

after treatment with panobinostat. We observed that the 249 genes upregulated after 

exposure to panobinostat were significantly associated with genes previously shown to 

be silenced in MLL-leukemia patients compared with controls [96] (NES –1.57; 

FDR<0.012) (Figure 25A), on HSPC-MA9 cells compared with normal HSPC (NES –1.2; 

FDR<0.25) (Figure 25B), and on the previously described MLL-AF9 signature of 

leukemic stem cells (NES –1.47; FDR<0.02) [79](Figure S3). These results indicate that 
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transcriptional changes occurring after exposure to panobinostat mainly affect genes 

silenced in the presence of MLL-AF9 fusion protein, including genes associated with the 

stemness properties of MLL-AF9 leukemia. 

 Unexpectedly, MLL-AF9 binding regions showed a significant association with 

panobinostat upregulated genes (NES 1.59; FDR<0.002) (Figure 25C). This finding was 

further confirmed using the MLL-AF9 target gene set identified by Bernt et al. in 

murine AML (NES 1.73; FDR<0.002) [21] (Figure S3). Moreover, a significant correlation 

was identified between the panobinostat-upregulated genes and the set of genes 

downregulated upon withdrawal of MLL-AF9 expression in murine MLL-AF9;NRasG12D 

AML cells [115] (NES –2.56; FDR<0.0001) (Figure S3). Taken together, these data 

suggest that after exposure to panobinostat, MLL-AF9 target genes, which are already 

overexpressed in MLL-AF9 leukemia, are boosted to further increase their expression 

levels. 
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Figure 25 Panobinostat leads to increased expression of MLL-AF9 indirect silenced 

genes and active direct targets. GSEA plots of panobinostat-upregulated genes (FC<2; 

FDR<0.05) compared to (A) primary MLL leukemia and (B) HSPC-MA9 expression profiles. (C) 

MA9 target gene list (n=66) associated with the expression profile of HSPC-MA9 exposed to 30 

nM of panobinostat for 24 hours (FC<2, FDR<0.05). The list of genes defining the core 

enrichment is shown on the right (for gene sets see Table S2).  (D) HSPC-MA9 cells or (E) HSPC-

AE cells cultured with vehicle or 30 nM of panobinostat for 6 and 24 hours were lysed for RNA, 

and qRT-PCR was performed for the indicated genes. The PGK gene was used for normalization. 

Error bars represent standard error. 
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 Finally, the qRT-PCR of MLL-AF9 selected target genes confirmed boosted 

expression in HSPC-MA9 cells after treatment with HDACi (Figure 25D). We also 

observed overexpression, in THP-1 and NOMO-1 cells treated with a concordant 

increase in H4ac and RNA polymerase II binding in HOXA9 and MEIS1 promoters 

(Figure 26A-D). We did not observe such transcriptional changes in HSPC-AE cells or in 

the AML SKNO-1 and PML-RARα–derived NB4 cell lines (Figure 25E and 26A-B). Our 

results show that, on MLL-AF9 cells, panobinostat leads to massive overexpression of 

the oncogenic targets of MLL-AF9, which could cooperate with cell death by inducing 

oncogenic stress 

Figure 26. Upregulation of MLL-AF9 target genes after exposure to panobinostat is 

restricted to MLL-AF9 AML models. (A) In AML cell lines cultured for 24 hours with the 

indicated concentrations of panobinostat, RNA was extracted and quantitative PCR performed 

for expression of (left) HOXA9 and (right) MEIS1. (B) THP-1 cells exposed to 30 nM of 

panobinostat for 24 hours underwent qChIP. HOXA9 and MEIS1 promoters showed increased 

H4ac and RNA polymerase II binding with the treatment. The average of 3 experiments is 

shown. Error bars represent standard errors. 
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DISCUSSION  

 The rapid development of high-throughput technologies over the last decade has 

made a huge contribution on the understanding of AML biology. Initially, expression-

profiling studies revealed the presence of unique expression signatures associated with 

balanced AML chromosomal translocations [96]. Lately, ChIP-chip, ChIP-seq and global 

methyl-DNA analysis (array- or sequencing-based methylation analysis) in AML models 

harboring different chromosomal translocation lead to a global characterization of 

epigenetic modifications, such as DNA methylation and histone tail modifications. 

These epigenetic modifications are nowadays known to play a major role in the AML 

expression signatures associated to the different AML subtypes  [116]. Although, this 

knowledge has contributed to generate important information of AML biology, 

integrative studies that may have a real impact in the AML management are still 

sparse. The understanding of leukemogenesis, which includes among others the 

cellular, genetic and epigenetic mechanisms, is mandatory for the development of 

novel so-needed pharmacological strategies for these patients.  

 We made use of a powerful cellular system developed from human hematopoietic 

stem/progenitor cells (HSPC) stably transduced with either AML1-ETO or MLL-AF9 

cDNAs. The cellular effects, both in vitro and in vivo, induced by these oncoproteins 

expressed on human HSCPc have been described in depth over the years [44, 47, 77, 

95, 117, 118]. These models allowed us to perform an integrative approach to better 

characterize the chromatin modifications associated to leukemia development and 

pharmacological response. 
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PROJECT I: AML1-ETO fusion protein: DNA Binding Map and Chromatin 

modifications  

Identification and characterization of chromatin-associated AML1-ETO target genes  

 AML1-ETO fusion protein has been shown to recruit repressive complexes, altering 

the chromatin landscape of specific target genes. However, genome wide studies of the 

chromatin-modified AML1-ETO target regions have never been assessed.  

 AML1-ETO is known to repress transcription and several studies have been 

performed to better understand the epigenetic mechanisms leading to this silencing. 

We have previously showed that the presence of this fusion protein was not sufficient 

to induce the specific DNA methylation pattern observed in t(8;21) primary patient 

samples [119]. These data prompted us to hypothesize that the contribution of 

chromatin modifications on the specific expression signature observed on this 

leukemia subtype may target the leukemic initiation process.  

 To determine the chromatin modifications associated with AML1-ETO we focused 

on chromatin H4 deacetylation, previously characterized at specific target genes, due 

to the interaction of AML1-ETO wit the NCoR/SMRT/HDAC complex [36]. Furthermore, 

we also investigated the role of histone H3 lysine 9 methylation (H3K9me3) that may 

also contribute to the transcriptional repression. This histone modification is catalyzed 

by the methyltransferase SUV39H1, which interacts with AML1 wt protein through the 

AML1 Runt domain.  This domain is retained in AML1-ETO and therefore has been 

hypothesize to interact also with the oncoprotein [52]. A first example of these 

interactions was the c-FMS locus in which the presence of a repressive histone 

deacetylation and histone H3 lysine 9 trimethylation was associated with AML1-ETO 

binding [51].  

 Using ChIP-chip we identified 1168 AML1-ETO target genes involved in functions 

such as hematopoietic differentiation and self-renewal, the main features reported in 

the HSPC-AE cellular model [44, 47]. Furthermore, we observed that H4 deacetylation 

is the main consequence of AML1-ETO binding and identified a set of 103 genes 

functional targets of the AML1-ETO/HDAC1 complex. The functional importance of this 

chromatin mark was revealed by the involvement of the modified targets on the TGF-β 



 

93 

pathway, which were previously reported to be inhibited by AML1-ETO fusion protein 

[120], and of ERK/MAPK, a key pathway in the self-renewal process of hematopoietic 

stem cells [121]. Among the identified genes we found novel AML1-ETO target genes 

previously described to be involved on the hematopoietic development, which 

repression could be a relevant step in the AML development induced by t(8;21). Such 

as MLLT3, a positive regulator of the erythroid and megakaryocytic cell fate decision 

[122]; RPS19, a ribosomal protein which silencing decreases the proliferative capacity 

of hematopoietic progenitors and leads to a defect on erythroid development [123]; 

SIRT1, downregulated during neutrophil differentiation of acute promyelocytic 

leukemia cells [124] and CTCF which knock-down inhibited differentiation into 

erythroid lineage of the K562 cell line [125]. 

The 264 genes identified as AML1-ETO targets with an increased H3K9me3 were found 

to be significantly involved in the Wnt/b-catenin and stem cell pluripotency pathways. 

Interestingly, we and others have previously identified aberrant DNA methylation of 

Wnt antagonists as being responsible for the activation of the Wnt/b-catenin pathway 

required for the development of leukemic stem cells and for the maintenance of self-

renewal on AML1-ETO patients [119]. Thus our study reveals another level of 

complexity identifying the H3K9me3 modification as an initial event targeting this 

pathway (i.e. TCF3, SOX18, or FZD7) in the HSPC-AE model.  SUV39H1 is the only 

member of the mammalian H3K9 histone methyltransferases known to interact with 

AML1 and with DNA methyltransferase 1 (DNMT1) [126]. However, the interaction of 

SUV39H1 and AML1-ETO remains unclear and we had not found an enrichment of 

SUV39H1 binding among the AML1-ETO studied targets. Therefore further studies are 

needed to determine the mechanism underlying the observed increase of H3K9me3. 

 Although the presence of both H3K9me3 and histone H4 deacetylation has been 

reported associated with AML1-ETO binding at the c-FMS locus [51], we found that the 

simultaneous presence of these chromatin modifications is not a genome wide event, 

indicating that these two events are mainly independent. Furthermore, cross-

comparison between ChIP-chip data and expression signature confirmed a significant 

correlation between gene silencing and the histone modifications in AML1-ETO target 

genes.  
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DNA binding sequence analysis of AML1-ETO targets 

 In our study, only a small proportion of AML1-ETO bound regions (30% of total) 

were predicted to present an AML1 TFBS. AML1 and AML1-ETO were originally 

characterized to recognize in vitro the conserved DNA sequence TGT/cGGT [34], with a 

preferential binding of the fusion protein to DNA sequences containing multiple AML1 

TFBS [35]. Our results support previous findings of multiple transcription factors, apart 

from AML1 wt, as HEB (HeLa E-box binding factor) [41] and the ETS (E-twenty-six) 

factors ERG and FLI1 [43], bound to nearly all AML1-ETO binding sites. The localization 

of AML1-ETO to regions containing other TFBS may indicate that other proteins 

facilitate the binding of the oncoprotein to different regions on the genome. 

Furthermore, previous reports using ChIP-seq analysis of AML1 target genes also 

identified DNA binding that was not associated with canonical AML1 response 

elements [127]. 

 The detailed sequence analysis of AML1-ETO binding sites on HSPC-AE cells 

revealed a non-previously reported significant enrichment of the Sp1 TFBS present in 

over 50% of the target genes. The presence of an Sp1 TFBS was independent of the 

associated silencing chromatin mark. We also found a significant representation of 

PBX5 and E2F1 TFBS on approximately 15% and 30% sites respectively. Sp1 

transcription factor is essential in hematopoietic differentiation [128], and is able to 

interact with the RUNT domain of AML1 and AML1-ETO [129]. These results highlights 

the importance of performing integrated analysis using genome-wide binding profiles, 

in order to obtain a comprehensive view of combinatorial interactions between fusion 

proteins and key regulators as Sp1. 

 It is important to mention that different cellular models (mice vs human, cell lines 

vs cellular models) or the techniques and analytical methods used (ChIP-chip vs ChIP-

seq) may produce different and sometimes contradictory results. During the last years, 

new studies using ChIP-seq reveal that AML1 and AML1-ETO are bound preferentially 

to inter- and intragenic regions and to few promoter regions (1kb around TSS) [43, 

127]. Less than 10% of AML1-ETO ChIP-seq peaks identified on the t(8;21)-derived 

Kasumi-1 and SKNO-1 cell lines were present on promoters, suggesting that AML1-ETO 
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could have a role in regulating enhancers [43]. On the contrary, another ChIP-seq study 

on Kasumi-1 showed that AML1-ETO binding sites distributed within 1.5 kb of TSS, and 

found an AML1 TFBS on 70% of AML1-ETO bound sequences [130]. We have performed 

a ChIP-chip proximal promoter analysis, covering 5.5 kb upstream to 2.5 kb 

downstream of the represented genes (17 000 in total), in a model with abundant 

AML1-ETO protein presence. It is reasonable to think that both the promoter-biased 

study we made and the different cellular background may explain the different 

percentages of binding sites obtained. However, all these studies provided essential 

elements to better understand the complex and heterogeneous DNA binding pattern of 

this fusion protein, and new functional studies are needed to better clarify these 

discrepancies.  

Integrative analysis of AML1-ETO functional targets and transcriptional regulation 

 Regardless of the TFBS present, a significant and reversible silencing of most 

AML1-ETO target genes was confirmed in the AML1-ETO knock out model and primary 

samples. We found repression on genes that present an AML1 (e.g. YES1, AML1) and/or 

an Sp1 TFBS (e.g. CTCF, SIRT1). On the contrary, Sp1 inhibition lead only to the 

activation of those genes with an Sp1 binding site at their promoter (i.e. CTCF and 

SIRT1) but no effect was seen on those presenting an AML1 TFBS (i.e. AML1 and YES1). 

Furthermore, on the primary samples those genes containing an AML1 consensus 

sequence showed a higher significant silencing pattern, suggesting that more effective 

transcriptional repression takes place when the fusion protein directly binds DNA 

through an AML1 TFBS. All together these data supports the interaction between 

AML1-ETO and Sp1, which would lead to Sp1 transitivity inhibition [129], and identify 

this event as a genome wide mechanism involved in t(8;21) leukemia. 

Role of Sp1 transcription factor in AML1-ETO AML 

 The finding of Sp1 transcription factor as an important driver of AML1-ETO binding 

prompted us to study its role in t(8;21) leukemia. Sp1 is a ubiquitous zinc finger that 

binds GC-rich regions in the promoters of a variety of genes involved in hematopoiesis 

(e.g. DNMT1) [131]. It is involved in hematopoietic differentiation, specifically found 

associated with the transcriptional profile of the erythroid lineage [128], and has been 
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described as part of the Sp1/NF-kb/HDAC1/mir-29b network that deregulates KIT gene 

transcription. This network is controlled by a feedback loop that is altered by the 

proteasomal inhibitor Bortezomib, inhibiting KIT gene transactivation [106]. 

 We found that Sp1 protein is essential for AML1-ETO cells, but not for other 

leukemia subtypes as those expressing the MLL-AF9 oncofusion. Removal of Sp1 leads 

to a complete abrogation of HSPC-AE self-renewal, and induces apoptosis and growth 

arrest in SKNO-1 cell line. These result are very interesting taking into account that 

Bortezomib, which targets Sp1 complexes and induced Sp1 protein degradation, have 

shown promising results in vitro using different AML cell lines [106]. Thus, the use of 

Bortezomib in studies including t(8;21) seems a reasonable next step.  

 Furthermore, we observed an increase of the Sp1 protein levels in the presence of 

AML1-ETO, whereas mRNA levels remain unchanged. The same effect has been 

reported for HEB, another transcription factor associated to AML1-ETO DNA binding 

[41]. All together these results may indicate that AML1-ETO expression is associated 

with protein stabilization through post-translational mechanisms. The characterization 

of this novel role of AML1-ETO needs further investigation.  
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PROJECT II. Targeting Histone Acetylation in MLL-AF9 Leukemia 

Efficacy of HDAC inhibition in MLL-AF9 cells 

 Most preclinical studies of HDACi focus on patients with AML harboring fusion 

proteins that aberrantly interact with HDACs (such as AML1-ETO). However, the 

effectiveness of HDACi in other AML contexts, such as rearrangements of MLL, has 

been poorly studied. We identified and characterized histone acetylation as a 

therapeutic target in MLL-AF9 leukemia. By studying the effects of exposure to 

panobinostat in a human model of HSPCs expressing either AML1-ETO or MLL-AF9 

fusion proteins, we showed that HDAC function is essential for the maintenance of 

MLL-AF9 leukemia cells in vitro, since HSPC-MA9 cells were the most sensitive model. 

 The toxic effects of HDACis could be mediated by regulation of non-histone protein 

acetylation leading to protein degradation. In various cellular models, such as those 

based on AML1-ETO–expressing cells, fusion protein degradation has been postulated 

as the mechanism of action [108]. However, the binding of MLL-AF9 oncoprotein to 

HOXA9 and MEIS1 promoters upon exposure to panobinostat enabled us to rule out 

degradation as the mechanism of action in this cellular context. Moreover, the 

acetylation of AML1-ETO protein by the coactivator p300 was reported to be essential 

for its activity [54], but no such mechanism has been reported so far for MLL-AF9 

oncoprotein.  

 Instead, we found that treatment with panobinostat was followed by rapid 

transcriptional activation and histone acetylation even before cell toxicity was 

observed. The changes observed in the expression signature led to deregulation of 

multiple molecular mechanisms, such as apoptosis, cell cycle, and differentiation, 

which can make transformed HSPC-MA9 cells succumb to disease. Furthermore, these 

changes precede increased apoptosis, G1-cell cycle blockage, the increase in CDKN1A 

protein levels, and the differentiation induced. Thus, our data imply that transcriptional 

modifications are responsible—albeit partially—for the cellular response to HDAC 

inhibition, which is highly similar to that observed in other AML subtypes [132]. 

However, we may not rule out that other non-histone protein acetylation are also 

involved on the observed effects. 
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Integrative map of MLL-AF9 induced chromatin modifications 

 Given the high sensitivity of panobinostat and the rapid effects on transcription, 

we hypothesized that the abnormal epigenetic profile induced by the presence of MLL-

AF9 could be involved in the response to panobinostat. ChIP-seq analysis revealed a 

massive hyperacetylation of HSPC-MA9 samples compared to HSPC controls, with 7 

times more genes harboring a histone H4 acetylation mark in HSPC-MA9 cells than 

genes that lost this chromatin mark. This aberrant acetylation pattern was highly 

concordant with the gene expression profile not only in HSPC-MA9 [77], but also in 

primary samples with t(9;11) [96]. Interestingly, we identified significant involvement 

of acetylated genes in signaling pathways known to be aberrantly activated and 

implicated in AML, such as mTOR, ERK, B-cell receptor, Rho A, and p38 MAPK [133]. 

Our data support that expression of MLL-AF9 fusion protein alone induces a global 

aberrant acetylation profile across the genome that correlates with the overexpression 

of essential genes in the maintenance of leukemic cells. 

 In order to better characterize the direct association between MLL-AF9 fusion 

protein and H4 acetylation profile, we mapped the MLL-AF9 DNA binding sites. Among 

the 66 MLL-AF9 target genes, we identified well-known MLL-AF9 targets such as the 

HOXA locus, as well as newly described targets and observed 27% coincidence with the 

previous MLL-AF9 binding map from a murine leukemia model [21]. The differences 

between our findings and those of Bernt et al. may partially reflect divergences 

between human and mouse leukemia models. Interestingly, H4ac was present in more 

than 70% of the identified targets, with H3K4 and H3K79 methylation marks present in 

over 50% of MLL-AF9 targets. We therefore showed, that MLL-AF9 target loci acquire 

both an aberrant histone methylation pattern and an aberrant histone acetylation 

pattern. The finding that the H4ac mark is a recurrent event at MLL-AF9 targets 

supports previous findings showing the contribution of Tip60 histone acetyl transferase 

to maintenance of MLL-AF9 leukemia and expression of HOXA9 [76]. Further 

experiments are needed to clarify the level of interaction between MLL-AF9 and 

histone acetyltransferases. 

Role of chromatin modifications in expression profile changes upon HDACi 
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 In the context of this newly characterized MLL-AF9 chromatin modification, we 

observed that most of the genes over-transcribed after treatment with the HDACi were 

silenced in HSPC-MA9 cells. However, MLL-AF9 target genes, which had already been 

actively transcribed, were also found over-transcribed in HSPC-MA9 cells exposed to 

panobinostat. These results are consistent with the findings of Wang et al., who 

showed increased histone acetylation in already active genes after HDAC inhibition 

[26]. Furthermore, these data suggest an important role for HDACs in transcriptional 

regulation of MLL-AF9. Since HDAC1 has been reported to interact with the MLL wt 

[69], it may be also present in MLL-AF9 targets. Further studies are needed to better 

characterize the role of HDACs in the aberrant transcriptional regulation induced by 

MLL-AF9 fusion protein, given that the aberrant epigenetic profile found on MLL-AF9-

binding sites is significantly associated with changes in gene expression induced by 

panobinostat. 

 We demonstrated that over-expression of MLL-AF9 target genes after treatment 

with panobinostat occurred exclusively in MLL-AF9-expressing cells and not in other 

AML contexts characterized by the repression of its target genes (ie. AML1-ETO or PML-

RARa). As several clinical trials with panobinostat are currently under way, the 

association between clinical response and the presence of specific fusion proteins 

should be evaluated (http://clinicaltrials.gov). 
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CONCLUSIONS 

1. Our study has demonstrated that the presence of AML1-ETO or MLL-AF9 fusion 

proteins on hematopoietic/stem progenitor cells (HSPC) lead to chromatin 

modifications, which via their effect on the global expression profile are important 

initial steps towards transformation of these leukemia subtypes as well as good 

therapeutically targets. 

2. The main conclusions regarding the analysis of AML1-ETO binding sites and induced 

chromatin modifications are: 

 The loss of H4 acetylation and the presence of H3K9me3 induced by the DNA 

binding of AML1-ETO fusion protein are independent epigenetic events. These 

chromatin modifications affect signaling pathways essential for the 

differentiation and self-renewal of hematopoietic progenitors. 

 A significant enrichment for transcriptionally repressed genes in AML1-ETO-

expressing cells compared to the control hematopoietic stem/progenitor cells 

(HSPC) was observed at AML1 target genes characterized by the loss of H4 

acetylation or the presence of H3K9me3 chromatin mark. 

 We revealed the presence of an AML1 transcription factor-binding site (TFBS) 

on a third of the identified target genes. However, a significant enrichment for 

other TFBS, mainly Sp1 TFBS, was observed in more than 50% of AML1-ETO 

target genes. 

 The AML1-ETO fusion protein directly and reversibly silenced target genes 

independently of the TFBS that determines its promoter DNA binding. 

Interestingly, on primary samples the level of transcriptional repression varies 

depending on the TFBS used by AML1-ETO to bind DNA. 

 Sp1 protein is critical for leukemia cells driven by AML1-ETO. We propose Sp1 as 

a good therapeutical candidate to evaluate in this leukemic subtype. 
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3. The main conclusions regarding the analysis of MLL-AF9 binding sites and induced 

chromatin modifications are: 

 MLL-AF9-expressing cells are highly sensitive to the inhibition of HDACs by 

panobinostat. The rapid changes in gene expression induced by panobinostat 

exposure cooperate to produce the observed cell toxicity. 

 The presence of MLL-AF9 oncoprotein induces an aberrant histone acetylation 

pattern, mainly characterize by a global hyperacetylation of histone H4. This 

aberrant acetylation pattern is highly concordant with the gene expression 

profile, not only in HSPC-MA9 cells, but also in primary samples with 

t(9;11)(p22;q23). 

 More than 70% of the MLL-AF9 identified targets present the H4ac chromatin 

mark, which was found to be coincident with H3K4 and H3K79 methylation in 

over 50% of the targets. This novel finding allows a better understanding of the 

complexity of chromatin modifications at the MLL-AF9 target loci. 

 Chromatin modifications induced by MLL-AF9 not only lead to transcriptional 

deregulation but also cooperate in the HDACi response. Panobinostat leads, on 

MLL-AF9 cells, to an increase acetylation and a massive over-expression not 

only of the indirectly silenced genes but also of MLL-AF9 target genes, which 

were already actively being transcribed. This effect, which could cooperate with 

cell death by inducing oncogenic stress, was related to MLL-AF9 presence. 
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CONCLUSIONES 

1. Nuestro estudio ha demostrado que la presencia de las proteínas de fusión AML1-

ETO o MLL-AF9 en el modelo celular de progenitores hematopoyéticos, dan lugar a 

modificaciones de la cromatina esenciales en la transformación leucémica, y por tanto 

excelentes dianas terapéuticas. 

2. Las principales conclusiones del análisis de los sitios de unión de AML1-ETO y las 

modificaciones de la cromatina inducidas son: 

 La desacetilación de la histona H4 y el aumento de la H3K9me3 en los sitios de 

unión al ADN de la proteína de fusión AML1-ETO son eventos epigenéticos 

independientes. Estas modificaciones de la cromatina afectan a vías de 

señalización esenciales en la diferenciación y auto-renovación de los 

progenitores hematopoyéticos. 

 La comparación entre los niveles de expresión en los progenitores 

hematopoyéticos que expresan AML1-ETO y los control muestran que los genes 

diana de la oncoproteína que presentan la pérdida de la acetilación de H4 o la 

presencia de la marca H3K9me3 están significativamente silenciados 

 Un tercio de los genes diana identificados presentan el motivo consenso de 

unión al ADN (TFBS) de AML1. Sin embargo, la presencia de motivos de unión 

de otros factores de transcripción es frecuente, siendo el TFBS de Sp1 el más 

recurrente, observado en más del 50% de los genes diana de AML1-ETO. 

 La proteína de fusión AML-ETO induce la represión directa y reversible de sus 

genes diana, independientemente del TFBS que determine su unión al ADN. Los 

niveles de represión de estos genes varían en función del TFBS usado por AML1-

ETO para su unión y reconocimiento del ADN en muestras primarias.  

 Dado que hemos demostrado mediante estudios funcionales que el factor de 

transcripción Sp1 es crítico para el mantenimiento de las células leucémicas que 

presentan AML1-ETO, proponemos a Sp1 como una diana terapéutica a 

estudiar en este subtipo leucémico. 
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3. La caracterización de los sitios de unión al DNA de MLL-AF9 y de las modificaciones 

de la cromatina inducidas, se derivan las siguientes conclusiones:  

 Las células que expresan MLL-AF9 son muy sensibles a la inhibición de las 

HDACs por panobinostat. Las rápidas modificaciones en la expresión génica 

inducidas por la exposición al panobinostat justifican la toxicidad celular 

observada. 

 La presencia de la oncoproteína MLL-AF9 induce una alteración del patrón de 

acetilación de histonas, caracterizado por una hiperacetilación global de la 

histona H4. La presencia aberrante de esta marca se correlaciona con el patrón 

transcripcional observado, no solo de las HSPC-MA9 sino también en muestras 

primarias portadoras de la t(9;11)(p22;q23).   

 La marca H4ac está presente en más del 70% de los genes diana de MLL-AF9 

identificados, y además es coincidente en más del 50% de ellos con las marcas 

de metilación en H3K4 y H3K79. Por tanto, la unión de MLL-AF9 al ADN induce 

patrones aberrantes tanto de metilación como de acetilación de histonas.  

 Las modificaciones de la cromatina inducidas por MLL-AF9 no solo colaboran en 

la desregulación transcripcional de HSPC-MA9, sino que además cooperan en su 

respuesta a la inhibición de las HDACs. La exposición a panobinostat de las 

células que expresan MLL-AF9 induce un aumento de la acetilación de histonas 

y una sobre-expresión masiva, no solo en genes indirectamente silenciados sino 

también en aquellos genes diana de MLL-AF9, que ya presentaban una 

activación transcripcional. Este efecto, que podría cooperar en la muerte celular 

mediante la inducción de estrés oncogénico, esta directamente relacionado con 

la presencia de MLL-AF9.  
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APPENDIX I 

Supplementary tables 

Table S1, related to Figure 1. AML1- ETO target genes identified by ChIP-chip on the 

Agilent Human proximal promoter 244K array set. (see data on CD-room). 

Table S2a, related to Figure 2. Functions significantly overrepresented on the 1168 

AML1-ETO putative target genes (B-H p-value <0.05). 

Category Function 
Annotation 

B-H pvalue No. of Molecules 

Cellular 
development 

Differentiation of 
cells 

0.0001 139 

Cancer Tumorigenesis 0.001 237 

Cell death Apoptosis of 
eukaryotic cells 

0.0001 153 

Hematological 
System 

Development and 
function 

Maturation 0.03 13 

 

 
Table S2b, related to Figure 2. Pathways significantly overrepresented on the 1168 

AML1-ETO putative target genes (B-H p-value <0.05). 

Canonical 
pathways 

Genes B-H p-Value 
No. of 

Molecules 

Wnt/β-catenin 

AXIN1, AXIN2, CCND1, CDH3, CDKN2A, FZD7, FZD8, 
FZD10, GNAQ, GSK3A, KREMEN1, MAP3K7, MARK2, 
NLK, PPARD, PPP2R1A, PPP2R3B, RARA, SFRP5, SMO, 

SOX7, SOX18, TCF3, TCF7L2 (includes EG:6934), 
WNT4, WNT11, WNT2B, WNT9A, WNT9B 

p<2.87E-5 29 

Human 
embryonic stem 
cell pluripotency 

AXIN1, BMP2, BMP6, FGF4, FGFR1, FZD7, FZD8, 
FZD10, GSK3A, S1PR5, SMAD7, SMO, SPHK1, TCF7, 
UTF1 (includes EG:8433), WNT4, WNT11, WNT2B, 

WNT9A, WNT9B 

p<1.88E-3 20 

TGF-β 
BMP2, HRAS, INHA, INHBB, MAP3K7, MAPK1, MAPK6, 

PIAS4, RUNX2, RUNX3, SMAD7, SMURF1, ZFYVE9 
p<0.03 13 

 
 

Table S3, related to Figure 1. Genes found to be AML1-ETO and HDAC1 co-occupied 

and to present H4 deacetylation on HSPC-AE (see data on CD-room). 
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Table S4a, related to Figure 2. Functions significantly overrepresented on the 103 

AML1-ETO/HDAC1 putative target genes (B-H p-value <0.05). 

Category 
Function 

Annotation 
Molecules 

No. of 
Molecules 

Cancer Tumorigenesis 

ABCC4, AIM1 (includes EG:202), C19ORF2, 
DDX6, EXT1, FGFR1, FOXC2, FZD7, GNA13, 
H2AFX, INSIG1, MAPK1, NFKBIA, PDE3B, 

RHOG, RNF139, RPS19, RRM1, AML1, 
RUNX3, SEC63, SMAD7, TFAP2A, YES1, 

YWHAG 

25 

Cellular development 
Differentiation of 

cells 

CAND1, CTCF, EXT1, FGFR1, GNA13, IGFBP6, 
MAP3K7, MAPK1, NFKBIA, PCSK9, RPS19, 
AML1, SIRT1, SMAD7, TFAP2A, YWHAG 

16 

Hematological system 
development and 

function 

Differentiation of 
erythroid cells 

CTCF, MAPK1, RPS19 3 

Gene Expression Transcription 

C19ORF2, CASK, CTCF, ELK3, FGFR1,FOXC2, 
HOXA7, JMJD1C,MAP3K7, MAPK1,NFKBIA, 

PEBP1, AML1, RUNX3, SIRT1, SMAD7, 
TFAP2A, UBTF 

18 

 
 

 Table S4b, related to Figure 2. Functions significantly over-represented on the 103 

AML1-ETO/HDAC1 putative target genes (B-H p-value <0.05). 

 

Category 
Function 

Annotation 
Molecules 

No. of 
Molecules 

Cancer Tumorigenesis 

ABCC4, AIM1 (includes EG:202), C19ORF2, 
DDX6, EXT1, FGFR1, FOXC2, FZD7, GNA13, 
H2AFX, INSIG1, MAPK1, NFKBIA, PDE3B, 

RHOG, RNF139, RPS19, RRM1, AML1, 
RUNX3, SEC63, SMAD7, TFAP2A, YES1, 

YWHAG 

25 

Cellular development 
Differentiation of 

cells 

CAND1, CTCF, EXT1, FGFR1, GNA13, IGFBP6, 
MAP3K7, MAPK1, NFKBIA, PCSK9, RPS19, 
AML1, SIRT1, SMAD7, TFAP2A, YWHAG 

16 

Hematological system 
development and 

function 

Differentiation of 
erythroid cells 

CTCF, MAPK1, RPS19 3 

Gene Expression Transcription 

C19ORF2, CASK, CTCF, ELK3, FGFR1,FOXC2, 
HOXA7, JMJD1C,MAP3K7, MAPK1,NFKBIA, 

PEBP1, AML1, RUNX3, SIRT1, SMAD7, 
TFAP2A, UBTF 

18 
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Table S5, related to Figure 1. Genes with simultaneous presence of H3K9me3 and 

AML1-ETO occupancy (see data on CD-room). 

Table S6a, related to Figure 2. Functions significantly overrepresented on the 264 

AML1-ETO/H3K9me3 putative target genes.  

Category 
Function 

Annotation 
Molecules 

No. of 
Molecules 

Cancer Tumorigenesis 

ADRA2A, AXIN2, BMP2, BNC1, C19ORF2, 
CDH3, CMTM8, COL18A1, COL6A2, CTNNAL1, 
CXXC5, DDX6, DYRK2, EIF4EBP1, FASN, FGF8, 
FGFR1, FGFR1OP (includes EG:11116), FZD7, 
GALR1, GNAS, GPC1, GRIN1, GRIN2D, HIC1, 
ICOSLG, IDH3A, IGF1R, INHBB, IRS2, LRP3, 
MICALL1, NFIL3, NPTX1, OBSCN (includes 
EG:84033), OCLN, PPARD, PPP1R3D, RAN, 

RGS2, RPS19, RYK, SCUBE2, SIAH1, SLC22A3, 
SMAD7, SQSTM1, SSTR3, STK35, TBC1D9, 
TCF3, TOMM34, TOP2B, UBE3A, VAMP2, 

VANGL1 

56 

Cell death 
Apoptosis of 
eukaryotic cells 

BMP2, COL18A1, CTBP2, DSP, EIF4EBP1, 
FANCA, FASN, FGF8, FGFR1, GNAS, GPX4, 

GRIN1, GSK3A, HOXA7, IGF1R, IRS2, MBTPS1, 
MLLT3, MYBL2, NFIL3, NPTX1, PIAS4, PPARD, 
PPP1R13B, PRKD1, RAI14, SEMA7A, SEPT4, 
SIAH1, SMAD7, SSTR3, TACC3, TCF3, TYMP, 

ZNF274 

35 

Cellular 
development 

Differentiation of 
cells 

AXIN2, BARX1, BMP2, COL18A1, DSP, EN2, 
FGF8, FGFR1, GNAS, ICOSLG, IGF1R, IRS2, 

LAMC1, METRN, MYBL2, NEUROD2, NME2, 
PBX3, PLCG1, PPARD, PRKD1, RGS2, RPS19, 

SDC3, SFXN1, SLC9A3, SMAD7, SMURF1, TCF3, 
WNT9A, ZIC2, ZIC5 

32 

Hematological 
system 

development and 
function 

Differentiation of 
leukocyte cell lines 

BMP2, IGF1R, IRS2, MYBL2 4 

 

 

Table S6b, related to Figure 2. Pathways significantly overrepresented on the 264 

AML1-ETO/H3K9me3 putative target genes (B-H p-value <0.05). 

Canonical 
Pathway 

Genes B-H p Value No. of Molecules 
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Wnt/β-catenin 
AXIN2,  CDH3,  FZD7,  FZD8,  GSK3A,  KREMEN1,  
PPARD,  SOX7,  SOX18,  TCF3,  WNT2B,  WNT9A 

p<0.001 11 

Human 
embryonic 
stem cells 

pluripotency 

BMP2, FGFR1, FZD7, FZD8, GNAS,  GSK3A,  SMAD7,  
WNT2B,  WNT9A 

p<0.01 8 

TGF-β BMP2,  INHBB,  PIAS4,  SMAD7,  SMURF1 p<0.2 5 

 
 

Table S7, related to Figure 4. Unsupervised sequence analysis of AML1-ETO data by 

PSCAN algorithm against the JASPAR database(see data on CD-room). 

Table S8, related to Figure 4. Unsupervised sequence analysis of AML1-ETO data by 

PSCAN algorithm against the TRANSFACT database(see data on CD-room). 

Table S9, related to Figure 11. Differential expressed genes (DEG) on HSPC-MA9 cells 

upon LBH589 treatment for 6 and 24 hr (see data on CD-room). 

Table S10, related to Figure 11 and 15. Gene sets used for GSEA analysis (see data on 

CD-room). 

Table S11, related to Figure 13. Hyper-acetylated regions on HSP-MA9 cells (5kb 

around TSS) (see data on CD-room). 

Table S12, related to Figure 13. Hypo-acetylated regions on HSP-MA9 cells (5kb 

around TSS) (see data on CD-room). 

Table S13, related to Figure 13. Gene lists of the hyper-acetylated genes significant 

associated with signaling pathways (IPA) 

Table S14, related to Figure 14 and 17. MLL-AF9 target genes and associated 

chromatin marks 
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Supplementary Figures 

Figure S1, related to Figure 12. USCS Genome Browser visualization of ChIP-seq 

enrichment peaks of one hyper-acetylated gene (JMJDC1) and one hypo-acetylated 

gene (GATA-2). Absolute values as well as the result of the comparative (HSPC-MA9 vs 

HSPC) is shown. 

Figure S3
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Figure S2, related to Figure 17. USCS Genome Browser visualization of the ChIP-seq 

enrichment peaks obtained with antibodies against MLL N-terminal, AF9 C-terminal, H4K4me3 

and H3K79me2 on HSPC-MA9 and HSPC cells. Three examples of MLL-AF9 identified target 

genes are shown.  
Figure S6
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Figure S3, related to Figure 18. GSEA association of the LBH589 upregulated genes (n=249) 

with (A) MA9 signature of leukemic stem cells (LSC), (B) MA9 targets gene set identified by 

Bernt et.al. in murine AML, and (C) set of genes downregulated upon withdrawal of MLL-AF9 

expression in murine MLL-AF9;NRasG12D AML cells 
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