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Prefacio

El propósito de esta tesis es el desarrollo de herramientas para el estudio de algunos problemas
en la intersección entre la microflúıdica y electrocinética. En esta introducción ofrecemos
una visión general de estas áreas e introducimos el problema espećıfico que vamos a estar
tratando: la evolución de gotas cargadas de soluciones iónicas.

Motivación

Las gotas electrificadas están presentes en las nubes de tormenta [20], aśı como en aplicaciones
tecnológicas como electrospray [8] (utilizado, por ejemplo, para producir pequeñas muestras
de soluciones iónicas adecuadas para espectrometŕıa, una aplicación que se mereció el Premio
Nobel de 2002 en Qúımica por J. Fenn), microencapsulación [48], impresión de chorro de
tinta [53], Propulsión por Emisión de Campo Eléctrico (FEEP por sus siglas en inglés) [68],
papel electrónico [40], chips microflúıdicos [21], [18], [29], [65], etc.

Figure 1: Papel electrónico Figure 2: Lab-on-a-chip

A fin de traducir los conceptos a dispositivos prácticos, tenemos que aprender a controlar
fluidos con gran precisión y velocidad a veces a escalas muy pequeñas. De las gotas cargadas
de ĺıquido, se sabe que se vuelven inestables cuando se cargan más allá de un número llamado
ĺımite de Rayleigh y después se desarrollan singularidades (cf. [6], [7] y [20] para resultados
experimentales y [26], [12] para simulaciones numéricas). Cuando el fluido es un conductor
perfecto y se modela bajo aproximación de Stokes, se demostró que se desarrollan puntas
cónicas en tiempo finito (ver [26], [12]). En observaciones experimentales, se producen
chorros muy rápidos y finos a partir de las puntas cónicas (ver figuras en 3). Este es un



Figure 3: Formación de jets de Rayleigh bajo la acción de un campo eléctrico externo de [7]
y comparación con las simulación numérica en [26]

hecho que no puede ser reproducido en [26], [12] bajo el supuesto de Stokes y conductores
perfectos. Para fluidos perfectos, se ha informado de chorros recientemente en [34]. Sin
embargo, para gotas muy pequeñas (del orden de los 100 µm o inferior), el número de
Reynolds puede ser muy pequeño (del orden de 10−4 o inferior), por lo que parece necesario
investigar la formación de chorros bajo aproximación de Stokes. Nuestra hipótesis es que la
conductividad eléctrica finita y la presencia de capas de Debye en soluciones electroĺıticas son
las que inducen la producción de chorros de Rayleigh. La formación de chorros de puntas
cónicas bajo la acción de campos eléctricos se encuentra en el corazón de algunas de las
aplicaciones mencionadas arriba: el electrospray se origina a partir de la desintegración de
los jets de Rayleigh en gotas, la fuerza de propulsión de los propulsores tienen lugar como una
reacción a los chorros de Rayleigh y la microencapsulación tiene lugar cuando dos chorros
coaxiales de Rayleigh se rompen en gotas (con el fluido interno encapsulado por el fluido
exterior).

Figure 4: Microencapsulación de un fluido interno por uno externo



Una visión general de la microflúıdica y electrocinética

Primero vamos a echar un vistazo sobre los contextos más generales a las que nuestro prob-
lema puede estar relacionado. En primer lugar vamos a dar una rápida visión general de la
microflúıdica (véase [65], [35] para una introducción general) que produce hoy en d́ıa miles de
publicaciones cient́ıficas y patentes cada año y representa un negocio de billones de dólares
en la electrónica y sectores médicos. Entonces, vamos a considerar más espećıficamente
el mecanismo para manipular fluidos a pequeña escala: el uso de campos eléctricos y la
respuesta del flujo electrocinético a ellos.

Microflúıdica

Una rica variedad de sistemas de microfluidos han surgido en el mundo natural a través de
millones de años de evolución y la selección natural (véase [2], [16], [52] ). Sin embargo, la
historia de la microflúıdica como un área de la actividad humana se puede medir en décadas.
Por ello no es de extrañar que dispositivos prácticos de microfluidos sean relativamente
pocos, muchas ideas, como “Lab on a chip” exista sobre todo en concepto y el más útil de
los dispositivos de microfluidos está probablemente aún por ser concebido. La microflúıdica
se refiere a dispositivos y métodos para controlar y manipular flujos de fluidos con una lon-
gitud de escala de menos de un miĺımetro. Los estudios de tales fenómenos relacionados con
fluidos han sido durante mucho tiempo parte de la componente mecánica de fluidos de la
ciencia coloidal [60] y bioloǵıa vegetal [17] y viene en muchas caracteŕısticas clásicas de la
dinámica de los flujos viscosos (por ejemplo, [39], [5],). Sin embargo, el tema ha recibido una
enorme atención reciente debido a la disponibilidad de métodos para la fabricación individual
y configuraciones de flujo integrados con escalas de longitud del orden de decenas y cientos
de micras y más pequeña (por ejemplo, [42], [64], [66]), y rápidos avances en la bioloǵıa y la
biotecnoloǵıa para manipulaciones en la escala de longitud celular (y más pequeña) y la ca-
pacidad de detectar pequeñas cantidades y manipular volúmenes muy pequeños (t́ıpicamente
menos de 1 microlitro) ofrece ventajas ([70], [44], [9]), también la búsqueda de dispositivos
portátiles económicos capaces de realizar tareas anaĺıticas simples, y el potencial uso de
microsistemas de gotas cargadas para realizar estudios fundamentales de f́ısica, qúımica y
procesos biológicos. Esta tendencia se mantiene; además, el término nanoflúıdica hace hin-
capié en el deseo de manipular flúıdos a la escala de las cadenas de ADN, otros biopoĺımeros,
y protéınas grandes. Flujos de microfluidos son fácilmente manipulados utilizando muchos
tipos de campos externos (presión, eléctricidad, magnétismo, capilaridad, y aśı). Como las
dimensiones se reducen, la importancia relativa de las fuerzas de superficie con respecto a
las de volumen aumenta. Tales manipulaciones de flujo pueden lograrse ya sea por fuerzas
aplicadas macroscópicamente, por ejemplo, en la apropiada entrada y salida, o se pueden
generar a nivel local dentro del microcanal por componentes integrados. La tabla 1 de [65]
resume las fuerzas impulsoras mencionadas con frecuencia para controlar microflujos.

Alternativamente, electrocinética ahora es estudiado en una variedad de formas para con-
trolar microflujos. Electro-ósmosis, donde el fluido se mueve en relación a fronteras cargadas
estacionarias; dielectrofóresis, que se mueve de una interfaz (a menudo una part́ıcula) en
un gradiente de campo eléctrico; y electrohumectación, donde el campo eléctrico modifica



Fuerza impulsora Subcategorización

Gradiente de Presión ∇p
Efectos de capilaridad Tension superficial γ

Térmica
Eléctrical (electrocapilaridad)

Gradientes de tensión superficial ∇γ
Qúımica
Térmica
Eléctrica
Optica

Campos Eléctricos E DC electro-osmosis
AC electro-osmosis
Dielectrofóresis

Campo Magnetico/Fuerzas de Lorentz Agitación magnetohydrodynamica
Rotación Fuerzas Centŕıfugas
Sonido Transmisión acústica

Table 1: Fuerzas y campos externos con los cuales manipular flujos en configuraciones de
microfluidos. También es posible utilizar medios externos para manipular part́ıculas inmersas
en los flujos, como en electrofóresis o el uso de fuerzas magnéticas [3]

propiedades humectantes, todos han sido explotados. Se pueden considerar campos AC y
CC, y la respuesta del sistema a continuación depende de la frecuencia y la amplitud del
campo.

Otros medios pueden ser utilizados para controlar los flujos. En particular, campos
externos pueden usarse para inducir movimiento de los objetos incrustados en el, o las paredes
del canal de fluido pueden estar distorsionados sistemáticamente: los campos magnéticos
pueden influir en los flujos directamente o manipular part́ıculas magnéticas dispersas, campos
de sonido pueden producir movimientos por transmisiones acústicas, la deformación ćıclica de
una pared puede inducir bombeo peristáltico, etc. Para cada forma de conducir movimiento
de fluido, las caracteŕısticas de la superficie del dispositivo también pueden ser explotada
para proporcionar control adicional. Por ejemplo, las caracteŕısticas geométricas, qúımicas
y mecánicas del canal y la red de canales se puede alterar o que cumpla con algún patrón,
como se resume en la tabla 2 de [65].

Electrocinética

La electrocinética se refiere a los efectos mecánicos que surgen debido al movimiento de iones
en ĺıquidos. El fluido que trabaja en los sistemas de microfluidos es normalmente agua que
contienen iones de ambos signos, debido a las moléculas disociadas de agua u otros compo-
nentes iónicos: ácidos, sales, y moléculas con grupos cargados disociables. Normalmente, un
elemento de volumen de un fluido considerado infinitesimal desde el punto de vista continuo
todav́ıa contiene un número suficientemente grande de iones de uno u otro signo para que



Geometŕıa Caracteŕısticas Qúımicas Propiedades mecánicas

Conectividad de la red Mojabilidad Materiales duros
Sección transversal del canal y curvatura Carga superficial Materiales elásticos

Topograf́ıa de la superficie Afinidad Qúımica Geles
Porosidad (e.g., en lechos de relleno) Sensibilidad de Ph/Fuerza iónica Materiales porosos

Table 2: Las consideraciones de diseño para el control de flujo y transporte en un canal
de microfluidos puede incluir la influencia de la geometŕıa, la qúımica, y caracteŕısticas
mecánicas. Además, los electrodos, la actuación de calentadores piezoeléctricos, etc se puede
incrustar en las fronteras del canal.

las fluctuaciones estad́ısticas no sean importantes y para que el elemento de fluido sea con-
siderado con carga neutra. Por lo tanto, la transferencia neta algebraica de impulso debido a
cualquier campo eléctrico ambiental también es cero (a pesar de que una corriente eléctrica
distinta de cero pueda existir en el ĺıquido debido al movimiento ordenado de estos iones).
Surgen efectos electrocinéticos cuando este balance de cargas positivas y cargas negativas
se altera debido a factores externos. Por ejemplo, en el interfase de agua de śılice, la śılice
hidratada a menudo deprotona resultando en una carga superficial neta negativa fija sobre
la superficie de la śılice. Estas cargas fijas atraen una capa de iones de signo contrario (y
repelen los iones del mismo signo) lo que resulta en la creación de una capa de fluido con
una carga neta positiva junto a la interfaz. Efectos similares se presentan en la superficie de
las grandes macromoléculas, part́ıculas coloidales o micelas surfactantes.

Vamos a describir a continuación algunos de los efectos electrocinéticos más relevantes
desde el punto de vista de la aplicaciones: electroósmosis, electrofóresis, dielectrofóresis y
electrowetting.

Electroósmosis. Cuando un electrolito es adyacente a una superficie, el estado qúımico
de la superficie es generalmente alterado, ya sea por ionización de grupos superficiales de
enlaces covalentes o por absorción de iones. El efecto neto es que la superficie hereda una
carga mientras son liberados contraiones en el ĺıquido. En el equilibrio, un balance entre las
interacciones electrostáticas y la agitación térmica se establece en una capa delgada cerca
de la sólida (la llamada capa de Debye, que será discutida profusamente en esta tesis).
Cuando un campo eléctrico se aplica a lo largo de un canal, una corriente conductora y
el correspondiente campo local E se establecen a través del ĺıquido. T́ıpicamente, la mayor
parte del ĺıquido permanece eléctricamente neutro y por lo tanto no actúa sobre él una fuerza
neta. Por el contrario, en la capa de Debye hay una densidad de carga eléctrica neta, por lo
que el campo eléctrico local que es tangente a la superficie del canal genera una body force
sobre el fluido y por lo tanto induce una fuerza de cizalla y un flujo (el flujo electroosmótico)
en el interior del canal. Por lo tanto, una fluido neutral se pone en movimiento debido al
desequilibrio local en la capa de Debye.

Electrofóresis. La electrofóresis se refiere al transporte de pequeños objetos cargados en
un fluido debido a un campo eléctrico aplicado. Un cuerpo sólido rodeado por una solución
iónica presenta una capa de Debye, que es, en general, no uniforme. La distribución de
carga en la capa cambia a lo largo de la superficie del cuerpo. Cuando se establece un



Figure 5: El fenómeno de electrowetting básico

campo eléctrico uniforme, la fuerza originada en diferentes sectores de la capa de Debye
podŕıan ser no uniformes, de modo que aparece una fuerza neta capaz de mover el cuerpo.
Muchas macromoléculas contienen grupos de carga disociables en su superficie, y por lo
tanto, adquieren espontáneamente una carga en solución acuosa. Por lo tanto, se mueven
en respuesta a un campo eléctrico aplicado, y este movimiento es la base para la separación
de macromoléculas de solución utilizando estas técnicas de bioanálisis como electrofóresis
capilar (EC), electroforesis en gel (SGE por sus siglas en inglés) y el electroenfoque (IEF por
sus siglas en inglés), en particular en los procesos de secuenciación de ADN.

Dielectrofóresis. Las part́ıculas que están sin carga pero polarizables experimentan
una fuerza en un campo eléctrico no uniforme, el movimiento resultante es conocido como
di-electrofóresis. En la dielectrofóresis a diferencia de la electrofóresis, el efecto no desa-
parece si el campo eléctrico constante se sustituye por uno oscilante. Por lo tanto, la fuerza
dielectroforética se puede ajustar con precisión por ajuste de la frecuencia.

Electrowetting. Electrowetting es esencialmente el fenómeno por el cual un campo
eléctrico puede modificar el comportamiento de humectación de una gota en contacto con
un electrodo aislado (véase la figura para un dibujo del experimento más simple de elec-
trowetting ).

Cuando se aplica un voltaje entre una gota eléctricamente conductora y un sustrato
hidrófobo o parcialmente humectable, el ángulo de contacto aparente se reduce y la gota
comienza a extenderse. Este efecto ha sido descubierto por Lippmann hace más de un siglo
[47]. Además de estas cuestiones fundamentales de la investigación básica, el fenómeno
de electrowetting es de gran interés para aplicaciones tecnológicas relacionadas con la mi-
croflúıdica, de manera más precisa, la posibilidad de manipular el movimiento y la forma de
pequeñas cantidades de ĺıquido. Una ventaja particular en comparación con otros métodos



estudiados recientemente es una mayor flexibilidad de electrowetting, no son necesarias
válvulas, bombas o incluso canales fijos.

Ejemplos importantes de las aplicaciones tecnológicas son filtros ópticos pixelados [57],
lentes adaptativos [45], [11], y recubrimiento de páneles [13]. Del mismo modo, displays de
cambio rápido -patentado por Philips recientemente (vea también [?]) -toman ventaja de
la observación de que films estables de aceite de color intercalados entre agua y aisladores
hidrofóbicos inmediatamente se contraen en gotas cuando se aplica un campo eléctrico ex-
terno.

Modelación matemática de Electrohidrodinámica

En esta sección presentamos los modelos generales de fenómenos electrocinética en los
medios fluidos (o electrohidrodinámica). Necesitan combinar ecuaciones generales para el
movimiento de los fluidos (Navier-Stokes o, cuando el número de Reynolds es pequeño, el
sistema de Stokes) con las ecuaciones para el movimiento de cargas eléctricas en un fluido
(sistema de Nernst-Planck) y la ecuación satisfecha por el campo eléctrico en presencia de
cargas eléctricas (ecuación de Poisson). Una descripción general junto con varias aproxima-
ciones puede encontrarse en [62].

En primer lugar, los fenómenos que nos interesan, tienen lugar en un medio ĺıquido. Por
lo tanto, es conveniente introducir un campo vectorial para la velocidad v⃗ junto con un
campo de presión. El fluido, normalmente un ĺıquido viscoso y uno incompresible como el
agua o glicerina, se puede modelar mediante Sistema de Navier-Stokes:

ρ0 (∂tv + v · ∇v) = −∇p+ µ∆v + Fe (1)

∇ · v = 0 (2)

que expresa el equilibrio de momento y masa. ρ0 y µ son la densidad y la viscosidad del
fluido, respectivamente. La ecuación (1) se sigue de la segunda ley de Newton bajo body

forces externas F⃗e que actúan por unidad de volumen (por ejemplo, gravedad, electricidad,
fuerza electromagnética o fuerza centŕıfuga). En nuestro caso, vamos a considerar sólo las
fuerzas de naturaleza eléctrica. Por lo tanto, Fe se puede expresar como la divergencia del
tensor de esfuerzos de Maxwell

TM,ij = ε0εr

(
EiEj −

1

2
δij |E|2

)
(3)

donde ε0εr es la permitividad dieléctrica del medio y Ej representa el componente j del
campo eléctrico. De ah́ı que

Fe,i = (TM,ij)i

Por otro lado, el campo eléctrico satisface las ecuaciones de Maxwell (cf. [37], [43]). Si
despreciamos los efectos magnéticos (las velocidades del fluido y de las cargas son mucho



menores que la velocidad de la luz), el campo eléctrico es E⃗ = −∇V donde V es el potencial
eléctrico. El potencial satisface entonces la ecuación de Poisson:

∇ · (ε0εr∇V ) = −ρ (4)

donde ρ representa la densidad de carga eléctrica.

Finalmente, las cargas eléctricas se mueven en respuesta a campos eléctricos, agitación
térmica (difusión) y el campo de velocidades del fluido. Esto se expresa en la ecuación

ji = µieziniE−Di∇ni + niv, (5)

que expresa el flujo neto de las especies cargadas i como la suma de tres flujos: el flujo
convectivo niv debido al campo de velocidades v del fluido, el flujo difusivo Di∇ni, y el
flujo electrocinético µieziniE debido al campo eléctrico. µi es la movilidad de los iones:
la velocidad adquirida por el ion cuando actúa sobre una unidad de fuerza externa. Di es
el coeficiente de difusión de la especie ith. La relación de Einstein establece que Di

mui
=

kbT , donde kb es la constante de Boltzmann y T la temperatura absoluta. En general,
podemos tener muchos tipos diferentes de especies cargadas: electrones, iones de diverso
tipo y valencia(Na+, Cl−, K+, Ca2+, etc). Por lo tanto,

ρ(x, t) =
N−1∑
i=0

ezini. (6)

donde N es el número de especies, e es la carga del electrón, ni es la concentración de la
especie i, y zi es su valencia. La continuidad de cada una de las especies cargadas conduce
al sistema de Nernst-Planck:

∂ni
∂t

+∇ · ji = 0, (7)

El sistema (1)-(7) contiene un gran número de ecuaciones y parámetros f́ısicos. Su resolución
representa entonces un enorme desaf́ıo teórico y computacional. En esta tesis, utilizaremos
la pequeñez de algunas magnitudes adimensionales en el contexto de microfluidos con el fin
de simplificar el sistema y que sea adecuado para el análisis y la simulación. En particular, el
número de Reynolds será pequeño, por lo que vamos a aproximar el sistema de Navier-Stokes
por el sistema de Stokes:

−∇p+ µ∆v + Fe = 0 (8)

∇ · v = 0 (9)

Una segunda simplificación producirá a partir del sistema de Nernst-Planck combinado con
Poisson, una ecuación diferencial parcial no lineal conocida como Ecuación de Poisson-
Boltzmann.

Descripción de la disertación

Este trabajo se divide en tres partes. En la primera parte, que corresponde al Caṕıtulo 2,
comenzamos a estudiar las condiciones f́ısicas que nos conducen más tarde un modelo para
el potencial eléctrico dentro de la gotita, la ecuación de Poisson-Bolztmann ya mencionada.



En este caṕıtulo se estudian las soluciones a la ecuación de Poisson-Boltzmann para
soluciones electroĺıticas en un dominio Ω, rodeado por un medio dieléctrico no cargado. Es-
tablecemos existencia, unicidad y regularidad de soluciones y estudiamos en detalle su com-
portamiento asintótico cerca de ∂Ω cuando una longitud caracteŕıstica, la llamada longitud
de Debye, es suficientemente pequeña. Esta es una doble capa con un espesor que cambia de
punto a punto a lo largo de ∂Ω en función de la derivada normal de una función armónica
fuera de Ω y la curvatura media de ∂Ω. También proporcionamos evidencia numérica de
los resultados basados en una aproximación de Runge-Kutta y de elementos finitos para el
problema. En la segunda parte, el caṕıtulo 3, acoplamos la electrocinética descrito por
la aproximación de Poisson-Boltzmann con el movimiento del flúıdos descrita por las ecua-
ciones de Navier-Stokes (véase [46], [19]). Nosotros hallamos que el término de fuerza en la
formulación de Stokes dado por el potencial descrito por la ecuación de Poisson-Boltzmann,
se convierte en una condición de frontera. Usando este modelo establecimos una formulación
integral formulación, el cual discretizado adecuadamente conduce a una formulación de El-
ementos de Contorno para dos tipos de ecuaciones diferenciales: Dirichlet para la condición
de frontera relacionada con el potencial y Stokes con término de fuerza cero para la velocidad
en la frontera. Una de nuestras principales motivaciones es describir los llamados Chorros de
Rayleigh. Nuestra hipótesis es que es que la conductividad eléctrica finita y la presencia de
capas de Debye en las soluciones electroĺıticas inducen la producción de chorros de Rayleigh.
En el último caṕıtulo, el Caṕıtulo 4, utilizamos armónicos esféricos y armónicos esféricos
vectoriales para el estudio de la estabilidad de una gota viscosa llena con una solución elec-
troĺıtica diluida usando un linealización de la ecuación de Poisson-Boltzmann conocida como
linealización Debye-Hückel.

Conclusiones y trabajo futuro

En el caṕıtulo 2 hemos deducido fórmulas asintóticas para la distribución de carga de una
solución iónica cerca de su interfaz con un medio externo. Nuestras principales hipótesis
fueron: 1) todas las especies iónicas están en equilibrio dinámico y 2) un parámetro adi-
mensional ε que es inversamente proporcional a las movilidades de iones se muy pequeña.
Nuestros expansiones contienen correcciones debidas a la geometŕıa de la interfaz y por lo
tanto describen posibles acumulaciones de carga en ciertas regiones de la interfaz en función
de su curvatura.

Nuestra hipótesis es que la conductividad finita implica que las cargas eléctricas no se
mueven infinitamente rápido dentro del medio ĺıquido. La finitud de la capa de Debye, im-
plica que las cargas positivas y negativas no se equilibran exactamente dentro de la gota
sino que forman una capa delgada (la llamada capa de Debye), donde hay una carga neta
diferente de cero. Mostramos en el caṕıtulo 3 que esta hipótesis se encuentra de hecho en
el corazón de la formación de chorros de Rayleigh y se puede utilizar para calcular carac-
teŕısticas principales del chorro, tales como la velocidad y el tamaño. Se encontró que la
carga cŕıtica incrementa con ε. Este hecho está de acuerdo con la observación en [20] que las
gotas de agua, que contiene siempre una cierta cantidad de iones, son capaces de mantener
una cantidad de carga un poco más grande que el ĺımite de Rayleigh.



En el caṕıtulo 4 se calcula la corrección a un resultado clásico debido a Rayleigh que
establece que una gota viscosa de un ĺıquido perfectamente conductor debe convertirse en
inestable para un valor suficientemente grande de la carga eléctrica neta contenida por la
gota, pero suponiendo ahora un ĺıquido dieléctrico con iones disueltos en lugar de un con-
ductor perfecto. Llegamos a la conclusión de que el hecho de tener una solución electroĺıtica
disminuye el valor cŕıtico del parámetro de fisibilidad de Rayleigh. Este resultado está en
contraste con el resultado obtenido en el caṕıtulo anterior, el resultado q sólo es válido para
κ pequeña (la condición de validez de la aproximación Debye-Hückel ) que corresponde a
una solución diluida, va en el dirección opuesta.

Como una aplicación, nos centraremos en futuros trabajos, en el caso de gotas de solu-
ciones iónicas sometidas a campos eléctricos externos y en cómo la movilidad finita de los
iones introduce correcciones en el comportamiento dinámico de la gota con respecto al caso ya
estudiado de movilidad infinita de iones. Nuestras fórmulas asintóticas pueden, por supuesto,
también ser aplicadas a los fenómenos electrocinéticos más generales. Otro tema interesante
para futura investigación resulta de la eliminación de la hipótesis de estacionariedad en las
distribuciones de iones (es decir, cuando la escala de tiempo para el movimiento de cargas
es comparable con la escala el tiempo para el movimiento de la interfaz fluida). En ese caso,
uno no puede trabajar directamente con la ecuación de Poisson-Boltzmann, sino utilizar el
sistema original de Nernst-Planck.



Chapter 1

Introduction

The purpose of this thesis is to develop tools to study some problems in the intersection
between microfluidics and electrokinetics. In this introduction we provide an overview of
this areas and introduce the specific problem that we will be dealing with: the evolution of
charged drops of ionic solutions.

1.1 Motivation

Electrified droplets are present in thunderstorms clouds [20] as well as in technological ap-
plications such as electrospraying [8] (used, for instance, to produce small samples of ionic
solutions suitable for spectrometry, an application that deserved the 2002 Nobel Prize in
Chemistry by J. Fenn), microencapsulation [48], ink-jet printing [53], Field Emission Elec-
tric Propulsion (FEEP) thrusters [68], Electronic paper [40], microfluidic chips [21], [18],
[29], [65], etc.

Figure 1.1: Electronic paper Figure 1.2: Lab-on-a-chip

In order to translate concepts into practical devices, we must learn to control fluids with
great precision and speed at, sometimes, ultra small scales. About charged fluid droplets,
it is known that they become unstable when charged beyond a number called the Rayleigh
limit, and then they develop singularities (cf [6], [7] and [20] for experimental results and [26],
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Figure 1.3: Formation of Rayleigh jets in drops under the action of an external electric field
from [7] and comparison with the numerical simulation in [26]

[12] for numerical simulations). When the fluid is a perfect conductor and is modeled under
Stokes approximation, it was shown that conical tips develop in finite time (see [26], [12]).
In the experimental observations, very fast and thin jets are produced from the conical tips
(see figures in 1.3). This is a fact that cannot be reproduced in [26], [12] under the Stokes
and perfect conductor assumptions. For perfect fluids, jets have been reported recently in
[34]. Nevertheless, for very small drops (of the order of 100 µm or smaller), Reynolds number
can be very small (of the order of 10−4 or smaller), so that it seems necessary to investigate
the formation of jets under Stokes approximation. Our hypothesis is that it is the finite
electric conductivity and the presence of Debye layers in electrolyte solutions what induces
the production of Rayleigh jets. The formation of jets from conical tips under the action of
electric fields lies at the heart of some of the applications mentioned above: the electrospray
originates from the breakup of Rayleigh jets into drops, the force from Propulsion thrusters
is in reaction to Rayleigh jets and the microencapsulation takes place when two coaxial
Rayleigh jets breakup into droplets (with the inner fluid encapsulated by the outer fluid).

Figure 1.4: Microencapsulation of an inner fluid by an outer fluid
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1.2 An overview of microfluidics and electrokinetics

Let us first take a look about more general contexts to which our problem can be somewhat
related. First we will provide a quick overview of the bursting area of Microfluidics (see
[65], [35] for a general introduction) which nowadays produces thousands of scientific publi-
cations and patents each year and represents a multibillion dollar business in the electronic
and medical sectors. Then, we will more specifically consider a particular mechanism to
manipulate fluids at small scale: the use of electric fields and electrokinetic response of the
flow to them.

1.2.1 Microfluidics

A rich variety of microfluidic systems have arisen in the natural world through millions
of years of evolution and natural selection (see [2], [16], [52]). However, the history of
microfluidics as an area of human endeavor can be measured in decades. It is therefore
not surprising that practical microfluidic devices are relatively few, many ideas such as the
“Lab On a Chip” exist mostly in concept and the most useful of microfluidic devices are
probably yet to be conceived. Microfluidics refers to devices and methods for controlling
and manipulating fluid flows with length scales less than a millimeter. Studies of such fluid-
related phenomena have long been part of the fluid mechanical component of colloid science
[60] and plant biology [17] and draw on many classical features of the dynamics of viscous
flows (e.g., [39], [5], ). However, the subject has received enormous recent attention because
of the availability of methods for fabricating individual and integrated flow configurations
with length scales on the order of tens and hundreds of microns and smaller (e.g. [42], [64],
[66]), and rapid developments in biology and biotechnology for which manipulations on the
cellular length scale (and below) and the ability to detect small quantities and manipulate
very small volumes (typically less than 1 microliter) offer advantages ([70], [44], [9]), also the
quest for cheap portable devices able to perform simple analytical tasks, and the potential use
of Charged droplets microsystems to perform fundamental studies of physical, chemical, and
biological processes. This trend is continuing; moreover, the term nanofluidics emphasizes
the desire to manipulate flows on the scale of DNA strands, other biopolymers, and large
proteins.

Microfluidic flows are readily manipulated using many kinds of external fields (pressure,
electric, magnetic, capillary, and so on). As dimensions shrink, the relative importance of
surface to volume forces increases. Such manipulations of flow can be achieved either by
forces applied macroscopically, e.g., at appropriate inlets and outlets, or can be generated
locally within the microchannel by integrated components. Table 1.1 from [65] summarizes
frequently mentioned driving forces for controlling microflows.

Alternatively, electrokinetics is now studied in a variety of forms for controlling mi-
croflows. Electro-osmosis, where the fluid moves relative to stationary charged boundaries;
dielectrophoresis, which moves an interface (often a particle) in a gradient of electric field;
and electrowetting, where the electric field modifies wetting properties, have all been ex-
ploited. AC and DC fields can be considered, and the system response then depends on
frequency and amplitude of the field.
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Driving force Subcategorization

Pressure gradient ∇p
Capillary effects Surface tension γ

Thermal
Electrical (electrocapillarity)
Surface tension gradients ∇γ

Chemical
Thermal
Electrical
Optical

Electric Fields E DC electro-osmosis
AC electro-osmosis
Dielectrophoresis

Magnetic field/Lorentz forces Magnetohydrodynamic stirring
Rotation Centrifugal forces
Sound Acoustic streaming

Table 1.1: Forces and external fields with which to manipulate flows in microfluidic configu-
rations. It is also possible to use external means to manipulate particles embedded in flows,
as in electrophoresis or the use of magnetic forces [3]

Other means can be used to control flows. In particular, external fields can be used to
induce motion of objects embedded in the fluid, or the channel walls can be systematically
distorted: magnetic fields can influence flows directly or manipulate dispersed magnetic
particles, sound fields can produce acoustic streaming motions, cyclic deformation of a wall
can induce peristaltic pumping, etc. For each manner of driving a fluid motion, the surface
characteristics of the device can also be exploited to provide additional control. For example,
the geometrical, chemical, and mechanical features of the channel and network of channels
can be patterned or altered, as summarized in Table 1.2 from [65].

Geometry Chemical Characteristics Mechanical properties

Network connectivity Wettability Hard materials
Channel cross section and curvature Surface charge Elastic materials

Surface topography Chemical affinity Gels
Porosity (e.g., in packed beds) Ph/ionic strength sensitivity Porous materials

Table 1.2: Design considerations for controlling flow and transport in a microfluidic channel
can include the influence of geometric, chemical, and mechanical characteristics. In addition,
electrodes, heaters piezoelectric actuation, etc. can be embedded in the channel boundaries.
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1.2.2 Electrokinetics

Electrokinetics refers to mechanical effects that arise due to the motion of ions in liquids.
The working fluid in microfluidic systems is normally water which contain ions of both signs
due to dissociated water molecules or other ionic components: acids, salts, and molecules
with dissociable charged groups. Normally, a volume element of such a fluid considered
infinitesimal in the continuum viewpoint still contains a sufficiently large number of ions
of either sign for statistical fluctuations to be unimportant and for the fluid element to be
considered charge neutral. Therefore, the net algebraic transfer of momentum due to any
ambient electric field is also zero (even though a non-zero electric current may exist in the
fluid due to the ordered motion of these ions). Electrokinetic effects arise when this balance
of positive and negative charges is disturbed due to external factors. For example, at the
silica water interface, the hydrated silica often deprotonates resulting in a net negative fixed
surface charge on the silica surface. These fixed charges attract a layer of ions of the opposite
sign (and repel ions of like sign) resulting in the creation of a fluid layer with a net positive
charge next to the interface. Similar effects arise at the surface of large macromolecules,
colloidal particles or surfactant micelles.

We will describe next some of the most relevant, from the point of view of applications,
electrokinetic effects: Electroosmosis, Electrophoresis, Dielectrophoresis and Electrowetting.

Electroosmosis. When an electrolyte is adjacent to a surface, the chemical state of the
surface is generally altered, either by ionization of covalently bound surface groups or by ion
adsorption. The net effect is that the surface inherits a charge while counterions are released
into the liquid. At equilibrium, a balance between electrostatic interactions and thermal
agitation is established at a thin layer near the solid (the so-called Debye layer, which will
be profusely discussed in this thesis). When an electric field is applied along a channel, a
conductive current and the corresponding local field E are established throughout the liquid.
Typically, the bulk of the liquid remains electrically neutral and so is not acted on by a net
force. By contrast, in the Debye layer there is a net electrical charge density, so the local
electric field that is tangent to the surface of the channel generates a body force on the fluid
and thus induces a shear and a flow (the electroosmotic flow) inside the channel. Hence, a
neutral fluid is set into motion due to the local imbalance at the Debye layer.

Electrophoresis. Electrophoresis refers to the transport of small charged objects in a
fluid due to an applied electric field. A solid body surrounded by an ionic solution presents
a Debye layer which is, in general, not uniform. The charge distribution at the layer changes
along the body’s surface. When a uniform electric field is established, the force originated
at different sectors of the Debye layer might be not uniform so that a net force able to
move the body appears. Many macromolecules contain dissociable charge groups on its
surface, and therefore, spontaneously acquire a charge in aqueous solution. They there-
fore move in response to an applied electric field, and this motion is the basis for separating
macromolecules from solution using such bioanalytical techniques as Capillary Electrophore-
sis (CE), Slab Gel Electrophoresis (SGE) and Isoelectric Focussing (IEF), most notably in
DNA sequencing processes.

Dielectrophoresis. Particles that are uncharged but polarizable experience a force
in a non-uniform electric field, the resulting motion is known as di-electrophoresis. Dielec-
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Figure 1.5: The basic electrowetting phenomena.

trophoresis is that unlike electrophoresis, the effect does not disappear if the constant electric
field is replaced by an oscillating one. Thus, the dielectrophoretic force can be fine tuned by
adjusting the frequency.

Electrowetting. Electrowetting is essentially the phenomenon whereby an electric field
can modify the wetting behavior of a droplet in contact with an insulated electrode (see
Figure 3.7.5 for a sketch of the simplest electrowetting experiment). When a voltage is ap-
plied between an electrically conductive droplet and an hydrophobic or partially wettable
substrate, the apparent contact angle is reduced and the droplet starts to spread. This effect
has been discovered by Lippmann more than a century ago [47]. Besides these fundamental
questions of basic research, the phenomenon of electrowetting is of major interest for tech-
nological applications related to microfluidics, more precisely the possibility of manipulating
motion and shape of small amounts of fluid. A particular advantage compared to other
methods studied recently is the enhanced flexibility of electrowetting, as valves, pumps or
even fixed channels are not needed.

Important examples of technological applications are pixelated optical filters [57], adap-
tive lenses [45], [11], and curtain coating [13]. Similarly, fast switching electrowetting displays
– patented by Philips just recently (see also [?]) – take advantage of the observation that sta-
ble films of coloured oil sandwiched between water and hydrophobic insulators immediately
contract to droplets when an external electric field is applied.
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1.3 Mathematical modelling of Electrohydrodynamics

In this section we introduce the general models for electrokinetic phenomena in fluid media
(or electrohydrodynamics). They need to combine the general equations for the motion of
fluids (Navier-Stokes or, when Reynolds number is small, Stokes system) with the equations
for the motion of electric charges in a fluid (Nernst-Planck system) and the equation satisfied
by the electric field in presence of electric charges (Poisson equation). A general description
together with various approximation can be found in [62].

First, the phenomena we are interested in, take place in a liquid environment. Hence, it
is appropriate to introduce a velocity vector field v together with a pressure field. The fluid,
ordinarily a viscous and incompressible one such as water or glycerine, can be modelled by
means of Navier-Stokes system:

ρ0 (∂tv + v · ∇v) = −∇p+ µ∆v + Fe (1.1)

∇ · v = 0 (1.2)

expressing balance of Momentum and mass. ρ0 and µ are the density and viscosity of the
fluid respectively. Equation (1.1) follows from Newton’s second law under external body
forces Fe acting per unit volume (e.g., gravity, electric, electromagnetic or centrifugal force).
In our case, we will consider only forces of electric nature. Hence, Fe can be expressed as
the divergence of Maxwell’s stress tensor

TM,ij = ε0εr

(
EiEj −

1

2
δij |E|2

)
(1.3)

where ε0εr is the dielectric permitivity of the medium and Ej represents the j component of
the electric field. Hence

Fe,i = (TM,ij)i

On the other hand, the electric field satisfies Maxwell equations (cf. [37], [43]). If we
neglect magnetic effects (the fluid and charges velocities are much smaller than the velocity
of light), the electric field is E = −∇V where V is the electric potential. The potential
satisfies then Poisson’s equation:

∇ · (ε0εr∇V ) = −ρ (1.4)

where ρ represents the electric charge density.

Finally, the electric charges will move in response to electric fields, thermal agitation
(diffusion) and the fluid velocity field. This is expressed in the equation

ji = µieziniE−Di∇ni + niv, (1.5)

which expresses the net flux of the charged species i as the sum of three fluxes: the convective
flux niv due to the velocity field v of the fluid, the diffusive fluxDi∇ni, and the electrokinetic
flux µieziniE due to the electric field. µi is the ion mobility: the velocity acquired by the
ion when acted upon by a unit of external force. Di is the diffusion coefficient of the ith

species. Einstein’s relation establishes that Di

µi
= kbT , where kb is Boltzmann’s constant
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and T the absolute temperature. In general, we may have many different kinds of charged
species: electrons, ions of diverse type and valencies (Na+, Cl−, K+, Ca2+, etc). Therefore,

ρ(x, t) =
N−1∑
i=0

ezini. (1.6)

where N is the number of species, e is the charge of the electron, ni is the concentration of
the species i, and zi is its valency. Continuity of each of the charged species leads to the
Nernst-Planck system:

∂ni
∂t

+∇ · ji = 0, (1.7)

The system (1.1)-(1.7) contains a large number of equations and physical parameters.
Its resolution represents then an enormous theoretical and computational challenge. In this
thesis, we will use the smallness of some dimensionless quantities in the microfluidics context
in order to simplify the system and make it suitable for analysis and simulation. In particular,
Reynolds number will be small so that we will approximate Navier-Stokes system by Stokes
system:

−∇p+ µ∆v + Fe = 0 (1.8)

∇ · v = 0 (1.9)

A second simplification will lead from Nernst-Planck system combined with Poisson to a
nonlinear Partial Differential Equation known as Poisson-Boltzmann equation.

1.4 Description of the dissertation

This work is divided in three parts. In the first part, which corresponds to Chapter 2, we
start studying physical conditions that leads us latter to a model to the electric potential
inside the droplet, the afore mentioned Poisson-Bolztmann equation.

In this chapter we study the solutions to Poisson-Boltzmann equation for electrolytic
solutions in a domain Ω, surrounded by an uncharged dielectric medium. We establish exis-
tence, uniqueness and regularity of solutions and study in detail their asymptotic behaviour
close to ∂Ω when a characteristic length, called the Debye length, is sufficiently small. This
is a double layer with a thickness that changes from point to point along ∂Ω depending on
the normal derivative of a harmonic function outside Ω and the mean curvature of ∂Ω. We
also provide numerical evidence of our results based on a Runge-Kutta and a finite elements
approximation to the problem.

In the second part, the Chapter 3, we couple the electrokinetics as described by Poisson-
Boltzmann approximation with the fluid motion described by Navier-Stokes equations (see
[46], [19]). We obtain that the force term in the Stokes formulation given by the potential
described by the Poisson-Boltzmann equation, becomes a boundary condition. Using this
model we establish an integral formulation for the problem, that being properly discretized
can lead to a Boundary Element formulation for two kinds of differential equations: Dirichlet
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for the boundary condition related to the potential and Stokes with force term zero for the
velocity in the drop. One of our main motivations is to describe the so-called Rayleigh jets.
Our hypothesis is that it is the finite electric conductivity and the presence of Debye layers
in electrolyte solutions what induces the production of Rayleigh jets.

In the last Chapter, the Chapter 4, we use spherical harmonics and vector spherical
harmonics for studying the stability of a viscous drop filled with an diluted electrolytic
solution using a linearization of the Poisson-Boltzmann equation known as Debye-Hückel
linearization.

1.5 Conclusions and future work

In Chapter 2 we have deduced asymptotic formulae for the distribution of charge of an ionic
solution near its interface with an external medium. Our main assumptions were 1) all ionic
species are in dynamic equilibrium and 2) a dimensionless parameter ε which is inversely
proportional to ion mobilities is very small. Our expansions contain corrections due to the
geometry of the interface and hence describe possible accumulations of charge at certain
regions of the interface depending on their curvature.

Our hypothesis was that finite conductivity implies electric charges do not move infinitely
fast inside the liquid medium. The finiteness of Debye layer, implies that positive and
negative charges do not balance exactly inside the drop but they form a thin layer (the
so-called Debye layer) where there is a nonzero net charge. We show in Chapter 3 that this
hypothesis does indeed lie at the heart of the formation of Rayleigh jets and can be used to
compute the jet’s main characteristics such as velocity and size. We found that the critical
charge increases with ε. This fact agrees with the observation in [20] that water droplets,
containing always a certain amount of ions, are able to hold an amount of charge slightly
larger than Rayleigh’s limit.

In Chapter 4 we compute the correction to a classical result due to Rayleigh that estab-
lishes that a viscous drop of a perfectly conducting liquid should become unstable for a large
enough value of the net electric charge contained by the drop, but assuming now a dielectric
liquid with ions dissolved instead of a perfect conductor. We conclude that the fact of having
an electrolyte solution lowers down the critical value of Rayleigh fissibility parameter. This
result is in contrast with the result obtained in the previous chapter, the result which is
only valid for κ small (this is the condition of validity of Debye-Hückel approximation) that
corresponds to a diluted solution, goes in the opposite direction.

As an application, we will focus in future works, on the case of drops of ionic solutions
subject to external electric fields and on how the finite ion mobility introduces corrections
on the dynamic behaviour of the drop with respect to the already studied case of infinite
ion mobility. Our asymptotic formulae can, of course, be also applied to more general
electrokinetic phenomena. Another interesting issue for future investigation results from
removing the hypothesis of stationarity in the ion distributions (that is, when the time
scale for the motion of charges is comparable with the time scale for the motion of the
fluid interface). In that case one cannot directly work with Poisson-Boltzmann equation but
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instead must use the original Nernst-Planck system.
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Chapter 2

The structure of double layers in
Poisson-Boltzmann equation

2.1 Introduction

Electrokinetic phenomena are mechanical effects caused by the presence and motion of ions
in liquids. These ions can be dissociated water molecules or the result of dissociated acids,
salts, etc. The result of ions dissolved in an ambient fluid is called an electrolyte. Since
ions are electrically charged, they move in response to an applied electric field and therefore
induce fluid flows. Hence electrolytes can be used to manipulate small masses of fluids by
means of suitably applied electric fields. This is the reason why electrokinetic phenomena
have an important connection to microfluidics, the science of manipulating fluids on spatial
scales anywhere between one to a hundred micron. Fluids at such small scales appear both
in various natural systems and in microdevices intended for applications ranging from gene
sequencing and gene expression to micropixels in electronic paper. As we shall see below,
the analysis of electrokinetic phenomena involves systems of partial differential equations
with highly nontrivial couplings (see also [62]). Therefore, mathematical analysis is needed
in order to improve our understanding of the subject.

Perhaps one of the most interesting applications of electrokinetic effects is electrowetting.
Electrowetting has become one of the most widely used tools for manipulating tiny amounts
of liquids on surfaces. Applications range from “lab-on-a-chip” devices [62] to adjustable
lenses and new kinds of electronic displays [51], [10]. In the simplest configuration, a drop
of conducting fluid rests over a solid substrate, and a potential difference V0 is established
between the drop and an electrode placed at a distance d from the substrate. Another impor-
tant instance where electrokinetic equations appear is in the deformation and disintegration
of charged drops in the presence of electric field when the fluid consists of an electrolyte
solution instead of a perfect electric conductor fluid (as considered in [27], [12], see also [24]
for a general review).

The electrokinetic equations. The main characteristic of an electrolyte is the presence
of N species, whose concentrations we denote by ni(x, t), i = 0, . . . , N − 1, carrying a
charge ρi = ezini, where e is the charge of an electron, and zi the valence of the ith species.
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Therefore, the total charge will be given by

ρe(x, t) =
N−1∑
i=0

ezini.

Notice that some of the species might be neutral so that the corresponding zj is zero. This
happens, for instance, if the fluid contains neutral species that can dissociate to produce
ions of different sign or be produced by recombination of two ionic species.

The presence of free charges creates or modifies an imposed electric field. This is expressed
by means of Poisson’s equation (cf. [43])

−∇ · (ε0εr∇V ) = ρe,

where ε0 is the electric permittivity of vacuum, εr the relative electric permittivity of the
electrolyte medium, and V the electrostatic potential so that the electric field equals E =
−∇V .

In absence of dissociations or recombinations that modify the total mass of each of the
species, ion and molecule concentrations satisfy the continuity equation

∂ni
∂t

+∇ · ji = 0, (2.1)

where ji is the mass flux of the ith species. In response to an electric field, ions may modify
their flux modelled by the Nernst-Planck law

ji = µieziniE−Di∇ni + niv, (2.2)

which expresses the net flux as the sum of three fluxes: the convective flux niv due to the
velocity field v of the fluid, the diffusive flux Di∇ni, and the electrokinetic flux µieziniE
due to the electric field. µi is the ion mobility: the velocity acquired by the ion when acted
upon by a unit of external force. Di is the diffusion coefficient of the ith species. Einstein’s
relation establishes that Di

µi
= kbT , where kb is Boltzmann’s constant and T the absolute

temperature. In absence of externally imposed velocities, the condition that charge fluxes
vanish leads, from (2.2), to

ni = cie
−µiezi

Di
V
= cie

− ezi
kbT

V
,

where ci > 0 are to be determined from boundary conditions or the condition that the total
amount of each ionic species is given. Poisson equation is then

−∇ · (ε0εr∇V ) =
N−1∑
i=0

ezicie
− ezi

kbT
V
.

and in the case of constant electric permittivity ε0εr,

∆V = −
N−1∑
i=0

ezici
ε0εr

e
− ezi

kbT
V
. (2.3)
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Equation (2.3) is known as Poisson–Boltzmann equation and defines the electric potential
distribution in the diffuse ionic layer adjacent to a charged surface subject to appropriate
boundary conditions. A simplified situation corresponds to the special case of a single salt
dissociating into cationic and anionic species (i.e.,N = 2) with the added simplification of
symmetric electrolyte solution (e.g., NaCl, CuSO4, or AgI). In symmetric electrolytes, both
the cations and anions have the same valences, z1 = −z2 = z. In the case of planar electric
double layers defined for x ≥ 0, assuming n1 = n2 = n∞ as x tends to ∞, one obtains the
equation

d2V

dx2
=
ezn∞

ε0εr

(
e

ez
kbT

V − e−
ez
kbT

V
)
=

2ezn∞

ε0εr
sinh

(
ez

kbT
V

)
, (2.4)

and an analytical solution known as the Gouy–Chapman solution. It is obtained by assuming
a given potential Vs at x = 0, and V = 0 as x→∞ so that

V =
kbT

ze
log

(
1 + e−κx tanh kbTVs

4ze

1− e−κx tanh kbTVs
4ze

)
, (2.5)

with

κ−1 =

(
ε0εrkbT

2e2z2n∞

) 1
2

.

The parameter κ−1 is called the Debye length and measures the electric double layer thick-
ness. The solution (2.5) is such that the net electric charge, given by the right hand side
of (2.4) with minus sign, is very small beyond the Debye length while it becomes large for
x . κ−1 if κ−1 ≪ 1.

The formation of double layers with a nonzero net charge and their mechanical effects
on the fluid solvent are of crucial importance in the field of electrohydrodynamics and elec-
trokinetic phenomena (cf. [62], [50], [58] for instance). Despite its importance, the general
solutions to (2.3) for general domains and boundary conditions are poorly understood due
to its highly nonlinear character. Our goal will be to obtain a closed-form asymptotic rep-
resentation of the solutions to (2.3) for general domains in the limit of very small Debye
length.

In order to fix ideas, we will consider two electrolyte species (say Na+ and Cl− for
instance) together with free charges of a third species (say electrons for instance) in a bounded
domain Ω surrounded by a neutral (no charge) domain Ω∗\Ω with a given potential imposed
at ∂Ω∗. This situation might be viewed as a drop consisting of an electrolyte solution
together with free electrons that have been introduced externally into the drop, surrounded
by another fluid that is in contact with electrodes where a certain potential is imposed (we
will take it as zero, for the sake of simplicity). Therefore, there will be a certain imbalance
between positive and negative charges in the drop. If the valence of the ions is the same as
the charge of the free carriers (as it is the case with the NaCl ions and the electrons), then
equation (2.3) becomes

∆V =
ezc0
ε0εr

(
e

ez
kbT

V − e−
ez
kbT

V
)
+
ezc1
ε0εr

e
ez
kbT

V

=
ez (c0 + c1)

ε0εr
e

ez
kbT

V − ezc0
ε0εr

e
− ez

kbT
V
, (2.6)
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where c0 is the concentration of both positive and negative ions and c1 the concentration of
free carriers. One can write the problem in dimensionless form by introducing

ε =
ε0εrkbT l

(ez)2
,

where l is a characteristic length associated to Ω that we can take, for instance, to be
l = |Ω|1/n with n being the space dimension, and reescaling variables and unknowns in the
form

V =
ez

ε0εrl
u, x′ = x/l , C1 = (c0 + c1) l

3, C2 = c0l
3 . (2.7)

By denoting, for simplicity, the rescaled domains also by Ω, Ω∗, we arrive from (2.6) and
(2.7) at the equation

∆u = C1e
u
ε − C2e

−u
ε in Ω , (2.8)

with the condition that the total negative chargeM = C1

∫
Ω
e

u
ε and the total positive charge

N = C2

∫
Ω
e−

u
ε are given. We can then rewrite (2.8) in the form

∆u =M
e

u
ε∫

Ω
e

u
ε

−N e−
u
ε∫

Ω
e−

u
ε

in Ω . (2.9)

The absence of charge in Ω∗\Ω leads to

∆u = 0 in Ω∗\Ω , (2.10)

with a given potential u at ∂Ω∗ that we will take zero for simplicity

u = 0 at ∂Ω∗ (2.11)

Ω∗

u=0
u=0

Ω

∆

∆

u=0

u= −ρ

Figure 2.1: Geometrical setting of the problem with −ρ given by the right hand side of
equation (2.9)

In Figure 2.1 we represent the geometrical setting for problem (2.9)-(2.11). Our goal is
to describe the solutions of (2.9)-(2.11) in the limit of very small Debye lengths ε ≪ 1. As
we will see, they consist of a boundary layer near ∂Ω with a variable thickness that depends
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on geometrical properties of ∂Ω. Moreover, the limit ε → 0 corresponds, in some sense to
the case of a perfect conductor with net charge Q = N −M . Hence one of the goals of
this work is to study the convergence of solutions to Poisson-Boltzmann equation, when ion
mobility ε → 0, to the solution of a perfect conductor (formally corresponding to ε ≡ 0).
More precisely, we consider two problems:

a) The problem of a perfect conductor in Ω surrounded by a dielectric uncharged media
in Ω∗\Ω. The electrostatic potential u satisfies

∆u = 0 in Ω∗\Ω̄ ,

with boundary conditions

u = 0 in ∂Ω∗ ,

u = C in ∂Ω ,

where C is a constant to be determined with the condition that the total charge is a given
quantity Q = N −M . Namely, integrating (2.9) over Ω and using the divergence theorem,

−
∫
∂Ω

∂u

∂n
dS = Q .

Notice that −∂u
∂n

represents then the surface charge density that we will denote as

σ0(xS), xS ∈ ∂Ω .

The regularity of σ0(xS) depends on the regularity of ∂Ω and is such that (cf. Theorem 6.19
in [36]):

∂Ω ∈ Ck+2+α ⇒ σ0(xS) ∈ Ck+1+α , (2.12)

with 0 < α < 1, k ∈ N. We will assume ∂Ω ∈ C3+α, so that σ0(xS) ∈ C2+α.

b) The problem of an ionic solution with M units of negative charge and N units of
positive charge in Ω. The medium Ω is supposed to have an ion mobility ε. This leads to
the problem described by equations (2.9)-(2.11). In other words, we are solving

∆u =M(x)
e

u
ε∫

Ω

e
u
ε

−N (x)
e−

u
ε∫

Ω

e−
u
ε

in Ω∗ , (2.13)

u = 0 in ∂Ω∗ , (2.14)

with M(x) =M in Ω, M(x) = 0 in Ω∗\Ω, N(x) = N in Ω, N(x) = 0 in Ω∗\Ω.

Problem b) will have solutions u such that, when ε≪ 1, the quantity

ρ(x) = −M e
u
ε∫

Ω

e
u
ε

+N
e−

u
ε∫

Ω

e−
u
ε

, (2.15)
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in Ω, representing the volumetric charge density, will be very small except for a thin boundary
layer close to ∂Ω where the charge difference ρ(x) will experience drastic changes. In fact,
we expect

ρ(x)→ σ0(xS)δ(∂Ω) ,

where δ(∂Ω) is the Dirac measure concentrated in the boundary of Ω and the kind of con-
vergence will be precised below.

Our main result is the following Theorem:

Theorem 1. For any ε > 0 there exists a unique solution to problem (2.9)-(2.11) in H1
0 (Ω

∗).
Such solution is C∞(D) for any D ⊂⊂ Ω or D ⊂⊂ Ω∗\Ω. Moreover, if ε is sufficiently small,
then the net charge density defined by (2.15) where u is the solution to (2.9)-(2.11), admits

the following representation in an O(ε
1
2
+ν) (0 < ν ≪ 1, ν independent of ε) neighborhood in

Ω of ∂Ω:

ρ(x) = σ0(xS)
|σ0(xS)|

2ε

1[
|σ0(xS)|

2ε
dist(x, xS) + 1

]2 + ρ1(x) ,

where xS is the point of ∂Ω closest to x and with ρ1(x) uniformly bounded in ε.

At a more formal level, we will find the next order correction to ρ(x) and show that, for

x such that dist(x, xS) < Cε
1
2
+ν ,

ρ(x) = σ(xS)
|σ(xS)|

2ε

1[
|σ(xS)|

2ε
dist(x, xS) + 1

]2 +
1

2

σ0(xS)H(xS)[
|σ0(xS)|

2ε
dist(x, xS) + 1

] +O(ε) ,

where H(xS) denotes the mean curvature of ∂Ω at xS and

σ(xS) = σ0(xS) + εσ̃(xS) ,

σ̃(xS) being

σ̃(xS) = −
2
∫
∂Ω
N [ln |σ0(xS)|]
M −N

σ0(xS) + 2N [ln |σ0(xS)|] ,

where N [·] is the Dirichlet to Neumann operator, restricted to ∂Ω and with zero Dirichlet
data at ∂Ω∗, for Laplace equation in Ω∗\Ω. We will also compute quantities, such as the
Maxwell stress, that are important in the electrokinetic context.

This chapter is organized as follows: in Section 2.2 we obtain general results concerning
existence, uniqueness and regularity of the solutions to (2.13)-(2.14) for any value of ε.
Section 2.3 is devoted to obtaining closed form expressions for the asymptotic values of the
solutions to (2.13)-(2.14) near ∂Ω when ε ≪ 1. Section 2.3 will be devoted to the formal
deduction of higher order correction involving the curvature of ∂Ω, as well as expression of the
so-called Maxwell stress tensor (see [37] for the definition) which is relevant for applications
in fluid mechanics. Finally section 2.4 is devoted to the numerical study of the problem in
the cases of spherical symmetry (using a Runge-Kutta scheme) and general two dimensional
domains (using an adaptive Finite Element Method).
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2.2 Existence, uniqueness and regularity

In this section, we prove a theorem for the existence and uniqueness of weak solutions (in a
sense to be defined below) to (2.13), (2.14). We also show that such solutions are C1+α(Ω∗)
for any 0 < α < 1 and C∞(D) for any D ⊂⊂ Ω or D ⊂⊂ Ω∗\Ω.

As shown by Friedman & Tintarev [30] (see also [58]), the equation (2.13), in the partic-
ular case where M(x) and N(x) are constant and ε = 1, is the Euler-Lagrange equation for
the variational problem of finding the critical points of the functional

J [ϕ] =
1

2
||∇ϕ||2L2(Ω∗) +M ln

(∫
Ω∗
eϕdx

)
+N ln

(∫
Ω∗
e−ϕdx

)
.

For a general ε, (2.13) is the Euler-Lagrange equation for the following functional

J [ϕ] =
1

2
||∇ϕ||2L2(Ω∗) + εM ln

(∫
Ω∗
eϕ/εdx

)
+ εN ln

(∫
Ω∗
e−ϕ/εdx

)
.

It is simple to see that in our problem, whereM(x) and N(x) present jump discontinuities
along ∂Ω, the energy functional can be chosen as

J [ϕ] =
1

2
||∇ϕ||2L2(Ω∗) + εM ln

(∫
Ω

eϕ/εdx

)
+ εN ln

(∫
Ω

e−ϕ/εdx

)
. (2.16)

We will look for the critical points in H1
0 (Ω

∗) and prove the following theorem:

Theorem 2. There exists a unique minimum of J [u] defined by (2.16) in H1
0 (Ω

∗).

Proof. Our proof follows essentially the steps of the proof of Ryham (cf. [61]) in the particular
case of constant M(x), N(x) and ε = 1. It follows the steps of the direct method in the
calculus of variations (see [23], for instance). First, notice that J is strictly convex since

J [λϕ+ (1− λ)ψ] ≤ λJ [ϕ] + (1− λ) J [ψ] , (2.17)

for any ϕ, ψ ∈ H1
0 (Ω

∗), with strict inequality if ϕ ̸= ψ. This follows from the following
inequalities:

||∇ (λϕ+ (1− λ)ψ) ||2L2(Ω∗) ≤ λ||∇ϕ||2L2(Ω∗) + (1− λ) ||∇ψ||2L2(Ω∗) ,

which is strict except for ϕ = ψ, and

ln

(∫
Ω

eλϕ/ε+(1−λ)ψ/εdx

)
≤ ln

([∫
Ω

eϕ/εdx

]λ [∫
Ω

eψ/εdx

]1−λ)
(2.18)

= λ ln

[∫
Ω

eϕ/εdx

]
+ (1− λ) ln

[∫
Ω

eψ/εdx

]
,
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ln

(∫
Ω

e−λϕ/ε−(1−λ)ψ/εdx

)
≤ ln

([∫
Ω

e−ϕ/εdx

]λ [∫
Ω

e−ψ/εdx

]1−λ)
(2.19)

= λ ln

[∫
Ω

e−ϕ/εdx

]
+ (1− λ) ln

[∫
Ω

e−ψ/εdx

]
,

where we have used Hölder inequality in (2.18), (2.19). Next we notice that

J [ϕ] ≥ C1||ϕ||2H1
0 (Ω

∗) + C2 . (2.20)

This follows from the estimates

ln

[∫
Ω

eϕ/εdx

]
≥ ln

[
|Ω|e(1/|Ω|

∫
Ω ϕ/εdx)

]
= ln (|Ω|) + 1

|Ω|

(∫
Ω

ϕ/εdx

)
,

ln

[∫
Ω

e−ϕ/εdx

]
≥ ln

[
|Ω|e(−1/|Ω|

∫
Ω ϕ/εdx)

]
= ln (|Ω|)− 1

|Ω|

(∫
Ω

ϕ/εdx

)
,

which are direct consequence of Jensen inequality, and implying

J [ϕ] ≥ 1

2
||∇ϕ||2L2(Ω∗) +

M −N
|Ω|

∫
Ω

ϕdx+ ε [M ln (|Ω|) +N ln (|Ω|)] .

Since
M −N
|Ω|

∫
Ω

ϕdx ≥ −|M −N |
|Ω|

∫
Ω

|ϕ| dx ≥= −|M −N |
|Ω|1/2

||ϕ||L2(Ω) ,

and

−||ϕ||L2(Ω)|Ω|1/2 ≥ −
|Ω|
2δ
− δ

2
||ϕ||2L2(Ω∗) ≥ −

|Ω|
2δ
− C δ

2
||∇ϕ||2L2(Ω∗) , (2.21)

where we have used Poincaré’s inequality, then by choosing δ sufficiently small and using
||∇ϕ||L2(Ω∗) ≥ C||ϕ||H1

0 (Ω
∗) we arrive at (2.20). This implies that the functional J is coercive.

Hence there exists α = infψ∈H1
0 (Ω

∗) J [ψ] and a minimizing sequence {ϕj} which is bounded

in H1
0 (Ω

∗). Therefore there exists a subsequence ϕjk ⇀ ϕ in H1
0 (Ω

∗). In order to show lower
semicontinuity, that is J [ϕ] ≤ lim inf J [ϕjk ], we can use Fatou’s lemma on the sequences{
eϕjk/ε

}
,
{
e−ϕjk/ε

}
(which belong to L1(Ω∗) since J [ϕjk ] is bounded) to conclude∫

Ω

e
ϕ
ε dx =

(∫
Ω

lim inf e
ϕmk

ε dx

)
≤ lim inf

(∫
Ω

e
ϕmk

ε dx

)
, (2.22)

∫
Ω

e
−ϕ
ε dx =

(∫
Ω

lim inf e
−ϕmk

ε dx

)
≤ lim inf

(∫
Ω

e
−ϕmk

ε dx

)
. (2.23)

Lower semicontinuity and strict convexity imply then the existence of a unique minimizer of
J [ϕ] in H1

0 (Ω
∗).

Definition 3. We will say that u ∈ H1
0 (Ω

∗) is a weak solution of the problem (2.13), (2.14)
if eu/ε, e−u/ε ∈ L1 (Ω∗) and for any ψ ∈ C∞

0 (Ω∗) one has:∫
Ω∗
∇u · ∇ψdx+

∫
Ω

[
M∫

Ω
eu/εdy

eu/ε − N∫
Ω
e−u/εdy

e−u/ε
]
ψdx = 0 . (2.24)
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Notice that it is possible to extend the test space to H1
0 (Ω

∗)∩L∞ (Ω∗) since, for a weak
solution u ∈ H1

0 (Ω
∗), the functional Iu : C

∞
0 (Ω∗)→ R defined as

Iu [ψ] =

∫
Ω∗
∇u · ∇ψdx+

∫
Ω

[
M∫

Ω
eu/εdy

eu/ε − N∫
Ω
e−u/εdy

e−u/ε
]
ψdx ,

is continuous. It is straightforward to verify that a variational solution is indeed a weak
solution.

In order to obtain higher regularity for weak solutions we must prove that weak solutions
are bounded:

Lemma 4. If u ∈ H1
0 (Ω

∗) is a weak solution in the sense of (2.24) then u ∈ L∞ (Ω∗) .

Proof. By introducing

a∗ = 2

√
MN∫

Ω
eu/εdy

∫
Ω
e−u/εdy

, u∗ = ln

√
N
∫
Ω
eu/εdy

M
∫
Ω
e−u/εdy

,

we can rewrite equation as∫
Ω∗
∇u · ∇ψdx+

∫
Ω

a∗ sinh
(u
ε
− u∗

)
ψdx = 0 . (2.25)

Without loss of generality we can assume u∗ ≤ 0 (the analysis in the case u∗ ≥ 0 is analogous)
and we will show εu∗ ≤ u ≤ 0. In order to prove u ≤ 0 we choose L > 0 and ψ = min {u+, L}
with u+ = max {u, 0} . Then 0 ≤ ψ ≤ L for any x ∈ Ω∗, and ψ ∈ H1

0 (Ω
∗)∩L∞ (Ω∗) . Then,

from (2.25) it follows

0 =

∫
Ω∗
∇u · ∇ψdx+

∫
Ω

a∗ sinh
(u
ε
− u∗

)
ψdx

=

∫
Ω∗
|∇ψ|2 dx+

∫
Ω

a∗ sinh
(u
ε
− u∗

)
ψdx ,

since
0 ≤ u ≤ L⇒ ψ = u ,
u < 0⇒ ψ = 0 ,
u > L⇒ ψ = L ,

implying
∫
Ω∗∇u · ∇ψdx =

∫
Ω∗ |∇ψ|2 dx. Notice that

∫
Ω
a∗ sinh

(
u
ε
− u∗

)
ψdx ≥ 0 therefore∫

Ω∗ |∇ψ|2 dx = 0 so ψ = 0 a.e in Ω∗, but L > 0 so we have u+ = 0 a.e in Ω∗ and u ≤ 0 a.e

in Ω∗. Let now ψ = max
{
(u− εu∗)− ,−L

}
−L ≤ u− εu∗ ≤ 0⇒ ψ = u− εu∗ ,

u− εu∗ > 0⇒ ψ = 0 ,
u− εu∗ < −L⇒ ψ = −L ,

and as before

0 =

∫
Ω∗
∇u · ∇ψdx+

∫
Ω

a∗ sinh
(u
ε
− u∗

)
ψdx

=

∫
Ω∗
|∇ψ|2 dx+

∫
Ω

a∗ sinh
(u
ε
− u∗

)
ψdx = 0 ,
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since also
∫
Ω
a∗ sinh

(
u
ε
− u∗

)
ψdx ≥ 0 then

∫
Ω∗ |∇ψ|2 dx = 0 and ψ = 0 a.e in Ω∗, but since

−L < 0 so we have
(
u
ε
− u∗

)−
= 0 then u

ε
− u∗ ≥ 0 a.e in Ω∗. Hence u is bounded in Ω∗.

Since u is a bounded function, the right hand side of equation (2.13) is also bounded and
by classical elliptic regularity theory, u ∈ W 2,p (Ω∗) for all p <∞. By Sobolev embeddings,
u is then a C1+α (Ω∗) function for any 0 < α < 1.

In any domain D in the interior of Ω or Ω∗\Ω , standard bootstrap arguments allow to
improve the W 2,p (D) regularity up to C∞ (D). We can conclude then with the following
theorem:

Theorem 5. For any ε > 0 there exists a unique weak solution u to (2.13), (2.14) in
H1

0 (Ω
∗). Moreover, u ∈ W 2,p (Ω∗) for any p < ∞ and u ∈ C∞ (D) for any D ⊂⊂ Ω and

any D ⊂⊂ Ω∗\Ω.

2.3 Asymptotic behaviour near ∂Ω

In this section we obtain asymptotic formulae, in the limit ε≪ 1, for the solutions of (2.13),
(2.14) near ∂Ω, as well as for the distribution of charges. As we will see the imbalance between
positive and negative charges is concentrated in a very thin layer (of O

(
ε1/2
)
thickness) near

∂Ω. If we assume ∂Ω to be sufficiently smooth, then the thickness of this boundary layer
is much smaller than the radius of curvature of any point in ∂Ω. Hence, one can think of
the distribution of charges to be, locally near any point of ∂Ω, essentially the same as for
the problem in one dimension. First we will compute this one dimensional distribution and
later in this section we will represent the solution to (2.13), (2.14) near ∂Ω in terms of the
one dimensional solution.

2.3.1 The boundary layer

In order to analyze the distribution of net charge (i.e. of ρ(x)) in the neighborhood of ∂Ω for
ε≪ 1 it is convenient first to study the one dimensional problem since the local structure of
ρ(x) in the direction orthogonal to ∂Ω at any (given) xS ∈ ∂Ω will be given by the solution to
such a problem. We expect that the negative and positive charges are balanced sufficiently
far from ∂Ω and it is only in a thin layer around ∂Ω that net charge (that we assume without
loss of generality to be positive) is concentrated.

We can rewrite equation (2.13) in Ω in the more convenient form

∆u = µ(eu/ε − e−u/ε) , (2.26)

where

µ =

√
MN∫

Ω
e

u−C
ε

∫
Ω
e−

u−C
ε

, u∗ = ε ln

√√√√ N
∫
Ω
e

u−C
ε

M
∫
Ω
e−

u−C
ε

= εc∗ , (2.27)
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and u = u− C − u∗, with C given for the solution of the perfect conductor.

The expression (2.26) is particularly useful for the analysis close to ∂Ω. Its one dimen-
sional version (writing for simplicity u instead of u) is

uxx = µ
(
e

u
ε − e−

u
ε

)
, (2.28)

which integrating once leads to:

1

2
u2x = µε

[
e

u
ε + e−

u
ε

]
+ k ,

where the constant k can be computed such that ux → 0 and u→ 0 as x→ −∞

k = −2µε .

Then by defining U = u
ε
, X =

(
µ
ε

) 1
2 x we arrive at:

1

2
U2
X =

(
eU + e−U − 2

)
,

with explicit solutions

U(X) = ±2 ln(tanh(−
√
2

2
(X + c))) .

The constant c will be chosen so that the net charge is given. Returning to the old
variables (x, u), we get

u(x) = ±2ε ln

(
tanh(

√
2

2

[(µ
ε

) 1
2 |x|+ c

]
)

)
, (2.29)

which inserted in the right hand side of (2.28) yields the following formula for the charge
density:

ρ(x) = ±4µ

 cosh(
√
2
[(

µ
ε

) 1
2 |x|+ c

]
)

sinh2(
√
2
[(

µ
ε

) 1
2 |x|+ c

]
)

 , (2.30)

where c is assumed to be positive. This expression for ρ (x) allows now the computation of
the total charge, that we call σ:

σ =

∫ 0

−∞
ρ(x)dx = ± 2

√
2

sinh(
√
2c)

(εµ)
1
2 ,

where the minus sign at the right hand side will be taken if σ < 0 and the plus sign
otherwise. Therefore

c =
1√
2
sinh−1

(
2
√
2 (εµ)

1
2

|σ|

)
.
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Notice that this implies that in (2.29) the minus sign corresponds to the situation where
the total charge is negative, and the plus sign corresponds to the situation where the total
charge is positive. Without loss of generality, we shall always consider expression (2.29) with
the plus sign at the right hand side so that σ > 0.

Since we will be working with ε≪ 1 it is convenient to expand the expression for c in ε
and then obtain

c ≃ 2 (εµ)
1
2

|σ|
. (2.31)

Similarly, the charge density ρ can be expanded, for |x| ≪ ε1/2, as

ρ(x) ≃ σ |σ|
2ε

 1[
|σ|
2ε
|x|+ 1

]2
 . (2.32)

Notice that therefore

ρ(x) ≃ σ

ν
f

(
|x|
ν

)
,

where ν = 2ε
|σ| and f(ξ) =

1
(1+ξ)2

. Hence the charge density presents a boundary layer of O(ν)

thickness, where the behaviour is selfsimilar, and formally ρ(x)→ σδ(x = 0).

2.3.2 Asymptotic expansion near ∂Ω

In this section we will use the previous results for the one dimensional problem in order
to provide a formula for the solution of the Poisson-Boltzmann equation in terms of an
asymptotic expansion in the parameter ε. The main idea is to glue the one dimensional
profiles for u(x) in an O(ε

1
2 ) neighborhood of each point in ∂Ω.

We introduce a parametrization of ∂Ω with a parameter η (or (η1, η2) in the case of ∂Ω
being a surface). If ∂Ω is sufficiently smooth then the parametrization will also be smooth.
Given a point x ∈ Ω∗ and sufficiently close to ∂Ω we can uniquely determine ξ = dist(x, ∂Ω)
as well as the value of η corresponding to the point x′ ∈ ∂Ω closest to x. Indeed, Lemma
14.16 in [36] shows that for a ∂Ω ∈ Ck, k ≥ 2, then the distance function is also Ck(Γδ)
where Γδ is the set of points x such that dist(x, ∂Ω) < δ. Therefore one can label each point
in an O(δ) neighborhood of ∂Ω (inside Ω and with δ sufficiently small) with a unique pair
(ξ, η). Notice that the lines of constant η and constant ξ are then orthogonal. The mapping
x→ (ξ, η) is invertible in that neighborhood provided ∂Ω ∈ C2.

We introduce next a cutoff function ζ (·) defined in the following manner:

0 ≤ ζ (s) ≤ 1, ζ (·) ∈ C∞ (0,∞) ,

ζ (s) = 1, s ∈ [0, 1/2) ,

ζ (s) = 0, s > 1 ,
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and rewrite the solution to (2.26) as

u(x) = ε

(
2ζ

(
ξ(x)

δ

)
log tanh

((√
2(εµ)

1
2

|σ(xS)|

)[
|σ(xS)|

2

ξ(x)

ε
+ 1

]))
+ εu1(x) , (2.33)

where σ(xS) is a function that will be close to the surface charge density provided by the
solution of the perfect conductor at xS = η(x), and where 0 < δ ≪ 1 is a constant parameter.
The function u1(x) will be determined so that u(x) satisfies (2.26).

Next we will write the differential equation satisfied by u1(x) that results from plugging
(2.33) into (2.26). By denoting

u0(x) = 2ζ

(
ξ(x)

δ

)
log tanh

((√
2(εµ)

1
2

|σ(η(x))|

)[
|σ(η(x))|

2

ξ(x)

ε
+ 1

])
, (2.34)

we find, from (2.26):

∆u = ε∆u0 + ε∆u1 = µ
(
e

u
ε − e−

u
ε

)
= µ(eu0eu1 − e−u0e−u1) .

By writing

µ(eu0eu1 − e−u0e−u1) = 2µ sinh(u0) + 2µ cosh(u0)u1 +G [u0, u1] ,

where
G [u0, u1] ≡ µ(eu0(eu1 − 1− u1)− e−u0(e−u1 − 1 + u1)) , (2.35)

we arrive at the following equation for u1:

ε∆u1 − 2µ cosh(u0)u1 = g(x) +G [u0, u1] in Ω , (2.36)

with
g(x) ≡ 2µ sinh(u0)− ε∆u0 . (2.37)

We aim to estimate u1, solution to (2.36), and show that it is small for small values of ε.
Since the right hand side of (2.36) consists of g(x) plus G [u0, u1] which is O (u21) for small
u1, one can expect that the size of u1 (in terms of ε) is basically determined by the size of
g(x) provided it is small. In the next lemma we estimate that “size” of g(x):

Lemma 6. The function g(x) defined by (2.34) and (2.37) satisfies

g(x) = −ε
1
2

2
√
2µH(x)

sinh

((√
2(εµ)

1
2

|σ(η(x))|

)[
|σ(η(x))| ξ(x)

ε
+ 2
]) +O(ε) , (2.38)

where H(x) is the curvature of the level line of the distance function that contains the point
x and ε > 0 is sufficiently small.
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Proof. We present first the proof in two space dimensions for the sake of simplicity. The proof
inN dimensions is a trivial generalization where the parametrization of ∂Ω is (N − 1)−dimensional.
First we note that in a sufficiently small neighborhood of ∂Ω the mapping from (x, y) to
(ξ, η) is an invertible diffeomorphism and the laplacian operator transforms into:

∆u0 =
∂2u0
∂ξ2

+ 2
∂2u0
∂ξ∂η

[∇ξ · ∇η] + ∂2u0
∂η2
|∇η|2 +∆ξ

∂u0
∂ξ

+∆η
∂u0
∂η

. (2.39)

By the choice of ξ and η coordinates, the isolines are mutually orthogonal and hence∇ξ·∇η =
0. On the other hand, ∆ξ equals the curvature of the level lines ξ = const, which is bounded
by the hypothesis on the regularity of ∂Ω, and so are ∆η and |∇η|. We can now compute

and estimate ∂u0
∂ξ
, ∂u0
∂η
, ∂

2u0
∂ξ2

, ∂
2u0
∂η2

: let α(ξ, η) =

(√
2(εµ)

1
2

|σ(η)|

)[
|σ(η)|

2
ξ
ε
+ 1
]
, then

∂u0
∂ξ

=

√
2µ

ε
1
2

ζ

(
ξ

δ

)
2

sinh(2α)
+

2

δ
ζ ′
(
ξ

δ

)
log tanh(α) , (2.40)

∂u0
∂η

= −4
√
2(εµ)

1
2
σ′(η)

σ(η)2
ζ

(
ξ

δ

)
1

sinh (2α)
, (2.41)

∂2u0
∂ξ2

= −4(µ
ε
)ζ

(
ξ

δ

)
coth(2α)

sinh (2α)
+

2
√
2(µ)

1
2

ε
1
2 δ

ζ ′
(
ξ

δ

)
1

sinh (2α)

+

(
2
√
2(µ)

1
2

ε
1
2 δ

)
ζ ′
(
ξ

δ

)
1

sinh (2α)
+

2

δ
ζ ′′
(
ξ

δ

)
log tanh(α) , (2.42)

∂2u0
∂η2

= −16(εµ)
(
σ′(η)

σ(η)2

)2

ζ

(
ξ

δ

)
cosh(2α)

sinh2 (2α)

+ 4
√
2(εµ)

1
2 ζ

(
ξ

δ

)(
[σ(η)]2 σ′′(η)− 2σ(η) [σ′(η)]2

σ(η)4

)
1

sinh (2α)
. (2.43)

Notice that the derivatives of the cutoff function ζ
(
ξ
δ

)
are nonzero only when ξ = O (δ), and

are always multiplied by functions, namely 1
sinh(2α)

and log tanh(α), that decay exponentially

fast to zero as α→∞. In fact, they are both O
(
e−O(δ)/ε1/2

)
and hence much smaller than

any power of ε for ε≪ 1. On the other hand the first term at the right hand side of (2.42),

equals 2µ
ε
ζ
(
ξ
δ

)
sinh(u0) + o

(
e−O(δ)/ε1/2

)
so that

− 4(
µ

ε
)ζ

(
ξ

δ

)
coth(2α)

sinh (2α)
− 2

µ

ε
sinh(u0) = 2

µ

ε

[
ζ

(
ξ

δ

)
− 1

]
sinh(u0) + o

(
e−O(δ)/ε1/2

)
= −4µ

ε

[
ζ

(
ξ

δ

)
− 1

]
coth(2α)

sinh (2α)
+ o

(
e−O(δ)/ε1/2

)
= o

(
e−O(δ)/ε1/2

)
.

The terms (2.41) and (2.43) are both O (ε0) due to the fact that the ε1/2 or ε factors cancel
out with identical factors coming from sinh (2α) and sinh2 (2α) when ξ ≪ 1. Finally, the
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first term at the right hand side of (2.40) is, for ξ . O (ε), of order O(ε−1) and hence

∂u0
∂ξ
∼ 1

ε
1
2

2
√
2µ

sinh

((√
2(εµ)

1
2

|σ(η)|

)[
|σ(η)| ξ

ε
+ 2
]) . (2.44)

In higher space dimensions, the laplacian operator contains the same terms as those at
the right hand side of expression (2.39), but for each of the ηi (choosing them along the
principal directions so that the corresponding curvature lines are mutually orthogonal) that
parametrize the boundary. Each of these terms can be estimated in the same way as we did
above. This concludes the proof of the lemma.

If one formally neglects theO (ε)−terms and the nonlinearities in (2.36), and also neglects
the O (ε)−terms in g (x) given by (2.38) , then it follows

u1 ∼ ε
1
2

√
2/µH(x)

cosh(u0) sinh

((√
2(εµ)

1
2

|σ(η)|

)[
|σ(η)| ξ(x)

ε
+ 2
])

=
ε

1
2

4

sinh

((√
2(εµ)

1
2

|σ(η)|

)[
|σ(η)| ξ(x)

ε
+ 2
])√

2/µH(x)

cosh4

((√
2(εµ)

1
2

|σ(η)|

)[
|σ(η)| ξ(x)

2ε
+ 1
])

+ sinh4

((√
2(εµ)

1
2

|σ(η)|

)[
|σ(η)| ξ(x)

2ε
+ 1
])

≡ u01 (x) , (2.45)

and therefore, the leading order contribution to u is given by C + u∗ + εu0 and we can
compute the parameter µ based on it. Since∫

Ω

e
u−C

ε

∫
Ω

e−
u−C

ε =

∫
Ω

eu0
∫
Ω

e−u0 ,

and∫
Ω

eu0 ≃
(∫

Ω

(eu0 − 1)

)
+|Ω| = −

∫
Ω

cosh−2

((√
2(εµ)

1
2

|σ(η)|

)[
|σ(η)| ξ(x)

2ε
+ 1

])
+|Ω| →

ε→0
|Ω| ,

(2.46)∫
Ω

e−u0 ≃
(∫

Ω

(
e−u0 − 1

))
+ |Ω| (2.47)

=

∫
Ω

sinh−2

((√
2(εµ)

1
2

|σ(η)|

)[
|σ(η)| ξ(x)

2ε
+ 1

])
+ |Ω| →

ε→0

−M +N

µ
+ |Ω| ,

we have by (2.27)

µ =

√
MN∫

Ω
e

u−C
ε

∫
Ω
e−

u−C
ε

→
ε→0

√√√√ MN(
−M+N

µ
+ |Ω|

)
|Ω|

, (2.48)
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implying

µ →
ε→0

M

|Ω|
. (2.49)

Henceforth one is led to consider µ to be a uniformly bounded (in ε) parameter. We will
consider it to be a constant and solve equation (2.36) based on this simplifying assumption.
After that we will discuss on how the arguments need to be modified to consider a variable
µ.

Note that, by the definition of c∗ given by (2.27), using formulae (2.46), (2.47) and
replacing u− C by u∗ + εu0, it follows then the trivial equation

c∗ = ln

√
Nec∗ |Ω|

Me−c∗ N
M
|Ω|

,

implying that c∗ is a free parameter that can only be determined from higher order corrections
of u.

Remind that u is then written in Ω in the form

u = C + u∗ + εu0 + εu1 . (2.50)

Since we have also to take into consideration the problem in Ω∗\Ω we will also write there

u = û+ εû0 + εû1 , (2.51)

where û is the potential for the perfect conductor case (that is ∆û = 0, û = 0 in ∂Ω∗

û = C in ∂Ω) and û0 will be taken such that û+ εû0 and its normal derivative in ∂Ω match
continuously with C + u∗ + εu0 = C + ε (c∗ + u0) and its normal derivative respectively.
Matching of the normal derivatives implies

ε
∂û0
∂n

= ε
∂u0
∂n
− ∂û

∂n
= −σ (xS) + σ0 (xS) in ∂Ω ,

where σ0 (xS) is the charge density of the perfect conductor. Let us denote

σ1 (xS) = −
∂û0
∂n

.

Hence one must find two functions û0 and σ1 (xS) so that

û0 = c∗ + u0 = c∗ + 2 ln

(
tanh(

√
2 (εµ)1/2

|σ0 (xS) + εσ1 (xS)|
)

)
in ∂Ω , (2.52)

∂û0
∂n

= −σ1 (xS) in ∂Ω , (2.53)

and û0 is harmonic or its laplacian in Ω∗\Ω does not grow much with ε. Moreover, since∫
∂Ω
σ (xS) = N −M , we must impose∫

∂Ω

σ1 (xS) = 0 , (2.54)

in order to preserve the net amount of charge. This requires an appropriate choice of c∗.
This is done in the following lemma:
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Lemma 7. If ∂Ω ∈ C3+α, then there exists a constant c∗, a function û0 ∈ C2+α
(
Ω∗\Ω

)
and

a C2+α function σ1 (xS) defined in ∂Ω such that conditions (2.52), (2.53) and (2.54) are
satisfied and

|∆û0| ≤ C0ε ,

with C0 independent of ε. The function σ1 (xS) is such that

σ1 (xS) = −
2
∫
∂Ω
N [ln |σ0(xS)|]
M −N

σ0(xS) + 2N [ln |σ0(xS)|] +O(ε) . (2.55)

where N [·] is the Dirichlet to Neumann operator, restricted to ∂Ω and with zero Dirichlet
data at ∂Ω∗, for Laplace equation in Ω∗\Ω.

Proof. We write û0 = û
(1)
0 + û

(2)
0 , where

∆û
(1)
0 = 0 in Ω∗\Ω , (2.56)

û
(1)
0

∣∣∣
∂Ω

= c∗ + 2 ln

(
tanh

√
2 (εµ)1/2

|σ0 (xS)|

)
, (2.57)

û
(1)
0

∣∣∣
∂Ω∗

= 0 , (2.58)

and û
(2)
0 is such that

û
(2)
0

∣∣∣
∂Ω

= 2 ln
tanh

√
2(εµ)1/2

|σ0(xS)+εσ1(xS)|

tanh
√
2(εµ)1/2

|σ0(xS)|

in Ω∗\Ω , (2.59)

∂û
(2)
0

∂n

∣∣∣∣∣
∂Ω

= 0 , (2.60)

û
(2)
0

∣∣∣
∂Ω∗

= 0 . (2.61)

Notice that by classical elliptic theory and the hypothesis of the smoothness of ∂Ω (∈ C3+α),

∂û
(1)
0

∂n
is a C2+α smooth function for every ε > 0. Since we are imposing

∂û
(2)
0

∂n

∣∣∣∣
∂Ω

= 0, then

σ1 (xS) is also a C2+α function. On the other hand the right hand side of (2.59) is O (ε) and

so is the tangential derivative of û
(2)
0 along ∂Ω. By choosing

û
(2)
0 = 2ζ

(
ξ(x)

δ

)
ln

tanh
( √

2(εµ)1/2

|σ0(η(x))+εσ1(η(x))|

)
tanh

(√
2(εµ)1/2

|σ0(η(x))|

) ,

where (ξ(x), η(x)) is the parametrization introduced at the beginning of this section and

x ∈Ω∗\Ω, both conditions (2.60) and (2.61) are satisfied. Notice that û
(2)
0 ∈ C2+α(Ω∗\Ω).

When computing ∆û
(2)
0 , both the derivatives, up to second order, in the ξ and η variables

are bounded and O(ε). Finally, we find the value of c∗ such that condition (2.54) is satisfied.
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This is done through the Dirichlet to Neumann operator N that maps the boundary data
at ∂Ω for the problem

∆v = 0 in Ω∗\Ω,
v|∂Ω = v0, v|∂Ω∗ = 0 ,

to
∂v

∂n

∣∣∣∣
∂Ω

= N v0 .

Then

σ1 (xS) = −c∗N 1− 2N

[
ln

(
tanh(

√
2 (εµ)1/2

|σ0 (xS)|
)

)]
,

and condition (2.54) implies then

c∗ = −
2
∫
∂Ω
N
[
ln
(
tanh(

√
2(εµ)1/2

|σ0(xS)|
)
)]

∫
∂Ω
N 1

= − log(2µε) +
2
∫
∂Ω
N [ln |σ0 (xS)|]∫
∂Ω
N 1

+O(ε) .

Notice that, by Green’s first identity,
∫
∂Ω
N 1 =

∫
∂Ω

1N 1 = −
∫
Ω∗\Ω u∆u −

∫
Ω∗\Ω |∇u|

2 =

−
∫
Ω∗\Ω |∇u|

2 < 0 with u harmonic and such that u = 1 at ∂Ω, u = 0 at ∂Ω∗. Henceforth

formula (2.55) follows. This ends the proof of the lemma.

By the previous lemma, the functions u1 and û1 defined in (2.50) and (2.51) must be
found so that they match continuously and differentiably across ∂Ω. Since ∆û1 = −∆û0 at
Ω∗\Ω, we can write for

ū1 =

{
u1 x ∈ Ω
û1 x ∈ Ω∗\Ω

}
,

using (2.36), the following equation:

Lu1 ≡ ε∆u1 −
{

2µ cosh(u0) in Ω
0 in Ω∗\Ω

}
u1 =

{
g(x) +G [u0, u1] in Ω
−ε∆û0 in Ω∗\Ω

}
, (2.62)

defined now in Ω∗ with boundary condition u1|∂Ω∗ = 0. Our strategy will be to design a
fixed point argument and we need to solve first the following auxiliary problem:

Lu ≡ ε∆u−
{

2µ cosh(u0) in Ω
0 in Ω∗\Ω

}
u = H(x) in Ω∗ , (2.63)

u = 0 on ∂Ω∗ , (2.64)

with the hypothesis that

|H(x)| ≤ ||H||L∞(Ω) ≤ C for any x ∈ Ω , (2.65)

and
|H(x)| ≤ Cε2 for any x ∈ Ω∗\Ω , (2.66)

for some constant C independent of ε. Notice that the problem (2.63), (2.64) admits a weak
formulation in the form: find v in H1

0 (Ω
∗) such that
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∫
Ω∗
(ε∇u · ∇v +G (x)uv)dx = −

∫
Ω∗
H (x) vdx , (2.67)

where

G (x) =

{
2µ cosh (u0) in Ω

0 in Ω∗\Ω ,

for any v ∈ H1
0 (Ω

∗).

Lemma 8. If H(x) satisfies (2.65), (2.66), then there exists a unique weak solution to
problem (2.67) in H1

0 (Ω
∗) and the solution is such that

||u||Yε ≡
(
ε

∫
Ω∗
|∇u|2 dx+ ε

∫
Ω∗\Ω
|u|2 dx+

∫
Ω

u2dx

) 1
2

≤ C(||H||L∞(Ω) + ε)

for some constant C independent of ε.

Proof. Lax-Milgram theorem, and the fact that Ω∗ is bounded so that ||∇u||L2(Ω∗) ≥ C ||u||L2(Ω∗),
yield existence of a unique solution to the weak problem (2.67). By taking v = u in (2.67)
we obtain

ε

∫
Ω∗
|∇u|2 dx+ 2µ

∫
Ω

cosh (u0)u
2dx = −

∫
Ω∗
H(x)udx .

Since cosh (u0) ≥ 1, we can write

C

(
ε

∫
Ω∗
|∇u|2 dx+

∫
Ω

u2dx

)
≤ −

∫
Ω∗
H(x)udx . (2.68)

By Poincaré’s inequality,
∫
Ω∗ u

2dx ≤ C
∫
Ω∗ |∇u|2 dx and therefore

C ||u||2L2(Ω∗,wdx) ≤ −
∫
Ω∗
H(x)udx , (2.69)

for some constant C independent of ε and where w (x) =

{
ε x ∈ Ω∗\Ω
1 x ∈ Ω

. By (2.68) and

(2.69) then

||u||2Yε ≤ C

∣∣∣∣∫
Ω∗
H(x)udx

∣∣∣∣ . (2.70)

Using Hölder’s inequality at the right hand side of (2.70) we obtain∣∣∣∣∫
Ω∗
H(x)udx

∣∣∣∣ ≤ ∫
Ω

|H(x)u| dx+
∫
Ω∗\Ω
|H(x)u| dx

≤ ||H||L∞(Ω)

∫
Ω

|u| dx+ Cε2
∫
Ω∗\Ω
|u| dx

≤ ||H||L∞(Ω) |Ω|
1
2 ||u||L2(Ω) + Cε2 |Ω∗\Ω|

1
2 ||u||L2(Ω∗\Ω)

≤ C(||H||L∞(Ω) + ε) ||u||Yε ,

to conclude
||u||Yε ≤ C(||H||L∞(Ω) + ε) ,

for some constant C independent of ε.
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Next we will obtain suitable L∞ estimates for the weak solution defined by (2.63),(2.64).
More precisely, we prove the following lemma:

Lemma 9. The weak solution of (2.63),(2.64) satisfies the following inequality

||u||L∞(Ω∗) ≤ Cε+

∣∣∣∣∣∣∣∣ H (x)

µ cosh (u0 (x))

∣∣∣∣∣∣∣∣
L∞(Ω)

. (2.71)

Proof. We write u = uΩ + uΩc where

LuΩ = H(x)χΩ(x) in Ω∗ , (2.72)

uΩ = 0 on ∂Ω∗ ,

and

LuΩc = H(x)χΩc(x) in Ω∗ , (2.73)

uΩc = 0 on ∂Ω∗ .

Since the right hand side of (2.73) is bounded by Cε2 (by (2.66)), elliptic theory yields

ε ||uΩc ||W 2,p(Ω∗) ≤ Cε2 ,

for any p <∞ and hence, by Sobolev embeddings,

||uΩc||L∞(Ω∗) ≤ Cε . (2.74)

In order to estimate the L∞ norm of uΩ we write

uΩ = sup
Ω

|H (x)|
µ cosh (u0 (x))

+ w , (2.75)

with w satisfying then

Lw =

(
H(x) + cosh (u0 (x)) sup

Ω

|H (x)|
µ cosh (u0 (x))

)
χΩ(x) ≥ 0 ,

and

w = − sup
Ω

|H (x)|
µ cosh (u0 (x))

at ∂Ω∗.

By the weak maximum principle (Theorem 8.1, [36]), supw ≤
(
− supΩ

|H(x)|
µ cosh(u0(x))

)+
= 0.

Therefore

uΩ ≤ sup
Ω

|H (x)|
µ cosh (u0 (x))

. (2.76)

Analogously, by replacing the sup by inf in (2.75) one can show

uΩ ≥ inf
Ω

H (x)

µ cosh (u0 (x))
, (2.77)

and hence from (2.74), (2.76), (2.77) inequality (2.71) follows.
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We return next to the nonlinear problem (2.62) and use the estimate (2.71) to estimate

||ū1||L∞(Ω∗) ≤ Cε+

∣∣∣∣∣∣∣∣ g (x)

µ cosh (u0 (x))

∣∣∣∣∣∣∣∣
L∞(Ω)

+

∣∣∣∣∣∣∣∣G [u0 (x) , u1 (x)]

µ cosh (u0 (x))

∣∣∣∣∣∣∣∣
L∞(Ω)

. (2.78)

The first term of the right hand side of (2.78) can be estimated, using lemma 6 and the

boundedness of the function 1
sinh(2α) cosh(u0)

= sinh(2α)

4(cosh4(α)+sinh4(α))
, by Cε1/2. Since the nonlinear

term G [u0, u1] given by (2.35) grows quadratically with u1 for u1 sufficiently small we can
deduce from (2.78) the estimate

||ū1||L∞(Ω∗) ≤ Cε+ Cε1/2 + ||u1||2L∞(Ω) , (2.79)

and hence ||ū1||L∞(Ω∗) ≤ 2Cε1/2 for ε sufficiently small. Of course, we are relying on the
existence of solution to the nonlinear problem and the boundedness of ||ū1||L∞(Ω∗) in order
to write inequality (2.79). These facts follow from the general existence and uniqueness
theorem proved in Section 2.2, or can be shown by using a fixed point argument for ε
sufficiently small. This is done in the following theorem:

Theorem 10. For ε < ε with ε sufficiently small, there exists a unique bounded solution ū1
to equation (2.62) and it satisfies

||ū1||L∞(Ω∗) ≤ Cε1/2 ,

with C being a constant independent of ε.

Proof. We consider the mapping T that assigns to a function v (in a suitable space to be
defined below) the solution to the problem

Lu1 =
{
g(x) +G [u0, v] in Ω
−ε∆û0 in Ω∗\Ω

}
, (2.80)

u1|∂Ω∗ = 0 ,

and show that it has a unique fixed point if ε is sufficiently small. The estimates obtained
in the previous lemmas suggest to look for the solution in the space

Xε =
{
u1 : Ω

∗ → R/ ||u1||Xε
≡ ||u1||Yε + ||u1||L∞(Ω∗) <∞

}
.

We therefore have to show, in order to apply Banach’s fixed point theorem, that T maps a
closed ball of radius εα (with 1

2
< α < 1) into itself and is a contraction for ε sufficiently

small. If we denote by H (x) the right hand side of (2.80) then the following estimates follow:
1)

||H (x)||L∞(Ω) ≤ ||g||L∞(Ω) + ||G [u0, v]||L∞(Ω) (2.81)

≤ C + ||G [u0, v]||L∞(Ω) ≤ C
(
e||v||L∞(Ω) − ||v||L∞(Ω)

)
,
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where we have used

||G [u0, v]||L∞(Ω) ≤ ||µe
u0(ev − 1− v)||L∞(Ω) +

∣∣∣∣µe−u0(e−v − 1 + v)
∣∣∣∣
L∞(Ω)

≤ C

2
(||ev − 1− v||L∞(Ω) +

∣∣∣∣e−v − 1 + v
∣∣∣∣
L∞(Ω)

)

≤ C(e||v||L∞(Ω) − 1− ||v||L∞(Ω)) ,

2)
||H (x)||L∞(Ω∗\Ω) = ||−ε∆û0||L∞(Ω∗\Ω) ≤ Cε2 , (2.82)

and 3)∣∣∣∣∣∣∣∣ H (x)

µ cosh (u0 (x))

∣∣∣∣∣∣∣∣
L∞(Ω)

≤
∣∣∣∣∣∣∣∣ g (x)

µ cosh (u0 (x))

∣∣∣∣∣∣∣∣
L∞(Ω)

+

∣∣∣∣∣∣∣∣G [u0 (x) , v (x)]

µ cosh (u0 (x))

∣∣∣∣∣∣∣∣
L∞(Ω)

(2.83)

≤ Cε
1
2 + C(e||v||L∞(Ω) − 1− ||v||L∞(Ω)) .

Using (2.81), (2.82) and Lemma 8 we obtain

||u||Yε ≤ C(ε2 + e||v||L∞(Ω) − ||v||L∞(Ω)) ,

and using (2.83) and Lemma 9 we obtain

||u||L∞(Ω∗) ≤ C(ε+ ε
1
2 + e||v||L∞(Ω) − 1− ||v||L∞(Ω)) ,

so that
||u||Xε

≤ C(ε+ ε
1
2 + e||v||L∞(Ω) − 1− ||v||L∞(Ω)) .

Hence, if ||v||L∞(Ω) ≤ ε1/4, then

||u||Xε
≤ 2Cε

1
2 < ε1/4 , (2.84)

for ε sufficiently small. This implies that the mapping T maps the ball of radius ε1/4 in the
Xε topology into itself. It is also a contraction: the function

U ≡ Tv1 − Tv2 ,

satisfies

LU =

{
G [u0, v1]−G [u0, v2] in Ω

0 in Ω∗\Ω

}
,

U |∂Ω∗ = 0 .

Notice that for ||v1||L∞(Ω) , ||v2||L∞(Ω) ≤ ε
1
4 ,

||G [u0, v1]−G [u0, v2]||L∞(Ω)

≤ C
(
||ev1 − ev2 − (v1 − v2)||L∞(Ω) +

∣∣∣∣e−v1 − e−v2 + (v1 − v2)
∣∣∣∣
L∞(Ω)

)
≤ 2C(emax(||v1||L∞(Ω),||v2||L∞(Ω)) − 1) ||v1 − v2||L∞(Ω)

≤ 2C(eε
1
4 − 1) ||v1 − v2||L∞(Ω) ,
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which implies, by lemmas 9, 8

||U ||Xε
≤ 2C(eε

1
4 − 1) ||v1 − v2||L∞(Ω) < ε1/2 ||v1 − v2||Xε

. (2.85)

Therefore, since T applies the ball of radius ε1/4 into itself and is a contraction by inequality
(2.85) there exist a unique solution to equation (2.62) for ε sufficiently small and, by (2.84),

||ū1||L∞(Ω∗) ≤ ||ū1||Xε
≤ 2Cε1/2 ,

where C is a constant independent of ε.

By inserting u into the right hand side of (2.15) we find that the charge density is then

ρ(x) = 4µ

cosh

((√
2(εµ)

1
2

|σ(η(x))|

)[
|σ(η(x))| ξ(x)

ε
+ 2
])

sinh2

((√
2(εµ)

1
2

|σ(η(x))|

)[
|σ(η(x))| ξ(x)

ε
+ 2
]) +O(1) , (2.86)

for ξ < δ and ρ = O(e−O(ε−
1
2 )) for ξ ≃ δ. Note that, for ξ . o(ε

1
2 ) one can approximate

(2.86) by

ρ(x) = σ(η(x))
|σ(η(x))|

2ε

1[
|σ(η(x))| ξ(x)

2ε
+ 1
]2 +O(1) .

In the arguments above we have only assumed µ to be bounded. Since the solution
obtained is L∞, it turns out that the correction to the value of µ (as defined by the left hand
side of (2.48)) given by the right hand side of (2.49) is uniformly bounded by Cε. One can
then easily incorporate a variable µ into the fixed point arguments above and complete the
proof of Theorem 1.

2.3.3 Curvature corrections to charge density and Maxwell stress

Our goal in this section is to obtain the correction that curvature produces both in the charge
density and the so-called Maxwell stress tensor at ∂Ω. The Maxwell stress is a second rank
tensor and represents the interaction between electric forces and mechanical momentum and
adds to the viscous stress tensor when imposing mechanical balance at ∂Ω as a boundary
condition for the evolution of a charged fluid mass that occupies Ω. Its definition is

Tij = ε0εr

(
EiEj −

1

2
δij |E|2

)
,

where E = −∇V . By nondimensionalizing by (2.7), we find

Tij =
(ez)2

ε0εrl3
Tij
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with

Tij = EiEj −
1

2
δij |E|2 ,

E = −∇u .

In the local system of coordinates formed by the normal vector n at a point x ∈ ∂Ω and two
tangent vectors (t1, t2) one would have

Tnn = E2
n −

1

2
δij |E|2 ,

Ttin = EtiEn .

In the previous section we have proven that the correction to the potential u = C+u∗+εu0
provided by εu1 is small in comparison to εu0. Formally, by formula (2.45), such correction
is at leading order given by

u01(x) =
ε

1
2

4

sinh(2α)
√
2/µH(x)

cosh4 α+ sinh4 α
,

with

α =

(√
2(εµ)

1
2

|σ(η(x))|

)[
|σ(η(x))| ξ(x)

2ε
+ 1

]
.

Notice that u01 is O(ε
1
2 ) and includes a factor depending on the curvature of ∂Ω.

Remind that the charge density is given by

ρ (x) = −µ(eu0eu1 − e−u0e−u1) ≃ −µ(eu0eu01 − e−u0e−u01)

= −µ
(
eu0 − e−u0

)
− µ

(
eu0 + e−u0

)
u01 − µ

(
eu0 − e−u0

2

)(
u01
)2

+ . . . (2.87)

≡ ρ0 (x) + ρ1 (x) + ρ2 (x) + . . . . (2.88)

The first term at the right hand side of (2.88), ρ0 (x), is the charge density due to the
boundary layer described in the previous sections and given by the first term at the right
hand side of (2.86). The second term, ρ1 (x) is −2µ cosh (u0)u01, which by formula (2.45) is

ρ1 (x) = −ε
1
2

√
2µH(x)

sinh

((√
2(εµ)

1
2

|σ(η(x))|

)[
|σ(η(x))| ξ(x)

ε
+ 2
]) ,

and includes a correction due to curvature. For ε≪ 1 and ξ (x)≪ ε1/2, one can approximate

ρ (x) ≃ ρ0 (x) + ρ1 (x) ≃
2

ε

σ(η(x)) |σ(η(x))|(
|σ(η(x))| ξ(x)

ε
+ 2
)2 − |σ(η(x))|H(x)(

|σ(η(x))| ξ(x)
ε

+ 2
) . (2.89)

We can also compute the electric field in the direction normal to ∂Ω as

En = −∂u
∂n
≃ −ε∂u0

∂ξ
− ε∂u

0
1

∂ξ
+ . . . ≡ E0

n + E1
n + . . . . (2.90)
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The first term at the right hand side of (2.90) E0
n, is given by formula (2.44) and the

second term at the right hand side of (2.90) E1
n is the ξ−derivative of u01 with a minus sign.

When ξ (x)≪ ε1/2 and ε≪ 1 one can then write

En ≃ −
2σ(η(x))(

|σ(η(x))| ξ
ε
+ 2
) − ε

2
H(x) . (2.91)

Hence, at ∂Ω,

Tnn =

(
σ2(η(x))

2
+
ε

2
σ(η(x))H(x)

)
+O(ε2) .

In order to compute Et, the tangential component of the electric field, we compute the
tangential derivative of the potential, up to O(ε), using formula (2.34):

Et ≃ −ε
d

ds
(2 log tanhα(s)) = −εd (2 log tanhα)

dα

dα

ds
,

with α(s) =
√
2(εµ)

1
2

|σ(s)| and s the arclength parameter in the direction t. Hence

Et ≃ −ε
2
(
1− tanh2 α

)
tanhα

dα

ds
= ε

2 |σ|s
|σ|

+O(ε2) .

We conclude then
Ttin = 2ε |σ|si +O(ε2) .

2.4 Numerical simulations

In this section we present numerical solutions to problem (2.13),(2.14) in various geometries
and in order to verify the asymptotic expansions deduced in previous sections.

2.4.1 The boundary layer in spherical domains

We consider the problem (2.13),(2.14) with Ω∗ = R3 and Ω = {||x|| ≤ 1}. In this situation
the potential û for the perfect conductor is

û =

{
C for |x| ≤ 1
C
r
for |x| > 1

,

and the Poisson-Boltzmann equation is in spherical coordinates:

1

r2
d

dr

(
r2
du

dr

)
=


M e

u
ε∫

r≤1

e
u
ε

−N e−
u
ε∫

r≤1

e−
u
ε

for r ≤ 1

0 for r > 1

, (2.92)

u→ 0 as r →∞ ,
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where the total charge N −M equals the charge of the perfect conductor, i.e. 4πC.

We have solved numerically, by means of a Runge-Kutta algorithm, equation (2.92) with
M = 1, N = 1

2
and with Ω being the sphere of radius 1. Based on this solutions we computed

the right hand side of (2.92), i.e. minus the charge density ρ (r), in Ω. According to formula
(2.32) we should be able to write, locally near r = 1,

|ρ (r)| = ρmax
1[

(1−r)ρmax

|σ| + 1
]2 , (2.93)

with ρmax = σ2

2ε
. Since M − N = 1

2
, we have |σ| = 1

8π
and ρmax = 1

128π2ε
. In figure 2.2 we

represent the profiles |ρ (r)| near r = 1 for various ε and the obtained values of ρ−1
max as a

function of ε (together with the straight line 128π2ε to which ρ−1
max converges asymptotically as

ε tends to zero). In figure 2.3 we represent the profiles of |ρ(r)|
ρmax

as a function of ξ = (1− r) ρmax

together with the curve
[
ξ
|σ| + 1

]−2

to which they clearly converge as ε→ 0 . Therefore, the

charge density profiles converge to the expression (2.93).
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Figure 2.2: Charge density profiles near r = 1 for various values of ε. The maximum density
is achieved for r = 1 and increases with decreasing ε. Inset: ρ−1

max as a function of ε and
comparison with the asymptotic value for ε≪ 1.

2.4.2 General domains: finite elements approximations

If one considers a domain Ω without spherical symmetry, then the structure of the charge
double layer should change along the boundary of Ω. In order to test this, and compare with
our analytical predictions in previous sections, we use a Finite Elements Method to compute
the solutions to Poisson-Boltzmann equation written in the form

∆u =

[
µ sinh

u− u∗

ε

]
χΩ in Ω∗ , (2.94)
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Figure 2.3: Rescaled profiles of |ρ (r)| and comparison with the theoretical self-similar profile
(in black dashed lines)

for different values of ε and with Ω being the ellipse

x2

4
+ y2 <

1

16
,

and Ω∗ the rectangle [−1, 1] × [−1, 1]. χΩ is the characteristic function supported in Ω.
Notice that, by writing µ sinh u−u∗

ε
= µ

2e
u∗
ε
e

u
ε − µ

2e−
u∗
ε
e−

u
ε and defining M = µ

2e
u∗
ε

∫
Ω
e

u
ε ,

N = µ

2e−
u∗
ε

∫
Ω
e−

u
ε we can put equation (2.94) in the maybe more familiar form (2.13). We

prefer the form (2.94) which lacks integral terms and is much easier to implement numerically.

We have used a nonlinear finite elements PDE solver with adaptive local refinement
provided in the PDE toolbox of Matlab. The refinement is such that new elements are
introduced at the discontinuities of the derivatives. These lie precesily at the interface ∂Ω,
where most of the charge is concentrated. Our meshes have a number of elements up to
2 · 106, so that we are able to achieve large precission. The nonlinear solver is based on an
iterative process of the gradient descent type.

We have computed the solution to (2.94) with u = 0 at ∂Ω∗. The value of u∗ considered
is 0.009 and the value of µ is −1. The values of ε are 0.05, 0.02, 0.01 and 0.005.

In Figure 2.4 we represent, together with ∂Ω (thick black curve), the level lines of the
electric potential u for ε = 0.05, 0.02, 0.01, 0.005. Notice that, as ε decreases, the level lines
tend to leave the interior of Ω. This implies that u tends to be constant in the interior of
Ω as ε decreases and it is only close to ∂Ω that it experiences some changes. Notice also
that, for ε = 0.005, only one level line crosses ∂Ω while for ε = 0.05 four level lines cross ∂Ω.
Hence, the potential at ∂Ω experiences the stronger changes from point to point along ∂Ω
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Figure 2.4: Level lines for the potential u solution to the Poisson-Boltzmann equation with
ε = 0.05, 0.02, 0.01, 0.005 (from left to right and top to bottom)
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when ε is large. It is only when ε is small that level lines for the potential tend to coincide
with ∂Ω near the boundary. This means, of course, that the solutions are converging to
those of a perfect conductor where the potential is constant in the whole Ω. In order to
further verify this, we represent in Figure 2.5 the profiles for the potential u along the lines
{y = 0, x > 0} and {x = 0, y > 0} for ε = 0.05, 0.02, 0.01, 0.005 and compare them with the
profile for the perfect conductor (that we have also computed numerically by solving ∆u = 0
in Ω∗\Ω subject to the boundary conditions u = u∗ at ∂Ω and u = 0 at ∂Ω∗). As one can
expect, the profiles approach, as ε→ 0, to those of the perfect conductor.
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Figure 2.5: Profiles of the electrostatic potential u along the mayor axis (left) and minor
axes (right) for ε = 0.05, 0.02, 0.01, 0.005 together with the solution for a perfect conductor
that formally corresponds to ε = 0

Figure 2.6: Profiles of the charge density ρ along the mayor axis (left) and minor axes (right)
for ε = 0.05, 0.02, 0.01, 0.005

In order to check whether the charge density, defined as the right hand side of (2.94)
with a minus sign, follows the asymptotic laws described in previous sections or not, we
compute it along the major and the minor axis of the ellipse. In Figure 2.6 we represent
the charge density along the major axis (left) and the minor axis (right) for ε = 0.05, 0.02,
0.01, 0.005. Notice that, as ε decreases, the charge tends to leave the center of the drop
and density increases close to ∂Ω. The profiles for the density do follow a selfsimilar law
according to our theoretical results above: if ε is sufficiently small, then the charge density is
given by equation (2.32). We consider, at leading order, σ the surface charge density in the

59



case of the perfect conductor and denote ρmax =
σ2

2ε
and ξ = ρmax(0.5− x) when considering

charge along the major axis and ξ = ρmax(0.25−y) when considering charge along the minor
axis. Notice that σ changes from point to point along ∂Ω and is larger in absolute value
at (x, y) = (0.5, 0) than at (x, y) = (0, 0.25) due to the higher curvature of ∂Ω at (0.5, 0).
Hence, according to equation (2.32),

ρ

ρmax

≃ 1[
ξ
|σ| + 1

]2 ≡ f

(
ξ

|σ|

)
.

We have represented in Figure 2.7 the profiles of |ρ|
ρmax

vs. ξ for ε = 0.05, 0.02, 0.01, 0.005.
As we can observe, both in the case of the profiles at the minor axis and the major axis,
the profiles tend to converge to a selfsimilar profile. Both profiles look similar except for a
scaling factor which is due to de different values of |σ| at (0.5, 0) and (0, 0.25). This is in
agreement with the asymptotic laws for the charge distribution, as a function of |σ| proved
in this chapter.
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Figure 2.7: Rescaled charge density profiles along the mayor and minor axes of the ellipse

2.5 Conclusions

In this chapter we have deduced asymptotic formulae for the distribution of charge of an
ionic solution near its interface with an external medium. Our main assumptions were 1)
all ionic species are in dynamic equilibrium and 2) a dimensionless parameter ε which is
inversely proportional to ion mobilities is very small. Our expansions contain corrections
due to the geometry of the interface and hence describe possible accumulations of charge
at certain regions of the interface depending on their curvature. As an application, we will
focus in future works, on the case of drops of ionic solutions subject to external electric fields
and on how the finite ion mobility introduces corrections on the dynamic behaviour of the
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drop with respect to the studied case of infinite ion mobility (that is, the case in which the
drop in the liquid is a perfect conductor).

One particular issue that we will analyze next is the formation of the so-called Rayleigh
jets that appear when a drop contains a supercritical amount of electric charges (cf. [20]).
We conjecture that Rayleigh jets appear due to the corrections introduced by considering
a finite ion mobility or equivalently, by replacing the Maxwell stress tensor for a perfect
conductor by the expressions obtained in this chapter.
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Chapter 3

Coupling of Poisson-Boltzmann
equation with Stokes system: The
formation of Rayleigh jets

3.1 Introduction

In this chapter we will couple the electrokinetics as described by Poisson-Boltzmann approx-
imation (see previous Chapter and [28]) with the fluid motion described by Navier-Stokes
equations (see [46], [19]). One of our main motivations is to describe the so-called Rayleigh
jets.

Rayleigh jets appear from charged droplets once the charge overcomes some critical value.
In the case of a perfectly conducting liquid, the critical charge Q is such that the Rayleigh
fissibility ratio X, defined as

X =
Q2

32γπ2ε0R3
0

, (3.1)

is larger than 1. In (3.1), γ is the surface tension coefficient, R0 is the radius of the drop
and ε0 is the dielectric constant outside the drop.

When the drop’s charge is overcritical, the drop deforms into a prolate spheroid (cf. [20],
[6], [7] for experimental results and [26], [12] for numerical simulations) and conical tips tend
to develop at the regions of maximum curvature. When the fluid is a perfect conductor and
is modeled under Stokes approximation, it was shown in [26], [12] that conical tips develop
in finite time (see figure 3.2). These conical tips, called dynamic Taylor cones (analogous
to the static Taylor cones first described in [67]), present a semiangle around 20o − 25o,
which coincides almost exactly with the experimental measurements. Nevertheless, in the
experimental observations, very fast and thin jets are produced from the conical tips (see
Figures 3.1, 3.2). This is a fact that cannot be reproduced in [26], [12] under the Stokes and
perfect conductor assumptions. For perfect and non-viscous fluids, jets have been reported
recently in [34] where they use the level set techniques (cf. [63]) to develop an Eulerian
potential flow model together an axisymmetric boundary integral calculations. Nevertheless,
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for very small drops (of the order of 100 µm or smaller), Reynolds number can be very small
(of the order of 10−4 or smaller), so that it seems necessary to investigate the formation of
jets under Stokes approximation. Our hypothesis is that it is the finite electric conductivity
and the presence of Debye layers in electrolyte solutions what induces the production of
Rayleigh jets. The first effect, finite conductivity, implies that electric charges do not move
infinitely fast inside the liquid medium. The second effect, finiteness of Debye layer, implies
that positive and negative charges do not balance exactly inside the drop so that the liquid
is electrically neutral at the bulk of the fluid. Instead, they form a thin layer (the so-called
Debye layer) where there is a nonzero net charge.

We will show in this chapter that the hypothesis sketched above does indeed lie at
the heart of the formation of Rayleigh jets and will be used to compute the jet’s main
characteristics such as velocity and size. Our results will also be used to discuss Rayleigh
jet’s features dependence on temperature and ion concentration.

Figure 3.1: The formation of Rayleigh jets as observed in [20]. After the jet is formed in c)
the drop loses an important part of its charges and relaxes to spherical shape.

3.2 Physical setting and formulation

3.2.1 Introduction

The laws of fluid motion for microfluidic systems are not any different from those that
govern large scale systems such as the oceanic currents on intercontinental scales. However,
the relative importance of different forces and effects change dramatically as we go from
macro to micro scales. For example, surface tension forces and electrostatics play no role at
all in the study of ocean currents but are enormously important in the world of microfluidics.

In microfluidics, relevant physical dimensions are sufficiently large in comparison to
atomic scales that it is permissible to treat the fluid as if it were a continuum. Thus,
the fluid velocity v and pressure p are regarded as continuous functions of position x and
time t, and they obey the incompressible Navier-Stokes equations with external body forces
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Figure 3.2: Details of the Rayleigh jets from the experiments in [7]. Note that the drop’s
radius is of the order of 10 µm

Fe acting per unit volume (e.g., gravity, electric, electromagnetic or centrifugal force).

ρ0 (∂tv + v · ∇v) = −∇p+ µ∆v + Fe. (3.2)

This is supplemented by the continuity equation which takes into account the fact that in a
liquid the density changes are slight:

∇ · v = 0. (3.3)

In the above, ρ0 is the (constant) density of the fluid, µ the viscosity constant. The first
equation (3.2) is the momentum equation and is an expression of Newton’s second law of
motion. The second equation (3.3) is the continuity equation expressing conservation of
mass.

The relative size of the term on the left hand side of equation (3.2) (due to fluid inertia)
to the second term on the right hand side (due to viscosity) is characterized by the Reynolds
number

Re =
ULρ0
µ

,

where U and L denote a characteristic velocity and length for the flow. In most applications
of microfluidics, Re ≪ 1, in some applications, Re ∼ 1. By contrast, in large scale flows
(aircraft engines, geophysical flows etc.) Re≫ 1. We will consider masses of fluid at a very
small length scale so that Re≪ 1 and the left hand side of (3.2) which corresponds to fluid
inertia can either be neglected, or treated as a small perturbation. In the former case, we
arrive at the Stokes flow equations:

−∇p+ µ∆v + Fe = 0, (3.4)
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which is often referred to as slow, creeping or highly viscous flow. All of these terms mean
the same thing, namely Re ≪ 1. The unknown scalar field p in (3.4) is determined by the
constraint provided by (3.3).

Electrokinetic, as we mentioned before, refers to mechanical effects that arise due to the
motion of ions in liquids. The working fluid in microfluidic systems is normally water which
contains ions of both signs due to dissociated water molecules or other ionic components:
acids, salts, and molecules with dissociable charged groups. Normally, a volume element of
such a fluid considered “infinitesimal” in the continuum view point still contains a sufficiently
large number of ions of either sign for statistical fluctuations to be unimportant for the fluid
element to be considered charge neutral. Therefore, the net algebraic transfer of momentum
due to any ambient electric field is also zero (even though a non-zero electric current may
exist in the fluid due to the ordered motion of these ions). Electrokinetic effects arise when
this balance of positive and negative charges is disturbed due to external factors as we studied
when we considered the Poisson-Boltzmann equation. In the macroscopic description, the
drop consists of a viscous incompressible fluid containing ions, which are electrically charged
and produce stresses on the fluid through the so-called Maxwell stress tensor:

τij = EiEj −
1

2
δij |E|2 ,

where E = −∇V . Then Fe is the divergence of the Maxwell stress tensor τ :

Fi = τij,j,

using Einstein notation for brevity in the formulas. We can write

Fi = (EiEj −
1

2
EkEkδij),j = Ei,jEj + Ej,jEi − EkEk,i = VijVi + ρEi − VkVki = ρEi.

Therefore the fluid in the so called Debye Layer, experienced an electrical force with volume
density Fe = ρE with ρ the electric charge density and E = −∇V the local electric field
with V the electric potential.

3.2.2 The model

Let us consider now a droplet Ω (t) of a viscous incompressible fluid containing ions electri-
cally charged, the droplet is suspended in a dielectric and also incompressible viscous fluid
Ω∗ (t) \Ω (t), which is in contact with electrodes to zero potential, and which we would like
to take infinite. In this case, the boundary ∂Ω(t) will move with the flow, so we have to take
into account also the exterior fluid dynamics.

Let us remind that the mathematical formulation corresponding to the model of the
electric potential V in Ω∗ (t) that consists of an electrolitic droplet Ω (t) surrounded by a
dielectric fluid Ω∗ (t) \Ω (t), is the Poisson-Boltzmann equation

∆V (x,t) =
M (x,t)∫
Ω
eV/εdx

eV/ε − N (x,t)∫
Ω
e−V/εdx

e−V/ε in Ω∗ (t) , (3.5)

V (x,t) −→ O
(
|x|−1) on ∂Ω∗ (t) ,
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with

M (x,t) =

{
M x ∈ Ω (t)
0 x ∈ Ω∗ (t) \Ω (t)

and N (x) =

{
N x ∈ Ω (t)
0 x ∈ Ω∗ (t) \Ω (t)

,

that, as we have seen, comes from an adimensionalization of the physical problem.

We had assumed that the droplet contains a net amount of electric charge Q, so if we
denote σ the surface charge density in the droplet Ω (t), we know that σ (x, t) = − ∂V

∂n

∣∣
∂Ω(t)

and satisfies ∫
∂Ω(t)

σ (x,t) dS (x) = Q. (3.6)

Q constant in time because of the charge conservation law.

Then the model governing the liquid flow in the droplet Ω (t) and in the exterior fluid
is the Stokes system including the electric body force per unit volume ρE = −ρ∇V in the
momentum equation for the droplet:

−∇p(1) (x,t) + µ1∆v(1) (x,t) + ρ (x,t)E (x,t) = 0 x ∈ Ω (t) , (3.7)

−∇p(2) (x,t) + µ2∆v(2) (x,t) = 0 x ∈ Ω∗ (t) \Ω (t), (3.8)

∇ · v(k) (x,t) = 0 x ̸∈ ∂Ω (t) , k = 1, 2, (3.9)

where v(k) is the velocity field, p(k) is the pressure, µk the viscosity for k = 1, 2 , the respective
inner and outer viscosities.

Figure 3.3: Two fluids interacting.

The normal component of the velocity has to be continuous across the boundary and we
need

v(1) · n = v(2) · n ≡ v · n on ∂Ω (t) ,

The dependence on t comes from the motion of the boundary ∂Ω (t) given by the equation

dx

dt
· n = v (x,t) · n, (3.10)

with n exterior to Ω (t), expressing the fact that the surface of the drop moves in the direction
of its normal, following the normal component of the velocity field. Note that the tangential
velocity does not change the geometry of ∂Ω (t) but only redistributes its points.
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3.2.3 Boundary conditions

As we have seen, to describe a flow in the presence of an interface we must consider the flow
on each side of the interface separately, and then require proper matching conditions for the
velocity. Now we will study which are the conditions for the surface forces, in fact we will
find a constitutive relation for the discontinuity in the interfacial surface forces.

Two types of forces are exerted on any piece of material: homogeneous forces acting
on its volume, and surface forces acting on its boundary. We have already talked about
the body forces acting in our two fluids, now we will determine the surface forces exerted
on ∂Ω (t) and the suitable conditions on ∂Ω∗ (t) to establish completely the mathematical
problem that will allow us to study the evolution of the boundary of the electrolitic droplet.

Consider an infinitesimal surface drawn in the interior of a fluid or at the boundaries,
lying in a plane that is perpendicular to the unit vector n, that is pointing outside Ω (t).
The force per unit area acting on this surface is denoted by f and called the traction. By
definition, the traction depends on position in the fluid x, and on the orientation of the
infinitesimal surface determined by the unit vector n. To signify this dependence, we write
f (x,n).

Analysis reveals [55] that the traction vector depends linearly on the normal vector

fj (x,n) = Tij (x)ni, (3.11)

where Tij is the Cauchy stress tensor; summation over the repeated index i in the spatial
coordinates x, y and z is implied on the right-hand side of (3.11).

We had assumed that our viscous fluids are Newtonian and incompressible, so the stress
tensor Tij is related to the pressure p and to the rate-of-deformation tensor by the linear
constitutive equation

T
(k)
ij = −δijp(k) + µk

(
∂v

(k)
i

∂xj
+
∂v

(k)
j

∂xi

)
k = 1, 2,

expressing the effects of the forces acting in a fluid: pressure, that always acts in the direction
of n corresponding to the diagonal part of T

(k)
ij , and viscous friction or viscosity, that for being

a force needs to be shear, i.e. a gradient of the velocity. The general expression characterizing
the amount of shearing is the symmetric part of the rate-of-deformation tensor

e(k)=
∂v

(k)
i

∂xj
+
∂v

(k)
j

∂xi
.

For an isotropic fluid, as in our case, the viscous contribution to T
(k)
ij is simply proportional

to e(k), the constant of proportionality being the viscosity µk.

Traction jump across a fluid interface

Let us consider a thin fluid layer straddling a three dimensional surface, as illustrated in
Figure 3.4. We define a vector a, be the unit vector tangential to the layer edge. The surface
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Figure 3.4: Schematic representation of the domains and geometrical components.

tension pulls the layer in the direction of the unit vector t that is tangential to the interface
and normal to both n and a. We have then

t = a× n.

Next we balance the surface force due to the fluid stress and the edge force due to the surface
tension, and find

T(2)n∆S +T(1)(−n)∆S +

∮
C

γtdl = 0,

where ∆S is the surface area of the layer, and l is the arc length around the layer edge C.
Then the hydrodynamic traction undergoes a discontinuity defined as

∆f = f (2) − f (1) =
(
T(2) −T(1)

)
n = − 1

∆S

∮
C

γtdl,

where f (2) = T(2) · n is the traction exerted on the surface of the drop due to the exterior
fluid and f (1) = T(1) · n is the traction exerted on the surface due to the drop. It can be
shown that, in the limit as ∆S −→ 0, if the loop C shrinks to a point and the surface tension
γ is constant, last equation reduces to

∆f =
(
T(2) −T(1)

)
n = 2γHn, (3.12)

where H = H1+H2

2
is the mean curvature of the interface. It is possible to redefine variables

in such a way that γ = 1.

Tangential effects only redistribute the points in the boundary, that is why are unimpor-
tant in this case. We will also assume that the flow vanishes at infinity.

In the next section we will transform the problem (3.7)-(3.10) containing the bulk force
ρE, with boundary condition (3.12) into a problem without external bulk forces but where
condition (3.12) is modified to include electrokinetic stresses.

3.2.4 Coupling Poisson-Boltzmann and Stokes

Let us take t fixed, the charge density inside the droplet Ω (t) is

ρ (x,t) = −∆V (x,t) =
N∫

Ω(t)
e−V/εdx

e−V/ε − M∫
Ω(t)

eV/εdx
eV/ε.
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Denote

f (V (x, t)) =
N∫

Ω(t)
e−V/εdx

e−V/ε − M∫
Ω(t)

eV/εdx
eV/ε,

then
ρE = −f (V )∇V.

If we take the real function with real values F defined as:

F (x) = −ε N∫
Ω(t)

e−V/εdx
e−x/ε − ε M∫

Ω(t)
eV/εdx

ex/ε,

we have
dF

dx
(V (x,t)) =

N∫
Ω(t)

e−V/εdx
e−V/ε − M∫

Ω(t)
eV/εdx

eV/ε = ρ (x, t) .

By the chain rule applied to the composition F ◦ V : Ω (t) −→ R,

∇ (F ◦ V (x, t)) =
dF

dx
(V (x, t))∇V (x, t) ,

= ρ∇V = −ρE,

then the equation (3.7) can be rewritten as

−∇
(
p(1) + F ◦ V

)
+ µ1∆v(1) = 0 x ∈Ω (t) . (3.13)

Let us denote
P (1) = p(1) + F ◦ V, (3.14)

and
P (2) = p(2), (3.15)

we have

−∇P (2) + µ2∆v(2) = 0 x ∈Ω∗ (t) \Ω (t). (3.16)

The boundary conditions on the free boundary ∂Ω (t) in terms of the new pressure (3.14)
becomes

[
−
(
P (2) − P (1)

)
δij + µ2

(
∂v

(2)
i

∂xj
+
∂v

(2)
i

∂xi

)
− µ1

(
∂v

(1)
i

∂xj
+
∂v

(1)
i

∂xi

)]
nj = 2Hni + (F ◦ V )ni.

The equations (3.13) and (3.16) states that the pressure, viscous, and body forces, balance
at any instant in time even though the flow may be unsteady. The instantaneous structure
of the flow depends solely on the present boundary configuration and boundary conditions,
and is independent of the history of motion. The history of motion enters the problem only
by determining the current location of the boundaries. Therefore we will work with the
steady state problem and, as we will see, we can use recursivity and the evolution formula
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(3.10) to obtain an approximate solution in an evolved domain. We will consider then the
steady state problem and drop off the dependence on time:

Ω1 = Ω(t) .

We want to work with an infinite ambient fluid, therefore we will assume

Ω2 = R3\Ω (t).

Finally, the system that models our problem is:

−∇P (k) (x) + µk∆v(k)(x) = 0 , x ∈ Ωk, (3.17)

∇ · v(k) = 0 , x ∈ Ωk, (3.18)(
T(2) −T(1)

)
n=(2H + (F ◦ V ))n on ∂Ω1, (3.19)

v−→ 0 as |x| −→ ∞. (3.20)

3.2.5 The asymptotic boundary conditions for ε≪ 1

From the analysis in a previous chapter (see also [28]) we found an asymptotic expansion
for the potential V in a domain Ω in a small layer close to the boundary ∂Ω. We will use
that expansion to obtain the boundary conditions for the system (3.17)-(3.20).

We know that the potential in the boundary layer inside Ω1 can be written in the form

V = C + u∗ + u,

with u solution of
∆u = µ

(
eu/ε − e−u/ε

)
in Ω1,

C a constant associated to the perfect conductor problem and to (3.6), µ =
√

MN∫
Ω1

e(V −C)/ε
∫
Ω1

e−(V −C)/ε

and u∗ = ε ln

√
N

∫
Ω1

e(V −C)/ε

M
∫
Ω1

e−(V −C)/ε = εc∗.

We have then in a fixed x

F (V (x)) = −ε

[
M∫

Ω1
eV/εdV

eV/ε +
N∫

Ω1
e−V/εdV

e−V/ε

]

= −ε

[
M∫

Ω1
e(C+u∗+u)/εdV

e(C+u∗+u)/ε +
N∫

Ω1
e−(C+u∗+u)/εdV

e−(C+u∗+u)/ε

]
.

Canceling the constants eC/ε and e−C/ε in both terms:

F (V (x)) = −ε

[
M∫

Ω1
e(V−C)/εdV

ec
∗+u/ε +

N∫
Ω1
e−(V−C)/εdV

e−c
∗−u/ε

]

= −ε

[
M∫

Ω1
e(V−C)/εdV

√
N
∫
Ω1
e(V−C)/ε

M
∫
Ω1
e−(V−C)/ε

eu/ε +
N∫

Ω1
e−(V−C)/εdV

√
M
∫
Ω1
e−(V−C)/ε

N
∫
Ω1
e(V−C)/ε

e−u/ε

]
,
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therefore

F (V (x)) = −εµ
[
eu/ε + e−u/ε

]
= −2εµ cosh

(
u

ε

)
(3.21)

We already obtained in Chapter 2 that

u (x) = ε

(
2ζ

(
ξ (x)

δ

)
log tanh

(√
2 (εµ)1/2

|σ (xS)|

)[
σ (xS)

2

ξ (x)

ε
+ 1

])
+ εu1 (x)

= εu0 (x) + εu1 (x) ,

with

u0 (x) = 2ζ

(
ξ (x)

δ

)
log tanh

(√
2 (εµ)1/2

|σ (xS)|

)[
σ (xS)

2

ξ (x)

ε
+ 1

]
,

σ (xS) ≃ −∂V
∂n

in ∂Ω1, σ is approximately the surface charge density of the potential for the
perfect conductor, in fact is the surface charge density for the perfect conductor in xS = η (x)
plus corrections. Let us remind that u1 (x) is an order ε correction to the potential and
satisfies the equation

ε∆u1 − 2µ cosh (u0)u1 = g (x) +G [u0, u1] in Ω1,

with g (x) = 2µ sinh (u0)− ε∆u0, G a nonlinear function of u1 and u0. We have

u1 (x) = u01 (x) + u11 (x) .

Therefore
||u1 (x)||L∞(Ω) ≤ Cε1/2.

We also found an expression

u01 (x) ≡
ε1/2

2

√
2/µκ (x) sinh

(√
2(εµ)1/2

|σ(xS)|

) [
|σ (xS)| ξ(x)ε + 2

]
cosh4

[(√
2(εµ)1/2

|σ(xS)|

) [
|σ (xS)| ξ(x)2ε

+ 1
]]

+ sinh4
[(√

2(εµ)1/2

|σ(xS)|

) [
|σ (xS)| ξ(x)2ε

+ 1
]]

= O
(
ε1/2
)
,

and hence ∣∣∣∣u11 (x)∣∣∣∣L∞(Ω1)
≤ Cε1/2.

In ∂Ω1,

u0 (xS) = 2ζ

(
ξ (xS)

δ

)
log tanh

(√
2 (εµ)1/2

|σ (xS)|

)[
σ (xS)

2

ξ (xS)

ε
+ 1

]

= 2 log tanh

(√
2 (εµ)1/2

|σ (xS)|

)
, (3.22)

u1 (xS) =
ε1/2

2

√
2/µH (xS) sinh

(
2
√
2(εµ)1/2

|σ(xS)|

)
cosh4

[(√
2(εµ)1/2

|σ(xS)|

)]
+ sinh4

[(√
2(εµ)1/2

|σ(xS)|

)] . (3.23)
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We remind that H (x) is the curvature of the level surface of the distance function that
contains the point x. In the limit when x −→ ∂Ω, that curvature tends to the mean
curvature of the interface at xS.

Then at xS ∈ ∂Ω1

F (V (xS)) = −2εµ cosh
(
u

ε

)
= −2εµ cosh

(
u0 + u01 + ε1/2O (εa)

)
= −2εµ cosh

(
2 log tanh

√
2 (εµ)1/2

|σ (xS)|

)

− ε3/2
√
2µH (xS) sinh

(
2 log tanh

√
2(εµ)1/2

|σ(xS)|

)
sinh

(
2
√
2(εµ)1/2

|σ(xS)|

)
cosh4

(√
2(εµ)1/2

|σ(xS)|

)
+ sinh4

(√
2(εµ)1/2

|σ(xS)|

)
+ ε1/2O

(
ε2
)
.

We have

−2εµ cosh

(
2 log tanh

√
2 (εµ)1/2

|σ (xS)|

)
= −σ (xS)

2

2
− 2

3
µε+O

(
ε2
)

−ε3/2
√
2µH (xS)

sinh
(
2 log tanh

√
2(εµ)1/2

|σ(xS)|

)
sinh

(
2
√
2(εµ)1/2

|σ(xS)|

)
cosh4

(√
2(εµ)1/2

|σ(xS)|

)
+ sinh4

(√
2(εµ)1/2

|σ(xS)|

) = H (xS) |σ (xS)| ε+O
(
ε2
)
.

Therefore in ∂Ω1

F (V (xS)) = −
σ (xS)

2

2
− 2

3
µε+H (xS) |σ (xS)| ε+O

(
ε2
)
. (3.24)

Assuming µ≪ 1 we can redefine the pressure to drop off −2
3
µε and we have:

F (V (xS)) = −
σ (xS)

2

2
+H (xS) |σ (xS)| ε+O

(
ε2
)
. (3.25)

We know also that the surface charge density for the electrolyte, i.e −∂V
∂n

(xS), xS∈∂Ω1

is approximately the function σ (xS):

σ (xS) = σ0 (xS) + εσ1 (xS) +O(ε2),

σ0 the charge density for the perfect conductor and σ1 is the correction given by the lemma
3.2 in [28] (see also the previous chapter) and it has the expression

σ1 (xS) = −
2
∫
∂Ω
N (ln (σ0))

Q
σ0 (xS) + 2N (ln (σ0)) +O (ε) ,

N the Dirichlet to Neumann operator restricted to ∂Ω1.

Therefore

F (V (xS)) = −
σ0 (xS)

2

2
− εσ0 (xS) σ1 (xS) +H (xS) σ0 (xS) ε+O

(
ε2
)
. (3.26)
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Let us note that when ε −→ 0 (i.e physically the mobility of the ions tend to infinity)

F (V (xS)) = −
σ0 (xS)

2

2
,

that corresponds (as it should be) to the perfect conductor case.

The expansion leading to (3.26) in terms of powers of ε assumed ε, µ≪ 1. As we will see

in the next section, ε is in general a small parameter. Nevertheless the combination (εµ)1/2

|σ|
might not be small for very concentrated ionic solutions (implying large values of µ). In this
case the expression for F (V ) might need to be changed accordingly. For very concentrated
ionic solutions, using (3.21), (3.22), (3.23) we straightforwardly arrive at

F (V ) = −2εµ cosh(u0 + u1)

≃ −εµe−u0−u1 = −σ
2

2
g1 (s) e

−εg2(s)H(x)
|σ| ,

where s =
√
2(εµ)

1
2

σ
and

g1 (s) = s2 coth2 s,

g2 (s) =
1

s

sinh(2s)

cosh4 s+ sinh4 s
.

If s→ 0, and ε≪ 1, then g1 (s)→ 1, g2 (s)→ 2 and we recover the result for dilute solutions.
In Figures 3.5, 3.6 we represent g1(s) and g2(s) respectively.

Figure 3.5: The function g1(s)

Let us note that among other quantities, we will need σ0 and N (ln (σ0)) to completely
obtain the boundary conditions for our model so we will set up integral equations to obtaining
them. Before doing so, let us analyze the orders of magnitude for the quantities that will be
involved in our model.
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Figure 3.6: The function g2(s)

3.3 Orders of magnitude

In order to get an idea of the orders of magnitude involved in the arguments developed above,
we compute here the numerical values of various quantities in realistic physical situations.

The dielectric permitivity in vacuum ε0, charge of the electron e, Boltzmann constant
kB, molecular mass of salt, molecular mass of sodium Iodide, surface tension of water-air
interface at 25o, Avogadro number NA, seawater salt concentration and saturation (that is,
maximum possible) salt concentration are

ε0 = 8.8541878× 10−12 C2N−1m−2,

e = 1.60217657× 10−19 C,

kB = 1.3806488× 10−23 JK−1,

Molecular mass NaCl : 58.4430± 0.0001g/mol,

Molecular mass NaI : 149.894242± 0.000001g/mol,

γ (water/air, 25oC) : 71.99± 0.05 mN ·m−1,

NA = 6.023 × 1023 mol−1,

Seawater salt concentration : 35 g/l,

Saturation salt concentration : 359 g/l,

respectively. We are assuming binary ionic solutions, where NaCl (or NaI) molecules pro-
duce Na+ and Cl− (or Na+ and I−) ions. With all these numbers, assuming a temperature
of 25oC (298 K) we can compute (approximating the relative permittivity εr ≃ 1, valid for
almost all liquids.)

ε =
ε0kBTR0

e2z2
∼ (8.8541878× 10−12) (1.3806488× 10−23)× 298

(1.60217657× 10−19)2
R0 = 1419R0,

where R0 is the radius of the drop. We take, for instance, R0 = 10 µm, that is

R0 = 10−5m,
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and hence the dimensionless parameter ε has a value

ε = 1419R0 = 0.01419,

which is an O(10−2) quantity. This justifies the assumption ε≪ 1 in previous sections.

We compute next the Debye length λD. Let’s take ion concentration as the concentration
of salt in seawater:

n∞ =
35 g/l

58.4430 g/mol
= 0.599

mol

l
,

and then

λD =

√
(8.8541878× 10−12) (1.3806488× 10−23)× 298

2 (1.60217657× 10−19)2 (599× 6.022 × 1023)
m = 4.435 2× 10−11 m.

If we compare the Debye length with the radius of the drop we find

λD
R0

= 4.435 2× 10−5,

which justifies the assumption that Debye layers, whose thickness is of the order of Debye
length, consist of a thin layer near the boundary of drops. In the situation described, the
number of positive ions is

M = 0.599
NA

(104)3
= 0.599

6.022 × 1023

(104)3
= 3.607 2× 1011 ions

and hence the Rayleigh fissibility ratio will be

X =
Q2

32γπ2ε0R3
0

=
N2
e e

2

32γπ2ε0R3
0

=
(1.60217657× 10−19)

2

32 (0.07199)π2 (8.8541878× 10−12) 10−15
N2
e = 1.2751×10−13N2

e ,

where Ne is the number of free electrons. In order to make the drop unstable, we must have
a number of free electrons

Ne ∼ 2.8× 106,

which is roughly one free electron for each 105 positive (or negative) ions.

We remind now the relation between the physical potential V and the unknown in
Poisson-Boltzmann equation u:

V =
ez

ε0R0

u.

Therefore, the rescaled surface charge density σ rescaled with the physical surface charge
density Σ in the form

σ = − ∂u
∂n′ = −

ε0R
2
0

ez

∂V

∂n
=
R2

0

ez
Σ,

where ∂
∂n′ denotes the normal derivative in rescaled variables and ∂

∂n
the normal derivative

in physical space. If we take a spherical drop, then the total charge is 4πR2
0Σ so that

σ =
Ne

4π
.
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In our asymptotic analysis of Poisson-Boltzmann equation, the following quantity appears:

χ ≡
√
2 (εµ)

1
2

σ
,

and then, for a spherical drop of salt seawater at 25oC and charged at critical charge value,

χ =
4π
√
2 (εµ)

1
2

Ne

=
4π
√
2(0.01419× 3.607 2× 1011)

1
2

2.8× 106
= 0.45409,

a quantity that decreases with lower ion concentration (lower µ) and larger number of free
electrons Ne. On the other hand, at saturation, salt concentration µ is roughly ten times
the value for seawater salt concentration and hence

χ ≃ (10)
1
20.45409 = 1.4360.

3.4 The Boundary Integral Equation for a harmonic

function

3.4.1 Introduction

We are interested now in calculating the boundary condition:

F (V ) = −σ0 (xS)
2

2
− εσ0 (xS)σ1 (xS) +H (xS) σ0 (xS) ε+O

(
ε2
)
,

where σ0 (xS) is the surface charge density for the perfect conductor and

σ1 (xS) = −2
∫
∂Ω
N (ln (σ0))

Q
σ0 (xS) + 2N (ln (σ0)) +O (ε) ,

with Q the net amount of electric charge, N the Dirichlet to Neumann operator restricted
to ∂Ω1. The functions σ0 (xS) and N (ln (σ0)) are related to the Laplace equation in Ω2.

Strictly speaking, the domain depends on time because it is evolved by the velocity field
and pressure, so we have a free boundary problem, but as we said before, we can fix a time
t and deal with the steady state problem because we can use recursivity and an evolution
formula depending on velocity to obtain the solution in the new domain Ω (t+∆t). Let us
consider

∆u (x) = 0 in Ω2, (3.27)

u (x)|∂Ω1
= u0 (x) ,

u (x) −→ O
(
|x|−1) for |x| −→ ∞.

The last problem is related with F (V ) in the following sense: if we take u0 (x) = C for
an appropriate constant C we have σ0 (x) = − ∂u

∂n

∣∣
∂Ω1

and if u0 (x) = ln (σ0 (x)) then

N (ln (σ0)) = ∂u
∂n

∣∣
∂Ω1

, so let us obtain first an integral formula for the harmonic function

in (3.27).
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3.4.2 Integral equation

Let us consider a ball B (0, R) of radius R and center at the origin and contains Ω1 (see Fig.
3.7) and denote Ω∗

R = B (0, R), we will consider the auxiliar problem

∆u (x) = 0 in Ω∗
R\Ω1, (3.28)

u (x)|∂Ω = u0 (x) ,

u (x) = O
(
R−1

)
on ∂Ω∗

R.

By classical theory for elliptic problems we know that the solution to this problem exists
and is unique for each R.

Figure 3.7: The domains Ω∗
R and Ω1. Let us note that Ω∗

R \ Ω1 → Ω2 when R→∞

Let us consider a scalar partial differential equation

(Lu) (x) = f (x) x ∈ U ⊂ Rn.

Definition 11. A fundamental solution of the PDE is the solution of

(LyG (x, y)) (x, y) = δ (y − x) x, y ∈ Rn

in the distributional sense.

Green’s functions are distributions. A Green function G (x,x0) of Laplace equation in
R3 satisfies the Laplace equation singularly forced in distributional sense

∆xG (x,x0) = −δ (x− x0) , (3.29)
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where δ is the Dirac Delta function in R3. The point x is the variable field point and x0 is
the fixed location of the singular point or pole. A property of Green functions is symmetry,
so G (x,x0) = G (x0,x).

Using Fourier transform or by simple inspection we can find that G (x,x0) =
1

4π|x−x0| is

a fundamental solution to (3.29).

For G the fundamental solution and u satisfying (3.28), we multiply the first equation in
(3.28) by G, and using the Green theorem for distributions [15] we have∫
Ω∗

R\Ω1

u (x)∆G (x,x0) dV (x) = −
∫
Ω∗

R\Ω1

u (x) δ (x− x0) dV (x) (3.30)

=

∫
∂(Ω∗

R\Ω1)
u (x)

∂G (x,x0)

∂ñ
dS (x)−

∫
Ω∗

R\Ω1

∇u (x) · ∇G (x,x0) dV (x) ,

with ñ normal exterior to Ω∗
R\Ω1. Also

0 =

∫
Ω∗

R\Ω1

∆u (x)G (x,x0) dV (x) =

∫
∂(Ω∗

R\Ω1)

∂u (x)

∂ñ
G (x,x0) dS (x)−

∫
Ω∗

R\Ω1

∇u (x)·∇G (x,x0) dV (x) .

(3.31)

Substracting (3.30) of (3.31) we obtain∫
Ω∗

R\Ω1

u (x) δ (x− x0) dV (x) =

∫
∂(Ω∗

R\Ω1)
G (x,x0)

∂u (x)

∂ñ
dS (x)−

∫
∂(Ω∗

R\Ω1)
u (x)

∂G (x,x0)

∂ñ
dS (x) .

(3.32)
We can perform the last procedure for each R so we can take R −→∞ and due to the nature
of u, G, ∂u

∂ñ
, ∂G
∂ñ

using the normal n exterior to Ω1 we have:

For x0 ∈ Ω1

0 = −
∫
∂Ω1

G (x,x0)
∂u (x)

∂n
dS (x) +

∫
∂Ω1

u (x)
∂G (x,x0)

∂n
dS (x) . (3.33)

For x0 /∈ Ω1

u (x0) = −
∫
∂Ω1

G (x,x0)
∂u (x)

∂n
dS (x) +

∫
∂Ω1

u (x)
∂G (x,x0)

∂n
dS (x) . (3.34)

Equation (3.34) provides us with a boundary integral representation for a harmonic func-
tion in terms of the boundary values and the boundary distribution of the normal derivative,
but we are interested in obtaining a formula for points x0 ∈ ∂Ω1 that allows us to use the
known values for u (x0) and then inverting numerically the integral form of the harmonic

equation like was done in [26] to obtain ∂u(x)
∂n

∣∣∣
∂Ω1

. We can approach to ∂Ω1 from points

of Ω1 and use the formula (3.33), and from points of R3\Ω̄1 and use (3.34) and we should
be capable to obtain the same formula from both approximations to deal with a well posed
problem.
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Let us adopt the electrostatic terminology for the integrals in (3.33) and in (3.34). We

will call to −
∫
∂Ω1

G (x,x0)
∂u(x)
∂n

dS (x) the single layer integral, and double layer integral to∫
∂Ω1

u (x) ∂G(x,x0)
∂n

dS (x).

If x0 −→ ∂Ω1 from Ω1 or from Ω1
c
= Ω2 the single layer potential varies continuously

when the point approximates and then crosses ∂Ω1, so we will study the double layer potential
that is discontinuous in ∂Ω1. For the moment we will suppose that all the boundaries are
smooth, i.e they do not exhibit conical, edge-like, or cusp-like corners.

Let us consider (3.29) in R3.

If x0 ∈ Ω1, then using the divergence theorem

−1 = −
∫
Ω1

δ (x− x0) dV (x) =

∫
Ω1

∆G (x,x0) dV (x) =

∫
∂Ω1

∂G

∂n
(x,x0) dS (x) .

If x0 /∈ Ω1

0 = −
∫
Ω1

δ (x− x0) dV (x) =

∫
Ω1

∆G (x,x0) dV (x) =

∫
∂Ω1

∂G

∂n
(x,x0) dS (x) .

If x0 ∈ ∂Ω1 the integral
∫
∂Ω1

∂G
∂n

(x,x0) dS (x) is a principal value integral. Let us consider
a ball centered in x0 and radius ε. We start considering the part of the ball B (x0, ε) that
lies outside Ω1, let us denote Sε its boundary. Let us denote ∂Ω

0
ε the subset of ∂Ω1 without

a plane “disk” on ∂Ω1 centered in x0 and radius ε and ∂Ωε = ∂Ω0
ε ∪ Sε. Vε will denote the

volume bounded for ∂Ωε , so in this case x0 ∈ Vε. We have∫
∂Ωε

∂G

∂n
(x,x0) dS (x) =

∫
∂Ω0

ε

∂G

∂n
(x,x0) dS (x) +

∫
Sε

∂G

∂n
(x,x0) dS (x) ,

with n exterior to Vε. The divergence theorem implies

−1 = −
∫
Vε

δ (x− x0) dV (x) =

∫
∂Ωε

∂G

∂n
(x,x0) dS (x) ,

so that

−1 =

∫
∂Ω0

ε

∂G

∂n
(x,x0) dS (x) +

∫
Sε

∂G

∂n
(x,x0) dS (x) .

Let us calculate

lim
ε−→0

∫
∂Ω0

ε

∂G

∂n
(x,x0) dS (x) .

We note (assuming that both limits exist)

lim
ε−→0

∫
∂Ω0

ε

∂G

∂n
(x,x0) dS (x) = −1− lim

ε−→0

∫
Sε

∂G

∂n
(x,x0) dS (x) ,

with n exterior to Vε.

The normal exterior to Sε is er and
∂G(x,x0)

∂n
= ∂G(x,x0)

∂r
= − 1

4πr2
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∫
Sε

∂G (x,x0)

∂n
dS (x) = − 1

4π

∫ 2π

0

∫ π

π/2

1

|x− x0|2
ε2 sin θdθdϕ = −1

2
.

So in this case

lim
ε−→0

∫
∂Ω0

ε

∂G

∂n
(x,x0) dS (x) = −1

2
.

Let us consider now the part of the ball B (x0, ε) that lies inside Ω1 and denote its boundary
in Ω1 by Sε, and ∂Ωε = ∂Ω0

ε ∪ Sε and Vε the corresponding volume (see Figure 3.8).

Figure 3.8: We remove from the boundary ∂Ω a disc of radius ε and we denote the resulting
surface by ∂Ω0

ε. We have ∂Ω0
ε → ∂Ω

In this case x0 /∈ Vε

0 = −
∫
Vε

δ (x− x0) dV (x) =

∫
∂Ωε

∂G

∂n
(x,x0) dS (x) ,

as before n exterior to Vε.

In this case the normal exterior to Sε is −er and ∂G(x,x0)
∂n

= −∂G(x,x0)
∂r

= 1
4πr2∫

Sε

∂G (x,x0)

∂n
dS (x) =

1

4π

∫ π

0

∫ π

0

1

|x− x0|2
ε2 sin θdθdϕ =

1

2
,

and we have again

lim
ε−→0

∫
∂Ω0

ε

∂G

∂n
(x,x0) dS (x) = − lim

ε−→0

∫
Sε

∂G

∂n
(x,x0) dS (x) ,

= −1

2
.
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Then we can say ∫ PV

∂Ω

∂G

∂n
(x,x0) dS (x) = −1

2
,

where the symbol PV denotes the fact that the integral is understood in the principal value
sense.

We have then:∫
∂Ω1

∂G

∂n
(x,x0) dS (x) =

 0 if x0 /∈ Ω1

−1
2
if x0 ∈ ∂Ω1 (PV integral)
−1 if x0 ∈ Ω1

, (3.35)

with n the normal exterior to Ω1.

Now let us return to the deduction of the formula.

If x0 −→ ∂Ω1 from points of Ω1

lim
x0−→∂Ω1

∫
∂Ω1

u (x)
∂G (x,x0)

∂n
dS (x) = lim

ε−→0

[∫
∂Ω0

ε

u (x)
∂G (x,x0)

∂n
dS (x) +

∫
Sε

u (x)
∂G (x,x0)

∂n
dS (x)

]
,

with ∂Ω0
ε as before and Sε the (out Ω1) semisphere of radius ε (Figure 3.9).

Figure 3.9: As before, we remove from the boundary ∂Ω a disc of radius ε and we denote
again the resulting surface by ∂Ω0

ε.

lim
ε−→0

∫
Sε

u (x)
∂G (x,x0)

∂n
dS (x) = −u (x0)

2
,

because u is continuous and ∫
Sε

∂G (x,x0)

∂n
dS (x) = −1

2
.
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Then

lim
x0−→∂Ω1

∫
∂Ω1

u (x)
∂G (x,x0)

∂n
dS (x) =

∫ PV

∂Ω1

u (x)
∂G (x,x0)

∂n
dS (x)− u (x0)

2
.

And (3.33) implies

u (x0) = −2
∫
∂Ω1

G (x,x0)
∂u

∂n
(x) dS (x) + 2

∫ PV

∂Ω1

u (x)
∂G (x,x0)

∂n
dS (x) .

If now x0 −→ ∂Ω1 from points of Ω2, we have

lim
x0−→∂Ω1

∫
∂Ω1

u (x)
∂G (x,x0)

∂n
dS (x) = lim

ε−→0

[∫
∂Ω0

ε

u (x)
∂G (x,x0)

∂n
dS (x) +

∫
Sε

u (x)
∂G (x,x0)

∂n
dS (x)

]
,

with Sε the corresponding (inside Ω1) semisphere Sε of radius ε. In this case, similarly as
before we obtain

lim
ε−→0

∫
Sε

u (x)
∂G (x,x0)

∂n
dS (x) =

u (x0)

2
.

Then

lim
x0−→∂Ω1

∫
∂Ω1

u (x)
∂G (x,x0)

∂n
dS (x) =

∫ PV

∂Ω1

u (x)
∂G (x,x0)

∂n
dS (x) +

u (x0)

2
.

So the equation (3.34) implies.

u (x0) = −2
∫
∂Ω1

G (x,x0)
∂u

∂n
(x) dS (x) + 2

∫ PV

∂Ω1

u (x)
∂G (x,x0)

∂n
dS (x) , (3.36)

the same equation as before.

3.4.3 Axisymmetric Formulas and Regularity

The single layer integral.

The free space Green’s function exhibits a 1
r
singularity, where r is the distance of the

evaluation point from the singular point. Since the order of this singularity is lower than the
area of a small disc of radius r (that is πr2), the integral is weakly singular. Consequently,
the Fredholm- Riesz theory of compact operators may be used to study the properties of the
solution [4] and the improper integral may be computed accurately by numerical methods.
The single layer potential is a Fredholm integral that is continuous as x0 crosses ∂Ω1.

We calculate the axisymmetric expression corresponding to the single layer potential:
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Assuming axisymmetry in the domain and symmetry in the boundary condition, using

x = (r (z) cos θ, r (z) sin θ, z) ,

x0 = (r (z0) cos θ0, r (z0) sin θ0, z0).

If we make correspond the z axis with the axis of rotation of the generating curve and
the x axis with r, we obtain the differential of the cylindrical surface is dS = r (z) dldθ =

r (z)
√

1 + r′ (z)2dθdz with dl =
√
1 + r′ (z)2dz the differential of arc length. The axisym-

metry in the solution and the boundary conditions, implies independence of θ in the normal
vector so we have

n = nr (r, z) er + nz (r, z) ez =
1√

1 + r′ (z)2
er −

r′ (z)√
1 + r′ (z)2

ez,

for

er = (cos θ, sin θ, 0) ,

ez = (0, 0, 1) ,

then

∫
∂Ω1

G (x,x0)
∂u

∂n
(x) dS (x) =

∫ b

a

∫ 2π

0

G (x,x0)
∂u

∂n
(r, z) r (z)

√
1 + r′ (z)2dθdz,

=

∫ b

a

(∫ 2π

0

G (x,x0) dθ

)
∂u

∂n
(r, z) r (z)

√
1 + r′ (z)2dz,

where

G (x,x0) =
1

4π |x− x0|
=

1

4π
[
(r (z) cos θ − r (z0) cos θ0)2 + (r (z) sin θ − r (z0) sin θ0)2 + (z − z0)2

]1/2 ,
=

1

4π
[
r (z)2 + r (z0)

2 − 2r (z) r (z0) cos (θ − θ0) + (z − z0)2
]1/2 .

Changing variables, using a trigonometric identity and the periodicity of the integrand we
obtain∫ 2π

0

G (x,x0) dθ =
1

4π

∫ 2π−θ0

−θ0

du[
r (z)2 + r (z0)

2 − 2r (z) r (z0) cos u+ (z − z0)2
]1/2 , (3.37)

=
1

4π

∫ 2π

0

du√
(r + r0)

2 + (z − z0)2 − 4r0r cos2
u
2

.

But

(r + r0)
2+(z − z0)2−4r0r cos2

u

2
=
[
(r + r0)

2 + (z − z0)2
] [

1− 4r0r

(r + r0)
2 + (z − z0)2

cos2
u

2

]
.
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If we denote

k2 =
4r0r

(r + r0)
2 + (z − z0)2

,

and the integral (3.37) as GAX (r, z, r0, z0), we arrive to

GAX (r, z, r0, z0) =
1

4π
√
(r + r0)

2 + (z − z0)2

∫ 2π

0

du√
1− k2 cos2 u

2

.

Notice that ∫ 2π

0

du√
1− k2 cos2 u

2

= 4

∫ π/2

0

dη√
1− k2 cos2 η

,

and remind the definition of the complete elliptic integral of the first kind (see [1]):

F (k) =

∫ π/2

0

dη√
1− k2 cos2 η

.

Then

∫
∂Ω1

G (x,x0)
∂u

∂n
(x) dS (x) =

∫ b

a

GAX (r, z, r0, z0)
∂u

∂n
(r, z) r (z)

√
1 + r′ (z)2dz, (3.38)

=
1

π

∫ b

a

F (k)√
(z − z0)2 + (r + r0)

2

∂u

∂n
(r, z) r (z)

√
1 + r′ (z)2dz.

The elliptic integral F (k) has an integrable singularity when k (r, z, r0, z0) =
√

4r0r
(z−z0)2+(r+r0)

2 =

1, and it occurs when the evaluation point (r (z) , z) coincides with the pole (r (z0) , z0). No-
tice also that for k to be well defined, we have to avoid that evaluation point to be very close
to the extremes of the interval of definition of z, or otherwise we would have to deal with an
indeterminacy.

The singularities of the single layer potential are integrable, and if we take the poles
different from the evaluation points for the approximation of the integral (like the middle
points for example) we will have a well defined single layer for the numerics, and we will
have also reflected functions taking reflected poles. Let us note that:

k (r (−z) ,−z, r (z0) , z0) =

√
4r (z0) r (z)

(z − (−z0))2 + (r (z) + r (−z0))2

= k (r (z) , z, r (−z0) ,−z0) .

If

F (k) =

∫ π/2

0

dη√
1− k2 cos2 η

,

we then also have

F (k (r (−z) ,−z, r (z0) , z0)) = F (k (r (z) , z, r (−z0) ,−z0)) .
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Figure 3.10: The argument of the elliptic integrals

Figure 3.11: The complete elliptic integral of the first kind

If we define D (r (z) , z, r0, z0) =
1√

(z−z0)2+(r(z)+r(z0))
2
, then we also have

D (r (−z) ,−z, r0, z0) = D (r (z) , z, r (−z0) ,−z0) .

Because of the symmetry of r (z) we have that r′ (z) is odd, and the product
√
1 + r′ (z)2r (z)

is an even function.

Therefore we have reflected functions: if we take an initial symmetric Ω (0) we will have
in the integrand of the single layer, the same function but taking the reflected pole and z
values.
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Figure 3.12: The function 1
π

F (k)√
(z−z0)2+(r+r0)

2
r (z)

√
1 + r′ (z)2

The double layer integral

When ∂Ω1 is a smooth surface with a continuously varying normal vector, as the integration
point x approaches the evaluation point x0, the normal vector n tends to become orthogonal
to the nearly tangential vector (x− x0). Consequently the numerator of the integrand of the
double layer potential behaves quadratically with respect to the scalar distance r = |x− x0|
and the order of the singularity is reduced from 1

r2
to 1

r
. Let us see the computation of the

principal value of the double layer potential.

If we want to work with regular integrals (instead of PV integrals) let us consider the
identity

∫ PV

∂Ω1

∂G

∂n
(x,x0) dS (x) = −1

2
,

with n the normal exterior to Ω1 and x0 ∈ ∂Ω. Therefore

u (x0)

∫ PV

∂Ω1

∂G

∂n
(x,x0) dS (x) = −u (x0)

2
,

so that

−u (x0)

∫ PV

∂Ω1

∂G

∂n
(x,x0) dS (x)− u (x0)

2
= 0, (3.39)

and adding zero as defined by (3.39)
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∫ PV

∂Ω1

u (x)
∂G (x,x0)

∂n
dS (x) =

∫ PV

∂Ω1

u (x)
∂G (x,x0)

∂n
dS (x)

=

∫ PV

∂Ω1

u (x)
∂G (x,x0)

∂n
dS (x)− u (x0)

∫ PV

∂Ω1

∂G

∂n
(x,x0) dS (x)− u (x0)

2

=

∫ PV

∂Ω1

[u (x)− u (x0)]
∂G (x,x0)

∂n
dS (x)− u (x0)

2
.

If u is Lipschitz
|u (x)− u (x0)| ≤ C |x− x0| ,

|u (x)− u (x0)|
∣∣∣∣∂G (x,x0)

∂n

∣∣∣∣ ≤ C |x− x0|
1

|x− x0|2
=

C

|x− x0|
with x ̸= x0.

Using a Taylor series for the integrand we see that although the integrand is not regular,
the integral in principal values is not a PV integral. Then the regularized equation for the
harmonic function u (3.36) that results when the point of integration x0 ∈ ∂Ω1 , is:

u (x0) = −2
∫
∂Ω1

G (x,x0)
∂u

∂n
(x) dS (x) + 2

∫ PV

∂Ω1

u (x)
∂G (x,x0)

∂n
dS (x)

u (x0) = −2
∫
∂Ω1

G (x,x0)
∂u

∂n
(x) dS (x) + 2

∫
∂Ω1

[u (x)− u (x0)]
∂G (x,x0)

∂n
dS (x)− u (x0) ,

and we arrive to the equation:

u (x0) = −
∫
∂Ω1

G (x,x0)
∂u

∂n
(x) dS (x) +

∫
∂Ω1

[u (x)− u (x0)]
∂G (x,x0)

∂n
dS (x) , (3.40)

valid for points x0 ∈ ∂Ω1.

We will show that the regularized axisymmetric expression for the double layer integral
is:

∫
∂Ω1

[u (x)− u (x0)]
∂G (x,x0)

∂n
dS (x)

=
1

2π

∫ b

a

[u (x)− u (x0)]

− F (k)√
(z − z0)2 + (r + r0)

2
+

E (k)
[
(z − z0)2 + 2 (z − z0) r (z) r′ (z) + (r0 − r) (r0 + r)

]√
(z − z0)2 + (r + r0)

2 ((z − z0)2 + (r − r0)2
)

 dz.

We have

∫
∂Ω1

[u (x)− u (x0)]
∂G (x,x0)

∂n
dS (x) =
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∫
∂Ω1

[u (x)− u (x0)]
∂G

∂n
(x,x0) dS (x)

=

∫ b

a

∫ 2π

0

[u (x)− u (x0)] (∇xG (x,x0) · n (x))r (z)

√
r′ (z)2 + 1dθdz

=

∫ b

a

[u (x)− u (x0)]

(∫ 2π

0

(∇xG (x,x0) · n (x))dθ

)
r (z)

√
r′ (z)2 + 1dz.

Since u has no dependence on θ:

∫ 2π

0

∂G

∂n
(x,x0) dθ =

∫ 2π

0

∇G (x,x0) · n (x) dθ

=

∫ 2π

0

[
∂G

∂r
(x,x0) er+

1

r

∂G

∂θ
(x,x0) eθ +

∂G

∂z
(x,x0) ez

] 1√
1 + r′ (z)2

er −
r′ (z)√

1 + r′ (z)2
ez

 dθ.
= nr (r, z)

∫ 2π

0

∂G

∂r
(x,x0) dθ + nz (r, z)

∫ 2π

0

∂G

∂z
(x,x0) dθ.

We can set

∫ 2π

0

∂G

∂r
(x,x0) dθ =

∂

∂r

(∫ 2π

0

G (x,x0) dθ

)
=
∂GAX (r, z, r0, z0)

∂r
,

and ∫ 2π

0

∂G

∂z
(x,x0) dθ =

∂

∂z

(∫ 2π

0

G (x,x0) dθ

)
=
∂GAX (r, z, r0, z0)

∂z
,

so that∫ 2π

0

∂G

∂n
(x,x0) dθ = nr (r, z)

∂GAX (r, z, r0, z0)

∂r
+ nz (r, z)

∂GAX (r, z, r0, z0)

∂z
,

=

[
∂GAX (r, z, r0, z0)

∂r
er +

∂GAX (r, z, r0, z0)

∂z
ez

]
[nr (r, z) er + nz (r, z) ez] ,

= ∇(r,z)G
AX (r, z, r0, z0) · n (x) =

∂GAX (r, z, r0, z0)

∂n
,

and

∫
∂Ω1

[u (x)− u (x0)]
∂G (x,x0)

∂n
dS (x) =

∫ b

a

[u (x)− u (x0)]
∂GAX (r, z, r0, z0)

∂n
r (z)

√
r′ (z)2 + 1dz.

Using the complete elliptic integral of the second kind (see [1])

E (k) =

∫ π/2

0

√
1− k2 sin2 θdθ,
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we arrive at

∂GAX (r, z, r0, z0)

∂r
=

1

2rπ
(
(z − z0)2 + (r + r0)

2)1/2
(
E (k)

(
(z − z0)2 + (r0 − r) (r0 + r)

)
(z − z0)2 + (r − r0)2

− F (k)

)
,

and
∂GAX (r, z, r0, z0)

∂z
= − (z − z0)E (k)

π
√

(z − z0)2 + (r + r0)
2 ((z − z0)2 + (r − r0)2

) ,
so that

∂GAX (r, z, r0, z0)

∂n
= ∇(r,z)G

AX (r, z, r0, z0) · n (x) ,

=

 E (k)
[
(z − z0)2 + (r0 − r) (r0 + r)

]
2rπ
√

(z − z0)2 + (r + r0)
2 ((z − z0)2 + (r − r0)2

) − F (k)

2πr
√

(z − z0)2 + (r + r0)
2

 1√
1 + r′ (z)2

+

+

− (z − z0)E (k)

π
√

(z − z0)2 + (r + r0)
2 ((z − z0)2 + (r − r0)2

)
− r′ (z)√

1 + r′ (z)2

 ,

=
E (k)

[
(z − z0)2 + 2 (z − z0) r (z) r′ (z) + (r0 − r) (r0 + r)

]
2πr
√

(z − z0)2 + (r + r0)
2 ((z − z0)2 + (r − r0)2

)√
1 + r′ (z)2

− F (k)

2πr
√

(z − z0)2 + (r + r0)
2
√
1 + r′ (z)2

.

Then the double layer potential for the axisymmetric case is∫ b

a

[u (x)− u (x0)]

E (k)
[
(z − z0)2 + (r0 − r) (r0 + r) + 2 (z − z0) r (z) r′ (z)

]
2πrA1/2C

√
1 + r′ (z)2

− F (k)

2πrA1/2

√
1 + r′ (z)2

 r (z)

√
r′ (z)2 + 1dz

Simplifying we obtain

1

2π

∫ b

a

[u (x)− u (x0)]

 −F (k)√
(z − z0)2 + (r + r0)

2

+
E (k)

[
(z − z0)2 + 2 (z − z0) r (z) r′ (z) + (r0 − r) (r0 + r)

]√
(z − z0)2 + (r + r0)

2 ((z − z0)2 + (r − r0)2
)

 dz. (3.41)
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The function (r0 − r) (r0 + r) is a regular and even function and E (k) is also regular for
every admissible value of k and it has the same kind of symmetry with respect to the poles
as F and the other functions involved in (3.41)

Figure 3.13: The regularized integrand of the double layer potential.

3.4.4 The axisymmetric boundary integral equation

When x0 ∈ ∂Ω1 the equation (3.40)

u (x0) = −
∫
∂Ω1

G (x,x0)
∂u

∂n
(x) dS (x) +

∫
∂Ω1

[u (x)− u (x0)]
∂G (x,x0)

∂n
dS (x) ,

for an axisymmetric surface becomes

u (x0) = −
∫ b

a

GAx (r, z, r0, z0)
∂u

∂n
(r, z) r (z)

√
1 + r′ (z)2dz

+

∫ b

a

[u (x)− u (x0)]
∂GAx

∂n
(r, z, r0, z0) r (z)

√
1 + r′ (z)2dz

= − 1

π

∫ b

a

F (k)√
(z − z0)2 + (r + r0)

2

∂u

∂n
(r, z) r (z)

√
1 + r′ (z)2dz

+
1

2π

∫ b

a

[u (x)− u (x0)]

− F (k)√
(z − z0)2 + (r + r0)

2
+

E (k)
[
(z − z0)2 + 2 (z − z0) r (z) r′ (z) + (r0 − r) (r0 + r)

]√
(z − z0)2 + (r + r0)

2 ((z − z0)2 + (r − r0)2
)

 dz.

This is an expression to the potential in terms of elliptic integrals. We will use these expres-
sions latter in the Boundary Elements Method (BEM) for obtaining local approximations to
F (V ).
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We already have an integral equation for the boundary condition, next we will obtain a
similar representation for the velocity field in the Stokes flow.

3.5 The Boundary Integral Formulation for Stokes Sys-

tem

3.5.1 Introduction

In the construction of our model, we wrote two equations for the velocity and pressure on
either side of the interface, and one expression for the interfacial boundary condition in terms
of the surface charge density σ0, the curvature H, and a correction σ1, we already have a
boundary integral equation for calculating the boundary conditions, now we will obtain a
boundary integral representation for obtaining the velocity, that finally will allow us to study
the evolution of our droplet in terms of ε and the amount of charge when we combine the
integral representations with a numerical method.

3.5.2 Integral equation

We will obtain a boundary integral representation of the flow in a similar way as we did
for Laplace equation but using an appropriate Green’s function to this case. This is a well
known problem whose solution and deduction can be found, for instance, in [54], [14] and
[33]. We will give just the principal steps because the central ideas are very similar to the
integral representation for Laplace equation given before. In this case we will use Einstein
notation for brevity in the formulas.

We are interested in finding the velocity field at the interface between the droplet and
the surrounding fluid, because the evolution of the droplet is determined by the normal
proyection of this velocity field. Therefore let us start determining the velocity at the interior
of the droplet, then at the exterior fluid and finally we will find an expression valid at the
interface.

At the interior fluid we have

−∇P (1) (x) + µ1∆v(1)(x) = 0, x ∈ Ω1,

∇ · v(1) = 0, x ∈ Ω1.

Or equivalently

∇ ·T(1) = 0, x ∈ Ω1, (3.42)

∇ · v(1) = 0, x ∈ Ω1. (3.43)

for

T
(1)
ij = −P (1)δij + µ1

(
∂v

(1)
i

∂xj
+
∂v

(1)
i

∂xi

)
.
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Let us consider now an auxiliar equation

−∇P (x) + µ1∆u (x) = −δ (x− x0) , (3.44)

∇ · u (x) = 0, (3.45)

defined in R3, where x0 is an arbitrary point and δ is the three dimensional delta function.
Like in the fundamental solution for the Laplace equation, we call x0 the pole or source
point, and x the observation or field point.

Introducing the Green’s function G, the solution to (3.44)-(3.45) is

u (x) =
1

8πµ1

Gij (x,x0) =
1

8πµ1

(
δij
r

+
x̂ix̂j
r3

)
,

with δij the Kronecker Delta and x̂ = x− x0, r = |x− x0|, x̂i = xi − x0i.

The equation (3.44) can be writen in terms of the stress tensor T defined as follows

Tijk = −δikPj (x,x0) +
∂Gij (x,x0)

∂xk
+
∂Gkj (x,x0)

∂xi
,

as
∇ ·T = −δ (x− x0) , (3.46)

where

Tik (x)=
1

8π
Tijk (x,x0) = −6

x̂ix̂jx̂k
r5

.

Multiplying (3.42) by u and (3.46) by v(1) we can obtain

v(1)δ (x− x0) = u
(
∇ ·T(1)

)
− v(1) (∇ ·T)

= ∇ ·
(
u ·T(1) − v(1) ·T

)
,

using (3.42), (3.43), (3.46), (3.45), and the Divergence Theorem to transform the volume
integral to a surface integral, we have∫

Ω1

v
(1)
j (x) δ (x− x0) dV (x) =

1

8πµ1

∫
∂Ω1

Gij (x,x0)T
(1)
ik (x)nk (x) dS (x) (3.47)

− 1

8π

∫
∂Ω1

v
(1)
i (x)Tijk (x,x0)nk (x) dS (x) ,

for n exterior to Ω1. Similarly to the Laplace equation, the first integral in the right hand
side is called single layer potential and the second one, double layer potential. A detailed
discussion about the physical meaning and properties of this potentials can be found in [54].

If we denote f (1) = T(1) · n and take x0 ∈ Ω1

v
(1)
j (x0) =

1

8πµ1

∫
∂Ω1

Gij (x,x0) f
(1)
i (x) dS (x) (3.48)

− 1

8π

∫
∂Ω1

v
(1)
i (x)Tijk (x,x0)nk (x) dS (x) .
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Figure 3.14: Let us note that Ω∗
R \ Ω1 → Ω2 when R→∞

For the unbounded exterior fluid Ω2 we have

∇ ·T(2) = 0, x ∈ Ω2 (3.49)

∇ · v(2) = 0, x ∈ Ω2, (3.50)

we can construct again a ball B (x,R) that contains Ω1 (see Fig. 3.14). Taking R −→ ∞
and using that the flux vanishes at infinity, for the Divergence Theorem and the auxiliar
system in R3, we have that

v(2) (x) δ (x− x0) = u
(
∇ ·T(2)

)
− v(2) (∇ ·T)

= ∇ ·
(
u ·T(2) − v(2) ·T

)
,

implies

∫
Ω2

v
(2)
j (x) δ (x− x0) dV (x) = − 1

8πµ1

∫
∂Ω1

Gij (x,x0)T
(2)
ik (x)nk (x) dS (x) (3.51)

+
1

8π

∫
∂Ω1

v
(2)
i (x)Tijk (x,x0)nk (x) dS (x) ,

with n the normal exterior to Ω1. If we denote f (2) = T(2) · n, multiplying (3.51) by 1
µ2

we
have

− 1

8πµ1µ2

∫
∂Ω1

Gij (x,x0) f
(2)
i (x) dS (x) +

1

8πµ2

∫
∂Ω1

v
(2)
i (x)Tijk (x,x0)nk (x) dS (x) = 0,

(3.52)
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for x0 ∈ Ω1.

If we add (3.52) to an appropriate multiple to (3.48) and denote ∆fi (x) = f
(2)
i (x) −

f
(1)
i (x) we have

v
(1)
j (x0) = −

1

8πµ1

∫
∂Ω1

Gij (x,x0)∆fi (x) dS (x) (3.53)

+
µ2 − µ1

8πµ1

∫
∂Ω1

vi (x)Tijk (x,x0)nk (x) dS (x) ,

for x0 ∈ Ω1 and using v
(1)
i (x) = v

(2)
i (x) at the boundary.

If x0 ∈ Ω2 in (3.47) we have

0 =

∫
Ω1

v
(1)
j (x) δ (x− x0) dV (x) =

1

8πµ1

∫
∂Ω1

Gij (x,x0)T
(1)
ik (x)nk (x) dS (x)− 1

8π

∫
∂Ω1

vi (x)Tijk (x,x0)nk (x) dS (x) ,

and multiplying by 1
µ2

1

8πµ1µ2

∫
∂Ω1

Gij (x,x0)T
(1)
ik (x)nk (x) dS (x)− 1

8πµ2

∫
∂Ω1

vi (x)Tijk (x,x0)nk (x) dS (x) = 0.

(3.54)
The equation (3.51) becomes

v
(2)
j (x) = − 1

8πµ1

∫
∂Ω1

Gij (x,x0)T
(2)
ik (x)nk (x) dS (x) (3.55)

+
1

8π

∫
∂Ω1

vi (x)Tijk (x,x0)nk (x) dS (x) .

Adding an appropriate multiple of (3.55) to (3.54)

v
(2)
j (x) = − 1

8πµ2

∫
∂Ω1

Gij (x,x0)∆fi (x) dS (x) (3.56)

+
µ2 − µ1

8πµ2

∫
∂Ω1

vi (x)Tijk (x,x0)nk (x) dS (x) ,

x0 ∈ Ω2, n exterior to Ω1.

If x0 −→ ∂Ω1, we have that the single layer potential is continuous when crosses ∂Ω, but
the double layer potential satisfies

Proposition 1.

lim
x−→∂Ω1

∫
∂Ω1

vi (x)Tijk (x,x0)nk (x) dS (x) = ∓4πvj (x0)

+

∫ PV

∂Ω1

vi (x)Tijk (x,x0)nk (x) dS (x) ,

for n exterior to ∂Ω1. The minus sign when x0 approaches to ∂Ω1 from Ω1 and plus when
it is from Ω2.
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Therefore

vj (x0) =
−1

4π (µ1 + µ2)

∫
∂Ω1

Gij (x,x0)∆fi (x) dS (3.57)

+
µ2 − µ1

4π (µ1 + µ2)

∫ PV

∂Ω1

vi (x)Tijk (x,x0)nk (x) dS (x) ,

with n exterior to Ω1 and

Gij(x,x0) =
δij

|x− x0|
+

(xi − x0,i)(xj − x0,j)
|x− x0|3

,

Tijk(x,x0) = −6
(xi − x0,i)(xj − x0,j)(xk − x0,k)

|x− x0|5
,

for i, j, k ∈ {1, 2, 3}, where

∆fi (x) = (2H (x) + F (V ))ni (3.58)

=

(
2H (x)− σ0 (x)

2

2
− εσ0 (x)σ1 (x) +H (x) σ0 (x) ε

)
ni,

corresponding to the boundary condition (3.19). The equation (3.57) is the integral equation
for the velocity at the interface ∂Ω1 that will be used to determine the evolution of the droplet
together with the boundary conditions (3.58).

3.5.3 The axisymmetric boundary integral equation for the veloc-
ity

We obtained an integral equation for the interface between two fluids (3.57) without assuming
a particular symmetry in the velocity or the forces terms. Like in the Laplace case, it is
possible to symplify the equation (3.57) using that we are expecting an axisymmetric flow.
Let us choose again the symmetry axis, the z axis. It is possible to obtain expressions for the
single and double layer in terms of elliptic integrals (cf. [54]) using cylindrical coordinates
and that for an axysimmetric flow we have that velocity, force and normal vectors can be
expressed in terms of {er, ez} only:

v = vrer + vzez

f = frer + fzez

n = nrer + nzez,

using also that the components of the velocity are decoupled. Performing the boundary
integrations in the azimuthal direction it is possible obtain

vα (x0) =
−1

4π (µ1 + µ2)

∫
C

∆fα (x)Mαβ (x,x0) dl (3.59)

+
µ2 − µ1

4π (µ1 + µ2)

∫
C

qαβγ (x,x0) vβ (x)nγ (x) dl,
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where α, β, γ are either r or z indicating the radial and axial components respectively, C the
generating curve on the rz (xz) axis. If we use the basis {er, ez} and the variables x,x0 in
cylindrical coordinates x = (r cos θ, r sin θ, z),x0 = (r0, 0, z0) ∈ C, the matrices M and q on
the right hand side of (3.59) in terms of the elliptic integrals E (k) and F (k), become

Mrr =
k

r0r

√
r

r0

((
r2 + r20 + 2 (z − z0)2

)
F (k)

−2 (z − z0)4 + 3 (z − z0)2 (r20 + r2) + (r20 − r2)
2

(z − z0)2 + (r − r0)2
E (k)

)

Mrz = −
k (z − z0)

r0

√
r

r0

(
F (k) +

r20 − r2 − (z − z0)2

(z − z0)2 + (r − r0)2
E (k)

)

Mzr =
k (z − z0)√

r0r

(
F (k)− r20 − r2 + (z − z0)2

(z − z0)2 + (r − r0)2
E (k)

)

Mzz = 2k

√
r

r0

(
F (k) +

(z − z0)2

(z − z0)2 + (r − r0)2
E (k)

)
,

and respective formulas for q (see [54]). Let us note that it will be necessary to remove the
singularities caused by the tendency of k to 1 caused by the the approximation of x to x0,
therefore, we add cero in a convenient way using∫

∂Ω1

Gij (x,x0)ni (x) dS (x) = 0

and we will have improper but well defined integrals if we choose as poles the middle points
in the numerical method.

3.6 Numerical Implementation and numerical results

Because of the nature of the domains (not necessarily as simple as a ball) we have to use
a numerical method, the Boundary Element Method (BEM) to approximate the functions
involved in the boundary condition and also to approximate the velocity field v. We will
start with Laplace problem for obtaining F (V ), then we will approximate the solutions for
the Stokes system, and finally we will use the evolution formula to study the behaviour of
∂Ω (t), the evolving boundary of the drop, in terms of t, ε, and the total charge Q.

3.6.1 Boundary Element Method (BEM) for Laplace equation in
3-D

Roughly speaking, the boundary element method involves discretizing a surface ∂Ω in a
collection of N boundary elements that we will denote Ej, j = 1, . . . , N, in such a way that
∂Ω ≃ ∪Nj=1Ej and then to obtain an approximation of the function (or its normal derivative,
or both) in the elements Ej.
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Let us consider again the regularized equation satisfied by the harmonic function u for
x0 ∈ ∂Ω1

u (x0) = −
∫
∂Ω1

G (x,x0)
∂u

∂n
(x) dS (x) +

∫
∂Ω1

(u (x)− u (x0))
∂G

∂n
(x,x0) dS (x) ,

n exterior to Ω1.

If we replace the integrals on ∂Ω1 with sums of integrals on the boundary elements we
obtain the discrete representation:

u (x0) ≃ −
N∑
j=1

∫
Ei

G (x, x0)
∂u

∂n
(x) dS (x) +

N∑
j=1

∫
Ej

(u (x)− u (x0))
∂G

∂n
(x,x0) dS (x) .

We introduce local approximations to the distribution of the harmonic function u and
its normal derivative ∂u

∂n
. In the simplest approximation, we approximate both distributions

with constant functions on each element, denoted respectively uj and
(
∂u
∂n

)
j
, j = 1, . . . , N

and we obtain a discrete boundary element representation (from now on we will use an equal
symbol):

u (x0) = −
N∑
j=1

(
∂u

∂n

)
j

∫
Ei

G (x,x0) dS (x) +
N∑
j=1

(u (x)− u (x0))

∫
Ej

∂G

∂n
(x,x0) dS (x) .

Denoting b0 = u (x0)−
∑N

j=1 (uj − u (x0))
∫
Ej

∂G
∂n

(x,x0) dS (x) andAj0 =
∫
Ej
G (x,x0) dS (x)

we obtain

b0 =
N∑
j=1

Aj0

(
−∂u
∂n

)
j

. (3.60)

Let us remember that, if we take particular values of the boundary condition in ∂Ω for
the Dirichlet problem to the Laplace equation

∆u (x) = 0 in Ω2,

u (x)|∂Ω = u0 (x) ,

u (x) −→ O
(
|x|−1) for |x| −→ ∞,

with u0 = C or u0 = ln (σ0) respectively, the normal derivative of the potential u restricted to
∂Ω1 allows us to obtain σ0 and N (ln (σ0)). Therefore, using (3.60) and poles properly chosen
we can obtain the discrete version of the normal derivative in each case above mentioned by
inverting a matrix.

3.6.2 The BEM for the axisymmetric Laplace equation.

For the axisymmetric case we will also assume that Ω (0), the initial geometry of the droplet,
is a small perturbation of the sphere given by a generating curve (r (z) , z) that is also
symmetric with respect to the equatorial plane i.e r (−z) = r (z).
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Figure 3.15: The generating curve for the axisymmetric surface and a mesh approximating
it.

A surface element corresponds to a linear element on the generating curve.

Let us remember the regularized axisymmetric expression for the potential

u (x0) = −
1

π

∫ b

a

F (k)√
(z − z0)2 + (r + r0)

2

∂u

∂n
(r, z) r (z)

√
1 + r′ (z)2dz

+
1

2π

∫ b

a

(u (r, z)− u (r0, z0))

− F (k)√
(z − z0)2 + (r + r0)

2
+

+
E (k)

[
(z − z0)2 + 2 (z − z0) r (z) r′ (z) + (r0 − r) (r0 + r)

]√
(z − z0)2 + (r + r0)

2 ((z − z0)2 + (r − r0)2
)

 dz,

for x0 ∈ ∂Ω1. We will find discretized expressions for the simple and double layers.

Discretized axisymmetric expressions.

We are assuming that the forces acting in the drop are axially symmetric, and will result also
symmetric with respect to the axis perpendicular to the rotation axis, because the electric
field that originates the charge, comes from the unbalance of the ions and the respective
charge with the free electrons, and we don’t have an exterior field that could affect the
symmetric distribution of the charge in the boundary. We will observe that fact in the
equations.
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Let us consider a mesh on the axisymmetric surface generated by the generating curve
(r (z) , z), the mesh is determined by n points (r1, z1), . . . , (rn, zn) on (r (z) , z), where rj =
r (zj); they determine n− 1 elements Ej on the surface. Let us take a pole in the ith subin-
terval (different from the endpoints of the subinterval) and let us denote it by x0 = (ri0, z

i
0)

where ri0 = r (zi0). We will find axisymmetric expressions that can be used to approximate
the boundary condition for the system we want to solve.

Single and double layer discretization. The integral of the Green’s function in the
initial axisymmetric surface Ω (0) becomes:

∫
Ej

G (x,x0) dS (x) =

∫ zj+1

zj

∫ 2π

0

G (x,x0)

√
1 + r′ (z)2r (z) dθdz

=
1

π

∫ zj+1

zj

GAX (x,x0)

√
1 + r′ (z)2r (z) dz

=
1

π

∫ zj+1

zj

F (k)√
(z − zi0)

2
+ (r + ri0)

2

√
1 + r′ (z)2r (z) dz,

with

k =

√
4ri0r

(z − zi0)
2
+ (r + ri0)

2 ,

and F the elliptic integral. We have two types of local integrals, those defined on the
subinterval that contains the pole and those that doesn’t. As we mentioned before, the
complete integral is regular but an improper integral, and this is considered in the numerics
using aditional refinement in the subinterval with the pole.

Let us denote

I1(zj, zj+1, z
i
0, r

i
0) =

∫ zj+1

zj

F (k (r (z) , z, zi0, r
i
0))√

(z − zi0)
2
+ (r + ri0)

2

√
1 + r′ (z)2r (z) dz,

if we take z = −ω, by a change of variables and due to the symmetry with respect to the
poles or parity of the functions involved, we have

I1(zj, zj+1, z
i
0, r

i
0) =

∫ zn−j+1

zn−j

F
(
k
(
r (ω) , ω, zn−i0 , rn−i0

))√(
ω − zn−i0

)2
+
(
r (ω) + rn−i0

)2
√

1 + r′ (ω)2r (ω) dω (3.61)

= I1(zn−j, zn−j+1, z
n−i
0 , rn−i0 ).

Now for the discretized double layer potential we have a similar result. If
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∫
Ej

∂G

∂n
(x,x0) dS (x) =

∫ zj+1

zj

∫ 2π

0

∂G

∂n
(x,x0) dS (x)

=
1

2π

∫ zj+1

zj

∂GAX

∂n
(x,x0)

√
1 + r′ (z)2r (z) dz

=
1

2π

∫ zj+1

zj

 −F (k (r (z) , z, zi0, r
i
0))√

(z − zi0)
2
+ (r + rMi )

2
+

E (k (r (z) , z, zi0, r
i
0))
[
(z − zi0)

2
+ 2 (z − zi0) r (z) r′ (z) + (ri0 − r) (ri0 + r)

]
√
(z − zi0)

2
+ (r + ri0)

2
(
(z − zi0)

2
+ (r − ri0)

2
)

 dz

with E and F as before, the elliptic integrals, and we define

I2(zj, zj+1, z
i
0, r

i
0) =

∫ zj+1

zj

−F (k (r (z) , z, zi0, r
i
0))√

(z − zi0)
2
+ (r + ri0)

2
+

E (k (r (z) , z, zi0, r
i
0))
[
(z − zi0)

2
+ 2 (z − zi0) r (z) r′ (z) + (ri0 − r) (ri0 + r)

]
√
(z − zi0)

2
+ (r + ri0)

2
(
(z − zi0)

2
+ (r − ri0)

2
)

 dz,

we have

I2(zj, zj+1, z
i
0, r

i
0) = I2(zn−j, zn−j+1, z

n−i
0 , rn−i0 ). (3.62)

We want to avoid numerical problems due to the nature of the singularities of the Green
function and its normal derivative, therefore we will vary the poles x0 ∈ ∂Ω1 in the middle
points of the subintervals determined by the discretization. Taking the poles in the middle
points we have well defined expressions for the integrands in the single and double layer
potentials.

To calculate the unknown element values
(
∂u
∂n

)
j
we apply the discretized integral equation

in the middle points of each boundary element denoted by xMi = (rMi , z
M
i ), for zMi = zi+zi+1

2

the middle point of the subinterval i in z axis and rMi = ri+ri+1

2
a middle point of the ith

subinterval determined by r, i = 1, . . . , n− 1

u
(
xMi
)
= −

n−1∑
j=1

(
∂u

∂n

)
j

∫
Ej

G
(
x,xMi

)
dS (x) +

n−1∑
j=1

(
uj − u

(
xMi
)) ∫

Ej

∂G

∂n

(
x,xMi

)
dS (x) .

If we denote bi = u
(
xMi
)
−
∑n−1

j=1

(
uj − u

(
xMi
)) ∫

Ej

∂G
∂n

(
x,xMi

)
dS (x) and Aij =

∫
Ej
G
(
x,xMi

)
dS (x)

we obtain

bi =
n−1∑
j=1

Aij

(
−∂u
∂n

)
j

. (3.63)
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Due to (3.61)

Aij = An−i,n−j,

and, if we suppose that u is symmetric in ∂Ω1 and using (3.62), we will also have

bi = bn−i.

Now we will proceed to obtain σ0 and N (ln (σ0)).

Obtaining σ0

In the axisymmetric equation

∆u (x,0) = 0 in R3\Ω (0),

u (x, 0)|∂Ω = u0 (x, 0) ,

u (x, 0) −→ O
(
|x|−1) for |x| −→ ∞,

we assume u0 = C for a suitable constant associated with the total charge in the droplet,
the integral equation is:

C = − 1

π

∫ b

a

F (k)√
(z − z0)2 + (r + r0)

2

∂u

∂n
(r, z) r (z)

√
1 + r′ (z)2dz,

which implies

C ≃ −
n−1∑
j=1

(
∂u

∂n

)
j

∫ zj+1

zj

F
(
k
(
r (z) , z, rMi , z

M
i

))√
(z − zMi )

2
+ (r + rMi )

2

√
1 + r′ (z)2r (z) dz,

for i = 1, . . . , n − 1. Inverting numerically as in [26] and taking care with the subinterval
that contains the pole (refining properly on it), we obtain an approximation to

σ0 (xS) = −
∂u

∂n
(r, z)

∣∣∣∣
∂Ω(0)

,

in the middle points (rMi , z
M
i ) of each element. For the integration we used the trapezoidal

rule, for the calculation of the inverse the GMRES method (an iterative gradient method
for the solution of linear systems) and for approximate the derivative, central differences.

As we mentioned before, if we assume an initial shape Ω (0) symmetric, σ0 will also be
symmetric.
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Obtaining N (ln (σ0))

If now we assume that the boundary condition u0 (x, 0) = ln (σ0 (r, z)) in ∂Ω (0), we will
have:

ln (σ0 (r0, z0)) = −
1

π

∫ b

a

F (k)√
(z − z0)2 + (r + r0)

2

∂u

∂n
(r, z) r (z)

√
1 + r′ (z)2dz+

+
1

2π

∫ b

a

ln

(
σ0 (r, z)

σ0 (r0, z0)

) −F (k)√
(z − z0)2 + (r + r0)

2
+

E (k)
[
(z − z0)2 + 2 (z − z0) r (z) r′ (z) + (r0 − r) (r0 + r)

]√
(z − z0)2 + (r + r0)

2 ((z − z0)2 + (r − r0)2
)

 dz,

using σ0 (r, z) calculated before. We are looking for ∂u
∂n

(r, z) therefore we will use the dis-
cretized version:

ln
(
σ0(r

M
i , z

M
i )
)
− 1

2π

n−1∑
j=1

∫ zj+1

zj

ln

(
σ0 (r, z)

σ0(rMi , z
M
i )

)− F
(
k
(
r (z) , z, rMi , z

M
i

))√
(z − zMi )

2
+ (r + rMi )

2
+

E
(
k
(
r (z) , z, zMi , r

M
i

)) [(
z − zMi

)2
+ 2

(
z − zMi

)
r (z) r′ (z) +

(
rMi − r

) (
rMi + r

)]√
(z − zMi )

2
+ (r + rMi )

2
(
(z − zMi )

2
+ (r − rMi )

2
)

 dz

= − 1

π

n−1∑
j=1

(
∂u

∂n

)
j

∫ zj+1

zj

F
(
k
(
r (z) , z, rMi , z

M
i

))√
(z − zMi )

2
+ (r + rMi )

2

√
1 + r′ (z)2r (z) dz,

where
(
∂u
∂n

)
j
is an approximation of the normal derivative at the middle points. As be-

fore, we can invert numerically to obtain an approximate N (ln (σ0)) = ∂u
∂n

(r, z) using the
same techniques than for σ0 for the calculation of the integrals, inverting the matrix etc.

For approximating ln
(

σ0(r,z)

σ0(rMi ,zMi )

)
we interpolate linearly using the discretized version found

previously.

Obtaining the boundary condition F (V )

We know

σ1 (xS) = −
2
∫
∂Ω
N (ln (σ0))

Q
σ0 (xS) + 2N (ln (σ0)) +O (ε) ,

and now we have the functions that we need to calculate it. Therefore we can obtain the
values for the boundary conditions to be used in the Stokes system. Let us obtain the
axisymmetric version and discuss the principal formulas used for the velocity field.
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3.6.3 Boundary Element Method for the axisymmetric Stokes sys-
tem

Now that we have the boundary conditions to calculate the velocity field, let us note that
we can simplify the integral equations deduced before using axisymmetry as we did with
Dirichlet problem, and the integral equation found for values x0 ∈ ∂Ω1 will be also in terms
of elliptic integrals.

We already have an integral equation for the velocity at the surface of the drop. If
x0 ∈ ∂Ω1

vα (x0) =
−1

4π (µ1 + µ2)

∫
C

∆fα (x)Mαβ (x,x0) dl

+
µ2 − µ1

4π (µ1 + µ2)

∫
C

qαβγ (x,x0) vβ (x)nγ (x) dl,

discretizing and using as poles the middle points for finding the velocity on them, we have

vα(r
M
i , z

M
i )− µ2 − µ1

4π (µ1 + µ2)

n−1∑
j=1

(
vβ(r

M
i , z

M
i )
)
j

∫
Ej

qαβγ
(
r (z) , z, rMi , z

M
i

)
nγ (r (z) , z) dl

=
1

4π (µ1 + µ2)

n−1∑
j=1

∫
Ej

∆fα (r (z) , z)Mαβ

(
r (z) , z, rMi , z

M
i

)
dl.

In the case of axisymmetric flux, the integrand of the integral of the double layer potential
is not singular or weakly singular (see [56]), and the integral can be calculated by standard
numerical methods (unlike the 3-D flux in which is necessary to remove the singularity (cf.
[54], [56])).

3.6.4 Details on the numerical implementation

We will include the principal algorithm (with only the principal parameters) to illustrate the
basic idea followed for generating the evolution of the drops.

Algorithm 12. Input parameters:

µ1 viscosity of the drop.

µ2 viscosity of the fluid surrounding the drop.

Q initial charge of the droplet.

ε dimensionless parameter associated with the Debye length.

Configuration parameters:

n number of nodes.

e eccentricity of the spherical harmonic for the initial mesh Ω (0)
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1. t← t0

2. while t < tmax

3. Calculate the surface charge density σ0 at the midpoints of the mesh.

4. Calculate the correction σ1 for the boundary condition F (V ).

5. Calculate the mean curvature at the midpoints of the mesh.

6. Calculate the velocity field at the midpoints of the mesh.

7. Interpolate the velocity to the nodes and project it to the normal.

8. Calculate an appropriate time step for determining the new mesh.

9. We move the mesh using the interpolated velocity to find the position of the nodes at
the new time t+∆t

10. Smothing the grid, moving the nodes to the direction of maximum curvature.

11. t← t+∆t

Output: The position of the nodes at a final time tmax.

The most important details have been discussed before, therefore we just give few com-
ments about the algorithm.

The initial mesh

We will take as initial data for the drop’s shape a perturbed sphere by a spherical harmonic

Y 0
2 (θ, ϕ) = 1

4

√
5
π
(3 cos2 θ − 1) so that the eccentricity is e ≡ rmax−rmin

rmax+rmin

Steps 3 and 4: The surface charge density σ0 and the correction σ1

In the last section we already explained the kind of equations that we have to solve for them,
and the methods involved. Basically are performed solving numerically the corresponding
integral equation.

Step 5: The mean curvature at the midpoints

For the curvature of the generating curve we use the Frenet-Serret formula

t·dn
ds
,

with derivative of arc length.
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Steps 6 and 7: The velocity field.

Using the formulas afore mentioned for the axisymmetric velocity field in terms of elliptic
integrals, and the trapezoidal rule for the integration in each element, we obtained the
velocity field in the middle points, we interpolate to obtain the velocity at the nodes and
finally project to the normal, because the normal direction determines the evolution of the
drop, the tangential direction only redistributes the nodes.

Step 8: The time step

We obtain the time step from the equation that moves the drop:

dx

dt
· n = v · n,

if we choose

∆t < min
i=1,...,n−1

|xi+1 − xi|
|vi|

,

we have stability for the Euler explicit squeme that evolves the drop (CFL condition). From
the nondimensionalization of the variables (for working with a dimensionless problem),

τ =
(µ1 + µ2)mini=1,...,n−1 ||xi+1 − xi||

γ
,

and hence we choose

∆t < Cτ,

with C a sufficiently small (in order to guarantee stability) fixed constant. In this way we
obtain an appropriate time step.
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Steps 9 and 10: Moving and smoothing the mesh

We prepare the mesh for next iteration, but before of that, we calculate again the curvature
for the new mesh and move the points in the direction of maximum curvature. In this way we
obtain more resolution in the regions of high curvature of the droplet, where the experiments
lead us to expect the formation of the jet.

3.7 Numerical results: the evolution of a droplet

We could obtain the flow using the boundary condition, the evolved droplet using

dx

dt
· n = v · n,

now we will find out the stability of the electrolitic droplet in terms of ε (that physically
corresponds to the Debye Length).

3.7.1 Stability analysis

We start using an algorithm for the case ε = 0, i.e. assuming that the drop is a perfect
conductor (and the corresponding equations for the potential) and using a similar argument
to the bisection method we found that the critical charge to 3 decimals for dimensionless
variables and equations, is Qc,0 = 12.123. Using the same bisection idea and the algorithm
with the force term in the boundary using the correction σ1 to the surface charge density,
i.e. the case ε ̸= 0, we found different values for the critical charge.

We found that the critical charge (to three decimals also) depends on ε and we used the
perfect conductor case to express it relative to the critical charge for ε = 0:

ε 0 0.01 0.011 0.012 0.013 0.014 0.015 0.016

Qc,ε 12.123 12.478 12.515 12.551 12.587 12.623 12.660 12.696
Qc,ε

Qc,0
1 1.0293 1.0323 1.0353 1.0382 1.0412 1.0442 1.0473

Xε 1 1.0594 1.0656 1.0718 1.0778 1.0840 1.0903 1.0968

If we take a charge greater or equal than the critical charge for the respective case of ε,
we have inestability. In the calculation of Xε we are using that X ∼ Q2.

Fitting quadratically we obtained

Qc,ε

Qc,0

=
44.893

12.123
ε2 +

35.108

12.123
ε+ 1,

with a norm of residuals 0.00086283.

Our conclusion is the following: The critical charge increases with ε. This fact agrees
with the observation in [20] that water droplets, containing always a certain amount of ions,
are able to hold an amount of charge slightly larger than Rayleigh’s limit (that is, a charge
corresponding to, Qc,0).
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3.7.2 The jets

If we take a value of charge that exceeds the critical charge we can see a deformation in the
droplet, different than those observed in the numerical experiments in [26] and in [12], done
considering the perfect conductor case

Figure 3.16: Some of the last profiles in
the simulation.

Figure 3.17: Part of the behavior of the
electrolitic drop.

Figure 3.18: The formation of jet from an
electrically charged viscous droplet. Nu-
merical simulation from our model.

Figure 3.19: Experiment from Grimm and
Beauchamp.

3.7.3 The velocity of the jet using dimensional arguments

We are interested in knowing the relation between the Debye-Length and the velocity of the
jet, that is, the dependence in the distribution of the charges in the boundary with the jet.
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Therefore, for a fixed charge, we will investigate the relation between ε and the component
z of the velocity, i.e., vz in the jet.

We have not defined what a jet is, and we will not define it but empirically, we will use
an informal idea that comes from the observation of the experiments and comparing them
with the evolution of the droplet in time with the simulations. For define it more properly
we could use the evolution of the simulations and identifying the outputs for large times with
small numerical error, the curvature in the apex, or also relate to the outputs the physical
quantities associated to the drop, like for instance the charge in the “body” of the drop and
comparing it with the charge in the part of the drop which we could call a “jet”, since we
know, due to the experiments, what should happen with the charge.

Some of the results obtained in the simulations about the the velocity are represented in
Figures 3.20 and 3.21

Figure 3.20: Possition of the apex of the drop as a function of time for ε = 0.016, Q = 20.
Observe that the position grows linearly in time indicating the appearence of a jet with
V ≃ 57.084

Observe in Figure 3.18 the presence of jets as observed in the experiments reported, for
instance, in [20], [6].

We will analyse, based on the numerical simulations and asymptotic analysis, the main
features of these jets as a function of ε (which is proportional to the absolute temperature)
and ion concentration.

As we can observe, jets are emitted with a constant velocity (see Figures 3.21, 3.20). If
we plot the velocity of the jet vz as a function of ε (3.19), we can detect a scaling law

vz ∼
C

ε
, (3.64)

so that jets are emitted faster as ε decreases. Of course, very large velocities as ε→ 0 are not
realistic, since inertial terms that have been neglected under Stokes approximation would
then become dominant. Nevertheless, (3.64) provides an important qualitative result: the
jet’s velocity is inversely proportional to ε. Notice that in the limit ε = 0, which corresponds
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Figure 3.21: Possition of the apex of the drop as a function of time for ε = 0.02, Q = 20.
Observe that the position grows linearly in time indicating the appearence of a jet with
V ≃ 40.689

to the perfect conductor, the velocity becomes singular as shown in [26] with the formation
of a conical tip. It is then expected that the radius of the jet collapses to zero as ε → 0.
This fact is observed numerically as represented in Fig. 3.18. A clear cone-jet structure can
clearly be observed in Figures 3.16 and 3.18: a cone whose vertex connects with a thin jet.
By mass conservation, the flux of mass across a cross-section of the cone (which is essentialy
independent of ε as the jet develops) equals the flux of mass over a cross-section of the jet.
Therefore, if the radius of the jet is r, then

ρπr2vz = Const,

which implies, by (3.64), a jet’s radius

r ∝ ε
1
2 . (3.65)

Since, for a given solution, ε is proportional to the absolute temperature, we can conclude
that the jet’s radius decreases with the absolute temperature or, in other words, decreases
when the Debye layer’s thickness decreases. This is a common experimental observation in
the electrokinetic context.

The origin of the scaling law (3.64) for the velocity of the jet can be understood from the
following simple heuristic argument: the jet appears when the correction due to the Debye
layer becomes of the same order of magnitude than the capillary force. Since, for ε = 0,
conical singularities develop as demonstrated in [12], [26] and they are such that

H ∝ 1

(t0 − t)
1
2

, σ ∝ 1

(t0 − t)
1
2

, vz,tip ∝
1

(t0 − t)
1
2

close to the singularity time t0, we can now compare the terms

γH = O((t0 − t)−
1
2 )

εσH = εO((t0 − t)−1)
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to conclude that jet starts to form when

ε = O((t0 − t)
1
2 )

so that, the velocity is then

vz ∝
1

(t0 − t)
1
2

= O(ε−1)

Then it is reasonable to assume that the velocity of the jet behaves like:

vz ∼ Cεα,

now if we use the simulations obtained with the algorithm, we would have

ln (vz) ∼ α ln(ε) + lnC,

therefore, if we use a linear fitting to the graph of ln (vz) against ln(ε) we can obtain an
approximate value of α using the values obtained from the simulations.

3.7.4 The velocity using the simulations

We will use now the simulations and an empiric definition of “jet” that includes using some
of the last outputs and observing the change in the curvature in the apex. Considering
outputs inside the formation that behaves like a jet, we use for all the ε cases, the times
corresponding to iterations from 26, 000 to 30, 000, i.e., the same interval of time for all the
analyzed cases. Using the respective height of the droplet, we can approximate the velocity
for each case. Let us observe the iterations corresponding to the case of ε = 0.016 in Fig.
3.22.

Figure 3.22: It seems to be a single drop, but it is a collection of droplets

If we zoom in some of the poles, we can see in the Fig. 3.23 that it is not a single drop
but a collection of droplets with almost the same “body” but a different apex.
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Figure 3.23: Zooming, we can see now how the droplet evolves, developing a jet

Considering the time against the height and fitting linearly, we can obtain an approximate
velocity for each case considered, see for example in Fig.3.20 the graph for the case of
ε = 0.016.

We obtained the velocity for physically relevant cases of ε, and the residual in the re-
spective linear fitting:

ε 0.01 0.011 0.012 0.013 0.014 0.015 0.016
vz 95.092 86.737 79.79 73.039 67.418 61.791 57.084

Residual 0.0002694 0.0003053 0.0003684 0.0004626 0.000572 0.000714 0.0008660

If we now consider the linear fitting of the logarithms of ε and vz obtained before, we can
see in Fig. 3.24 an approximate value to α using the coefficient of the independent variable.

Figure 3.24: Approximating ε exponent considering cases with physical relevance
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vz ∼
1

ε
,

we can strongly suspect then, that we already have a relation between the velocity and
the Debye-Length, i.e, the velocity will grow with smaller values of ε.

3.7.5 The diluted case

Next, we discuss the effects of ion concentration on the jet’s size and velocity. We can combine
in dilute solutions the terms in F (V ) to obtain, up to constants that can be included in the
pressure and corrections of O(ε2),

F (V ) =
σ2

2
e−

2εκ
σ . (3.66)

This expression coincides with the more general expression

F (V ) = g1

(χ
σ

) σ2

2
e−g2(

χ
σ )

εκ
σ , (3.67)

that was deduced for arbitrary (not necessarily diluted) ionic solutions. The parameter χ is
proportional to the square root of the ion concentration. Notice that g2ε plays the same role
in (3.67) as ε in (3.66). Hence, we expect a radius of the jet

rj ∝ g
1
2
2 ε

1
2 .

Since the function g2(s) is decreasing, we find that for a given value of ε, the jet’s radius
decreases with increasing, ion concentration. In fact, the graphical representation of g2(s)
reveals an exponential decay, so that one can expect very strong decrease of the jet’s radius
when ion concentration experiences a significant increase. This fact can be seen in our figure
3.7.5.

In fact, it is well known by experimentalists interested in the production of micro and
nanojets, that a method to produce extremely thin jets is to add salt to the liquid. Since

g2(s) ≃ e−2s, as s→∞,

we can provide the following approximation for the jet’s radius as a function of ion concen-
tration µ and for a given value of ε:

rj ∝ e−Cµ
1
2 .
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Figure 3.25: Iniciation of the jet for ε = 0.03 and g2 = 0.25, 0.5, 1. Notice that the curvature
increases as g2 decreases
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Chapter 4

The stability of drops with thick
Debye layers: the Debye Hückel
approximation

4.1 Introduction

In the previous chapters we considered the Poisson-Boltzmann model in order to describe
the distribution of ions and free charges inside the drop. The main assumption was the
smallness of a dimensionless parameter ε

ε =
ε0εrkBT l

(ez)2
,

introduced in Chapter 2. If the positive ion concentration (number of ions per unit volume)
times the characteristic length of the drop l is divided by this parameter, we get a quantity
with dimensions the inverse of length square. If we compute a similar quantity with negative
charge concentration and add to the previous one, we obtain a quantity with dimensions the
inverse of length to the square: the inverse of the Debye length λD squared. More precisely:
by denoting with M and N the amount of positive and negative charges respectively and
with l a characteristic length scale of the drop (its volume to the 1

3
power, for instance) we

have

λ−2
D =

l
(
M
l3

)
ε

+
l
(
N
l3

)
ε

,

and we can construct the dimensionless quantity(
λD
l

)2

=
ε

M +N
. (4.1)

Hence, for a drop of a given size and total number of ions, we were assuming a small Debye
length as compared to drop’s size. In this Chapter we will look at the opposite situation
when the parameter ε is large and the Debye length is not necessarily small compared to the
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radius of the drop. This allows to linearize the Poisson-Boltzmann equation under the, so
called, Debye-Hückel approximation. One situation where Debye-Hückel approximation is
valid is when dealing with very diluted ionic solutions, so that M and N in (4.1) are small.

We will perform the Debye-Hückel approximation from the Poisson-Boltzmann equation
obtained in Chapter 2. Let us remember that assuming the presence of N electrolitic species,
charge imbalance, negligible velocity and flux of charges in the drop, Poisson equation be-
comes

∆V = −
N−1∑
i=0

ezici
ε0εr

e
− ezi

kbT
V
, in Ω, (4.2)

last equation (4.2) is Poisson-Boltzmann equation and defines the electric potential distri-
bution in the diffuse ionic layer adjacent to a charged surface. By writing

ci = n0
i e

ezi
kbT

Vc

with n0
i the bulk values (overall average) of the ith species. We obtain the equation

∆V = −
N−1∑
i=0

ezin
0
i

ε0εr
e
− ezi

kbT
(V−Vc), in Ω. (4.3)

where Vc is chosen such that
∑N−1

i=0
ezici
ε0εr

e
− ezi

kbT
Vc = 0. Hence, if the arguments of the expo-

nentials in (4.3) are small then (4.3) can be linearized and yields the following homogeneous
screened Poisson equation (a time-independent Klein-Gordon equation):

∆Ṽ − (λD)
−2Ṽ = 0, in Ω (4.4)

where Ṽ = V −Vc and λD is, in the general case when there are multiple species, a parameter
with dimension of length that is called the Debye screening length

(λD)
−2 =

N−1∑
i=0

(ezi)
2 n0

i

ε0εrkbT

If we rescale the space variable with the drop’s length scale, x′ = x
l
and we keep the

notation Ω for the domain, we arrive at

∆Ṽ − κ2Ṽ = 0, in Ω (4.5)

with κ a dimensionless parameter such that

κ−1 =
λD
l

The approximation by which one arrives to (4.5) from (4.3) is called the Debye-Hückel
approximation. In the case of a binary ionic solution whose ions have a valence one and in
the presence of electrons, Poisson-Boltzmann equation can be written as (see Chapter 2)

∆u = µ sinh
u− uc
ε
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with V = ez
ε0εrl

u, ε = ε0εrkbT l

(ez)2
and ε/µ = λD/l. It is then clear that Debye-Hückel approxi-

mation corresponds to the situation where ε≫ 1 so that ũ = u− uc satisfies ∆ũ− κ2ũ = 0
at leading order in ε−1.

Formally, when the nondimensionalized Debye length κ−1 tends to zero, one arrives from
(4.5) to the equation Ṽ = 0, that is to a constant potential Vc inside the drop just like in
the case of a perfectly conducting medium. Outside the drop there is no charge and hence

∆V = 0, outside Ω (4.6)

with V decaying to zero as |x| → ∞. At the boundary of the drop, the potential V must be
continuous and differentiable. Finally, by Gauss’ theorem, the net charge inside the drop is
given by

Q = −ε0
∫
∂Ω

∂V

∂n
dS (4.7)

which serves as a relation to compute Vc given the net charge Q. The purpose of this chapter
is to compute the correction introduced to Rayleigh stability criterion for stability already
mentioned in previous chapters, i.e. X < 1 with X given by (3.1), when the potential is not
constant inside the drop (we are not assuming a perfect conductor) but satisfies (4.5), (4.6),
(4.7).

4.2 The linearized Stokes system

We have a drop that consists of a viscous incompressible fluid containing ions, which are
electrically charged and produce stresses on the fluid through the so-called Maxwell stress
tensor:

τij = EiEj −
1

2
δij |E|2 (4.8)

As we mentioned in Chapter 3, its divergence is the force acting in the drop. Hence, the
velocity and pressure field inside the drop satisfy the Stokes system

−∇p+∆v + Fe = 0 in Ω(t) (4.9)

∇ · v = 0 in Ω(t) (4.10)

nTn = −γH at ∂Ω(t) (4.11)

tTn = 0 at ∂Ω(t) (4.12)

with Fe the electrical force Fe = ρE, ρ the electric charge density and E = −∇V the local
electric field with V the electric potential. The vectors n, t are normal and tangent vectors
respectively, H is the mean curvature (we can assume a change of variables for dropping off
the factor 2 in the right hand side of (4.11)) of the drop’s surface. Relation (4.11) expresses
balance between viscous stresses and surface tension, and T is the viscous stress tensor

Tij = −pδij +
(
∂vi
∂xj

+
∂vj
∂xi

)
(4.13)
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By Debye-Hückel approximation, ρ = −κ2Ṽ we have then

ρE = κ2Ṽ∇Ṽ =
κ2

2
∇Ṽ 2

If we assume that the domain Ω (t) is close to a ball of unit radius, we can assume also
that

∂Ω (t) = {r : r(θ, φ, t) = 1 + x(θ, φ, t)}

i,e., its boundary corresponds to a small perturbation of the unit sphere, where the perturba-
tion is a function x(θ, φ, t) = ϵλ (θ, φ, t). The variables (r, θ, φ) being a spherical coordinates
system with θ ∈ [0, π], φ ∈ (0, 2π].

Let us define a Hanzawa transformation (cf. [38],[27])

r = r′ + ϵλ (θ′, φ′, t)χ (1− r′) (4.14)

θ = θ′

φ = φ′

with χ (z) ∈ C∞ (R) , χ (z) =
{0 if |z|≥ 3δ0

4

1 if |z|< δ0
4

, 0 < χ (z) < 1 in other case.
∣∣∣dkχdzk

∣∣∣ ≤ C
δ0
, 0 < δ0 < 1

sufficiently small. This transforms the unit ball B (0, 1) into Ω (t). Takes the ball of radius
1− 3δ0

4
into itself and the unit sphere S2 into ∂Ω (t).

The central idea is to express the system (4.9)-(4.12) in terms of functions in new variables
and terms negligible at ϵ order coming from the Hanzawa transformation, to be solved in a
more simple domain in which we can deal with functions in an appropriate and known base
(spherical harmonics and vector spherical harmonics) and allows us to transform the pde
system in an ode system. We will be using ideas and calculations from [32], [41] and [27].

Figure 4.1: The Hanzawa transformation.

We have
∂r′

∂r
=

1

1− ϵχ′λ
(4.15)
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if we denote ω = (ω1, ω2) = (θ, φ) and ω′ = (ω′
1, ω

′
2) = (θ′, φ′)

∂r′

∂ωi
= −ϵ

χ (1− r′)λω′
i

1− χ′λ
(4.16)

and
∂2r′

∂r2
= −ϵ χ′′λ

(1− ϵχ′λ)3
(4.17)

∂2r′

∂ω2
i

= −ϵ
χλω′

iω
′
i

1− ϵχ′λ
− 2ϵ2

χ′χλ2ω′
i

(1− ϵχ′λ)2
− ϵ3

χ′′χ2λλ2ω′
i

(1− ϵχ′λ)3
(4.18)

Denote

p′ = p(r′ + ϵλχ (1− r′) , θ′, φ′)

v′r′ = vr(r
′ + ϵλχ (1− r′) , θ′, φ′)

v′ω′
i
= vωi

(r′ + ϵλχ (1− r′) , θ′, φ′)

Let us consider the base {er, eθ, eφ}, then for q′ (r′, ω′) = q(r′ + ϵλχ (1− r′) , ω),

∇(r′,ω′)q
′ =

∂q′

∂r′
er +

1

r′
∂q′

∂θ′
eθ +

1

r′ sin θ′
∂q′

∂φ′eφ.

and we have

∂q′

∂r′
=
∂q

∂r
− ϵ∂q

∂r
χ′λ

=
∂q

∂r
+O (ϵ)

∂q′

∂ω′
i

=
∂q

∂ωi
+ ϵ

∂q′

∂r′
χλωi

1− χ′λ

=
∂q

∂ωi
+O (ϵ)

1

r
=

1

r′ + ϵλχ
=

1

r′

[
1− ϵ λ

r′
χ (1− r′) +O

(
ϵ2
)]

let us note that when r′ is close to cero, χ (1− r′) = 0. Hence

∇(r′,ω′)q
′ = ∇(r,ω)q +O (ϵ)

analogously if we use now (4.17) and (4.18) and the chain rule for second order derivatives

∆(r′,ω′)q
′ = ∆(r,ω)q +O (ϵ)

see [27] for details.
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Let us note that if q = O (ϵ)

∇(r′,ω′)q
′ = ∇(r,ω)q +O

(
ϵ2
)

∆(r′,ω′)q
′ = ∆(r,ω)q +O

(
ϵ2
)

because the terms coming from the transformation involves q and q′ (and bounded derivatives
of χ).

We want to reduce (4.9), (4.10) to equivalent equations defined inside the sphere. Let us
begin assuming that for p,v : Ω (t) −→ R

p = p0 + ϵp1 +O
(
ϵ2
)

(4.19)

vr = vr0 + ϵvr1 +O
(
ϵ2
)

(4.20)

vωi
= vωi,0 + ϵvωi,1 +O

(
ϵ2
)

(4.21)

v = (vr, vθ, vφ)

v0 = (vr0, vθ0, vφ0)

v1 = (vr1, vθ1, vφ1)

etc., and the respective prime functions for the compositions with the transformation p′,v′ :
B (0, 1) −→ R

The normal vector exterior to the boundary can be approximated by (see [27])

n = er +O (ϵ)

From now until we found an equation for the perturbation, we will use t as a parameter only,
because the following equations does not involve time derivatives.

By [[31], Theorem 8.1] if ||x||C2 ≤ ϵ with ϵ small, it is possible to linearize the mean
curvature

H (1 + ϵλ (θ, φ, t)) = 1− ϵ
(
λ+

1

2
∆ωλ

)
+ x̃, ||x̃||C1 ≤ const (||x||C2)

2

∆ω is the Laplace operator on the surface of the unit sphere

∆ω =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

Therefore the homogeneous problem (i.e. F = 0) in the new variables becomes

−∇p′ +∆v′ = O (ϵ) in B (0, 1)

∇ · v′ = O (ϵ) in B (0, 1)

erT
′er = −γ

(
1− ϵ

(
λ+

1

2
∆ωλ

))
+O

(
ϵ2
)
at r′ = 1

eθT
′er = eφT

′er = 0 at r′ = 1
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T′ the stress tensor in spherical variables and spherical base {er, eθ, eφ} can be found in [46].
At 0th order we have

−∇p′0 +∆v′
0 = 0 in B (0, 1)

∇ · v′
0 = 0 in B (0, 1)

erT
′
0er = −γ at r′ = 1

eθT
′
0er = eφT

′
0er = 0 at r′ = 1

T′
0er =

(
−p′0δij + 2

∂v′r0
∂r

)
er

In this case, the drop is moved by constant surface tension, its movement is constant then
the displacement is constant, implying

v′
0 = 0

p′0 = γ

For the next order we have:

−∇ϵp′1 +∆ϵv′
1 = O

(
ϵ2
)
in B (0, 1)

∇ · ϵv′
1 = O

(
ϵ2
)
in B (0, 1)

erT
′
1er = ϵγ

(
λ+

1

2
∆ωλ

)
at r′ = 1

eθT
′
1er = eφT

′
1er = 0 at r′ = 1

where

erT
′
1er = ϵ

(
−p′1δij + 2

∂v′r1
∂r

)
the terms coming from the change of variables are O (ϵ2) because of the 0th order results
(assuming now a displacement by the constant γ in the pressure for simplifying calculations)
and the functions involved in this approximation. Then we can cancell the ϵ to find the
1st order approximation. We will drop off the prime and subscripts in the functions and
variables. Then we have to find simplified expressions for p and v (coming from p′1 and v′

1

respectively).

We have now the homogeneous version of (4.9), (4.10) to be solved inside the sphere

−∇p+∆v = 0 in B (0, 1) (4.22)

∇ · v = 0 in B (0, 1) (4.23)

with the linearized boundary conditions

−p+ 2
∂vr
∂r

= γ

(
λ+

1

2
∆ωλ

)
at r = 1 (4.24)

eθTijer = eφTijer = 0 at r = 1 (4.25)
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The left hand side of (4.24) comes from the stress tensor in spherical variables and its right
hand side from the linearized mean curvature.

Taking the divergence in (4.22) and using (4.23), this last equation (4.23) is equivalent
to the system

∆p = 0 in B (0, 1)

∇ · v = 0 on ∂B (0, 1)

We have to solve then

−∇p+∆v = 0 in B (0, 1)

∆p = 0 in B (0, 1)

∇ · v = 0 at r = 1

erTer = γ

(
λ+

1

2
∆ωλ

)
at r = 1

eθTer = eφTer = 0 at r = 1

Finally, we need to impose a kinematic equation for the motion of the interface. This is
given by the equation

rt · n = v · n at ∂Ω(t)

expressing the fact that the surface of the drop moves in the direction of its normal following
the normal component of the velocity field. Its linearized version is

λt = vr (4.26)

In order to compute the linearized evolution of the drop’s surface, we have to solve
equation (4.22) added with the components of a suitable Fe related to (4.8), and equation
(4.23), both inside the sphere with boundary conditions (4.24), (4.25). Then, by inserting
the component vr of the velocity, in terms of the perturbation λ, into (4.26) we obtain a
linear evolution problem with solutions that may grow or decrease exponentially fast. If
the solutions decay exponentially fast for any initial data, the drop’s spherical shape will
be stable. The drop will be unstable otherwise. The solution to the general system with
Fe ̸= 0 will be the sum of the solution to the homogeneous problem (i.e. with Fe = 0) with
nonhomogeneous boundary conditions plus the solution to the nonhomogeneous problem
with homogeneous boundary conditions.

In order to solve the linearized Stokes problem in the unit disk, the most suitable base is
formed by vector spherical harmonics (see [1] for the definition of spherical harmonics and
[41] for the properties of scalar and vector spherical harmonics):

p =
∑

plm(r)Ylm (ω) (4.27)

v =
∑

αlm(r)
−→
V lm (ω) + βlm(r)

−→
X lm (ω) + γlm(r)

−→
W lm (ω) (4.28)

The spherical harmonics

Ylm (ω) ≡ Θm
l (θ)

eimφ

(2π)1/2
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where

Θm
l (θ) = (−1)m

[
2l + 1

2

(l −m)!

(l +m)!

]1/2
Pm
l (cos θ)

and

Pm
l (z) =

1

2ll!

(
1− z2

)m/2 dl+m

dzl+m
(
z2 − 1

)l
Introducing the vector spherical harmonics [41]

−→
V lm (ω) ≡ er

{
−
(
l + 1

2l + 1

)1/2

Ylm

}
+eθ

{
1

[(l + 1) (2l + 1)]1/2
∂Ylm
∂θ

}
+eφ

{
imYlm

[(l + 1) (2l + 1)]1/2 sin θ

}

−→
X lm (ω) ≡ eθ

{
−mYlm

[l (l + 1)]1/2 sin θ

}
+ eφ

{
−i

[l (l + 1)]1/2
∂Ylm
∂θ

}

−→
W lm (ω) ≡ er

{(
l

2l + 1

)1/2

Ylm

}
+ eθ

{
1

[l (2l + 1)]1/2
∂Ylm
∂θ

}
+ eφ

{
imYlm

[l (2l + 1)]1/2 sin θ

}

In terms of spherical harmonics and vector spherical harmonics:

∇p =
∑
∇ (plm(r)Ylm (ω))

=
∑

plm(r)∇Ylm (ω) + Ylm (ω)∇plm(r)

using that

∇Ylm =
l

r

(
l + 1

2l + 1

)1/2−→
V lm (ω) +

l + 1

r

(
l

2l + 1

)1/2−→
W lm (ω)

∇plm(r) =
dplm
dr

er

and

erYlm = −
(
l + 1

2l + 1

)1/2−→
V lm (ω) +

(
l

2l + 1

)1/2−→
W lm (ω)

we obtain

∇p =
∑[

plm(r)

(
l

r

(
l + 1

2l + 1

)1/2−→
V lm (ω) +

l + 1

r

(
l

2l + 1

)1/2−→
W lm (ω)

)
+

+

(
−
(
l + 1

2l + 1

)1/2−→
V lm (ω) +

(
l

2l + 1

)1/2−→
W lm (ω)

dplm
dr

)]

=
∑[(

l + 1

2l + 1

)1/2(
− d

dr
plm +

l

r
plm

)
−→
V lm+

+

(
l

2l + 1

)1/2(
d

dr
plm +

l + 1

r
plm

)
−→
W lm

]
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Let us note that if we use

er
−→
V lm = −

(
l + 1

2l + 1

)1/2

Ylm

er
−→
W lm ≡

(
l

2l + 1

)1/2

Ylm

we have

∇plm · ∇Ylm =
dplm
dr

(r) er

[
l

r

(
l + 1

2l + 1

)1/2−→
V lm (ω) +

l + 1

r

(
l

2l + 1

)1/2−→
W lm (ω)

]

=
dplm
dr

(r)
l

r

(
l + 1

2l + 1

)1/2
(
−
(
l + 1

2l + 1

)1/2

Ylm

)
+

+
dplm
dr

(r)
l + 1

r

(
l

2l + 1

)1/2(
l

2l + 1

)1/2

Ylm

=

(
− l
r

(
l + 1

2l + 1

)
dplm
dr

(r) +
l

r

(
l + 1

2l + 1

)
dplm
dr

(r)

)
Ylm = 0

and this implies

∆p =
∑

∆(plm (r)Ylm (ω))

=
∑

plm (r)∆Ylm (ω) +
∑

Ylm (ω)∆plm (r)

=
∑

plm (r)

(
− l (l + 1)

r2
Ylm

)
+
∑(

d2plm
dr2

+
2

r

dplm
dr

)
Ylm (ω)

=
∑(

d2plm
dr2

+
2

r

dplm
dr
− l (l + 1)

r2
plm

)
Ylm (ω)

By denoting

Ll =
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2

and using that [41] for an arbitrary radial function R (r)

∆
[
R (r)

−→
V lm

]
= Ll+1 (R)

−→
V lm

∆
[
R (r)

−→
X lm

]
= Ll (R)

−→
X lm

∆
[
R (r)

−→
W lm

]
= Ll−1 (R)

−→
W lm

∆v =
∑[

∆
(
αlm(r)

−→
V lm (ω)

)
+∆

(
βlm(r)

−→
X lm (ω)

)
+∆

(
γlm(r)

−→
W lm (ω)

)]
=
∑[

Ll+1 (αlm(r))
−→
V lm + Ll (βlm(r))

−→
X lm + Ll−1 (γlm(r))

−→
W lm

]
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Using also

∇ ·
[
R (r)

−→
V lm

]
= −

(
l + 1

2l + 1

)1/2 [
dR

dr
+
l + 2

r
R

]
Ylm

∇ ·
[
R (r)

−→
W lm

]
=

(
l

2l + 1

)1/2 [
dR

dr
− l − 1

r
R

]
Ylm

∇ ·
[
R (r)

−→
X lm

]
= 0

we have

∇ · v = ∇ ·
[
αlm(r)

−→
V lm (ω) + βlm(r)

−→
X lm (ω) + γlm(r)

−→
W lm (ω)

]
=

{
−
(
l + 1

2l + 1

)1/2(
dαlm
dr

+
l + 2

r
αlm

)
+

(
l

2l + 1

)1/2(
dγlm
dr
− l − 1

r
γlm

)}
Ylm

= 0

then the Stokes system with the force term for (4.27) and (4.28) becomes

Llplm = Flm,0 (4.29)

Ll+1αlm −
(
l + 1

2l + 1

) 1
2
(
−dplm

dr
+
l

r
plm

)
= Flm,1 (4.30)

Llβlm = Flm,2 (4.31)

Ll−1γlm −
(

l

2l + 1

) 1
2
(
dplm
dr

+
l + 1

r
plm

)
= Flm,3 (4.32)

with the equation

−
(
l + 1

2l + 1

) 1
2
(
dαlm
dr

+
l + 2

r
αlm

)
+

(
l

2l + 1

) 1
2
(
dγlm
dr
− l − 1

r
γlm

)
= 0

as a boundary condition.

Let us remember the linearized boundary conditions

−p+ 2
∂vr
∂r

= γ

(
λ+

1

2
∆ωλ

)
at r = 1

eθTijer = eφTijer = 0 at r = 1

If we have

λ (ω, t) =
∑

λlm (t)Ylm (ω)

∆ωλ =
∑

λlm (t)∆ω (Ylm (ω)) =
∑

λlm (t) (−l (l + 1)Ylm (ω))
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then

λ+
1

2
∆ωλ =

∑
λlm (t)Ylm (ω) +

1

2

∑
λlm (t) (−l (l + 1)Ylm (ω))

=
∑

λlm (t)

(
1− l (l + 1)

2

)
Ylm (ω)

γ

(
λ+

1

2
∆ωλ

)
er =

∑
λlm (t)

(
1− l (l + 1)

2

)
Ylm (ω) er

Using

Ylm (ω) er = −
(
l + 1

2l + 1

) 1
2 −→
V lm +

(
l

2l + 1

) 1
2 −→
W lm

and some calculations from [32] , we can obtain

[
3l + 2

2l + 1

dαlm
dr
− l(l + 2)

2l + 1
αlm

]
− l

1
2 (l + 1)

1
2

2l + 1

[
dγlm
dr
− (l − 1)γlm

]

+

(
l + 1

2l + 1

) 1
2

plm + γ

(
l + 1

2l + 1

) 1
2
(
1− l(l + 1)

2

)
λlm = 0 (4.33)

dβlm
dr
− βlm = 0 (4.34)

− l
1
2 (l + 1)

1
2

2l + 1

[
dαlm
dr

+ (l + 2)αlm

]
+

[
3l + 1

2l + 1

dγlm
dr

+
(l − 1)(l + 1)

2l + 1
γlm

]
−
(

l

2l + 1

) 1
2

plm − γ
(

l

2l + 1

) 1
2
(
1− l(l + 1)

2

)
λlm = 0 (4.35)

with the added condition mentioned above that comes from ∇ · u = 0 on ∂B (0, 1).

−
(
l + 1

2l + 1

) 1
2
(
dαlm
dr

+ (l + 2)αlm

)
+

(
l

2l + 1

) 1
2
(
dγlm
dr
− (l − 1) γlm

)
= 0 (4.36)

The solution to the homogeneous problem (4.29)-(4.32) is

plm = P1r
l (4.37)

αlm = A1r
l+1 (4.38)

βlm = B1r
l (4.39)

γlm = C1r
l−1 +

1

2

(
l

2l + 1

) 1
2

P1r
l+1 (4.40)
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Substituting (4.37)-(4.40) into the boundary conditions (4.33)-(4.36) we get a linear sys-
tem of equations for Aj, Bj, Cj, Pj:

−
(
l + 1

2l + 1

)1/2

(2l + 3)A1 +

(
l

2l + 1

)
P1 = 0(

2l2 + 3l + 2

2l + 1

)
A1 +

(
l + 1

2l + 1

)3/2

P1 + S = 0

(l − 1)B1 = 0

− l
1/2 (l + 1)1/2 (2l + 3)

2l + 1
A1 + (2l − 1)C1 +

l1/2 (2l2 − 1)

(2l + 1)3/2
P1 −

l1/2

(l + 1)1/2
S = 0

with solutions

A1 = −S
l

4l + 2l2 + 3

B1 = 0

P1 = −
4l2 + 8l + 3

2l2 + 4l + 3

√
l + 1

2l + 1
S

C1 =
1

2

l (2l + 1) (l + 2)

(l − 1) (2l2 + 4l + 3)

√
l

l + 1
S

where

S = γ

(
l + 1

2l + 1

) 1
2
(
1− l(l + 1)

2

)
λlm

The radial velocity is then given in this case by

−→v · −→er =
∑

αlm(1)
−→
V lm · −→er + γlm(1)

−→
W lm · −→er

=
∑[

−
(
l + 1

2l + 1

) 1
2

αlm(1) +

(
l

2l + 1

) 1
2

γlm(1)

]
Ylm

= γ
∑ 1

2

l (2l + 1)

(l − 1) (2l2 + 4l + 3)

(
1− l(l + 1)

2

)
λlmYlm (4.41)

The solution to the nonhomogeneous problem requires the calculation of F and its lin-
earization.

4.2.1 Computation of the Potential, linearized Maxwell stress ten-
sor and its divergence

The solution to (4.5), (4.6), (4.7) when Ω is a ball of center in 0 and radius 1is

V = Vc +
Q

4π
ν00V0(r), r < 1

V =
Q

4π

1

r
, r > 1
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If we use the change of variables

x = κr

y =
√
rV0 (r)

they satisfies the modified Bessel differential equation

x2y′′ + xy′ −
(
x2 +

1

4

)
y = 0

Therefore

V0(r) =
I 1

2
(κr)

r
1
2

=

√
2

π

sinh(κr)

κ
1
2 r

,

Continuity of V and its derivative at r = 1 yields the conditions

Vc + ν00
Q

4π

√
2

π

sinh(κ)

κ
1
2

=
Q

4π√
2

π

sinhκ− κ coshκ
κ

1
2

ν00 = 1

from where it follows

Vc = −
Q

4π

κ coshκ

sinhκ− κ coshκ

ν00 =

√
π

2

κ
1
2

sinhκ− κ coshκ

We perturb now the sphere r = r′ + ϵλ (θ′, φ′, t) , for (r′, θ′, φ′) ∈ Ω or (r′, θ′, φ′) ∈ Ω̄c

and using the regularity of the potential we can write

V (r) = Vc + ν00
Q

4π
V0(r

′) + ϵ
Q

4π

∑
l,m

νlmglm(r
′)Ylm(θ

′, φ′), r′ < 1

V (r) =
Q

4π

1

r′
+ ϵ

Q

4π

∑
l,m

µlm
r′(l+1)

Ylm(θ
′, φ′), r′ > 1

where νlm and µlm have t as a parameter, and now

glm(r
′) =

Il+ 1
2
(κr′)

r′
1
2

For simplicity we will drop the primes. Continuity of the potential and its derivative at the
boundary, yield, at leading order

−λlm + µlm = ν00V
′
0(1)λlm + νlmglm(1) (4.42)

2λlm − (l + 1)µlm = ν00V
′′
0 (1)λlm + νlmg

′
lm(1) (4.43)
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from where νlm follows as a linear function of λlm.

µlm =
2glm + g′lm − ν00V ′′

0 glm + ν00V
′
0g

′
lm

glm + g′lm + lglm
λlm

νlm = −−1 + l + ((l + 1)V ′
0 + V ′′

0 ) ν00
glm + g′lm + lglm

λlm.

In the case l = 2, which, analogously to [27] we expect to be the first one (as charge increases)
to become unstabe, one has

µ2m = −(sinhκ) (κ2 sinhκ+ 3 sinhκ− 3κ coshκ)

κ sinh(2κ)− κ2 cosh2 κ− sinh2 κ
λlm (4.44)

ν2m = −
√
π

2

κ
5
2 sinhκ

κ sinh(2κ)− κ2 cosh2 κ− sinh2 κ
λlm. (4.45)

Let us remember that by Debye-Hückel approximation

ρE = κ2Ṽ∇Ṽ =
κ2

2
∇Ṽ 2.

Then we can define a reduced pressure Π

Π = p− κ2

2
Ṽ 2

so that equation (4.9) transforms into

−∇Π+∆v = 0

At ∂Ω, and at linear order in the perturbation, we have

Π = p− κ2
(
Q

4π

)2
(
ν200V

2
0 (1)

2
+ ν00V0(1)

∑
l,m

(ν00V
′
0(1)λlm + ϵνlmglm(1))Ylm(θ, φ)

)
+O(λ2)

4.2.2 Solution of the linear system

By expanding Π in spherical harmonics as in (4.27) with coefficients Πlm(r) and the velocity
as in (4.28), we obtain βlm = 0 and the linear system for (αlm, γlm,Πlm):

Ll+1αlm −
(
l + 1

2l + 1

) 1
2
(
−dΠlm

dr
+
l

r
Πlm

)
= 0 (4.46)

Ll−1γlm −
(

l

2l + 1

) 1
2
(
dΠlm

dr
+
l + 1

r
Πlm

)
= 0 (4.47)

−
(
l + 1

2l + 1

) 1
2
(
dαlm
dr

+
l + 2

r
αlm

)
+

(
l

2l + 1

) 1
2
(
dγlm
dr
− l − 1

r
γlm

)
= 0 (4.48)
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together with the following boundary conditions (at r = 1):

−
(
l + 1

2l + 1

) 1
2
(
dαlm
dr

+ (l + 2)αlm

)
+

(
l

2l + 1

) 1
2
(
dγlm
dr
− (l − 1)γlm

)
= 0 (4.49)

[
3l + 2

2l + 1

dαlm
dr
− l(l + 2)

2l + 1
αlm

]
− l

1
2 (l + 1)

1
2

2l + 1

[
dγlm
dr
− (l − 1)γlm

]
+

(
l + 1

2l + 1

) 1
2

Πlm

= −
(
l + 1

2l + 1

) 1
2

(ν00V0(1) (ν00V
′
0(1)λlm + νlmglm(1))) (4.50)

− l
1
2 (l + 1)

1
2

2l + 1

[
dαlm
dr

+ (l + 2)αlm

]
+

[
3l + 1

2l + 1

dγlm
dr

+
(l − 1)(l + 1)

2l + 1
γlm

]
−
(

l

2l + 1

) 1
2

Πlm

=

(
l

2l + 1

) 1
2

(ν00V0(1) (ν00V
′
0(1)λlm + νlmglm(1))) (4.51)

From the solution of the linear system (4.46)-(4.48) with boundary conditions (4.49)-
(4.51), we find αlm(1) and γlm(1) and hence

−→v · −→er =
∑

αlm(1)
−→
V lm · −→er + γlm(1)

−→
W lm · −→er

=
∑[

−
(
l + 1

2l + 1

) 1
2

αlm(1) +

(
l

2l + 1

) 1
2

γlm(1)

]
Ylm (4.52)

The l = 2 mode for the radial velocity is, using (4.52), identity (4.42) and (4.44):

5

19

(
Q

4π

)2

κ2
κ sinh 2κ− 2 cosh 2κ+ 2κ2 + 2

cosh 2κ+ κ2 cosh 2κ− 2κ sinh 2κ+ κ2 − 1

sinh(κ)

κ coshκ− sinhκ
λ2mY2m =: AY2m
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4.3 Stability vs Instability

Using (4.26), (4.41) and (4.52) we obtain, for the l = 2 mode:

λ2m,t =

[
−10

19
γ +

5

19
κ2
(
Q

4π

)2
κ sinh 2κ− 2 cosh 2κ+ 2κ2 + 2

cosh 2κ+ κ2 cosh 2κ− 2κ sinh 2κ+ κ2 − 1

sinh(κ)

κ coshκ− sinhκ

]
λ2m

(4.53)
which is the linearized evolution problem for the l = 2 mode. The term in brackets can be
positive or negative: in the first case, the amplitude λ2m(t) will grow exponentially fast, while
in the second it will decrease exponentially fast. When increasing exponentially fast from an
initial value λ2m(0), the growth will deviate the drop’s shape from the spherical equilibrium
shape and, eventually, nonlinearities will come into play. When the λ2m modes undergo
exponential drecease, the nonlinearities will decrease even faster and it is straighforward
to show (see [32], [27] for the technical details) that all them can be controlled to yield
asymptotic stability towards the spherical shape.

Hence, the condition for instability driven by the λ2m mode is that the term in brackets
in (4.53) is positive. This yields instability when

1

2γ

(
Q

4π

)2

>
cosh 2κ+ κ2 cosh 2κ− 2κ sinh 2κ+ κ2 − 1

κ sinh 2κ− 2 cosh 2κ+ 2κ2 + 2

κ coshκ− sinhκ

κ2 sinh(κ)
(4.54)

Since we are taking, for the sake of simplicity, a drop with radius R0 = 1 and a system of
units such that ε0 = 1, we can recognize at the left hand side (4.54) the Rayleigh’s fissibility
parameter

X =
1

2γε0R3
0

(
Q

4π

)2

Hence, the condition for instability given by (4.54) is just the condition that X > Xcr where

Xcr =
cosh 2κ+ κ2 cosh 2κ− 2κ sinh 2κ+ κ2 − 1

κ sinh 2κ− 2 cosh 2κ+ 2κ2 + 2

κ coshκ− sinhκ

κ2 sinh(κ)
(4.55)
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We conclude then that the fact of having an electrolyte solution lowers down the critical
value of Rayleigh fissibility parameter which is, in any case, larger than 0.818.

This result is in contrast with the result obtained in the previous chapter: when coupling
Stokes with Poisson-Boltzmann equation in the asymptotic limit when κ→∞, we obtained
that the critical Rayleigh fissibility parameter is increased. The result in this chapter, which
is only valid for κ small (this is the condition of validity of Debye-Hückel approximation),
goes in the opposite direction.

We have discussed stability based on the λ2m mode. The other modes, by continuity in
the parameter κ, will be stable if λ2m is stable provided κ is sufficiently large (the limit of
the perfect conductor is κ→∞ and the fact that the first unstable mode is λ2m was proved
in [27]). We cannot exclude that a higher mode than λ2m becomes unstable, for κ sufficiently
small, before λ2m does. This would only lower down Xcr from the value given in (4.55), but
the drop is still unstable for lower values than X = 1, which is the unstability threshold for
the perfect conductor.
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