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Abstract
Large scale distributed software systems are complex systems that need to be 
able to adapt to a highly dynamic environment and changing user needs. In 
this context, the main objective of this project is the development of new self-
adaptive strategies, along with the methodologies and tools required for their 
analysis and design. In this work, we design and implement a self-adaptive 
architecture inspired by IBM's Monitor-Analyze-Plan-Act over a Knowledge 
base  architecture,  and we develop  new self-adaptive  strategies  specific  for 
wireless  sensor  networks  following  a  methodology  borrowed  from control 
engineering.

More in detail, we start this work by designing in UML a software library for 
the development of self-adaptive capabilities, which will be implemented as a 
Java package. After that, we model two distributed software systems using an 
actor  oriented  approach in  Ptolemy II.  Next,  we develop the  self-adaptive 
strategies based on fuzzy inference systems and introduce them in the models 
as  new actors.  Finally,  we are able  to execute a  simulation of  the system, 
which allows us to perform an automatic optimization of the parameters of the 
sytem with the cross-entropy method and to test the suitability of the designed 
strategies.

Based on the simulation results, we have assessed the good results yielded by 
the  strategies  and  the  potential  of  the  modeling  tool  for  the  design  and 
simulation of distributed software systems. But more importantly, this work 
demonstrates  the  usefulness  of  a  control  engineering  approach  to  solve 
problems related to the dynamic behavior of software systems.

Keywords: self-adaptative  software,  feedback  loops,  actor  model,  wireless  
sensor network, optimization, control engineering, software engineering.



Resumen
Los sistemas distribuidos a gran escala son sistemas complejos que necesitan 
adaptarse a un entorno altamente dinámico y a las distintas necesidades del 
usuario.  En  este  contexto,  el  objetivo  principal  de  este  proyecto  es  el 
desarrollo  de  nuevas  estrategias  de  auto-adaptación,  a  la  vez  que  las 
metodologías  y  herramientas  necesarias  para  su  análisis  y  diseño.  En  este 
trabajo, diseñamos e implementamos una arquitectura para capacidades auto-
adaptativas  en  sistemas  software  insipirada  en  la  arquitectura  Monitor-
Analyze-Plan-Act  over a Knowledge base de IBM, y desarrollamos nuevas 
estrategias  de  auto-adaptación  específicas  para  redes  de  sensores 
inhalámbricas siguiendo una metodología tomada de la ingeniería de control.

Más concretamente, comenzamos este trabajo diseñando en UML una librería 
software  para  el  desarrollo  de  capacidades  auto-adaptativas,  que  luego 
implementamos  como  un  paquete  Java.  A  continuación,  modelamos  dos 
sistemas distribuidos usando un enfoque orientado a actores en Ptolemy II. 
Posteriormente,  desarrollamos  estrategias  auto-adaptativas  basadas  en 
sistemas de inferencia difusa y las insertamos en los modelos como nuevos 
actores. Finalmente, ejecutamos varias simulaciones del sistema, lo cual nos 
permite realizar una optimización automática de los parámetros del sistema 
mediante  el  uso  del  método  de  entropía  cruzada  y,  además,  probar  el 
desempeño de las estrategias diseñadas.

Basándonos en los resultados de estas simulaciones, hemos podido comprobar 
los  buenos  resultados  que  ofrecen  las  estrategias  de  auto-adaptación 
implementadas y el potencial de la herramienta de modelado para el diseño y 
la  simulación de sistemas distribuidos.  Pero lo más importante es que este 
trabajo  demuestra  la  utilidad  de  enfocar  desde  la  ingeniería  de  control  la 
resolución  de  problemas  relacionados  con  el  comportamiento  dinámico  de 
sistemas software.

Palabras clave: software auto-adaptativo, bucles de realimentación, modelo  
de  actores,  redes  de  sensores  inhalámbricas,  optimización,  ingeniería  de  
control, ingeniería de software.
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1.Introduction

1. Introduction

1.1. Motivation

Since the middle of the 20th century, the economic growth experienced by the European region has 
led to an unprecedented increase in the quality of life of the citizens. However, this growth has had 
some  negative  consequences  on  aspects  of  the  society  such  as  the  quality  of  life  in  urban 
environments, public security, environment protection and emergency management.

In order to address these challenges, one of the most promising technological advances has been the 
development  of  large scale  monitoring and control  systems in the form of  networked adaptive 
software systems. Such a system is usually composed of embedded computing devices, defined by 
a  low computing  power  but  a  high  portability  and availability,  connected  in  a  communication 
network while executing some kind of task.  Their use have been promoted by the production of 
cheaper and more powerful hardware, as well as the development of more efficient communication 
systems and data mining techniques capable of dealing with the large amount of data produced by 
the monitoring tasks.

However,  the  widespread introduction  of  such  large  scale  adaptive  software  systems has  been 
slowed down by the lack of methodologies and techniques to be used for their design, control and 
operation. The highly dynamic behavior of such large scale distributed architectures, increased even 
further  by  the  interaction  with  the  environment  and  ever  changing  human  needs,  renders  the 
knowledge gained from small scale or centralized systems insufficient. To overcome this, new self-
adaptive capabilities such as self-optimization, self-organization and self-configuration need to be 
developed. The “self” prefix indicates that such operations are performed without (or with minimal) 
human intervention.

Therefore, the new techniques developed for the engineering of adaptive software systems should 
have these self-adaptive capabilities as their primary target.  Given the multidisciplinary nature of 
the considered systems, a combined approach from different related research fields seems sensible. 
In this project, we present the result of combining the knowledge about dynamic systems, and the 
methodologies and algorithms used in their design and analysis, borrowed from the field of control 
engineering, with the tools for the design and implementation of software systems provided by the 
discipline of software engineering.

1.2. Objectives

The general objectives of this work are the following:

1. To design  and  implement  a  general  architecture  for  self-adaptive  strategies  in  software 
systems.

2. To design and implement new self-adaptive strategies based on the developed architecture.

3. To design and model large scale multi-agent architectures suitable for the application of 
self-adaptive strategies.

4. To evaluate the application of the self-adaptive strategies in the context of these large scale 
multi-agent architectures.

5. To acquire new knowledge and developing skills in topics outside the classical software 
engineering field, such as actor-oriented design and programming or control theory, 

We highlight some specific goals derived from the main objectives:

1



1.Introduction

1. To design and implement a general feedback control loop architecture which will serve as a 
basis for the implementation of the self-adaptive strategies.

2. To design and implement a self-adaptive strategy based on a fuzzy control system.

3. To design and model a WSN based on an actor-oriented approach.

4. To  design and evaluate a methodology for the application of a self-adaptive strategy to a 
software system. This includes an optimization of the strategy for the specific instance of 
the system, which will be performed using the cross entropy method.

5. To acquire knowledge on the use of the actor-oriented modeling software Ptolemy II.

1.3. Structure of the document

The remainder of this document is structured as follows. Section 2 summarizes some of the related 
work in the area of self-adaptive software systems, as well as actor-oriented modeling. In section 3 
we  present  the  most  important  tools  and  algorithms  we  have  used  in  this  project.  A detailed 
description of the design and implementation of the feedback control loop architecture, the WSN 
models  and  the  self-adaptive  strategies  can  be  found  in  section  4.  Section  5 contains  the 
experimental evaluation of the work. Finally, we conclude in section 6, outlining future work not 
covered in this project.

2



2.State of the art

2. State of the art
In this section we present a review of the state of the art in self-adaptive software, focusing on 
already proposed techniques for its development. We also discuss the approach we will take from 
the  software  engineering  point  of  view,  comparing  different  available  tools,  and  conclude 
highlighting  some of  the  specific  tools  available  for  the  development  of  the  concrete  class  of 
systems we are going focus on.

2.1. Self-adaptive software systems

Self-adaptive capabilities in  software systems have been under research in several  areas of the 
discipline of software engineering, such as requisite engineering [1], [2], software architecture [3], 
middleware architectures  [4], component based development  [5] and objective based models  [6]. 
However, most of these works have been isolated efforts that have failed to address the issue at its 
core. Other research areas such as control engineering, artificial intelligence, robotics, distributed 
systems and machine learning have also studied self-adaptive topics and feedback from their own 
point of view.

The literature provides some techniques for the development of self-adaptive systems, some already 
tested while others have been just  proposed.  For example,  Garlan et al.  [7] have used external 
control  mechanisms for  the  implementation  of  self-adaptive  features,  proposing an  architecture 
based reusable framework for some specific systems.

The  authors  Bencomo  et  al.  [8] have  been  taking  a  software  engineering  approach  based  on 
components  developed  in  the  object-oriented  programming  language  Genie,  which  supports 
modeling, automatic generation and running of reconfigurable component based systems. A model-
driven approach, based on the abstract definition of architecture models and corresponding tools for 
their translation to platform specific implementations, have been taken by Vogel et al.  [9] for the 
development of self-adaptive systems with self-monitoring architectures. This approach can lead to 
incremental  synchronization  between  the  run-time  system  and  models  for  different  self-
management activities. More examples can be found in the extensive survey conducted by Macías-
Escrivá et al. [10].

In spite of the innovative value of the proposed initiatives, they constitute an isolated effort and do 
not suggest a methodology for the design of self-adaptive systems that integrates the analysis of the 
effects  the  introduction  of  feedback  mechanisms  could  produce.  The  software  engineering 
discipline has been mainly focused on static applications, often overlooking the dynamic side. On 
the other hand, control engineering emphasizes the use feedback loops, treating them as first class 
entities [11].

This  is  the starting point  of this  project,  which will  be focused on the combination of control  
engineering  techniques  with  software  engineering  tools  and  methodologies  with  the  goal  of 
building intelligent self-adaptive systems able to adjust to dynamic environments.

2.2. Actor oriented modeling

Since  the  beginnings  of  software  engineering,  one  of  the  basic  research  lines  have  been  the 
development of different paradigms of computation, such as imperative, object-oriented, functional, 
feature-oriented or data-driven among others, each one conceived to provide a suitable framework 
for the engineering of different kinds of  software solutions.  In the case of distributed systems, 
concurrency is one of the key aspects that need to be addressed by the paradigm of choice, as well 
as  the  representation  of  different  autonomous  elements.  The  actor-oriented  approach  was 
specifically designed to allow the engineer to naturally build the system around these topics.

3
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Actor orientation [12] is a way of structuring and conceptualizing a system that complements the 
object-oriented  approach.  Viewing  a  system  as  a  structure  of  actors  emphasizes  its  causal 
relationships and its concurrent activities, along with their communication and data dependencies. 
An object-oriented perspective sees the state of a system as a hierarchical collection of objects that 
are related by references to each other, communicating by calling each other's methods. However, 
an actor-oriented view of a system decouples the transmission of data from the transfer of control, 
which allows for different communication models to be used.

Being a similar paradigm as object orientation, some object-oriented tools can also be used for 
actor-oriented programming. One of the most widely used modeling languages, UML [13], and its 
derivative, SysML [14], provide a standard visual syntax that represents the actor hierarchy and 
their  relations.  However,  they leave the semantics of the diagrams open, so that different tools 
compliant with the standard may give a different behavior to each component. Other derivatives of 
UML like  MARTE (Modeling  and  Analysis  of  Real  Time  Embedded  systems)  [15] put  more 
emphasis on the semantics of models,  but avoids constraining them excessively in an effort  to 
capture already existing design practices.

On the other hand, Ptolemy II [16] focuses on providing precise and well-defined models of system 
behavior. It also features the possibility of freely combining different semantics in the same model, 
allowing  the  modeler  to  describe  completely  different  parts  of  the  system,  such  as  queues, 
communication networks and physical processes in the same model.

2.3. Wireless sensor networks

Wireless  sensor  networks  have  attracted  special  interest  in  the  self-adaptive  software  research 
community, mostly due to the increased computing power and availability of the necessary devices 
and the development of cheap and efficient wireless technology. A WSN is a network composed of 
several autonomous nodes equipped with sensors that cooperate towards the completion of some 
assigned  task  by  processing  and  passing  their  data  over  a  wireless  channel.  They  are  usually 
employed  as  a  solution  for  physical  related  problems  over  a  large  area  that  require  limited 
computational  capabilities,  such as  structural  health  monitoring  [17],  environmental  monitoring 
[18], electrical power system enhancement [19] or gas sensing [20].

One of the basic challenges the development of these systems pose is the difficulty of testing the 
engineered solution, given the high cost of deploying the network and the usual impossibility of 
running  an  experimental  system  in  a  production  environment.  To  address  this  issue,  several 
simulating tools have been developed. NS-3  [21] is a free discrete-event network simulator for 
Internet systems that features an extensive library of hardware models and protocols, as well as 
performance analysis and graphical visualization tools. However, it is often criticized by the lack of 
a graphical user interface, which makes the modeling process complex and time-consuming.

Other simulators constrain their domain of application to some selected devices, such as TOSSIM 
[22], which is aimed towards the simulation of TinyOS wireless sensor networks. TOSSIM features 
a full communication stack simulation, allowing the experimentation of both low- and top-level 
protocols and applications. It  is,  however,  limited to homogeneous networks where every node 
executes the same code.

Finally, besides its actor-oriented capabilities, Ptolemy II  [16] features a limited extension tool, 
Visualsense, focused on the design and simulation of wireless networks. It provides a graphical user 
interface  for  the  design  of  the  system,  as  well  as  several  premade  actors  related  to  wireless 
communications, such as collision detectors. On the other hand, it lacks low level models necessary 
for some applications and every protocol needs to be implemented by the user.
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3. Tools and technology employed
We describe in this section the main tools used for the development of this project, as well as the 
most important technologies this project is based on. We start by describing the general architecture 
which our feedback loop framework will be based on, the IBM's MAPE-K. Next, two of the main 
algorithms used in this project are presented: the cross-entropy optimization method and the fuzzy 
inference system, which will be used as the core element of the self-adaptive strategies we will be 
developing. The design, modeling and simulation of the adaptive software systems will be carried 
out in the modeling tool Ptolemy II. Finally, we briefly comment on other supporting tools, such as 
the  modeling  language UML we will  be using  for  the design of  the  library,  the programming 
language of our choice, Java, and other complementary software.

3.1. MAPE-K feedback loops

In  order  to  cope  with  uncertainty  and  complexity  when managing dynamic  processes,  a  great 
number of mathematical models,  tools,  and techniques for the analysis of system performance, 
stability, sensitivity or correctness have been developed under the field of control theory. A key 
design element in this kind of control systems are feedback loops such as the one depicted in Figure
1. Feedback allows the system to self-adapt by being aware of the effect its actions have on the 
process.

In an effort to apply the control theory approach to software engineering, IBM released a blueprint 
for building autonomic systems using MAPE-K (Monitor-Analyze-Plan-Execute over a Knowledge 
base) feedback loops  [23].  This systems are build from autonomic element  blocks,  depicted in 
Figure 2, which consist of a managed element and an autonomic manager.

A managed element is a software or hardware component that can be managed through a series of  
touchpoints. The touchpoints can be used to gather, aggregate and transmit data from the managed 
element to the autonomic manager (sensor) or to provide a mechanism to change the behavior of 
the managed element (effector).

An autonomic manager,  which may also be a managed element,  implements intelligent control 
loops that can perform different self-adapting tasks, such as self-configuring,  self-healing,  self-
optimizing or self-protecting tasks. It will usually use policies in the form of goals or objectives to  
govern the behavior of the control loops, making it possible for another autonomic manager to 
change  them via  its  touchpoints.  This  allows  for  the  change  of  policies  to  be  automated  and 
designed in the same way as any other change in the system.

The architecture of an autonomic manager is dissected in four different parts:

• Monitor: The monitor function collects details from the managed resources, via the sensors, 
and resumes them into symptoms that  can be passed to  the analyze function.  The data 
collected  can  include  sampled  environment  information,  configuration  settings,  internal 
status and so on. The monitor function aggregates and filters these details until it finds a 
combination worth analyzing.

5
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3.Tools and technology employed

• Analyze: The analyze function provides the mechanisms to examine the symptoms detected 
by the monitor function in order to determine if some change needs to be made. Usually, 
this function models complex behavior so it can employ prediction techniques that help in 
determining if the autonomic manager can abide by the established policy.

If the analyze function concludes that a change needs to be made, a change request is sent to 
the plan function containing the modifications this function deems desirable. We will also 
call this function the reasoner.

• Plan: The plan function selects a procedure to apply the changes requested by the analyze 
function. The change plan is then sent to the execute function.

• Execute: The execute function provides the mechanism to schedule and perform the change 
plan created by the plan function to the system, using the effector interface. In some cases, 
this function is too coupled with the plan function to be worth the effort of describing them 
separately. This happens when the change procedure is so simple that it contains by itself 
the means for the execution. This will be the case in some of the feedback loops designed in 
this project and we will call the joint function the actuator.

The original architecture defines a common knowledge base shared among the different parts of the 
autonomic manager. The knowledge data can include information about the system, active policies 
or problem determination knowledge, such as monitored data or symptoms and the internal state of 
the manager. However, for the purpose of this project, the knowledge base will not need to be of 
such  complexity  and  we  will  restrict  the  access  of  a  part  of  the  autonomic  manager  to  the 
knowledge of some other part.

This  architecture  will  be  the  basis  for  the  design  of  the  self-adaptive  strategies  we  will  be 
developing. The adoption of this specific architecture comes from the control theory approach to 
the software engineering process that it  represents, which is one of the main objectives of this 
project. Several implementations of the MAPE-K loop exist, such as IBM's autonomic toolkit [24] 
and ABLE [25]. However, the projects are not in active development and are not distributed under 
an open source license, which would make it difficult to solve possible limitations like lack of non-
local communications or incompatibility with specific embedded systems.
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3.2.Cross entropy

3.2. Cross entropy

The  cross  entropy  (CE)  method  [26] is  a  general  Monte  Carlo  approach  to  multi  extremal 
optimization. It was first introduced as an estimation algorithm for the probability of rare events 
and it was adapted later as an optimization method as a function can be thought of a system where 
sampling around the optimum is a rare event. We present here a detailed description of the method.

Let X be a random variable defined on the space X and f : X→ℝ  a score function. Then the CE 
method tries to find x' such that 

γ '= f ( x ' )=min
x∈X

f (x) (1)

The algorithm transforms this problem into an associated stochastic problem by defining a family 
of random variables with density function g ( x , v ) , v∈Γ  and solving it as the simulation of a rare 
event, where the event is sampling around the optimum of f. The algorithm can be summarized as 
follows:

1. Initialize v0 .

2. Generate  a  sample  of  size  N,  {x i
t
}1≤i≤N ,  from  the  density  function  g ( x , v t) .  Let 

f 1≥ f 2≥…≥ f N , f i∈{ f ( x i
t
)},1≤i≤N  be  the  corresponding  ordered  score  values  and 

γt= f [ρN ] .

3. Update v t  to

v t+1=argmin
v

1
N
∑
i=1

N

I {y≤γt }
( f (x i

t))⋅ln g ( xi
t , v t) (2)

4. Repeat from step 2 until convergence or ending criterion.

5. Assuming that convergence has been reached at t=t ' , the random variable defined by the 
density function g ( x , v t ' )  should have all of its mass concentrated on x'.

Step 3 is performed using the best [ρ N ]  samples, also called elite samples. The sampling density 
function needed in (2) is usually unknown, but in most cases it can be assumed to be normal. In this 
case, v is the mean μ and the standard deviation σ of the normal distribution and the solution of the 
equation is simply the sample mean μt and sample deviation σt of the elite samples. It also follows 
that  the  mean  should  converge  to  x' and  the  deviation  should  converge  to  zero.  A smoothing 
parameter α for the mean vector and dynamic smoothing β t for the deviation are applied in order to 
prevent the occurrences of 0s and 1s in the parameter vectors.

μt+1=αμt+1+(1−α)μt

σt+1=βtσ t+1+(1−βt)σt

βt=β−β(1−1
t )

q (3)

Where 0.4≤α≤0.9, 0.6≤β≤0.9,2≤q≤7 .

Finally,  as  we will  be  dealing  with  constrained optimization  problems,  we will  need to  use  a  
bounded distribution for the sample drawing, so that the samples lie within the acceptable region. 
The most straightforward to use is the truncated gaussian distribution, as the updating rules remain 
the  same (see  [27]).  The  density  function  of  the  truncated  gaussian  distribution  with  mean  μ, 
standard deviation σ and bounded between a and b, for a≤ x≤b  is defined as follows: 

7



3.Tools and technology employed

f (x ;μ ,σ , a , b)=

1
σ ϕ ( x−μ

σ )
Φ( b−μ

σ )−Φ( a−μ
σ )

(4)

And by f = 0 otherwise. Here, φ is the density function of a standard normal distribution and Φ is 
its the cumulative distribution function.

3.3. Fuzzy control systems

Fuzzy Logic  [28] is  a  powerful  modeling tool  in  situations  of  essential  uncertainty in  models, 
information, objectives, restrictions and control actions, that tries to emulate the decision making 
process of humans. It uses vague logical statements to derive vague inferences from imprecise data.

One of the most important concepts in Fuzzy Logic is that of a linguistic variable. A linguistic 
variable is characterized by a tuple (X, Te (X), D, M) where X represents the name of the variable, Te 

(X) is the set of linguistic values (attributes, adjectives) of X, D is the universe of discourse and M is 
the  semantic  rule  associating  each  value  with  its  meaning  or  membership  function.  The 
membership function for each linguistic value is a function in [0, 1] from the universe of discourse 
D and defines a fuzzy set.

A fuzzy set represents a vague classification. For example, the variable temperature may include 
the linguistic values “hot” and “very hot”, with a fuzzy set associated to each of them. Then, we are 
allowed to classify a deterministic value of the temperature as “between hot and very hot” with a 
precise meaning in terms of membership functions. Usually, these functions are built from piece-
wise  linear  functions,  gaussian  distribution  functions,  sigmoid  curves  and  quadratic  and cubic 
polynomials.

A brief description of the fuzzy inference process [29] is now presented. For the sake of simplicity, 
we describe the process for a single output variable. A visual overview of the system is shown in 
Figure 3.

1. Fuzzyfication. For each input variable, the membership functions associated are computed.

2. Decision-making. In this step, the fuzzy inference process is performed. 

1. Antecedent composition. For each rule h, the antecedent is a logical formula composed 
of several terms of the form “X is  V”, where  V is a linguistic value, connected by the 
logical operators AND, OR and NOT. The fuzzy value of the terms have been obtained 
in  step 1.  Each logical operator  is  interpreted as a fuzzy set  operation (intersection, 
union and complementation, respectively) and the result of these operations is the value 
of  the  antecedent,  Ah.  Any  number  of  operations  can  fill  the  role  of  the  fuzzy  set 
operations, so long the intersection is a T-norm, the union is a complementary T-conorm 
and the complementation maps  x  to 1 – x  [30]. The most widely used pairs are (min, 
max) and (product, probabilistic sum). 
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2. Implication. For each rule h, the consequence fuzzy set, Bh, is reshaped by an inference 
operation ⊗ , resulting in the following fuzzy set:

Rh=Ah⊗Bh (5)

3. Aggregation.  The fuzzy sets representing the output of each rule are combined into a 
single fuzzy set, possibly taking into account different rule weights, which we will call 
Wh.  The aggregation function,  ∐ , should be a T-conorm. The resulting output fuzzy 
set is: 

R=∐
h

W h Rh (6)

3. Defuzzyfication.  The output fuzzy set resulting from step 2 is not yet suitable for use. A 
single deterministic value should be computed that represents the fuzzy set. Some of the 
most popular defuzzyfication methods are the mean value of maximum and the center of 
area.

3.4. Ptolemy II

Ptolemy II  [31] is  an  open-source  software  framework supporting  experimentation  with  actor-
oriented  design.  Actors  are  software  components  that  execute  concurrently  and  communicate 
through messages sent via interconnected ports. A hierarchical interconnection of actors form a 
model, depicted in  Figure 4. In Ptolemy II, the semantics of a model are not determined by the 
framework, but rather by a software component in the model called a director, which implements a 
model of computation. Ptolemy II supports dataflow, process networks, synchronous-reactive, finite 
state machines, discrete event and continuous time models.

Although this ability to design a full system from the composition of different models is one of the 
key features of the Ptolemy II software environment, we will mainly be making use of one of the 
models  of  computation  it  supports,  the  Discrete  Event  (DE)  model.  In  this  model,  two actors 
interact by interchanging messages placed on a time line, called events. Each event has a value and 
a time stamp, and actors process events in chronological order. The output events produced by an 
actor are required to be after or at the same time as the input events consumed.

The execution of this model uses a global event queue. When an actor generates an output event, 
the event is slotted into the queue according to its time stamp. During each iteration of a DE model,  
the  events  with  the  smallest  time  stamp are  removed  from the  global  event  queue,  and  their 
destination actor is fired. This differs from other usual time models such as continuous time or 
statistical simulation where each iteration makes an approximation of the system evolution during 
an associated time step.
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Figure 4: Visual representation of an actor model. Borrowed from Ptolemaeus [53]
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This is the model that best suits the description of the communication aspects of WSN, which will 
be the focus of this work, as it directly maps to the message passing processes of a communication 
network. Ptolemy II includes a set of tools, such as a graphical editor and several actors, called 
Visualsense which is intended to be used specifically for the design of wireless networks. One of its 
key features is the channel actor, which models some characteristics of a wireless channel, such as 
power loss or random losses, and implements the dynamic connection of actors transmitting and 
listening to the channel using their positions.

This is the main reason supporting our choice of Ptolemy II and Visualsense as the design and 
simulation tool that we will be using to model our different WSN scenarios. We have also valued 
the lack of low level specification that needs to be done in comparison to other network simulators 
such as NS-3.

3.5. Java

Java  [32] is  an  object-oriented  compiled  computer  language specifically  designed to  be  cross-
platform. Java applications are compiled to bytecode that can run on any Java Virtual Machine 
(JVM)  regardless  of  the  underlying  platform,  allowing  the  programmer  to  “write  once,  run 
anywhere”. This feature, combined with a familiar C++ like syntax and a big ecosystem of tools, 
frameworks and libraries has made it one of the most popular programming languages in use.

For the development of this project we will be using the version 1.6 of the Java language. Besides 
the highlighted characteristics above, the main reason supporting our choice is the straightforward 
integration with Ptolemy, which is completely written in Java and allows an easy extension or 
modification of its components.

3.6. UML

The Unified Modeling Language (UML) [13] is a well-known general-purpose modeling language 
designed to provide a standard way to visualize the design of a system. We will be using it as the 
main design tool for the development of this project.

3.7. Other tools

The coding phase of the development will be carried out with the aid of the IDE Eclipse  [33], 
which is specially designed to speed up the process of coding in Java, has special plug-ins for UML 
design  and  automatic  code  generation,  and  automatizes  the  compiling  process  of  the  project, 
removing the need for manually writing compiling scripts.

In order to maintain a control on the revisions of the project, the software Git [34] has been used. 
As the development process will be done for the most part by a single person, Git provides a very 
fast and easy to setup local repository, requiring almost no time to perform any operation on it. We 
will be backing up the repository with a synchronized copy uploaded to the service Dropbox [35].

Most of the data analysis and graphic representation will be carried out in the software environment 
R [36], one of the most popular tools for statistical computing.

Finally, this document has been written in the office suite LibreOffice  [37], with the help of the 
bibliographic database manager Zotero [38] and its LibreOffice plug-in.
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4. Design and development
In this section, we describe the design of the different scenarios for which we will develop self-
adaptive strategies and the framework we will use for the implementation of those strategies. In 
subsection  4.1, we develop a software implementation of the conceptual MAPE-K architecture, 
which we will use as a framework for the design of self-adaptive strategies. We will follow the 
standard software engineering practice of explicitly stating and analyzing the functional and non 
functional requirements of the software, and then proceeding with the design phase, which we will 
carry out from an object-oriented point of view. In subsection 4.2, we model two WSN scenarios: a 
sensor network aimed to the detection and measurement of a contaminant and a generic multi-hop 
communication network. Finally, in subsection 4.3, we design and model, following the MAPE-K 
architecture, a self-adaptive strategy for each modeled system based on fuzzy inference systems 
and we propose an optimization methodology on design time using the cross-entropy method.

4.1. Self-adaptive architecture

The purpose of a software architecture for self-adaptive systems is to provide a common framework 
for the development of the different self-capabilities of the system, giving them an individual entity 
and putting them on the same level as other elements such as data bases, communication protocols 
and interfaces during the analysis and design phase. We present here the requirements we want to 
fulfill in the scope of this project and the subsequent design and implementation phase.

4.1.1.Requirement analysis

We start by presenting a series of requirements for a self-adaptive architecture design library based 
on the MAPE-K architecture. These requirements have been established taking into account what 
purpose it serves and how the architecture accomplishes it.

Functional requirements

(FR1) Control loop design: The library must focus on the design and implementation of 
control loops. The library must produce a fully functional control loop based on the 
implementation of single steps (such as reasoning or planning steps) provided by the 
user, taking care of the necessary bookkeeping, such as chaining the steps together.

(FR2) Modules: The library must provide the user with the ability to design a control loop 
with  any  number  of  single  steps  (modules).  The  library  must  not  impose  any 
restriction on the number of the modules nor the expected functionality of any of 
them.  The  library  must  manage  the  input/output  relations  between  the  modules 
according to the specification of the user.

(FR3) Managed controllers: The library must allow a control loop to act on control loops. 
The  library  must  treat  control  loops  as  the  same  kind  of  entity  as  controlled 
elements, providing an homogeneous interface to both. It must allow the user to 
specify the actions allowed on a control loop, as well as what data can be sampled 
from it.

(FR4) Knowledge base: The library must provide a database for each control loop. The 
control loop modules must be able to store and retrieve data from the knowledge 
base. 

(FR5) Data types: The library must be able to handle any kind of data types as inputs, 
outputs  and knowledge of  a  control  loop.  This  includes  but  it  is  not  limited to: 
numeric  values,  nominal  values,  collections  of  values  and  arbitrary  objects 
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describing complex actions or sample data (such as a complete process scheduler or 
a topology description of a network). The library must be able to ensure that the 
declared data type of an attribute is equal to the data type of the value it is storing at 
runtime.

(FR6) Data flow modes: The library must  allow the data flow to be by demand or by 
observation. The user must be able to design a control loop or a module to receive 
inputs by either requesting data or listening to broadcasted data from its predecessor 
in the data flow.

Non functional requirements

(NFR1) Adding data types: The user must be able to easily extend the library to manage 
more data types. As the user may need the control loop to use complex custom data 
types,  the  design  of  the  library  must  allow  the  introduction  of  such  types  by 
implementing a simple wrapper with little functionality over the user data type.

(NFR2) Using middleware: The library must be designed and implemented in such a way 
that it allows an easy integration with middleware. As the library is intended to be 
used in systems that usually need a layer of middleware, it should be easy to adapt 
the library to use the middleware layer  for the communication between its  units 
(modules,  control  loops,  managed  elements  and  knowledge  bases).  It  should  be 
noted  that  it  is  not  required  for  the  library  to  be  already  integrated  with  a 
middleware, as different applications would use different ones, but it is required that 
the user only needs to implement simple wrappers for the components of the library 
in order to use it over any middleware.

4.1.2.Design

In order to fulfill the requirements above mentioned, an object oriented library has been designed.  
The functional requirements related to data management have been addressed in the data package, 
while the requirements related to the self-adaptive architecture itself have been addressed in the 
autoelem package.

The data package

The data package contains the classes needed to store and send typed data such as process sensor 
data or algorithm parameters. For an overview of all classes contained in the package, see Table 1. 
For a UML class diagram of the package, see Figure 5.

There are three classes and an interface related to the representation of data,  namely Instance, 
Attribute,  Instances  and  DataType.  All  of  the  other  classes  and  interfaces  are  related  to  the 
transmission of data, as well as reading and writing files.

Actual data is stored in an Instance object. Each single piece of data is represented by a double 
precision floating point number and an Instance object holds a group of heterogeneous data. An 
Instance  object  represents  the  row of  a  data  table,  while  the  table  itself  is  represented  by  an 
Instances object. The Attribute class holds information of each column of the table, such as name or 
type. Finally, the DataType interface is used to handle new custom data types.

Representing data as a Double for non-numerical data types works by first storing the real values 
into an array (held by an Attribute object), then storing the map from the value into its index in the 
array and finally storing the index as the value in the Instance object. This approach is memory 
efficient, but makes it more difficult to use it in a distributed environment.  This issue is partially 
addressed in the autoelem package implementation.
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The purpose of the DataSource and DataSink interfaces, as well as the abstract classes directly 
implementing them, is to provide a common interface for both ends of a link in a data flow* chain. 
This means that every process, manager, manager module, sensor, effector, etc, will* be either a 
data sink, a data source or both.  Sinks and sources may behave in the following two ways, as 
required by (FR6):

• By demand: reading and writing are performed when someone asks for it, ie, by using the 
read and write methods. This is the preferred mode for file management.

• By observation: reading is performed as the source is able to, for example as a process 
sensor is able to get its data from the process. Writing is performed as the sink receives data 
from the sources it's listening. This is the preferred mode for message passing.

The data  package already implements  a  number  of  basic  required  data  types:  real  and integer 
numbers, nominal values, string values and relational values (data matrix). Nominal values should 
be considered when a new data type representing a fixed set of values is needed (for example, a 
fixed number of distance functions), translating the nominal value to the actual value upon use.

If the new type doesn't have a fixed set of values (for example, parameterized distance functions), a 
DataType  implementation  will  suffice,  which  only  requires  the  implementation  of  an  equals 
function, as required by (NFR1). The comparison function will make sure that no values of other 
types are set for a given attribute. This works by comparing with a “representative” value used in  
the construction of the Attribute, so it is even possible to use the same class for different types 
(Instances  is such a class: different headers correspond to different data types). This meets the 
requirement (FR5).
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Class Description

DataSink Interface of a data sink

DataSource Interface of a data source

AbstractDataSource Base class for data sources

AbstractDataSink Base class for data sinks

DataType Interface for custom types

IObservable Basic interface of an Observable object

AttributeParsers
Parsers and writers for attribute declaration and values of attributes in string 
format

FileDataSink Class for writing data files in a modified version of ARFF format

FileDataSource
Class for reading a data set from a stream in a modified version of ARFF 
format

Instance Class for storing the values of an instance from a data set

Instances Class for storing a list of objects of type Instance

ObservableObject Base class for observable objects

Table 1: Overview of data package
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The autoelem package

This package contains the core classes of the architecture and implements all the communication 
logic between processes, controllers and controller modules. For an overview of the package, see 
Table 2. For a complete UML diagram, see  Figure 7. In  Figure 6, an overview of the data flow 
between the different components is depicted.

Class Description

AutonomicManager Class for running an autonomic manager.

AutonomicManagerEffector Effector of an AutonomicManager.

AutonomicManagerSensor Sensor of an AutonomicManager.

Effector Base class for effectors.

KnowledgeBase Class for storing all the knowledge from an AutonomicManager.

ManagedElement Class for managed elements.

ManagerModule Class for a manager module.

Sensor Base class for sensors.

Table 2: Overview of autoelem package

A process  (an industrial  robot,  a  drone,  a lighthouse,  a software system...)  is  represented by a 
ManagedElement and a Sensor/Effector pair. The job of the Sensor is to send data obtained from 
the process translated into the representation given in the data package, while the job of the Effector 
is to send data created by the controller to the process.

The control loop is represented by an AutonomicManager (meeting the requirement (FR1)), which 
is a ManagedElement by itself, providing a unified interface to act on and sense from a control loop 
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as  required  by  (FR3).  The  controller  is  composed  by  several  ManagerModule  objects,  which 
contain the actual controller logic and are not limited in number or function (required by (FR2)), 
and  a  KnowledgeBase  to  store  all  of  the  information  needed  by  the  controller  (including 
configuration data). As a ManagedElement, an AutonomicManager have a special Sensor/Effector 
pair (AutonomicManagerSensor and AutonomicManagerEffector) that is only able to sense or act 
over the KnowledgeBase data.

Communication between components of the architecture follows an event driven, message passing 
pattern. A source (data.DataSource) performs some computation (such as a Sensor getting process 
data  or  a  ManagerModule executing some clustering algorithm),  packs  some useful  data  in  an 
Instance object and then sends it to its observers.

The library implements the message passing logic so that it works efficiently even in a distributed 
environment. As stated previously, the implementation of the data package is memory efficient but 
not as good if used over a middleware: an Instance is only meaningful if it has access to the header 
(Instances),  so  it  can  translate  double  codes  into  actual  values,  so  the  full  header  should  be 
transmitted along with the Instance every time. If headers don't change, there's no need to send 
them over middleware, which is the default implementation of the communication logic given in 
the  classes  AbstractDataSource  (method  sendInstanceToObservers())  and  AbstractDataSink 
(method write()). This is the main difficulty to overcome in order to meet the requirement (NFR2), 
as the modular design of the library allows for easily implementing middleware wrappers over the 
main classes.

The knowledge base design deserves special mention, as it has been simplified from the original 
MAPE-k specification while still  meeting the requirement  (FR4).  In particular,  each module is 
given two entries on the knowledge base storing its configuration and its shared data. However, the 
module does not  share it  with other  modules  but  with (possibly)  other  elements  acting on the 
controller.  This is  done to enforce the design of modules in isolation from each other,  so new 
modules can be easily added, removed or swapped. Thus, data sharing between modules must be 
done by sending it over an input/output relationship.

In order to share the contents of the knowledge base and provide the means to sense from and act 
on  a control loop the library provides a special sensor/effector pair for an AutonomicManager: 
AutonomicManagerSensor  and  AutonomicManagerEffector.  This  classes  share  certain  attributes 
stored in the knowledge base of the controller and modify them on demand. The user may define 
what attributes are shared or acted on by constructing a map of data set indexes (assigned to each 
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knowledge entry of  each module)  into the desired attribute  indexes  of  each set.  With this,  the 
requirement (FR3) is fulfilled by the design of the library.
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Figure 7: UML class diagram for autoelem package
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4.2. Use-case scenarios

We describe here the modeling process of two software systems that will form the basis which we 
will  develop  new self-adaptive  strategies  upon.  In  the  first  one,  a  wireless  sensor  network  is 
designed for the detection of a gas contaminant. Accuracy and battery saving will be the primary 
objectives of the adaptive algorithms. In the second one, we model a multi-hop communication 
network over a wireless channel with power loss. In this case, the main focus of the self-adaptive 
strategy will be maintaining the connectivity on the network and reducing the battery consumption.

Before discussing the particular details of these scenarios, we present their core elements and some 
common characteristics of the systems.

Area of operations and environment

The system is restricted to a limited area, which will be considered two dimensional in order to 
simplify the modeling phase. It can optionally be discretized by considering a grid over the surface.

The environment accounts for any processes that can interact with the rest of the elements. For 
example, a dynamic physical property of the area of operations, such as temperature or humidity, 
can be sampled and affected by other elements of the scenario.

Nodes 

The system basic working component. Nodes are assigned tasks to perform locally that contribute 
to the overall goal of the system. It is not required for all nodes to do the same task nor that each  
node executes the same task all the time. However, we will consider simple homogeneous node 
systems, as heterogeneous systems require a more elaborate approach (see for example  [39] and 
[40] for a solution addressing the task-device mapping problem). The following properties are key 
for the chosen scenarios:

• Position and movement: each node has a defined position in the area of operations, which 
may change over time.

• Battery: each node has a battery supporting its actions. Although there are accurate models 
proposed in the literature (for example, see [41] for a lithium-ion battery model), they are 
intended to be used for circuit level simulations. Instead, very simple models that only take 
into account the most relevant tasks of the node would be used.

• Decision element:  in  order  to  improve the execution of its  assigned task,  as  well  as to 
improve the overall behavior of the system, each node must be able to execute some kind of 
decision mechanism. This element will be able to use the state of the node and the external 
information sensed in order to alter the operation of the node, both related to the internal 
operation of the node and the execution of the assigned task.

Base stations

Specialized nodes that serve as data collectors. Its position may be relevant for some scenarios, but 
they lack a battery model (it is assumed to be an infinite supply) and decision element.

Communications

Communication links will  serve as the edges of the network.  The main communication on the 
network will  be carried over a wireless lossy channel with power loss and collisions,  although 
secondary  communication can  be handled  by simpler  channels  if  it  is  out  of  the scope of  the 
scenario.  If  needed,  a  routing  protocol  suited  for  wireless  networks  will  be  part  of  the 
communication protocol.
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4.2.1.Gas detection sensor network

In this section we describe a gas detection scenario based on [42]. The purpose of this model is to 
be used as a proof of concept for both the MAPE-K based architecture design and the Ptolemy 
modeling framework. Therefore, the scenario will be heavily simplified when compared with a real 
case and the decision element will be very simple. 

The  most  important  parameters  of  the  model  are  discussed  in  this  section,  but  a  complete 
description of each parameter is provided in Appendix A.

Description

In this case, a network composed of a number of sensor nodes deployed in a region will try to 
predict  the  concentration  of  moving  gas  particles  in  the  air,  using  their  own  samples  and 
information gathered from the network. A base station will collect and merge the data, producing a 
single estimation from the network.

The possible objectives of the scenario are the following:

• Maximize the accuracy of the estimation of the gas concentration.

• Maximize the life time of the network. Alternatively, minimize node battery usage.

Area of operations and environment

The region of  AreaWidth  by  AreaLength will be divided in a squared grid, each cell of  CellSize 
side. Each cell will be named by a tuple (x,y), being x the coordinate in the west-east axis,  y the 
coordinate in the north-south axis and (0,0) the most north-west cell. Two elements of the scenario 
will refer to the grid:

• A node's position (occupying the north-west corner of the cell for all purposes).

• The gas concentration will be simulated and estimated for each cell.

The gas concentration will be part of the environment of the scenario. It will be represented as a 
function of time as ρq

(t)  (measured in μg/cm3), being q a cell from the area grid. Its propagation 
will follow the model presented in [42] and is given by the following equation:

ρ
q
(t+δ t)=eα δt

ρ
q
(t )+δ t B⋅V q

(t ) (7)

where α  is a coefficient related to the gas not dispersed by the wind, B=[αn ,αs ,αw ,αe ,1]  is a 
vector  of  coefficients  related  to  the  speed  of  the  wind  from  each  direction, 
V q

=[ρ
qn ,ρqs ,ρq e ,ρqw , uq

]  and uq  is the the amount of gas created in cell q over a unit of time. Gas 
concentration updates at intervals of RefreshPeriod seconds. Figure 8 represents the monitored area 
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and clarifies the choice of notation. In Figure 9 we show the final model of the scenario as seen in 
Ptolemy II / Visualsense.

Nodes

A node, also called Drone, is assigned the task of sampling the gas concentration in the cell it is 
located, computing an estimation of the concentration in neighboring cells based on his sample and 
data gathered from his neighbors, and sending his estimation to the base station and other nodes. 
The actor model of the Drone is depicted in Figure 10.

Regarding  the  estimation  process,  a  Drone will  use  the  same  gas  propagation  model  as  the 
environment (equation  (7)) in order to estimate the gas concentration at any given time for each 
cell.  In addition, it will be able to merge in new information about the gas concentration, such as 
samples made by itself and estimations from other  Drones. As complex data merging algorithms 
such as those discussed in [42] are beyond the scope of this project, a simple algorithm based on the 
confidence level of the estimation will be used. For each cell q and time t, we define the quality of 
the cell, Qq

( t) , such that:

1. Qq
( t)=0.95  if the cell  q has been sampled  by the  Drone  at time  t. The loss of quality 

accounts for a possible measurement error.

2. Let  Aq  be  the  set  of  adjacent  (not  diagonally)  cells  of  q  and  Q̃q
( t+δ t)=e−λ δ t Qq

(t )  a 
temporal decay applied to the quality of a cell, with λ>0. Then,

Qq
( t+δ t)=

Q̃ q
(t+δ t )+∑r∈Aq

Q̃ r
(t+δ t)

1+∣Aq∣
(8)

if the cell has not been sampled at the given time. This is just the arithmetic mean of the  
quality of the measures used in equation (7) when estimating the gas concentration.

We can now define a simple merging algorithm as the weighted average of the estimations. Thus, 
let  Q ' q

(t)  be the quality of the estimation received by other Drone and ρ ' q
( t)  the estimation of 

said Drone. Then, the merged estimation and quality is given by:
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Figure 9: Top level of the actor model of the gas propagation scenario
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{ρ̄q
(t+δ t)=

ρ
q
(t+δ t)∗Q̃q

(t+δ t)+ρ ' q
(t+δt )∗Q̃ ' q

(t+δ t)

Q̃(t+δ t)q+Q̃ ' ( t+δ t)q if Q̃ ' ( t+δ t )q>ϵ

ρ̄
q
( t+δ t )=ρq

(t+δ t) otherwise

(9)

{Q̄q
(t+δ t)=

Q̃q
(t+δ t)+ Q̃ ' q

(t+δ t)
2

if Q ' q
( t+δ t)>ϵ

Q̄q
(t+δ t)=Q (t+δ t)q otherwise

(10)

Where ϵ  is the minimum required quality. It should be noted that the last update for the receiver 
and the sender may have happened at different times, so different update intervals should be used. 
After the merge is done, the Drone will update its estimation and quality tables to the merged ones.

Besides the estimation mechanism, the other relevant Drone process we will model in this scenario 
will be battery use. The battery model considered for the nodes will be based on the assumption 
that the only relevant, battery consuming tasks are sending, receiving and listening for messages, 
and sampling the gas concentration. The state of the battery is represented by the ratio of available 
energy to total energy, thus ranging from 1 (full battery) to 0 (empty battery). Each of the actions 
described  above  reduce  the  battery  in  the  following  amount  (communication  energy  usage 
simplified from [43]):

• Sending a N byte message: ByteTxPower x ByteTxTime x N.

• Receiving a N byte message: ByteRxPower x ByteTxTime x N.

• Listening  t seconds for messages:  t x ListenPower. No sleep time was considered for this 
model.

• Sampling the gas concentration: SamplePower x SampleTime.

Base stations

There  will  be  only  one  base  station  for  this  scenario,  called  the  Antenna.  It  will  gather  the 
estimations the nodes send periodically and update its own estimation with the data, based on the 
same  merging algorithm  the  nodes  use.  This  estimation  will  be  used  to  compute  several 
performance indexes for the simulation.

Communication

Two communication channels are defined for this network: one handles node communication and 
the other is used for Drone-Antenna communication. Both have the following characteristics:

• The channels are wireless.

• The power loss is modeled by a simplified Friis transmission equation [44]. The loss factor 

in this model will be A E
1

4π R2
, where A is the receiving surface, E is the efficiency of the 

receiving system and R is the distance between sender and receiver. The received power will 
be the transmission power times the loss factor.

• If the received power is less than a given threshold, the message is not received.

• Successful  messages  can  collide  if  the  receiving  times  overlap.  In  this  case,  a  single 
message may be received if throughout its duration its power exceeds the sum of all other 
powers by at least a threshold given in decibels.
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• Every message has a chance to be lost because of unidentified reasons, with a probability 
given by LossProbability.

Drone communication is restricted to one hop links, while Drone-Antenna communication is 
restricted to messages from Drones to the Antenna. As part of the communication, a very simple 
neighbor detection will be used: a node will add the sender of a received message to the neighbor 
list and will remove it if the decision element has been executed NeighboursTimeout times since the 
last received message.
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Figure 10: Actor model of a Drone
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4.2.2.Communication network

In this section we describe a second scenario which will be focused on the communication process 
of  a  network.  This  is  the  main  testing  scenario  of  the  project  and features  a  more  elaborated 
decision element. Appendix B provides a full description of all the parameters of the model along 
with some minor details skipped in this section.

Description

For this scenario, a number of nodes deployed in a region will form a communication network with 
a multi-hop topology that will try to send some data to a special node, the base station. A diagram 
of the system is depicted in Figure 11. The kind of information sent is left unspecified on purpose, 
as we will be only concerned about the communication process itself.

Three goals have been defined for the scenario:
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Figure 11: Overview of the communication network. Two nodes are connected if and only if they  
share a bidirectional link (depicted in solid lines with arrows). An unidirectional link (dashed line  

with an arrow) is not allowed for communication

Figure 12: Model of the system in Ptolemy II / Visualsense. At the bottom left corner, a network  
topology is represented
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• Maximize the number of nodes that are able to transmit data to the base station. 

• Maximize the life time of the network. Alternatively, minimize node battery usage. 

• Nodes should start saving battery when low.

Area of operations and environment

The network will be deployed in a region of AreaWidth by AreaLength. No grid will be defined for 
the region in this scenario and no other environment system will be modeled. The top level model 
of the scenario is shown in Figure 12.

Nodes

The only tasks assigned to the nodes in this scenario are to send messages to the base station and to 
relay messages sent from other nodes. The first task is performed with a mean interval time of 
MeanSendInt. The second task is fully described in the Communications subsection. A detail of the 
model of a node is depicted in Figure 13.

The battery model, shown as it is represented in Ptolemy II / Visualsense in Figure 14, considered 
for the nodes will be based on the assumption that the only relevant, battery consuming tasks are 
sending and receiving messages. The state of the battery is represented by the ratio of available 
energy to total energy, thus ranging from 1 (full battery) to 0 (empty battery). Each of the actions 
described above reduce the battery in the following amount (simplified from the gas concentration 
scenario):

• Sending a message: MsgSendEnergy x _EmissionPower.

• Receiving a message: MsgRcvdEnergy.
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Figure 13: Detail of the actor model of a node
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Base stations

A silent, non battery consuming node will act as the base station and will be the destination of the 
messages sent from the other nodes. No other tasks besides counting the received messages will be 
performed by it.

Communications

Only one channel will be required to handle the communication process of the network. It will be a 
wireless channel with the same characteristics as the channels described in the  Communications 
subsection of section 4.2. However, the topology of the net will be multi-hop, which means that a 
routing protocol will be needed. 

Several routing protocols specifically designed for mobile ad hoc networks, such as AODV [45] or 
OLSR [46], have been proposed. These routing protocols are either on-demand or table-driven. On-
demand routing protocols find a route by flooding the network with route request whenever a route 
to a destination is demanded. Conversely, table-driven protocols maintain a list of destinations and 
their routes by periodically distributing routing tables throughout the network. We will restrict our 
selection  to  table-driven  protocols,  as  on-demand  protocols  are  not  able  to  detect  all  of  the 
neighbors of a node, which we will need in our approach.

The  routing  protocol  which  will  be  used  in  this  scenario  is  based  on  the  table-driven  OLSR 
protocol. This protocol has been selected because of its simplicity and because it is based on the 
well known OSPF protocol [47]. It uses hello and topology control (TC) messages to discover and 
then disseminate link state information throughout the mobile ad hoc network. Individual nodes use 
this  topology information to  compute next hop destinations  for all  nodes in  the network using 
shortest hop forwarding paths.
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Figure 14: Detail of the actor model of the battery
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4.3. Self-adaptive strategies

We proceed here to define the self-adaptive strategies used for each scenario. In the case of the gas 
propagation sensor network,  we design a  very simple strategy aimed to test  the feedback loop 
architecture. On the other hand, the decision element for the communication network will be more 
elaborate,  designed  to  maintain  a  desired  level  of  connectivity  while  reducing  the  energy 
consumption of the network.

4.3.1.Gas propagation scenario

As previously discussed,  the decision element in this scenario will be simple,  given that its main 
purpose  is  to  check  the  design  and  implementation  of  the  architecture.  The  scenario  will  be 
modeled so that each node will execute a decision algorithm with some of the following inputs and 
outputs:

• Possible  inputs:  battery  level,  gas  estimation,  number  of  collisions  detected,  number  of 
neighbors.

• Possible outputs: Drone  transmission interval,  Antenna  transmission interval,  gas sample 
interval, decision process execution interval, transmission power.

We will be using a single input, single output fuzzy controller, with the battery level as input and a 
multiplier to adjust an initial sample interval, SampleInterval, as output.

The design of the controller under the MAPE-K architecture will demonstrate how it is not always 
possible to clearly identify its four functions. Below it is described a possible design, depicted in 
Figure 15, while a complete description of a general fuzzy controller like the one we will be using 
is available in section 3.3.

• Monitoring:  a  single  value  will  be  computed  in  this  phase:  the  difference  between  the 
battery level and the critical battery level, averaged with the previous difference. This is 
done in order to minimize the impact of an erroneous value being supplied to the controller.

• Analysis: in a fuzzy control system, the process of computing the membership functions of 
each input and output variable (or fuzzyfication) acts as the analysis phase of the MAPE-K 
architecture. In this particular instance, the fuzzyfication process is resumed in Table 3.
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Figure 15: Block diagram representing the adaptive system system. Each major component is  
named after its base class according to the design of the feedback loop architecture described in  

section 4.1.2. Dotted arrows represent the use or storage (possibly after a transformation) of  
knowledge base values.
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• Planing: the evaluation of the rules in  Table 4 and defuzzyfication of the output variables 
using the choice of operations in Table 5 constitutes the planing phase. It should be noted 
that for a fuzzy controller it is not clear where the analysis phase ends and the planing phase 
starts, as the change request could be the output of the evaluation of the rules. We have 
chosen to split it into two phases to further test the correctness of the implementation, but 
the whole fuzzy control system will be considered a single analysis/planing phase for all 
subsequent decision element designs.

• Execution: this phase will be left empty, as the execution is a straightforward parameter 
change.

The output of the controller will be sent to the Effector of the Drone,  which will obtain the final 
sample interval multiplying the controller action by the initial SampleInterval.

Variable I/O Range Partition Distribution

“EnergyError” I [-1 1] “LL” (Low Level) Trapezoidal [-2 -1 -0.1 0.1]

“HL” (High Level) Trapezoidal [-0.1 0.1 1 2]

“SampleFactor” O [0 5] “NV” (Normal Value) Constant [1]

“SV” (Slow Value) Constant [2]

Table 3: List of variables and fuzzy sets

Rule Name Rule

RF1 IF (EnergyError IS LL) THEN (SampleFactor IS NV)

RF2 IF (EnergyError IS HL) THEN (SampleFactor IS SV)

Table 4: Rule set. All rules have weight 1

Operation Function

And Product

Implication Product

Defuzzification Weighted Average

Table 5: Operation choice
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4.3.2.Communication network scenario

The main objective of the scenario is to maximize the number of nodes connected to the base 
station. As a full study of the possible approaches to this objective is out of the scope of this project, 
we will take an approach that suits the control theory methodology developed in this work, fully 
described in [48]. In this case, the connectivity objective is achieved by controlling the number of 
neighbors of the nodes in the network.

Thus, when also taking into account the other objectives of the scenario, the goal of the decision 
element in this scenario is twofold: on the one hand, it will be maintaining the desired connectivity 
level of the net, while on the other hand, it will reduce the energy usage when the battery level is 
below a defined threshold. In order to accomplish these objectives, the following input and output  
variables have been identified for a decision algorithm:

• Communication  Range  (CR):  the  maximum  distance  from  the  emitting  node  at  which 
another node is able to receive its messages. This will be the only output of the decision 
algorithm. By changing this parameter of the node, the controller will be able to affect both 
the connectivity of the net (as the number of neighbors of the node will be affected) and the  
battery  consumption  (as  the  power  needed  to  send  a  message  is  proportional  to  the 
communication range).

This variable is constrained by a lower and an upper bound, representing the fact that the 
communication circuit  of the node needs a minimum power to emit and allows up to a 
maximum power for the emission. Usually the communication power is not a continuous 
variable in a real system but a discrete variable, allowing only a few preset power values to 
be used. We have decided not to restrict the possible values of the variable too much, setting 
up a step parameter,  Δcrmin, such that the variation of the communication range should be 
done in a multiple of this parameter.

Finally, as previously discussed, the power loss over distance is known for this model. Thus, 
the equation relating the emission power and the communication range can be established as 
the following: 

PT=PA E
1

4πCR2 (11)

Where P is the emission power, CR is the communication range, PT is the power threshold 
(PowerThreshold) and A and E are the area and the efficiency of the antenna respectively 
(AntennaArea and AntennaEfficiency).

• Battery level (E): the ratio between available energy and total energy. This will be used as 
an input  variable  to  identify the instant  the battery level reaches the critical  level. It  is 
continuous and between 0 and 1.

• Node Degree (ND): the number of neighbors of the node, as defined in the previous section. 
This will be used as an input variable. The node degree is related to the connectivity level of 
the net in the following sense: as the communication network is multi-hop, more pathways 
between nodes reduce the chance of two nodes not being connected at some point due to 
some unpredictable problem, thus improving the connectivity. But the number of pathways 
between nodes is directly related to the node degree of each node (as discussed in [48]), 
making it an easier to compute input variable. It is constrained to be a non negative integer 
variable.

• Connected (C): a boolean value indicating the presence or absence of a path from the node 
to the base station.
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The node degree is directly controlled by the value of the communication range, as we can see in  
Figure 16.  If  this  relationship is  known,  the connectivity  problem is  easily  solved:  the desired 
connectivity is defined by the desired node degrees of each node and the communication range is 
set to the corresponding value. However, this is not usually the case. A number of factors, such as  
the influence of the communication range of other nodes in the node degree of a given node, or the  
unpredictable loss of a node, make the relationship between the two variables impossible to define.

The alternative is to design a control system that performs a self-adaptation of the communication 
range  against  the  dynamic  changes  of  the  network.  A basic  feedback  control  loop  will  be 
responsible  for  the  dynamic  adjustment  of  the  node  degree  to  the  desired  reference  value  by 
changing the communication range accordingly. This control loop will be designed following the 
MAPE-k architecture and it is depicted in  Figure 17 as the AutonomicManager 1. The functions 
performed by each module are defined as follows:

• Monitoring  TM1:  this  module  computes  the  deviation  of  the  node  degree  from  the 
reference:

e ND(k )=NDR(k )−ND(k ) (12)

NDR is the node degree reference,  stored in the knowledge base. In order to avoid sign 
oscillations caused by a physical impediment to reach the exact reference node degree, for 
example  when several  neighbors  are  at  the same distance  from the  node,  a  conditional 
activation of the next module is performed in this monitor. If |eND|  is less than a threshold 
named ξND, the execution of this loop is aborted and no changes will be made to CR.

As the node should always try to be connected to the base station, regardless of the value of 
eND the monitor will trigger the next module and set the error to ξND if the node has no path 
to the base station. In Table 10, these two rules are stated more precisely, named Tol1 and 
Seek, respectively.

• Reasoning  TR1: this module groups the functions assigned to the analysis and planning 
modules of the MAPE-k architecture. In this stage, the function of decision-making FDM1 
is  applied  to  a  normalized  eND computed  in  the  monitoring  phase,  and  its  output  is 
denormalized before passing it to the next module. More precisely:

e1(k )=k ND e ND(k ) (13)

Δu1(k )= f DM1(e1(k )) (14)

Δ cr (k )=k crΔu1(k ) (15)
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Figure 16: Visualization of the relation between the communication range and the node degree
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In  these  equations,  kND and  kcr are  normalization  factors  that  can  be  derived  from the 
nominal parameters of the controller  ND, which represents the desired value of the node 
degree  when  the  battery  is  exactly  at  the critical  level,  and  Δcr,  which  represents  the 
communication range variation rate, as follows:

k ND=1/ND , kcr=Δ cr (16)

The function of decision-making could be as simple as the sign of e1 and zero if the input is 
zero, but then it would not take into account the inherent uncertainty of the input variable as 
a highly dynamic and unpredictable system. In order to cope with this, we will use a fuzzy 
control system, whose fuzzy partitions of the input space address precisely the uncertainty 
problem. In this case, three fuzzy sets will be used: negative values (NV), zero values (ZV) 
and positive values (PV). The output space will be partitioned as well in three fuzzy sets: 
negative  change  (NC),  zero  change  (ZC)  and  positive  change  (PC).  The  membership 
functions defined for each fuzzy set are described in Table 6. The trapezoidal function has 
been selected over other well known functions in the literature (such as Gaussian, triangular 
or generalized bell [49]) due to its expressiveness and simplicity.

It is worth mentioning that the partition of the input space is not symmetric. This is due the 
difference  in  reaching  the  reference  node  degree  while  increasing  or  decreasing  the 
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Figure 17: Controller modules and tasks. Each major component is named after its base class  
according to the design of the feedback loop architecture described in section 4.1.2. Dotted arrows 

represent the use or storage (possibly after a transformation) of knowledge base values.
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communication range. The latter is more likely to be a waste of power, as the same node 
degree could be reached with a lower value of the communication range. Even though this 
solution does not solve the problem of finding the best value for a given node degree, it  
preserves the simplicity of the design while improving the behavior of the controller when 
facing this issue.

The remaining elements of the fuzzy controller,  namely the rule base and the operation 
choice are defined in  Table 7 and  Table 8,  respectively.  For a detailed description of a 
general fuzzy control system, see section 3.3. The graph of the fFDM1 function is depicted on 
the left side of Figure 18. 
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        Instance config = getConfigFromKB().getLastInstance();
        Instance state = getDataFromKB().getLastInstance();
        Instance out = new Instance(data);
        Instance state_new = new Instance(getDataFromKB());

        double cr = state.getDouble("cr");
        double CR_0 = config.getDouble("CR_0");
        double CR_max = config.getDouble("CR_max");
        double CR_min = config.getDouble("CR_min");
        double dcr_min = config.getDouble("dcr_min");
        double dcr = instance.getDouble("dcr");

        cr += dcr;

        if (CR_0 + cr > CR_max) {
            cr = CR_max - CR_0;
        } else if (CR_0 + cr < CR_min) {
            cr = CR_min - CR_0;
        }

        state_new.setValue("cr", cr);

        removeInstanceFromKnowledge(dataIndex, 0);
        addInstanceToKnowledge(dataIndex, state_new);

        double CR = CR_0 + ((int) cr / dcr_min) * dcr_min;
        out.setValue("CR", CR);
        sendInstanceToObservers(out);

Listing 1: Actuator TA1 processing function

Figure 18: Graphs of the function described by each fuzzy inference system. On the left side, fFDM1 is  
depicted, while on the right hand side, fFDM2 is shown
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• Actuator TA1: this module holds the information of the previous increments (stored in the 
knowledge  base) and  provides the  process  (the  node  communication  system)  with  the 
adjusted communication range. In particular, the output of the module  is  defined by the 
following equations:

cr (k )=cr (k−1)+Δ cr (k ) (17)

CR*
(k )=[ cr (k )+CR0

Δ cr min
]Δ cr min

CR(k )={
CRmin , CR*

(k )<CRmin

CR*
(k ) , CRmin≤CR*

(k )≤CRmax

CRmax , CR*
(k )>CRmax

(18)

Three nominal parameters are used by this module:  CR0 represents the initial value of the 
communication range, CRmin represents its minimum allowed value and CRmax represents its 
maximum allowed value.  CR*  is defined to be a multiple of the minimum variation range. 
An example code of this module is listed in Listing 1.

Variable I/O Range Partition Distribution

“e” I [-2 2] “NV” Trapezoidal [-4 -2 -0.1 0]

“ZV” Trapezoidal [-0.1 0 0 1]

“PV” Trapezoidal [0 1 2 4]

“du” O [-2 2] “NC” Constant [-1]

“ZC” Constant [0]

“PC” Constant [1]

Table 6: List of variables and fuzzy sets of FDM1

Rule Name Rule

R1 IF (e IS NV) THEN (du IS NC)

R2 IF (e IS ZV) THEN (du IS ZC)

R3 IF (e IS PV) THEN (du IS PC)

Table 7: Rule base of FDM1 and FDM2. All rules have weight 1
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Operation Function

And Product

Implication Product

Defuzzification Weighted Average

Table 8: Operation choice of FDM1 and FDM2

Another control loop will be used to accomplish the critical battery level objective. In this case, the 
decision element will change the desired connectivity of the network by changing the node degree 
reference  of  the  previous  controller.  In  Figure  17,  the  control  loop  is  depicted  as  the  
AutonomicManager  2,  as well  as its  relationship with the primary control  loop. The controller 
functions are similar to the primary one:

• Monitoring TM2: in this case the monitoring module computes the deviation of the battery 
level from the critical level, Ecr:

eE (k )=E cr−E (k ) (19)

In a similar manner as the monitor 1, we refrain from further evaluating the controller if the  
deviation is, in this case, more than a threshold named ξND (ie, we only evaluate this loop if 
we are in the transition phase). Contrasting with the module Monitoring 1, the purpose of 
this  rule is not to avoid oscillations but to reduce the number of full evaluations of the 
controller. This rule is called Tol2 in Table 10.

• Reasoner TR2: this module follows the same design as Reasoner 1, although in this case the 
output will not be used as accumulating variations but as an absolute variation:

e2(k )=k E e E(k ) (20)

Δu2(k )= f DM2(e2(k )) (21)

Δ nd (k )=k Δ ndΔ u2(k ) (22)

For this reasoner, the nominal parameters are Ecr and Δnd, which represents the node degree 
variation rate. Then the normalization constants are:

k E=2/Ecr , k Δnd=Δnd (23)

The function of decision-making, FDM2, selected for this reasoner is again a fuzzy control 
system. In this case, the choice is made as a design simplification as the characteristics of 
this variable were not fully understood before the control system was planned. The design 
of  the  fuzzy  controller  is  the  same  as  FDM1,  the  only  change  being  the  membership 
functions of the input fuzzy sets, which in this case make the partition symmetric. See Table
9 for the description of the variables of FDM2. The rule base and the choice of operations 
are the same as the ones of FDM2, described in Table 7 and Table 8 respectively. Equation 
(21) is plotted on the right side of Figure 18.

• Actuator  TA2: for  this  control  loop,  the actuator  does  not  need to accumulate  previous 
changes. Thus, the output of the actuator is the sum of the variation to the desired value of 
the node degree when the battery  is exactly at the critical level,  ND, respecting a lower 
bound set by design of the network, NDmin:
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NDR
*
(k )=ND+Δnd (k )

NDR (k )={ NDmin , ND R
*
(k )<NDmin

NDR
*
(k ) , ND R

*
(k )≥NDmin

(24)

Variable I/O Range Partition Distribution

“e” I [-2 2] “NV” Trapezoidal [-4 -2 -1 0]

“ZV” Trapezoidal [-1 0 0 1]

“PV” Trapezoidal [0 1 2 4]

“du” O [-2 2] “NC” Constant [-1]

“ZC” Constant [0]

“PC” Constant [1]

Table 9: List of variables and fuzzy sets of FDM2

There is a classic issue in control systems that has not been addressed in the design of the controller 
which we will discuss here: the saturation of the output to the maximum allowed value [50]. In the 
modeled network, the saturation of the controller is commonly reached in the last phase of the 
network life cycle, when several nodes are out of functioning due to battery depletion. However, 
this  is  not  the  only  scenario  where  saturation  is  reached,  as  random  losses  of  nodes  or  bad 
configurations of the controller could lead to the same situation. In these scenarios, the node degree 
of a node is less than the reference even when the controller increases the communication ranges 
until it saturates. This situation is not desirable because the node is consuming unnecessary energy.

In order to deal with this issue, we first note that he system is saturated when e ND(k )>0  (meaning 
the node degree is less than the reference) and CR f (k )≥CRmax  where CRf(k) is the average of CR 
corresponding to times k and k-1. The first condition is driving the controller to endlessly increase 
the communication range, so we start by exceptionally decreasing the reference to the current value 
of the node degree following the next updating rule:

ND R
*
(k )=ND R(k−1)−Δ NDmin

NDR (k )={ NDmin , ND R
*
(k )<NDmin

NDR
*
(k ) , ND R

*
(k )≥NDmin

(25)

Where Δ NDmin  is the minimum step value between two consecutive discrete values of ND. After 
this, the controller will no longer try to increase the communication range, but it will not reduce it  
either,  wasting  energy.  Thus,  we  force  the  controller  to  perform a  decreasing  step  by  setting 
e ND(k )=−ξND  (allowing  the  execution  of  the  reasoner  by  the  rules  of  Monitoring  1)  and 
proceeding with the evaluation of the control loop. We describe the rule, named Sat, in Table 10. 
The  same discussion  in  Reasoner  1  about  the  efficiency  of  the  solution  applies  here,  but  we 
consider it to be enough for the purpose of this project.

It should be noted that the solution described is, in fact, a complete control loop that should ideally 
be designed under the MAPE-k architecture. However, this would add a lot of complexity to the 
design, as it would be interleaved with both the primary and the secondary control loops (it would 
need inputs from the primary loop while its output would be the same as the secondary loop). In 
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addition, the typical scenario where the saturation problem arises is outside the stable phase of the 
network,  ie,  between  the  end  of  the  initialization  and when nodes  start  to  run  out  of  battery. 
Designing a controller with a correct behavior in this region is a non trivial problem in control 
theory (see [50]) lying beyond the scope of this project, making the simple ad hoc solution valid for 
our purposes. 

Rule Condition Action

Sat e ND(k )>0∧CR f≥CRmax Apply Equation (25) and set e ND(k )=−ξND

Seek e ND(k )<0∧¬C Set e ND(k )=ξND

Tol1 ∣eND (k )∣≥ξND∨ND<NDmin∨¬C Continue with TR1

Tol2 ∣eE(k )∣≤ξE Continue with TR2

Table 10: Summary of monitor decision rules

Optimization of decision element parameters

The last step of the control system design process is the adjustment of the parameters. The objective 
of this phase is to find the best configuration of the designed controller according to some selected 
performance indexes. Two fundamentally different sets of parameters can be defined, each related 
to a specific objective when targeted by the adjustment process:

• The nominal values of system variables: system variables are considered those that allow 
characterizing the functionality of the system regardless of the use of a controller, such as 
communication range, node degree or critical energy level. The nominal values for those 
variables are the values tuned by the system designer and selected under a certain criteria to 
provide the desired behavior of the system (for example, low energy consumption or high 
connectivity).  The  adjustment  procedure  is  performed  over  the  open  loop  system (i.e., 
without feedback control) and the  performance indexes are defined to quantify the behavior 
of the controlled system.

• The feedback control  algorithm parameters:  those strictly  related to  the behavior  of the 
controller, such as change rates or tolerances. In this case, the procedure uses the closed 
loop system configured  with the  optimized nominal  values  of  system variables  and the 
performance indexes measure the behavior of the controller. Common indexes are related to 
the evolution of the error, such as the sum of squared errors.

In the remaining of this section we thoroughly describe the methodology for the adjustment of the 
nominal values of system variables, which can be resumed in the following steps:

1. Model the desired behavior of the system as an open loop system parameterized by a set of 
system variables. This will be the reference the controller tries to follow.

2. Define a performance index that measures how well the system accomplishes the objectives 
set for it.

3. Execute an optimization algorithm over the parameter set. The model developed in step 1 
will be used to obtain the performance index associated with each configuration.

4. Set the values of the controller parameters derived from the nominal values of the system 
variables.
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The open loop design for this scenario has already been discussed: a desired connectivity level is 
defined (in terms of the communication range of each node) and is switched to another connectivity 
level after the node reaches a critical battery level. More precisely:

• At time 0, the battery of the node i is full and the initial communication range is set to CR0
i.

• At some time  tcr,  the  battery  level  of  the  node  i  reaches  the  critical  value  Ecr
i and the 

communication range is  set  to  CRF
i
=cr F

i
⋅CR0

i , 0<cr F
i
<1 ,  which will  reduce the energy 

consumption of the node until the depletion of the battery.

A visual representation of this behavior is depicted in Figure 19. The selected system variables for 
each node i are CR0

i, Ecr
i and crF

i. The union of the system variables of every node will be the target 
of the optimization algorithm. In order to define the associated performance index, we must recall 
that the goals of the system are to maintain a good connectivity level (related to the paths between 
nodes and the base station) and to use a low amount of energy. The first objective can be measured 
by an index related to the number of messages received by the base station, as each one can be 
thought of as the evidence of a path from some node at some instant. The second objective is easily 
mapped to the rate of energy usage of the network. Then, the performance index is defined as:

J E=αE∑i=1

n E i

T i

J M=αM M BS
T

J=w E J E−wM J M

(26)

Where Ei is the total energy consumed by the node i, Ti is the time the node has been active (until 
battery depletion),  MT

BS  is the total number of messages received by the base station and n is the 
number of nodes. The coefficients αE and αE normalize each cost index in order to make its units 
agree and its order comparable. In this case, the unit selected is seconds and the factors are defined 
as follows:

α E=
Ėmax

T max

αM=n νM

(27)
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Figure 19: Graphical representation of the desired theoretical behavior of the energy level and the  
communication range for each node



4.Design and development

Here, Emax and Tmax are the maximum rate of energy consumption of the whole net and its maximum 
life time respectively, while  νM is the expected value of the message emission frequency of the 
nodes.

The performance index defined is meant to be minimized by the optimization algorithm. There are 
several good candidate algorithms which can be employed for this step.  According to previous 
experiences [51] cross entropy algorithm [26] is simple and easy to implement. It also has a good 
performance  and  low  computational  resources  when  solving  multidimensional  problems  [52]. 
Section 3.2 provides a brief description of the algorithm.

After the optimization process is executed, a number of parameters of the control system can be set 
from the optimized nominal values. First, the corresponding node degrees,  ND0

i and NDF
i, for the 

communication ranges,  CR0
i and  CRF

i, should be obtained from the model. Then, the following 
parameters can be set:

NDi=
ND0

i
+NDF

i

2

Δ nd i=
ND0

i
−ND F

i

2

(28)

The critical energy level nominal value, Ecr
i, does not need any modifications before being used as a 

parameter.

Finally, the remaining parameters of the control system should be adjusted. If the parameters are to 
be optimized, a similar methodology to the one explained above should be used. Instead of the open 
loop system, the closed loop system with the optimized nominal values should be used, and instead 
of a cost index related to the performance of the system against its goals, a cost index related to the 
behavior of the control system should be defined.

However, we have decided to manually tune the remaining parameters because of the low impact 
this step would have on the objectives of this project.
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5. Test and results
In this section we execute several simulations of the scenarios described in section  4, using the 
Ptolemy II / Visualsense models developed. Our main focus will be measuring the self-adapting 
capabilities of the system, which we will do by comparing the performance of the system when the 
decision element is on and off. The performance of the system will be quantified using performance 
indexes suitable for each case.

In subsection 5.1 we conduct a shallow study on the gas propagation scenario as a proof of concept 
of the methodology followed in this project.  In subsection  5.2 we perform several tests on the 
communication network scenario. We start by analyzing the automatic optimization process of the 
system  values  using  the  cross-entropy  method.  Then,  we  assess  the  performance  of  the  self-
adaptive strategy, as well as the impact of its parameters.

5.1. Gas propagation scenario

A single test will be performed on this scenario, comparing the performance of the network with 
and without the execution of the decision element. The objective of this test is to serve as a proof of 
concept of the kind of tests that we will be performing on the next scenario. Specifically, we want 
to ensure the simulating capabilities of the model built in Ptolemy II in section 4.2.1, as well as the 
implementation of the feedback loop architecture designed in section 4.1.

We first start by setting the parameters of the scenario as shown in Table 11. Refer to Appendix A 
for a full description of each parameter. The position of the network drones is shown in Figure 9.

Parameter Value

AreaWidth 600 m

AreaLength 600 m 

GasAlpha -12.0/800.0 s-1

CellSize 60 m

Wind [-15.0/800.0, 
1.0/800.0, 
2.0/800.0, 
7.0/800.0] s-1

Source 10  by  10  zero 
matrix with (0,2) 
entry set  to 70.0 
μg/(s cm3)

ChannelRange Infinity

PropagationSpeed Infinity

LossProbability 0.0

ByteTxTime 1.0 s

DtDMsgLength 1

DtAMsgLength 1

Parameter Value

AntennaReceptionThreshold 1.0E-7 W

AntennaRecoveryThreshold 3 dB

AntennaLocation [-200, 700]

DroneAlpha -12.0/800.0 s-1

GasSampleCoef [-15.0/800.0, 
1.0/800.0, 
2.0/800.0, 
7.0/800.0] s-1

NeighboursTimeout 10

InitialComBatteryPower 1.0

SampleTime 1.0 s

SamplePower 0.01

ByteTxPower 0.0001

ByteRxPower 0.0001

ListenPower 0.0
Table 11: Parameters of the simulation for the  

Gas Propagation scenario

Then, we execute the simulation of this network configuration two times: once without the control 
algorithm and a second time with the control algorithm active on each drone. The performance is 
based on the goals defined for the scenario in the design section, ie, maximizing the estimation 
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accuracy and the lifetime of the network. We define, for a gas concentration arranged in a matrix G 
(with the same coordinates as described in section 4.2.1) and an estimation matrix Ĝ, the following 
performance index:

Relative Error=
∥G−Ĝ∥∞
∥G∥∞

(29)

The results show an increase on the lifetime of the network of a 40%, while only increasing the 
relative error of the estimation in 0.046 in average. Figure 20 depicts the evolution of the estimation 
error over time, showing the increase in lifetime and the slight loss in estimation accuracy. The 
behavior of the control system can be seen in Figure 21 and Figure 22, which show the expected 
decrease in the sample interval as battery runs out and the decrease in battery consumption rate 
respectively.

We will not be making further observations of the results here, nor will we execute the simulation 
with other sets of parameters. The main objective of learning and testing the capabilities of the 
Ptolemy II software regarding WSN simulation, and testing the implementation of the MAPE-K 
architecture has been achieved,  although the resulting model  is  too complex to be approached 
within the scope of this project.
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Figure 20: Relative error of gas estimation over time. Graph stops when all drones run out of  
battery
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Figure 21: Sample interval against battery level for drone 1

Figure 22: Battery level over time for each node



5.Test and results

5.2. Communication network scenario

In this scenario we want to test the complete methodology that has been proposed throughout this 
work. We first start by analyzing the performance of the optimization algorithm for the adjustment 
of the parameters of the control system. Then, we simulate the model and check the behavior of the 
proposed decision element when the network is under unexpected conditions.

5.2.1.Parameter adjustment process

Once the model of the scenario and the control system have been designed and implemented, the 
next step of the control engineering methodology is to adjust the parameters of the controller. The 
process has been covered in detail in the corresponding subsection of section 4.2.2 and we present 
here an analysis of the results.

In order to put the adjustment process into use, a complete description of the scenario is needed.  
Table 12 contains the values of the parameters of the model used. Not included in the table are the 
positions of the nodes and the base station, which form a 4 by 3 grid pattern where the base station 
is at the corner, as depicted in  Figure 12. The positions are slightly disturbed from a perfect grid 
distribution so that there is more variety in the external conditions of the nodes. A full explanation 
of  the  parameters  can  be  found  in  Appendix  B.  Finally,  we  have  determined  empirically  a 
simulation time of 5000 seconds, which is around the time the battery is depleted in all nodes for 
most configurations.

Parameter Value

Seed 1

EmitterNumber 11

BaseControlPeriod 60.0 s

MeanSendInt 10.0 s

CollectorNumber 1

ColRange 200.0 m

LossProbability 0.0

AreaLength 400.0 m

AreaWidth 300.0 m

HelloInterval 20.0 s

Parameter Value

TCInterval 60.0 s

Δcrmin 5 m

SNRThresholdInDB 3 dB

PowerThreshold 5.0E-12

AntennaEfficiency 1.0

AntennaArea 0.0001 m2

MsgSendEnergy 0.0005

MsgRcvdEnergy MsgSendEnergy / 100

ControlStartTime 2 * TCInterval

Table 12: Parameters of the simulation for the  
Communication Network scenario

Regarding the performance index defined in Equation (26) and (27), a few parameters need to be 

set. Specifically, Emax was determined empirically by simulating the network over a short period of 
time (200 seconds) while every node was transmitting at the maximum range (250 meters); Tmax was 
set to the simulation time, 5000 seconds; νM was set to be the inverse of MeanSendInt; and the 
weight coefficients were both set to 0.5, meaning the energy part of the index was valued as much 
as the connectivity part.

Finally, the choice of the parameters of the cross entropy algorithm is detailed in Table 13. Even 
though the critical energy level, Ecr, was intended to be one of the targets of the optimization, we 
have decided against it given the high number of variables to be optimized, which didn't allow for 
an acceptable convergence level in the number of iterations we could execute. Instead, we will be 
leaving it as a parameter set by the manager of the network, who will typically choose a value in 
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relation with the time needed to retrieve a node and charge its battery. The value used in our test 
will be 0.4 for all nodes. With this in mind, the dimension of the optimization problem is 2x, with x 
the number of nodes, and for each iteration of the algorithm, N samples of 2x parameters will be 
generated and simulated in ptolemy II.

Node 01 02 03 04 05 06 07 08 09 10 11

CR0 80.35 174.31 116.36 137.71 79.91 233.73 163.13 130.59 130.65 125.84 175.29

crF 0.47 0.25 0.87 0.82 0.037 0.73 0.91 0.89 0.99 0.94 0.64

Table 14: Output of the cross-entropy method

The ending criterion we have used is a fixed number of iterations. The choice was made given the 
fact  that,  on  a  computer  mounting  an  Intel® CoreTM i7-3630QM 2.4GHz and  8GB of  DDR3 
memory running Linux, each sample takes between 50 and 80 seconds, which means between 80 
and 130 minutes  to  complete  each iteration.  As the  convergence  for  a  problem with  so many 
optimization targets is slow, we couldn't afford to use a convergence criterion. Instead, we set the 
number of iterations to 30 in order to restrict the execution time of the algorithm to less than 3 days. 
The best value found after 30 iterations is shown in Table 14.
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Figure 23: Best performance index found over iteration. Components of the index are also 
represented

Parameter Value

N 100

ρ 0.9

α 0.8

β 0.8

q 7

Initial  CR0 150.0 m

Initial crF 0.5

Parameter Value

Initial standard deviation 0.5 times the initial 
mean

Minimum CR0 50.0 m

Maximum CR0 250.0 m

Minimum crF 0.0

Maximum crF 1.0

Table 13: Parameter choice for the cross  
entropy method. Initial values and constraints  

are the same for every node
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In  Figure  23 the  evolution  of  the  performance  index  over  the  iterations  of  the  algorithm  is 
represented. The figure shows the expected decreasing behavior of the index, approaching values 
around -1000. The same figure depicts the energy and connectivity components of the index as 
defined in Equation  (26). It is worth observing that both components do not evolve in a regular 
way, which would be the ideal situation of being able to keep increasing the connectivity level of 
the network while reducing the energy consumption. This is only achieved in a few iterations, while 
in  general  one comes at  the cost of  the other.  However,  it  is  remarkable that  it  is  possible  to 
improve the connectivity without increasing the energy cost.

Figure  24 and  Figure  25 show the  mean  and the  standard  deviation  for  both  parameters  of  a 
selection of nodes over the algorithm iteration,  respectively. Convergence in  CR0 is acceptable, 
reducing the standard deviation to around a 5% of the initial value (evolution of the deviation is 
similar for other nodes). However, the evolution of the deviation for the  crF parameter is not as 
good for some of the nodes, for example in nodes 1 and 5, only achieving a reduction of about a 
50% of the initial value. This could be the result of a low dependency of the performance index to 
the  parameter,  resulting  in  changes  in  other  parameters  shadowing the contribution  of  the low 
impact ones. Another possible explanation could be the existence of multiple optimum.

42

Figure 24: Mean over iteration for some selected nodes. CR0 is shown in the left plot, crF is shown 
in the right plot

Figure 25: Standard deviation over iteration for some selected nodes. CR0 is shown in the left plot,  
crF is shown in the right plot
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5.2.2.Network simulation

We describe here the tests performed to measure the usefulness and performance of the control 
system designed for this scenario. The specific objective of the controller will be to self-adapt the  
network system when unexpected conditions arise in order to maintain a behavior similar to the 
ideal open loop situation.

We start by defining a parameter configuration set for the control system. Some of the parameters 
are set as defined by the adjustment methodology described in section 4.2.2. A sensible choice for 
the  node  degree  tolerance,  ξND,  would  be  the  the  minimum number  of  node  degree  variation 
achieved when the communication range is changed by the minimum amount. We can estimate this 
value from the density of nodes, δND, and the minimum variation of the area covered by the node, 
ΔAmin: 

Δ Amin=πΔ crmin (2CR min+Δ cr min)

ξND=⌈δNDΔ Amin⌉
(30)

The ceiling operation ensures that the tolerance is an integer value greater or equal than one. The 
other tolerance parameter, ξE, should be set to avoid the execution of the secondary loop when the 
battery level is far from the critical point. Following Equation (20) and (23), as well as the design 
of the fuzzy controller, no changes will be made when the absolute value of the error is more than 
Ē cr /2 , so this will be our choice for the tolerance parameter.

Regarding the parameters introduced in Equation (25), we will set both NDmin and ΔNDmin to 1, as 
the number of nodes of the network is very low (just 11); ξND will be 1 for this network (δND equals 
9.17e-5 nodes/m2 and ΔAmin equals 1650 m2); and finally, we will choose a value for the parameter 
Δcr in the range of 5% to 15% of the range of the CR parameter, which is 200 m.

Performance in presence of unexpected node losses

One of the most frequent unexpected conditions that a communication network needs to face is the 
loss of some nodes. Usually, wired networks deal with this problem by having redundant paths 
available and a routing protocol able to dynamically modify a route in case of node losses. In the 
WSN scenario under study, the physical link between nodes can also be dynamically modified by 
changing the emission power.

In order to test the performance of the control system designed to deal with this situation, we have 
modified the network model to include the loss of some nodes. The choice of what nodes will be 
turned off has to be taken in a sensible way, for some connectivity issues can be dealt with by the  
routing protocol in a similar manner as the wired network case. We have to induce a physical 
separation of the network into two unconnected subnetworks so that the routing protocol would be 
unable to solve the connectivity issue.

For the grid-like network topology we have set up, a possible choice would be one of the inner 
columns or rows. We have selected the third column, composed of nodes 3, 7, and 11, and set it to 
be lost at second 1000 of the simulation. Then, we execute the simulation with and without the 
control system active. The parameter Δcr in this test will be set to 15 meters.

The results are resumed in Table 15. We have included the not normalized performance index for 
the connectivity, the total number of messages received by the base station, which show an increase 
of 107.5% when the controller is active. From the other performance indexes, we can observe that 
the connectivity of the network is improved at the cost of an increase on the energy consumed. 
However, the index J shows that it balances out in favor of the simulation with the control system.
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Controller Messages 
received by BS

JE (s) JM (s) J (s)

No 1667 2060.60 1515.45 545.15

Yes 3459 3038.75 3144.55 -105.80

Table 15: Comparison of the performance for the simulated network

In  Figure  26 the  evolution  of  the  communication  range  for  each  node  is  depicted  (node  00 
corresponds to the base station and in this figure the data shown is not valid; the actual range of the 
base station is shown in  Table 12). The change of the node degree compared with the nominal 
reference is shown in Figure 28. Finally, we depict in Figure 27 the battery consumption per second 
for each node, obtained every 50 seconds. For every figure, two vertical lines have been added: the 
solid one represents the time each node crosses the critical battery level and the dashed one is set at 
the time the three nodes are lost.

A few observations can be made based on these figures:

• The  controller  effectively  adjusts  the  node degree  to  the  nominal  reference  (within  the 
tolerance region) even after the loss of three nodes in the network.

• The node degree does not oscillate around the reference.

• The battery saving phase is  barely noticeable for the node 06, which it  the only surviving 
ones that is set up with a different node degree reference for each phase and it is not in the 
tolerance region when it reaches the critical level (unlike node 02). This reflects the low 
impact  this  phase has on the overall  behavior of the system, as was conjectured in the 
previous subsection.

Influence of the parameter Δcr in the behavior of the control system

One of the most fundamental objectives of a control system in control theory is to ensure that the 
corrective actions performed by the controller result in the measured output or controlled variables 
of the system holding the reference point. We have identified in  Δcr the key parameter related to 
achieve the best adjustment of the system to the reference, as it directly affects the rate at which the 

44

Figure 26: Communication range over time for each node
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controller corrects the system towards the set point. Higher values of the parameter may be able to 
achieve the reference in a shorter time, but at the cost of introducing oscillations in the output of the 
system; on the other hand, lower values may have a higher adjusting delay, but there should be less 
oscillations and they should be of a lower amplitude.

In order to test the performance of the control system in relation to the parameter Δcr we execute 
the simulation of the same scenario described in the previous subsection with different values of the 
parameter. We will be comparing each run using the sum of squared errors of the system output 
variable ND. A resume of the results is shown in Table 16.

After the analysis of the results, the following observations can be made:

• The value 25.0 achieves the best performance, both from the point of view of the controller 
and the system. Comparing  Figure 29, obtained from the execution with  Δcr set to  25.0, 
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Figure 27: Rate of energy consumption over time for each node

Figure 28: Node degree evolution over time against nominal reference
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and Figure 28, a faster response to the failure at the 1000 second mark can be appreciated, 
which could help explain the difference in performance.

• The value 30.0 achieves a similar performance regarding the controller, but is significantly 
worse when we look at  the  performance index  J.  However,  the  difference  is  explained 
mainly because of the JE index, which means that more energy was used. Indeed, in Figure
30 we can see that only one node averages a lower consumption rate when compared to the 
results with Δcr set to 15.0.

As we have previously mentioned, the controller does not make an effort to achieve the 
most  efficient  communication  range  for  a  given  node  degree  reference.  The  extra 
consumption derived from this decision is exemplified in this test.

Influence of the tolerance region

Before  the  ceiling  operation  is  performed  in  Equation  (30),  the  actual  value  of  the  tolerance 
corresponding to the selected network parameters is 0.15. This could mean that this network does 
not need a tolerance, as the nodes should be able to change their node degree one by one. We 
repeated the simulation for the same five values of Δcr, this time setting the tolerance value to 0.

A summary of the results is shown in Figure 31. Even though the controller error (SSE) is decreased 
in  general  (with  special  significance  for  lower  values  of  Δcr) when  the  tolerance  is  null,  the 
performance of the network worsens. We can see a possible explanation in  Figure 32, where the 
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Δcr (m) SSE Messages 
received by BS

JE (s) JM (s) J (s)

10.0 600 3388 3002.28 3080.00 -77.72

15.0 587 3459 3038.75 3144.55 -105.80

20.0 556 3371 3005.81 3064.55 -58.74

25.0 531 3552 3058.67 3229.10 -170.43

30.0 539 3463 3188.46 3148.18 40.28

Table 16: Comparison of the performance of different controller configurations

Figure 29: Node degree evolution over time for each node. Data obtained for Δcr set to 25.0
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node degree for each node is plotted against time for the simulation with Δcr set to 15.0. The lack 
of tolerance allows the controller to better adjust the node degree to the reference, as we can see in 
nodes 01, 04 or 08, so that the controller error is reduced. However, the oscillations around low 
values of the node degree reference in nodes 05 and 09 result in those nodes losing all of their 
neighbors for short periods of time, decreasing the amount of messages routed to the base station.
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Figure 31: Performance of the controller with and without tolerance. On the left side, the SSE is  
plotted for each Δcr, while the messages received by the base station are plotted on the right side

Figure 30: Increase in the mean of the consumption rate for each node when  Δcr is set to 30.0 
against 15.0
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Figure 32: Node degree evolution over time for each node. Data obtained for Δcr set to 15.0 with a  
tolerance value of 0
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6. Conclusions and future work
The complexity of  current  software  systems and uncertainty in  their  environments  has  led  the 
software  engineering  community  to  look for  inspiration  in  other  fields,  like  robotics,  artificial 
intelligence, control theory and biology, for new ways to design and manage systems and services. 
In this sense, the capability of the system to adjust its behavior in response to the environment in 
the form of self-adaptation has become one of the most promising research directions. 

However, the software engineering discipline does not provide the necessary tools for the design 
and analysis of dynamic systems, as it has historically been focused on the development of static 
applications.  At  the  same time,  the  field  of  control  engineering  centers  its  study  on  dynamic 
processes under uncertainty conditions, while lacking on the construction of large scale software 
systems. In this project, we have approached the problem from the two angles, borrowing tools and 
methodologies from both fields aimed at the development of self-adaptive systems.

Our first step was to model into a software framework the concept of a feedback loop, key in the 
theory of control. This allowed us to treat the feedback loop as any other first class entity in the 
development  process  of the self-adaptive software system, which we chose it  to  be a wireless 
sensor network.  Then,  we took the actor  oriented approach as  the design methodology for  the 
system, making use of already available tools to obtain a simulation of the network as a by-product. 
Finally, we implemented new self-adaptive strategies for the considered scenarios, built on top of 
the feedback loop library previously developed, and included in the model of the system as a first 
class actor.

Given the results of the tests performed on the simulated scenario, the objective of developing, 
using  the  proposed  methodology,  a  self-adaptive  strategy  that  improves  the  performance  of  a 
software system has been achieved. Moreover, during the development process we have assessed 
the value of the combined fields approach, benefiting from the use of standard algorithms and 
techniques borrowed from control theory, as well as making use of software engineering tools to 
carry out the design process.

However, we have identified one major drawback in the high completion time of a full simulation 
of the system. This is also magnified by the fact that the node count of the simulated network was  
on the low end of usual large scale networks. The issue is specially concerning when automatic 
optimization  algorithms are  to  be  employed as  part  of  the  design  process  of  the  self-adaptive 
strategy, as a large amount of simulation runs need to be executed.

Future work should address this issue, possibly by improving the implementation of the system in 
the modeling tool or, if it is not possible, by exploring the use of other tools. When selecting other 
software  packages,  it  should  be  taken  into  high  consideration  the  possibility  of  executing  the 
simulation in a parallel system such as a cluster, as the modeled systems are very suitable to be run 
in this manner.

In spite of this, the Ptolemy II software should not be discarded, as the ability to combine different 
models of computation on the same system model could prove very useful. A possible extension of 
this work would be a rework of the gas propagation scenario combining the discrete event model of 
computation with continuous time semantics to model the gas diffusion process.

Regarding the self-adaptive strategy defined in the communication network scenario, two broad 
issues should be addressed in forthcoming work. The first one, which also includes the model of the 
scenario,  is  the  excessive  simplification  of  the  behavior  of  the  model  from the  actual  system. 
Specifically, the battery model, the communication channel and the communication range variation 
do  not  represent  with  enough  accuracy  their  real  world  counterpart,  possibly  reducing  the 
effectiveness  of  the  self-adaptive  strategy  and  definitely  rendering  useless  the  parameter 
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optimization step. In order to improve the quality of the models, the knowledge of specialists in the 
low level details of the system will be essential.

The  second  issue  involves  improving  the  actual  strategy.  Some questions  raised  from the  test 
analysis were left open: is it correct to set a common tolerance value for every node in the network,  
or is it better to try to define the best tolerance value for each node separately? Is it possible to 
achieve the most efficient configuration that still adjusts the system to the reference? Even though 
we have considered the possibility of the self-adaptive strategy not being effective in the real world  
system, answering these questions even for a simplified model could still be very useful for the 
development of new self-adaptive software systems.

Finally, the methodology described in this work is missing the last step: testing the implementation 
on a real system. This involves the refinement of the device models above mentioned, as well as 
porting the solution from the simulation tool to the actual embedded system. Only when the self-
adaptive system is in a production environment can we assess the success of this project towards 
solving a real problem of the society.
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Appendix A – Description of the parameters of the gas 
propagation system model
We provide here a complete description of the parameters used in the model of the Gas Propagation 
scenario defined in section 4.2.1. We only list here the relevant parameters for this project, as some 
others can be found in the Ptolemy II model but are part of discarded work or not used features.

Parameter Description

AreaWidth Width of the area of operations

AreaLength Length of the area of operations

GasAlpha Parameter α in Equation (7) for the gas propagation

CellSize Size of the cells in which the area of operations is divided

Wind Parameter B in Equation (7) for the gas propagation (without the 
last 1)

Source Matrix with the component uq of the parameter Vq for each cell in 
Equation (7) for the gas propagation

ChannelRange Maximum range of a transmission in the channel

PropagationSpeed Propagation speed for the transmissions in the channel

LossProbability Chance of a transmission loss in the channel

ByteTxTime Time it takes to transmit a byte in the channel. It is used as part of 
the battery model

DtDMsgLength Length of a message from Drone  to  Drone. Used as part of the 
battery model

DtAMsgLength Length of a message from Drone to Antenna. Used as part of the 
battery model

AntennaReceptionThreshold Minimum received power needed to process a message

AntennaRecoveryThreshold Threshold  used  in  collisions.  A single  message  is  processed 
during a collission if its power exceeds the sum of the powers of 
the other messages by at least this threshold

AntennaLocation Location of the Antenna

DroneAlpha Parameter α in Equation (7) for the gas estimation

GasSampleCoef Parameter  B in Equation  (7) for the gas estimation (without the 
last 1)

NeighboursTimeout Number  of  executions  of  the  decision  element  that  a  node 
remains in the neighbors list since the last received message

InitialComBatteryPower Initial value of the battery level

SampleTime Time needed for sampling the level of gas concentration. Used as 
part of the battery model

SamplePower Power needed for sampling the level of gas concentration. Used 
as part of the battery model

ByteTxPower Power needed for transmission. Used as part of the battery model
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Parameter Description

ByteRxPower Power needed for reception. Used as part of the battery model

ListenPower Power needed for listening to the channel. Used as part of the 
battery model
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Appendix B – Description of the parameters of the 
communication network system
We provide here a complete description of the parameters used in the model of the Communication 
Network scenario defined in section 4.2.2. We only list here the relevant parameters for this project, 
as some others can be found in the Ptolemy II model but are part of discarded work or not used 
features.

Parameter Description

Seed Seed used for the random number generation. A value of 0 would use a 
random seed

EmitterNumber Number of nodes of the network

BaseControlPeriod Base period used for the execution of the decision element. Each monitor 
may define their own periods as multiples of this one

MeanSendInt Mean parameter of the Poisson process used by the nodes for sending 
messages to the Base Station

CollectorNumber Number of Base Stations

ColRange Communication Range of the Base Stations

LossProbability Chance of a transmission loss in the channel

AreaLength Length of the area of operations. Used when randomizing the positions 
of the nodes

AreaWidth Width of the area of operations. Used when randomizing the positions of 
the nodes

HelloInterval Time interval for sending Hello messages on the OLSR protocol

TCInterval Time interval for sending TC messages on the OLSR protocol. Should be 
around 3 times the HelloInterval

Δcrmin Communication range change step

SNRThresholdInDB Threshold  used in  collisions.  A single  message  is  processed  during a 
collission  if  its  power  exceeds  the  sum  of  the  powers  of  the  other 
messages by at least this threshold

PowerThreshold Minimum received power needed to process a message

AntennaEfficiency Parameter E in the power loss factor

AntennaArea Parameter A in the power loss factor

MsgSendEnergy Energy coefficient for sending messages. The total energy spent sending 
a message is the product of this parameter and the emission power

MsgRcvdEnergy Energy spent receiving a message

ControlStartTime Starting time for the decision element
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