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Abstract
State-of-the-art language recognition systems usually com-

bine multiple acoustic and phonotactic subsystems. The out-
puts of those systems are usually fused in different ways but the
score from a trial is always obtained from N scores from N sub-
systems. In this paper, a robust novel approach to subsystem
fusion in language recognition is proposed based on the relative
performance of each trial not just to the claimed model but to all
available models. The proposed technique exploits the relative
behavior of a given speech utterance over the cohort of anchor
models from the different subsystems, resulting in the proposed
anchor-model fusion. Experiments fusing seven phone-SVM
subsystems submitted by the authors to NIST LRE 2007 assess
the robustness to non-uniform data availability over rule-based
and trained fusion schemes as linear kernel SVM, as well as sig-
nificant improvements in performance both in average EER and
Cavg as used in NIST LRE.

1. Introduction
Language recognition research has increased in the last few
years motivated by demands such as security or human-machine
communication. In this multi-class identification problem, a
given test speech utterance spoken in an unknown language is
classified into one of n classes corresponding to n languages.
This task can be either close set (i.e all the languages are known)
or open set (i.e the utterance can be in an unknown language).
This multi-target problem can be transformed into n detection
or verification problems [1], where the test utterance is com-
pared to a given language model i and a score is generated. This
score will be greater to support that the language spoken in the
utterance is i. The subdivision of n-class language identifica-
tion into n language detection problems has been the main task
in Language Recognition Evaluations (LRE) conducted by the
National Institute of Standards and Technology (NIST) [2].

Nowadays, state-of-the-art language recognition systems
are usually combinations of many individual subsystems. This
combination allows the final system to efficiently use the com-
plementary information of every subsystem involved in order
to improve the individual performance. Such combinations are
known as fusion, and they can be divided into ruled based and
machine learning based. For a given detection task, in rule-
based fusion schemes the final detection score is a combination
of the scores coming from the individual subsystems using op-
erations such as product, sum, maximum, minimum, etc. On the
other hand, in machine learning fusion, the scores from the in-
dividual systems are seen as features to a new classifier, which
yields the final score. Machine learning schemes tend to be
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Figure 1: Schematic of n-class parallel language detection
problem. S̄xi stacks the similarities of xi over the set ofmj .

supervised, needing training data to compute the fusion param-
eters for the fusion rule or the machine learning. This training
scheme may be unique for all trials in the system or dependent
on which target language is considered for detection.

The anchor model space mapping has been suscessfully
used in speaker recognition for speaker recognition and speaker
indexing in large databases [3] [4]. This paper, however uses
anchor model space for fusion, which represent a novel, ma-
chine learning based and target-dependent, fusion scheme for
language detection. We can call it anchor model fusion (AMF).
A similar idea has already been applied in [5], but using a Gaus-
sian back-end. AMF makes use of a set of pre-trained language
models (the anchor models), which consists of all the target lan-
guage models of all the subsystems to fuse. The proposed tech-
nique exploits the relative behavior of a given speech utterance
over the cohort of anchor models from the different subsystems.
The relative behavior of one language versus the others is then
modeled by using an SVM model [6] for each one of the lan-
guages involved in the task.

In order to show the adequacy of the technique, we present
results comparing anchor-model fusion to other fusion schemes
such as sum rule or linear SVM classifiers. Reported results
are obtained over the NIST LRE 2007 protocol. They show a
33.24% and 48.51% relative improvement on Cavg , obtained
over the sum and SVM fusion schemes respectively.

This work is organized as follows. Section 2 analyzes the
motivation of this work, section 3 shows the adequacy of anchor
models for language recognition. AMF is presented in section
4. Linear kernel SVM and sum fusion techniques are detailled
in section 5. Finally, experiments and results are presented in 6.

2. Motivation
In most language recognition systems, a given speech utterance
from a given spoken language i ∈ {1, .., n} can be compared
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Figure 2: Distributions of scores in the form of box plots over 14 detection tasks against pretrained modelsmj , j ∈ {arabic, bengali,
chinese, english, farsi, german, hindustani, japanese, korean, russian, spanish, tamil, thai, vietnamese} for Tamil (a), Spanish (b) and
Vietnamese (c) utterances.

against each one of the n pre-trained target language mod-
els mj , j ∈ {1, .., n}. Each comparison, or trial, generate
a score smj ,xi . For every single utterance we can obtain a n

dimensional vector S̄xi which stacks every single smj ,xi , j ∈
{0, .., n− 1} (Fig. 1).

A probability density function (pdf) can be assigned to vec-
tors S̄x from the same language, namely pi. This pdf is deter-
mined not only by the target pre-trained modelmj of language
i (j = i), but also by the whole set of non-target language mod-
els considered by the system mj , j �= i, j ∈ {0, .., n− 1}. If
pi is different from those of other languages, it can be learned
in advance, by a model m′

j . This model is different from the
pre-trained model mj and takes as inputs the scores produced
by these pre-trained models.

Figure 2 shows the probability density functions of the
scores smj ,xi , in three different examples of target languages
i, over a set of 14 pre-trained language models mj . As scores
coming from each model mj constitutes a detection task dif-
ferent of the rest, we show 14 unidimensional pdf per target
language instead of a single 14-dimensional pdf. This exam-
ple illustrates the motivation of the proposed AMF approach.
For example, pdfs from utterances xi where i=Vietnamese (fig-
ure 2 (c)) show that, as expected, target scores where i =
j =Vietnamese tend to be higher than non-target scores where
i �= j. Moreover, scores from different pre-trained models mj

present a different behavior. For instance, for j =korean scores
tend to be higher than the obtained when j =Russian. This be-
havior can be learned by some data driven model m′

vi, whose
input data will be the scores generated by utterances xi when
i =Vietnamese.

Thus, the AMF approach assumes that the information of
the behavior of the scores over all the mj pre-trained models
from different baseline systems, namely S̄xi , should help to
improve performance over the use of a single detection score
smi,xi .

An interesting property of this space is that if data for train-
ing a language model is scarce, working with the whole set
of scores should improve robustness, as new infomation is in-
corporated about the relative behavior of language model mj

against the rest of languages in the system.

3. Anchor models for language recognition
Anchor model space projection is a function that maps each
speech utterance from the original, or source, feature space into

a new anchor model space. The dimensions of this new space
are similarity scores of each speech utterance over a previously
trained model in the cohort of anchor models. The whole co-
hort will be denoted as m = {m1 · · ·mN}. This similarity
space allows learning the behavior of the speech utterance x
with respect tom by obtaining its similarity scores vector S̄x.

The N pre-trained models in m can be generated using
techniques such as Gaussian Mixture Models (GMM), SVM,
n-grams, etc [7]. Thus, in an anchor model approach, from each
x and for a given cohort m, we can obtain a vector of similarity
scores

S̄x,m = [sx,m1
· · · sx,mN

] (1)

that stack the individual similarities of x over each one of the
models mj in m (Fig. 1). The anchor model space represents
vectors S̄x,m. Thus, a new model m′

j of the speech pattern can
be generated in the anchor model space from S̄x,m using any
data driven technique such as GMM, SVM, etc.

Therefore, the final anchor model space is defined by a co-
hort of anchor models m and its similarity functions smj

(·)
used by eachmj .

The size N of m defines the anchor model dimensionality.
IfN increases, the probability of finding a characteristic behav-
ior of the speech pattern in the anchor model space increases
too. In real speaker and language recognition systems, N is
limited by the amount of available languages and the computa-
tional complexity.

Similarity functions smj
(·) defines the distance criteria in

the anchor model space. It is common that the technique used to
build the models inm determines the similarity function to use.
For instance, GMMmodels usually use statistical similarity cri-
teria while SVM uses algebraic distances based on projections.
By using different similarity functions smj

(·) in m, different
and possibly complementary information is introduced in the
anchor model space.

4. Anchor Model Fusion (AMF)
In the proposed supervised machine learning AMF scheme, the
cohort m includes the n pre-trained language models of the n-
classes problem for each language recognition system to fuse.

S̄x,m =
h
S̄

1

x,m, · · · S̄
Nsys
x,m

i
(2)
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Figure 3: Schematic diagram of generation of features (scores)
in the anchor model space. S̄x,m stacks the similarities of xi

over the set of modelsml
j , for language j and subsystem l

.

The schematic diagram can be seen in Fig. 3. Hence, an-
chor model space dimension is N = n×Nsys. WhereNsys is
the number of subsystems.

If for the language recognition subsystem l ∈ {1, .., Nsys},
we suppose that the model ml

j in its own source space can rec-
ognize the language j with some performance rates. New mod-
elsm′

j , in the anchor model space can ideally improve the per-
formance rates of the baseline systems due to the final similar-
ity score is a combination of all similarities, including sl

mj ,xi ,
sl

m
j′

,xi ( j′ �= j) and its relation singularities. Performance
is only improved when this relation singularities differs from a
language, and from a system, to another.

Note that this scheme requires two steps for each language
model. The first one trains the modelsml

j inm, and the second
one trains the final language model m′

j in the anchor model
space.

5. Other fusion schemes for language
detection

5.1. SVM fusion

Linear-kernel SVM fusion is a supervised machine learning
based scheme, which works as follows. For a given trial, or
combination (mj vs xi) , we can obtain a vector that stacks the
Nsys scores of all the subsystems to fuse.

S̄x,mj
=

h
sx,mj ,1 · · · sx,mj ,lNsys

i
(3)

where sx,mj ,l is the similarity score of the language modelmj ,
the subsystem l over the text utterance x. Thus, we can obtain
a language-dependent fusion SVM model (w̄i, b) by labelling
target score vectors as belonging to class ω = 1 and to class
ω = −1 otherwise. Unknown vectors S̄′x,mj

are scored as:

f(S̄x,mj
) = S̄x,mj

∗ w̄i + b (4)
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Figure 4: Cavg for anchor model, sum and linear kernel SVM
fusions. Results are divided by test segment durations (a), and
detailled per language for 30 sec. test utterances (b). Brackets
show the number of utterances used to train each model.

Notice that in linear kernel SVM fusion scheme, the simi-
larity vectors depends on the given trial, and its dimensionality
is Nsys. It differs to AMF approach where similarity vectors
depend on the testing utterance. Its dimensionality is Nsys ∗ n.

5.2. Sum fusion

AMF scheme is also compared with the popular rule based sum
fusion. For each trial, the final score is the sum of all the sub-
system scores:

sx,i = sx,mj ,1 + · · ·+ sx,mj ,Nsys (5)

The main advantage of sum fusion relies in its simplicity,
since no training phase is required. However, its performance
is seriously degraded if the score range of the subsystems is
heterogeneous. Therefore some kind of score pre-normalization
is required.

6. Experiments
Experiments have been performed using the evaluation protocol
proposed by NIST in its 2007 Language Recognition Evaluation
(LRE). The database used in this evaluation consists of a signifi-
cant subcorpus provied by NIST for testing purposes. Language
recognition is evaluated as 14 different detection sub-problems,
one per language. This multi-detection task is referred to as
the general condition. Test utterances are also divided in three
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Figure 5: Results for the three fusion schemes tested: linear
kernel SVM, sum fusion and AMF. DETs are shown for english
model (m′

english) and 30 sec. test segments.

different durations, namely 30, 10, and 3 seconds of speech on
average after silence removal. Details can be found in [2].

AMF was used for fusing 7 phonetic subsystems submitted
by ATVS-UAM to NIST LRE 2007. Each subsystem works
as follows. First, speech utterances are divided into speech
and silence segments. Speech segments are recognized with an
open-loop phonetic decoder. Phonemes are extracted through
the most probable transcription. Probabilities from frequency
counts of unigrams, bigrams, and trigrams were used as input
vectors for training a linear kernel SVM classifier per target lan-
guage. These subsystems are 7 phonetic decoders from the fol-
lowing languages: English, German, French, Arabic, Basque
and Russian. Details about this phone-SVM technique can be
found in [8]. Prior to apply fusion, similarity scores of every
single subsystem were T-normalized.

Each one of the 14 language models of every phonetic sub-
system are used to built the anchor model cohort m. Therefore,
the anchor model space dimension is 14 × 7 = 98. After map-
ping each speech utterance in the anchor model space, a linear
kernel SVM classifier is used for training each language model
from vectors S̄x,m of scores. The background set for system
tuning is a subset of databases from previous NIST LRE from
years 1996, 2003 and 2005; as well as the Callfriend database1.
Linear kernel SVM fusion and sum fusion of the 7 phonetic sys-
tems were also tested in the same development data, and will
serve as baseline results for the AMF system.

Test segment duration
EERavg 30sec 10sec 03sec

Anchor Model Fusion 7.36 13.82 23.52

Sum Fusion 8.28 14.90 23.61
Linear SVM Fusion 12.66 19.40 27.73

Table 1: EER averaged over all the languages involved in LRE
07, detailed per fusion scheme and test segment duration

6.1. Results

This section present the performance measurements of the sys-
tems tested. Results are shown as Cavg , global Cavg, averaged

1Details can be found in the LDC website: www.ldc.upenn.edu.

EER, and language dependent DETs curves. A sample DET for
the english model and 30 seconds test utterances is shown in
Fig. 5.

Figure 4 (a) and table 1 shows the global performance of
the three systems tested. In all cases the anchor model fusion
outperforms the other two systems evaluated, sum and linear
kernel SVM fusion. In EERavg the relative improvement of
the AMF performance increases with the duration of the test
segment. From 0.38%, for 3 seconds segments, to 11.12% for
30 seconds related to the sum fusion. For the linear kernel SVM
the relative improvement goes from 15.18% (3 sec.) to 41.86%
(30 sec.). However, in Cavg the relative improvement of the
AMF is more notorious and constant with the duration of the
test segment. ≈ 30% related to the sum fusion, and ≈ 50%
related to the linear kernel SVM for all durations.

Figure 4 (b) details the results per language in 30 seconds
test segments. It shows that linear kernel SVM fusion is a non
efficient solution for some languages with scarce training data.
It also shows that AMF does not suffer this problem maybe be-
cause AMFmodels seize more information from each utterance.

7. Conclusions
This paper presents a novel fusion technique for a n-class recog-
nition problem such as language identification that we call An-
chor Model Fusion. This data driven technique is based on the
anchor model approach and allows to seize the relations in the
similarities among all the language models of all the systems.
AMF results outperform the other fusion techniques analyzed
(sum and linear kernel SVM fusion). Future work will analyze
an efficient pruning of the cohort of anchor models and the gen-
eration of vectors S̄x,m at the frame level.
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