
UNIVERSIDAD AUTONOMA DE MADRID

ESCUELA POLITECNICA SUPERIOR

TRABAJO FIN DE GRADO

Estrategias Bioinspiradas para la optimización

del aprendizaje de Redes Neuronales Artificiales (RNA)

Manuel Konomi Pilkati

Tutor: Sacha Gómez Moñivas

Mayo 2014

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

I

Resumen:
 A lo largo de las últimas décadas las Redes Neuronales Artificiales (RNAs) han sido un

campo de estudio muy popular en el campo de la computación e inteligencia artificial. Esto es

debido a potencia que tiene como herramientas en gran variedad de campos y disciplinas. Junto

con las RNAs, otro campo en auge es el de los algoritmos evolutivos, algoritmos

extremadamente versátiles y eficaces a la hora de atacar un problema de optimización de forma

automatizada.

 En un intento de optimizar estas redes y avanzar en el desarrollo de estas tecnologías,

hemos creado nuestra versión de RNA en la que las neuronas son independientes y pueden

actuar de forma distinta a las demás. Esto nos es útil a la hora de analizar el comportamiento de

la red al quitarle neuronas después del entrenamiento o inducir anomalías. Utilizando esta red

como base, hemos implementado dos algoritmos de aprendizaje: El clásico Backpropagation y

un algoritmo genético. Usando las características de nuestra red neuronal artificial hemos

realizado un estudio comparativo donde analizamos la tolerancia a la perdida de neuronas en

relación al algoritmo de aprendizaje utilizado.

 Hemos usado la experiencia en el estudio comparativo para aplicar las características de

nuestra red a un caso real en el que clasificamos curvas simuladas de microscopia de sonda de

barrido. A través de una serie de experimentos con la función de fit del algoritmo genético

hemos aumentado la tolerancia a fallos o datos perdidos en la red con lo que demostramos que

el trabajo que hemos realizado tiene aplicaciones directas en la vida real.

Palabras clave:
 Inteligencia artificial, algoritmos evolutivos, algoritmos genéticos, backpropagation,

redes neuronales artificiales, nanotecnología, neuronas, bioinspirado, perceptrón.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

II

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

III

Abstract:
 On the last decades, Artificial Neural Networks (ANNs) have been a widely studied field

of computer science and artificial intelligence. This is due to their power as a tool in a large

number of disciplines. ANNs can classify data, approximate complex functions, make

predictions, recognize patterns and more. There are many types of ANN. In our project we use

a modified version of a Feedforward Neural Network (FFNN) for our experiments. Along with

ANNs, Evolutionary Algorithms (EAs) are a popular study subject. The reason behind this is that

EAs are extremely versatile and effective when it comes to automatic problem optimization.

 In an attempt to optimise this kind of networks and contribute on their further

development we have added to our feedforward neural network the ability to treat neurons

independently. This is useful when it comes to disconnect specific neurons after the training or

to induce any kind of malfunctioning to observe the effects. Using this network as our baseline

we implemented two training techniques: Backpropagation (BP) and the Genetic Algorithm

(GA). Thanks to our network’s characteristics we have conducted a comparative study where we

analyse the network’s tolerance to neuronal failure depending on the training algorithm.

 We use the experience gained in the study to apply the network’s characteristics to a

real problem. We classify simulated Scanning Probe Microscopy (SPM) curves. Through a series

of experiments with GA’s fit function we increased failure and missing data tolerance in the

network. With this we demonstre that the work we have done has real life applications.

Keywords:
 Artificial intelligence, Artificial Neural Networks, Feedforward Neural Networks,

Backpropagation, Genetic algorithm, Evolutionary algorithm, Multilayer perceptron,

nanotechnology, neurons.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

IV

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

V

Table of contents

RESUMEN: .. I

PALABRAS CLAVE: ... I

ABSTRACT: .. III

KEYWORDS: .. III

TABLE OF CONTENTS ... V

TABLE INDEX: .. VII

FIGURES INDEX: ... VIII

EQUATION INDEX: ...X

GLOSSARY: ..XI

1. INTRODUCTION .. 1

1.1 PROJECT OBJECTIVES ... 1

1.2 DOCUMENT STRUCTURE ... 1

2. TECHNOLOGIES AND STATE OF ART. .. 2

2.1 STATE OF ART .. 2

2.1.1 FFNN and learning algorithms ... 2

2.1.2 AI and ANN applied to nanotechnology ... 2

2.2 TECHNOLOGY ... 3

2.2.1 Simple perceptron .. 3

2.2.2 Multilayer Perceptron .. 4

2.2.3 Evolutionary Algorithm (EA) as a learning method .. 6

2.2.4 Back Propagation learning strategy .. 11

3. DESIGN AND DEVELOPMENT ... 14

3.1 DESIGN ... 14

3.1.1 Architecture.. 14

3.2 DEVELOPMENT ... 16

3.2.1 Main module .. 16

3.2.2 Element module ... 16

3.2.3 Input module .. 17

3.2.4 Output module ... 19

3.2.5 Miscellaneous module.. 21

4. TESTS AND RESULTS ... 22

4.1 BACKPROPAGATION AND GENETIC ALGORITHM TRAINING ... 22

4.2 NEURON FAILURE ANALYSIS ... 24

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

VI

4.2.1 Fit function modifications .. 30

4.3 SPM SAMPLES CLASSIFICATION .. 31

4.3.1 Standard classification results ... 32

4.3.2 SPM fit function optimization .. 34

4.3.3 Summary .. 38

5. CONCLUSION.. 39

5.1 FUTURE WORK.. 39

6. REFERENCES ... 40

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

VII

Table index:
TABLE 1: GEOMETRY USED IN THE SIMULATIONS FOR THE DIFFERENT SETS. IT IS ALSO SHOWN THE NUMBER OF CASES THAT

CORRESPOND TO THE DIFFERENT CLASSES IN THE SET. THESE NUMBERS ARE GIVEN IN ABSOLUTE VALUE AND

PERCENTAGE. .. 22

TABLE 2: AVERAGE VALUES OF THE CLASSIFICATION SUCCESS FOR ALL THE CASES UNDER STUDY AND BOTH BP AND EA

TRAINING. RESULTS ARE SHOWN FOR THE CASE WHERE NO MODIFICATIONS ARE GIVEN (ORIGINAL) AND THE CASES

WHERE INPUT AND HIDDEN NEURONS HAVE BEEN TURNED OFF. ... 26

TABLE 3: STANDARD DEVIATION VALUES OF THE CLASSIFICATION SUCCESS FOR ALL THE CASES UNDER STUDY AND BOTH BP AND

EA TRAINING. RESULTS ARE SHOWN FOR THE CASE WHERE NO MODIFICATIONS ARE GIVEN (ORIGINAL) AND THE CASES

WHERE INPUT AND HIDDEN NEURONS HAVE BEEN TURNED OFF. ... 26

TABLE 4: AVERAGE VALUES OF THE CLASSIFICATION SUCCESS FOR ALL THE CASES UNDER STUDY AND BOTH BP AND EA

TRAINING. RESULTS ARE SHOWN FOR THE CASE WHERE NO MODIFICATIONS ARE GIVEN (ORIGINAL) AND THE CASE

WHERE TWO HIDDEN NEURONS HAVE BEEN TURNED OFF. ... 29

TABLE 5: STANDARD DEVIATION VALUES OF THE CLASSIFICATION SUCCESS FOR ALL THE CASES UNDER STUDY AND BOTH BP AND

EA TRAINING. RESULTS ARE SHOWN FOR THE CASE WHERE NO MODIFICATIONS ARE GIVEN (ORIGINAL) AND THE CASE

WHERE TWO HIDDEN NEURONS HAVE BEEN TURNED OFF. ... 30

TABLE 6: GEOMETRY USED IN THE SIMULATIONS FOR THE SCANNING PROBE MICROSCOPY SET. IT IS ALSO SHOWN THE

NUMBER OF CASES THAT CORRESPOND TO THE DIFFERENT CLASSES IN THE SET. THESE NUMBERS ARE GIVEN IN ABSOLUTE

VALUE AND PERCENTAGE. .. 32

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

VIII

Figures index:
FIGURE 1: CONVERGENCE OF NANOTECHNOLOGY AND ARTIFICIAL INTELLIGENCE HAS A BROAD POTENTIAL IMPACT IN MANY

OTHER SCIENTIFIC FIELDS, E.G. BIOENGINEERING, NOVEL INFORMATION SCIENCES BASED ON NEW COMPUTER

ARCHITECTURES AND DATA REPRESENTATIONS, HYBRID TECHNOLOGIES THAT USE BIOLOGICAL ENTITIES,

NANOTECHNOLOGICAL DEVICES AND RESEARCH IN NEUROSCIENCE AND COGNITIVE SYSTEMS, TO NAME A FEW. 3

FIGURE 2: SIMPLE PERCEPTRON’S MECHANISM.. 4

FIGURE 3: AN EXAMPLE OF FFNN WITH FOUR INPUTS, ONE HIDDEN LAYER AND TWO OUTPUTS. 5

FIGURE 4: SCHEME OF THE FFNN AND THE EFFECTS ON THE NETWORK PERFORMANCE WHEN AN INPUT OR HIDDEN LAYER IS

TURNED OFF. GREY ARROWS REPRESENT THE WEIGHTS THAT STOP HAVING ANY INFLUENCE IN THE FINAL RESULT. 6

FIGURE 5: ROULETTE WHEEL METHOD MAPPING THE PROBABILITIES OF THE OLD POPULATION (LEFT) AND SELECTING THE

CANDIDATES FOR THE NEW GENERATION (PROTO-POPULATION ON THE RIGHT SIDE). ... 7

FIGURE 5: CHROMOSOME CROSSING PROCESS. ON THE TOP, ONE POINT CROSSING. ON THE BOTTOM, TWO POINT CROSSING 8

FIGURE 7: CHROMOSOME MUTATION PROCESS. WE SEE HOW THE SIXTH BIT IS MUTATED. ... 8

FIGURE 8: SCHEME AND NOTATION FOR THE FFNN ... 12

FIGURE 9: APPLICATION MODEL. THE MAIN CLASS, ANN IS SHOWN WITH ALL ITS COMPONENTS. 14

FIGURE 10: APPLICATION’S INPUT AND OUTPUT SYSTEM. READ REPRESENTS THE INPUT AND CONFIGURATIONTESTRESULTS

THE OUTPUT.. 15

FIGURE 11: PACKAGE ORGANIZATION AND THEIR DEPENDENCES.THE CLASSES IN EACH PACKAGE ARE EXPLAINED LATER. 16

FIGURE 12: TRAINING EVOLUTION FOR THE CANCER, CARD AND PIMA SETS FOR BOTH GENETIC ALGORITHM AND

BACKPROPAGATION METHODS. THE ERROR IS SHOWN AS THE PERCENTAGE OF CASES THAT ARE NOT CORRECTLY

CLASSIFIED. ... 23

FIGURE 13: CLASSIFICATION SUCCESS (DEFINED AS THE NUMBER OF CASES THAT ARE CORRECTLY CLASSIFIED) FOR CANCER,

CARD AND PIMA SETS. THE FIGURE SHOWS SIMULTANEOUSLY THE VALUES FOR 20 EXECUTIONS FOR BOTH

BACKPROPAGATION TRAINING (FROM 0 TO 19) AND GENETIC ALGORITHM TRAINING (FROM 20 TO 39). IN ALL

FIGURES, WE HAVE A DATA SET FOR EVERY HIDDEN AND INPUT NEURON THAT ARE INCLUDED IN THE FFNN GEOMETRY

SELECTED FOR EVERY SET UNDER STUDY. ... 24

FIGURE 14: CLASSIFICATION SUCCESS (DEFINED AS THE NUMBER OF CASES THAT ARE CORRECTLY CLASSIFIED) FOR HORSE AND

SONAR SETS. THE FIGURE SHOWS SIMULTANEOUSLY THE VALUES FOR 20 EXECUTIONS FOR BOTH BACKPROPAGATION

TRAINING (FROM 0 TO 19) AND GENETIC ALGORITHM TRAINING (FROM 20 TO 39). IN ALL FIGURES, WE HAVE A DATA

SET FOR EVERY HIDDEN AND INPUT NEURON THAT ARE INCLUDED IN THE FFNN GEOMETRY SELECTED FOR EVERY SET

UNDER STUDY. ... 25

FIGURE 15: AVERAGE VALUE AND STANDARD DEVIATION OF THE CLASSIFICATION SUCCESS (%) FOR THE FIVE SETS UNDER

STUDY IN THE CASE OF TURNING OFF ONE HIDDEN OR INPUT NEURON. THE STATISTICAL CALCULATIONS INCLUDE THE 20

DIFFERENT EXECUTIONS AND ALL THE HIDDEN AND INPUT NEURON MODIFICATIONS IN THE COLUMNS THAT REPRESENTS

THE MODIFICATION OF THE NEURONS IN THOSE LAYERS. ... 27

FIGURE 16: CLASSIFICATION SUCCESS (DEFINED AS THE NUMBER OF CASES THAT ARE CORRECTLY CLASSIFIED) FOR CANCER,

CARD AND PIMA SETS. THE FIGURE SHOWS SIMULTANEOUSLY THE VALUES FOR 20 EXECUTIONS FOR BOTH

BACKPROPAGATION TRAINING (FROM 0 TO 19) AND GENETIC ALGORITHM TRAINING (FROM 20 TO 39). IN ALL

FIGURES, WE HAVE A DATA SET FOR EVERY COMBINATION OF TWO HIDDEN NEURONS INCLUDED IN THE FFNN

GEOMETRY SELECTED FOR EVERY SET UNDER STUDY. .. 28

FIGURE 17: CLASSIFICATION SUCCESS (DEFINED AS THE NUMBER OF CASES THAT ARE CORRECTLY CLASSIFIED) FOR HORSE AND

SONAR SETS. THE FIGURE SHOWS SIMULTANEOUSLY THE VALUES FOR 20 EXECUTIONS FOR BOTH BACKPROPAGATION

file:///C:/Users/Manu/Dropbox/Manu%20Konomi%20TFG/TFG_v3.docx%23_Toc388956377
file:///C:/Users/Manu/Dropbox/Manu%20Konomi%20TFG/TFG_v3.docx%23_Toc388956383
file:///C:/Users/Manu/Dropbox/Manu%20Konomi%20TFG/TFG_v3.docx%23_Toc388956383
file:///C:/Users/Manu/Dropbox/Manu%20Konomi%20TFG/TFG_v3.docx%23_Toc388956383
file:///C:/Users/Manu/Dropbox/Manu%20Konomi%20TFG/TFG_v3.docx%23_Toc388956384
file:///C:/Users/Manu/Dropbox/Manu%20Konomi%20TFG/TFG_v3.docx%23_Toc388956384
file:///C:/Users/Manu/Dropbox/Manu%20Konomi%20TFG/TFG_v3.docx%23_Toc388956384
file:///C:/Users/Manu/Dropbox/Manu%20Konomi%20TFG/TFG_v3.docx%23_Toc388956384
file:///C:/Users/Manu/Dropbox/Manu%20Konomi%20TFG/TFG_v3.docx%23_Toc388956384
file:///C:/Users/Manu/Dropbox/Manu%20Konomi%20TFG/TFG_v3.docx%23_Toc388956385
file:///C:/Users/Manu/Dropbox/Manu%20Konomi%20TFG/TFG_v3.docx%23_Toc388956385
file:///C:/Users/Manu/Dropbox/Manu%20Konomi%20TFG/TFG_v3.docx%23_Toc388956385
file:///C:/Users/Manu/Dropbox/Manu%20Konomi%20TFG/TFG_v3.docx%23_Toc388956385
file:///C:/Users/Manu/Dropbox/Manu%20Konomi%20TFG/TFG_v3.docx%23_Toc388956385
file:///C:/Users/Manu/Dropbox/Manu%20Konomi%20TFG/TFG_v3.docx%23_Toc388956386
file:///C:/Users/Manu/Dropbox/Manu%20Konomi%20TFG/TFG_v3.docx%23_Toc388956386
file:///C:/Users/Manu/Dropbox/Manu%20Konomi%20TFG/TFG_v3.docx%23_Toc388956386
file:///C:/Users/Manu/Dropbox/Manu%20Konomi%20TFG/TFG_v3.docx%23_Toc388956386

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

IX

TRAINING (FROM 0 TO 19) AND GENETIC ALGORITHM TRAINING (FROM 20 TO 39). IN ALL FIGURES, WE HAVE A DATA

SET FOR EVERY COMBINATION OF TWO HIDDEN NEURONS INCLUDED IN THE FFNN GEOMETRY SELECTED FOR EVERY SET

UNDER STUDY. ... 29

FIGURE 18: AVERAGE VALUE AND STANDARD DEVIATION OF THE CLASSIFICATION SUCCESS (%) FOR THE FIVE SETS UNDER

STUDY IN THE CASE OF TURNING OFF TWO HIDDEN NEURONS. THE STATISTICAL CALCULATIONS INCLUDE THE 20

DIFFERENT EXECUTIONS AND ALL THE HIDDEN AND INPUT NEURON MODIFICATIONS IN THE COLUMNS THAT REPRESENT

THE MODIFICATION OF THE NEURONS IN THOSE LAYERS. ... 30

FIGURE 19: A SET OF SIMULATED SETS BELONGING TO THE LAMBDA CLASS. THE X AXIS REPRESENT THE DISTANCE BETWEEN

THE TIP AND THE SAMPLE, THE Y AXIS REPRESENTS THE FORCE BETWEEN THEM... 31

FIGURE 20: A SET OF SIMULATED SETS BELONGING TO THE LAMBDA CLASS. THE X AXIS REPRESENT THE DISTANCE BETWEEN

THE TIP AND THE SAMPLE, THE Y AXIS REPRESENTS THE FORCE BETWEEN THEM... 32

FIGURE 21: TRAINING EVOLUTION FOR THE SPM SET FOR THE GENETIC ALGORITHM METHOD. THE ERROR IS SHOWN AS THE

PERCENTAGE OF CASES THAT ARE NOT CORRECTLY CLASSIFIED.. 33

FIGURE 22: THE EFFECT OF AN INPUT NEURON FAILURE IS SHOWN. THE X AXIS CORRESPONDS TO THE OFFLINE INPUT NEURON.

THE Y AXIS REPRESENTS THE NETWORK’S ACCURACY TO CLASSIFY THE SAMPLES. THE BIGGER DE DISTANCE A NEURON

CHARACTERIZES, THE LESSER THE EFFECT ON THE OVERALL OUTPUT. ... 33

FIGURE 23: THE EFFECT OF AN INPUT NEURON FAILURE IS SHOWN. THE X AXIS CORRESPONDS TO THE OFFLINE INPUT NEURON.

THE Y AXIS REPRESENTS THE NETWORK’S ACCURACY TO CLASSIFY THE SAMPLES. THE BIGGER DE DISTANCE A NEURON

CHARACTERIZES, THE LESSER THE EFFECT ON THE OVERALL OUTPUT. ... 34

FIGURE 24: TRAINING EVOLUTION FOR THE SPM SET FOR THE GA AND SUMMATORY FIT. THE ERROR IS SHOWN AS THE

PERCENTAGE OF CASES THAT ARE NOT CORRECTLY CLASSIFIED.. 35

FIGURE 25: THE EFFECT OF AN INPUT NEURON FAILURE IS SHOWN. THE X AXIS CORRESPONDS TO THE OFFLINE INPUT NEURON.

THE Y AXIS REPRESENTS THE NETWORK’S ACCURACY TO CLASSIFY THE SAMPLES. THE BIGGER DE DISTANCE A NEURON

CHARACTERIZES, THE LESSER THE EFFECT ON THE OVERALL OUTPUT. ... 36

FIGURE 26: TRAINING EVOLUTION FOR THE SPM SET FOR THE GA AND AVERAGE FIT. THE ERROR IS SHOWN AS THE

PERCENTAGE OF CASES THAT ARE NOT CORRECTLY CLASSIFIED.. 36

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

X

Equation index:
EQUATION 1: SIMPLE PERCEPTRON’S BEHAVIOUR .. 4

EQUATION 2: SIMPLE PERCEPTRÓN SIMPLIFICATION ... 4

EQUATION 3: MODIFIED SIGMOID FUNCTION ... 6

EQUATION 4: GA’S SELECTION PROBABILITY ... 7

EQUATION 5: REAL CODED GA’S FIT FUNCTION ... 9

EQUATION 6: SIMPLE CROSSOVER MECHANISM ... 10

EQUATION 7: ARITHMETICAL CROSSOVER MECHANISM ... 10

EQUATION 8: BLX-Α CROSSOVER MECHANISM .. 10

EQUATION 9: DISCRETE CROSSOVER MECHANISM .. 10

EQUATION 10: NON UNIFORM MUTATION ... 11

EQUATION 11: NON UNIFORM MUTATION AUXILIAR FUNCTION .. 11

EQUATION 12: OUR IMPLEMENTATION OF THE MUTATION MECHANISM... 11

EQUATION 13: NORMAL SIGMOID FUNCTION.. 12

EQUATION 14: SIGMOID FUNCTION’S DERIVATE .. 12

EQUATION 15: WEIGHT INCREMENT CALCULATION FOR BP TRAINING.. 13

EQUATION 16: ERROR CALCULATION AT THE OUTPUT LAYER FOR BP ... 13

EQUATION 17: ERROR CALCULATION AT THE HIDDEN LAYERS FOR BP ... 13

EQUATION 18: SUMMATORY FIT .. 34

EQUATION 19: AVERAGE FIT FUNCTION ... 35

EQUATION 20: POWER FIT FUNCTION .. 37

EQUATION 21: POWER FIT CRITERIA .. 37

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

XI

Glossary:

AI

AFM

ANN

BP

CANCER

CARD

EA

FFNN

GA

HORSE

LF

MLP

PIMA

SEM

SONAR

SPM

Artificial Intelligence

Atomic Force Microscopy

Artificial Neural Network

Backpropagation Algorithm

Wisconsin Breast Cancer DataBase (a FFNN problem)

Creddit Approval (a FFNN problem)

Evolutionary Algorithm

Feedforward Neural Network, a subtype of ANN

Genetic Algorithm, a subtype of EA

Horse Colic Database (a FFNN problem)

Learning Factor, a parameter used by BP

MultiLayer Perceptron

Pima Indians Diabetes Database (a FFNN problem)

Scanning Electron Microscopy

Sonar, Mine vs. Rocks (a FFNN problem)

Scanning Probe Microscopy

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

1

1. Introduction
In the last two decades, Artificial Neural Networks (ANNs) have been a widely studied

field in computer science. This is due to the power and applications of this networks in many

different fields such as medical diagnosis, data mining, pattern recognition, function

approximation, data classification and more. Now there is an increasing interest on the field of

ANN architecture optimisation and many of the proposals are based on biological mechanisms.

They draw their ideas from the behaviour of real neurons in the brain and how problems are

solved. In the brain, effects such as the loss of a neuron are diminished because the rest of the

neurons tune up their connections to supply the missing neuron. This type of mechanisms are

the ones that are being adapted to the ANNs.

1.1 Project Objectives
-Apply the principles of neuron differentiation where the behaviour of individual

neurons can be altered individually. Neurons can be manipulated in several ways such as turning

them of, altering their ability to learn, diminishing their output and more.

-The use of an evolutionary algorithm (EA) as the training method for our instance of

ANN (i.e. a Feedforward Neural Network). EAs are global search techniques that adopt the

principle of natural biological evolution and/or the social behaviour of species. The use of EAs

as training mechanisms along the neuron differentiation brings the possibility for new ways of

architecture optimisation. It makes possible to reduce the effects of noise in the data used by

the FFNN as well.

-Use the developed mechanisms on real nanotechnology problems. In the context of

data classification for scanning electron microscopy (SEM), the developed techniques are used

to try to increase the network tolerance to anomalies in either the data or the network.

1.2 Document structure
This document is organized in the following sections

 - Introduction: We present the ideas with which we will work through the project and

explain the structure of the document

 - Technologies and State of Art: Here all the knowledge, background, algorithms and

technologies we will use are presented. We also explain our modifications and use of such

technologies.

 - Design and Development: In this section we explain the architecture and organization

of the tool we implemented to make our experiments. We also analyse the classes of which the

tool is composed by.

 - Results: In this section we present the results of our experiments

 - Conclusion: This last section summarizes what we have learnt through the project.

 - References: Bibliography of the document.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

2

2. Technologies and State of Art.
 The different technologies used in this project are described in this section. We start

with the state of art of these technologies. Then we explaining the main common characteristic

of the feedforward network (FFNN). To finish, we introduce two learning techniques used to

train the FFNN. This techniques have several modifications specifically developed for a

comparative analysis.

2.1 State of Art

2.1.1 FFNN and learning algorithms
 Over the last decades, solving classification problems with artificial neural networks such

as Feedforward Neural Networks (FFNN) is considered a promising and useful strategy [1] due

to their high capability to classify real world complex problems. In classification problems, the

network has to be trained (i.e. generate a set of weights that solves the problem properly) with

a set of data to correctly classify their desired outputs. Once trained, the network is ready to

classify new data [2]. Since training means to optimise the weights of the network, we should

decide which optimization algorithms better perform the task. At present, there are a lot of

different algorithms used to train a network. One of the most widely used is the backpropagation

algorithm (BP) [3] [4]. However, regardless of its popularity, BP has several disadvantages. First,

BP converges very slowly when the network’s architecture starts being big and complex. Another

well-known undesired effect is that BP can easily fall into local minima [5] [6]. It is also very

dependent of several parameters. For example, to make BP work properly, learning factor and

momentum parameters must be chosen carefully. It is well-known that, once working, any

slightly change of them can disturb the networks accuracy [7]. Finally, BP strongly depends on

the training set presentation: to achieve the optimal set of weights, BP depends on the sequence

of training cases used (i.e. the same cases in a different order may train the network better or

worse). It was pointed out by Curry and Morgan [8] that gradient techniques might not always

give the best and fastest way to train an ANN.

 In this context, evolutionary algorithms (EAs) appear as a promising answer to the

necessary improvement in the ANN learning process. EAs are global search techniques adopting

the principle of natural biological evolution and/or the social behaviour of species. One of the

main advantages of EAs is their ability to escape from local minima [9] since, unlike BP, they start

with a wide population of solutions. There are already many studies that show how EAs give

accurate and promising results [10] [11]. For example, in [1] [12] we can see comparatives

between BP and genetic algorithm learning (for both real and binary coded), as well as a method

by Daniel Rivero et al. [13] to use GA to optimise the network architecture.

2.1.2 AI and ANN applied to nanotechnology
Modern scientific and technological development increasingly relies on nano, biological

and information sciences. For more than a decade, the thought that the convergence of

nanotechnology, artificial intelligence (AI) and biology will promote another technical and

scientific revolution has been lingering [14]. However, this expected integration of

multidisciplinary research is still in progress. Nanotechnology combines the knowledge of

physics, chemistry and engineering [15], while artificial intelligence has heavily relied on

biological inspiration to develop some of its most effective paradigms such as Neural Networks

or Evolutionary Algorithms (EA) [16]. Bridging the gap between current nanosciences and AI can

boost research in these disciplines and provide a new generation of information and

communication technologies that will have a large impact in our society (see Figure 1).

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

3

 In the last few years, there has been an increasing emphasis on AI techniques applied to

Nanotechnology. For example, EAs have been applied to automatize the process of imaging in

Scanning Probe Microscopy (SPM) with software that is able to tune the precise state of the

probe and the associated control parameters [17]. The image treatment in Atomic Force

Microscopy (AFM) has been also helped by using EA to select image filters with the proper type

and order [18], which significantly improve the quality of the images, helping in the location of

nanoparticles. Artificial Neural Networks (ANNs) have also been employed to determine the

morphology of Carbon Nanotube turfs by quantifying structural properties such as alignment

and curvature [19]. The characterization of different properties of thin films has been solved by

the PI’s group using ANNs, where the determination of electrostatic [20] properties has been

done by using theoretical simulations for the training set.

Figure 1: Convergence of nanotechnology and artificial intelligence has a broad potential impact in many other
scientific fields, e.g. bioengineering, novel information sciences based on new computer architectures and data

representations, hybrid technologies that use biological entities, nanotechnological devices and research in
neuroscience and cognitive systems, to name a few.

 These are a few examples of recent applications where Nanotechnology and AI have

been combined. However, a deeper interaction between both disciplines is needed. Since the

convergence of Nanotechnology and AI is an incipient topic, it is very common to find

publications where standard ANNs or EAs are being used without developing new AI paradigms

or even without using the full potential of the most standard algorithms.

2.2 Technology

2.2.1 Simple perceptron
 First, to start explaining the multilayer perceptron, we should talk about the simple

perceptron.

 A simple perceptron is a classifying algorithm able to generate criteria to split a set of

elements into different subsets or classes. The only condition for this is that the classes have to

be divisible by a linear function. The simple perceptron’s structure can be seen in the following

diagram:

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

4

Figure 2: Simple perceptron’s mechanism

 In Figure 2 we see two inputs, X1 and X2, and two weights, W1 and W2, associated with

them. The perceptron multiplies each input value with its respective weight. Once done with all

inputs, it sums up all the results. This sum acts like the input of the threshold activation function.

The other input, θ, is compared to the sum. If the sum is bigger than θ the output of the

perceptron will be 1. If it is not bigger than θ the output will be 0. This can be seen in the

following equation.

{
𝑖𝑓 ∑ 𝑥𝑖𝑤𝑖 > 𝜃 𝑡ℎ𝑒𝑛 𝑦 = 1

 𝑖𝑓 ∑ 𝑥𝑖𝑤𝑖 ≤ 𝜃 𝑡ℎ𝑒𝑛 𝑦 = 0

Equation 1: Simple perceptron’s behaviour

 When implementing a simple perceptron, the input 𝜃 can be moved to the other side of

the equation as we see in Equation 2. By doing this it can be treated like another input-weight

set where the input will always be 1 and the weight would vary to meet the original value

of 𝜃 .The reason to do this transformation is to simplify the implementation of the simple

perceptron. This way we only need to do a sum and check if the result is either over or under

zero.

{
𝑖𝑓 ∑ 𝑥𝑖𝑤𝑖 − 𝜃 > 0 𝑡ℎ𝑒𝑛 𝑦 = 1

 𝑖𝑓 ∑ 𝑥𝑖𝑤𝑖 − 𝜃 ≤ 0 𝑡ℎ𝑒𝑛 𝑦 = 0

Equation 2: Simple perceptrón simplification

2.2.2 Multilayer Perceptron
 The Multilayer Perceptron (MLP) is a network formed by several neurons. The neuron

originated from the simple perceptron, and therefore has an almost identical behaviour. The

difference between a neuron and a simple perceptron lies in their activation function.

 This is because the most popular training algorithm (BackPropagation, BP) needs a

continuous and derivable activation function. Usually, the sigmoid function is appointed to this

task.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

5

 Neurons in the MLP are organized in layers as we can see in Figure 3. Each layer

generates the input for the next layer. This diagram represents the structure of a MLP where

each circle is a neuron:

Figure 3: An example of FFNN with four inputs, one hidden layer and two outputs.

This type of artificial neural network (FFNN) solves the simple perceptron’s biggest limitation.

MLP can classify sets that are not linearly divisible.

As we said before, MLP is arranged in layers. There are three types of them.

-Input layer: Composed by the neurons that receives the system’s input.

-Output layer: The last layer, whose outputs represent the system’s output.

-Hidden layer/s: all the layers in-between the input and output. The calculations of the network

are mostly done here.

2.2.2.1 Characteristics of the network

 In this project, we use a particular case of multilayer Feedforward Neural Networks

(FFNN). From the most widely used FFNN, we have added context-independent functionality to

neurons. Now, every neuron can be individually configured to modify its behaviour in the

following ways:

 -Neuron Shutdown. A specific neuron can be shut down (i.e. turning its output to 0. The

effects of turning off input or hidden neurons are shown in Figure 4. As we can see, a certain

number of weights stop working (or being useless since they end in a non-working neuron).

Instead of turning off a neuron completely, we can also reduce its performance by a certain

percentage, emulating a partial wrong behaviour.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

6

Figure 4: Scheme of the FFNN and the effects on the network performance when an input or hidden layer is turned off.
Grey arrows represent the weights that stop having any influence in the final result.

 -Possibility to use a different activation function. For the present study, we have just

implemented the sigmoid function.

 -Sigmoid function modification. When setting up a neuron with a sigmoid function, we

can modify its sigmoid function by changing the parameters α, β and γ, as we show in the

following equation:

𝑠(𝑥) =
𝛽

𝛾 + 𝑒−𝑥𝛼

Equation 3: Modified Sigmoid function

 -Managing the learning factor. Our FFNN allows the user to change the learning factor

of a particular neuron. The learning factor had an effect on the speed of the learning process.

This gives us the chance to make a neuron learn faster or slower than the others.

2.2.3 Evolutionary Algorithm (EA) as a learning method
 Evolutionary Algorithms (EAs) are essentially search functions, i.e. EAs search for the

fittest solution of a problem [21]. To decide whether a solution is good or not, the algorithm

bases its decision on a pre-set criteria, where the best solution will be the one that better

satisfies these criteria. The searching strategy is inspired by the evolutionary process at cellular

level. First, EAs generate a set of random solutions we call Chromosomes. Then, they make the

chromosomes evolve by means of crossing, mutating and selecting the finest next chromosome

generations, created from the previous ones.

 In the general EA algorithm strategy that is the origin of our method [22], a chromosome

is represented by an array of bits. The process to obtain a solution is divided into the following

stages:

1- Generation of a random set of chromosomes (Initialization). In this phase the initial

set of chromosomes is created. The randomness is needed in order to have the wider variety of

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

7

elements, which is needed to avoid local minimum and premature wrong convergence of the

algorithm

2- Evaluation of the population. In this stage, once we have a set of individuals, all of them

are evaluated according to the previously selected criteria. This evaluation is done by the fit

function. Indeed, depending on the problem we are trying to solve, this function can be very

different. Since the fit function drives the search of the algorithm, it is extremely important.

3- Selection of the finest. Once the population has been evaluated, the best ones are

selected to create a new generation of chromosomes that will inherit their characteristics. There

are several selection methods, but all of them mainly follow the same principle: better solutions

have better probabilities of being selected. First, a selection probability is calculated with the

following equation

p(Ci) =
f(Ci)

∑ f(Cj)
N
j=1

Equation 4: GA’s selection probability

where P is the selection probability of the chromosome Ci and the function f(Ci) is the fit function

of a chromosome. When all chromosomes have their respective P(Ci) calculated, a selection

procedure called stochastic sampling with replacement [22] is used. All chromosomes are

mapped on a roulette wheel (see Figure 5). The roulette is proportionally divided between the

chromosomes according to their probabilities. By spinning the roulette, the selected

chromosomes are copied for the new population. Because of this mechanism, chromosomes

with high probability might be copied several times.

Figure 5: Roulette wheel method mapping the probabilities of the old population (left) and selecting the candidates
for the new generation (proto-population on the right side).

 Once we have selected enough chromosomes to have a new population, the individuals with

the best fit will be repeated in the new population, taking the place of the worst ones.

4- Individual Crossing. Crossing emulates genetic recombination that takes place in

meiotic cell division. In that process, two homologous chromosomes exchange pieces of genetic

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

8

material, turning themselves into different chromosomes. The crossing process is done by

selecting an initial crossing point along the chromosome and swapping the following bits with

their counterpart in the second one. Selecting an initial and final crossing point and swapping

only the bits between them is another way of individual crossing. We can see a visual example

in the following diagram.

5- Individual Mutation. At this point, some randomly chosen chromosomes are mutated

by changing the value of a bit from 1 to 0 or vice versa. The reason of this step is exploring new

possible solutions that were impossible to reach with no more than the information from the

parents. Like in natural selection, mutation can be beneficial for the chromosome or harmful (it

is likely to be harmful). For this reason, only a few chromosomes are mutated. An example of

mutation can be seen in the following diagram.

Figure 7: Chromosome mutation process. We see how the sixth bit is mutated.

6- Repetition. At this point, our new population is ready to go back to phase 2. This loop

will continue until we get a solution good enough to solve the problem, or a certain number of

generations are reached. Both conditions must be checked between phases 2 and 3.

Now, we will show how we have adapted this general algorithm for the specific porpoises of this

article. First, we need to represent the solution in a way we can apply mutation and crossing in

the way we have shown before. In other words, we need to represent the solution of the

problem as a chromosome. To use EA in the training of FFNN, our chromosome will be an array

Figure 6: Chromosome crossing process. On the top, one point crossing. On the bottom, two
point crossing

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

9

of weights, which will correspond to a set of real numbers. Since the original EA was designed

with arrays of bits, several modifications are needed to make it work with real numbers.

If we want to keep the classic EA unmodified, we could think as a first approximation a way to

transform the real numbers to a bit based representation (binary coded EA). Although this solves

the problem initially, it also limits the accuracy of the algorithm because we transform a

continuous representation to a discrete one. Since this first approximation lacks the accuracy,

we have chosen to adapt the algorithm to a Real Coded Genetic Algorithms (RCGAs) [23] [24] in

the following way:

1- Chromosome representation. As we have already stated, chromosomes will become arrays

of real numbers instead bits. For this reason, we have to change the full structure of the

algorithm.

2- Evaluation of the population. The original EA does not specify any evaluation function (fit

function). The fit function is problem-dependant and different in general for every problem. In

our solution the fittest chromosomes are the ones that have the lower value in the fit function.

For the training of FFNNs, the value is calculated by adding all the least-square errors between

the output of the system and the desired output the way we see in the following formula.

𝑓𝑖𝑡(𝑥) = 1 −
∑ ∑ (𝑛𝑒𝑡(𝑖, 𝑥) − 𝑡𝑖)2

𝑖𝑗

𝐼 · 𝐽

Equation 5: Real coded GA’s Fit function

 Where x is an individual; i represents a training case; net(i, x) represents the output of

the FFNN for the case i and the set of weights of the individual x; t is the desired output for the

case i; j is one of the output neurons; I is the number of cases; and J is the number of output

neurons. Once the fit of the population is calculated, it is normalised and used for the selection.

3- Selection of the finest. Because the evaluation always gives a real value (both in our version

of EA and the original) there is no need to change the selection mechanism. It works as

previously explained.

4- Crossing. This phase of the algorithm is heavily affected by the change of individual

representation. If we made it the way it is usually done in the original algorithm, the resulting

individuals would be too different from the originals [25] thus making convergence difficult.

There are several ways to implement the crossover operator in a RCGA. Here we list some of

them.

Let us assume that 𝐶1 = (𝑐1
1 . . . 𝑐𝑛

1) and 𝐶2 = (𝑐1
2 . . . 𝑐𝑛

2) are two chromosomes that are going

to be crossed.

-Flat crossover [26]

 In this crossover method, the offspring is calculated by simply choosing a random

number in the interval [𝑐𝑖
1, 𝑐𝑖

2].

-Simple crossover [27] [28]

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

10

 This crossover works exactly like the one point crossover seen before, choosing point i

in the array of values and swapping the following numbers. We can see this in the next equation:

{
𝑂1 = (𝑐1

1, 𝑐2
1, … , 𝑐𝑖

1, 𝑐𝑖+1
2 , … , 𝑐𝑛

2)

𝑂2 = (𝑐1
2, 𝑐2

2, … , 𝑐𝑖
2, 𝑐𝑖+1

1 , … , 𝑐𝑛
1)

Equation 6: Simple crossover mechanism

-Arithmetical crossover [28]

 This mechanism generates two offsprings according to the next equations:

{
𝑜𝑖

1 = 𝛼𝑐𝑖
1 + (1 − 𝛼)𝑐𝑖

2

𝑜𝑖
2 = 𝛼𝑐𝑖

2 + (1 − 𝛼)𝑐𝑖
1

Equation 7: Arithmetical crossover mechanism

 The parameter α can be either constant or vary along the training.

-BLX-α crossover [29]

 In general terms, this crossover method is an evolution of the flat crossover where. The

value oi of the offspring O is selected from the following interval.

[𝑐𝑖_𝑚𝑖𝑛 − 𝐼 · 𝛼, 𝑐𝑖_𝑚𝑎𝑥 + 𝐼 · 𝛼]

Equation 8: BLX-α crossover mechanism

 In Equation 8 , considering 𝐼 = 𝑐𝑖_𝑚𝑎𝑥 − 𝑐𝑖_𝑚𝑖𝑛, the parameter α controls the size of the

interval. With α=0 the interval would be the same that the one in flat crossover.

-Discrete crossover [30]

 Hi is a randomly (uniformly) chosen value from the set [c1, c2].

 We use a variation of the arithmetical crossover as shown in Equation 9:

{
 𝐼1

′ = ∝· 𝑊1 + (1 − ∝) · 𝑊2

 𝐼2
′ = 𝛽 · 𝑊1 + (1 − 𝛽) · 𝑊2

Equation 9: Discrete crossover mechanism

 Where I1 and I2, with their respective arrays of weights W1 and W2, are crossed to form

I’1 and I’2 using two random numbers α and β that exist in the range [0-1]. That’s how both new

individuals will have a part of their progenitors.

5- Mutation. This step has to be modified as well. In the original EA, mutation simply switched

a bit to its other possible state, 1 or 0. This cannot be done with real numbers, there is no other

state. Like crossover, there are several mutation operators proposed for the RCGA. We will

explain some of them. Given the chromosome 𝐶 = (𝑐1 , … , 𝑐𝑖 , … , 𝑐𝑛) , a gene 𝑐𝑖 ∈ [𝑎𝑖 , 𝑏𝑖] to be

mutated and 𝑐𝑖
′ the mutated gene.

-Random mutation [28]

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

11

 𝑐𝑖
′ is randomly selected from the interval [𝑎𝑖, 𝑏𝑖].

-Non-uniform mutation [28]

 This mutation mechanism adds or subtracts a value to the gene 𝑐𝑖. As the number of

generations increase, the value added or subtracted is smaller.

𝑐𝑖
′ = {

𝑐𝑖 + 𝑓(𝑡, 𝑏𝑖 − 𝑐𝑖) 𝑖𝑓 𝜏 = 0

𝑐𝑖 − 𝑓(𝑡, 𝑐𝑖 − 𝑎𝑖) 𝑖𝑓 𝜏 = 1

Equation 10: Non uniform mutation

𝑓(𝑡, 𝑦) = 𝑦(1 − 𝑟
(1−

𝑡
𝑔𝑚𝑎𝑥

)
𝑏

)

Equation 11: Non uniform mutation auxiliar function

 Where τ is a random binary number to decide upon subtracting or adding; gmax is the

maximum number of generations; r is a random real number in [0, 1] and b a parameter given

by the user. By modifying the value of b the number of generations can more or less important.

Equation 11 returns a value inside [0, y]. The pro of this method is that in an early stage of the

algorithm the exploration of the solution space is better.

 Following the philosophy of mutation, what we have done is to add or subtract a small

number to the weight chosen for mutation. This increment is chosen randomly inside a range

defined by a constant [25].

∆𝑥 = 𝛼 · 𝑐𝑡𝑒

Equation 12: Our implementation of the mutation mechanism

 Being α a random number between -1 and 1, this will make the selected weight x to vary

from x-cte to x+cte.

2.2.4 Back Propagation learning strategy

 BackPropagation (BP) is one of the most popular algorithms to train and make the FFNN

learn [7]. It can be divided into two phases. In the first one (i.e. forward phase) BP calculates the

output of the FFNN given a set of inputs. Note that this is supervised learning. That means we

know the desired output for the cases we are feeding to the FFNN.

 In the second phase (i.e. backwards phase) the desired output is used to calculate the

error on the output layer’s prediction. This output layer error is propagated backwards (thus the

name BackPropagation) to calculate the error of every neuron in the FFNN. Once all errors are

calculated, the values of the network’s weights are updated.

 As we said in 2.2.2, BackPropagation needs a derivable function to be the transfer

function of the neuron. Such function is usually the sigmoid function. Therefor is good to know

how the sigmoid function and its derivate look, for the derivate is used in the formulas in the

next section.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

12

In out method, we have used a sigmoid function S as the transfer function of the network:

𝑠(𝑥) =
1

1 + 𝑒−𝑥

Equation 13: Normal sigmoid function

where x is the sum of the weight-input multiplications that enter in the neuron. This function is

commonly used because its derivative can be expressed in terms of itself:

𝑑𝑠(𝑥)

𝑑𝑥
= 𝑠(𝑥)(1 − 𝑠(𝑥))

Equation 14: Sigmoid function’s derivate

 To make the neurons work with a specific and unique behaviour, the sigmoid function

has been modified to match the one seen in Equation 3. The algorithm is able to change the

behaviour of individual units both in the training and validation phases. The momentum factor

[7] can also be switched off at any time in both phases.

2.2.4.1 Weight update and error calculation in BP

 In this section we explain in detailed way how error in BP is calculated and how the

FFNN’s weights are updated to reduce it. The following figure will help us to name the

components of an FFNN and to explain the equations involved in the process.

Figure 8: Scheme and notation for the FFNN

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

13

 According to the diagram’s notation, the formula to calculate the increment of the

weights looks like this:

∆𝑤𝑗𝑖
𝑙 = 𝜂𝛿𝑗

𝑙𝑥𝑖
𝑙−1

Equation 15: Weight increment calculation for BP training

 Where η is the learning factor, who controls how much the system learns with every

case (e.g. a low learning factor makes the system learn slowly). 𝛿𝑗
𝑙 represents the calculated

error for the neuron J in the layer L. 𝑥𝑖
𝑙−1 is the output of the neuron I in the layer L-1.

Summarising, in order to calculate the increment of a weight, the calculated error of the target

neuron is multiplied by source neuron’s output and the learning factor.

 The calculation of the error is made with gradient descent method. That is the reason

why the transfer function has to be derivable. This is how the output layer’s error is calculated

using the sigmoid as the transfer function [7].

𝛿𝑗
𝐿 = (𝑥𝑗

𝐿 − 𝑦𝑗)𝑥𝑗
𝐿(1 − 𝑥𝑗

𝐿)

Equation 16: Error calculation at the output layer for BP

 Where L is the output layer and j is one of the output neurons. Y represents the desired

output and x the actual output, generated by the system. Note that if we delete the bracket

containing x-y, we would get the sigmoid’s derivate.

 When the output layer error is calculated, it is used to calculate the error in following

layers with Equation 17:

𝛿𝑗
𝑙 = 𝑥𝑗

𝑙(1 − 𝑥𝑗
𝑙)(∑ 𝛿𝑘

𝑙+1𝑤𝑘𝑗
𝑙+1)

𝑟

𝑘=1

Equation 17: Error calculation at the hidden layers for BP

 In this equation we are calculating the error in the neuron j of the layer l. The first part

of the equation represents the sigmoid’s derivate. In the second part we sum the errors of the

neurons from the next layer multiplied by their respective weight.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

14

3. Design and Development
 In this section we introduce the data representation defined for the FFNN. Also the low

and high level architecture will be discussed. We will first see the design of the application and

the design choices related to it. Then on the development section, we see all the modules in a

detailed way.

3.1 Design
 The requisites for our application are to implement a FFNN with the characteristics listed

in 2.2.2.1. The language we chose for this application is Java. The reasons for this are that we do

not have to manage memory in an active way, the virtual machine takes care of that. Other

reason is that Java simplifies the implementation via all of its resources.

 It is true that Java has some drawbacks, being efficiency the biggest one, but that is not

a problem in our project. All those reasons make Java the perfect language for the

implementation.

3.1.1 Architecture
 Here we will take a look at the applications architecture. In Figure 9, Figure 10 and Figure

11 we can see the design of the FFNN model (the core functionalities), the input/output system

and the package structure with its dependencies respectively. This application is easy to

implement with an object oriented language like Java. As we see in Figure 9 the classes are ANN

(i.e. the neural network) that is composed mainly of Neurons. This is analogue to how the brain

works in real life. The brain is the ANN and it is composed by neurones. The other important

class here is Input. It represents the connections between the neurons.

Figure 9: Application model. The main class, ANN is shown with all its components.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

15

Figure 10: Application’s Input and Output system. Read represents the input and ConfigurationTestResults the
output.

 In Figure 10 we can take a look to the input/output system of the application. Read and

ConfigurationTestResults are the input and the output respectively. ExecutionResults is a class

used to gather all the information generated during the training of the network with any of the

algorithms.

The tool is divided into the following five modules:

- Main module

- Elements module

- Input module

- Output module

- Misc. Module

 The main module is connected to the other four in the way we can see in Figure 11

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

16

Figure 11: Package organization and their dependences.The classes in each package are explained later.

3.2 Development
 In this section we take a detailed look at the modules that conform the application, the

classes within them and their functionalities.

3.2.1 Main module
 This module is composed exclusively of the FFNN class. This is the most important class

of the system. It manages all the neurons of the network and its connections.

The functionalities implemented in this module are the following:

- Reading network specifications from a file

- Building the components of the FFNN and connecting them

- Training the network with the BackPropagation(BP) algorithm

- Training the network with the Genetic Algorithm (GA)

- Changing the input values of the network

- Calculating the output of the network for a given set of input values.

- Activating/deactivating single neurons given a neuron index

- Modifying the weights of all the connections of the network.

- Evaluating a set of problem cases and compare the output with the expected result

- Saving data related to the system evolution/learning

- Adding noise to problem cases before evaluation if needed.

3.2.2 Element module
 This module contains the single components that together form a FFNN. These

components are the class Neuron that implements a Neuron, the class Input that implements a

connection to or from a neuron, and ExtInput that is used as the input of the network.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

17

3.2.2.1 Neuron class

 This class’s main functionality is to calculate the output of the neuron given a set values

in the Inputs connected to it. The class has several minor functionalities in order to make BP

easier to implement. These functionalities are: saving the last output of every neuron, their last

error, applying the learning factor and applying the momentum factor. There are two

important fields in this class, the downstream and upstream arrays. These arrays hold the

connections of the neuron to the next and previous layer respectively. The second one although

not being essential for the system does simplify it a lot.

 Finally, the neuron has several configurable parameters. These parameters are the

transfer function, the learning factor, the momentum factor, activation state and output

strength.

3.2.2.2 Input class

 As we said before, this class represents a connection to or from a neuron. This class

connects neurons with external inputs (ExtInput) as well. Its main fields are a reference to the

neuron or external input it comes from and a weight.

 Its main functionality is to get the value of the external input or the output of the neuron

it is connected to. Then it returns this value to whatever object that requested it along with the

weight.

 Its minor functionality is to propagate the error when using BP as the learning algorithm

and to update its own weight.

3.2.2.3 ExtInput class

 As we have mentioned several times before, this class represents the input to the FFNN.

There will be as many external input classes as parameters in the problem cases. Each external

input will keep the value of its respective parameter.

3.2.3 Input module
 This module has only two classes and they are responsible for all the reading operations

in the system. It performs two tasks: reading the problem case set from a file and reading the

configuration of the network neurons, if any.

3.2.3.1 Read class

 This is the only class that interacts with external files. Its principal functions are read,

read2, readAndNormalise and readConfig. The first two functions work almost identically so we

will explain just the first.

-Read function:

 It reads a set of problem cases in a specific format. Both read and read2 cover the same

functionality. The difference is the file format that they read. In both cases the function reads al

cases in Case objects. An array of this objects is returned for the FFNN to use.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

18

-ReadAndNormalise function:

 This function is very similar to the read functions. The only difference is that after the

reading, the attributes of every case are normalised depending on the data read. This function

is format-dependet as well. Therefor if the file format is changed, a new function has to be made.

-ReadConfig function:

 This function reads the specific configurations for individual neurons. By doing so it is

possible to modify one or more aspects of a particular neuron’s behaviour. Note that it is not

necessary to manually configure all neurons (they have a default configuration) or configure all

neuron parameters, just the desired ones.

 The next example shows the different ways to configure a neuron:

ID=6 ACT=1 LF=0.1 ALFA=3

ID=8 B=5 ACT=0

 The configurations are stored in NeuronConfig objects that are later used by the FFNN to

generate neurons. The function generates as many NeuronConfig as required by the chosen

architecture (i.e. the number of neurons in the network), all of them configured by default. The

NeuronConfig objects will be later modified by the readConfig function if necessary.

3.2.3.1.1 Neuron setup options.

The neuron configuration is written in the following format:

- On each line a neuron is configured.

- On the beginning of the line, the identification of the modified neuron is noted, writing the tag

"ID" and the value of the id separated by a space. It is ended with a semicolon.

- Following the ID, the rest of parameters are specified in a similar fashion. Each parameter is

separated from the next with a semicolon. The tags which are used to identify each parameter

are:

- “LF” for the learning factor

- “FAIL” for the failure rate of the neuron

- “FTYPE” for the failure configuration (failure in learning phase, normal use, both or

none of them)

- “ACT” for the activation status (i.e. the neuron either gives or not an output)

- “ALFA”, “B” y “G” for alfa, beta and gamma respectively for the parameters seen in

Equation 3

3.2.3.2 Case class

 This class represents a single case of a problem set. This class is an interface between

the external files and the FFNN. Its main functionality is to store the value of the inputs to the

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

19

FFNN and the expected outputs for the particular case. This class can be used for training if it

stores expected results or for real classification if it doesn’t.

3.2.4 Output module
 This module has all the necessary methods to gather all the data generated by the FFNN

and save said data properly. Its objective is to make possible to launch a batch of tests without

supervision and guarantee that all data will be available for analysis.

It contains three classes. ConfigurationTestResults, ExecutionResults, noiseResult,

TrainAndTestError y NeuronValues.

3.2.4.1 ExecutionResults Class

 This class stores the information generated in a single execution (i.e. a complete training

with one of the algorithms and a verification of the results). The data stored is the following:

- Percentage of classification success after training.

- Percentage of classification success of the FFNN when a single neuron is offline

(this is done with every neuron).

- Percentage of classification success of the FFNN when a combination of two

hidden neurons are offline

- The NeuronValues of each offline neuron and each combination of neurons.

- The evolution of the error of the network during the training with one of the

algorithms.

- The execution ID.

- The set of weights of the FFNN after the training process.

- Percentage of classification success when different levels of noise are applied to

the study cases.

- A set with the study cases that the FFNN was incapable of classifying.

 Other functionality this class has is to write all the stored data into files given a root

path. The created files have an “.xlsx” extension (i.e. excel files) and four files are created:

- Main result, with the nomenclature XXY.xlsx where XX can be “AG”, “BP” or “APP”

and Y is the execution ID. It contains the classification success, the weights of the

connections and the NeuronValues for every offline neuron

- Evolution results, with the naming XXY_evolution.xlsx. It contains the error

percentage obtained when classifying the training set and the test set in every

iteration of the training process

- The noise tests file, with the naming XXY_noise_results.xlsx. Contains the

classifying success of the network when a given noise level is applied to the study

cases.

- The failure file. Its naming is XXY_failure_cases.xlsx. Contains the cases that were

wrongly classified.

3.2.4.2 ConfigurationTestResults class

 The purpose of this class is to store the variables and attributes of a batch of executions

of the FFNN with either learning algorithm. It later writes the stored information.

The stored information is:

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

20

- All the setup parameters for the network (Learning factor, number of learning

cycles, mutation and crossover probability…)

- The individual tests (ExecutionResults) of each learning algorithm. (it can be more

than one test per algorithm)

- A set with all the results from all the executions of the performance with a neuron

offline.

- A set with all the results from all the executions of the performance with a

combination of neurons offline.

- The mean, max and min classification success of each learning method.

- The root folder where all the files will be created.

- The architecture of the network for all the tests.

 Once all tests are over and the data gathering has finished, the class creates the root

folder if it didn’t exist before. Then it creates a text file where network setup, architecture and

mean/max/min performance of the algorithms are written. After that, two other files are

created. One showing the network performance through the different executions with the

different neurons offline. Similarly to the first, the second contains the performance of the

network with different combinations of neurons are offline. To finish, the class creates a folder

for every execution for them to write their data on.

3.2.4.3 TrainingAndTestError class

 This class stores de value of the network performance in a given iteration of its learning

process. It contains the performance with the training data set and the validation (i.e. test) data

set.

3.2.4.4 NoiseResult class

 The only task of this class is to store the performance of the FFNN when random noise

is applied to the test cases. It also saves the noise level used on the cases.

3.2.4.5 NeuronValues class

 This class contains a series of values concerning an offline neuron. As said before, after

the network training, the system shuts down all the neurons one at a time to check the

performance with that neuron lost.

The values saved in this class are:

- The ID of the offline neuron.

- The performance of the network with the offline neuron.

- The average of the input connections (i.e. upstream) weights.

- The average of the output connections (i.e. downstream) weights.

- Max and min weight for both upstream and downstream.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

21

3.2.5 Miscellaneous module.

 This module contains a series of classes that perform auxiliary tasks and doesn’t clearly

belong to any of the other modules. This classes are Individual, ANNConfig, NeuronConfig and

Sigmoid.

3.2.5.1 Individual class

 This class is used exclusively by the GA. It represents a chromosome or individual. The

individual is an array of double where each double represents a weight of the FFNN.

 Aside from the weights, the individual has a fit value associated as well. This fit is used

to determine whether or not it is selected for the new generation. It is a measure of the quality

of the individual as a solution.

 To finish with this class, this function is responsible for the individual crossing as well.

Given a second individual, it randomly crosses both while modifying the originals.

3.2.5.2 Sigmoid class

 It represents a sigmoid function that can be altered by modification of the parameters

ALFA, BETA and GAMMA seen before.

3.2.5.3 ANNConfig class

 This class simply holds the parameters for the network architecture (e.g. inputs,

outputs, hidden layers…) plus the default momentum and learning factors. It is used to store

the configurations and give them to the network builder method.

3.2.5.4 NeuronConfig class

 This class has a similar objective than the last one but with neurons on its scope. It

stores all the configurations relative to the neuron we explained in 3.4.1 As we said, a set of

this objects are created while reading the configuration. This objects initially have default

values for each neuron but if the configuration file specifies something different, this values

are changed. This objects are directly used by the neuron builder.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

22

4. Tests and Results
In this section we present the results gathered after a series of experiments. First we

assert both training algorithms behave properly. For this we use a series of problem sets to test

the network accuracy. We also do a comparative analysis of both algorithms. Later we test the

effects of neuron failure on the FFNN’s output. And to finish, we apply the developed techniques

on a real nanotechnology problem.

4.1 Backpropagation and Genetic Algorithm training
 We have studied 5 different sets, where we have applied both BP and EA training. In

both cases we have execute the simulation 20 times where the training phase started with

different randomly selected initializations. The parameters for the BP training are the following:

at least 20000 learning iterations and learning factor 0.1. For the EA training we have used 1000-

17000 generations, mutation factor = 0.4, mutation and crossover probability = 0.8 and

population size = 10. We have chosen these values after different simulations with a wide variety

of values for all the parameters. The final decision is the one that guarantees a good

performance for all the sets under study. In Table 1 we show the FFNN geometry selected for

every set. In Figure 12 we show an example of the learning rate for three representative sets

(CANCER, CARD and PIMA) for both BP and EA training.

Set Inputs Hidden Outputs Class 1 Class 2 Class 3

CANCER 9 8 2 458/65.52% 241/34.48%

CARD 51 6 2 307/44.49% 383/55.51%

PIMA 8 6 2 268/34.76% 503/65.24%

HORSE 58 12 3 224/61.54% 88/24.18% 52/14.29%

SONAR 60 12 2 152/48.72% 160/51.28%

Table 1: Geometry used in the simulations for the different sets. It is also shown the number of cases that correspond
to the different classes in the set. These numbers are given in absolute value and percentage.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

23

As we can see, the EA based training converges much faster and has a better

performance for all the cases under study. Similar results are found for the HORSE and SONAR

sets and are not explicitly shown in the figure. In terms of computation time, BP needs 2.29

times more iterations than the EA training, in average. In the CARD case, we have found a small

overtraining effect in EA training that is not distinguishable for BP. Since this effect is very small

and the training set is clearly improved, we have decided to use the values for 20000 iterations

in all the figures. As we can see in Figure 12 this value is a very good choice for any other set and

training method since overtraining is not present. Only in the PIMA set we have used a higher

value (200000) since the BP method did not converge well at 20000 iterations.

Figure 12: Training evolution for the CANCER, CARD and PIMA sets for both
Genetic Algorithm and Backpropagation methods. The error is shown as the
percentage of cases that are not correctly classified.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

24

4.2 Neuron failure analysis
 Let us study now the effect of losing individual neurons or units. To do it, we are going

to use the ability of our algorithm to configure different performances of the individual neurons.

First, we are going to switch off a single neuron in the hidden layer by setting b=0 in the sigmoid

function. It is worth noting that this change is only applied after the training phase, i.e. the

network has been trained with a full and correct performance of every single neuron in the

system. After that, we are going to turn off sets of two hidden neurons. Since the neurons in the

hidden layer are initially indistinguishable, all the possible combinations should be studied for a

full statistical analysis.

Figure 13: Classification success (defined as the number of cases that are correctly
classified) for CANCER, CARD and PIMA sets. The figure shows simultaneously the
values for 20 executions for both Backpropagation training (from 0 to 19) and
Genetic Algorithm training (from 20 to 39). In all figures, we have a data set for
every hidden and input neuron that are included in the FFNN geometry selected for
every set under study.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

25

 Results of turning off a single hidden neuron are shown in Figure 13 and Figure 14. As

we expected, BP trained networks are in general affected by the loss of many hidden neurons.

Indeed, there are others that induce a much smaller effect when stopping their activity. This

different influence of the hidden neurons has been extensively studied, for example, in several

articles related to the pruning effect. Much more remarkable is the extremely high tolerance

that is observed in the case of EA trained networks. In this case, the network is still having very

similar ratios no matter which neuron is turned off. In Table 2 and Table 3 we show the average

and standard deviation respectively for all the cases under study. These values have been

obtained by averaging the values from the suppression of every neuron in the 20 cases under

study. As we can see, in all the cases we obtain better average values and smaller standard

deviations in the EA trainings. The higher robustness against a non-working neuron makes EA

training a better choice for the simulation of real biological systems. These kinds of systems must

be stable against many effects, like the death of a certain number of neurons, which could imply

the loss of the signal from any unit. Although biological systems have many different ways to

prevent a wrong network behaviour when the individual units are not working properly, an

adequate weight distribution could be also an effective method to prevent the loss of

information. In that sense, EA training have demonstrated to be a method with an effective

capability of keep working practically in the same effective way when neurons are not having a

perfect performance.

There are a few effects in the figures and tables that must be mentioned in the analysis. First,

the PIMA set seems to give better results when a hidden or input neuron is switched off. In

Figure 13 we can see the original set having values around 50%, which is approximately the value

Figure 14: Classification success (defined as the number of cases that are correctly
classified) for HORSE and SONAR sets. The figure shows simultaneously the values
for 20 executions for both Backpropagation training (from 0 to 19) and Genetic
Algorithm training (from 20 to 39). In all figures, we have a data set for every
hidden and input neuron that are included in the FFNN geometry selected for every
set under study.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

26

obtained from Table 2. However, in many cases, we can see that this value can be increased up

to 65% when neurons are switched off after the training. This effect is not really an improvement

since this set has 503/771 inputs that correspond to a certain class. As we show in Table 1, this

numbers correspond to a relative value of 65.24%, which correspond to the maximum

classification success percentage achieved if Figure 12. What is really happening is that,

sometimes, the modification included in the system makes it fail and the FFNN always answers

with the second class, making it increase the classification success to 65.24% accidentally.

 Original Hidden Input

Set: BP EA BP EA BP EA

CANCER 88.35 96.52 62.18 94.27 85.97 95.3

CARD 65.29 82.86 52.54 75.67 64.67 82.17

PIMA 48.09 72.22 41.58 62.55 50.9 68.82

HORSE 78.89 82.57 58.26 72.67 73.3 80.59

SONAR 82.45 94.55 70.45 86.94 76.63 90.75

Table 2: Average values of the classification success for all the cases under study and both BP and EA training.
Results are shown for the case where no modifications are given (original) and the cases where input and hidden
neurons have been turned off.

Table 3: Standard deviation values of the classification success for all the cases under study and both BP and EA
training. Results are shown for the case where no modifications are given (original) and the cases where input and
hidden neurons have been turned off.

 Original Hidden Input

Set: BP EA BP EA BP EA

CANCER 1.51 0.19 21.58 6.44 3.58 1.6

CARD 3.69 1.18 8.57 10.07 4.6 3.83

PIMA 3.35 1.06 13.96 10.12 9.59 3.77

HORSE 2.37 1.94 15.03 7.43 5.53 2.66

SONAR 4.02 1.53 9.58 7.53 7 5.2

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

27

 From Figure 13 and Figure 14, and Table 2 and Table 3 we can see that both training

methods are much more stable when we switch off an input neuron. In Figure 15 we show the

average and standard deviation obtained for both BP and EA trainings in all the cases under

study. We can see that losing an input neuron induces a minimum effect in the effectiveness of

the ANNs for both BP and EA. Interestingly, losing a hidden neuron does not have either a

significant effect in the average value for EA in the CANCER set. Moreover, the effect is also

smaller for the other 4 sets than in the case of BP. Analysing the SD, we see, however, that it has

a significant increase even when the average seems to be similar. We can see the reason of this

effect in Figure 12, where some losing neurons reduce significantly the classification success for

EA training.

Let us now make the problem worse by switching off two neurons from the hidden layer at the

same time. In Figure 16 and Figure 17 we show the performance of the same sets than in Figure

13 and Figure 14 with the only exception that, in this case, we switch off all the possible

combinations of two hidden neurons. Since the sets used in this article have very different

number of input neurons, we did not include the effect of turning them off for clarity.

 As expected, the performance is worse than in Figure 13 and Figure 14 for both BP and

EA training. However, we can see that EA training is still able to give better results. In this case,

it is not so clear to see the effect in the figures, due to the big amount of information. In this

case, we need the help of the absolute values of average and standard deviation from Table 4

and Table 5.

Figure 15: Average value and standard deviation of the classification success
(%) for the five sets under study in the case of turning off one hidden or input
neuron. The statistical calculations include the 20 different executions and all
the hidden and input neuron modifications in the columns that represents the
modification of the neurons in those layers.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

28

Figure 16: Classification success (defined as the number of cases that are correctly classified) for CANCER, CARD and
PIMA sets. The figure shows simultaneously the values for 20 executions for both Backpropagation training (from 0 to
19) and Genetic Algorithm training (from 20 to 39). In all figures, we have a data set for every combination of two
hidden neurons included in the FFNN geometry selected for every set under study.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

29

Figure 17: Classification success (defined as the number of cases that are correctly classified) for HORSE and SONAR
sets. The figure shows simultaneously the values for 20 executions for both Backpropagation training (from 0 to 19)
and Genetic Algorithm training (from 20 to 39). In all figures, we have a data set for every combination of two hidden
neurons included in the FFNN geometry selected for every set under study.

 From Table 4 and Table 5 we can see that switching off two neurons from the hidden

layer in the case of EA training still gives better average results than the original case of BP in

the CANCER, CARD and PIMA sets (being pretty similar in the SONAR set and clearly worse in

HORSE). However, we must be very careful when comparing these results since removing a

couple of hidden neurons always increases the standard deviation dramatically. This implies

that, even when the average results are good, we cannot trust EA training in this case since there

is a huge variation in the results depending on random factors such as the initialization of the

weights. In Figure 18 we show an image with the results from Table 4 and Table 5. In this figure

we can see the small difference in the average value and, at the same time, the big increasing of

the standard deviation.

 Original Hidden

Set: BP EA BP EA

CANCER 88.35 96.52 55.71 89.69

CARD 65.29 82.86 46.33 68.86

PIMA 48.09 72.22 43.95 57.79

HORSE 78.89 82.57 48.22 64.76

SONAR 82.45 94.55 63.99 81.57

Table 4: Average values of the classification success for all the cases under study and both BP and EA training.
Results are shown for the case where no modifications are given (original) and the case where two hidden neurons
have been turned off.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

30

Figure 18: Average value and standard deviation of the classification success (%) for the five sets under study in the
case of turning off two hidden neurons. The statistical calculations include the 20 different executions and all the
hidden and input neuron modifications in the columns that represent the modification of the neurons in those layers.

4.2.1 Fit function modifications
After this analysis of BP and GA, we have experimented with GA’s fit function. This is

done in order to lead GA’s search to a solution with certain desired characteristics. This

characteristics where having low value weights to allow the removal of a neuron (or more than

one) with minor consequences. This modification adds a penalty to every chromosome’s fit

 Original Hidden

Set: BP EA BP EA

CANCER 1.51 0.19 19.38 12.67

CARD 3.69 1.18 11.69 12.34

PIMA 3.35 1.06 15.25 11.63

HORSE 2.37 1.94 16.22 11.03

SONAR 4.02 1.53 9.54 9.41

Table 5: Standard deviation values of the classification success for all the cases under study and both BP and EA
training. Results are shown for the case where no modifications are given (original) and the case where two hidden
neurons have been turned off.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

31

according to their weight values. The penalty will be high if the chromosome’s weights are high

and so on.

 This initial penalty system proved not to work as expected. The main reason for this is

our inability to choose the range of values where the penalty is applied. Even the slightest

variations in that criterion have great consequences on the GA’s training process.

 In order to solve this problems, we changed the way we understand the weights in a

chromosome. From individual weights to subsets of weights with a source or destination neuron

in common. By means of this, we evaluate the influence of a neuron in the network and not just

single weights. If the input weights of a neuron are negative (e.g. every weight is around -3) the

output will be near zero. With an output near zero its contribution is very small and the neuron

can be removed safely. If the output weights are near zero, the output of the neuron (that will

go through those weights) will also be near zero. Following the same logic than before, this

neuron can be safely removed as well.

 This approach simplifies the targeting for the penalty system. It will strive to lower the

weights related to a neuron. Anyway this penalty system upgrade shares the same problems of

the old one: the inability to define the penalization range and the penalization itself.

4.3 SPM samples classification
 To apply what we have learnt on the other tests, we have a set of Scanning Probe

Microscopy (SPM) simulated samples. A training set consists of a series of force values at

different Tip-Sample distances (D). These samples have two possible classes based in two

attributes: the relative dielectric constant and the screening length . When →∞, the sample

does not have any free charge and is considered a dielectric, i.e. the electric field is only partially

compensated by the local polarization of the sample’s molecules. The first class includes the

samples within this limit. The second class includes all the samples with finite value. To simplify

the problem, in this second class we have fixed =5. In Figure 19 and Figure 20 we can see some

samples of each class.

Figure 19: A set of simulated sets belonging to the LAMBDA class. The X axis represent the distance between the Tip
and the sample, the Y axis represents the force between them.

-0,45

-0,4

-0,35

-0,3

-0,25

-0,2

-0,15

-0,1

-0,05

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fo
rc

e

Tip-sample distance

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

32

Figure 20: A set of simulated sets belonging to the LAMBDA class. The X axis represent the distance between the Tip
and the sample, the Y axis represents the force between them.

4.3.1 Standard classification results
Before trying to optimize the network for this problem we have first checked that it can

learn to classify the data. In order to do this, we have followed the same procedure we shown

in section 4.1. In this case we have only used GA as the training method. The parameters chosen

for the GA training are 10000 generations, mutation factor = 0.4, mutation and crossover

probability = 0.8 and population size = 10. In Table 6 the chosen architecture and the class

distribution of the set is shown. In Figure 21we show the error rate through the training process

with GA.

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fo
rc

e

Tip-sample distance

Set Inputs Hidden Outputs Class 1 Class 2

SPM 20 8 2 201/50% 201/50%

Table 6: Geometry used in the simulations for the Scanning Probe Microscopy set. It is also shown the number of
cases that correspond to the different classes in the set. These numbers are given in absolute value and percentage.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

33

Figure 21: Training evolution for the SPM set for the Genetic Algorithm method. The error is shown as the percentage
of cases that are not correctly classified.

 As we can see, the GA has a good performance when it comes to classify the SPM

samples. Once we have checked its proper behaviour, in Figure 22 we can see the effect on the

success rate of the system when a single input neuron is offline. We can establish a relation

between this figure and Figure 19 or Figure 20. When the offline neuron represents a short

probe-material distance the effects on the output are huge, and as we go to neurons with a

bigger distance, the effect on the output becomes imperceptible.

Figure 22: The effect of an input neuron failure is shown. The X axis corresponds to the offline input neuron. The Y axis
represents the network’s accuracy to classify the samples. The bigger de distance a neuron characterizes, the lesser
the effect on the overall output.

0

0,2

0,4

0,6

0,8

1

0 2000 4000 6000 8000 10000

C
la

ss
if

ic
at

io
n

 e
rr

o
r

Generations

Training Test

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
la

ss
if

ic
at

io
n

 s
u

cc
es

s

Offline input neuron

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

34

 The reason behind this effect is that is easier for the network to classify using the data

coming from the first 4-5 neurons. This is because the data (if we see Figure 19 and Figure 20)

coming from those distances are more spaced.

4.3.2 SPM fit function optimization
 In order to distribute the classification importance of the neurons better, and to improve

the network’s tolerance to neuron failure, we implemented four new fit functions with this sole

purpose. All these fit functions use the same data displayed in Figure 22 to rise those curves.

4.3.2.1 Summatory fit function

 This first approach calculates the fit of a chromosome in the standard way and then, by

disconnecting the input neurons one by one, calculates the fit for every offline neuron. Once it

has finished calculating the fits, it sums them all. This sum is the fit for the individual. It is

reflected in the following equation:

𝑓𝑖𝑡′(𝑥) = 𝑓𝑖𝑡(𝑥) + ∑ 𝑓𝑖𝑡(𝑥𝑖)

𝑖

Equation 18: Summatory fit

 Where i is the input neuron to be disconnected, x is the chromosome and xi is the fit of

the chromosome when the i neuron is offline. To study this fit function we trained the network

with the following parameters: 50000 generations, mutation and crossover probability 0.8,

mutation constant 2.0 and chromosomes 10. In Figure 23 we can see the success values when

each neuron is disconnected, and in Figure 24 we can see the evolution of this case.

Figure 23: The effect of an input neuron failure is shown. The X axis corresponds to the offline input neuron. The Y
axis represents the network’s accuracy to classify the samples. The bigger de distance a neuron characterizes, the
lesser the effect on the overall output.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
la

ss
if

ic
at

io
n

 s
u

cc
es

s

Offline input neuron

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

35

Figure 24: Training evolution for the SPM set for the GA and Summatory fit. The error is shown as the percentage of
cases that are not correctly classified.

 A curious effect can be observed. While the success rate of the network has raised

dramatically, except for the first one, the overall performance of the network with all the

neurons online is around 20% worse than before. The reason for this is that the fit of the

chromosome with all neurons online is of little significance in comparison to the other twenty

fits calculated. The network tunes its weights to work better with only 19 neurons (except in one

case) and therefore activating all of them harms its performance.

4.3.2.2 Average fit function

 In order avoid the problem of the overall performance, the Summatory fit function is

modified the way we see en Equation 19.

𝑓𝑖𝑡′(𝑥) = 𝑓𝑖𝑡(𝑥) +
∑ 𝑓𝑖𝑡(𝑥𝑖)𝑛

𝑖

𝑛

Equation 19: Average fit function

 Where n is the number of input neurons. By doing the average of the input neurons fit

we give equal importance to the overall fit and to the offline neurons fit. To study this fit function

we use the following parameters: 37000 generations, mutation and crossover probability 0.8,

mutation constant 2.0 and chromosomes 10. In Figure 25 we can see the performance of the

disconnected neurons. Figure X shows the evolution of the network.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 10000 20000 30000 40000 50000

C
la

ss
if

ic
at

io
n

 e
rr

o
r

Generations

Training Test

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

36

Figure 25: The effect of an input neuron failure is shown. The X axis corresponds to the offline input neuron. The Y
axis represents the network’s accuracy to classify the samples. The bigger de distance a neuron characterizes, the
lesser the effect on the overall output.

Figure 26: Training evolution for the SPM set for the GA and Average fit. The error is shown as the percentage of
cases that are not correctly classified.

 Although we might notice that the values of the offline neurons are not as good as they

were with the Summatory fit function, it’s worth noting that the overall performance is as good

as it was with the standard fit function.

4.3.2.3 Power fit function

 The two last fit functions had a problem in common. Even if both of them get to raise

the accuracy of most input neurons, the two of them fail to do so with the first one as we can

see in Figure 23 and Figure 25. In an attempt to solve this we designed the power fit function

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
la

ss
if

ic
at

io
n

 s
u

cc
es

s

Offline input neuron

0

0,2

0,4

0,6

0,8

1

0 10000 20000 30000 40000

C
la

ss
if

ic
at

io
n

 e
rr

o
r

Generations

Entrenamiento Test

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

37

and the next one, the elimination fit function. The power fit function is shown in the next

equation:

𝑓𝑖𝑡′(𝑥) = 𝑓(𝑥) + ∑ 𝑓(𝑥𝑖)𝑖

𝑓(𝑥) = 𝑓𝑖𝑡(𝑥)𝛾

Equation 20: Power fit function

Where γ is a number that satisfies the following criteria:

𝐴𝛾 + 20 · 𝐵𝛾 < 𝐶𝛾 ↔ 𝐴 < 𝐶 < 𝐵

Equation 21: Power fit criteria

 If such γ is found, chromosomes with homogeneous individual fits (i.e. without input

neurons that harms the network’s performance when disconnected) would have a better fit that

functions that have very high individual fits but one or more undesired one. Unfortunately we

couldn’t find a good value for γ and there are no results to show.

4.3.2.4 Elimination fit function

 This last fit function has a different approach. When the other ones where mathematical

solutions for the problem, the elimination fit function goes with a computational approach. The

fit is calculated with the Summatory fit function but while it is calculating the fit of every

disconnected neuron the function checks if it is too low. If that is the case, it simply sets the fit

of the chromosome to zero. This is the pseudo code for this function:

 BEGIN

 Calculate overall fit

 While still input neurons

 Disconnect next input neuron

 Calculate fit for the neuron

 If fit is too low set a flag

 Reconnect the neuron

 Loop

 If flag is true

 Set fit 0

 Return

 Else

 Set fit (overall + input neuron fits)

 Return fit

 END

Sadly, this function didn’t give any results either.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

38

4.3.3 Summary
 In conclusion, we have developed a method that is able to reduce the strong

dependence of the classification with the presence of the whole data set. This is very important

in this case because experimental results may be measured in very different conditions.

Specifically, the tip-sample distance is a parameter that cannot be easily estimate and,

sometimes, the experiment is done in an environment that does not allow to get data from the

whole set of distances. By forcing the FFNN with the EA fit function described before, we have

reduced the error in the case of losing some experimental data. This technique is the natural

evolution of the previous application, that only analyzed the effect of changing the training

method and demonstrates that EA training is also able to tune the behavior of the trained

network, without reducing the classification ratio.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

39

5. Conclusion
 In this project we have developed a bioinspired method to train FFNN that allows us to

discriminate and use individually the different neurons of the network. We have used two

different training methods to improve the training performance. We have applied the

technique in different applications. The first one is related to a basic FFNN development, and

theoretical concepts of both FFNN and EA. We apply our methods just to observe and measure

the behavior of the training algorithms. This gives us a new point of view to compare them,

taking into account aspects as neuron failure tolerance of the algorithms.

 The second one is related to a realistic experimental problem in Nanotechnology. In

this application we increase considerably the network’s tolerance to missing values. This is of

vital importance in this field because, as we said in the last section, is rather difficult to get all

the data of a set. We have also demonstrated that this failure tolerance increase does not have

any negative effects whatsoever on the classification ratio of the network. This opens the door

to lots of possibilities when it comes to combine the special characteristics of our FFNN with

the fit function of the EA.

5.1 Future work
 Because of the versatility of FFNN and the power of the FFNN+EA combo, the future of

the project is open to thousands of possibilities in several fields, from biology to statistics and

more. If we chose to deeper in the field of nanotechnology and SPM a good option is the

characterization of individual atoms/molecules from SPM images. Images from SPM have a

degree of uncertainty when it comes to identifying atoms and molecules. It can be interesting

to use AI paradigms to solve this problem in the future.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

40

6. References
[1] B. Mahji and M. Panda P. P. Sarangi, "Performance Analysis of Neural Networks Training

using Real Coded Genetic Algorithm," International Journal of Computer Applications, no.

51, pp. 30-36, 2012.

[2] S. B. Kotsiantis, "Supervised Machine Learning: A Review of Classification Techniques,"

Informatica, no. 31, pp. 249-268, 2007.

[3] R.S. Sexton J.N.D. Gupta, "Comparing backpropagation with a genetic algorithm for

neural network training," Omega, no. 27, pp. 679-684, 1999.

[4] X. Yao, "Evolving artificial neural networks," Proc. IEEEE, vol. 9, no. 87, pp. 1423-1447,

1999.

[5] X. Fu, Y. Mao, M.I. Menhas, M. Fei L. Wang, "A novel modified binary differential

evolution algorithm and its applications," Neurocomputing, no. 98, pp. 55-75, 2012.

[6] M. Castellani, "Evolutionary generation of neural network classifiers-An empirical

comparison," Neurocomputing, no. 99, pp. 214-229, 2013.

[7] M. Hajmeer I. A. Basheer, "Artificial Neural Networks: fundamentals, computing, design

and application," Journal of Microbiological methods, no. 43, pp. 3-31, 2000.

[8] P. Morgan B. Curry, "Neural networks: a need for caution," Omega, Internationa Journal

of Management sciences, no. 25, pp. 123-133, 1997.

[9] H. Rowlands M. Castellani, "Evolutionary Artificial Neural Network Design and Training

for wood veneer classification," Engineering Applications of Artificial Intelligence, no. 22,

pp. 732-741, 2009.

[10] D. Whitley, "Applying Genetic Algorithms to Neural Network Problems," International

Neural Networks, p. 230, 1988.

[11] D. Whitley, L.J. Eshelman J.D. Schaffer, "Combinations of Genetich Algorithms and Neural

Networks: A Survey of the State of the Art," IEEE Computer Society on Combinations of

Genetic Algorithms and Neural Networks, 1992.

[12] H. Bal H.H. Örkcü, "Comparing performances of backpropagation and genetic algorithms

in the data classification," Expert Systems with Applications, no. 38, pp. 3703-3709, 2011.

[13] H. Shao, Y. Li C. Zhang, "Particle Swarm Optimization for Evolving Artificial Neural

Network," IEEE International Conference on System, Man, and Cybernetics, no. 4, pp.

2487-2490, 2000.

[14] G M Sacha and P Varona, "Artificial intelligence in nanotechnology," Nanotechnology,

vol. 24, no. 45, 2013.

[15] Pablo Pou, Oscar Custance, Pavel Jelinek, Masayuki Abe, Ruben Perez, Seizo Morita

Yoshiaki Sugimoto, "Complex Patterning by Vertical Interchange Atom Manipulation

Using Atomic Force Microscopy," Science, vol. 322, no. 5900, pp. 413-417, 2008.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

41

[16] Pablo Varona, Allen I. Selverston, and Henry D. I. Abarbanel Mikhail I. Rabinovich,

"Dynamical principles in neuroscience," Reviews of Modern Physics, vol. 78, no. 4, pp.

1213-1265, 2006.

[17] Shuqi and Cheng, Hua and Yang, Haifang and Li, Junjie and Duan, Xiaoyang and Gu,

Changzhi and Tian, Jianguo Chen, "Polarization insensitive and omnidirectional

broadband near perfect planar metamaterial absorber in the near infrared regime,"

Applied Physics Letters, vol. 99, no. 25, 2011.

[18] S. Esmaeilzadehha M. H. Korayem, "Virtual reality interface for nano-manipulation based

on enhanced images," The International Journal of Advanced Manufacturing Technology,

vol. 63, no. 9-12, pp. 1153-1166, 2012.

[19] C Pezeshki, J L McHale and F J Knorr M A Al-Khedher, "Quality classification via Raman

identification and SEM analysis of carbon nanotube bundles using artificial neural

networks," Nanotechnology, vol. 18, no. 35, 2007.

[20] F B Rodríguez and P Varona G M Sacha, "An inverse problem solution for undetermined

electrostatic force microscopy setups using neural networks," Nanotechnology, vol. 20,

no. 8, 2009.

[21] T. B. Ludermir L. M. Alameida, "A multi-objective memetic and hybrid methodology for

optimizing the Parameters and performance of artificial neural networks,"

Neurocomputing, no. 73, pp. 1438-1450, 2010.

[22] J.H. Holland, "Adaptation in natural and artificial systems: An introductory analysis with

applications to biology, control, and artificial inteligence," U Michigan Press, 1975.

[23] M. Lozano F. Herrera, "Editorial Real Coded genetic algorithms," Soft. Comput., no. 9, pp.

223-224, 2005.

[24] T.B. Ludermir L.M. Alameida, "An Evolutionary Approach for Tuning Artificial Neural

Network Parameters, Providing dynamic instructional adaptation in learning

programming," HAIS, pp. 156-163, 2008.

[25] M. Lozano, J.L. Verdegay F. Herrera, "Tackling Real-Coded Genetic Algorithms: Operators

and Tools for Behavioural Analysis," Artificial Intelligence Review, no. 12, pp. 265-319,

1998.

[26] Radcliffe N.J., "Equivalence Class Analysis of Genetic Algorithms," Complex Systems, vol.

5, no. 2, pp. 183-205, 1991a.

[27] A. Wright, , G.J.E Rawlin, Ed., 1991, pp. 205-218.

[28] Z. Michalewicz, "Genetic Algorithms + Data Structures = Evolution Programs," Springer-

Verlag, 1992.

[29] Eshelman L.J.&Schaffer J.D., "Real-Coded Genetic Algorithms and Interval-Schemata," in

Foundation of Genetic Algorithms 2, L.Darrell Whitley (Ed.), Ed.: Morgan Kaufmann

Publishers,San mateo, 1993, pp. 187-202.

Estrategias Bioinspiradas para la optimización del aprendizaje en RNAs

42

[30] Mühlenbein H. & Schlierkamp-Voosen D., "Predictive Models for the Breeder Genetic

Algorithm I. Continuous Parameter Optimization," Evolutionary Computation, vol. 1, pp.

25-49, 1993.

