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EVOLVING A PREDATOR-PREY ECOSYSTEM OF MATHEMATICAL
EXPRESSIONS WITH GRAMMATICAL EVOLUTION
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This paper describes the use of grammatical evoluth to obtain a predator-prey ecosystem of
artificial beings associated with mathematical funtions, whose fithess is also defined
mathematically. The system supports the simultaneauevolution of several ecological niches and,
through the use of standard measurements, makespbssible to explore the influence of the number
of niches and the values of several parameters orbiblogical” diversity and similar functions.
Sensitivity analysis tests have been made to finte effect of assigning different constant values to
the genetic parameters that rule the evolution oftte system and the predator-prey interaction, or of
replacing them by functions of time. One of the paameters (predator efficiency) was found to have
a critical range, outside which the ecologies arenstable; two others (genetic shortening rate and
predator-prey fitness comparison logistic amplitudé are critical just at one side of the range), the
others are not critical. The system seems quite reist, even when one or more parameters are made
variable during a single experiment, without leaviry their critical ranges. Our results also suggest
that some of the features of biological evolutionebend more on the genetic substrate and natural
selection than on the actual phenotypic expressiaf that substrate.
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1. Introduction

Ecological simulation is useful because it makessjide to test under controlled conditions situzdio

very difficult to analyze in real-life systems. Rsgstems, except where the ecologies are madé up o
micro-organisms, usually take thousands of yeaevtive, what makes experimentation unpractical. On
the other hand, it is difficult to build experimahecological systems simple enough to perform

controlled experiments. This is straightforwardimulated systems.

Ecological simulation has a long history. Ever sifvGto Volterra developed his famous predator-prey
equations (Volterra, 1931) continuous simulatios baen used to represent artificial ecologicalesyst
(Alfonseca et al, 1998; de Lara, 2000; Zhang arahgh2013). Discrete simulation has also been used
frequently, using such tools as cellular automel@aick and Scogings, 2010; Hol et al, 2012) and
Lindenmayer systems (Alfonseca et al, 2003). Adrasted artificial life ecosystems are relatively old
(Conrad and Pattee, 1970) and have fused withcgatifife research since the end of the 1980s (see
Dorin et al, 2008, for a relatively recent survéyte field). Typical recent simulations in thiglfi tend

to define complicated predator-prey systems whinhady the agents with fuzzy cognitive maps and
similar constructs (Gras et al, 2009; Wolfram Depmnoject, 2012). Some of these systems do not agldres
biological ecosystems, but are directed to the kitimn of social systems, with special applicatiom
economy (Axelrod, 1997; Zhang and Zhang, 2013).



In biological evolution, a genetic substrate, embddn nucleic acids, is subject to a certain nundfe
random actions (mutation, recombination, etc.). different genetic compositions are not selected
directly. They are translated into phenotypes whostual interaction gives rise to natural selectioar
hypothesis is that many of the features of biolalggolution depend more on the genetic substrade a
the mechanism of natural selection than on theahptuenotypic expression of that substrate. The fac
that phenotypes as different as mathematical fonstand biological beings give rise to similar teas

seems to support this hypothesis.

This paper describes our experiments to build atveng predator-prey ecosystem of artificial beings
which compete for a limited resource non-spati@iremment. The underlying genetic structure is toot
dissimilar to that of living beings (a series ofhgs, represented as integers), subject to gergtintams
similar to those in biology, but its phenotypic esgsion is quite different: grammatical evoluti@g) is
used to generate, from the genetic substrate, pyy@na@ounterparts made of simple mathematical
expressions. Natural selection is then appliethiése phenotypes, after computing mathematically the

fitness of the different individuals.

Our goal was to reduce the complexity of the edesydo the minimal expression, and test whetheresom
of the typical features of biological evolution daa reproduced successfully in this simplified
environment, such as a Volterra-like relationshépAzen predators and prey, and others mentiont in
conclusions. In this way, other features we deteatd provide new ideas about biological evolutidfe
have also studied which values of the genetic patars generate more stable ecologies, and whether
these parameters should actually be constantsgent@in amount of time-dependence is compatibte wi
the stability of the ecologies. Exploring this gtiees can lead to discovering the extent to whichattral

changes affect the robustness of ecosystems.

Grammatical evolution, a standard technique in iepeogramming (see O’Neill and Ryan, 2003,
Dempsey et al, 2009, Byrne et al, 2010), suggetteld as the proper method, since it separatesrgen
from phenotypes and improves the closure problémifeed to eliminate individuals with invalid
phenotypes), by protecting phenotypes against sjatarrors. Extensions to grammatical evolutiarghs
as attribute grammatical evolution or Chistianseangmatical evolution (de la Cruz et al, 2005, Catey
al, 2007) can also protect from semantic errors.ditlenot need to use those extensions, because our

individuals are protected from semantic errors difgerent way (see appendix A).

Our agents are very simple, as they only embodgth@matical expression, which is executed to
compare their respective fitness. The environmeatgo very simple. In some ecological simulations,
spatial distribution is important (Goodnight et2008; Hol et al, 2012). Our agents, however, do no
have a space location. On the other hand, thepekmg to one of several ecological niches which
evolve simultaneously, but independently. We regmesiches by applying different fitness functioas
those individuals belonging to each niche. We edgmilate niche population by making it possible for

two niches to share the same fitness function, dodicating the population associated to that fiamc



This is the second set of experiments we have imgieed following this technique. The first one
(Alfonseca and Soler, 2013) focused on the sinutadf a parasite-host system, rather than a predato
prey system, like the one described here. Alsthérformer study, we analyzed inter-niche intertineg,
while in this new study we have performed a rattmmplete sensitivity analysis of the influence of
different system parameters on the result. A dedadbmparison between the results of both sets of

experiments is left as future work.

This paper is divided in the following way: sectidrmescribes our procedure (grammatical evolutimh a
the generation of mathematical expression phensetifpeen a genome; the evolutionary algorithm we use;
and the predator-prey interaction). Section 3 diessrthe external parameters in our experimentgid®e

4 shows the detailed results of two experimentkviiie thought particularly interesting, among altot
of 426 successful experiments we have performectj@®e5 describes a sensitivity analysis which show
the effect of changing several parameters, sonvehath were found to be critical or semi-critical fine
stability of the ecologies. Both fixed parameterd mariable parameters have been tested. Finaltyion

6 discusses and summarizes our conclusions amsdolist future work objectives. Two appendices add
some programming considerations and an examplaeofénotype to phenotype translation, using the

procedure described in section 2.

2. Grammatical Evolution (GE)

GE is an Evolutionary Automatic Programming (EARjogithm based on strings, independent of the
language used. Genotypes are represented by stfingegers (each of which is named gene) and the
context-free grammar of the target programming laagg is used to map each genotype into a
syntactically correct phenotype (a mathematicalesgion or a program). In this way, GE avoids dne o

the main difficulties in EAP: the results of geratperators are guaranteed to be syntacticallecbrr

Our agents are very simple entities reduced tartiménum information, whichive andevolve together
in a controlled a-spatial environment. Each indinaidconsists of genome, a vector of n integers in the

[0-255] interval. The value of n is random for eaaitial genome, in the [50-199] interval.

We have introduced the concept of “niche,” whichkesait possible to split the population in sever-
populations, each using a different fitness functibhe first element of the genome defines theasicél
niche to which the individual belongs. The remainglements provide the genomic information used to
translate the genotype into an equivalent phenatyieh will be subject to evolutionary selectiorherl
role of each element in the genome depends omditign and is redundant (several different integer
the same position give rise to the same phenotjies.is done to emulate the fact that the geruatite

in living beings is degenerate (Watson et al, 20@Bhough the amount of redundancy used in

grammatical evolution is usually larger.

One of the niches in each experiment is assumbd thepredators. The remaining niches are made of
prey. Therefore the minimum number of niches is 2. Bred have an additional externally controlled
parameter, their averagficiency (Ef). This parameter can be changed for eachrdifteexperimental

run, but is constant during the execution of thgeeiment.



Different strategies were tested for predator-pnégraction.

»  First, predators and prey are paired-up. We test@shdom pairing, versus pairing the best predators
with the worst prey (this happens in biologicalteyss, where predators usually capture aged, sick or
tired prey). We found the second strategy to béfoesur purposes (in the sense that it givestose
a higher number of stable experiments, those wiancture for over 200 generations).

* Once paired up, each predator may “eat” its preth® prey may “escape,” depending on their
fithess. Several strategies were also tested farmng the predator fithess to be better thanpttes,
versus using a functional comparison of the form

Ef. fun(e=)27 100
SJun(=—)=7
Fp

where Ef is the predator efficiency mentioned beféiP is the inverse fitness of the prey, Fp the
inverse fitness of the predator, ?100 is a unifgrdigtributed random number in the [0,100) interval
andfunis a function that can be changed in differeqeginents. Two functions were tested: a
simple logarithm, and the logistic curve:

2(1-k)
k+— (1)
1+4e =~ Fp

where &@k<1 is the logistic amplitude coefficient. The logisturve takes values between k and 2-k
which, multiplied by Ef (the predator efficiencyivg the probability that the interaction ends ia th
predator eating the prey. If the condition holti&, predator eats and the prey dies and disappears
from the population. Otherwise, the prey escaphis frocess is repeated a pre-defined number of
times (external parameter N1). At the end of thapl all the predators in the population that were

unable to reach a given number of “meals” (theratieparameter N2) also die.

The following scheme shows the way in which GE cioveb traditional genetic algorithms with
genotype-to-phenotype mapping.

1) Aninitial population of N genomes is generatedaatdom. In our experiments, the value of N is a
parameter which can be set for each experiment run.

2) The phenotypes associated to all the members iimitied population are generated, using a
grammar. In our experiments, each genome is assgmarbitrary id: a unique function number in
the interval [000-N).

3) The genotype population is sorted according tosgr{eomputed from the phenotypes). In fact, as
indicated before, what we usually call fitnessagually aninverse fitness, since we consider best
those functions that get the minimum results (qutmoeal fitness value is 0). In our experiments, the
fitness of a function is defined by a mathemateqiression, which can be different for different
ecological niches. For instance, one of the (irejefisness functions we have used computes the

following mathematical expression:
[(T1A*ZD) + Gyglxe )
where Z represents the result of applying the functiomeisged to one individual to the input

values (in our experiments, all the integers frotn 10). This fitness function is smaller (and

therefore selects) for those mathematical exprassithose fourth difference is minimal and their



4)

5)

6)
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third difference is maximal, (i.e. polynomials agtee 3). To prevent genome length shooting up,
long genomes are penalized (this is the meaninigeo€orrection multipliers).

The individuals in the population are ordered kmjrtfitness. In our experiments, this is done

independently for all ecological niches, so thailetion takes place independently in each niché. Al

those individuals whose (inverse) fitness valuesgaeater than 1000 are eliminated (with this limit
over half of purely random genomes are eliminatedjether with their associated phenotype
functions. This is done to prevent the populatmbe invaded by individuals with very bad fitness,
leaving room for new offspring. In any case, orfee ppopulation stabilizes with a reasonable fitness,
only a small proportion of individuals are elimiedtin this way (less than 5%), so the effect of thi
pruning is effective mainly during the first gertimas, before the population reaches a steady. state

Predator-prey interaction. Each predator (an indial belonging to the predator niche) is paired to

prey (one individual belonging to one of the diéfet prey niches). The predator may “eat” the prey,

or the prey may “escape” according to the proceduieated above. The predator may also

“starve” if it fails too much.

Create the next generation from a mating pool.umnexperiments, the mating-pool is chosen from

the 100 best fitted individuals in the population those that remain, if they are less than 1@&gn

in equal numbers from the different niches, andftibgre parents in each niche are paired randomly.

Four different genetic operations are applied &dfispring:

« Single point recombination of parent genomes. dpisration is always performed.

e Mutation (random change of a component of the gexofrhis operation is performed after
recombination has taken place, with a high (80%pability when the two parents are identical
and a lower (p1) percent probability otherwisecampensate the fact that recombination has no
effect in that case. This is not the standard rranigirocedure, but it has been used before in
genetic programming (Ortega et al, 2003, Byrnd,e2@.0). The first element of a genome can
also mutate, which means that the offspring magrmeto a different niche than their parents.
This makes niche colonization after extinction [iass

« Extension: with a certain percent probability (p2yandomly selected part of the genome (from
0 to 100%) of one parent is added at the end obtispring genome. This can happen in living
beings in unequal crossing over (Graur and LeeQR@0 when a genome suffers polyploidy
and its genetic contents increases.

« Shortening: with a certain percent probability (p3)e component of the offspring genome is
deleted randomly. This can happen in living beiimgsnequal crossing over, or in a different
way, when a genome loses one or more chromosonddssagenetic contents decreases.

The offspring genomes are added to the populaltioour experiments, if the total number of

individuals exceeds Ny (the maximum population size), the worst genomesvary niche of the

previous population are eliminated (together wiitsit phenotypes) until the number ig Mor less.

The offspring genomes are associated with phenatypgers that are or have become free after

this operation.



8) The phenotypes associated to all the new membeéhe gfopulation are generated, using the same

grammar.
9) Goto step 3.
A phenotype is generated from a genotype in tHevidhg way:

1) Variable V is initialized with the axiom of the gmanar, ‘E’

2) If V does not contain a non-terminal symbol, thegaiss has finished and the value of variable V is

the phenotype expression. If step 2 has been ee@&00 times, the process finishes and returns an

empty expression. Otherwise:

a. LetY be the first non-terminal symbol in V.

b. Let K be the number of rules in the grammar whesepart is Y. If K=1, the only available
right part replaces the first appearance of Y iand step 2 is repeated. Otherwise:

c. Let G be the next element of the genome underlatos. If all the elements of the genome
have been used, the first one is used again (genareecircular).

d. The first appearance of Y in V is replaced by tha right part of the rule whose left part is
Y (numbered in zero origin), where m=mod(G,K).

e. Repeat step 2.

Appendix A provides some considerations about tlag im which the system has been programmed.

Appendix B shows an example of the translation @feaotype into a phenotype, as described by the

previous algorithm.

3. Ecosystem and population parameters

In our experiments, we give values to the followingernal parameters:

The initial and maximum sizes of the populatioraid Ny, In all the experiments discussed in
this paper, these parameters have been set a@h@i0B000, respectively.

The number of ecological niches. Two cases wereidered: 4 niches (1 predator, 3 preys
sharing the same fitness function), and 4 nicheprétator, 2 preys sharing the same fitness
function, 1 prey with a different fithess functionih this way the initial population of prey is
initially three times larger than the initial poptibn of predators, although the population of
both stabilizes spontaneously at a different ressthip.

Genetic algorithm parameters controlling mutatiextension and deletion rates (p1, p2, p3). All
of them are percent probabilities with their valiethe [0,100] interval.

The predator efficiency Ef, which may vary in tf#1j00] interval (it can also be considered as a
percent probability).

The two external predator-prey interaction paramsefdl (number of trials each predator has to
“eat” a prey in each generation) and N2 (minimurmbaer of successful trials).

The set of values used as arguments for the pheaodfynctions. In all the experiments
discussed in this paper, this was a vector of anefrom 1 to 10.

The fitness functions used for each niche.



e The random seed, which defines the initial condg&i®f the experiment and affects all the
random operations during its execution.

« Interbreeding between different niches was nowadlin these experiments.
4. Study of two detailed experiments

In this section we analyze in detail a couple afarete experiments. The two experiments have been
chosen because they illustrate well what happeriagithe evolution of our ecologies. They cannot be
considered typical, however, since every experimgedifferent and provides interesting suggestiéhs.

we have performed so many experiments, that ihpossible to discuss them all, so this sectionlshou

be taken as just a sample.

In our first detailed experiment, we used the feilty parameters: initial population, 1000 indivitkja
maximum population, 2000 individuals; the randoracsevas 16807. There were 4 niches (1 predator, 3
preys sharing the same fitness function). The s&rfanctions used were:

» prey: fourth degree polynomials
» predators: third degree polynomials

We chose these functions arbitrarily, but in suclay that their genetic distance is not large @ar
definition of genetic distance see Alfonseca and Soler, 2013). In both casesptilynomials with the
largest absolute value were positively selectechaBees of less than 50 elements are positively sglec

to prevent runaway genome length.

In each cycle, predators were allowed N1=4 trieméke a prey. Just one prey captured per cycle was
sufficient to keep it alive. Predator efficiencysaset at Ef=24%.

Table 1 shows the dominant functions (with the figstss) during the evolution of the ecosystem

simulated in our first detailed experiment.

This ecosystem endured for 2565 generations, tteenhalted when the size of its predator population
became zero. It could have proceeded with jusptbg, but this was not done in this case. Figure 1
shows the total size of the prey population asnatfan of time (generation number), as well as the

number of predators. Figure 2 shows a typical Latk#terra plot for a section of the experiment.

Looking at Table 1 and Figures 1 and 2, the folfayfiacts can be observed

« Atthe beginning of the experiment, when it is gated, the initial population of 1000 individuads i
divided equally between the four niches. Sincétalse with a fithess worse (greater) than 1000 are
automatically eliminated, the total initial popudat (136) is smaller. The initial prey/predator
relation (114/22=5.2) is not significantly greatiean 3 (the relation between prey/predator niches).

< In afew generations, a stable equilibrium is regcith a much larger prey/predator relation (the
average for the complete experiment was 58). Bhixclusively due to the predator/prey interaction.
Without it, the relation would stabilize at 3.

! 'These observations must not be considered as generalized conclusions, since no statistical analysis has been
performed on them. They are just interesting remarks which suggest that our experiments do not differ too
much in their behavior from biological ecosystems, at least at first sight.



« Figure 2 shows the evolution of the prey versugptieelator populations in this experiment during
generations 121 to 165. It will be observed thatterary increases in the number of predators
coincide with temporary decreases in the numb@r@y, giving rise to curves somewhat similar to
the results of the Lotka-Volterra equations, wreercular shape would have been obtained. This,
however, only happens during a certain number négions, for those equations are applicable to
two-species ecologies in evolutionary equilibrivmhile in our system evolution changes the mixture
of species and the situation is different (Brauet @astillo-Chavez, 2000).

* The data shown by Table 1 can be interpreted asdafor-prey arms race, where sometimes the
predators, sometime the prey, experience signffifigness improvements that give them a visible
advantage. A little after generation 120, predétoess went down from 0.19 to 2e-4, which gave
them a great advantage against their prey. Thetaffethe respective populations is clear in Figure
1: the prey descended to below 1700, the predatorsased to about 80. A little before generation
150, however, the prediscovered a new mathematical function that gave them a tneloes fitness
improvement (from 0.3 down to 8e-11), which allovtbdm to recover their previous population and
even reduce somewhat the predator population. ithe mce continued during most of the life of
the ecosystem,

« Around generation 800, an interesting event idlasin Table 1: predators improve their fithess
significantly (in fact, they reach their best fitsein the whole experiment, 1.2e-7) but in a few
generations they go back to their previous best$is (2e-4). What happened was: before that
improved genome could spread to the whole populaifgpredators, chance made them fail to get a
prey and all of them died without leaving descemslahhe next best genome then became again
dominant for predators.

e The evolution of this ecosystem seems to favort&te@ay Gould’s theory of punctuated
equilibrium evolution (Gould and Eldredge, 1977;a8g 2008). It can be seen that during long
stretches of time (as between generations 250 @ddod between 1300 and 2100) there were no
improvements in fitness. At other times, howevearlfatween 100 and 250, or between 800 and 950)
several consecutive improvements in the genomedmappe after another in a short stretch of time.

In a similar, but different experiment, with thersaparameters, except for N1=5 and Ef=14%, the
situation where predators disappeared but preyiredavas tested. After 46 generations where the
predator niche was empty, this niche was invadednayindividual, descendant from parents of one of
the prey niches, who underwent a mutation in threegkefining the niche. It so happened that, in that
experiment, the best prey individuals had a mathieaddunction that maintained a comparable fitness
when transplanted to the predator niche. As a cps®e, both the predator and the prey niches were
occupied during some time (349 generations) byséme species. In other words: when predators
disappeared, some of the prey developed cannihdfisrally, however, the predators again became

extinct.

In our second detailed experiment, we used theviollg parameters: initial population, 1000 indivadj
maximum population, 2000 individuals; random sd&e&807. There were 4 niches (1 predator, 3 preys,
two of them sharing the same fitness function,atirer with a different fitness function). The figse

functions selected for were:

» prey 1 (1 niche): exponential functions
* prey 2 (two niches): fourth degree polynomials
» predators: third degree polynomials



In this case, the fitness functions were chosesuah a way that the genetic distance (Alfonseca and
Soler, 2013) of the new prey (prey 1) to both thiepyey and the predator would be large, keepieg th
other two niches identical to the preceding expenimin all cases, the functions with the largésiodute
value were positively selected. Genomes of less Hiaelements were positively selected to prevent

runaway genome length.

In each cycle, predators were allowed N1=4 triesiédke a prey. Just one prey per cycle was suffitien

keep it alive. Predator efficiency was set at Ef425

Table 2 shows the dominant functions which reachednaximum fitness during the evolution of the
ecosystem simulated in our second detailed expatimethis ecosystem, prey failed first after an
interesting three-sided arms race. Of course, threprey disappeared, the predators failed al#ioein
next generation (their fall had begun before, wihenprey started to be scarce). Figure 3 showsitiee

of the three populations (prey 1, prey 2 and padatas a function of time (generation number).

Looking at Table 2 and Figure 3, the following f&actain be observed:

e At the beginning of the experiment, the initial pégtion of 1000 individuals is divided equally
between the four niches. Since all those withreefis greater than 1000 are automatically eliminated
the total initial population (222) is much smallelowever, due to the difference between their
fitness functions, the number of prey 1 individualabout double than the initial number of prey 2,
in spite of the fact that the latter occupy twoheis. The initial prey/predator relation (200/22#9)
greater than 3 (the relation between prey/predatdres), but not too much, especially if we
compare the predator and prey 2 populations, wihdste similar fitness functions (polynomials).

< In afew generations, a stable equilibrium is regciith prey 2 systematically maintaining a double
population to prey 1 (they occupy two niches) atarger prey/predator relation (the average for the
complete experiment was 31). Observe, however thigtelation is significantly smaller than in the
previous experiment. Apparently, the diversificataf the prey in two different niches allows
predators to reach a higher population. In faet,stht of all the experiments performedth three
different species appears to be more stable tlreaprévious set, with just two species, which
corresponds to the well-known biological equivaléhat an ecosystem is more stable when it
contains a greater number of species.

* The final failure of the prey was obviously dughe persistent and overwhelming improvement of
predator fitness in the last 200 generations.dukhbe noticed that predator fithess had to gebe
than the fitness of both prey niches before for¢hegn to disappear. In some way, each of the prey
species seems to stabilize the population of therot

e The evolution of this ecosystem also seems to f&tephen Jay Gould’s theory of punctuated
evolution. During two long stretches of time (beémegenerations 500 and 800, and again between
1100 and 1400) no improvements in fitness tookepléd¢ other times, however (as between 1500
and 1600) several consecutive improvements in émeige happen one after another in a short
stretch of time.

In a different but similar experiment, we analyzating 20 generations which individual prey were

eaten by the predators and how many predatorsestaihe average per generation was:

Prey 1 eaten: 13.4
Prey 2 eaten: 32.1

2 Not this particular experiment, which has a shadtgation than the previous one.



Starved predators: 16.8

Predators, therefore, seemed to have a certairerprefe for prey 2. In this population, the prey
distributed at 33.3% and 66.7%, while predatorstla¢en at 29.5% and 70.5%, respectively. While this
difference is not very significant, it may be dwethe fact that the fithess of prey 1 was usuaditdy

than the fitness of prey 2, at least in these eénpants (there are exceptions).

5. Sensitivity analysis

In all the experiments described next, performestudy the influence of the different genetic and
ecologic parameters on the stability and diversitthe results, the following ranges and basic e@alu
were used:

e Mutation rate when the two parents are differendre: [0%, 80%]. Basic value: 10%. The
mutation rate when both parents are identical vegs &lways at 80%, which forces the
maximum value indicated above.

« Extension. Range: [0%, 100%]. Basic value: 5%.

e Shortening. Range: [0%, 100%)]. Basic value: 5%.

« Logistic amplitude coefficient k, see equation @ange: [0, 1]. Basic value: 0.75.

From all the experiments performed, those wherdaitgs or prey withstood for 200 generations ¢ les
were discarded, as they gave rise to very unsttawgies. We cabuccessful those experiments where

both predators and prey went beyond 200 generations

Experiments were performed in batches, sharingahges of all external parameters except predator
efficiency, which happens to be a relatively catiparameter. It was discovered that predatorieffixy
only gives rise to successful experiments in a bpaat of its range of variation, which dependstiom
values of the remaining parameters. Thus, the {I},ifderval of possible values gets divided intceth

sections:

* The [0,a) interval, where predator efficiency ie tamall and the predator population disappearsin n
more than 200 generations.

e The [a,b] interval, where predator efficiency iffigient, but not too large, and one or more
experiments endure for more than 200 generations.

e The (b,100] interval, where predator efficiencyade large, and the prey population disappears in no
more than 200 generations (immediately followedHgypredators, of course).

For every set of external parameter values, th {laterval of predator efficiency was discoveradd all
the experiments in that interval for integer valoéthe parameter were performed. This is what alesc
batch of experiments, where the [a,b] interval rarely contains morentBa different integer values. In all

the results presented below, averages and staddsiation were computed for batches.

In each of the next subsections, we made two tgpegperiments: first, we tried to find what happen

when different constant values are assigned tpah@meter under study during a complete batch of

10



experiments. Then we tested the effect of makiegpirameter variable during the execution of
particular experiments. The first type let us dedinow changing the value of some parameter aftbets
evolution of the ecosystem. The second type taliwhether that parameter should actually be cofstan
or if a certain time dependency can be allowed.l§\#dch of the parameters was modified, the basic

values were used for all the other parameters.

We performed a total of 426 successful experiméntall the statistical measurements performed, the
first 15 generations were excluded, to allow thesgstem to go into a permanent regime. In thisyasisl

we measured the following results:

1. Successful experimentsWe measured the number of successful experimingsumber of those
that exceeded 2000 generations, and the averageenwhgenerations in each batch. If a successful
experiment exceeded 2000 generations, it was ugtd and its total duration was computed as
2000.

2. Diversity: Biological populations are almost never genetjciéntical, they embody a certain
degree of variation, even when they belong to glsispecies. Among different ways to measure
biodiversity, the Shannon diversity index (Shanri®48; Magurrran, 2004; Tuomisto, 2010) is
frequently used. This index is defined by the failog formula:

— ) pilog p;

i=1

where n is the number of different species and ghé frequency of species number i (the number of
individuals belonging to that species divided by tbtal number of individuals).

To study the evolution of diversity in our simutatiexperiments by means of Shannon’s diversity
index, we group the individuals in “species.” Twalividuals belong to the same “species” when
their phenotypes are identical, even though themogypes may not be, due to the redundancy of the
genetic code. This accords with the fact that tireent definition of biological species is mainly
based on a common genome, but takes into accaairiti genetic code is redundant. Phenotypes
are considered identical when the mathematicalesgions in their phenotype functions are
identical. Expressions that always give rise todhmme values, but are not identical, are considered
belong to different species. For instang®)3 and8X? are considered different species, even
though their results (and therefore their fitnealsi®) are always the same.

We computed three different measures of diversitgximum diversity, average diversity and
maximum number of species during the experimehti{alresults in the tables are averaged for
batches of experiments).

3. Additional populations results: Average prey/predator population quotient, andaye number of
predators.

5.1. Effect of changing the mutation rate

Table 3 shows the global results of 180 experimgetformed varying the mutation rate and the padat
efficiency. For each fixed mutation rate betweean@ 80%, 20 experiments were performed for 20
different values of the predator efficiency. Insliccessful experiments in this set, predatoriefficy
belonged to the interval [18, 31]. For all valuéshe efficiency outside this interval, there ware

successful experiments at all.
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The following behavior can be observed in the table

*  The number of successful experiments (those trdhired over 200 generations) is practically
independent of the mutation rate. On the other hdmednumber of stable experiments (over
2000 generations) decreases slightly as the matedie increases (specially at the beginning).
The same effect can be seen in the average durdtibe experiments, where experiments
reaching 2000 generations have been assignedutattah, although in fact they would have
endured longer, if allowed to proceed. Therefdris, parameter is not critical, since its viability
range coincides with its possible range, althoughikty diminishes progressively.

* The diversity of the experiments (measured in ltineg ways indicated in the previous
subsection) increases clearly with the mutatioe, ratthough it remains stable between 20% and
50% (see also figure 4, where the error bars shevetandard error in the samples). This effect
is easy to see in the three diversity measurenvemtsre considering: maximum diversity,
average diversity, and maximum number of diffeispecies.

e The average prey/predator population quotient,thadverage number of predators, seem to be
independent from the mutation rate.

Table 4 shows the global results of 80 experimpatformed as the preceding ones, with a time viriab
mutation rate, a sinusoid between two extremeeriif§ by 20%, with a period of 314 generations. For
each variable mutation rate, 20 experiments werfopeed for 20 different values of the predator
efficiency. The result of each batch of experiméstsompared with the average of the three experisne
with fixed mutation rate corresponding to eachafale case, obtained from table 3. In this casealgioe

efficiency for all successful experiments belongethe interval [18, 33].

The following behavior can be observed in the table

e The performance of the experiments with a variatil¢ation rate was quite similar to those
experiments performed with fixed rates (the coti@facoefficient for the numbers of
experiments that reached 2000 generations is 0.98).

< Although they show the same general increase wittation rate, the three diversity
measurements gave slightly smaller values thasdahesponding fixed rates.

5.2. Effect of changing the shortening rate

Table 5 shows the global results of 160 experimpatéormed varying the genomic shortening rate and
the predator efficiency. For each fixed shortenmate between 0 and 100%, 20 experiments were
performed for 20 different values of the predatfficiency. In this set, predator efficiency for all
successful experiments belonged to the interval 3839

The following behavior can be observed in the table

e The number of successful experiments (those tttatred over 200 generations) and the number
of stable experiments (over 2000 generations) dghiabruptly when the shortening rate
increases, until they become zero for a 100% Tdterefore, this parameter is semi-critical,
since its viability range is limited at one sideitsfpossible range. The average duration of the
experiments, however, does not seem to dependpatameter or shows a slight decrease.

« The diversity of the experiments decreases clegnign the shortening rate increases, although it
remains stable between 5% and 20% (see also figuwbere the error bars show the standard
error in the samples). This effect is easy to semur three diversity measurements: maximum
diversity, average diversity, and maximum numbediiérent species.

e The average prey/predator population quotient séerdscrease somewhat, while the average
number of predators increases slightly, when tloetshing rate increases.

12



Table 6 shows the global results of 80 experimpatformed as the preceding ones, with a time vgryin
shortening rate, a sinusoid between two extrenfésritig by 20%, with a period of 314 generationsr F
each variable shortening rate, 20 experiments weréormed for 20 different values of the predator
efficiency. The result of each batch of experimaatsompared with the average of those experiments
with fixed shortening rate corresponding to eachialde case, obtained from table 5. In this case,
predator efficiency for all successful experimergtonged to the interval [19, 34].

The following behavior can be observed in the table

e The performance of the experiments with variablertgming rate was quite similar to those
experiments performed with fixed rates (the coti@facoefficient for the numbers of
experiments that reached 2000 generations is 0.99).

< Although they show the same general decrease Withening rate, the three diversity
measurements gave slightly smaller values thardhesponding fixed rates.

5.3. Effect of changing the lengthening rate

Table 7 shows the global results of 160 experimpatformed varying the genomic lengthening rate and
the predator efficiency. For each fixed lengthenmate between 0 and 100%, 20 experiments were
performed for 20 different values of the predatfficiency. In this set, predator efficiency for all
successful experiments belonged to the interval 309

The following behavior can be observed in the table

*  The number of successful experiments (those trdhired over 200 generations) remains
practically constant for all lengthening rates. Tiuenber of stable experiments (over 2000
generations) diminish abruptly towards the encheflengthening rate range. Therefore, this
parameter is not critical, since its viability rengpincides with its possible range, although
stability diminishes at the end. The average domatif the experiments decreases slightly with
the increase of this parameter.

e The diversity of the experiments increases cleahgn the lengthening rate increases (see also
figure 6, where the error bars show the standaat @r the samples). This effect is easy to see
in our three diversity measurements: maximum ditseraverage diversity, and maximum
number of different species.

* The average prey/predator population quotient séerimerease somewhat, while the average
number of predators decreases slightly, when thgthening rate increases.

Table 8 shows the global results of 100 experimpatformed as the preceding ones, with a time wgryi
lengthening rate, a sinusoid between two extrenifésridg by 20%, with a period of 314 generations.
For each variable lengthening rate, 20 experimeete performed for 20 different values of the pteda
efficiency. The result of each batch of experimdatsompared with the average of those experiments
with fixed lengthening rate corresponding to eaehiable case, obtained from table 7. In this case,
predator efficiency for all successful experimergtonged to the interval [19, 30].

The following behavior can be observed in the table

e The performance of the experiments with variabtgibening rate was somewhat similar to
those experiments performed with fixed rates, wiglightly smaller average duration: the
correlation coefficient for the numbers of expenmsethat reached 2000 generations is 0.51 in
this case.

* The three diversity measurements gave values uilas to the corresponding fixed rates.
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5.4. Effect of changing the amplitude of the logigt predator-prey curve

Table 9 shows the global results of 140 experimpetformed varying the amplitude of the logisticwau
defining the predator-prey interaction and the ptedefficiency. For each fixed amplitude of thgikdic
curve between 0 and 1, 20 or more experiments werformed for different values of the predator
efficiency. The efficiency interval where succe$sfperiments happen is strongly affected by this
parameter. Thus, for the amplitude between 0.t5lathe interval where successful experiments appe
is the same as in the previous analysis, aroun@(].7For 0.5, however, the interval of stabilitpwes to
[20, 38]; for 0.25, to [33, 60]; for 0.1, as indted in the table, just two experiments were swfaks
with predator efficiencies equal to 71 and 96. tSappears that a smaller value of the amplitudeasov
the interval up, but a very small value destalslitee system.

The following behavior can be observed in the table

e The number of successful experiments (those ttdhired over 200 generations) is zero at one
extreme of the range of variation, grows to a maxinbetween 0.25 and 0.5, and decreases
again slightly between 0.75 and 1. The numberadflstexperiments (over 2000 generations)
remains constant in the viable range. Therefoig pirameter is semi-critical, since its viability
range is limited at one side of its possible rafige average duration of the experiments,
however, increases regularly with the logistic-euamplitude.

e The diversity of the experiments remains practycadinstant for all the viable values of the
logistic-curve amplitude. This effect can be saealr three diversity measurements: maximum
diversity, average diversity, and maximum numbediiérent species.

e The average prey/predator population quotient hadiverage number of predators seem to be
independent on the logistic-curve amplitude.

« The last row in the table shows the result of oaieloof experiments performed with a predator-
prey logistic-curve with time-dependent amplitudasying with a period of 314 generations
between 0.25 and 0.75. It can be seen that thigbitity reduced the stability of the viable
experiments, while the other measurements (diyeasitl populations) remained comparable
with the fixed cases.

5.5. Effect of changing three parameters at the sagrtime

A final batch of experiments was performed to fiddether the ecosystem remained viable when three of
the parameters vary at the same time. Those pagesneére chosen among those that display a critical
range:

e The shortening rate was varied with a period of §dderations between the values of 0% and
20%.

*  The logistic-curve amplitude was varied with thenegperiod, in phase with the preceding
parameter, between 0.25 and 0.75.

* The predator efficiency was varied by 0.001 with same period, but in phase opposition with
both preceding parameters. This parameter is mugk oritical than the previous ones. Several
batches of experiments had to be performed beferfound a time-dependent predator
efficiency that would give rise to viable experintenThis was not possible if the efficiency

varied by 0.01 or more, but a maximum variatio® @01 gave rise to results comparable to the
experiments performed with a fixed efficiency.

Table 10 shows the results of this batch of 20 empnts, compared with the results of the fixedecas

and those where only one parameter was variable.
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Apparently, the variability of the parameters doesaffect much the different measurements, althoug

the stability of the triple variable case is somatdmaller, and the diversity slightly higher.

6. Conclusions

In this paper we have designed a procedure thargess artificial predator-prey ecologies that bithi
many of the features of natural evolution, amoranthhe following:

« A Volterra-like relationship between predators anely, as shown by the cycle displayed in figure 2.
Although this figure corresponds to a part of gkgrexperiment, cycles of this kind also appear in
other experiments, although the fact that our egiefoare not in equilibrium makes this situation
unusual.

e The prey/predator population relationship stabdiaatomatically between one and two orders of
magnitude, as in biological populations.

» Differentiation of the prey in more than one spsdiereases the stability of the ecosystem.

* When the predator niche becomes empty, it can lemized by the offspring of a prey niche, which
sometimes gives rise to something similar to caalisin. With the Lotka-Volterra equations this
cannot happen: when the predator disappears, dyepcomes extinct too, because it proliferates
too quickly and exhausts all its sources of foododr system, the fact that we set a maximum
population eliminates this effect, therefore a Engche prey ecosystem can endure indefinitely.
Since the Lotka-Volterra equations are simplifioati that apply to ecological systems in
evolutionary equilibrium, they should not be talesthe absolute standard of comparison. In real
biological systems, niche colonization by nearlshes undoubtedly happens (Magurrran, 2004).

< Although our results are still too few, and no eysatic analysis has been made, they seem to favor
S. J. Gould theory of punctuated evolution (Gould Eldredge, 1977) rather than phyletic
gradualism (Dawkins, 1996).

We believe that these results provide some suppotte hypothesis that some of the features dygpla
by biological evolution may depend to some extentleance modifications of the genome plus natural
selection, rather than on the particular form addgity the phenotypes. Of course, in living beirngsgs
are much more complicated, and the genotype-phpaattationship is not one-sided, as in our
simplified experiments, therefore this hypothes@ynwell be a too far-fetched extrapolation. But fdet
that phenotypes as different as mathematical fanstand biological beings give rise to a few simila

features seems to support the idea that somesitdethese features may be a consequence of the

mechanism, rather than of the actual form takethbyphenotype.

An interesting question that may be raised inthépect is the following: what is the significarade
these simulation experiments? Are they a mere rhetapr do they provide us with ideas that we csm u
in the study of real ecological systems? We beltbey are something more than a metaphor: they can

become a working analogy, with the potential takeaseful concepts applicable to real life.

To perform our experiments, we have used the foligudeas:

« Grammatical evolution, which separates genomes froemotypes (this is a standard technique in
genetic programming).

* Individual genotypes are represented by means tfenaatical expressions. Fitness functions
become simple mathematical tests on those expresditathematical expressions (using lambda-
calculus, rather than APL2, without grammaticallation) have been used before in artificial life
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experiments (Fontana, 1991, Fontana and Buss, 189g)inciple, lambda-calculus and APL2

should be equivalent for the representation of ematitical functions.

Simultaneous evolution of several “niches” is atal by means of changes in the genome
interpretation (the first element selects the nichad by using several fitness functions (one per
niche).

Predators are represented as individuals beloriginge of the available niches who prey on those in
the other niches. At the end of every generatioedators try to eat prey in several bouts. If they
don’t reach a minimum number of captures (usually im our experiments) they die. Prey eaten also
dies, obviously. The result of each predator-pregoeinter depends on their respective fitness and
also on chance. In each bout, predators are oftaraitable prey chosen from those with less fithess
Predators with highest fitness are offered the prigly least fitness. This procedure does not requir
the division of the ecological space in discretsaarwith space coordinates.

We have performed a sensitivity analysis by modiyihe different parameters of the genetic algorith

and got the following results:

Increasing the mutation rate does not affect thmbar of successful experiments, the average
prey/predator population quotient and the averagelrer of predators, but it decreases their stgbilit
and increases diversity. A variable mutation ratelpces results comparable to a fixed rate equal to
its average.

Increasing the shortening rate affects negativedyntumber of successful experiments and their
stability. This parameter is semi-critical, sint®viability range is limited at one side of itssgible
range. Diversity also decreases. A variable shonterate produces results comparable to a fixesl rat
equal to its average.

Increasing the lengthening rate does not affechtimber of successful experiments, but decreases
their stability. Diversity increases. A variableostening rate produces results comparable to a fixe
rate equal to its average.

The amplitude of the logistic curve used to comg#ness in the predator-prey interaction is a semi
critical parameter, since the number of successfperiments drops to zero at the lower end of the
scale. Their stability, however, increases sligbtlyemains constant. Diversity also remains
constant. A variable logistic curve amplitude reghistability but keeps the other measurements the
same.

Predator efficiency is a very critical parametealifg it variable even very slightly (by 0.01 or
more) reduced to zero the number of successfulrerpats.

Making the three critical parameters (shorteningidtic curve amplitude and predator efficiency)
variable at the same time, without leaving thedbility region, slightly decreases the stabilitytioé
experiments and increases their diversity.

This analysis will help us focus on the best periog values of the parameters, which will speedup

future experiments. It can also help to detect iice the critical parameters in real ecologicatems.

In the future we intend to explore the followinguss:

To compare our approach using grammatical evolutiim a similar implementation using more
traditional genetic algorithms.

To measure the relative ease with which the offgpgenerated during our experiments can migrate
from one niche to another, depending on the gedetance of their fithess functions.

To study the effect of predator species being sfieed to a certain prey niche.

To study the effect of having two predator spetties compete with one another.

To study the effect of having three or more diffénerey species.

To analyze the effect of using different fithessdiions for the predator/prey ecological niches.
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e Our fitness function is currently absolute: the sdmmction is used during the whole program runs.
In the future, this function can be made relats@as to make more realistic the competition betwee
individuals and niches, and the arms race betwesatagor and prey.

e To perform a more complete analysis of the appaamrgence of punctuated equilibrium in this set
of experiments.

« To perform a similar sensitivity analysis with quarasite-host experiments described in (Alfonseca
and Soler, 2013), and to compare the results tpadator-prey experiments described in this paper.
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Appendix A: Programming considerations
Both the expressions and the grammatical evol@iorironment are written in the APL2 language

(Alfonseca and Selby, 1989), which has been selextahe language of choice for the following reaso

e APL2is a very powerful language, especially fa teneration of expressions, with a large
number of primitive functions and operators avdéab

» The APL2 expression grammar is very simple andbeaimplemented with just four non-
terminal symbols, which makes the grammatical ei@iuprocess simpler.

* APL2 instructions can be protected to prevent s¢imand execution errors giving rise to
program failures. In this way, we can rest asstiatlall the expressions associated to the
different individuals will execute, although the@sults may not correspond to a good fitness.
The grammatical evolution technique also beconmaglsir thanks to this feature, because it is
not necessary to include any semantic information.

e Being an interpretive language, APL2 makes it fmdegb create programming functions at
execution time, thus providing the feasibility @inaputing fithess during the execution of the
genetic algorithm. With a compiling language sustCaor C++, this would be very difficult.

A phenotype is an APL2 function of the following e
[0] Z<«Fnnn X
[1] Z<(pX)pO
[2] »~(5<pOLC)/0
(3] '' OEA 'Z<APL2 expression'
Only the APL2 expression in line 3 is generatednftbe genome. The remainder of the functions is the
same for all.
e Line [0] defines a monadic function with explicgsult, called Fnnn.
e Line [1] assigns to the function result a vectoreeros.
e Line [2] stops the execution of the function if @ilon call depth is greater than 5 (this
eliminates infinite recursion).
» Line [3] executes the expression generated frong&m®ome and, if no error is detected, returns
its value as the result of the function. Otherwésegsult of all zeros is returned (this is whagli
[1] is for).
The following fitness expression selects for tldeyree polynomials in APL2 notation:
((+/12-/2-/2-/2-/Z)+%|+/2-/2-/2-/Z)*x(.2 5 1000)[+/50 1000<pX]
where X is the genome of the individual. This is the sameression represented in common
mathematical notation by equation (2).
The grammar describing APL2 expressions is usggm@rate a phenotype from a genotype using

grammatical evolution:

E ::= 0 | o0 | 000 (mathematical expression)
0 =N | X | (E) (operands)

o ::=+ | - | x| = | | o | T | L e | || (operators)
N ::=0 | 1| 2| 3] 4|56 ]| 7]|8]29 (digits)
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where X, the digits and operators §{ - ,x,*,+,0,[ ,L ,®, !, |}are the terminal symbols of the
grammar, while £, 0,0, IV} are the non-terminal symbols, or variables, inkermediate symbols that

will transform into other symbols using one of thdicated rules. Table 11 shows the functions tR&2

operators compute.

Appendix B: Example of genotype to phenotype conveion

Let the genome be [89, 40, 58, 130]. In step 1stag with V="E’.

1. The first non-terminal symbol in V is E. The numloéright parts of the rule with left part E is K=3
The next element in the genome is G=89. Thereferead(89,3)=2. The 2nd right part (in zero
origin) for the rule with left part E is 000. Weptace E by 000 in V. After this step, V="0O00’.

2. The first non-terminal symbol in V is O. The numioéright parts of the rule with left part O is K=3
The next element in the genome is G=40. Thereferead(40,3)=1. The 1st right part (in zero
origin) for the rule with left part O is X. We regqge O by X in V. After this step, V="X00O'.

3. The first non-terminal symbol in V is 0. The numloéright parts of the rule with left part o is KE1
The next element in the genome is G=58. Therefaread(58,11)=3. The 3rd right part (in zero
origin) for the rule with left part o is *. We regale o by * in V. After this step, V="X*O'.

4. The first non-terminal symbol in V is O. The numloéright parts of the rule with left part O is K=3
The next element in the genome is G=130. Therefaraod(130,3)=1. The 1st right part (in zero
origin) for the rule with left part O is X. We regqge O by X in V. After this step, V="X*X".

5. Now V does not contain any non-terminal symbolreéfare the generation is complete and the result
is expression ‘X*X’, i.e. X to the X power in APLTZhe APL2 function generated is

(0] Z<«Fnnn X

[1]1 Z<(pX)pO

[2] »(5<p0LC)/0
[3] '' OEA 'Z<X*X'
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TABLES

Table 1: Evolution of the dominant functions in thefirst experiment

Genera- | Prey best | Fitness | Popula- | Predator best | Fitness | Popula-

tion function tion function tion

0 1/x 0.84 114 4 1.25 22
logg (x + —)
x
50 —8 — 8xlog x 0.3 1368 3 0.35 47
x
100 1943 —x?Inx 0.19 52
150 —64x* 8e-11 1719 x(x — 87x?) De-4 61
250 (—8x.8N* | 1.3e-25 1978 20
800 1859 x3.8! 1.2e-7 36
850 1966 —87mx3 2e-4 29
950 1965 | x(x—9m?) | 1.7¢-4 28
1250 8.(8x.8N* | 1.6e-26 1957 34
1300 9.(8x.8N* | 1.4e-26 1962 35
2000 1943 9mx2(9 — x) 55
9mx?.
2100 1982 1.1e-4 14
(-37)
2%
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2350 1967 6e-5 28
(9-3
~3%)
2
2500 1965 I 2e-5 26
(9 —8x)
2565 1994 0
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Table 2: Evolution of the dominant functions in thesecond experiment

Gener. Prey 1 Fitness | Pop. Prey 2 Fitness | Pop. | Predator | Fitness | Pop.
best best best
function function function

0 9% 5e-6 132 5/x 9.0 68 logg (x 1.25 22

14

+3)

50 9% 2e-7+ | 541 5/x 0.36 | 1053 (x) 0.029 61

3

Ge-11
100 648 —4x! 0.358 | 1298 53
X
200 048 —3x! 0.34 | 1283 67
X
X
450 648 | 4 (—3)5 0.33 | 1288 63
X
500 647 | 4 (37)6 0.24 | 1285 67
800 g2x+t6 2e-7+ | 649 1293 57
3e-26

850 650 x+e™ 0.22 | 1293 (”x) 0.0009 | 54

3

X
+ (37m)6
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900 g2x+7 e 7+ | 647 1287 (67zx) 4.4e-6 61
3
3e-27
1000 649 1290 (87zx> 22e-6 | 57
3
1050 649 1290 <137zx> 2e-6 59
3
1100 g2x+8 2e-7+ | 651 1296 52
4e-28
1400 649 x3.8x 1.7e-4 | 1293 55
1450 644 x3.64x 2e-5 | 1277 70
72x
1500 648 1291 ( 3 ) 8e-8 54
1550 559 x3.90x 1.5e-5 | 1203 (90x> 4e-8 69
3
1600 250 496 (162x> 7e-9 80
3
1623 0 0 9
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Table 3: Effect of different fixed mutation rates a the results of experiments

Mut. | >200 | >2000 | Ave. Max. Ave. Max. Prey /| Ave. nr.
rate | gen. | gen. duration | divers. | divers. species | Preds. preds.
0 11 9 1691 2.69 1.35 24.1 39.7 50.1
10 11 7 1609 2.97 1.61 39.4 47.7 47.0
20 12 7 1430 3.74 2.05 70.5 52.5 42.1
30 10 5 1479 3.39 1.83 46.7 46.8 43.6
40 9 6 1647 3.74 1.89 67.8 50.3 39.7
50 14 5 1252 3.54 1.83 68.6 42.1 48.9
60 10 8 1740 4.28 2.49 103.0 45.1 44.3
70 10 6 1397 4.20 2.57 120.2 48.7 41.9
80 10 5 1475 5.37 3.07 248.3 47.9 41.5
Ave. | 10.8 6.4 1524.4 3.77 2.08 87.6 46.8 44.3
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Table 4: Effect of different variable mutation rates on the results of experiments

Mut. >200 | >2000 | Ave. Max. Ave. Max. Prey /| Ave. nr.
rate gen. | gen. duration | divers. | divers. species | Preds. preds.

0-20 12 9 1793 3.07 1.58 45.0 44.5 45.3
(fix.ave.) | 11.3 7.7 1577 3.13 1.67 44.7 46.7 46.4
20-40 10 6 1452 3.27 1.91 42.9 42.7 47.0
(fix.ave.) | 10.3 6.0 1519 3.62 1.92 61.7 49.9 41.8
40-60 12 6 1468 3.39 1.74 60.3 47.8 43.3
(fix.ave.) | 11.0 6.3 1546 3.85 2.07 79.8 45.8 44.3
60-80 13 6 1199 4.14 2.32 119.8 48.2 43.8
(fix.ave.) | 10.0 6.3 1537 4.62 2.71 157.2 47.2 42.6
Var.ave. | 11.8 6.8 1477.8 3.47 1.89 67.0 45.8 44.8
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Table 5: Effect of different fixed shortening rateson the results of experiments

Short. | >200 | >2000 | Ave. Max. Ave. Max. Prey /| Ave. nr.
rate gen. | gen. duration | divers. | divers. species | Preds. preds.

0 12 9 1612 3,43 1,89 52,2 48,8 42,5

5 11 7 1609 2,97 1,61 39,4 47,7 47,0

10 10 9 1937 2,97 1,52 33,5 43,1 47,2

20 11 8 1686 2,98 1,56 34,5 48,2 42,5

40 7 3 1655 2,46 1,41 19,6 38,6 54,7

60 5 1 968 2,67 1,71 24,8 54,8 42,4

80 2 2 2000 2,39 1,20 17,5 31,5 60,0

100 0 0
Ave. 7,3 4,9 1638 2,84 1,56 31,6 44,7 48,0
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Table 6: Effect of different variable shortening raes on the results of experiments

Short. >200 | >2000 | Ave. Max. Ave. Max. Prey /| Ave. nr.
rate gen. | gen. duration | divers. | divers. species | Preds. preds.

0-20 13 8 1684 3.02 1.53 35.9 45.7 45.1
(fix.ave.) 11 8.3 1711 3.09 1.64 39.9 46.9 44.8
20-40 9 6 1634 2.66 1.52 27.6 41.1 49.2
(fix.ave.) 9 5.5 1670 2.72 1.48 27.0 43.4 48.6
40-60 3 3 2000 2.35 1.37 19.3 33.3 57.3
(fix.ave.) 6 2.0 1312 2.56 1.56 22.2 46.7 48.6
60-80 4 2 1409 2.22 1.39 15.3 37.0 54.0
(fix.ave.) 3.5 15 1484 2.53 1.45 21.2 43.2 51.2
Var.ave. 7.3 4.8 1682 2.56 1.45 24.5 393 51.4

29




Table 7: Effect of different fixed lengthening rates on the results of experiments

Length. | >200 | >2000 | Ave. Max. Ave. Max. Prey /| Ave. nr.
rate gen. | gen. duration | divers. | divers. species | Preds. preds.

0 11 8 1621 2.66 1.51 24.6 40.5 48.4

5 11 7 1609 2.97 1.61 394 47.7 47.0

10 10 6 1545 2.99 1.58 40.0 46.3 44.6

20 10 7 1736 3.11 1.62 50.8 45.5 44.2

40 11 7 1559 3.67 1.96 82.0 50.9 40.5

60 11 3 1329 3.65 1.85 75.2 52.2 38.5

80 10 6 1477 4.12 2.28 128.7 52.0 38.1

100 8 1 1048 4.61 2.78 165.8 55.1 36.5

Ave. 10.3 5.6 1490 3.47 1.90 75.8 48.8 42.2
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Table 8: Effect of different variable lengthening iates on the results of experiments

Length. | >200 | >2000 | Ave. Max. Ave. Max. Prey /| Ave. nr.
rate gen. | gen. duration | divers. | divers. species | Preds. preds.

0-20 10 5 1332 3.31 1.64 51.0 44.6 45.1
(fix.ave.) | 10.5 7.0 1628 2.93 1.58 38.7 45.0 46.1
20-40 10 3 1127 3.25 1.78 47.9 49.9 41.0
(fix.ave.) | 10.5 7.0 1648 3.39 1.79 66.4 48.2 42.3
40-60 9 5 1530 3.77 2.07 86.8 48.9 40.6
(fix.ave.) 11 5.0 1444 3.66 1.90 78.6 51.5 39.5
60-80 9 3 1334 3.74 2.17 86.8 57.2 34.9
(fix.ave.) | 10.5 4.5 1403 3.88 2.06 101.9 52.1 38.3
80-100 10 2 920 3.79 2.13 104.2 59.4 36.1
(fix.ave.) | 9.0 35 1262 4.36 2.53 147.2 53.6 37.3
Var.ave. 9.6 3.6 1249 3.57 1.96 75.3 52.0 39.5
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Table 9: Effect of different fixed logistic-curve anplitudes on the results of experiments

Log. >200 | >2000 | Ave. Max. Ave. Max. Prey /| Ave. nr.

amp. gen. | gen. duration | divers. | divers. species | Preds. preds.
0 0 0

0.1 2 1 1499 2.93 1.45 40.0 39.0 49.0

0.25 21 8 1370 2.93 1.68 40.2 43.6 48.2

0.5 19 9 1508 3.09 1.59 41.2 40.2 50.1

0.75 11 7 1609 2.97 1.61 394 47.7 47.0

0.9 10 9 1885 2.86 1.66 39.8 41.1 48.8

1 11 9 1728 3.15 1.67 48.7 40.5 49.1

Fix.ave. | 10.6 6.1 1600 2.99 1.61 41.6 42.0 48.7

Var.ave. 13 3 826 2.81 1.70 29.7 50.8 42.7

Table 10: Effect of varying three critical parametes at the same time. Rows represent: all fixed
parameters; variable shortening of genomes; varialel amplitude of logistic curve for the predator-

prey interaction; variable predator efficiency; and all three parameters variable at the same time

>200 | >2000 | Ave. Max. Ave. Max. Prey /| Ave. nr.
Params. gen. | gen. duration | divers. | divers. species | Preds. preds.
Fixed 11 7 1609 2.97 1.61 394 47.7 47.0
Var.short. 13 8 1684 3.02 1.53 35.9 45.7 45.1
Var.log.amp. 13 3 826 2.81 1.70 29.7 50.8 42.7
Var.pred.eff. 12 10 1763 3.09 1.53 35.5 43.1 47.3
3 var.parms. 11 5 1229 3.28 1.92 48.9 46.3 44.4
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Table 11: APL2 operators generated by the grammar

Operator Monadic Dyadic
+ Identity Addition
- Sign change Subtraction
x Sign function Multiplication
* Exponential Power
+ Inverse Division
o Pi times Circular functs.
r Higher integer Maximum
L Lower integer Minimum
@ Natural log Base log
: Factorial Combinatorial
Absolute value Residue

33




FIGURES

2008

1503

100

Total prey papulation

Fredator populatian

i il 1 1
500 100c 14c0 200 2500 3c00

Figure 1: Results of the first experiment: prey/prelator populations as a function of time
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Figure 3: Results of the second experiment: prey/gdator populations as a function of time
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Figure 4. Evolution of diversity as a function of nutation rate.
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Figure 5. Evolution of diversity as a function of bortening rate.
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Figure 6. Evolution of diversity as a function of éngthening rate.
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