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Summary

Hematuria is a common finding in various glomerular diseases. This article reviews the clinical data on glomerular
hematuria and kidney injury, as well as the pathophysiology of hematuria-associated renal damage. Although
glomerular hematuria has been considered a clinical manifestation of glomerular diseases without real
consequences on renal function and long-term prognosis, many studies performed have shown a relationship
between macroscopic glomerular hematuria and AKI and have suggested that macroscopic hematuria-associated
AKl is related to adverse long-term outcomes. Thus, up to 25% of patients with macroscopic hematuria—
associated AKI do not recover baseline renal function. Oral anticoagulation has been associated with glomerular
macrohematuria—related kidney injury. Several pathophysiologic mechanisms may account for the tubular injury
found on renal biopsy specimens. Mechanical obstruction by red blood cell casts was thought to play a role. More
recent evidence points to cytotoxic effects of oxidative stress induced by hemoglobin, heme, or iron released from
red blood cells. These mechanisms of injury may be shared with hemoglobinuria or myoglobinuria-induced AKI.

Heme oxygenase catalyzes the conversion of heme to biliverdin and is protective in animal models of heme
toxicity. CD163, the recently identified scavenger receptor for extracellular hemoglobin, promotes the activation
of anti-inflammatory pathways, opening the gates for novel therapeutic approaches.
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Introduction

Glomerular hematuria, when not accompanied by mild
to severe proteinuria, has been considered a benign
manifestation of glomerular diseases that does not
influence long-term prognosis. Nevertheless, macro-
scopic hematuria can induce AKI through a direct
harmful effect on renal tubules. Information on path-
ogenesis and long-term consequences of such macro-
hematuria-induced AKI is remarkably scarce. The aim
of this article is to review the clinical data on hema-
turia and glomerular disease, as well as the pathophys-
iology of hematuria-associated AKI.

Hematuria and Hemoglobinuria

Hematuria is defined as the presence of red blood
cells (RBCs) in urine (1). Macroscopic hematuria is
always pathologic and is characterized by massive
presence of RBCs in urine. Microscopic hematuria is
defined by the presence of more than 2 RBCs per
high-power field in urine sediment in the absence of
colored urine. Macroscopic hematuria may be differ-
entiated from hemoglobinuria and myoglobinuria: a
heme-positive red supernatant may contain hemoglo-
bin or myoglobin, whereas RBCs are observed in the
sediment in hematuria. Smoky gray—colored urine,
the presence of RBC casts, and dysmorphic RBCs
favor a glomerular origin of hematuria, and blood clots
and bright red urine support a urinary tract origin.
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IgA nephropathy, Alport syndrome, and thin base-
ment membrane disease (TBMD) are three frequent
causes of glomerular hematuria. Rapidly progressive
GN, vasculitis, and acute glomerular inflammation, as
observed in postinfectious GN or lupus, may also be
associated with glomerular hematuria. Tubules filled
with RBC casts, with associated acute tubular necro-
sis, are common findings in these conditions, and their
contribution to final renal function outcome deserves
specific investigations.

AKI during gross hematuria in IgA nephropathy
can be oligo-anuric and may necessitate transient he-
modialysis. Reversible AKI due to glomerular macro-
hematuria was first reported by Kincaid-Smith and
colleagues in 1983 (2). Most macroscopic glomerular
hematuria-related AKI cases reported since have
been IgA nephropathy (Table 1). Initially, hematuria
was thought to be innocuous, and AKI, if present,
was considered an infrequent feature caused by func-
tional factors (3). In 1985, however, Praga and
coworkers reported a 38% incidence of AKI during
macrohematuria bouts in IgA nephropathy (4). Dura-
tion of hematuria, but not age, was a significant prog-
nostic factor for development of AKI. All patients
recovered baseline renal function 15-70 days after ces-
sation of hematuria. The patients were particularly
young: mean age in the AKI group was 24 years.
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Table 1.
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Unless otherwise specified, data are expressed as mean *+ SD. sCr, serum creatinine; NA, not available.

“Baseline renal function not available. At last follow-up, five patients had CKD stage 2 or 3.

PRepeated bouts of macroscopic hematuria. At last follow-up, sCr was 1.3 mg/dl.

Of the three patients, one had focal necrotizing lesion on biopsy. Another had ongoing hematuria at discharge.

Subsequent smaller studies did not corroborate duration
of gross hematuria as a predictor of AKI (5,6). Severe AKI
occurred even during brief macroscopic hematuria epi-
sodes (5). Patients in Declaux and colleagues’ series were
older, and although they all had complete renal function
recovery, it took as long as 10 months after the end of
gross hematuria (5). Older patients seemed to have longer
duration of macrohematuria and recovery period. In
Kveder and associates’ series, baseline serum creatinine
was not reported (6). Although all patients improved, at
last visit, 9-57 months later, five of seven patients had
CKD stage 2 or 3. In 2007, Gutiérrez and coworkers
published a larger retrospective study in which 25% of
the patients did not recover baseline serum creatinine
(7). Univariate analysis identified duration of gross hema-
turia, age older than 55 years, higher baseline serum cre-
atinine, and absence of previous macroscopic hematuria
episodes as prognostic factors for incomplete recovery of
renal function. Multivariate analysis, however, rendered
duration of hematuria longer than 15 days as the only
statistically significant variable.

We have updated this series with 16 new cases (Table 2).
Again, 27% of patients did not recover baseline serum cre-
atinine levels. Hemodialysis was necessary more fre-
quently in the patients who did not completely recover
renal function than in those with full recovery (43% versus
5%; P<<0.005). Incomplete recovery could be related to in-
creased age, duration of macrohematuria, severity of tu-
bular necrosis, and interstitial fibrosis because there were
no differences in histologic glomerular features. Steroids
were suggested as a means of shortening the duration of
gross hematuria and associated complications (4,5,7,8). In
all series, proteinuria increased during macroscopic hema-
turia but did not exceed 3 g/d; nephrotic syndrome was
not reported. Urinary sediments contained RBCs, with
variable presence of hyaline and granular casts, tubular
cells, and leukocytes (4,5,7,8).

Acute tubular necrosis and intraluminal obstructive RBC
casts are the most salient histologic findings in AKI during
macroscopic hematuria (9,10) (Figure 1 and Table 3). He-
mosiderin in tubular cells and interstitial macrophages, as
well as phagocytosis of RBCs by proximal tubular cells,
has been observed (9-11). Acute tubular necrosis was ini-
tially reported only in those tubules that contained RBC
casts (4). Other reports were consistent with these findings;
those researchers observed acute tubular necrosis through-
out the biopsy specimens but noted more severe lesions in
tubules containing RBC casts (5). Severity of acute tubular
necrosis was a significant risk factor for incomplete recov-
ery of renal function. Contrary to the severity of tubular
changes, mesangial proliferation was mild to moderate
(4,5,7,8). The frequency of crescents was higher in patients
with IgA nephropathy who had macroscopic hematuria—
associated AKI than in those who did not (12). However,
the percentage of crescents was usually <20% and was not
thought to be the cause of renal failure (4-7). Furthermore,
as can be observed in the updated data (Tables 2 and 3),
crescents were not associated with incomplete recovery of
renal function and were absent in most such patients.

The series of Bennet and Kincaid-Smith found focal and
segmental proliferation to be the most frequent histologic
pattern in patients with IgA nephropathy, macroscopic
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Table 2. Clinical characteristics of patients with IgA nephropathy who had complete or incomplete recovery of baseline renal
function after macroscopic hematuria—associated AKI
Characteristic Complete Recovery (n=38) Incomplete Recovery (1n=14) P Value
Age (yr) 39+18.1 68.6:9.7 0.0001
Duration of MH (d) 15+17.8 36.6+22 0.001
Renal biopsy findings (%)
mesangial proliferation 50 (+)/50 (++) 35(+)/65 (++) 0.60
5.5x10.7 13.7%+20.1 0.07
glomeruli with crescents 43*+84 5+9.4 0.98
tubules with RBC casts 35.3%+23.9 58.1+21.2 0.01
tubular necrosis 61 (+)/29 (++)/10 (+++) 7 (+)/72 (++)/21 (+++) 0.001
interstitial fibrosis 37 (+)/58 (++)/5 (+++) 29 (-)/57 (+)/14 (++) 0.0001
Renal function
baseline sCr (mg/dl) 0.9+0.2 1.1x0.3 0.13
peak sCr (mg/dl) 3.9+28 71x26 0.0001
sCr at 6 mo (mg/dl) 1£0.2 1.9%0.3 0.0001
Data were updated from reference 7 by including 16 new patients from 12 Octubre Hospital seen from 1975 to 2010. MH, macroscopic
hematuria; GS, glomerulosclerosis; RBC, red blood cell; sCr, serum creatinine. +, mild; ++, moderate; +++, severe.

hematuria, and crescent formation, whereas patients with-
out macrohematuria were more likely to have a diffuse
mesangial proliferation pattern (12). The percentage of
glomeruli with crescents, however, did not vary between
the groups. Crescents eventually evolve to sclerotic lesions
weeks after the macroscopic hematuria episode (12).
Kveder and coworkers described seven patients with IgA
focal proliferative GN, higher percentage of crescents
(21%), and glomerulosclerosis (9%) who nevertheless im-
proved with supportive treatment or steroids (6). Other
frequent histologic findings are mild (4,13) to severe (6)
interstitial infiltrates, edema, and fibrosis. Glomerulosclero-
sis and vascular sclerosis were also described. None of
these features were as extensive as the tubular injury.

Fogazzi and associates described a heterogeneous series
of seven patients with macroscopic glomerular hematuria—
associated AKI, including two with IgA nephropathy and
one with Henoch-Schénlein nephropathy (13). Renal bi-
opsy showed extensive acute tubular necrosis, RBC casts,
and erythrophagocytosis by tubular cells but also severe
glomerular lesions. The authors concluded that severe glo-
merular injury may have caused AKI and delayed recov-
ery. This series included a patient with focal necrotizing
IgA nephropathy with ongoing hematuria, and partial re-
covery of renal function (Table 1). Of note, despite the
severity of glomerular lesions, serum creatinine returned
to baseline values in most other patients. It is interesting
that, although the presence or intensity of microscopic he-
maturia has been associated with worse kidney function
prognosis in IgA nephropathy (14), a history of macro-
scopic hematuria bouts has even been associated with a
better kidney outcome (15-19). However, this association
was frequently lost on multivariate analysis, probably be-
cause macroscopic hematuria was frequently observed in
cases with earlier (characterized by less fibrosis) or milder
glomerular injury (17).

Alport disease is a hereditary basement membrane disor-
der originating from alterations in type IV collagen (20). The
renal manifestations consist of persistent microhematuria

and episodic gross hematuria associated with respiratory
infections or exercise. ESRD usually occurs in males
between ages 16 and 35 years. Gross hematuria during
childhood is one of several well-established indicators of
unfavorable outcome in female carriers (21). To our knowl-
edge, there are no reports of AKI after macroscopic hema-
turia in Alport disease, possibly because of the rarity and
underdiagnosis of the condition.

TBMD is also a hereditary nephropathy arising from muta-
tions of type IV collagen genes. Persistent microhematuria is
observed from childhood, and macroscopic hematuria can
occur. The disease has excellent prognosis, and few patients
progress to ESRD. A patient with TBMD who developed
gross hematuria and AKI after 1 year of warfarin therapy has
been described (22). The patient regained normal renal func-
tion after 6 weeks of dialysis. Renal biopsy revealed that
60% of tubules were distended with RBCs. There was no
evidence of crescents, mesangial proliferation, or intersti-
tial hemorrhage. A high prevalence of hypercalciuria, hy-
peruricosuria, and nephrolithiasis has been found among
patients with TBMD and loin-pain hematuria syndrome
(23,24). Gross hematuria and loin-pain episodes could be
related to these abnormalities. Although not specifically in-
vestigated, it is generally thought that hypercalciuria and
hyperuricosuria could induce the formation of intraluminal
microcrystals causing tubular damage and nonglomerular
bleeding (23,24).

Anticoagulation and AKI

Oral anticoagulation has been suggested to cause AKI by
inducing glomerular hematuria (25). In nine patients re-
ceiving warfarin with gross hematuria and unexplained
AKI, renal biopsy excluded GN. None of the biopsy speci-
mens revealed crescents; the highest percentage of scle-
rosed glomeruli among them was 11%, and all specimens
had variable severity scores of acute tubular necrosis and
RBC casts. It was hypothesized that AKI induced by he-
maturia aggravated by anticoagulation was unlikely to
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Figure 1. | Renal biopsy specimen from a patient with IgA nephropathy and macroscopic hematuria—associated AKI. Light micrographs show
mesangial proliferation, increased mesangial matrix, and tubular degenerative and regenerative changes, consistent with acute tubular and
glomerular necrosis (A and B). There is remarkable red blood cell extravasation in the interstitium (arrowhead) and red blood cell casts (arrow)
in most tubules (C); interstitial hemosiderin, as determined by blue Perl staining (D); CD68-positive (E) and CD163-positive (F) macrophages;
and oxidative stress (heme oxygenase-1 [G] and NADPH-p22 phox [H]). (A and C) Hematoxylin and eosin staining. (B) Masson trichrome.

(E-H) Immunohistochemistry.

develop in a normal renal parenchyma. However, mild
glomerular damage may give way to glomerular bleeding
in patients receiving warfarin. The clinical outcome in this
series was unfavorable: 66% of patients did not recover
baseline renal function. This raises a note of caution about
oral anticoagulation in patients with kidney disease. In
this regard, patients with reduced renal function are at
higher risk for overanticoagulation, gross hematuria, and
AKI (26). Warfarin-associated gross hematuria and AKI
has been reported in IgA nephropathy (27) (Table 1).
More recently, AKI associated with overanticoagulation
has also been reported in patients without CKD (28). In
this study, mean serum creatinine failed to return to base-
line values at 3 months (28).

Hemoglobinuria and AKI

AKI occurring in the course of acute hemolysis after
incompatible blood transfusions or paroxysmal nocturnal
hemoglobinuria (PNH) differs from glomerular bleeding-
associated AKI because hematuria is absent. However,
it may provide pathophysiologic clues to the molecular
mechanism of kidney injury and the role of heme-containing
molecules.

PNH is a rare clonal disorder characterized by chronic
intravascular hemolysis and thrombotic tendency. Infec-
tions, drugs, immunization, or exercise may trigger hemo-
lytic episodes. Reversible AKI is thought to depend on
tubular hemoglobin-mediated toxicity due to hemolysis,
intrarenal vasoconstriction, and intratubular obstruction
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(29,30). AKI can be the first presenting feature. AKI is usu-
ally nonoliguric and often requires acute hemodialysis. Re-
nal biopsy shows hemosiderin deposits in tubular cells
and acute tubular necrosis. Although hemosiderin accu-
mulates quite rapidly in tubules, its role in AKI remains
controversial (30) because intense renal hemosiderosis can
be found in patients with PNH who have normal renal
function.

Renal ischemia from acute microvascular thrombosis
may also contribute to kidney injury (30,31). Renal hemo-
siderosis can also be found in hemolysis due to prosthetic
heart valves and sickle cell hemoglobinopathies. Superim-
posed AKI has been described in a patient with underlying
CKD who developed intravascular hemolysis associated
with mitral valve repair (32). It was hypothesized that
CKD may predispose to heme-induced injury.

Blood transfusions are risk factors for AKI after cardiac
surgery (33,34). Transfused RBCs may contribute to organ
injury in susceptible patients because of functional and
structural changes that occur after 2-3 weeks of storage.
RBCs become rigid; generate less nitric oxide; have in-
creased adhesiveness to vascular endothelium; and release
procoagulant phospholipids, free iron, and hemoglobin.
Transfusion of blood stored for more than 14 days was
associated with greater in-hospital mortality and incidence
of AKI. Renal biopsies were not reported, and whether free
iron, free hemoglobin, or other pathophysiologic mecha-
nisms are shared with macrohematuria-associated AKI is
unknown.

Pathophysiology of Hematuria-Induced Renal
Damage

Recent studies have provided insights into the potential
mediators of tubular injury (Table 4). Initially, it was sug-
gested that intratubular obstruction by RBCs or hemoglo-
bin casts may induce AKI (2,9). However, recent studies
did not find retro-diffusion of Tamm-Horsfall protein into
glomeruli and thus did not support an obstructive hypoth-
esis (6,13). Proximal tubular cells have a limited capacity
to engulf and degrade RBCs (35), and addition of RBCs
was not cytotoxic in vitro (36). Thus, other mechanisms
have been suggested to underlie macroscopic hematuria-
associated AKI. The principal mechanism proposed is the

direct tubular toxicity of hemoglobin, heme, iron, or other
molecules released from RBCs. The heme group of hemo-
globin may also decrease nitric oxide availability, promot-
ing intrarenal vasoconstriction and ischemia (9). Finally,
elimination of RBC debris from tubular lumens seems
slow (37) and may explain the prolonged recovery period
observed in some patients.

Hemolysis from any cause can result in hemoglobinuria
and can induce AKI. Hemoglobin is bound to haptoglobin,
forming a haptoglobin-hemoglobin complex in plasma (38).
Under normal conditions, this complex is too large to be
filtered by glomeruli, and it is further degraded by spleen,
bone marrow, and liver. However, in conditions of intravas-
cular hemolysis, plasma haptoglobin is consumed and its
plasma concentration decreases significantly. By contrast,
free hemoglobin accumulates in plasma and dissociates
from tetrameric to dimeric hemoglobin, which is filtered
more easily by glomeruli. In the tubular lumen, hemoglobin
may be taken up by proximal tubules (38) or may be de-
graded, releasing heme-containing molecules and free iron
(9) (Figure 2).

Under oxidant conditions, intracellular hemoglobin dis-
sociates into heme and globin. Heme oxygenase (HO) is the
enzyme that transforms heme to biliverdin, a reaction that
also produces iron and carbon monoxide. Biliverdin is sub-
sequently converted to bilirubin by bilirubin reductase,
whereas iron is ultimately stored in ferritin. Increased HO
activity upregulates ferritin synthesis (39). Thus, HO and
ferritin decrease cellular exposure to heme and catalyti-
cally active “free” iron (40). In cells and tissues not
normally involved in heme protein clearance, augmented
expression of the inducible HO isoform (HO-1) is a pro-
tective mechanism against a wide variety of injurious stim-
uli, such as ischemia, oxidative stress, inflammation,
hypoxia, and heavy metals (39). Enhanced renal HO-1
expression was observed in PNH (41), autoimmune hemo-
lytic anemia (42), IgA nephropathy with macroscopic he-
maturia (11), and experimental models of heme-induced
damage (39). Several data provide in vivo evidence that
induction of HO-1 is a beneficial response from tissues
exposed to heme-induced oxidative damage (39). HO-1
protection includes not only degradation of heme but
also inhibition of chemokine and cell-cycle regulators, in-
creased synthesis of ferritin, and reaction-derived products

Table 4. Mediators thought to contribute to hematuria-induced kidney injury

Promoters of injury

Protective mechanisms
induction of heme oxygenase-1
production of carbon monoxide
biliverdin and bilirubin
ferritin-stored iron
free hemoglobin scavenging by haptoglobin/CD163
iron chelators
antioxidant defenses

toxicity of hemoglobin, heme, or iron via oxidative stress and other mechanisms
hypoxia and intrarenal vasoconstriction via NO scavenging
tubular obstruction from hemoglobin precipitation and Tamm-Horsfall protein proinflammatory cytokines

NO, nitric oxide.




Clin J Am Soc Nephrol 7: 175-184, January, 2012

AKI and Glomerular Macroscopic Hematuria, Moreno et al. 181

Urinary

I Oxidation I I Ohsiructionl

< v ()

Tamm-Horsfall
protein

TUBULAR EPITHELIAL CELL

TUBULAR EPITHELIAL CELL

Mitochondrial
damage

Nucleus

Figure 2. | Pathophysiologic pathways of hematuria-induced kidney damage. Hemoglobin (Hb) released by intratubular degradation of red
blood cells or hemoglobin directly filtered by the glomerulus may be incorporated into proximal tubules through the megalin-cubilin receptor
system or degraded in the tubular lumen, releasing heme-containing molecules and eventually free iron. Cell-free hemoglobin promotes lipid
peroxidation and physical obstruction of the renal tubule by hemoglobin precipitation in association with Tamm-Horsfall protein under acidic
conditions, which leads to intraluminal casts, increased intratubular pressure, and subsequent decreased GFR. Hemoglobin/heme/iron (Fe)
accumulation within tubular cells generates reactive oxygen species, mitochondrial damage, caspase activation and apoptosis, upregulation of
vascular adhesion molecules and pro-inflammatory/profibrotic cytokines (such as TNF-a, monocyte chemoattractant protein-1 [MCP-1], and

TGF-B1) through activation of NF-«B transcription factor.

(carbon monoxide, biliverdin, bilirubin) (43). Thus, carbon
monoxide has anti-inflammatory and vasorelaxant effects
via induction of nitric oxide synthase (44), and bilirubin
and biliverdin are potent radical scavengers (45).

Heme Toxicity

The kidney can be damaged by large amounts of heme
resulting both from extrarenal heme-containing proteins
(myoglobin in rhabdomyolysis and hemoglobin in hemo-
lysis) (39,41,46) and from renal heme-proteins, as occurs
after ischemic or toxic insults (47,48). Intratubular, cell-free
hemoglobin induces severe oxidative damage as a conse-
quence of heme redox cycling between ferric and ferryl
states, which generates radical species and promotes lipid
peroxidation (49-53). Lipid peroxidation is responsible for
the intense vasoconstriction and oxidative injuries ob-
served in disorders associated with renal accumulation
of hemoproteins (54).

Myoglobin catabolism results in heme generation; there-
fore, the renal toxicity of myoglobin is similar to that

observed with hemoglobin (55), and it will be not discussed
in depth here. Myoglobin accumulation within tubular
cells generates oxygen reactive species (56), caspase activa-
tion, and apoptosis (57); upregulates pro-inflammatory
cytokines (58) and vascular adhesion molecules (59); and
causes vasoconstriction and tubular obstruction (48,54,60).
Specifically, myoglobin-stimulated vasoconstriction is also
related to a decrease in NO availability (61,62). The extent
of both hemoglobin- and myoglobin-induced cell damage
may be increased by an inadequate endogenous antioxi-
dant content or a defective cytoprotective machinery.
Thus, reactive oxygen scavengers and iron chelators pro-
vide protection (63,64).

Heme permeates plasma and organellar membranes,
thus entering cells and facilitating cytotoxicity (65,66). Ad-
ditional heme toxic mechanisms include impairment of the
activity of certain glycolytic enzymes, such as glucose-
6-phosphate dehydrogenase and glutathione reductase;
oxidative DNA denaturation; and mitochondrial toxicity
(67-70).
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In addition to its direct cytotoxicity, heme can also in-
directly promote chronic renal damage by inducing in-
flammation and fibrosis (38,71). Thus, exposure to heme
proteins increases the renal expression of TNF-a, mono-
cyte chemotactic protein-1, and TGF-B via NF-«B transcrip-
tion factor (41,46). The activation of these cytokines serves
as a “positive-feedback loop” that perpetuates renal dam-
age beyond the initial injury phase (72) and contributes
to a chronic inflammatory response, as occurs in recurrent
hemolytic episodes (48).

Hemoglobin Scavenging: CD163 Receptor

Recently it has observed that haptoglobin-hemoglobin
complexes are cleared by CD163, a scavenger receptor on
the surface of tissue macrophages (73). In a patient with
IgA nephropathy, macroscopic hematuria, and AKI, we
reported extensive intratubular and interstitial RBC ex-
travasation and interstitial hemosiderin accumulation
(11). We observed an increased expression of CD163-
positive macrophages and oxidative markers, which
were principally observed in areas of interstitial hemor-
rhage and tubules filled with RBCs, showing the relation-
ship between interstitial RBCs and oxidative stress. Renal
CD163 immunostaining may reflect a compensatory role
of CD163 to decrease hemoglobin-toxic effects. Binding of
hemoglobin to CD163 induces anti-inflammatory path-
ways, increasing the IL-10 release and HO-1 synthesis
that may contribute to restored tissue integrity (74).

The Road Ahead

Until recently, macroscopic hematuria in glomerular
disease in the absence of nephritic syndrome was con-
sidered a mild phenomenon. However, it has become
clear that it may induce AKI severe enough to warrant
dialysis, and the recovery of renal function may be incom-
plete. Aging of the population and the widespread use
of anticoagulation may increase the incidence of severe
macroscopic hematuria—associated AKI. Our current un-
derstanding of potential pathogenic mechanisms derives
mainly from experimental settings, and there is no current
clinical application of such knowledge. Further studies
that validate experimental knowledge in the clinical setting
are needed in order to identify therapeutic approaches for
this specific form of kidney injury. Until new specific treat-
ments are available, early steroid administration to accel-
erate recovery of renal function and decrease the risk for
chronic renal impairment could be suggested on the basis
of observational studies. However, this approach has not
been tested in randomized controlled trials. Prospective
studies are needed to better define the epidemiology of
hematuria-associated AKI, characterize the clinical picture,
identify prognostic factors, and define a management
strategy.
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