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Initially, this doctoral thesis had the major and ambiguous aim of gaining a deeper 

knowledge of the genetic and molecular mechanisms that underlie the leukemogenesis process. 

We explored and carried investigations on three types of hematological malignancies. Since the 

work done in two of them has been already published and communicated in meetings, we have 

chosen for this PhD dissertation, and its corresponding public defence, the more scientifically 

challenging project entitled “Biological and functional characterization of the fusion gene NUP98-

HOXA9 in Acute myeloid leukemia: New therapeutic approaches”. A brief description of the 

other two is presented below: 

1. Abrogation of RUNX1 gene expression in de novo myelodysplastic syndrome with 

t(4;21)(q21;q22) 

(This work was published in Haematologica in April 2012, Appendix II) 

We describe the molecular characterization of a new t(4;21)(q21;q22) in a de novo 

myelodysplastic syndrome that resulted in the deletion of the RUNX1 gene. We demonstrated by 

quantitative real-time RT-PCR an almost complete depletion of the expression of the RUNX1 

gene in our t(4;21) case, compared with CD34 + cells, that was independent of mutation or DNA 

methylation. We explored and confirmed the fact that this abrogation also prevents 

transactivation of RUNX1 target genes, shedding some light into the genetic origin of the 

thrombocytopenia and the myelodysplastic features observed in our patients, and certainly 

mimicking what has been observed in the presence of the RUNX1/ETO fusion protein. 

2. The downregulation of specific miRNAs in hyperdiploid multiple myeloma mimics the 

effect of the most frequent IgH translocations observed in the non-hyperdiploid subtype.  

(This work was published in Leukemia in April 2013; Appendix II) 

We compare the micro RNA (miRNA) expression profiles of the two big groups of multiple 

myeloma (MM):  non-hyperdiploid (nh-MM) group, highly enriched for IgH translocations, and 

hyperdiploid (h-MM), typically characterized by trisomies of some odd-numbered chromosomes. 

We found that target genes of the most differentially expressed miRNAs are directly involved in 

the pathogenesis of MM; specifically, the inhibition of hsa-miR-425, hsa-miR-152 and hsa- miR-

24, which are all downregulated in h-MM, leads to the overexpression of CCND1, TACC3, MAFB, 

FGFR3 and MYC, which are the also the oncogenes upregulated by the most frequent IgH 

chromosomal translocations occurring in nh-MM. Importantly, we validate these results in 

primary cases of h-MM. These data establish the importance of miRNA deregulation in the 

context of MM, thereby opening up the potential for future therapeutic approaches based on 

this molecular mechanism. 
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RESUMEN 
   La translocación cromosómica t(7;11)(p15;p15), que origina la proteína de fusión NUP98-

HOXA9 (NH), aparece como evento primario en el 1% de los pacientes con Leucemia Mieloide Aguda 

(LMA) y está asociada con una forma muy agresiva de leucemia (mal pronóstico y baja supervivencia 

global). Aunque se ha sugerido un papel como factor de transcripción oncogénico, se desconoce el 

mecanismo molecular mediante el cual NH tiene estos efectos. Además, no existe una terapia 

específica para estos pacientes, que son tratados con regímenes de quimioterapia estándar muy 

ineficaces. Por ello, nuestro objetivo ha sido generar modelos celulares humanos que expresen la 

proteína quimera de forma constitutiva, en los que poder estudiar su papel en la transformación 

leucémica, así como ampliar la búsqueda de nuevas dianas terapéuticas que permitan tratar de 

forma dirigida a pacientes que presentan esta translocación cromosómica. Así, hemos identificado 

por primera vez los sitios de unión al ADN de NH, la mayoría de los cuales son regiones génicas 

potenciadoras que permiten regular la expresión de genes implicados en el desarrollo de la LMA. En 

concreto, hemos demostrado que NH induce directamente la sobreexpresión del complejo MEIS1-

HOXA9-PBX3, un elemento clave en la biología de leucemias originadas por otros reordenamientos 

cromosómicos. Para confirmar la importancia de este complejo también en este tipo de LMA, 

demostramos que el péptido HXR9, un inhibidor de la interacción HOXA9-PBX3, es capaz de matar 

selectivamente a las células que expresan NH. Además, observamos que, tanto en un modelo celular 

humano que expresa NH generado a partir de progenitores hematopoyéticos (hHP-NH) como en 

pacientes con la translocación cromosómica, la proteína de fusión es capaz de activar y reprimir la 

expresión de sus genes diana. De hecho, demostramos que la interacción de NH con p300 (un 

activador transcripcional) y con HDAC1 (un inhibidor transcripcional) puede explicar este papel 

activador-represor de la proteína de fusión. Apoyando esta hipótesis, encontramos un efecto 

inhibitorio dramático de la viabilidad de hHP-NH con el tratamiento con LBH589, un inhibidor de 

HDACs, lo que nos lleva a considerar su potencial terapéutico en esta leucemia. Finalmente, en un 

intento de comprender la contribución de las dos partes que forman la proteína de fusión en la 

regulación de la expresión génica, observamos que un tercio de los genes diana de NH son comunes a 

HOXA9. Así mismo, de forma sorprendente, hemos descubierto que también NUP98 parecía 

funcionar como un factor de transcripción implicado en la regulación de la hematopoiesis. El nuevo 

papel descubierto para esta nucleoporina ayudará a comprender mejor cómo funciona NH, así como 

otras fusiones leucémicas en las que también interviene NUP98. En resumen, estos resultados nos 

han permitido identificar algunos de los mecanismos patogénicos más relevantes inducidos por NH e 

identificar nuevas dianas terapéuticas que han sido estudiadas en los modelos celulares, con 

resultados muy prometedores.  
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ABSTRACT 
The chromosomal translocation t(7;11)(p15, p15), which results in the oncogenic fusion protein 

NUP98-HOXA9 (NH), is a rare but recurrent oncogenic event in AML that is associated with very poor 

prognosis and short overall survival. The molecular processes triggered by NH are poorly understood, 

even though a potential role as an aberrant transcription factor has been proposed. Moreover, there 

is no specific therapy for these patients; they are treated with ineffective standard chemotherapy 

regimens. Therefore, our main objective has been to generate human cellular models that 

constitutively express the chimera protein, to study its role in leukemic transformation and expand 

the search for new therapeutic targets that enable the treatment of the patients with this 

chromosomal translocation in a targeted manner. Using these models, we have described for the first 

time the DNA binding sites of NH, most of which are enhancers that regulate the expression of genes 

involved in the development of AML. In particular, we have shown that the direct overexpression of 

the complex MEIS1-HOXA9-PBX3, a key element in the onset of leukemia that is driven by other 

chromosome rearrangements in AML, is also one of the actionable pathogenic mechanisms induced 

by NH. We have demonstrated that the peptide HXR9, an inhibitor of the interaction HOXA9-PBX3, 

was indeed able of selectively kill cells expressing NH. Furthermore, we have observed that, in a 

model of human hematopoietic progenitors expressing NH, and also in patients with the 

chromosomal translocation, the fusion protein was able to activate and repress the expression of 

their target genes. We have also shown that the interaction of NH with p300 (transcriptional 

activator) and HDAC1 (transcriptional inhibitor), could explain this activator-repressor role of the 

fusion protein. Supporting this hypothesis, we have found a dramatic inhibitory effect on hHP-NH 

viability after the treatment with LBH589 (an HDAC inhibitor) which allowed us to consider its 

therapeutic potential for patients carrying the translocation. Finally, in an attempt to understand the 

contribution of each of the two NH moieties to the regulation of gene expression, we found that a 

third of the target genes of NH are common to HOXA9 wt. In addition, ChIP-seq results for NUP98 wt 

revealed the potential role of this nucleoporin in regulating hematopoietic differentiation. This newly 

role of NUP98 is likely to contribute to a better understanding of how NH, as well as other leukemic 

fusion proteins in which NUP98 is involved, works.  

To summarize, these results have allowed us to characterize some of the most relevant 

pathogenic mechanisms induced by NH and to identify new therapeutic targets that have been 

studied in our model, yielding very promising results.  
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Ac  - Acetylation  

AES  - Amino-terminal Enhancer of Split protein 

AML  - Acute Myeloid Leukemia 

ANWL  - Ala-Asn-Trp-Leu motif 

APL - acute promyelocytic leukemia 

Ara-C  - Cytarabine (arabinofuranosyl cytidin) 

AUL - acute undifferentiated leukemia 

B-ALL - B-cell acute lymphoblastic leukemia 

BFU-E  - Burst Forming Unit-erythroid 

CA-AML  - Cytogenetically abnormal AML 

CBF  - Core binding factor 

CFU  - Colony Forming Unit 

CFU-G  - Colony Forming Unit-granulocyte 

CFU-GEMM  - Colony Forming Unit-granulocyte, erythrocyte, macrophage, megakaryocyte) 

CFU-GM  - Colony Forming Unit-granulocyte, macrophage 

CFU-M  - Colony Forming Unit-macrophage 

ChIP  - Chromatin Immunoprecipitation 

ChIP-seq  - Chromatin Immunoprecipitation Sequencing 

CML  - Chronic Myeloid Leukemia 

CML-BC - chronic myelogenous leukemia in blast crisis  

Co-IP  - Co-immunoprecipitation 

CR  - Complete Remission 

eRNA  - Enhancer RNA 

FDA  - US Food and Drug Administration 

FDR  - False Discovery Rate 

FG repeats  - Phe-X-Phe-Gly or Gly-Leu-Phe- Gly amino acid residues 

GBD  - GLEBS binding domain 

GLEBS  - Gle2-binding sequence 

GLFG  - Gly-Leu-Phe- Gly 

GSEA  - Gene Set Enrichment Analysis 

H3  - Histone 3 

HATs  - Histone acetyltransferases 

HD  - Homeodomain 

HDACi  - HDAC inhibitor 

HDACs  - Histone deacetylases 
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hHP  - Human Hematopoietic Progenitor 

IPA  - Ingenuity Pathways Analysis 

K  - Lysine 

LC50  - Median Lethal Dose 

LOH  - Loss of Heterozygosity 

MD  - MEIS domain 

MDS  - Myelodysplastic Syndrome 

Me  - methylation 

NH  - NUP98-HOXA9 

NPC  - Nuclear Pore Complex 

Ph  - Philadelphia Chromosome 

PM  - PBX motif 

PolII  - Polymerase II 

qPCR  - Quantitative PCR 

R9  - 9 Arginine residues 

RBD  - RNA binding domain 

T-ALL  - T-cell Acute Lymphoblastic Leukemia 

t-AML - therapy-related acute myeloid leukemia 

t-MDS - therapy-related myelodysplastic syndrome 

TSS  - Transcription Start Site 

WBC  - White Blood Count 

 wt  - Wild Type 
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1 ACUTE MYELOID LEUKEMIA 

Acute Myeloid Leukemia (AML) is a highly malignant hematopoietic tumor that is 

characterized by the uncontrolled proliferation, increased survival and impaired differentiation 

of the hematopoietic myeloid progenitor cells. These abnormal immature leukemic cells, known 

as blasts, accumulate in blood and bone marrow. The presence of 20% or more of blasts in bone 

marrow is the main criteria for the diagnosis of AML1. This causes the disruption of normal 

hematopoiesis, which results in fatigue, infection, bleeding and multiorgan failure2.  (Figure 1A 

and 1B) 

AML represents approximately 25% of all leukemia diagnosed in adults with a median age 

range that goes from 66 to 71 years3. On average, the age-standardized incidence rate for AML is 

2.95 cases per 100 000 in Europe, and 4.6 cases in USA. However, the most worrying aspect of 

this disease is its high mortality rate, with a 5-year Overall Survival (OS) rate of 40% to 45% (OS in 

older patients still remains poor at < 10% after 5 years)4. Thus, almost 70% of patients on 

average succumb to the disease, representing more than 9,000 deaths each year alone in the 

United States5.  

           
 

 
 

Figure 1: Cellular origin of Acute Myeloid Leukemia (A) Shows the differentiation of normal lymphoid and 

myeloid lineage from hematopoietic stem cells. Yellow arrow points at the abnormal undifferentiated leukemic blast 
cells. (Modified from How stem cells work by Stephanie Watson) (B) Shows how in AML, the normal hematopoietic 
balance between proliferation and differentiation is disrupted and an increase in proliferation with a blockage of 
differentiation is observed. 
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1.1 Genetic origin and evolution of AML 

The production of blood is a tightly controlled process in which transcription factors and 

chromatin remodeling genes are necessary for the orchestrated regulation of gene expression 

that defines the phenotype of a given blood cell6.  

 

1.1.1 The “Two hits hypothesis” 

For many years, the accepted model of leukemogenesis was the “two hit hypothesis”. This 

model suggests that mutations of a single gene are rarely sufficient to cause the development of 

AML and that instead, two different types of genetic mutation are required for malignant 

transformation of a myeloid precursor: Class I and class II. Class I mutations lead to increased 

proliferation, survival, or evasion of apoptosis, and include mutations conferring constitutive 

activity to tyrosine kinases or deregulation of downstream signaling molecules, such as BCR-ABL 

or mutations in FLT-3, c-KIT, and RAS. Class II mutations impair differentiation or enhance self-

renewal of hematopoietic progenitors and include the translocations associated with the core-

binding factor (CBF) or mutations in genes that are involved in transcriptional regulation, such as 

p300, CBP, MOX, TIF2, and MLL7,8. However, recent research highlighting the presence of novel 

mutations in genes that are related to epigenetic control of the genome and modifications to the 

epigenome itself found in the AML patients suggests that Class I and Class II mutations are only 

one part of a more complex picture. Furthermore, that some other mutations occurring in AML 

are not regarded as belonging to Class I or Class II also indicates that the “two-hit” theory is an 

oversimplification9. Moreover, there is evidence that there is also a temporal component to 

leukemogenesis: mutations have to occur at a particular point in cell development, and in a 

particular order, to allow for leukemic transformation7. Therefore, the models for the 

development of AML are becoming increasingly complex.  

 

1.1.2  New model for AML development 

An example of a model that best fits the actual scenario of AML would be the one proposed 

by Welch et al10 (Figure 2). In the first step of the leukemogenesis, a driver mutation (recurrent 

mutations with translational consequences or recurrent chromosomal translocations that result 

in leukemic fusion genes) occurs within the context of a Human Hematopoietic Progenitor (hHP) 

that already contains hundreds of random benign mutations that have accumulated over time. 

This mutation confers a proliferative advantage to the cell, allowing the formation of a clone that 
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expands, carrying along all of the random background mutations within its genome (passengers). 

Eventually, an additional driver mutation (cooperating mutation) occurs within a cell in an 

expanding clone and it becomes the leukemic “founding” clone that is detected at the diagnosis. 

Thus, these cells contain only a few drivers but many passengers. Each progression event yields a 

small cluster of new mutations, of which only one or two may be relevant for clonal or subclonal 

outgrowth.  

In summary, the development of AML is associated with an accumulation of acquired genetic 

alterations and epigenetic changes in hematopoietic progenitor cells that alter the normal 

cellular mechanisms. AML constitutes an exceptional biological model of cooperative effects 

between genetic and epigenetic alterations on the transformation, progression and phenotype of 

a clonal neoplasia11. 

 

Figure 2: Integrated model for the origin and evolution of the oncogenic events in AML. Hematopoietic 

progenitors (hHP, shown in green) are long-lived cells that accumulate random benign background mutations as a 
function of age (X). The initiating mutations, which are drivers, provide an advantage for the affected cell and clonal 
expansion (shown in yellow). Likewise, 1–5 of cooperating mutations (Y) contribute to progression in most cases of 
AML, giving the expanding clone an additional advantage. Clonal outgrowth of cells with appropriate progression 
events results in AML, which is dominated by the “founding” AML clone, depicted in red. Subclones arise from the 
founding AML clone by acquiring a small number of additional mutations that confer an advantage to that cell, along 
with any additional background mutations (Z) that may have occurred in the interim. Therefore, X represents the 
age-dependent passenger mutations pre-existing in HSPC; Y, the passenger mutations gained between initiating and 
cooperating mutations; and Z, the passenger mutations gained during progression to subclone  (Modified from 
Welch et al., Cell, 2012). 
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1.2 AML prognostic factors 

Although there are unifying cellular characteristics, AML remains a heterogeneous group of 

diseases in terms of clinical presentation, genetic alterations, prognosis and response to 

treatment. Classifying the different types of AML and especially identifying prognostic factors in 

this disease remains one of the main needs for the clinicians nowadays. 

Prognostic factors may be subdivided into those related to patient characteristics and 

general health condition and those related to characteristics particular to the AML clone. Patient-

related factors include age, as a clear adverse prognostic factor, and comorbidities, as an 

important aspect to be evaluated before the treatment of the patient. The AML-related factors 

are the white blood count (WBC), existence of prior myelodysplastic syndrome (MDS), previous 

cytotoxic therapy for another disorder and cytogenetic and molecular genetic changes in the 

leukemic cells at diagnosis. Other factors have been also included in this group, but the 

prognostic effect is observed with variable consistency among studies12.  

Numerous recurrent cytogenetic aberrations have been identified in AML cases that are not 

only diagnostic markers for specific subtypes but also constitute independent prognostic factors 

for response to therapy and for overall survival5,11 In particular, recurrent chromosomal 

rearrangements that result in the production of fusion proteins are common initiation events in 

40% of AML cases13.  The European LeukemiaNet has proposed a standardized reporting system 

that correlates genetic abnormalities with clinical outcome, including data from cytogenetic 

analysis and from mutation analysis of NPM1, CEBPA and FLT3 genes.(Table 1) This classification 

divides AML patients into 4 risk groups with a high variability between them (e.g. complete 

remission observed in 80-90% of the patients in the favorable genetic group but only in 30% of 

the patients in the adverse group4). 

Different next-generation sequencing analysis of AML genomes has recently shown 

hundreds of separate genetic lesions within individual cases, which represents an important 

advance in the study of this disease14. Moreover, the progress in genomics technology has 

proven valuable for the discovery of novel leukemia subgroups and prognostic signatures. 

However, to date, conventional cytogenetics analysis is a mandatory, irreplaceable and the 

strongest component in the diagnosis and prognosis evaluation of a patient with suspected 

AML12. 
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Table 1: Standardized correlation of cytogenetic and molecular genetic data with prognosis data in 

AML (Modified from Döhner et al
12

) 

GENETIC GROUP SUBSETS 

Favorable 

t(8;21(q22;q22); RUNX1-RUNX1T1 

inv(16)(p13.1;q22) or t(16;16)(p13.1;q22); CBF-MYH11 

Mutated NPM1 without FLT3-ITD (normal karyotype) 

Mutated CEBPA (normal karyotype) 

Intermediate I 

Mutated NPM1 and FLT3-ITD (normal karyotype) 

Wild-type NPM1 and FLT3-ITD (normal karyotype) 

Wild-type NPM1 without FLT3-ITD (normal karyotype) 

All AMLs with normal karyotype except those included in favorable group 

Intermediate II 
t(9;11)(p22;q23); MLLT3-MLL 

Cytogenetic abnormalities not classified as favorable or adverse 

Adverse 

inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN-EVI1 

t(6;9)(p23;q34); DEK-NUP214 

t(v;11)(v;q23); MLL rearranged  

-5 or del(5q); -7; abnl(17p); complex karyotype 

 

1.3 Treatment 

1.3.1  Standard chemotherapy protocols 

 

1.3.1.1 Intensive induction therapy 

Patients diagnosed with AML, considered suitable for intensive chemotherapy, are treated 

with a combination of 3 days of anthracycline and 7 days of cytarabine (“3 + 7”)4,12. Anthracycline 

(eg. Idarubicin) inserts itself into the DNA and prevents that DNA from unwinding by interfering 

with the enzyme topoisomerase II15. Cytarabine (arabinofuranosyl cytidin or ara-C) is a 

pyrimidine nucleoside analogue that inhibits the synthesis of DNA, by blocking DNA 

polymerase16. Complete remission (CR) can be achieved in 65% to 75% of younger patients (≤ 60 

years) and in approximately 40% to 60% of older patients (> 60 years). 

For AML patients who could not tolerate the intensive treatment, the therapeutic options 

are reduced and include best supportive care with hydroxyurea, low-dose cytarabine and 

hypomethylating agents such as decitabine or azacitidine. CR can be achieved in 10% to 30% of 

patients treated with this low-dose therapy4. 

 

1.3.1.2 Consolidation phase 

In patients who achieve a CR after induction chemotherapy, some post-remission therapy is 

required to prevent relapse. This treatment is based on genetic and molecular features and can 

range from high-dose cytarabine to allogeneic hematopoietic stem cell transplantation4,12.  

http://en.wikipedia.org/wiki/Topoisomerase_II
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The risk of relapse following consolidation phase is highly variable among the different 

prognostic groups of AML, but remains high for all cases (≈ 30% in the favorable group)17. Indeed, 

in the majority of patients with AML who achieve CR, the leukemia will recur within 3 years after 

diagnosis. In general, the prognosis of patients after relapse is poor and treatment options are 

unsatisfactory. Therefore, this scenario raises the urgent need for improved therapies for the 

disease. 

1.3.2 Future perspectives  
 

The association of specific cytogenetic subtypes of AML with altered molecular pathways has 

led to the introduction of specifically targeted therapeutics (e.g. retinoic acid in PML-RARA 

positive cases or selective FLT3 inhibitors in cases with FLT3 internal tandem duplication). 

However, these discoveries have not translated into significant advancements in survival for the 

majority of patients with AML that are still treated with the current standard chemotherapy 

regimens and most of them ultimately relapse17. Therefore, the identification of novel 

therapeutic targets for the treatment of this disease is of great importance. For this reason, it is 

necessary to understand completely the underlying biology for each subtype and explore 

whether the leukemic transformation could be mediated by common or overlapping genetic 

programs downstream5. Identifying genetic pathways that cooperate in the leukemogenesis will 

facilitate the understanding of the molecular mechanisms at play and the search for common 

critical therapeutic targets. 

1.3.2.1 HDAC inhibitors: 

It has been demonstrated that the epigenetic regulation of gene expression is crucial to the 

onset and progression of cancer. Changes in the structure of nucleosomes have a direct effect in 

the remodeling of chromatin between relatively “open” and “closed” forms that allow or prevent 

gene expression. Histones, the main structural component of the nucleosomes, belong to the 

diverse group of proteins regulated by acetylation, a common and reversible epigenetic 

modification18. Acetylation is regulated by the opposing activities of histone acetyltransferases 

(HATs) and histone deacetylases (HDACs). HATs transfer acetyl groups to amino-terminal lysine 

residues in histones, which results in a local chromatin expansion and an increased accessibility 

of transcription factors to DNA, whereas HDACs catalyze the removal of acetyl groups, leading to 

chromatin condensation and transcriptional repression19.  

Altered acetylation of histone proteins has been identified as a hallmark of cancer 

development20 and several studies have widely shown that HDACs are promising targets for 
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therapeutic interventions intended to reverse aberrant epigenetics states associated with 

cancer. Indeed, HDAC inhibitors (HDACi), a novel class of chemotherapeutic agents, have been 

found to have anticancer activities with remarkable tumor specificity in hematological 

malignancies. Some HDACi have been already approved by the US Food and Drug Administration 

(FDA), such as varionstat or romidepsin, for the treatment of cutaneous T-cell lymphoma21,22. 

Others such as Panobinostat (LB589), a potent oral pan-HDACi in Phase I/II clinical trial, holds 

promise as a combination therapy for a broad range of cytopenias, including some subtypes of 

AML18.  
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2 NUP98-HOXA9 FUSION PROTEIN 

The chromosomal translocation t(7;11)(p15;p15), that results in the oncogenic fusion protein 

NUP98-HOXA9, was first described in 197623, but it was not until 1996 when the genes involved 

in the rearrangement were identified24 (Figure 3). It is a rare but recurrent event that occurs 

predominantly in patients with de novo AML. It must be noted that it has also been observed in 

some cases with trilineage myelodisplasic syndrome (MDS) and chronic myelomonocytic 

leukemia25,26. In some occasions it appears in a secondary leukemia after an exposure to 

Topoisomerase II inhibitors27.  It is associated with a very poor prognosis and a low degree of 

overall survival14.  It appears more frequently in Asian countries, in females and in younger 

people, compared to the other M2-subtype cases. Moreover, the patients are highly refractory 

to intensive treatment, including allogeneic stem cell transplantation14. Because of such special 

features that characterize the patients with this chromosomal translocation, it has been 

considered as an independent entity14. However, despite the large severity of the leukemia 

induced by this translocation, the oncogenic events underlying its malignancy are poorly 

understood. 

 

Figure 3: t(7;11)(p15;p15) chromosomal translocation. Normal and derivative chromosomes that result 

from the translocation. 

 

2.1 Genes involved in the fusion protein 
 

2.1.1 NUP98 
The 98 kDa nucleoporin (NUP98) is a component of the Nuclear Pore Complex (NPC), a large 

route of transport between the nucleus and the cytoplasm, allowing small ions and polypeptides 

to pass through by diffusion and larger macromolecules (mRNA and proteins > 40 kDa) by 

multiprotein structure embedded in and traversing the nuclear membrane. It consists of 

approximately 30 different proteins, many of which are present in multiple copies, arranged in a 

distinguishing octagonal symmetry around a central transport channel28. The NPC provides a 



41 

 

bidirectional active transport mediated via carrier proteins and transport factors collectively 

called karyopherins (e.g. importins, exportins, and transportin)8. A still small but accumulating 

body of data suggests that these structures and, in particular, Nup proteins exposed to the 

nucleoplasmic face of the NPC, also play important roles in modulating chromatin structure and 

gene expression28-30. 

The NUP98 gene maps to chromosome 11p15.4, is 122 kb long and is located 3.6 Mb from 

the telomere on the short arm of chromosome 11. It is composed of 33 exons and encodes 2 

alternatively spliced mRNA variants: NUP98 and NUP98-NUP96. NUP98 splice variant includes 

only the NUP98 portion of the NUP98-96 mRNA and its expression is very low compared to the 

other variant. NUP98-NUP96 precursor polypeptide undergoes autoproteolysis and is cleaved 

into two peptides: NUP98 and NUP96 8. This coexpression from the same mRNA and its 

subsequent cleavage promotes and regulates the correct localization of the two mature peptides 

to the NPC. However, two pools of NUP98 have been found: an NPC-bound fraction (on both the 

nucleoplasmic and cytoplasmic domains) and an off-pore intranuclear fraction31 (Figure 4). 

Phosphorylation of NUP98 during mitosis causes it to release from the pore and it is possible that 

this post-translational modification could promote NUP98 cycling to and from the NPC.31,32 

 

 

 

Figure 4: The nuclear pore complex (NPC). The core structure of the NPC is maintained by the NUP93-205 

complex (black) and the supporting structures of the NUP107-160 complex (grey) on the nuclear and cytoplasmic 
faces of the pore. The cytoplasmic filaments (blue) and the nuclear basket (black) allow the pore to sense the 
cytoplasmic and nuclear compartments, respectively, and regulate transport of macromolecules through the NPC via 
binding sites on FG Nups in the barrel of the pore. The entire pore is anchored to the nuclear envelope by protein–
protein contacts between transmembrane Nups, T.M. Nups (pink) and the NPC scaffold. NUP98 is found on the 
nuclear and cytoplasmic faces of the pore (red) as well as in the nucleoplasm. (Modified from Franks et al., Trends in 
Cell Biology, 2013) 
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Approximately a third of all nucleoporin proteins contain repeats of Phe-X-Phe-Gly amino 

acid residues, or Gly-Leu-Phe-Gly (GLFG) residues, collectively called FG repeats. However, 

NUP98 is distinct from other FG nucleoporins because it contains multiple nontandem GLFG 

repeats8. The GLFG repeats are thought to function as docking sites for different proteins. They 

have been shown to bind nuclear exportin 1 protein CRM1 (XPO1) and the mRNA export factor 

TAP, among others. The nontandem FG repeats of NUP98 are intersected by a coiled-coil 

domain, the Gle2-binding sequence (GLEBS) motif in the N-terminal portion of NUP98 that 

interacts with the RNA export factor RAE1 (Gle2). Finally, the C-terminal end of NUP98 contains 

an RNA-binding motif that is also involved in the export of mature forms of RNA8 (Figure 5).  

There is evidence that NUP98 is involved in RNA export and protein import33.  

 

 

Figure 5: Schematic representation of the NUP98 protein. Red lines indicate GLFG repeats, red box 

indicates the Gle2-binding domain (GBD), purple box indicates the RNA-binding domain (RBD) and the green lines 
represents the autoproteolytic cleavage site. Known NUP98 interacting proteins are indicated: CBP/p300 (blue), TAP 
(yellow), RAE (green) and HDAC1 (purple) (Modified from Gough et al., Blood, 2011) 

 

In addition to its well established role in mediating nucleo-cytoplasmic transport, recent 

studies have shown that the intranuclear fraction of NUP98 could also localize to promoters of 

multiple genes28-30,34. Moreover, the downregulation of different target genes after the 

knockdown of NUP98 suggestes that it could have important functions as a transcription factor in 

Drosophila30,34. Supporting these findings, it was found that the FG repeat region of NUP98 is 

able to recruit p300 to activate transcription or HDAC1 to repress transcription33 (Figure 5). Later, 

Liang et al35 demonstrated that NUP98 dynamically associates with the human genome in a 

manner that is tightly linked to differentiation status and developmental gene expression. They 

found that in human progenitor cells NUP98 is highly associated to active genes and that it is 

functionally important for their expression. However, in differentiated cells, NUP98 mainly 

interacts with silent chromatin domains. Importantly, it seems that both the intranuclear and the 

NPC-bound fraction of NUP98 are involved in the developmental gene regulation. Although the 
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mechanisms by which this nucleoporin is targeted to chromatin remain unclear, it is known that 

at least part of its DNA binding activity resides in the FG repeat region33. 

Finally, FG repeats also allow NUP98 to interact with the dynein light chain, DYNLT1, which 

suggests a role of NUP98 in the process of chromosome segregation36. 

Frequent allelic loss at the 11p locus has been reported in AML and indeed, Loss of 

Heterozygosity (LOH) of the NUP98 gene has been considered an adverse prognostic factor in 

Acute Myeloid Leukemia (AML)37. However, the molecular mechanisms involving NUP98 gene 

locus and its function in leukemogenesis are still unknown.  

 

2.1.2 HOXA9 

 

Homeobox A9 (HOXA9) is a member of the highly conserved HOX protein family of 

transcription factors, which play key roles in both development and hematopiesis38.  

In mammals, 39 genes have been identified, separated into four clusters (A-D) located in 

four different chromosomes. HOX genes are numbered such that genes of different clusters with 

the same number have greatest similarity and functional redundancy (paralogs). (Figure 6) 

 

 

 
Figure 6: Clustered HOX genes. Schematic structure of HOX genes clusters. The 39 HOX genes are located on four 

different chromosomes. Human HOX genes are shown by colors and blank spaces shown missing genes. (Modified 
from Alharbi et al, Leukemia, 2013) 

 

In particular, the HOXA9 gene is located in chromosome 7p15, is 7.8 kb long and is 

composed by two exons. 

HOX proteins bind to DNA through a homeodomain (HD), which is found in the C-terminus of 

the protein. The HD is highly conserved between HOX proteins and includes conserved tyrosine 

residues which may regulate HOX activity. However, this regulation may be different for each 

type of HOX protein. For example, the HD-tyrosine phosphorylation of HOXA9 increases the 

binding affinity to its target genes whereas the affinity of HOXA10 to the same genes is 
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decreased.39,40  HOX proteins need cofactor interactions in order to increase the selectivity, 

affinity and specificity for their DNA-binding sites. The most important cofactors are pre-B-cell 

leukemia (PBX) and myeloid ectopic insertion site (MEIS) families. Indeed, HOX proteins harbor 

specific binding domains for this cofactors:  PBX motif (PM) and MEIS domain (MD).41 

Additionally, HOX-PBX binding requires a hexapeptide motif containing a critical tryptophan 

residue in the HOX proteins42. (Figure 7) 

 

 

 
Figure 7: Schematic representation of the HOXA9 protein. Green box represents MEIS domain (MD), 

pink box corresponds to PBX motif (PM), purple box represents the hexapeptide (H) and yellow box would be the 
homeodomain (HD). 

 

HOX gene transcription during hematopoiesis is tightly regulated in a temporal manner. 

Maximal expression of HOX1–6 occurs in most primitive hematopoietic stem cells (CD34+CD38−) 

in humans, with downregulation of these genes during CD38+ differentiation. Subsequently, 

HOX7–11 expression is maximal during commitment (CD34+CD38+) with downregulation as 

differentiation proceeds43. Indeed, the expression of HOX genes is almost absent in CD34− cells, 

which are considered differentiated bone marrow cells. Interestingly, the different HOX clusters 

also have specific patterns of lineage-restricted expression: HOXA genes are expressed in 

myeloid cells, HOXB genes in erythroid cells and HOXC genes in lymphoid cells. HOXD genes are 

not expressed in hematopoiesis despite having similar regulatory regions to the other clusters 41. 

The function of HOX proteins in normal hematopoiesis and leukemia has been widely 

studied. In particular, HOXA9 is required for the maintenance of hematopoietic progenitor status 

and promotes proliferation. Its overexpression in murine bone marrow induces myeloid 

progenitor expansion and, after a very long latency, leads to leukemia. Interestingly, HOXA9 

overexpression only results in a partial inhibition of pre-B-cell differentiation and does not affect 

T-cell development.44 Thus, it has been hypothesized that HOXA9 is involved in the selection of 

myeloid versus lymphoid lineage commitment.43 On the other hand, HOXA9-/- mice showed 

deficiencies in myeloid and lymphoid cells with a significant defect in their repopulating ability, 

as well as the corresponding reduction in spleen cellularity and size45. 
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HOXA9 expression is controlled by different transcriptional activators such as MLL and 

caudal-type HOX transcription factor family (CDX1, CDX2 and CDX4). Also, as HOX genes are 

distributed in clusters, they are especially sensitive to changes in the chromosomal 

organization41.  

HOXA9 regulates transcription by interacting with enhancers. Recent genome-wide studies 

have made it possible to identify some potential target genes that are directly related to cell 

proliferation and survival. Most of them are upregulated (MEIS1, different members of HOX 

family, SOX4, CAMK2D, FOXP1, PIM1, EVI1, etc.) but HOXA9 is also able to downregulate some 

targets like RUNX genes46. 

HOXA9 may also bind DNA as heterodimer with MEIS1 or PBX proteins or as a heterotrimer 

with both of them to regulate different genes. Among the targets of these transcriptional 

activator complexes we found the MYB, MEF2C or FLT3 genes.  Notably, the coexpression of 

HOXA9 and MEIS1 in mice significantly reduces the time of latency in the induction of AML and 

there is increasing evidence of the importance that these factors appear to have in the 

development of AML47. Different studies have identified the consensus binding site for HOXA9 

complexes. PBX-HOXA9 would bind to ATGATTTACGAC sequence, MEIS1-HOXA9 consensus 

target would be TGACAGTTAT/C and PBX-MEIS binds to TGATTGACAG. PBX consensus binding 

sites are not underlined, HOXA9 consensus binding sites are underlined and MEIS consensus 

binding sites are broken underlined. Surprisingly, a DNA binding site specific for the MEIS1-

HOXA9-PBX heterotrimer has not been detected but it seems to be interacting with PBX-HOXA9 

consensus sites. Hence, MEIS1 could bind to a PBX-HOXA9 dimer bound to DNA without 

interacting to its specific recognition site. Indeed, MEIS1 enhances in vitro HOXA9-PBX protein 

complex formation48.  

It is therefore unsurprising that the overexpression of HOXA9 is a highly frequent event in 

AML. Its deregulation is associated in some cases with chromosomal rearrangements that involve 

HOXA9 upstream regulators, such as MLL, but also with specific mutations, like NPM1 

mutations41. NPM1 mutations are the most common genetic aberration in AML, reported in 

about 35% of adult patients. Such mutations induce the recolocation of NPM1 into the 

cytoplasm, which leads to the overexpression of HOXA9 and other HOX genes49. 

HOX genes expression has become an important prognostic factor in AML41. In particular, 

HOXA9 has been the single gene correlated with the worst outcome and relapse of disease and 

short survival, among all the genes investigated in AML patients50. Subsequently, low HOXA9 
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expression, as well as low expression of MEIS1, were favorable predictors for AML patient 

outcome and good response to therapy41.  

2.2 Molecular description  

NUP98-HOXA9, the fusion gene originated by the chromosomal translocation, encodes the 

FG repeat-rich portion of the nucleoporin NUP98, fused to the homeodomain region and PBX 

heterodimerization domain of HOXA9 (Figure 8).  

 

 
 

Figure 8: Schematic representation of NUP98, HOXA9 and NUP98-HOXA9 proteins. Arrows indicate 

the breakpoints that originate the chromosomal translocation 

 

Different studies have described four types of fusion sequences in patients with 

t(7;11)(p15;p15), which appeared to be the result of the alternative splicing of NUP98 and 

HOXA914. All of them are in-frame and originate fusion proteins with a similar number of amino 

acids (Table 2 and figure 9). Although it has not been analysed experimentally, it is expected that 

the different fusions act similarly as they retain the same functional domains. Leukemic cells 

from these patients contain at least two different fusion products, but Type I (fusion between 

NUP98 exon 12 and HOXA9 exon 1b) is present in all the patients.  

NUP98-HOXA9 fusion gene Type I has 13 exons and originates a chimeric protein with 579 

aminoacids and 60kDa of molecular weight. 

 

Table 2: Types of NUP98-HOXA9 transcripts 

FUSION TYPE BREAKPOINT 
Nº OF 

NUCLEOTIDES 
Nº OF AMINOACID 

Type I NUP98 exon 12 – HOXA9 exon 1b 1737  579  

Type II NUP98 exon 12 – HOXA9 exon 2 1647  549 

Type III NUP98 exon 11 – HOXA9 exon 1b 1596  532 

Type IV NUP98 exon 11 – HOXA9 exon 2 1506  502 
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Figure 9: Fusion point sequence in each type of transcript. The corresponding amino acids are 

listed below the nucleotide sequence. Black lines represent the breakpoints. (Modified from Chou et a.l, 
Leukemia, 2009) 

 

2.3 Subcellular localization 

NUP98-HOXA9 is located almost exclusively in the nucleus and it is never found, neither as a 

part of nor associated with the NPC. Interestingly, during mitosis, the fusion protein is 

concentrated at kinetochores and along chromosome arms51, unlike NUP98 wt, which is 

distributed throughout the cell.  This association is detected in prophase and persists through 

metaphase and anaphase (Figure 10). Importantly, these novel intranuclear localizations of NH 

require both the GLFG repeats of NUP98 and the homeodomain of the HOX protein. 

 

               

 

Figure 10: Subcellular localization of NUP98-HOXA9. GFP-Nup98 fusions were highly concentrated on 

chromosomes during mitosis and exhibit a punctate staining pattern along mitotic chromosomes.  (Modified from S. 

Xu et al., Molecular Biology of the Cell, 2010) 
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2.4 Mechanism of action   

NUP98-HOXA9 is an oncogenic fusion protein that in murine bone marrow results in a rapid, 

polyclonal myeloproliferative disease progressing to AML by 7-8 months26. However, in human 

primary hematopoietic cells, NH induces long-term proliferation, blocks the differentiation and 

dramatically increases the number of primitive cells, but additional genetic changes are required 

for the progression to the overt leukemia 52,53.   

Specifically, enforced expression of NH in hHP confers a proliferative advantage and 

increases self-renewal. It also alters differentiation by inhibiting erythropoiesis, delaying 

neutrophil maturation and blocking myeloid colony formation54.  

It has been commonly accepted that NH acts as an oncogenic transcription factor53-55. Indeed, 

some studies have analyzed changes in the expression profile in presence of NUP98-HOXA9 in 

hHP and extensive changes with a preponderance of upregulated genes have been detected53-56. 

Among the deregulated genes we can find oncogenes, transcription factors, growth factors, cell 

cycle regulators, tumor suppressors and factors involved in hematopoietic differentiation53. 

However, it has not been determined whether these genes are directly regulated by the chimera 

or their overexpression is a downstream effect.  Based on the involvement of HOXA9 in 

leukemogenesis and its function as transcription factor, it was accepted that the homeodomain 

of HOXA9 conferred NUP98-HOXA9 the ability to bind to DNA to regulate gene expression52. 

However, there are evidences that suggest that NH also induces oncogenic mechanisms beyond 

those mediated by the homeodomain. On one hand, NH induces a leukemia that is preceded by a 

myeloproliferative phase, whereas the leukemia caused by overexpression of HOXA9 is not 

preceded by myeloproliferation25. On the other hand, mutations in the homeodomain do not 

abolish most of the effects of NH on hematopoietic differentiation52. Thus, it seems clear that the 

NUP98 region of the fusion protein is required for the induction of the leukemic transformation 

driven by NH. However, the specific role of NUP98 and how such a broad range of different 

partners can bring similar AML phenotypes is still not clear. NUP98 could be mediating the 

interaction with other proteins through the FG-repeat domain and it has been suggested that 

NUP98-HOXA9 could interact with p30055,57 (transcriptional activator), HDACs37(transcriptional 

inhibitor), CRM158,59 (protein involved in nuclear transport) or AES60 (transcriptional Regulator of 

the TLE family), but limited information is available regarding the features, architecture or the 

effects in leukemogenesis of these interactions. Interestingly, during interphase, there are 

dynamic interactions between NH and endogenous NUP98 that lead to mislocalization of the 
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intranuclear fraction of NUP98, but do not alter the level of NUP98 at the nuclear pore complex. 

During mitosis, this interaction would be disrupted51. In addition, it has been suggested that the 

interaction of NH with DYNLT1 could cause defective chromosomal segregation, contributing to 

the oncogenic transformation36.  

Importantly, recent studies that propose a role for NUP98 in transcriptional regulation30,35 

uncover a very interesting aspect for the study of NUP98 leukemic fusions that must be explored. 

NUP98, together with its ability to interact with different proteins, could allow NH to regulate the 

expression of different target genes. 

Therefore, there is still a long way to completely elucidate the functional contribution of 

each of the moieties of this chimeric protein. 

 

2.5 Cooperating oncogenic events and mutations 

It is accepted that NUP98-HOXA9 fusion gene is a class II mutation, because most of the 

described collaborating events are class I proliferation and survival mutations. However, this 

would be another example of how simplistic the Two hit hypothesis is, since NH does not 

exclusively play a role in blocking the differentiation, but it also induces uncontrolled 

proliferation of progenitor cells. In contrast, based on the model proposed by Welch et al10, we 

could consider NH as a driver mutation that plays a causative role in the development of AML but 

needs the cooperation of different oncogenes to enhance its leukemogenic potential.  

Several studies have demonstrated an enforced strong transcription of MEIS1 in NH cellular 

models. A collaborator role of this factor with the fusion protein in leukemogenesis has been 

suggested 26,27,54,55. Co-expression of NH with MEIS1 shortens the period of AML development in 

transplanted mice from 230 to 142 days55. 

On the other hand, several studies have detected the NH fusion gene in patients with 

Chronic Myeloid Leukemia (CML), a clonal stem cell disease caused by the BCR-ABL fusion 

oncoprotein. The BCR-ABL fusion gene is originated by the chromosomal translocation 

t(9;22)(q34;q22), whose derivative chromosome is known as Philadelphia chromosome (Ph). 

Interestingly, there have also been patients who developed NH-induced myeloproliferation and 

subsequently acquired a Ph chromosome in their leukemic cells when AML was diagnosed, 

suggesting that NH and BCR-ABL may interact genetically in human leukemia and influence 

disease progression57,61. In fact, coexpression of NH with BCR-ABL reduces the period to AML in 

transplanted mice even further than MEIS1, from 230 to 21 days55.  
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NH is strongly associated with activating mutations in KIT, NRAS, KRAS, WT-1 and also FLT3-

ITD mutations, each of which is a class I mutation that confers a proliferation or survival 

advantage to hematopoietic cells 8,14,33.  

 

2.6 Other oncogenic NUP fusions 

Although NUP98-HOXA9 is the most frequent, and it is considered the prototype, NUP98 is 

known to fuse to other twenty-eight different partner genes to produce abnormal fusion 

proteins, listed in Table 3. They are caused primarily by balanced translocations and inversions in 

the malignant cells of patients with a wide array of distinct hematopoietic malignancies, mostly 

AML, but also including T-ALL and MDS8,33  

All of these chimeric fusion proteins have the N-terminal half of the NUP98 protein in 

common, which includes the FG repeat region. The C-terminal partner in these chimeras can be 

one of a wide variety of proteins that can be divided into two general classes: 1) homeodomain 

transcription factors and 2) other, typically nuclear and often nucleic acid-binding proteins, such 

as topoisomerases or the putative RNA helicase,DDX1051. 

Just like NH, the other NUP98 fusion proteins also induce proliferation and impair the 

differentiation in hHP. Likewise, they cause MDS that progress to AML in mice with variable 

penetrance, suggesting that cooperating oncogenic events are needed for the complete leukemic 

transformation33,62-66.  However, the molecular mechanisms by which these fusion proteins, 

involving such different partners, cause similar leukemic phenotypes, are completely unknown. 

Many of the NUP98 translocation partner are transcription factors with a DNA binding domain 

(like the homeodomain transcription factors) and it is postulated that, as NH, they deregulate the 

expression of genes involved in hematopoiesis8. In other cases, NUP98 is fused to epigenetic 

regulators, like histone methyltransferase (NSD1, NSD3 or MLL) or histone demethylase 

(JARID1A) and it seems that they modulate gene expression by modifying chromatin at numerous 

regions genome-wide.8,31 However, there is no explanation for those cases in which NUP98 is 

fused to a gene that does not have a DNA-binding activity or that has an unknown function. 

Importantly, NUP98 is not the only nucleoporin implicated in the pathogenesis of 

hematological malignancies. Four other fusion genes involving NUP214 have been described 

(Table 3).  
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Table3: Nucleoporin gene rearrangements in hematologic malignancies. AML = acute myeloid 

leukemia, CML-BC = chronic myelogenous leukemia in blast crisis, MDS = myelodysplastic syndrome, t-AML = 

therapy-related acute myeloid leukemia, t-MDS = therapy-related myelodysplastic syndrome, APL = acute 

promyelocytic leukemia, T-ALL = T-cell Acute lymphoblastic leukemia, B-ALL = B-cell acute lym-phoblastic leukemia, 

and AUL = acute undifferentiated leukemia. (Modified from Takeda et al.; Semin Cancer Bio, 2014) 

 

Rearrangement  Fusion trasncript  Disease  

NUP98 
t(7;11)(p15;p15) 
t(7;11)(p15;p15) 
t(7;11)(p15;p15) 
t(11;12)(p15;q13) 
t(11;12)(p15;q13) 
t(2;11)(q35;p15) 
t(2;11)(q31;p15) 
t(1;11)(q23;p15) 
t(9;11)(q34;p15) 
t(10;11)(q23;p15) 
inv(11)(p15;q22) 
t(11;20)(p15;q11) 
t(9;11)(p22;p15) 
t(5;11)(q31;p15) 
t(8;11)(p11.2;p15) 
t(3;11)(p24;p15) 
Complex (12p13) 
t(11;17)(p15;p13) 
Complex (3p25) 
t(6;11)(q24.1;p15.5) 
Complex (3q29) 
t(11;18)(p15;q12) 
t(4;11)(q21;p15) 
t(10;11)(q25;p15) 
t(X;11)(q28;p15) 
t(3;11)(q12;p15) 
inv(11)(p15;q23) 
t(11;12)(p15;q13) 
t(3;11)(p11;p15) 

 
NUP98-HOXA9 
NUP98-HOXA11 
NUP98-HOXA13 
NUP98-HOXC11 
NUP98-HOXC13 
NUP98-HOXD11 
NUP98-HOXD13 
NUP98-PMX1 
NUP98-PRRX2 
NUP98-HHEX 
NUP98-DDX10 
NUP98-TOP1 
NUP98-PSIP1 
NUP98-NSD1 
NUP98-NSD3 
NUP98-TOP2B 
NUP98-JARID1A 
NUP98-PHF23 
NUP98-ANKRD28 
NUP98-CCDC28A 
NUP98-IQCG 
NUP98-SETBP1 
NUP98-RAP1GSD1 
NUP98-Adducin 3  
NUP98-HMGB3 
NUP98-LOC348801 
NUP98-MLL 
NUP98-RARG 
NUP98-PU1F1 

 
AML/MDS, t-AML/MDS, CML 
CML-BC 
AML,MDS 
AML 
AML 
Pediatric AML 
AML, t-AML 
AML, t-MDS/AML 
t-AML 
AML 
AML, MDS, CML 
AML, t-MDS 
AML, MDS 
Pediatric AML 
AML 
AML (Monoblastic) 
AML (Megakaryoblastic) 
AML 
MDS/AML 
AML (Megakaryoblastic), T-ALL 
Biphenotypic T-ALL/AML 
Pediatric T-ALL 
Adult T-ALL 
T-ALL 
t-AML 
AML 
AML 
APL 
t-AML 

NUP214 
t(6;9)(p23;q34) 
del(9)(q34) 
der(5)t(5;9)(q35;q34) 
Amplified episomes  

 
DEK-NUP214 
SET-NUP214 
SQSTM1-NUP214 
NUP214-ABL1  

 
AML 
T-ALL, AML, AUL 
T-ALL 
T-ALL, B-ALL  
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3 ENHANCERS AND TRANSCRIPTIONAL REGULATION  

Enhancers are DNA cis-regulatory elements that enable the regulation of target gene 

expression and that are able to function close to the promoters or at large distances upstream or 

downstream from them. Importantly, multiple activators and repressors can bind and modulate 

an individual enhancer and multiple enhancers can determine a single gene’s precise pattern of 

expression67. Currently, there is a growing number of studies that point to the importance of 

enhancers in orchestrating important transcriptional networks and highlight the fact that the 

misregulation of enhancer properties is central to the pathogenesis of cancer and other diseases 

known as “enhanceropathies”. 

The initial recognition of enhancers requires pioneer transcription factors that can bind to 

their consensus sequences and facilitate the binding of additional transcription factors to open 

chromatin. GATA1, FOX proteins or Pu.1 are some of the identified pioneer factors68. 

Additionally, the communication between enhancers and promoter regions seems to be 

necessary for the proper transcriptional regulation. Cohesin has been validated as a major 

regulator of this enhancer-promoter interaction. Its ability to hold together sister chromatids is 

used to form or stabilize loops of chromatin that bring enhancers and promoters in close 

proximity69 (Figure 11A). 

 

 

 

 

 

Figure 11: Structure of enhancers. (A) Schematic representation of the loop that enables the enhancer-promoter 

communication. Chip (in Drosophila) or LDB1 (the mammalian homolog) is thought to interact with DNA-binding 
transcription factors (DBDs) at enhancers and promoters and through a self-interaction domain to help bridge this 
communication. The ring-like cohesin structure is thought to hold the enhancer and promoter together. (B-C) 
Schematic representations of the chromatin signatures associated with different enhancer states and the mediators 
responsible for each of them: H3K4me1 implemented by MLL in poised and active enhancers (A), H3K27ac implemented by 
CBP/p300 that is characteristic of active enhacncers (B) and the removal of the H3K4me1 in enhancer dcommissioning. (Images 
modified from E. Smith & A. Shilatifard, Nat Struct Mol Biol. 2014) 
 

A B 

C 

D 
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Enhancers have been classified into poised and active states. Chromatin signatures in these 

different states have been identified. Both classes maintain the enrichment for H3K4me1 that is 

implemented by MLL3 and MLL4 (lysine (K)-specific methyltransferases, components of 

COMPASS family). During differentiation, however, many enhancers become silenced by losing 

the H3K4me1 that is removed by the demethylase LSD, in a process called enhancer 

decommissioning. H3K27ac, implemented by CBP and p300, is present in active enhancers. Thus, 

CBP and p300 are found at active promoters and their occupancy at intergenic or intragenic 

regions has indeed served as a useful and convenient marker for enhancers (Figure 11 B-D). UTX 

is the H3K27 deacetylase that would remove the active mark and enable the return to poised 

state. Active enhancers also have the ability to recruit Polimerase II (PolII)70.Most of them are 

transcribed by PolII generating transcripts named enhancer RNAs (eRNA). The appearance of 

eRNAs precedes the activation of nearby genes, but their function is not completely understood 

yet 67.  

A number of genome-wide studies on transcription factor binding in multiple different cell 

systems have shown that many transcription factors tend to co-localize with other factors on 

chromatin71. More recently, the existence of super-enhancers, which are large genomic regions 

(several kilobases) containing clusters of closely spaced transcription factor binding regions, has 

been demonstrated. These large super-enhancers are characterized by very high levels of 

Mediator subunit 1 (MED1) binding and seem to regulate cell identity71-73. Hence, the fact that 

enhancers harbor binding sites for a large number of transcription factors highlights the 

importance of these regulatory elements in normal cell functions and points to that the global 

network of enhancer–promoter interactions may be much more complex than it was previously 

believed74.  

Enhanceropaties are originated by the alteration of the enhancer sequences or mutations in 

proteins that either directly interact with enhancers or regulate enhancer function67,75. 

Importantly, many oncogenes or tumor suppressor genes are regulated by enhancers but also, 

many oncogenes are transcription factors that regulate the gene expression by interacting with 

enhancers. All of this helps to explain the potential role that these regulatory regions seem to 

play in cancer pathogenesis. Pharmacological approaches that target transcription factors that 

are recruited to the enhancers of tumor suppressor genes or oncogenes (“Enhancer Therapy”), 

are being developed with promising results in the fight against enhancer-mediated cancers75. 
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NUP98-HOXA9-associated AML is one of the most aggressive forms of leukemia, highly 

refractory to intensive treatment and with a dismal overall survival. Current knowledge about 

the molecular mechanisms underlying this fusion protein, something that would trigger the 

identification of new and more efficient therapeutic targets, is still limited.  

This project was aimed at studying the oncogenic role of this leukemic fusion gene in a 

human cellular modeled context, with the purpose of providing some proofs of concept that 

allow to explore a better designed targeted therapy for these patients. For this aim our 

objectives were: 

 

1. Generate in vitro human cellular models that constitutively express NUP98-HOXA9.  

 

2. Based in these models: 

 

a. Identify and analyze the specific DNA binding regions of NH, their target genes 

and the global expression profile induced by the fusion protein. 

 

b. Identify new NH-interacting proteins and the role of each moiety of the chimera 

in the NH driven leukemogenesis  

 

c. Describe some of the molecular mechanism of action of this fusion protein 

 

d. Propose new therapeutic targets and a possible effective treatment for these 

patients. 
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1 CELLULAR MODELS  

1.1 Cell culture  

hHP (CD34+) were purified using immunomagnetic beads (Miltenyi Biotech, Germany) from 

Human umbilical cord blood (CB). hHP were cultured in Iscove’s modified Dulbecco’s media 

(IMDM) containing 20% BIT 9500 Serum substitute (STEMCELL Technologies), 1% penicillin-

streptomycin (Invitrogen), 0,2% β-mercaptoethanol and 10 ng/ml SCF, megakaryocyte growth 

and development factor (TPO), FLT3 ligand (FLT3L), IL-3, and IL-6. 

HEK293T and HEK293FT cells were cultured in Dulbecco modified Eagle medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin (Invitrogen).  

1.2 Retroviral constructs  

NUP98-HOXA9 coding region sequence was PCR amplified from cDNA from a patient with 

primers, forward 5’-ATGTTTAACAAATCATTTGGAACACCCT-3’, and reverse 5’-

TCACTCGTCTTTTGCTCGGTCTTTGTTG-3’ to be cloned into pMSCV-IRES-GFP retroviral vector, and 

named pMSCV-NH. The coding region of HOXA9 was amplified from a cDNA control with primers, 

forward 5’-ATGGCCACCACTGGGGCCCTGGGCAACT-3’, and reverse 5’-

TTACTCGTCTTTTGCTCGGTCTTTGTTG-3’. It was cloned into the same retroviral vector and named 

pMSCV-HOXA9.  The NUP98 coding region sequence was kindly provided by Dr Maureen A. 

Powers and PCR amplified with primers, forward 5’-ATGTTTAACAAATCATTTGGAACACCCT-3’, and 

reverse 5’-TCACTGTCCTTTTTTCTCTACCTGAGGT-3’. It was cloned into the same retroviral vector 

and named pMSCV-NUP98. We included FLAG and HA as tag in the three coding regions. 

The PBX3 coding region was amplified from the vector PBX3-pSP65 (Plasmid #21033 from 

Addgene, http://www.addgene.org) and cloned into the pMSCV-IRES-GFP retroviral vector and 

named pMSCV-PBX3, using the forward primer 5’-ATGAAACCAGCGCTCTTCAGCGTCCTGT-3’ and 

the reverse 5’-GTTAGAGGTATCCGAGTGCACACTTC-3’ with FLAG as tag.  

1.3 Retroviral production and transduction 

Retrovirus for each construct was produced in 293FT cells by cotransfecting viral plasmids 

along with M57 and RD114 packaging plasmid in a 1:1.2:0.3 ratio using Calcium-phosphate 

protocol. 12 hours later, the precipitate was washed away, and viral supernatants were collected 

http://www.addgene.org/
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at 24 and 36 hours. The supernatant was centrifuged at 1800 rpm and filtered through a 0.45μm 

filter76,77.  

Transduction of hHP (CD34+ cells) was carried out on plates coated with Retronectin (Fisher 

Scientific, Pittsburgh, PA) preloaded with virus. We transduced 2 × 106 cells with 3 rounds of 

retrovirus using retronectin-coated dishes in the same media used for hHP culture with the 

addition of 8 μg/ml Polybrene. Transduction of 293FT cells was performed in the same way but 

without Retronectin.  

hHP and 293FT cells were stably transduced with the different retroviral vectors and GFP 

positive cells were sorted on BD Influx™ cell sorter (BD Biosciences).  

1.4 Patient samples 

The leftover material of 8 AML t(7;11)(p15;p15) samples were used for RNA extraction. 

Three of them came from the MLL Münchner Leukämielabor GmbH (München, Germany) and 

the other five from the cytogenetic laboratories of the University of Navarra (Pamplona, Spain). 

Informed consent was obtained according to the Declaration of Helsinki (October 2008). 

 

 

2 IDENTIFICATION OF GENOMIC BINDING SITES 

 

2.1 Chromatin immunoprecipitation sequencing (ChIP-seq) 

Chromatin immunoprecipitation (ChIP) was performed as described before78. 15 min of 

formaldehyde fixation in ≈ 10 millions of cells from 293FT models were performed to yield the 

best combination of in vivo fixed chromatin, high DNA recovery and small average size of 

chromatin fragments. In our analyses, chromatin was sonicated and sheared to an average 

length of 200 bp. Immunoprecipitation was carried out using Protein A/G Plus-Agarose beads 

(Santa Cruz) and the antibodies anti-FLAG M2 (Sigma-Aldrich) and anti-HA tag antibody-ChIP 

Grade (ab9110, abcam). DNA was purified with phenol/chlorophorm extraction followed by 

ethanol precipitation. Eluted DNA fragments were analysed by ultrasequencing.  Libraries was 

constructed using the ChIP-seq sample preparation kit (Illumina, San Diego, California, USA) and 

were sequenced in a Genome Analyzer IIx (GA2, Illumina) single 36-base read run.  Raw 

sequences were defined as reads passing purity filter before genome alignment. Alignment was 

performed with BWA79 versus the human sequence assembly (GRCh37/hg19, Feb 2009) under 
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default settings permitting alignments with 1 mismatch in 40 base reads. Peak detection was 

performed with MACS 2.080 following developer’s technical recommendations (pvalue cutoff for 

peak detection = 1x105). MACS pipeline was used to find differential peaks in pair-wise 

comparisons. Significant ChIP-seq peaks were stablished at FDR ≤ 5%. The generated bed files 

were uploaded to the USCS genome browser (http://genome.ucsc.edu/) to visualize the 

enrichment peaks obtained with Findpeaks analysis. Venn diagrams used for gene set 

comparisons were performed at http://www.cmbi.ru.nl/cdd/biovenn/. 

2.2 In silico data analysis 

Gene lists were functionally annotated using Ingenuity Pathways Analysis software 

(Ingenuity® Systems, http://www.ingenuity.com/products/ipa). Enrichment of genes associated 

with specific biological functions, canonical pathways and diseases was determined relative to 

the Ingenuity knowledge database. The significance level cut off used pas p > 0.05 after 

Benjamin-Hoechberg multiple testing correction (B-H p-value). 

MEME-ChIP81 was employed to find enriched motifs in significant ChIP-seq peaks.  They were 

also scanned for detect  individual HOXA9, MEIS1 and HOXA9/MEIS1/PBX motifs using FIMO tool 

(from MEME Suite web server) 82. oOPOSSUM83 (http://opossum.cisreg.ca/oPOSSUM3/) was 

used to identify the over-represented transcription factor binding sites from the top 100 NH 

target genes. (Figure 12) 

 

 

Figure 12: Overview of the 

bioinformatics tools used for the motif 

analysis. MEME-ChIP scans unaligned 

sequences from ChIP-seq analysis to identify 

described motifs. FIMO identifies a set of 

selected motifs in unaligned sequences from 

ChIP-seq analysis. oOPOSSUM identifies 

known motifs of transcription factors in the 

regulatory regions of a gene set (Image 

modified from Bailey et al
84

) 

http://www.cmbi.ru.nl/cdd/biovenn/
http://www.ingenuity.com/products/ipa
http://opossum.cisreg.ca/oPOSSUM3/
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3 VALIDATION OF TARGET GENES 

 

3.1 qChIP 

ChIP was performed as described above (ChIP-seq paragraph) with 2X106 cells per sample 

(hHP or 293FT cellular models). Quantitative PCR (qPCR) of eluted DNA was performed in 12ul 

with SYBR Green dye (Applied Biosystems) for validating the selected target genomic regions of 

NH obtained from the ChIP-seq data on an ABI 7900HT sequence detection system. Three 

biological replicates were performed and the input DNA, ‘unbound’ (wash) fraction of the no 

antibody control and the ‘bound’ fractions for each antibody was included for each experiment. 

In a house designed primers used for validation are listed in Table 4. The amount of 

immunoprecitpiated DNA relative to input was calculated for each experiment.  

 

Table 4: qChIP primers  

 

EN
H

A
N

C
ER

S 

HOXA9  
5’- GCTTACAATACCTCCTCCATCAA-3’  

5’- CTCTAAACCTCAGGCCACATC -3’  

MEIS1  
5’- TGCCATTCATACCCTGCTATAC -3’  

5’- TTGGAATCCTAGTGGATGTTTCT -3’  

PBX3  
5’- GCTACTCCAGGAACACTAAACC -3’  

5’- CGGTCACAGTCAGAGAGAAATG -3’  

MET  
5’- GGGCATTCTGCTCCTGTTAT -3’  

5’- ATCCCAAGCGGAATATACTAACC -3’  

BRAF  
5’- CACAAGGGCACCTGTGAATA -3’  

5’- TGGATTGCATCATAACCCTGAA -3’  

AF9  
5’- CCTTAGGCACCCACATGTATATT -3’  

5’- GCCTCTGATTAGCCTGTGTATG -3’  

NF1  
5’- GGTACAGGTCTATATGTGTGTCTAAA -3’  

5’- AGAGTCTGCCATTAACCTTGTAA -3’  

PTEN  
5’- GTACATGACCTTGGACGAGTTAT -3’  

5’- CTCCATTCGACCCTCACAAA -3’  

P
R

O
M

O
TE

R
S 

 

HOXA9  
5’- CGGCACGATCCCTTTACAT -3’  

5’- CCCGTCCAGCAGAACAATAA -3’  

MEIS1  
5’- TGTAAGACGCGACCTGTTATG -3’  

5’- GCGTGTGTAAAGTGTGTGTTG -3’  

PBX3  
5’- TCTTTCTTCTCCTCCCTCGT -3’  

5’- CAGCATCCTGGATTGATCGT -3’  

AFF3  
5’- CTCTTTAGGAGCCACGATGATAC -3’  

5’- CTGGGTGTCGACTTCAAACT -3’  
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PTEN  
5’- ATGTGGCGGGACTCTTTATG -3’  

5’- GCGGCTCAACTCTCAAACT -3’  

BIRC3  
5’- GCAGAGCTTTCCACCATGAA -3’  

5’- GGTCAACTTCTCCAGGCTACTA -3’  

FILIP1L  
5’- TGAAGTCCCTGAAGCAACAA -3’  

5’- CTGTCGGGCTAACAAAGTCA -3’  

SMAD1  
5’- TGTCTCGTTCCTTTCCCTTTAC -3’  

5’- CTAACAAAGACAGGGAGCAGAG -3’  

 

3.2 RNA extraction and quantitative Real-time RT-PCR  

RNA from the different hHP cellular models was extracted using the RNeasy Mini Kit (Qiagen, 

Valencia, CA, USA) according to the manufacturer’s instruction and TaqMan® Gold RT-PCR Kit 

(Applied Biosystems, Foster City, California, USA) was used for the reverse-transcription.  The 

qRT-PCR was performed on 384-well plates, with each independent cDNA included in triplicate, 

using quantitative PCR with SYBR Green dyes (Applied Biosystems) on a 7900HT Fast Real-Time 

PCR System (Applied Biosystems), following the manufacturer’s protocol. The expression of the 

endogenous human housekeeping gene GAPDH was used to normalize the data and they are 

expressed as the mean of 2-ΔCt values obtained for each sample after normalization with normal 

human hematopoietic progenitors (SDS Program; Applied Biosystems). Statistical significances on 

level of expression of the selected target genes were determined with significance levels of 

P<0.05 and P<0.01 calculated using T-test. Dissociation curves were performed for each set of 

primers. In a house designed primers are listed in Table 5. 

To analyse the expression of hsa-miR-181b in hHP-NH cellular model, total RNA, including 

miRNAs, was extracted using the miRNeasy Mini Kit (Qiagen, Valencia, CA, USA) according to the 

manufacturer’s instructions for Purification of total RNA, including Small RNAs from Animal Cells. 

10 ng of RNA per sample were reverse transcribed using the MicroRNA Reverse Transcription Kit 

(Applied Biosystems). Three replicates of cDNA were prepared for each sample. qRT-PCR was 

performed using TaqMan Fast Universal PCR Master Mix on a 7500 Fast Real-Time PCR System 

following the manufacturer’s protocol. Each independent cDNA was run in triplicate in a 384-well 

plate. Data were normalized on the expression of the artificial Homo sapiens miRNA control 

RNU19 and relative expression was calculated using the comparative Ct method as described 

above. A pre-developed TaqMan Assays (Applied Biosystems) primer for has-miR-181b 

(462578_mat) was used. 
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Table 5: Sybr Green qPCR primers  

 

HOXA9  
5’-GTGGTTCTCCTCCAGTTGATAG-3’  

5’-AGTTGGCTGCTGGGTTATT-3’  

MEIS1  
5’-CTAACACACCCTTACCCTTCTG-3’  

5’-TCTATCATGGGCTGCACTATTC-3’  

PBX3  
5’-CATCACAGTGTCACAGGTATCC-3’  

5’-CAGCATAGAGGTTGGCTTCTT-3’  

MYB  
5’-TGTAGGGAGAGGTGGCATAA-3’  

5’-GTCTCTTGTGTGCCTGGTAAA-3’  

MEF2C  
5’-GCAACAGCAACACCTACATAA -3’  

5’-GTAGAAGGCAGGGAGAGATTTG-3’  

HOXA7  
5’-AGTTCCACTTCAACCGCTAC-3’  

5’-CCTTCGTCCTTATGCTCTTTCT-3’  

BIRC3  
5’-CAAGCCAGTTACCCTCATCTAC-3’                 

5’-CTGAATGGTCTTCTCCAGGTTC-3’  

BIRC2  
5’-CTAGTCTGGGATCCACCTCTAA-3’             

5’-TGTTCCAAGGTGGGAGATAATG-3’  

LMO2  
5’-GATGACAATGCGGGTGAAAG-3’  

5’-GTCAGAGTTGATGAGGAGGTATC-3’  

RARA  
5’-CGAACAACAGCTCAGAACAAC-3’       

5’-GGCGAACTCCACAGTCTTAAT-3’  

PML  
5’-TGTACGCCTTCTCCATCAAAG-3’  

  5’-GACTCCATCTTGATGACCTTCC-3’  

 

 

3.3 Luciferase assay   

Luciferase constructs were made following amplification of the three selected regulatory 

genomic regions of HOXA9, PBX3 and MEIS1 by subcloning in the pGL3-Promoter Vector 

(Promega Biotech Ibérica S.L) with the firefly luciferase gene, previous to the SV40 promoter. 

PCR products were obtained using the following primers: HOXA9, sense 5’-CACGG 

TACCGGGTTTCCCAGCTTTTTCTC-3’, antisense 5’-TTCCTCGAGGAGAAGGGGGACAAGAGGAC-3’; 

PBX3 sense 5’-CACGGTACCTGTTCTGAGACTGCCCATTG-3’, antisense 5’-TTCCTCGAGA 

AATTGCTGCACAGGTGAGA-3’; MEIS1 sense 5’-CACGGTACCCCCCTTTAACTTGAGAATCAGC-3’, 

antisense 5’-TTCCTCGAGTTCAATGCAGCAGCTGAACTAT-3’. The insert identities were verified by 

sequencing and the following specific bacterial artificial chromosomes (BACs) were used as a PCR 

template: RP11–197I05 (HOXA9), RP11-638B02 (PBX3) and RP11-678O18 (MEIS1). A total of 105 

HEK293FT cells were transfected with 500 ng of the firefly luciferase reporter vector containing 

the HOXA9, PBX3 and MEIS1 regulatory genomic regions and 200 ng of the control vector 
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containing Renilla luciferase pRL-CMV (Promega) using Calcium-phosphate mediated transfection 

protocol. Five hundred nanograms of pMSCV-NH or the empty vector were used to analyze the 

effect of NUP98-HOXA9 expression on luciferase signal. Luciferase assays were performed 48 h 

after transfection using the Dual Luciferase Reporter Assay System (Promega). The results were 

expressed as relative luciferase activity (%), calculated by normalizing the ratio of firefly 

luciferase to Renilla luciferase luminiscence. The reporter assay was independently performed 

three times for each of the experiments, including all samples in triplicate. 

3.4 Gene expression microararys  

RNAs from three different clones of hHP-NH cellular model and 5 primary samples from 

patients with t(7;11)(p15;p15) were isolated and hybridized in Array SurePrint G3 Human Gene 

Expression 8x60K v2 (Agilent Technologies) in NIMgenetics (www.nimgenetics.com, Madrid, 

Spain). Arrays were examined using the DNA Microarray Scanner C (Agilent Instruments) and 

microarray background subtraction was carried out using normexp method. To normalize the 

dataset, we performed loess within arrays normalization and quantiles between arrays 

normalization. Differentially expressed genes were obtained by applying linear models with R 

limma package85 (Bioconductor project, http://www.bioconductor.org). To account for multiple 

hypotheses testing, the estimated significance level (p value) was adjusted using Benjamini & 

Hochberg False Discovery Rate (FDR) correction. Those genes with FDR <0.05 were selected as 

differentially expressed between hHP-NH or patient samples and controls (hHP-empty vector or 

hHP wt, respectively). 

3.5 Gene Set Enrichment Analysis (GSEA) 

We applied gene set enrichment analysis (GSEA) to integrate global gene expression data and 

the enrichment in NH targets. Genes were ranked based on limma moderated t statistic. After 

Kolmogorov-Smirnoff testing, those gene sets showing FDR <0.05, a well-established cut-off for 

the identification of biologically relevant gene sets 86, were considered enriched between classes 

under comparison. The enrichment score from the gene set after it has been normalized across 

analyzed gene set (NES) was also shown. 

 

 

 

http://www.nimgenetics.com/
http://www.bioconductor.org/
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4 EVALUATION OF TREATMENT EFFICACY 

 

4.1 Viability assay  

HXR9 and CXR9 peptides were synthesized by Biosynthesis® (http://www.biosyn.com/) as 

previously described47. 5x103 hHP-NH/hHP-emtpy vector sorted cells were plated per well in 96-

well plates in triplicate and allowed to recover for 20 hours. Then they were treated with 

different doses of the active peptide HXR9 or the control peptide CXR9 in a range of 0 µM to 250 

µM for 48 hours to determine the LC50. Cell viability was assessed by adding WST1 cell 

proliferation reagent (Roche, Basel, Switzerland) and reading the plates at 450 nm to measure 

optical density, according to the manufacturer's instructions. Then, we treated the hHP-NH with 

13uM HXR9 (LC50) and measured cell viability at 0h, 24h, 48h, 72h and 144h.  

To assess the effect of Panabinostat (LB589, purchased from Selleck) in hHP-NH, sorted 

cells were plated in triplicate with titrating doses of the drug (purchased from Selleck) (range, 

0 µM to 1 µM) for 72 hours. Cell viability was analysed in a similar manner, using WST-1. 

For each assay, three independent clones of hHP-NH/hHP-empty vector were used in three 

different experiments. 

4.2 CFU assay  

Aliquots of 8x103 or 4x103 of the hHP-NH/hHP-empty vector sorted cells were plated into 

35 mm culture dishes in 1,5 ml of MethoCult M4230 methylcellulose medium (StemCell 

Technologies) containing 20% of BIT 9500 Serum substitute (STEMCELL Technologies) and 

20ng/ul  each of human recombinant SCF, IL-3, IL-6 and GM-CSF, and 3U/ml of EPO. Two aliquots 

of each cellular model were treated with 13uM of both HXR9 and CXR9 peptides (LC50) or with 

4nM of LBH589. Cultures were incubated at 37°C in a humidified atmosphere for 10 days and 

then the number of colonies was counted for each case. This experiment was performed with 

two different clones of hHP-NH/hHP-empty vector for each treatment. 

CFU assay with hHP-NUP98 cellular model was performed in the same manner but without 

treatment. 

 

 

 

http://www.biosyn.com/
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4.3 Apoptosis assay 

3.75x105 hHP-NH/hHP-emtpy vector sorted cells were plated per well in 24-well plates in 

triplicate and allowed to recover for 20 hours. Then, the cells were treated with HXR9/CXR9 

(13uM and 30uM) or LB589 (10nM and 30nM) for 24 hours. Apoptosis was assessed after the 

treatment using FITC annexin V and annexin V binding buffer (BD Biosciences) and DAPI staining 

(to exclude the nonviable cells) on FACSCanto II (BD Biosciences, San Jose, California, USA) 

following the manufacturer’s instructions.  

 

5 PROTEIN-PROTEIN INTERACTION STUDY 

 

5.1 Protein co-immunoprecipitation and Immunoblotting  

For p300, HDAC1, MEIS1 and PBX3 co-immunoprecipitation with NUP98-HOXA9, 

4.106 HEK293FT cells were transfected with pMSCV-NH and/or pMSCV-HOXA9 vectors. 48h post-

transfection, cells were washed with cold PBS + protease inhibitors (Roche), and lysed for 1 hour 

at 4°C with 0.5 ml of lysis buffer (50mM Tris-HCl pH 7.5, 150mM NaCl and 1% NP-40 and 

protease inhibitors (Roche)). The lysate was centrifugated at 13,000×rpm for 15 min at 4°C. The 

supernatants were transferred to new tubes and were precleared using 20ul Protein A/G Plus-

Agarose beads (Santa Cruz) for 30 min at 4°C. Then, in accordance with the manufacturer’s 

instructions, the different antibodies were added to the supernatants (anti-p300 (Santa Cruz), 

anti-HDAC1 (Thermo Scientific), anti-MEIS1 ChIP Grade (Abcam) and anti-PBX3 (Santa Cruz).  

After overnight incubation at 4°C, 20ul Protein A/G Plus-Agarose beads were added and 

incubated for another 2 hours. Beads were washed with 900 µl of lysis buffer 5 times, followed 

by centrifugation at 2400×rpm for 2 min at 4°C. Beads were washed one time with cold PBS and 

bound proteins were eluted by boiling with 40 µl of 2X Laemmli Buffer (100mM Tris-HCl pH 6.8, 

20% Glycerol, 4% SDS, 300 mM β-mercaptoethanol, 0.2% Bromophenol Blue) for 3 min at 95°C. 

Input lysates and immunoprecipitated proteins were loaded onto SDS-PAGE gels (9% gel) 

followed by immunoblotting. After transfer, PVDF membranes (Millipore, Billerica, 

Massachusetts, USA) were incubated with anti-FLAG M2 (Sigma-Aldrich) primary antibody to 

detect Nup98-Hoxa9 and/or Hoxa9 and with anti-GAPDH or α-tubulin (monoclonal antibodies, 

CNIO) as endogenous control. 
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5.2 Mass Spectrometry  

We used the 293FT-NH, 293FT-HOXA9 and 293FT-NUP98 models to conduct the 

corresponding immunopreticiptations using anti-FALG antibody (Sigma Aldrich), followed by 

mass spectrometry in three replicates for each model. Cellular model transducted with the 

retroviral empty vector with GFP gene flanked by FLAG-tag was submitted to the same process 

and used as a control in the assay.  

Sample Preparation  

Proteins in the pull-downs were subjected to label free proteome analysis. Samples were 

digested by means of the standard FASP protocol1. Briefly, samples were resuspended in UT 

buffer (8M urea in 100 Mm Tris-HCl, pH=8.01). Proteins were then reduced with 10 mM DTT, 

alkylated using 50 mM iodoacetamide for 20 min in the dark and the excess of reagents was 

washed out with UA twice. Proteins were digested with endoproteinase Lys-C (Wako) during 6 

hours in a wet chamber (1:50 enzyme to substrate ratio). Finally, samples were diluted in 50 mM 

ammonium bicarbonate to reduce the urea concentration to 1M and subsequently digested with 

Trypsin Gold (Promega) overnight at 37 °C. Resulting peptides were further desalted and 

concentrated using homemade reversed phase micro-columns filled with Poros Oligo R3 beads 

(Life Technologies). The samples were dried using the Speed-Vac and dissolved in 30 µL of 0.1% 

formic acid (FA). 

 

LC-MS/MS analysis 

Desalted peptides were separated by reversed-phase chromatography using a nanoLC Ultra 

system (Eksigent), directly coupled with a LTQ-Orbitrap Velos instrument (Thermo Fisher 

Scientific) via nanoelectrospray source (ProxeonBiosystem). Peptides were loaded onto the 

column (Dr. Maisch, Reprosil-

column step (Prot Trap Column 0.3 x 10 mm, ReproSil C18-AQ, 5 µm, 120Å, SGE), during 10 min 

with a flow 

with a 120 min linear gradient (buffer A: 2% ACN, 0.1%FA; buffer B: 100% ACN, 0.1%FA) at 300 

nL/min. The peptides were directly electrosprayed into the mass spectrometer using a PicoTip 

emitter (360/20 OD/ID µm tip ID 10 µm, New Objective) a 1.4 kV spray voltage with a heated 

capillary temperature of 325°C and S-Lens of 60%. Mass spectra were acquired in a data-

dependent manner, with an automatic switch between MS and MS/MS scans using a top 20 

method with a threshold signal of 800 counts. MS spectra were acquired with a resolution of 
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60000 (FWHM) at 400 m/z in the Orbitrap, scanning a mass range between 350 and 1500 m/z. 

Peptide fragmentation was performed using collision induced dissociation (CID) and fragment 

ions were detected in the linear ion trap. The normalized collision energy was set to 35%, the Q 

value to 0.25 and the activation time to 10 ms. The maximum ion injection times for the survey 

scan and the MS/MS scans were 500 ms and 100 ms respectively and the ion target values were 

set to 1E6 and 5000, respectively for each scan mode. 
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1 NUP98-HOXA9 human cellular models construction 

First of all, we cloned the cDNA of NUP98-HOXA9 fused to FLAG-tag at the 3’-end and HA-

tag at the 5’-end into the retroviral vector pMSCV-IRES-GFP (Figure 13A). We generated 

retroviruses in HEK293T cells and efficiently transduced both Human Hematopoietic Progenitors 

(hHP) and the HEK293FT human cell line. hHP (CD34+) were isolated from human cord blood 

samples using CD34 immunomagnetic microbeads and maintained in cytokine-stimulated 

suspension culture. Green Fluorescence protein (GFP) allowed us to select the transducted cells 

using BD Influx™ cell sorter. Thus, we established two human cellular models that constitutively 

express NUP98-HOXA9: hHP-NH and 293FT-NH (Figure 13B and C).  According to the published 

data27,53, long-term cultures of the hHP-NH cellular model clearly showed an increase in 

proliferation due to the presence of the fusion protein, supporting so far the fitness of the model 

for further studies (Figure 13D).  However, hHP-NH cells grow 3.5 weeks more, on average, than 

scramble cells, but only up to 8 weeks. This fact makes this cellular model very hard to work with, 

especially if we need to obtain big amounts of cellular material. Therefore, to solve this problem, 

we have also created the 293FT-NH model from a human immortalized cell line. 

 

 

 

 

 

 

 Figure 13: NUP98-HOXA9 human cellular models construction. (A) Representation of the pMSCV-NH 

retroviral vector. ((B) hHP-NH cellular model: Microscopy image of hHP transduced with pMSCV-NH retroviruses and 
sorted (GFP+) (C) 293FT-NH cellular model: Microscopy image of HEK293FT cells transduced with pMSCV-NH 
retroviruses and sorted (GFP+) D) Long-term culture of hHP-NH and hHP-empty vector cellular models for 62 days. 

A 
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hHP-NH 

C 
293FT-NH 
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2 Identification of NUP98-HOXA9 genomic binding regions  

To explore the transcription factor role of NH, we decided to perform a ChIP-seq analysis in 

order to identify its DNA binding sites, trying to extract from this data an idea about the possible 

oncogenic mechanism triggered by the fusion protein.  

ChIP-seq approach consists in a chromatin immunoprecipitation (ChIP) followed by a 

massive sequencing of the eluted DNA fragments. We used the 293FT-NH cellular model to 

immunoprecipitate NH attached to the DNA, using an anti-FLAG antibody. The sequencing of 

these NH-binding sites allowed us to identify 4471 significant genomic regions (FDR < 0,05), 

located within a 5 kb distance from annotated Transcrption Start Sites (TSS), that corresponded 

to regulatory regions of 1363 different genes and 17 miRNAs (Figure 14A, Table 6 and Table S1). 

A detailed sequence analysis of all DNA bounded NH regions using MEME-ChIP84 identified a 

significant enrichment in consensus binding motifs of important leukemic transcription factors, 

as detailed in Table 7. We detected the presence of binding sites for several HOX genes, including 

HOXA9, which confirms the importance of DNA binding of the homeobox domain of this fusion 

protein.  We also identified a highly significant enrichment of the motif CA/gTTT, present in one-

third of all binding sites. This motif has not previously been associated with any known 

transcription factor; it appears to be a novel specific binding site for NH. 

 

Table 6: Target miRNAs of NUP98-HOXA9 identified in the ChIP-seq 
 

miRNA FDR 
hsa-miR-181A2 0.00 
hsa-miR-181b 0.00 

hsa-miR-586 0.00 

hsa-miR-548F1 0.00 

hsa-miR-581 0.00 

hsa-miR-550-1 0.00 

hsa-miR-194-1 0.00 

hsa-miR-128-1 0.00 

hsa-miR-615 0.00 

hsa-miR-297 0.00 

hsa-miR-125B2 0.00 

hsa-miR-576 0.00 

hsa-LET7I 0.00 

hsa-miR-181A1 0.01 
hsa-miR-1245 0.02 
hsa-miR-30A 0.02 
hsa-miR-626 0.04 
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 Figure 14: Identification of NUP98-HOXA9 genomic binding regions (A) Venn diagrams of the overlapping 

NH, HOXA9 and NUP98 target genes indentified with the ChIP-seq approach on HEK293F human models (FDR<0.05). 
(B) Plot that represents the localization of NH binding sites in distance (Kb) from the TSS. (C) H3K4me1 qChIP fold 
enrichment on the selected NH target regions. MEIS1 promoter region was used as a negative control. Average of 3 
experiments is shown. Error bars represent SEM.Plot that represents the main functions of the NUP98 wt target 
genes (IPA output) (D) PolII qChIP fold enrichment on the eight selected NH target regions. Average of 3 experiments 
is shown.  
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Table 7: Identification of DNA binding motifs in NH target regions using MEME-ChIP. 

 (MEME-ChIP p-value <  1.10-6) 

 

 

A further analysis of these binding sequences indicated that they were preferentially located 

more than 1 kb upstream from the TSS (only less than 20% of them located at promoter regions) 

(Figure 14B). This distribution strongly suggested that the enhancer regions likely were the 

preferred binding targets of the fusion gene. The chromatin mark that best predicts both poised 

and active enhancers is the monomethylated form of H3 lysine 4 (H3K4me1)67. We performed a 

ChIP by immunoprecipitating this epigenetic mark both in presence and absence of the fusion 

protein using the 293FT cellular models. Then, from the eluted DNA, we performed a 

quantitative PCR to analyzed the binding sites of NH corresponding to eight selected target genes 

with an undoubted role in myeloid leukemogenesis (MEIS1, HOXA9, PBX3, MET, BRAF, AF9, PTEN 

and NF1). We were able to demonstrate an enrichment of H3K4me1 at the eight genomic 

regions  (Figure 14C). We also detected an increase in the presence of PolII at these NH-binding 

sites when the fusion protein is expressed, which is consistent with an active form of 

enhancers67,70,87 (Figure 14D). In addition, we applied the oPOSSUM system83, an in silico analysis 

to identify over-represented transcription factor binding sites in the regulatory regions from a set 
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of genes. We analysed the top 100 NH target genes obtained in the ChIP-seq (FDR < 0,0001). The 

transcription factors that may be binding to the same regulatory regions than NH are listed in 

Table 8 (only shown those with a Fisher score <0,01). Notably, there is an over-representation of 

FOX proteins, considered pioneer factors that are responsible for the initial recognition of 

enhancers and that facilitate the binding of additional transcription factors to those regulatory 

sites 67. Taken together these approaches support a working model for NH where its role in 

transcriptional regulation is mostly mediated by its binding to enhancers.   

 

Table 8: Identification of known transcription factor binding motifs in NH target regions using 
oOPOSSUM   
(Fisher score < 0.005. Fox proteins in orange) 

 

TRASCRIPTION 
FACTOR 

Fisher score 

HLF 3,70x107 

NFIL3 4,68x106 

CF2-II 1,63x105 
Broad-complex_1 3,65x105 

ATHB5 5,68 x105 

HMG-IY 6,03 x105 

Ddit3-Cebpa 7,43 x105 

hb  8,19 x105 

HNF1A 8,45 x105 
Broad-complex_4 9,96 x105 

Lhx3 1,30 x104 

Athb-1 1,64 x104 

SQUA 2,79 x104 

Foxd3 2,83 x104 
Lhx3 4,67 x104 

Foxq1 6,74 x104 

Broad-complex_3 8,66 x104 

NKX3-1 1,65 x103 

Foxa2 2,17 x103 

FOXI1 2,30 x103 
TBP 2,30 x103 

Ovo  2,66 x103 

MYB.ph3 2,81 x103 

FOXD1 3,64 x103 

SOX9 4,83 x103 
PEND 6,88 x103 

SRY 8,40 x103 
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3 Identification of HOXA9 and NUP98 wt genomic binding 
regions 

We further investigated the functional contribution to the DNA binding profile of the two 

moieties that compose the fusion protein. We cloned the coding region of HOXA9 wt and NUP98 

wt fused to FLAG-tag and HA-tag in the retroviral vector pMSCV-IRES-GFP (Figure 15A). We then 

established two new cellular models, 293FT-HOXA9 and 293FT-NUP98, which allowed us to 

perform separate ChIP-seq analyses. By combining the obtained ChIP-seq data (Tables S3 and 

S4), we observed that one third of the NH target genes were common to HOXA9 wt target genes 

(Figure 14A), indicating that the homeobox contribution to the fusion protein is clearly involved 

in its DNA binding. Ingenuity Pathways Analysis (IPA, http://www.ingenuity.com) allowed us to 

demonstrate that HOXA9 target genes are mostly involved in cell cycle, leukemia and 

hematopoiesis (Figure 15B) and that the location of the sites has a very similar distribution to 

those of NH, which would also correspond mainly to enhancer regions, consistently with 

previous results46 (Figure 15C). 

Importantly, we assessed the ChIP-seq of NUP98 wt, only 17 target genes were identified as 

direct genomic targets of the protein (Anexo table 1).  Strikingly, all of them appeared to have a 

directly role in either leukemogenesis or hematopoiesis (Figure 15D). In addition, analyzing the 

location of the binding regions, we observed that the possible modulatory effect of NUP98 wt on 

gene transcription would be leading primarily by binding to promoters, since half of the regions 

are located between 0 and 1 kb upstream of the TSS of the possible target genes and the other 

half to more than 5 kb (Figure 15E).  

To go a step further into this possible role of NUP98 in hematopoietic differentiation, we 

generated a hHP cellular model that overexpress NUP98 wt (hHP-NUP98) and demonstrated that 

most of the selected candidate targets were upregulated. Interestingly, NUP98 wt was also able 

to induce the downregulation of BIRC3, a well known tumor suppressor gene (Figure 16A). We 

then performed a common Colony Forming Unit (CFU) Assay to compare the ability of 

differentiation and proliferation of the hHP-NUP98 cells with the hHP-empty vector model. CFU 

assay is an in vitro assay based on the ability of hematopoietic progenitors to proliferate and 

differentiate into colonies in a semi-solid media in response to cytokine stimulation. The colonies 

formed can be counted and characterized according to their unique morphology. We importantly 

showed a highly significant increase in colony formation of all types (CFU-G, CFU-GM, BFU-E, 

CFU-M and CFU-GEMM) in hHP-NUP98 (Figure 16B and 16C).  These results lead us to validate 

http://www.ingenuity.com/
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the function of NUP98 wt in hematopoiesis and think about a possible oncogenic role in 

hematological malignancies, which would need to be further studied.  

 

 

 

 

 
 

 
 

Figure 15: Identification of HOXA9 and NUP98 wt genomic binding regions. (A) Representation of the 

pMSCV-NUP98 and pMSCV-HOXA9 retroviral vectors. (B) Plot that represents the main functions of the HOXA9 wt 
target genes (IPA output) (C) Plot that represents the localization of NUP98 wt binding sites in distance (Kb) from the 
TSS. (D) Plot that represents the main functions of the NUP98 wt target genes (IPA output) (D) Plot that represents 
the localization of NUP98 wt binding sites in distance (Kb) from the TSS. 
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Figure 16: Nup98 plays a role in hematopoiesis. (A) Expression analysis by qRT-PCR for the eight selected 

NUP98 wt target genes in the hHP-NUP98 cellular model. The expression of the endogenous human housekeeping 
gene GAPDH was used to normalize the data and they are expressed as the mean of 2

-ΔCt
 values obtained for each 

sample after normalization with hHP-empty vector model. Error bars represent SEM.  (B) Colony-forming assay with 
hHP-NUP98 cells and hHP-emtpy vector cells. Average number of colonies per dish from 2 independent experiments 
after 10 days are shown (only colonies with > 50 cells/colony were counted). Error bars represent SEM. (C) 
Microscopy images of the different types of colonies identified in the hHP-Nup98 cellular model CFU assay: CFU-G 
(Colony forming unit-granulocyte), CFU-GM (Colony forming unit-granulocyte, macrophage), BFU-E (Burst forming 
unit-erythorid), CFU-M (Colony forming unit-macrophage) and CFU-GEMM (Colony forming unit-granulocyte, 
erythrocyte, macrophage, megakaryocyte)  
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4 NUP98-HOXA9 target genes analysis 

 

Our next step was to focus on the study of the identify NH target genes and try to find some 

molecular mechanism that may explain, at least partially, its effect on leukemogenesis. When we 

analyzed this set of target genes using Ingenuity Pathways Analysis, we found enrichment in 

functions such as survival, cell cycle, leukemia and development and function of the hematologic 

system (Figure 17A). Among these genes, we found oncogenes implicated in the development of 

leukemia, but also interesting tumor suppressor genes such as NF1, PTEN or BIRC3. 

Furthermore, regarding the canonical pathways associated to NH, only Protein kinase A 

signaling were found significantly enriched, whereas we found that most of the genes were 

involved in a wide range of different molecular pathways. In light of these data, we conclude that 

the target genes of NH are involved on different molecular pathways but targeting the same 

biological functions. 

Importantly, we validated, in the human hematopoietic progenitor model (hHP-NH), the 

DNA direct binding of NH to the regulatory regions of the eight leukemic target genes that we 

selected before (Figure 17B), meaning that the ChIP-seq results can be perfectly extrapolated 

from the cellular model with 293FT cell line to the human hematopoietic progenitor model. 
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Figure 17: NUP98-HOXA9 target genes. (A) Plot that represents the main functions of the NH target genes 

(IPA output) (B) qChIP fold enrichment of NH in hHP-NH cellular model and hHP in the eight selected regions. The 
average of 3 experiments is shown. Error bars represent standard error of the mean (SEM). (C) PolII qChIP fold 
enrichment on the eight selected NH target regions. Average of 3 experiments is shown. qChIP fold enrichment of 
NH in hHP-NH cellular model and hHP in the eight selected regions. The average of 3 experiments is shown. Error 
bars represent standard error of the mean (SEM). 
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4.1 HOXA9-PBX3-MEIS axis 

The ChIP-seq data demonstrated that PBX3 and HOXA9 are both common targets of the 

fusion protein as well as of the wild type NUP98 (Figure 14A). In addition, we also found that 

both the fusion protein and HOXA9 bind to the regulatory regions of MEIS1. These three 

transcription factors, PBX3, HOXA9 and MEIS1, form an activator complex that regulates the 

expression of genes involved in the AML induction26,47,48,88,89. Accordingly, we showed the 

significantly overexpression of these three genes in the hHP-NH cellular model, when comparing 

the hHP transducted with the empty vector (Figure 18A).  

To determine whether NH has a direct involvement in the deregulation of PBX3, HOXA9 and 

MEIS1, we subcloned their identified enhancer regions upsetream to the luciferase gene. For the 

three regions, we observed a significant increase in the luciferase activity when NH was also 

expressed (Figure 18B) demonstrating that NH directly induces the overexpression of the three 

target genes by binding to their enhancer regions. Remarkably, the findings were observed also 

in primary samples of three patients bearing the fusion gene, where we also showed the 

overexpression of these target genes (Figure 18C) 

From the ChIP-seq analysis of NH, we also found that the fusion gene binds to the regulatory 

regions of three hsa-miR-181 family members (hsa-miR-181a1, hsa-miR-181a2 and hsa-miR-

181b).  PBX3 and HOXA9 are potential targets of the miR-181 family (particularly, miR-181b). In 

our hHP-NH cellular model, we observed a significant downregulation (Figure 18D) of miR-181b, 

most likely contributing to greater overexpression of the HOX/PBX3 signature.  

All together, these data highlighted the important role of these three target genes in the 

oncogenic process induced by NH. 

Thus, given the potential relevance of the HOXA9-PBX3-MEIS1 axis, we assessed the 

molecular interactions between PBX3, HOXA9 and MEIS1, and their relationship with the 

chimeric NH protein. We generated a new cellular model from 293FT cells by co-expressing NH 

and HOXA9 and performed different co-immunoprecipitation studies (Co-IPs). We demonstrated 

that HOXA9 forms a stable heterocomplex with the PBX3 and MEIS1 proteins (Figure 19A). 

Furthermore, among the known target genes of MEIS1-HOXA9-PBX3, we selected MYB, MEF2C 

and FLT3 and demonstrated that the complex was sufficiently functional to overexpress them in 

the hHP-NH cellular model (Figure 18E). 
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Figure 18: HOXA9-PBX3-MEIS axis.  (A) Expression analysis by qRT-PCR of MEIS1, HOXA9 and PBX3 in the hHP-NH 

cellular model. The expression of the endogenous human housekeeping gene GAPDH was used to normalize the 
data and they are expressed as the mean of 2

-ΔCt
 values obtained for each sample after normalization with hHP-

empty vector model. Error bars represent SEM. (B) Luciferase assay to evaluate the activity of NH on the enhancers 
of MEIS1, HOXA9 and PBX3. Data are presented as mean from two separate experiments with n=3 for each 
experiment. Error bars represent SEM. (C) Expression analysis by qRT-PCR that showed the overexpression of MEIS1, 
HOXA9 and PBX3 in three primary samples of patients with t(7;11)(p15;p15). Error bars represent SEM.  (D) 
Expression analysis by qRT-PCR that showed the downregulation of has-miR181b in hHP-NH model compared to the 
hHP-empty vector. Data were normalized on the expression of the artificial Homo sapiens miRNA control RNU19. (E) 
Expression analysis by qRT-PCR of MYB, MEF2C and FLT3 in the hHP-NH cellular model. 
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4.1.1 Interaction between NUP98-HOXA9 and PBX3  
 

The chimeric NUP98-HOXA9 retains the short ANWL motif of HOXA9, which binds the PBX 

family, but the MEIS1 interaction domain is lost 26. Consistent with this, we demonstrated that 

NH was indeed able to interact with the complex through PBX3 but not through MEIS1 by 

performing co-immunoprecipitations in the 293FT cellular model (Figure 19A). We scanned the 

DNA target sequences of NH for the HOXA9-MEIS1-PBX binding motif (ATGATTTATGGC48) and 

found 1981 co-occurrences with p ≤ 0.0001 using FIMO (Table S2) suggesting a strong 

cooperation between NH and the complex itself in inducing the final transcriptional profile.  

NH could recruit the HOXA9-PBX3-MEIS1 complex through PBX3 and direct it to its own 

regulatory target regions. However, it has been shown that the complex co-occupies cellular 

promoters that drive leukemogenesis90; therefore, the loop that communicates enhancers with 

promoters could enable the binding of the complex to the promoters of the same genes thanks 

to the interaction with NH. 

 To investigate this aspect, we cloned the coding region of PBX3 fused to FLAG-tag (Figure 

19B) and the coding region of NH without any tag in the retroviral vector. We generated a new 

cellular model with these vectors by co-transfecting 293FT cells and performed two distinct 

qChIP approaches. On one hand, we analyzed the PBX3 enrichment in the same regulatory NH 

target regions and we observed that PBX3 is only binding to the enhancers of MEIS1, MET, BRAF 

and NF1 in the presence of NH and not interact to any of the enhancers whether NH is not 

expressed (Figure 19C). Likewise, we observed that PBX3 is not binding to any promoter neither 

in the absence nor presence of the fusion protein (Figure 19D).  

In the light of these results, we could conclude that the interaction of NH with the complex 

seems not to be crucial to its oncogenic functions. 
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Figure 19: Interaction of NUP98-HOXA9 with PBX3. (A) Analysis of NH and MEIS1-HOXA9-PBX3 complex 

interactions by co-immunoprecipitation. Input lysates and immunoprecipitated proteins were analyze by 
immunoblotting using anti-FLAG antibody. α-tubulin protein levels were used as load control (B) Representation of 
the pMSCV-PBX3 retroviral vector. (C-D) PBX3 (anti-FLAG) qChIP fold enrichment on the eight selected target genes: 
enahcers (C) and promoters (D). Error bars represent standard error of the mean (SEM). 
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4.1.2 Chemical disruption of the HOXA9-PBX3-MEIS complex 

We next decided to evaluate the biological relevance of this oncogenic axis in the NH-AML 

context using the HXR9 peptide that works as a specific inhibitor of the HOXA9-PBX interactions. 

HXR9 is an 18-amino-acid peptide that harbors the hexapeptide sequence of HOXA9 that can 

bind to PBX3 and 9 C-terminal arginine residues (R9) that facilitate cell entry47. This peptide 

seems to have high therapeutic potential in several tumor types including cytogenetically 

abnormal AML (CA-AML) that overexpresses HOX-PBX signature47,91,92. We evaluated the 

sensitivity to HXR9 of our hHP-NH model.  Sorted cells were plated in triplicate with titrating 

doses of the drug to obtain the median Lethal Dose (LC50, is the dose required to kill half of the 

cells after 24 hours of treatment) that was 13μM. Supporting our hypothesis, we observed an 

inhibitory effect on cell viability (30%) after 13μM HXR9 treatment at different time points. 

(Figure 20A).  As control, we used the treatment with the peptide CXR9 that lacks a functional 

hexapeptide sequence but includes de R9 sequence.  Furthermore, we also treated hHP-NH 

colony forming cells with 13μM HXR9 and observed a significant decrease in the number and the 

size of the colonies compared with cells treated with the control peptide. This response seemed 

to be conditioned by the presence of the chimeric protein since it was not observed when we 

treated wild type human hematopoietic cells (hHP) (Figure 20B and 20C). Apoptotic cells were 

identified using flow cytometry and APC-labeled anti-annexin V antibody. Consistently, an 

increase in apoptosis was observed when cells were treated with 13μM and 30μM HXR9 for 24 

hours compared with controls (Figure 20D). 

These results showed the role of NH in the activation of the HOXA9-PBX3-MEIS1 axis and 

provided evidence for its actionability as a new therapeutic approach for this leukemia. 
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Figure 20: Chemical disruption of the HOXA9-PBX3-MEIS complex. (A) Analysis of the response to HXR9 

treatment. hHP-NH cells were exposed to 13uM of HXR9/CXR9 and cell viability was assessed at different time points 
using WST-1. Averaged normalized optical density (OD) values of three independent experiments are shown. (B) 
Colony-forming assay with hHP-NH cells and hHP-emtpy vector cells treated with 13uM HXR9/CXR9. Average 
number of colonies per dish from 2 independent experiments after 10 days are shown (only colonies with > 50 
cells/colony were counted). Error bars represent SEM. (C) Morphology of colonies of hHP-NH treated cells.  (D) hHP-
NH and hHP-empty vector cell apoptosis assay after the treatment with 13 uM and 30uM of HXR9 peptide for 24 
hours. Cells were stained with annexin V and analyzed using flow cytometry. The plot shows the averaged fold 
changes of 3 independent experiments compared to CXR9 (30uM). Error bars represent SEM. 
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4.2 Effect of NUP98-HOXA9 on its other target genes 

To gain insight into the molecular mechanisms that could explain the global expression 

profiling of this oncogenic model, we performed gene expression analysis of three independent 

clones of hHP-NH (Table S5) and three independent clones of hHP-empty vecto were used as 

control. From previous studies, only a subset of these data is publically available 27,53-55  and the 

most salient feature of these clones was a preponderance of upregulated genes. However, we 

did not want to focus our study on analyzing the genes up or down-regulated in the hHP-NH 

model since it has already been discussed before, but understand the effect of NH in the 

regulation of gene expression. Thus, we wanted to discover what was happening with the target 

genes of the fusion protein and applying GSEA analysis to our expression profile data, we found 

that NH seemed to induce overexpression and down-regulation of its target genes, previously 

identified in the ChIP-seq experiments (Figure 21A).   

Since the chimeric protein retains the FG repeat domain of NUP98, NH may interact with 

different transcriptional regulatory cofactors, including the known activator p300 and the 

inhibitor HDAC1. To demonstrate that the activator-repressor role of NH may rely on these 

interactions, we assessed their potential influence on global gene regulation in our human 

cellular model. As expected, the Co-IPs performed in 293FT cellular models demonstrated the 

direct interactions of NH with both p300 and HDAC1 (Figure 21B).  

We then used expression data to assess the role of these interactions in the transcriptional 

regulation driven by NH. We selected eight target genes, four (MEIS1, HOXA9, PBX3 and AFF3) 

that were upregulated in the hHP-NH model and four (BIRC3, SMAD1, FILIP1L and PTEN) that 

were downregulated. We then designed primers to analyze the occupancy of their promoters by 

performing different qChIP assays. We found that p300 bound to the promoters of the 

overexpressed genes only when NH was present. On the other hand, we also observed an 

enrichment of HDAC1 within the promoter regions of the downregulated genes when the fusion 

protein was present, thereby demonstrating its hypothesised dual role (Figures 21C and 21D).  
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Figure 21: Effect of NUP98-HOXA9 on its other target genes. (A) GSEA plots using the NHChIP-seq gene set 

and the expression array data from hHP-NH cellular. (B) Analysis of NH and p300/HDAC1 interactions by co-
immunoprecipitation. HEK293FT cells were transfected with pMSCV-Nup98-Hoxa9 or pMSCV-empty vectors. 48h 
post-transfection, the immunoprecitpitation was performed by using anti-p300 and anti-HDAC1 antibodies. Proteins 
were analyze by immunoblotting using anti-FLAG antibody. GAPDH protein levels were used as load control. (C) 
qChIP fold enrichment of p300 and HDAC1 in the regulatory regions of four upregulated and four downregulated 
target genes of NH in 293FT cellular models. The average of 3 experiments is shown. Error bars represent SEM.  
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5 In vitro analysis of the efficacy of the HDAC inhibitors on 
hHP- NUP98-HOXA9 cellular model 

The interaction of NH with HDAC1 and its presence in the promoter of down-regulated 

genes prompted us to evaluate the effectiveness of a treatment with HDACs inhibitors (HDACi). 

HDACi are giving very promising results in the treatment of different hematologic malignancies, 

but to date they have not been studied for patients with the t(7;11)(p15,p15) translocation. 

Thus, we analyzed the sensitivity of our cellular model to the pan-HDACi Panobinostat (LBH589) 

compared with the sensitivity of other AML fusion genes for which the efficacy of this drug has 

already been demonstrated (MLL-AF9 and AML1-ETO). We observed a dramatic inhibitory effect 

that, unexpectedly, was much higher (LC50hHP-NH≈4nM) than that the one observed in the other 

leukemic models of hHP, hHP-MLL-AF9 (LC50hHP-MLL_AF9≈30nM) and hHP-AML1-ETO (LC50hHP-

AML1_ETO≈200nM) fusion genes (Figure 22A). Indeed, the treatment with low doses (4nM) of 

LBH589 completely abrogated the hHP-NH cells capability to form colonies in the CFU assay 

(Figure 22B). Further, hHP-NH cells treated with 4nM and 30nM doses of LBH589 underwent 

apoptosis within 24h, whereas the same concentration of drug had no effect in the hHP-empty 

vector model (Figure 22C).  

Summarizing, these experiments demonstrated that (1) the chimeric protein is capable of 

inducing a deep change in the expression profile (both activating and repressing target genes and 

(2) the repressing activity carried with collaboration of HDAC proteins clearly make those cells 

that harbor the fusion gene extremely sensitive to the treatment with epigenetic inhibitors.  
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Figure 22: Treatment with HDAC inhibitors (A) hHP-NH cells were exposed for 72 hours to serial dilutions 

of panobinostat (LBH589) followed by addition of WST-1 to analyze cell viability. Averaged normalized optical 
density (OD) values are shown compared to vehicle. (B) Colony-forming assay with hHP-NH cells and hHP-emtpy 
vector cells treated with 4nM LBH589. Average number of colonies per dish from 2 independent experiments after 
10 days is shown (only colonies with > 50 cells/colony were counted). Error bars represent SEM. (C) hHP-NH and 
hHP-empty vector cell apoptosis assay after the treatment with 4 nM and 30nM of HXR9 peptide for 24 hours. Cells 
were stained with annexin V and analyzed using flow cytometry. The plot shows the averaged fold changes of 3 
independent experiments compared to vehicle.  Error bars represent SEM. (D) GSEA plots using the NH ChIP-seq 
gene set and the expression array data from NH primary samples. 
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6 Patients with t(7;11)(p15;p15) 

We obtained RNA samples from a further five patients with t(7;11)(p15,p15).  To explore 

the activator-repressor role of NH in primary samples, we performed expression arrays with 

these samples and analyzed the data using GSEA (Table S6). We used three independent clones 

of hHP wt as control. Importantly, we found that the identify target genes behave similarly in 

primary samples and in the hHP-NH cellular model (Figure 22D). We showed both overexpressed 

and down-regulated target genes, thereby validating our finding that the fusion gene plays a dual 

role in transcriptional regulation. 

Moreover, we used single-sample gene set enrichment analysis (ssGSEA) to assess gene set 

activation scores for the five tumor samples. ssGSEA is a rank-based comparison of the 

expression levels of genes in the gene set with all other genes in an expression profile93. In this 

analysis we included different gene sets and analysed the five expression profiles separately. The 

obtained pattern reflects a high level of homogeneity between samples and controls, but we 

observed two distinct clusters, meaning that the expression profiles of NH primary samples 

cluster together. Interestingly, one of the differentially expressed gene sets between patients 

and controls was the NOTCH pathway genes. 

 

 

7 NUP98-HOXA9 binding-proteins identification by Mass 
Spectrometry 

 

NH-interacting proteins have been tried to be identified by traditional yeast two-hybrid 

assays and it has allowed to find some proteins, like the Amino-terminal Enhancer of Split (AES) 

which collaborates with NH in the in deregulating transcription and proliferation60.  However, 

Mass spectrometry is rapidly maturing as a powerful tool for proteomic analysis and specifically 

for the identification of protein-protein interaction. Therefore, in this study, we sought to 

identify and compare proteins that interact with NH, HOXA9 wt and NUP98 wt, using a Mass 

spectrometry assay. 

We used the 293FT-NH, 293FT-HOXA9 and 293FT-NUP98 models to conduct the 

corresponding immunopreticiptations, followed by mass spectrometry. For each model, all 

peptides that appeared at least once in the controls were excluded and we selected only those 
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that appeared in all the three biological replicates analyzed. Table S7 (A-F) contain the lists of the 

proteins identified during these analyses, that interact with NH, HOXA9 or NUP98, respectively. 

 As it is observed in Figure 23, we found a total of 88 NH interacting-proteins, 198 for HOXA9 

and 52 for NUP98. Interestingly, there are 38 proteins that only bind to NH, suggesting that the 

fusion protein acquires a new spatial conformation that allows it to interact with some proteins 

that are not able to bind to neither HOXA9 wt nor NUP98 wt (Figure 24A , Table S7A). Among 

them, we found proteins involved in chromatin remodeling (SMARCD2 or ARID1A), cytoskeletal 

reorganization (ABI1, ABI2, NCKAP1 or CYFIP1) or leukemogenesis (PBX2). However, the most 

striking finding was that NH binds to almost all of the components of the Ccr4-Not complex: 

CNOT1, CNOT3, CNOT6L, CNOT7, CNOT8, CNOT10 and RQCD1. 

 

Figure 23: Mass spectrometry results. Venn diagrams of the overlapping NH, HOXA9 and NUP98 

interacting -proteins indentified with the Mass Spectrometry approach on HEK293F human models 

 

Among the binding proteins that are common to NH and HOXA9 (Table S7D), we found 

proteins responsible of the DNA repair (RPA3, RPA2, RAD18 or SMC3) and cell cycle regulators 

(CDKN2A or SP3). However, again, we made a surprising discovery: both HOXA9 and NH were 

able to interact to all of the members of the COP9 signalosome (GPS1, COPS2, COPS4, COPS5, 

COPS6, COPS7A, COPS7B and COPS8), that is involved in the ubiquitin–proteasome pathway 

(Figure 24B, Table S7D).  We found four proteins that interact with both NH and NUP98 wt 

(Figure 24C, Table S7E). Notably, two of these proteins are RNA splicing regulators (SFRS8 and 
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PNN94), which supports the importance that aberrant splicing is acquiring in the pathogenesis of 

AML95. On the other hand, OGT is a glycosyltransferase that forms a core complex with HCF-1 

and BAP1 that can differentially recruit histone-modifying enzymes to regulate gene expression 

and thereby preserve normal hematopoiesis96. The latter protein of this group, but no less 

interesting, would be PFDN5 or MM1. It is a subunit of prefoldin, a molecular chaperone complex 

that binds and stabilizes newly synthesized polypeptides.  

Finally, among the five interacting proteins that are common to the three entities, the 

presence of HDAC1 and HDAC2 is remarkable since it validates the use of HDAC inhibitors for the 

treatment of patients harboring the NUP98-HOXA9 fusion protein (Figure 24D, Table S7F).   
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Figure 24: Identification of interacting-proteins. (A-D) STRING 9.1 diagrams of the interacting-proteins 

indentified with the Mass Spectrometry.  
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NUP98-HOXA9-associated AML is one of the most aggressive forms of leukemia. It is highly 

refractory to intensive treatment and has a dismal prognosis, only 2-5% of patients surviving in 

five-years. The molecular mechanisms underlying the occurrence of this fusion protein are poorly 

understood. Advancing knowledge in this area could trigger the identification of new and more 

efficient therapeutic targets. The present work provides proof of concept to explore a better 

designed targeted therapy for these patients. 

 

NUP98-HOXA9 genomic binding sites 

By identifying its DNA binding sites, we have shown that the transcription factor activity of 

NH is carried out mainly through enhancers. Each of the eight selected region was characterized 

as enhancer by detecting the enrichment of the H3K4me1 epigenetic mark. We also observed an 

increase in the presence of PolII in seven of the eight target sites when NH is present, indicating 

that the fusion protein could induce the activation of its target enhancers somehow. Moreover, 

through two different in silico analysis of the binding sequences, MEME-ChIP and oOPOSSUM, we 

were able to identify DNA binding motifs of several enhancer pioneer transcription factors (FOX 

proteins and GATA1) in the same target regions of NH. Transcriptional regulation carried out by 

HOXA9 wt is known to be mostly mediated by its binding to enhancers. Our results, therefore, 

prompted us to suggest that the NH binding to DNA is most likely driven by the HOXA9 moiety. 

Indeed, we found that one third of the NH target genes were common to HOXA9 wt.  

Interestingly, a detailed study of the DNA binding regions allowed us to identify a consensus 

sequence (CA/gTTT) that is present in one-third of genomic regions where NH is bound, but is not 

associated with any known transcription factor. This specificity represents a unique and 

promising finding to be further explored.  

 

Unexpected role of NUP98 in hematopoiesis 

Notably, this effect depends not only on the presence of the HOXA9 homeodomain in the 

fusion, but also on the contribution of the NUP98 moiety to the chimeric protein. We have 

shown that this moiety also participates in the interaction of the fusion protein with DNA in a 

human cellular context. An unexpected finding was that not only  the nucleoporin NUP98 

showed direct DNA binding activity, but also that many of the genes involved in the interaction 

play a role in the regulation and differentiation of hematopoiesis. Recent studies have suggested 

that NUP98 acts as a transcription factor in a tissue and status dependent way35. We have 

demonstrated that its overexpression in hHP induces the upregulation of important genes such 
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as HOXA9, PBX3, HOXA7, RARA and PML, but also the downregulation of the tumor suppressor 

gene BIRC3. This role of NUP98 as a hematopoietic transcription factor needs to be further 

explored as it could open the door to important insights into hematopoiesis and leukemia. This 

finding indirectly provides an explanation to why a nucleoporin, mainly though as a structural 

protein, is so commonly rearranged in AML; it has more than 20 different partners that result in 

chimeric proteins with leukemogenic features. This proposed role of NUP98 led us to speculate 

that the loss of one wt allele of the gene, as a consequence of the chromosomal translocation, 

could have some effect on the blockage of hematopoietic differentiation, a common feature of 

myeloid leukemias. Supporting this hypothesis, it has been reported that endogenous NUP98 

interacts with NH in the leukemic cells51, an alternative mechanism that would block the 

transcription factor activity of the nucleoporin. Further, that haploinsuficiency of the NUP98 wt 

was required to induce full leukemic transformation could explain why a complete leukemic 

transformation has not been demonstrated in a retroviral model overexpressing NUP98-HOXA9 

in hHP, where the two wt alleles are intact 54. As we have recently published for other fusion 

genes97, genetically engineered cell models that generate the chromosomal translocation inside 

the cell should provide a more appropriate tool to evaluate this hypothesis. 

 

MESI1-HOXA9-PBX3 axis deregulation 

It is interesting to note some clinical similarities found between NUP98-HOXA9 and MLL 

gene rearrangements that are also events associated with aggressive myeloid leukemias. In both 

cases, it has been observed that there is an induction of erythroid hyperplasia, an abnormal 

erythroid maturation and a similar in vitro mode of transformation27. These findings suggested 

that both chromosomal rearrangements might be sharing some oncogenic mechanisms. 

Accordingly, we found that NH directly induces the overexpression of the three best known 

target genes of MLL-AF9 and MLL-AF447,98,99fusion proteins: MEIS1, HOXA9 and PBX3. These 

three transcription factors can form a transcriptional activator heterocomplex that regulates 

genes involved in the development of AML47,48. Additionally, it has been recently shown that the 

overexpression of a 4-homeobox-gene signature (composed of PBX3, HOXA9, HOXA7 and 

HOXA11) is an independent predictor of poor overall survival in patients with cytogenetically 

abnormal AML (CA-AML)89.  

We demonstrated that the interaction of NH with the specific enhancers of MEIS1, HOXA9 

and PBX3 directly induces their overexpression. In addition, we validated the formation of the 

actively functional heterocomplex MEIS1-HOXA9-PBX3 in cells expressing the fusion protein, 
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since it is able to induce its specific expression signature. Interestingly, we showed that NH could 

interact with this complex through PBX3. However, it seems that PBX3 could be collaborating 

with NH in transcriptional regulation of only a few genes. Therefore, these results suggest that 

recruitment of the complex by NH could be a mechanistic artifact that is not relevant for the NH 

function as transcriptional regulator. This matches previous studies that suggested that Pbx-

interaction motif is not required for the oncogenic mechanism induced by NH26.  

Since Morgan et al.100 designed the peptide HXR9, which is able to disrupt HOXA9-PBX 

interactions and shows effective anti-tumor effects in melanoma models and other solid 

tumors91,92, recent results suggest that HXR9 could improve the survival of the leukemia patients 

with increased expression of the HOXA/PBX3 signature, as is the case for MLL-rearranged 

leukemia47. The role of PBX proteins, HOXA9 and MEIS1 in the context of NUP98-HOXA9 

leukemia has been previously discussed26, but with these new findings, a revision of their 

function in this context was required. Thus, we evaluated the efficacy of HXR9 treatment in our 

hHP-NH model and observed a clear inhibitory effect on cell viability. This effect is not as 

dramatic as in other leukemic fusions studied previously47, indicating that the deregulation of the 

PBX3-HOXA9-MEIS1 axis is probably not the only driver determining the transformative power of 

NH. 

 

Target miRNAs of NUP98-HOXA9 

Among the 17 target miRNAs of NH that we identified in the ChIP-seq analysis (Table 3), we 

found three miR181 family members:hsa-miR-181a1, hsa-miR-181a2 and hsa-miR-181b. It has 

been shown that the miR181 family acts as a regulator of myeloid differentiation101 and that its 

downregulation contributes to the poor prognosis of cytogenetically abnormal AML patients89. 

Interestingly, PBX3, HOXA9, HOXA7 and HOXA11 are potential targets of the miR-181 family 

(particularly, miR-181b). In our hHP-NH cellular model we also observed the significant 

downregulation (Figure 9) of miR-181b which clearly entails an additional mechanism of the 

fusion protein to obtain an even greater overexpression HOX/PBX3 signature. Another miRNA 

that could be regulated by NH is hsa-miR-128, which targets the expression of genes NF1102, MLL 

and AF4103, all of them with an important role in human leukemia. NF1 is a tumor suppressor 

gene whose downregulation is a common event in AML104. On the other hand, MLL is frequently 

involved in chromosomal translocations in aggressive human lymphoid and myeloid leukemias. 

One of these MLL-associated leukemias results from a balanced translocation between MLL and 

AF4. hsa-miR-128 is able to downregulate the expression of MLL, AF4, and both MLL-AF4 and 
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AF4-MLL fusion genes103. The data suggests that the deregulation of this miRNA by NH could 

serve an important function in the development of the leukemia. Finally, hsa-miR-30A has been 

proposed as a tumor suppressor gene in CML that is also deregulated by BCR-ABL105. 

 

Other NUP98-HOXA9 target genes 

Although this work has focused specifically on three of the target genes of NH for their key 

role in AML (MEIS1, HOXA9 and PBX3), the rest must not be ignored. Here, we summarize the 

most relevant features of the selected target genes and their relation to AML and other 

hematological cancers: 

- MET is an oncogene that acts as receptor tyrosine kinase. A recurrent activating mutation 

in MET that is  also described in small cell lung cancer and breast cancer, has been found in 

AML106. MET signaling is a requisite pathway in the growth and survival of AML cells in nearly half 

of the primary clinical samples107. 

- BRAF is a serine/threonine protein kinase involved in cell division, differentiation, and 

secretion.  Mutations in this gene have also been associated with various types of cancer. In 

AML, BRAF mutations, as well as other mutations of genes more downstream in the RAS-BRAF 

pathway, are very frequent108. 

- AF9 is a member of the YEATS domain superfamily with functions in transcriptional 

elongation. AF9 is one of the most common translocation partners of MLL fusion proteins that 

are responsible for a subset of acute leukemias. It has been proposed as an attractive 

pharmacological target in such diseases109. 

- NF1 is a tumor suppressor gene that negatively regulates the RAS signal transduction 

pathway and, as discussed above, it appears mutated or deleted very frequently in AML110. 

- PTEN is another tumor suppressor gene that is inactivated in many human cancers, 

including AML and other hematological malignancies111. PTEN is a negative regulator of AKT/PKB 

signaling pathway. 

- AFF3 is a nuclear transcription factor that may function in lymphoid development and 

oncogenesis. It has been found in fusion with MLL in acute lymphoblastic leukemia patients112. 

- BIRC3 negatively regulates MAP3K14, an activator of the non-canonical pathway of NF-κB 

signalling. This gene is frequently mutated and deleted in Chronic Lymphocytic Leukemia (CLL).  

CLLs harbouring BIRC3 disruption display constitutive NF-κB activation that is associates with 

unfavorable clinical and genetic features and predicts poor outcomes independent of other risk 

factors113. 
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- SMAD1 belongs to the SMAD family and it is a signal transducer and a transcriptional 

modulator that mediate multiple signalling pathways involved in a range of biological activities 

including cell growth, apoptosis, morphogenesis, development and immune responses. Smad-

signalling circuitry is intimately linked to normal and leukemic hematopoiesis114.  

- FILIP1L is a novel tumor suppressor that inhibits the canonical WNT signalling and has its 

expression downregulated in various cancers. Its great potential as a cancer therapeutic target 

has been proposed.115 

Given the important functions of these genes in tumorigenesis and leukemia development, 

the oncogenic mechanism induced by NH is likely the result of the collaboration of all of them. In 

this regard, we decided to assess the effect of NH on the rest of its target genes, both in our 

model and, more relevantly, in primary samples. We observed that the fusion protein seemed to 

have the capacity to induce both upregulation and downregulation. This result confirms that the 

preponderance of overexpressed genes described the hHP-NH signatures27,54,55 is most probably 

due to a downstream effect (for example, gene activation induced by PBX3-HOXA9-MEIS1), 

rather than the direct action of NH. 

In order to better understand this activator-repressor role that NH seems to have on its 

target genes, we explored the capacity of the Nup98 moiety of the fusion protein to recruit 

transcriptional regulators, such as the coactivator p300 or the corepressor HDAC151. We 

demonstrated, for the first time, this dual role, showing the presence, along with the fusion 

protein, of p300 and HDAC1 in the regulatory regions of the overexpressed and downregulated 

NH-target genes, respectively.   

 

Treatment with HDAC inhibitor 

HDAC inhibitors are a novel class of anticancer agents that block the activity of HDACs with 

promising therapeutic expectations in different types of myeloid malignancies. Since in our 

model we identified the involvement a molecular mechanism that justifies the use of these drugs 

in patients harboring the NH fusion protein, we assayed in vitro the potential use of LBH589 

(Panobinostat).  We observed a high inhibitory effect in hHP-NH after treatment with that was 

more efficient in our model than in others myleoid cell lines bearing fusion genes such as MLL-

AF9 or AML1-ETO.   

Likewise, we suggested that a p300 inhibitor like C646, that induces cell cycle arrest and 

apoptosis selectively in AML-ETO positive AML cells116, could also be tested in the cellular models 

and in patients that harbor NH.  
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However, in patients with t(7;11)(p15;p15), we found a stronger presence of downregulated 

target genes, indicating that the treatment with HDAC1 could be even more effective. Patients 

with the translocation should be included in Panobinostat clinical trials.  

Probably the best therapeutic option for these patients would be the use of combination 

therapies that include the proposals made in this study.  

 

New NUP98-HOXA9 interacting-proteins 

The Mass spectrometry results confirm that NH is not only an aberrant transcription factor 

but that its ability to interact with many other proteins allows it to expand its leukemogenic 

potential to achieve the high degree of malignancy that characterizes it.  We found that NH binds 

to almost all the components of the CCR4-NOT complex and that this capacity could be acquired 

from the specific spatial conformation of the fusion protein, since none of the proteins of the 

complex seem to interact neither with NUP98 wt norHOXA9 wt. The CCR4-NOT complex is a 

unique, essential and conserved multi-subunit complex117. It has been studied mostly in 

Saccharomyces cerevisiae but the orthologous genes have been found in humans. The complex is 

composed by two functional modules with different subunits that comprise two different 

enzymatic activities: deadenylation and ubiquitination. The combination of these two activities 

allows coordinating multiple functions such as mRNA degradation, protein synthesis and 

degradation, RNA nuclear export and chromatin modification. In this broad range of processes, it 

has a direct involvement in transcriptional regulation or DNA damage response, making it 

essential for cell viability 118. Given these important functions, the newly identified ability of NH 

to interact with the CCR4-NOT complex and its role in leukemogenesis open up an exciting 

research field. 

Another striking finding came up when we identified, among the binding proteins that are 

common to NH and HOXA9, all of the COP9 signalosome components. It is a conserved protein 

complex that operates in the ubiquitin–proteasome pathway.  Although its mechanism of action 

is not yet fully understood, it is rapidly emerging as a key player in the DNA-damage response, 

cell-cycle control and gene expression119. Further studies are necessary to elucidate the 

consequences of the interaction between the fusion protein and the intriguing and 

multifunctional COP9 signalosome in leukemic transformation. Importantly, NH and Hoxa9 also 

bind to MAEA, a key protein in normal differentiation of erythroid cells and macrophages120. As 

NH induces erythroid hyperplasia and abnormal erythroid maturation27, it is very likely that the 

interaction with MAEA plays a role in this process. 
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In addition, we found that NH and NUP98 wt interact with OGT, a protein whose usual role 

in hematopoiesis could be altered because of this interaction, helping in the induction of the 

impaired blood differentiation that is characteristic of NH-driven AML. Regarding the interaction 

between NH and MM1, it is noteworthy that mutations in MM1 are often observed in patients 

with leukemia or lymphoma and it has been considered as a tumor suppressor that acts by 

repressing the transcriptional activity of the proto-oncogene c-Myc87. The interaction with the 

fusion protein could free c-myc, allowing it to carry out its oncogenic activity.                  

Finally, mass spectrometry results let us find out that both HDAC1 and HDAC2 are able to 

interact with NH, HOXA9 and NUP98. It has already been proposed that the retained FG-repeat 

domain of Nup98 in the fusion protein could be mediating the interaction with HDAC137. 

However, the possibility that HOXA9 wt also binds to HDACs had not ever been considered. 

Furthermore, the fact that the fusion protein is also able to recruit HDAC2 supports the 

effectiveness of the treatment with Panobinostat, the tested pan-HDACs inhibitor, in this kind of 

leukemia. 

We have been highly restrictive in the analysis of the MS results, which explains why we 

have not been able to detect some NH interacting-proteins already identified in previous works. 

However, this approach made it possible to find a large number of novel collaborators of the 

fusion protein that would contribute to the discovery of new molecular mechanisms underlying 

this oncogene. Features and architecture of these interactions need to be further explored.  

 

Final remarks 

Our work describes most of the molecular mechanisms that underlay the leukemogenic 

activity of the NH fusion protein. A surprising new function for the nucleoporin NUP98 in 

hematopoiesis has been demonstrated. We have described how NH has the ability to interact 

with HDAC1 and p300 to inhibit and induce gene expression respectively.  

With the evidences on the activation of the PBX3-MEIS1-HOXA9 axis, and the supporting 

data coming from primary samples, we have provided new biological rationales for widening the 

therapeutic reservoir for the patients. 

It is important to note that since it is now clear that the NUP98 moiety plays a crucial role in 

leukemogenesis, other NUP98 fusions could share the same mechanism of action. The proposed 

therapeutic approaches could represent a breakthrough in the treatment of a larger number of 

cases of acute myeloid leukemia. 
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Finally, our description of a huge amount of novel NH interacting-proteins supports the idea 

that NH is not only an aberrant transcription factor, but that its ability to interact with many 

other proteins allows it to expand its leukemogenic potential to achieve the high degree of 

malignancy that characterizes it.   
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CONCLUSIONES 

1. Hemos generado con éxito dos modelos celulares humanos que expresan NUP98-HOXA9 

de forma constitutiva. Uno de ellos se ha generado a partir de células embrionarias 

epiteliales y otro a partir de progenitores hematopoyéticos humanos. Éste último fue 

capaz de reproducir la proliferación aberrante inducida por la proteína de fusión. 

 

2. Nuestro trabajo supone la primera descripción de los sitios de unión al DNA específicos de 

NUP98-HOXA, la mayoría de los cuales son regiones reguladoras “potenciadoras”. Hemos 

identificado un nuevo motivo de unión específico para NUP98-HOXA9 (CA/gTTT) que está 

presente en un tercio de sus sitios diana. NUP98-HOXA9 se une a las regiones reguladoras 

de 1363 genes y 17 microARNs  que están principalmente implicados en procesos de 

muerte celular, supervivencia, ciclo celular y desarrollo de la leucemia. 

3. NUP98-HOXA9 activa directamente la expresión de los genes que forman el complejo 

MEIS1-HOXA9-PBX3 mediante la interacción con sus regiones reguladoras 

“potenciadoras”, constituyendo, esta activación, uno de los mecanismos patogénicos 

inducidos por la proteína de fusión. La desestabilización de este complejo usando el 

péptido HXR9 en progenitores hematopoyéticos humanos que expresan NUP98-HOXA9 

tiene un efecto directo y específico en la viabilidad celular. Este resultado nos lleva a 

proponer al eje MEIS1-HOXA9-PBX3 como una adecuada y prometedora diana 

terapéutica que debe ser evaluada en pacientes con la transclocación t(7;11)(p15;p15). 

4. Al analizar la función cada una de las dos partes que forman la proteína de fusión, 

encontramos que un tercio de los genes diana de NUP98-HOXA9 son comunes a HOXA9 

wt, lo que confirma la importancia del homeodominio en la capacidad de interacción con 

el DNA. Por otro lado, proponemos una papel para NUP98 wt en la regulación 

hematopoyética, ya que identificamos 17 regiones de unión al DNA y todas ellas  parecen 

tener una función en hematopoyesis o leucemogénesis. Además, la sobreexpresión de 

NUP98 wt en progenitores hematopoyéticos humanos activa la expresión de genes diana 

implicados directamente en el desarrollo de la LMA e induce proliferación celular. Estos 

resultados sugieren, por tanto, un papel oncogénico para NUP98 en neoplasias 

hematológicas.  
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5. El análisis de la expresion génica en modelos celulares humanos y muestras primarias de 

pacientes sugieren que NUP98-HOXA9 podría tener un papel activador-represor en la 

regulación transcripcional que estaría determinado por su interacción con p300 

(activador transcripcional) y con HDAC1 (inhibidor transcripcional). 

6. La función represora de la transcripción génica que parece tener NUP98-HOXA9 en 

colaboración con HDACs, hace que las células que expresan el gen de fusión sean 

extremadamente sensibles al tratamiento con el inhibidor de HDAC LBH589 

(Panobinostat). Además, observamos que el efecto de LBH589 es mucho mayor en el 

modelo celular que expresa NUP98-HOXA9 que en otros modelos leucémicos para los que 

la sensibilidad a esta droga ya había sido demostrada. Por tanto, proponemos 

firmemente que los inhibidores de HDAC, solos o en combinación con otros agentes 

quimioterapéuticos, sean probados en pacientes con este tipo de leucemia.  

7. El análisis mediante espectrometría de masas nos ha permitido identificar y comparar un 

gran número de nuevas proteínas que interaccionan con NUP98-HOXA9, HOXA9 and 

NUP98. Estos resultados confirman que la proteína de fusión no es solamente un factor 

de transcripción oncogénico, si no que su capacidad de interacción con otras proteínas le 

permite ampliar su potencial leucemogénico para conseguir el alto grado de malignidad 

que le caracteriza. Sin embargo, la arquitectura y características de estas interacciones 

necesitan ser estudiadas en mayor profundidad.  

8. En conjunto, estos datos indican que el proceso oncogénico inducido por el gen de fusión 

NUP98-HOXA9 implica una enorme variedad de mecanismos moleculares: la regulación 

directa e indirecta de la expresión génica a través de regiones potenciadoras, 

modificaciones epigenéticas y una amplia red de interacciones proteicas. Este escenario 

inducido por la translocación cromosómica puede ser responsable de la compleja biología 

que presentan los progenitores leucémicos y probablemente explica la falta respuesta a 

los tratamientos actuales disponibles para esta enfermedad.  
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CONCLUSIONS 

1. We successfully generated two human cellular models that expressed NUP98-HOXA9 in a 

constitutive manner. One was based on embryonic epithelial cells and the other on 

human hematopoietic progenitors. The latter was able to reproduce the aberrant 

proliferation induced by the fusion protein. 

 

2. Our work provides the first description of the DNA binding sites of NUP98-HOXA9, most 

of which are enhancer regulatory regions. We identify a novel specific motif (CA/gTTT) for 

NH that is present in one-third of its target genomic regions. NH is binding to the 

regulatory region of 1363 genes and 17 miRNAs that are mainly involved in cell death, 

survival, cell cycle and leukemia development.  

3. NUP98-HOXA9 directly activates the expression of the complex MEIS1-HOXA9-PBX3 by 

interacting with its respective enhancers and it constitutes one of the pathogenic 

mechanisms induced by the fusion protein. The disruption of this complex with the HXR9 

peptide in human hematopoietic progenitors that express NUP98-HOXA9 has a direct 

effect on cell viability. This results led us to propose the MEIS1-HOXA9-PBX3 axis as a 

good therapeutic target to evaluate in patients with the t(7;11)(p15,p15).  

4. Analyzing the role of each moiety of the fusion protein, we found that one-third of the NH 

target genes are common to HOXA9 wt, which confirms the importance of the homeobox 

domain in the ability to interact with the DNA. We also propose a function in 

hematological differentiation for the nucleoporin NUP98, since we identified 17 DNA 

binding sites and all of them appeared to play a direct role in hematopoiesis or 

leukemogenesis. In addition, its overexpression in hHP activates the expression of genes 

directly involved in AML development and induces cell proliferation. Therefore, these 

results also suggest an oncogenic role for NUP98 in hematological malignancies  

5. Gene expression analysis in human cellular models and primary samples suggests an 

activator-repressor role to NUP98-HOXA9 in the transcriptional regulation that is 

determined by its interaction with both p300 (transcriptional activator) and HDAC1 

(transcriptional inhibitor).  



114 

 

6. The repressing transcriptional activity carried by NH with collaboration of HDAC proteins 

clearly make those cells that harbor the fusion gene extremely sensitive to the treatment 

with the pan-HDAC inhibitor LBH589 (Panobinostat). We found that the inhibitory effect 

of LBS589 was much higher in the cellular model expressing NH than in other leukemic 

models for which the sensitivity to this drug has already been demonstrated.  Thus, we 

strongly proposed that HDAC inhibitors, alone, or in combination with other 

chemotherapeutic agents, must be tested in NH driven AML patients. 

7. Mass Spectrometry allowed us to identify and compare a huge number of novel binding-

proteins of NH, HOXA9 and NUP98. These results confirmed that NH is not only an 

aberrant transcription factor, but that their ability to interact with many other proteins 

enable to expand its leukemogenic potential to achieve the high degree of malignancy 

that characterizes it.  However, the features and architecture of these identified 

interactions need to be further explored. 

8. Taking together, all data indicate that the leukemogenic process induced by fusion gene 

NUP98-HOXA9 involves several molecular mechanisms: direct and indirect gene 

regulation via enhancers, epigenetic modifications and a novel network of protein 

interaction. This profoundly aberrant landscape induced by the translocation may be 

responsible of the complex biology of the leukemic hematopoietic progenitor and 

probably explain the lack of response to the current treatments available for this disease. 
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Supplementary Tables 
 
Table S1: NUP98-HOXA9 target genes identified by ChIP-seq (see data on CD-room) 
 
Table S2: Co-occurrences of HOXA9-MEIS1-PBX binding motif in the DNA target sequences of NH 
(FIMO results) (see data on CD-room) 
 
Table S3: HOXA9 target genes identified by ChIP-seq (see data on CD-room) 
 
Table S4: NUP98 target genes identified by ChIP-seq (see data on CD-room) 
 
Table S5: Expression arrays in cellular models (see data on CD-room) 
 
Table S6: Expression arrays in patients (see data on CD-room) 
 
Table S7: Interacting-proteins indentify by Mass spectrometry assay 
 

A. ONLY Nup98-Hoxa9 INTERACTING-PROTEINS  

CCR4-NOT transcription complex subunit 1  CNOT1 
Isoform 2 of CCR4-NOT transcription complex subunit 1  CNOT1 
CCR4-NOT transcription complex subunit 3  CNOT3 
Nuclear RNA export factor 1  NXF1 

Isoform 2 of CCR4-NOT transcription complex subunit 10  CNOT10 

Cell differentiation protein RCD1 homolog  RQCD1 
Isoform 2 of CCR4-NOT transcription complex subunit 7  CNOT7 
CCR4-NOT transcription complex subunit 11  CNOT11 

Isoform 3 of RalBP1-associated Eps domain-containing protein 1  REPS1 
DNA repair protein XRCC1  XRCC1 

AP-1 complex subunit beta-1 (Fragment)  AP1B1 

AT-rich interactive domain-containing protein 1A  ARID1A 

Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha  PIK3C2A 
Isoform 2 of Remodeling and spacing factor 1  RSF1 
Cytoplasmic FMR1-interacting protein 1  CYFIP1 
Chromodomain-helicase-DNA-binding protein 4  CHD4 
Isoform 10 of Abl interactor 1  ABI1 
Uncharacterized protein C10orf88  C10orf88 
BMP-2-inducible protein kinase  BMP2K 
Nck-associated protein 1  NCKAP1 
NTF2-related export protein 1  NXT1 
Metastasis-associated protein MTA2  MTA2 
Abl interactor 2 (Fragment)  ABI2 
Protein Dr1  DR1 
Cyclin-G-associated kinase  GAK 
CCR4-NOT transcription complex subunit 8  CNOT8 

Isoform 2 of Adaptin ear-binding coat-associated protein 1  NECAP1 

Double-stranded RNA-binding protein Staufen homolog 2  STAU2 
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Prefoldin subunit 6  PFDN6 
Zinc finger transcription factor Trps1 (Fragment)  TRPS1 
Protein numb homolog (Fragment)  NUMB 

CCR4-NOT transcription complex subunit 6-like (Fragment)  CNOT6L 
Lon protease homolog, mitochondrial  LONP1 
SWI/SNF-related matrix-associated actin-dependent regulator of chromatin 
subfamily D member 2  

SMARCD2 

UBX domain-containing protein 7  UBXN7 
F-box/SPRY domain-containing protein 1  FBXO45 
Pre-B-cell leukemia transcription factor 2  PBX2 

Nucleolar and coiled-body phosphoprotein  NOLC1 
Cyclic AMP-dependent transcription factor ATF-6 alpha  ATF6 
 

 

 

B. ONLY Hoxa9 INTERACTING-PROTEINS  

WD repeat-containing protein 6  WDR6 

Translational activator GCN1  GCN1L1 

Pentatricopeptide repeat domain-containing protein 3, mitochondrial  PTCD3 

Casein kinase II subunit alpha'  CSNK2A2 

DNA-directed RNA polymerase II subunit RPB3  POLR2C 

28S ribosomal protein S6, mitochondrial  MRPS6 

Thymidine kinase  TK1 

Isoform 2 of WD repeat-containing protein 47  WDR47 

DDB1- and CUL4-associated factor 10  DCAF10 

Thymidine kinase, cytosolic  TK1 

Anaphase-promoting complex subunit 1  ANAPC1 

Probable cytosolic iron-sulfur protein assembly protein CIAO1  CIAO1 

Ubiquitin-conjugating enzyme E2 O  UBE2O 

Ribonuclease P protein subunit p30  RPP30 

WD repeat domain phosphoinositide-interacting protein 3  WDR45B 

Mitogen-activated protein kinase 1  MAPK1 

Growth factor receptor-bound protein 2  GRB2 

H/ACA ribonucleoprotein complex non-core subunit NAF1  NAF1 

Paraneoplastic antigen Ma2  PNMA2 

28S ribosomal protein S2, mitochondrial  MRPS2 

Myc-associated zinc finger protein (Fragment)  MAZ 

Transmembrane emp24 domain-containing protein 5  TMED5 

Leucine-rich repeat-containing protein 1  LRRC1 

RNA methyltransferase-like protein 1  RNMTL1 

Schlafen family member 11  SLFN11 

Protein SMG5  SMG5 

2-oxoisovalerate dehydrogenase subunit beta, mitochondrial  BCKDHB 
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E3 ubiquitin-protein ligase HERC2  HERC2 

rRNA 2'-O-methyltransferase fibrillarin  FBL 

Nucleolar protein 56  NOP56 

Isochorismatase domain-containing protein 2, mitochondrial (Fragment)  ISOC2 

28S ribosomal protein S24, mitochondrial  MRPS24 

Isoform 3 of FAD synthase  FLAD1 

Probable serine carboxypeptidase CPVL  CPVL 

CDKN2A-interacting protein  CDKN2AIP 

HIG1 domain family member 1A, mitochondrial  HIGD1A 

GTP-binding protein 1  GTPBP1 

Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit STT3A  STT3A 

Tripartite motif-containing protein 26 (Fragment)  TRIM26 

28S ribosomal protein S9, mitochondrial  MRPS9 

Transmembrane emp24 domain-containing protein 1  TMED1 

Interferon-inducible double stranded RNA-dependent protein kinase activator A  PRKRA 

Peptidyl-prolyl cis-trans isomerase-like 4  PPIL4 

Nucleolar complex protein 2 homolog  NOC2L 

Nucleolar MIF4G domain-containing protein 1  NOM1 

Microsomal glutathione S-transferase 3  MGST3 

Isoform 3 of Protein spinster homolog 1  SPNS1 

Lysine-rich nucleolar protein 1 (Fragment)  KNOP1 

Probable ATP-dependent RNA helicase DDX41  DDX41 

Isoform 2 of ATP-dependent RNA helicase DDX54  DDX54 

Isoform 2 of Acidic leucine-rich nuclear phosphoprotein 32 family member B  ANP32B 

ATP-dependent RNA helicase DDX55  DDX55 

RISC-loading complex subunit TARBP2 (Fragment)  TARBP2 

Casein kinase I isoform alpha (Fragment)  CSNK1A1 

Isoform 2 of Replication factor C subunit 5  RFC5 

Serine palmitoyltransferase 1  SPTLC1 

Coatomer subunit gamma-2  COPG2 

Isoform 2 of Histone deacetylase 6  HDAC6 

Isoform 3 of PCI domain-containing protein 2]  PCID2 

Isoform 2 of RNA-binding protein 28  RBM28 

2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial (Fragment)  BCKDHA 

Isoform 2 of Anaphase-promoting complex subunit 7  ANAPC7 

Protein FAM91A1  FAM91A1 

Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1  PLOD1 

Serine/threonine-protein kinase A-Raf  ARAF 

28S ribosomal protein S18c, mitochondrial  MRPS18C 

STAGA complex 65 subunit gamma  SUPT7L 

Protein phosphatase 1 regulatory subunit 3D  PPP1R3D 

Mediator of RNA polymerase II transcription subunit 8  MED8 

Isoform C of Isocitrate dehydrogenase [NAD] subunit beta, mitochondrial  IDH3B 
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Protein phosphatase 1F  PPM1F 

General transcription factor 3C polypeptide 5  GTF3C5 

Isoform 2 of ATPase WRNIP1  WRNIP1 

Protein zer-1 homolog  ZER1 

SART3 protein  SART3 

DNA-directed RNA polymerase I subunit RPA2  POLR1B 

Nischarin  NISCH 

Anaphase-promoting complex subunit 10 (Fragment)  ANAPC10 

Mediator of RNA polymerase II transcription subunit 15  MED15 

Syntaxin-17  STX17 

Casein kinase I isoform epsilon  CSNK1E 

Isoform 4 of Interleukin-1 receptor-associated kinase 1  IRAK1 

Ubiquitin carboxyl-terminal hydrolase 10  USP10 

Polynucleotide 5'-hydroxyl-kinase NOL9  NOL9 

Isoform 4 of Elongator complex protein 2  ELP2 

Rab3 GTPase-activating protein non-catalytic subunit  RAB3GAP2 

DNA-directed RNA polymerase II subunit RPB1  POLR2A 

Mediator of RNA polymerase II transcription subunit 14  MED14 

Dehydrogenase/reductase SDR family member 7B (Fragment)  DHRS7B 

Target of rapamycin complex subunit LST8  MLST8 

C-terminal-binding protein 1 (Fragment)  CTBP1 

Acyl-coenzyme A thioesterase 8 (Fragment)  ACOT8 

Isoform 3 of RNA-binding protein Musashi homolog 2  MSI2 

Ferritin  FTH1 

Transcription initiation factor IIA subunit 2  GTF2A2 

Proteasome activator complex subunit 3 (Fragment)  PSME3 

Cell division cycle protein 27 homolog (Fragment)  CDC27 

FKBP8 isoform 1  FKBP8 

Isoform 2 of Ras suppressor protein 1  RSU1 

N-alpha-acetyltransferase 30 (Fragment)  NAA30 

Isoform 3 of 28S ribosomal protein S11, mitochondrial  MRPS11 

BRCA1-A complex subunit RAP80 (Fragment)  UIMC1 

Cysteine desulfurase, mitochondrial (Fragment)  NFS1 

E3 ubiquitin-protein ligase TRIM32 (Fragment)  TRIM32 

Myelin expression factor 2 (Fragment)  MYEF2 

Inositol polyphosphate 5-phosphatase K (Fragment)  INPP5K 

Isoform 2 of TBC1 domain family member 10B  TBC1D10B 

Isoform 2 of Zinc finger CCHC domain-containing protein 10  ZCCHC10 

Striatin-4 (Fragment)  STRN4 

Zinc finger protein 658B  ZNF658B 

60S ribosomal protein L7-like 1  RPL7L1 

Nuclear pore complex protein Nup205  NUP205 

AP-3 complex subunit beta-2 (Fragment  AP3B2 
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mRNA turnover protein 4 homolog  MRTO4 

Alpha-2-macroglobulin receptor-associated protein  LRPAP1 

Protein FAM203B  FAM203B 

ATPase family AAA domain-containing protein 1  ATAD1 

Isoform 2 of 28S ribosomal protein S5, mitochondrial  MRPS5 

Protein THEM6  THEM6 

Isoform 2 of Probable ATP-dependent RNA helicase DDX47  DDX47 

Copine-1  CPNE1 

Protein CMSS1 (Fragment)  CMSS1 

Mannose-1-phosphate guanyltransferase beta  GMPPB 

Four and a half LIM domains protein 3  FHL3 

Copine-3  CPNE3 

Mannose-1-phosphate guanyltransferase alpha  GMPPA 

Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial  SDHB 

Sorting and assembly machinery component 50 homolog  SAMM50 

S1 RNA-binding domain-containing protein 1  SRBD1 

Isoform 2 of Transcription elongation factor SPT5  SUPT5H 

Lysophosphatidylcholine acyltransferase 1  LPCAT1 

Leucine-rich repeat-containing G-protein-coupled receptor 6 (Fragment)  LGR6 

E3 ubiquitin-protein ligase TRIM56  TRIM56 

NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial  NDUFV1 

Isoform 2 of Interferon-induced, double-stranded RNA-activated protein  EIF2AK2 

WD repeat-containing protein 75  WDR75 

Fanconi anemia group I protein  FANCI 

Tetratricopeptide repeat protein 27  TTC27 

Leucine-rich repeat-containing protein 47  LRRC47 

Isoform 2 of Pre-mRNA-processing factor 6  PRPF6 

E3 ubiquitin-protein ligase HECTD3  HECTD3 

Genetic suppressor element 1 (Fragment)  GSE1 

Intraflagellar transport protein 81 homolog (Fragment)  IFT81 

Ubiquitin-protein ligase E3C  UBE3C 

Isoform 3 of Ribonuclease 3  DROSHA 

Helicase SKI2W  SKIV2L 

Isoform 3 of Protein VPRBP  VPRBP 

Isoform 2 of Nucleoporin NUP188 homolog  NUP188 

Mediator of RNA polymerase II transcription subunit 1  MED1 
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C. ONLY Nup98 INTERACTING-PROTEINS 

MOB kinase activator 2  MOB2 
Cold-inducible RNA-binding protein  CIRBP 
Arf-GAP with coiled-coil, ANK repeat and PH domain-containing protein 2  ACAP2 
Isoform 3 of CAP-Gly domain-containing linker protein 1  CLIP1 
Crk-like protein  CRKL 
Survival of motor neuron-related-splicing factor 30  SMNDC1 
Isoform B of Peptidyl-prolyl cis-trans isomerase E  PPIE 
Bystin  BYSL 
Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase 
complex, mitochondrial  

DLAT 

Methylcytosine dioxygenase TET2  TET2 
Eukaryotic translation initiation factor 1A, Y-chromosomal  EIF1AY 
Isoform 3 of Dynactin subunit 3  DCTN3 
WD repeat-containing protein 5  WDR5 
Succinate-semialdehyde dehydrogenase, mitochondrial  ALDH5A1 
Peptidyl-prolyl cis-trans isomerase B  PPIB 
Splicing regulatory glutamine/lysine-rich protein 1  SREK1 
Isoform 4 of Dedicator of cytokinesis protein 7  DOCK7 
Sjoegren syndrome/scleroderma autoantigen 1  SSSCA1 
Peptidyl-prolyl cis-trans isomerase H (Fragment)  PPIH 
Isoform 2 of PEST proteolytic signal-containing nuclear protein  PCNP 
Isoform 4 of RNA-binding protein 42  RBM42 
Actin-related protein T1  ACTRT1 
La-related protein 7 (Fragment)  LARP7 
Isoform 2 of Proteasome subunit alpha type-7  PSMA7 
Actin-related protein 2/3 complex subunit 5  ARPC5 
Guanine nucleotide exchange factor for Rab-3A (Fragment)  RAB3IL1 
H/ACA ribonucleoprotein complex subunit 4  DKC1 
Brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 1  BAIAP2L1 
Anoctamin-5  ANO5 
U7 snRNA-associated Sm-like protein LSm10  LSM10 
Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1  NUCKS1 
Thioredoxin-dependent peroxide reductase, mitochondrial  PRDX3 
60S ribosomal export protein NMD3  NMD3 
SAP30-binding protein (Fragment)  SAP30BP 
Tubulin--tyrosine ligase-like protein 12  TTLL12 
Peroxisomal targeting signal 1 receptor (Fragment)  PEX5 
Protein LYRIC  MTDH 
Mammalian ependymin-related protein 1  EPDR1 
Glutaredoxin-3  GLRX3 
Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16  DHX38 
Isoform Short of Tight junction protein ZO-1  TJP1 
Rho guanine nucleotide exchange factor 10 (Fragment)  ARHGEF10 
Isoform 2 of Pre-mRNA-processing factor 40 homolog A  PRPF40A 
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D. COMMON HOXA9 and NUP98-HOXA9 INTERACTING PROTEINS  

Insulin-degrading enzyme  IDE 

Casein kinase II subunit alpha  CSNK2A1 

Isoform 7 of Protein LAP2  ERBB2IP 

Transcription factor A, mitochondrial  TFAM 

Mitogen-activated protein kinase kinase kinase kinase 4  MAP4K4 
Protein RMD5 homolog A  RMND5A 

Ribosome biogenesis protein BOP1  BOP1 

Isoform 4 of Transcription factor Sp3  SP3 

COP9 signalosome complex subunit 7a  COPS7A 

Homeobox protein Hox-A9  HOXA9 

COP9 signalosome complex subunit 4  COPS4 
Isoform 2 of Glycogen [starch] synthase, muscle  GYS1 

COP9 signalosome complex subunit 6  COPS6 

COP9 signalosome complex subunit 2  COPS2 

COP9 signalosome complex subunit 5  COPS5 

COP9 signalosome complex subunit 1  GPS1 

Isoform 2 of Armadillo repeat-containing protein 8  ARMC8 
Replication protein A 32 kDa subunit  RPA2 

Putative adenosylhomocysteinase 2  AHCYL1 

NAD-dependent protein deacetylase sirtuin-1  SIRT1 

E3 ubiquitin-protein ligase ARIH1  ARIH1 

COP9 signalosome complex subunit 8  COPS8 

Isoform 3 of Serine protease HTRA2, mitochondrial  HTRA2 
Isoform 2 of Putative adenosylhomocysteinase 3  AHCYL2 

Protein FAM98A  FAM98A 

Isoform 2 of Uncharacterized protein C18orf25  C18orf25 

Replication protein A 14 kDa subunit  RPA3 

Homeobox protein Hox-D9  HOXD9 

Muskelin  MKLN1 
Importin subunit alpha-3  KPNA3 

Isoform GN-1 of Glycogenin-1  GYG1 

Cleavage and polyadenylation-specificity factor subunit 7 (Fragment)  CPSF7 

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin 
subfamily A member 5  SMARCA5 
Molybdopterin molybdenumtransferase  GPHN 

RNA-binding protein 27  RBM27 

Intraflagellar transport protein 46 homolog (Fragment)  IFT46 

Mov10, Moloney leukemia virus 10, homolog (Mouse), isoform CRA_a  MOV10 

Macrophage erythroblast attacher  MAEA 

Isoform 2 of COP9 signalosome complex subunit 7b  COPS7B 
Structural maintenance of chromosomes protein 3  SMC3 

High mobility group protein HMG-I/HMG-Y  HMGA1 

E3 ubiquitin-protein ligase RAD18  RAD18 

E3 ubiquitin-protein ligase ARIH2  ARIH2 

Isoform 4 of Nucleolar and spindle-associated protein 1  NUSAP1 
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Isoform HMG-Y of High mobility group protein HMG-I/HMG-Y  HMGA1 

Isoform 6 of Cyclin-dependent kinase inhibitor 2A, isoform 4  CDKN2A 

Phosphorylated adapter RNA export protein  PHAX 

Vacuolar protein sorting-associated protein 18 homolog  VPS18 

Glucose-induced degradation protein 4 homolog  GID4 

Dr1-associated corepressor (Fragment)  DRAP1 
 

 

 

E. COMMON NUP98 and NUP98-HOXA9 INTERACTING PROTEINS  

Isoform 2 of UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 
110 kDa subunit  

OGT 

Splicing factor, suppressor of white-apricot homolog  SFSWAP 
Prefoldin subunit 5 (Fragment)  PFDN5 
Pinin  PNN 

  
  
  
  

F. COMMON HOXA9, NUP98 and NUP98-HOXA9 INTERACTING PROTEINS  

Ran-binding protein 10  RANBP10 
Histone deacetylase  HDAC2 
Histone deacetylase 1  HDAC1 
Exosome complex component CSL4  EXOSC1 
Transcription elongation factor B (SIII), polypeptide 2 (18kDa, elongin B), isoform 
CRA_b  TCEB2 
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