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Abstract
This work presents a novel approach for detection of emotions
embedded in the speech signal. The proposed approach works
at the prosodic level, and models the statistical distribution of
the prosodic features with Gaussian Mixture Models (GMM)
mean-adapted from a Universal Background Model (UBM).
This allows the use of GMM-mean supervectors, which are
classified by a Support Vector Machine (SVM). Our proposal is
compared to a popular baseline, which classifies with an SVM a
set of selected prosodic features from the whole speech signal.
In order to measure the speaker inter-variability, which is a fac-
tor of degradation in this task, speaker dependent and speaker
independent frameworks have been considered. Experiments
have been carried out under the SUSAS subcorpus, including
real and simulated emotions. Results shows that in a speaker
dependent framework our proposed approach achieves a rela-
tive improvement greater than 14% in Equal Error Rate (EER)
with respect to the baseline approach. The relative improve-
ment is greater than 17% when both approaches are combined
together by fusion with respect to the baseline.
Index Terms: emotion recognition, speaker inter-variability,
supervectors, SVMs

1. Introduction
Emotion recognition from the speech signal is an increasingly
interesting task in human-machine interaction, with diverse ap-
plications in the speech technologies field such as call centres,
intelligent auto-mobile systems, speaker intra-variability com-
pensation or entertainment industry [1]. Emotion recognition is
generally stated as a multiclass classification problem, where a
given speech utterance is classified among n emotions (classes).
However, it is of interest to detect a given emotion in a speech
segment, which justifies the use of a verification or detection
approach described as follows: given a speech utterance and a
target emotional state e from the whole n emotions set, the ob-
jective is to determine whether the dominant emotion that affect
the speaker in the utterance is e or not. Thus, emotion detec-
tion is essentially a two-class problem, where the target class is
true when e is the dominant emotion in the test utterance and
the non-target class is true when it is not. The standard archi-
tecture in such scheme is to compute a similarity measure (a
score) among an emotion model of e and the emotion in the test
utteranace, which will be further compared to a threshold for
detection.

Recognizing emotions from speech is essentially motivated
from their nature: affective states caused by subjective judge-
ments, memories and sensations frequently accompanied of
physical and psychological changes of the well-being sensa-
tion. Thus humans can recognize emotions by the study of those
changes of the neutral states, including the semantic level of the
speech, non usual behaviours and decisions, as well as other not

so high cognitive levels, commonly more capable to be learned
by machines [2].

Unluckily, emotion recognition from speech is a difficult
task, mainly because of two reasons. First, emotions does not
manifest in the same way in different speakers, and therefore,
inter-variability of speakers seriously affects the recognition
process. Second, it is difficult to define the target emotions set
because the limits among different emotions may not be clear
for listeners in general, and several emotions from the consid-
ered set can be simultaneously in the same utterance, or even
at the same moment in time. Despite the difficulty of the chal-
lenge, the research in the area has experimented an increase in
the last years, which has motivated the availability of emotional
labeled speech corpora. Most popular ones are FAU AIBO
Emotion Corpus [3], SUSAS, EMO-DB, ISL meeting corpus,
Danish Emotional Speech Database [4] and recently Ahumada
III [5].

In this work, we present a novel method for emotions detec-
tion based on Gaussian Mixture Models (GMM) of short-term
prosodic features, whose supervectors are further classified with
Support Vector Machines (SVM). Moreover, we present results
of the fusion of the proposed system with a baseline, based on
a popular approach of modelling utterance-level prosodic fea-
tures with SVM. We show that the proposed approach, namely
prosodic SVM-GMM, models distances among complete join
probability distributions of the prosodic features, and not only
with some significant values, as happen with the baseline sys-
tem. Moreover, the fusion of both systems significantly im-
proves the performance of proposed approach, which indicates
uncorrelated information among both methods. We evaluate
the proposed system in a speaker-dependent and a speaker-
independent scenario. Experiments are presented using the
SUSAS database [6].

This work is organised as follows. The role of prosody and
the proposed prosodic parametrization is described in Section
2. In Section 3, the proposed system is described in detail, as
well as the baseline and the approach for fusion of both sys-
tems. Section 4 describes the experimental work which shows
the adequacy of the approach. Finally, conclusions are drawn in
Section 5.

2. Prosodic features for emotion recogniton
Many works had shown the relation between the variation of
speaker prosody and the information of their emotional states
[7]. Therefore prosodic features are often considered as in-
put signals in many emotion recognition systems. Frequent
prosodic features are the fundamental frequency (pitch), the en-
ergy and their velocity, also known as ∆ features [8].

The proposed GMM-SVM approach in this work uses a
prosodic feature extraction scheme in the following way: the
audio signal is windowed every 10ms using a 40ms Hamming
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window. For every window, energy and log pitch values are ex-
tracted (Fig.1) using Praat [9] toolbox. In vocal segments, ve-
locity information is obtained as a difference between two con-
secutive windows. Using a voice activity detector (VAD), non-
voiced segments are erased by accepting only those windows
with pitch and energy values higher than a threshold. As a con-
sequence, for every utterance u, the feature vector set consist
of a set of d = 4 dimensional feature vectors, or streams ( en-
ergy, pitch and their ∆ features). It is possible to normalize each
stream by subtracting its mean value. Energy and delta-energy
normalization have been applied to the proposed GMM-SVM
approach while only energy normalization for the baseline.

Figure 1: Block diagram of the prosodic feature extraction mod-
ule.

3. A prosodic GMM-SVM approach for
emotion detection

This section details the novel prosodic GMM-SVM system pro-
posed in this paper, the baseline modelling scheme and the fu-
sion approach for combining information from both systems.

3.1. Proposed approach

SVM-GMM supervectors have been previously used for emo-
tion recognition at the spectral level of the speech in [10]. This
technique also shows an excellent performance in speaker and
language recognition. The main advantage of this proposed
technique is that it is capable to summarize the whole probabil-
ity density function (pdf ) of the feature vectors in utterance u,
into a single high-dimensionality vector known as a GMM su-
pervector. This supervector is obtained by the concatenation of
the vectors of means of a d-dimensional GMM model obtained
from all the d-dimensional prosodic vectors in the utterance (
Figure 2 ). The M -mixture GMM, is calculated as a Maximum
a Posteriori Adaptation (MAP) from a Universal background
Model (UBM), which is an standard M -mixtures GMM model,
trained with a large amount of development data from all the
emotional states available. Thus, the UBM aims at representing
the emotion-independent statistical distribution of the features.

The GMM supervector can be considered as a kernel func-
tion sv(u) that maps the prosodic features of u in a high-
dimensional vector of size L′ = M ∗ d. This L′-dimensional
supervector space is where an SVM is used to obtain a final
model ~we of the target emotion e. In this case the scoring func-
tion s′(we, sv(utest)) for every testing utterance utest is de-
fined as follows

s′( ~we, ~sv(utest)) = ~we ∗ ~sv(utest)
T

Figure 2: Block diagram of the GMM Supervector based SVM.

3.2. Baseline approach

The baseline system is based on a popular scheme presented
in [8]. For every utterance u, the statistical distribution of the
prosodic vectors is characterized by computing n = 9 values
for each one of the prosodic streams (table 1). Thus, we obtain
a L = d ∗ n fixed-length feature vector per utterance. This
new derived L-dimensional feature space is where emotions are
modeled by using a one-versus-all linear SVM (Figure 3. Note
that this L-dimensional feature vector can be seen as the result
of a kernel function l(u), that maps the d-dimensional prosodic
vectors of u into a L-dimensional feature space.

Figure 3: Block diagram of the Baseline Classifier.

Given an SVM model ~we of an emotion e, the scoring func-
tion s(~w, ~l(u)) for every test utterance utest is a simple dot
product computed as follows:

s( ~we, ~l(utest)) = ~we ∗ ~l(utest)
T

Table 1: Statistical coefficients extracted for every prosodic
stream in the Baseline approach.

Coefficients
Maximum
Minimum

Mean
Standard deviation

Median
First quartile
Third quartile

Skewness
Kurtosis

On the one hand, the similarities between the proposed
prosodic GMM-SVM system and the baseline are: i) Previous
d-dimensional prosodic features vectors are used as inputs, ii)
The modeling of their long-term statistical distribution (pdf )
of the vectors in u by using linear SVMs and iii) Both cases
are an attempt to characterize pdf . Nevertheless, the method
used to characterize pdf ’s differs between both presented sub-
system. As a consequence, not only performances differ, also
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uncorrelated scores are generated. This fact motivates a poste-
rior subsystem fusion in order to increase the final performance
achieved. On the other hand, the baseline only uses a small set
of well performing values to characterize the pdf of the vectors
in every u, but probably they are not seizing the whole informa-
tion embedded in it. Note for example that the baseline subsys-
tem compute the n statistical values stream by stream, not using
the correlated information among them.

3.3. Subsystem fusion

Final scores generated by the system are combinations of
s′( ~we, sv(utest)) and s( ~we, sv(utest)). Combination is per-
formed as a sum fusion preceded of a test normalization (Tnorm
[ref]) stage, which fosters a similar range of the scores of both
subsystems. Tnrom cohort is form by the whole set of emotions
models we, for e = 1...Nemotions. The final combined score
S( ~we, utest) is computed as follows

S( ~we, utest) =
s′( ~we, sv(utest))− µ′

std′
+

s( ~we, sv(utest))− µ

std

Where µ′ and µ are the means of the cohort scores, and std′

and std the standard deviations. Referred to the Proposed and
Baseline systems respectively.

4. Experiments
4.1. SUSAS: emotional speech database

The proposed emotion recognition system has been tested over
the English SUSAS database ( Speech Under Simulated And
Actual Stress ). SUSAS has been employed frequently in the
study of the effects of speech production and recognition, when
speaking under stressed conditions [8]. This database was de-
signed originally by John H.L. Hansen, et al. in 1998 for speech
recognition under stress. All speech files from SUSAS database
were sampled at 8kHz, and 16-bit integers. SUSAS Simulated
subcorpora contains speech from 9 speakers and 11 speaking
styles. They include 7 simulated styles (slow, fast, soft,
question, clear enunciation, angry) and four other styles
under different workload conditions (high, cond70, cond50,
moderate). SUSAS Actual speech contains speech from 11
speakers, and 5 different and real stress conditions (neutral,
medst, hist, freefall, scream). Actual and Simulated sub-
corpora contains 35 spoken words with 2 realisation of each,
for every speaker and speaking style. The SUSAS database has
been selected for the following reasons: i) presents a large set
of target emotions; ii) allows comparisons with previous work
in the literature; iii) speaker IDs are available; and iv) there
exist simulated and actual emotional states. These two last sub-
corpora, namely Simulated and Actual, have characteristics dif-
ferent enough to consider them as different databases.

4.2. Results

Speaker inter-variability can cause that different emotions and
different speakers may be located in the same region in the fea-
ture space. This drawback can be compensated by using speaker
independent emotion models. To compare the performance im-
provement between both scenarios, we carried out speaker de-
pendent and speaker independent experiments. Experiments are
performed for both SUSAS subcorporas, Simulated and Actual.
Both subcorpus have been divided in three non-overlapped sets
with equivalent amount of data: training set, testing set, and a
development set used for UBM training.

Any model we(spk) or w′e(spk), for the baseline and the
proposed prosodic GMM-SVM subsystems respectively, will
be denoted as we(spk) for simplicity. Performance results will
be measured in terms of equal error rate (EER), which is a pop-
ular performance measure for any detection task.

4.2.1. Speaker Independent Experiments

For detection of target emotion e, every model we is trained us-
ing data belonging to e as the target class, and any other emotion
as the non-target class. Therefore we will obtain 11 emotion
models for Simulated speech and 5 models for Actual speech.
In order to obtain results not affected by speaker overfitting,
training, testing, and development sets, each experimental sub-
set of SUSAS will be built with different speakers.

Table 2: EER(%) in Speaker Independent experiments for
SUSAS Simulated speech. R.I. denotes the relative improvement
of Combine in respect of Baseline.

Emotion Baseline Proposed Combined R.I. %
angry 18.16 20.47 16.73 +7.87
clear 42.68 31.04 31.99 +25.05

cond50 40.76 39.84 38.22 +6.23
cond70 42.28 40.21 40.43 +4.37

fast 24.31 27.23 20.63 +15.13
lombard 51.24 42.06 42.55 +16.96

loud 23.03 24.57 21.03 +8.68
neutral 36.29 35.33 34.38 +5.26

question 12.44 4.38 4.38 +64.79
slow 19.60 26.10 22.46 -14.59
soft 20.65 38.19 22.26 -7.79

Avg. EER 30.13 29.94 26.82 +10.37

Table 3: EER(%) in Speaker Independent experiments for
SUSAS Actual speech.

Emotion Baseline Proposed Combined R.I. %
neutral 35.12 34.61 33.31 +5.15
medst 40.99 42.21 41.51 -1.26
hist 36.82 38.97 35.75 +2.9

freefall 25.07 54.75 31.29 -24.81
scream 6.46 11.68 7.6 -17.64

Avg. EER 28.89 36.04 29.78 -3.08

Results in tables 2 and 3 shows better performance for Ac-
tual subcorpus than for Simulated one. This fact is probably
cuased by the less number of target classes, which makes the
performance of the detection of a target emotion with respect to
the rest easier. Also note that the EER for similar classes such
as cond50, cond70 and lombard is higher than for other more
differentiable emotions such as question and angry. This em-
phasizes the strong dependence of the performance on the emo-
tion set.

4.2.2. Speaker Dependent Experiments

For a speaker spk and a target emotion e, every model we(spk)
is trained using all the utterances belonging to simultaneously
spk and e for the target model. Non-target model is trained in
this scenario using data from all speakers and emotions except
those included in the target model training set.

1973



Table 4: EER(%) in Speaker Dependent experiments for SUSAS
Simulated speech.

Emotion Baseline Proposed Combined R.I. %
angry 11.07 12.00 9.04 +18.33
clear 37.51 26.31 26.34 +29.77

cond50 37.40 33.61 32.38 +13.42
cond70 37.17 33.52 33.14 +10.84

fast 20.18 19.71 15.62 +22.59
lombard 31.14 29.02 26.63 +14.48

loud 15.56 11.27 10.17 +34.64
neutral 32.22 27.31 26.04 +19.18

question 5.80 3.19 1.98 +65.86
slow 16.66 15.08 13.17 +20.94
soft 10.13 15.67 10.18 -0.49

Avg. EER 23.16 19.70 18.60 +19.68

Table 5: EER(%) in Speaker Dependent experiments for SUSAS
Actual speech.

Emotion Baseline Proposed Combined R.I. %
neutral 18.23 17.21 15.23 +16.45
medst 27.06 24.29 22.79 +15.77
hist 23.35 21.53 19.85 +14.98

freefall 25.40 19.27 20.97 +17.44
scream 8.31 5.72 5.72 +31.16

Avg. EER 20.47 17.60 16.91 +17.39

Results in tables 4 and 5 shows that by combining indi-
vidual classifiers in a speaker dependent framework, we can
achieve better performance than for any of them separately. Rel-
ative improvements of the combined approach respect to the
baseline are about 17.4% or 19.7% in Actual and Simulated
speech respectively. Table 6 also shows that class overlapping
is remarkable reduced between speaker dependent and indepen-
dent schemes. Note that the Combined system achieves a rela-
tive improvement about 30.64% when it is evaluated in Actual
subcorpus. Relative improvement is about 43.21% for Simu-
lated subcorpus.

5. Conclusions
This work introduces a novel approach for emotion recogni-
tion using prosodic features. The porposed approaches mod-
els the statistical distribution of short-term pitch, energy and
their velocities by a GMM, and the a SVM classification of in
the mean-supervector space of the models gives the final score
for detection. We compare this prosodic GMM-SVM system
with a baseline implementing a popular approach also at the
prosodic level. Moreover, we explore a combination (fusion)
approach with a baseline system, which further increases per-
formance. The task is presented as a verification or detection
problem measured in terms of EER. The experimental set-up
is based on two subcorpus of the SUSAS database, as well as
in two different experimental frameworks: speaker-independent
and speaker-dependent. According to results we conclude that
the proposed approach achieved equal or better results than the
baseline. Remarkably enough, the fusion of both approaches in
a speaker-dependent framework yields performance improve-
ments by a factor of 17.4% or 19.7% respectively for Actual
and Simulated subcorpus. We also conclude that by removing

Table 6: Comparation between speaker independent and
speaker dependent experiments

Subcorpus Approach Spk. Ind. Spk. Dep. R.I.%

Actual
Baseline 30.13 23.16 +23.13
Proposed 29.94 19.70 +34.20
Combined 26.82 18.60 +30.64

Simulated
Baseline 28.89 20.47 +29.14
Proposed 36.04 17.0 +52.83
Combined 29.78 16.91 +43.21

speaker inter-variability the system performance significantly
improves. The relative improvement is about 30.64% when it is
evaluated in Actual subcorpus and about 43.21% for Simulated
subcorpus.

The use of new improved configurations for pitch continu-
ous estimation will be addressed in future work as well as the
combination of prosodic and acoustic level of features.
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