

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

CHI '94: Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems. New York: ACM, 1994. 225 - 231

DOI: http://dx.doi.org/10.1145/191666.191751

Copyright: © 1994 ACM

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1145/191666.191751

1

Automatic Generation of Help from
Interface Design Models

Roberto Moriyon
 Instituto de Ingenieria del Conocimiento

Universidad Autonoma de Madrid, mod. C-XVI
28049, Madrid, Spain

34-1-397-3973
roberto@gw.iic.uam.es

Pedro Szekely
USC/ISI

4676 Admiralty Way
Marina del Rey, CA 90292

(1-310) 822-1511
szekely@isi.edu

Robert Neches
USC/ISI

4676 Admiralty Way
Marina del Rey, CA 90292

(1-310) 822-1511
 neches@isi.edu

ABSTRACT
Model-based interface design can save substantial effort in
building help systems for interactive applications by
generating help automatically from the model used to
implement the interface, and by providing a framework for
developers to easily refine the automatically-generated help
texts. This paper describes a system that generates
hypertext-based help about data presented in application
displays, commands to manipulate data, and interaction
techniques to invoke commands. The refinement
component provides several levels of customization,
including programming-by-example techniques to let
developers edit directly help windows that the system
produces, and the possibility to refine help generation rules.

KEYWORDS : Automatic Help Generation, Model-Based
Interface Design, Hypertext-Based Help, Help
Customization, Help Generation Rules.

INTRODUCTION
Help systems today are usually developed as separate
artifacts from the systems they support. As a result, building
and maintaining help systems requires substantial effort:

• The design of the help system replicates reasoning that
went into the design of the application.

• Complex programming is needed because the help
system must access internal application data structures.

• There is no support for changing the help system when
the application is modified.

• Making help systems have a consistent interface across
different applications is difficult.

This paper describes a system for constructing help systems
called H3 (HUMANOID Hyper Help). H3 makes two main
contributions. First, it delivers to end users more

information than most help systems (e.g., Macintosh
balloon Help and the MS Windows help system). Second,
H3 lowers the cost of constructing help systems because it
generates a default help system automatically, and it
provides an easy way to customize the automatically-
generated help messages to improve their quality.

H3 can produce basically four kinds of help messages. The
first kind is a summary message describing the item that the
user selects for help. The other three kinds provide answers
to the questions "What commands are available?", "What is
displayed here?", and "Where can I click, and what will
happen?". H3 does not currently provide task-oriented help
to answer questions like "How do I delete a file?".

The help information that H3 gives users goes beyond
canned texts attached to the static portions of the display,
like typical Macintosh balloon help [4]. H3 help messages
consist of concatenations of pieces of canned texts with
embedded links that show where information mentioned in
the help text is displayed, and can also be used to access
related information (like in hypertext systems). In addition,
the messages are context sensitive, so that asking for help
on an item produces different messages depending on
context and application state (e.g. asking for help on a
dimmed item produces a message explaining why the item
is dimmed, where as asking for help when the item is
enabled, will tell the user what object will be affected by
the corresponding command).

H3 constructs a default help system for an application
automatically by using the specifications used to construct
the application's user interface. Developers can refine the
automatically generated help system at different levels. The
simplest level is to replace the default pieces of canned text
by more appropriate ones. Developers do this by editing in-
place the help windows that H3 produces. Developers can
also add links to messages, and add messages to display
elements that do not produce messages by default.
Advanced developers can change the behavior of the help

To Appear in CHI'94 Proceedings

2

system itself by defining new rules in the H3 rule system
that computes the help messages.

H3 tries to leverage the skills of humans and computers.
Humans are much more skilled than computers at writing
prose, and since the quality of the text is critical to the
success of the help system, H3 allows humans to write the
text. However, other aspects of help, such as showing the
mouse sensitive regions of a display, or listing the
commands applicable to a selected object must be
computed based on the state of the application. H3
performs these tasks automatically freeing the help
developer from having to program these aspects of the help
system. However, developers still have the option to
customize the help messages associated with the computed
aspects of the help system.

H3 assists help system developers in other ways too.
Developers need not start with a blank slate: they do not
need to determine the elements of the display that should
have help messages, and they do not need to write the help
messages from scratch either. It is often easier to refine
existing material than to create it form scratch.

The rest of the paper is organized as follows: next we
discuss related work to highlight the differences between
H3 and other tools for constructing help systems. We then
give some rationale for the design of the help systems that
H3 generates, and show some examples of help windows
for a file manager application. In the following sections we
describe the implementation of H3 and then the facilities for
customizing the help systems. We close with conclusions
and directions for future work.

RELATED WORK
H3 is similar in spirit to balloon help on Macintoshes [4].
Both systems are geared towards providing help about
features of an application that are visible on the application
displays, and neither system supports task-oriented help to
assist users with high level tasks (e.g., how do I insert a
figure in my document). The are also many differences.
H3 help is available for parts of the screen that can be
nested at different levels and for groups of parts, while
balloon help only displays information about atomic parts
of the screen. Also, although in theory balloon help is
available for both static and dynamic portions of the
display, in practice this feature is difficult to use and almost
no application uses this feature. Hence, balloon help almost
never shows the mouse sensitive regions of a display,
explain why a button is dimmed, and other such topics that
depend on the dynamic behavior of an application.

The interface to the help system is also different in balloon
help and in H3. The balloon help is more convenient to use
because it simply pops up the help balloons while the user
is interacting with the interface. H3 uses a separate help
window to show the messages, and hence requires users to
explicitly interact with the help system. This added
complexity in H3 is necessary because it provides much

more information to users, more than fits in a small pop up
window.

H3 is also similar to the help in Microsoft Windows [5], or
OS/2 [7] in that it uses a separate help window to show
help, and in the use of hypertext links to navigate to related
topics. The main difference is that these systems are
oriented towards the generation of help for tasks,
commands and key bindings, practically without any
interaction with the interface, and only hypertext references
to other messages are allowed in these systems. However,
the links in our help messages not only point to other
messages, but can refer to different parts of the window,
commands, data displayed, etc., and in that case they are
highlighted in the same color as the corresponding portion
of the display. The other difference is that the MS
Windows and OS/2 help systems provide little help about
the dynamic aspects of an application. H3 currently does
not provide good support for navigating the help system.
H3 does not have a history mechanism or features that let
users navigate the help information in an organized way.

Cartoonist [8] is another example of a system that generates
help automatically from the models used to construct an
interface. Cartoonist automatically constructs animations
that show how to invoke the commands of an application.
H3 provides hypertext messages rather than animations, and
covers a complementary domain. It provides help on
displayed data and required inputs as well as manipulations.
Also, unlike other help generation systems, both Cartoonist
and H3 generate help that depends on the context of an
application and its interface.

Techniques based on AI technology have been proposed to
produce help and documentation systems, [1, 6]. The AI
systems have more sophisticated natural language
generation facilities, and also include planners to construct
help texts with better discourse structures than those in H3.
However, the AI systems are typically difficult to integrate
into applications because they require much more detailed
models of an application, and the effort to construct these
models is usually very large.

OVERVIEW OF H3
This section presents an overview of the H3 help system.
The section first discusses general issues that influenced the
design of H3 and then shows examples of the help screens
that H3 can generate.

We have identified three issues that influence the design of
help windows:

• Topic refers to the object explained in a help message.
H3 currently supports the following topics: data,
explains the meaning of data represented by the graphic
and text elements that appear in a region of the display;
commands , explains what the various commands of the
application can do; interaction , explains the effect of
input events (e.g., invoke the print command, select an

To Appear in CHI'94 Proceedings

3

Figure 1. A folder manager application together with the help window showing messages for the folder named
HUMANOID. HUMANOID is highlighted in red to indicate that it is the region selected for help. The last two icons
below the menu bar are also highlighted because they are the references of the links called filter and grep that
appear in the help text.

object). Other information classes are possible, but not
currently supported by the H3 help generation
algorithms. One example is task, which would explain
how to perform user tasks using the commands of an
application.

• Scope or extent refers to the size of the region of the
screen to be explained. The displays of an application
are organized hierarchically, and the messages to
explain the elements of the display are different
depending on the level of the hierarchy to be explained.
For example, consider the window for the folder
manager application shown in Figure 1. The region of
interest could be the whole window, or the area
showing the information about all the files, or for one
entry that shows the name of the file, its type, size and
modification date, or the label showing the name of a
file.

• Links to application displays . The information in the
help screens typically refers to information displayed in
the application windows. For example, the second
message in Figure 1. refers to the filter and grep
commands. These commands are displayed as icons in
the folder manager window (the last two icons below
the menu bar, the ones with boxes around them).

We designed H3 to take into account these issues. When a
user asks for help by pointing with the mouse to an object
on an application display (e.g., the word HUMANOID in
Figure 1.) and pressing the HELP key on the keyboard, H3
pops up a window with the data messages about the
smallest graphical or textual element under the mouse
cursor (the word HUMANOID). The help window has
buttons that allow users to display the messages about other
topics, and buttons to widen or narrow the scope or extent
of the explained region (e.g., widen to the whole line
showing the name, type and change data of the HUMANOID

file). The links to application displays are shown using a
color coding scheme: a different color is assigned to each
link, and both the text in the help window and the
corresponding region in the application display are
highlighted using that color (e.g., the word grep is shown
in light gray in the help window, and the corresponding
icon is highlighted with a light gray rectangle in the
application display1). In addition, selecting the link in
either the text or the application display moves to the
corresponding help screen. To avoid cluttering the
application display with link highlightings, H3 only
highlights the links corresponding to a single message in the
help window. Users can select the message for which they
want the links highlighted.

Example
This section briefly illustrates the capabilities of help
systems generated using H3 by showing examples of
several help windows for a file manager. Interestingly, our
file manager application is similar to the Macintosh Finder
and the MS Windows or OS/2 directory managers, but the
help available through H3 is much more comprehensive. In
addition, it is mostly automatically generated from the
model used to construct the interface itself.

Figure 1. shows the help window produced by hitting the
HELP key while the mouse is over the word HUMANOID.
The word HUMANOID is highlighted with a black rectangle
to indicate that it is the portion of the display being
explained in the help window. The help window has two
messages (in this case, the first message was customized by

1H3 highlights regions in the application using different
colors rather than different shades of gray.

To Appear in CHI'94 Proceedings

4

Figure 2. Help window showing the mouse sensitive regions (hot spots) in the headers pane of the folder manager.
Each label in the header is highlighted in blue, as mentioned in the help message.

the developer, and the second one was generated by
default). The first message is a data message that explains
the meaning of the selected portion of the display. The
second one is a command message that tells the user what
operations are available on the selected element.

Each message in the help window has a bullet on its left.
When the user selects the bullet, H3 highlights the portions
of the display referred to by the links in the selected
message. For example, in Figure 1. the second message is
selected. The words filter and grep are displayed in
different colors (shades of gray in the figure), indicating
that they are links, and in the folder manager window the
last two icons below the menu-bar are highlighted with the
same colors to indicate that they display the objects referred
to by the links. Selecting one of the links (e.g., grep)
changes the help window to show information about link
referent (the grep command). Should the user select the
first message, all the elements to the right of the word
HUMANOID would be highlighted in blue.

The commands at the bottom of the help window allow the
user to access other help information. The Display

command allows the user to display the initial help screen
after navigating to see the information about other topics.
The other two buttons in the first row let the user widen and
narrow the area of the screen for which help is requested
(e.g., widen to the whole line showing the complete
information for a file). The last row of buttons let the user
ask for help about different topics. Commands produces a
summary of all the application commands that operate on
the data displayed in the portion of the display being
explained, Data describes the information displayed in the
region being explained, and Hot-Spots highlights the
mouse-sensitive elements of the application display and
describes the input techniques that can be used to operate
on them.

Figure 2. shows a help window about a different region of
the screen and about a different topic. In this case the user
asked to see the hot spots associated with the headings of
the folder manager window (in this case, the message is was
automatically constructed). Each word in the heading is
highlighted with a rectangle because it is a hot spot. If the
user selects the Commands button, the help window will
display help about the commands that can be invoked by

selecting the headings. The help window will have a
message for each heading. For example, the customized
message for the SIZE heading says "If you click the left
button on SIZE, the contents of the window will be sorted
according to their size"

IMPLEMENTATION OF HELP GENERATION
In H3 the help messages are specified as rules of the
following form

When Conditions then Message-Descriptions

The conditions identify the context when a particular
message is appropriate, and the message descriptions are
templates that specify the text and links of message to be
generated.

When ?object is selected for help

 and ?object has an interaction technique

 ?inter that invokes command ?cmd

 and command ?cmd has an input ?inp

 and interaction technique ?inter sets

 input ?inp to value ?val

then display the interaction message

 "If you "

 generate-activation-message (?inter)

 " the command "

 ?cmd

 "will be run using"

 ?val

 "as its input"

Figure 3. An example of a help rule (in pseudo-
English)

Figure 3. shows the rule that generates messages of the
following form (the rule is shown in pseudo-English to
make it more understandable)

If you click with the left button on the part of the window for which
you requested help, the command Print will be run using H3-
Paper.ps as its input

The conditions test whether the display element to be
explained (?object) appears in a context where the
message specified by the right hand side of the rule is
appropriate. The words with a question mark preceding
them (?object, ?inter, ?cmd and ?val) are variables.
When H3 evaluates the conditions of the rule, the variables

To Appear in CHI'94 Proceedings

5

Messages
to

Display

Message
Database

Message
Manager

Help
Display

Manager

Rule
Matcher

Help Rules

HUMANOID
Runtime
System

Model
 Application
 Presentation
 Behavior

Help Extensions

Application
Window

Help
Window

HUMANOID

H3

Help

Request

Figure 4. Architecture of H3. HUMANOID provides
the enabling technology that allows H3 to access
the information it need to construct the help
messages and highlight the appropriate portions
of the display.

are bound to the objects in the model that satisfy the
conditions. For instance, in the case of the help message
shown above, ?cmd would be bound to the model element
corresponding to the print command, and ?inter would
be bound to the model element that interprets input events
for ?object. H3 tests these conditions by querying the
specification of the interface using the standard set of terms
used to specify the interface of any application. In Figure 3.
the standard terms are shown in pseudo-English (e.g., has

an interaction technique). Without such a
declarative model it would be very hard to define generic
rules that will work for any application.

The right hand side of the rules (message description)
consists of pieces of text, variables bound in the left-hand
side of the rule (conditions), and function calls that
recursively invoke help rules to generate embedded pieces
of text. For example, generate-activation-
message (?inter) recursively invokes the help system
to generate the message that explains how to invoke an
interaction technique. The variables have two effects: first,
a description of their value is substituted in the text of the
message, (e.g., the print command is substituted with the
string "Print"), and second, when the message is shown to
the user, H3 highlights the region of the display where the
value of the variable is presented. In addition, H3 assigns
the same color to the substituted text and the highlighting of
the region.

H3 currently contains 32 rules similar to the one shown
above. These rules cover the default messages generated
for all the generic building blocks of our interface
development system (buttons, menus, icons, etc.), the
default messages needed to explain the notion of "currently
selected object", and default messages that deal with

notions of lists of elements that might be displayed in a
variety of formats such as rows, columns and graphs.

H3 currently does not have rules that require complicated
inferencing. For example, H3 can explain that a command
button is dimmed because one of its preconditions is not
valid, and can produce a help message explaining why the
precondition is not valid, but cannot explain what the user
needs to do to make the precondition valid. For similar
reasons, H3 does not support task-oriented help either.
Producing such help is beyond the scope of rule systems
like ours. It requires a planner that can compute the
sequence of commands needed to perform a given task [8].

Architecture
Figure 4. shows the architecture of H3. The input to the
help system is a help request , which is a region in the
application display. The outputs are the Help Window, and
the highlightings of regions in the Application Window.

The top-left portion of the figure shows the main elements
of the HUMANOID interface generation system [3, 9, 10].
The model describes the commands and objects of an
application (Application), the methods for presenting these
commands and objects (Presentation), and the behavior of
these objects in response to input events (Behavior). The
HUMANOID Runtime System uses the information in the
model to construct the application displays, and to interpret
inputs from the user. The help system uses the runtime
system to figure out where the various elements of a display
appear on the screen, and also as a bridge to query the
model for the properties of the application, presentation and
behavior that define the application displays. H3 uses the
information in the model to construct the help messages.

When H3 receives a request for help, the Rule Matcher runs
through all the rules in the Help Rules database, and for
each rule whose conditions are satisfied, H3 makes an entry
in the Message Database . Each entry consists of the
message descriptions of the rule and the values of the
variables that satisfied the conditions of the rule.

The Message Database is passed to the Message Manager
whose job is to eliminate redundant messages, to group
together sets of related messages and to sort the messages.
The Message Manager makes use of qualifiers that can
appear in the help rules. The qualifier :exclusive eliminates
messages of the same information topic produced by other
rules, except for messages with the qualifier :additional.
Messages with the qualifier :collect are grouped together as
long as they have the same text portions but different
bindings for their variables; this allows H3 to produce
sentences of the form "Clicking left selects X, Y, and Z",
rather than "Clicking left selects X. Clicking left selects Y.
Clicking left selects Z."

The Display Manager displays the help windows. It
computes the presentation of the values of the variables by
substituting them in the text of the message for their textual

To Appear in CHI'94 Proceedings

6

representation, and by highlighting the regions of the
Application Window where they are displayed. In addition,
the Display Manager assigns colors so that the same color is
used to display the value of the variable in the help message
and to highlight it in the Application Window.

HELP SYSTEM CUSTOMIZATION
H3 supports several levels of customization. The simplest
customization level allows developers to edit the text of the
default messages to make it more appropriate for a
particular application. The next level of customization
allows developers to not only change the text, but also to
add new links to a message. Defining new messages with
simple conditions is similar to changing text and inserting
references, and is also easy to do. The most complex level
of customization is to add rules with complex conditions,
which requires developers to learn the language for defining
the conditions of rules.

The customization facilities use a programming by example
paradigm, except for the facility for defining new rules with
complex conditions, which requires entering a specification
in the rule language. The help customization facility gives
developers a window that looks exactly like the help
windows for end-users (Figures 1 and 2), except that
messages are editable, and there is an extra pane of buttons
and menus to control the customization facilities.

Customization of Text
To change the text for a message, the help developer simply
edits the text in the help window, and then selects the
Install button. Before incorporating the new message
into the help system H3 queries the developer to find
conditions when the new message is appropriate. In
general, the conditions need to be more restrictive than the
conditions of the original message because they are
adaptations of generic messages to specific situations. The
customization facility supports the specification of
additional conditions to restrict applicability of the
message, and also allows dropping conditions to allow the
message to appear in a wider set of contexts.

By default, H3 offers to constrain the rule so that the
message appears only for regions using the same
presentation method used to construct the object being
explained, with the added conditions that the object appears
embedded in exactly the same way inside other presentation
methods. This prevents developers from inadvertently
attaching help messages to reusable presentation methods
that are used in other displays where the help message
would not be appropriate. The developer has the option of
dropping some or all of the context conditions to allow the
message to appear in a wider set of contexts.

For example, suppose the developer wants to customize the
message associated with the labels that show the name of a
directory in the file manager application. The developer
first asks for help as a user would do, by moving the mouse

over one of the labels, and hitting the HELP key. The
following message appears:

The region for which you selected help shows a directory.

This is an instance of a default data message that displays
the type of the object being shown. Suppose the developer
edits the message to say :

The region for which you selected help shows the name of a
folder. Its attributes are shown next to it, and its contents are
shown below.

H3 offers to constrain this message so that it appears only
when the name of a directory is selected for help, with the
added conditions that it appears inside a presentation
method that presents the attributes and contents of a
directory, and the directory appears as a child of another
directory, and it appears inside a scrolling area, etc. In this
case, the added conditions are too restrictive. The
developer, would probably drop all the extra conditions
except for the first one that constrains the message to only
appear when the directory label is part of the presentation
that displays its attributes and contents.

Adding References
When messages need to refer to objects other than the ones
that appeared in the default message, developers must insert
the references in the text. Two kinds of references can be
added: references to objects displayed in the application
window, or references to commands and inputs of the
application, which might not be displayed in the application
window.

References to objects displayed in the application window
are added by clicking on them. The help developer first
clicks on an object on the application display, and then uses
the Widen and Narrow buttons to adjust the size of the
region until the appropriate region is highlighted. H3 enters
in the help text the expression that represents it (e.g.,
highlighted in light gray). H3 modifies the internal
representation of the message to contain a function call that
computes the new region based on the region originally
selected for help.

For example, suppose the developer wants to modify the
following message so that the second sentence contains a
link that shows the user the region of the screen where the
contents of the folder should be shown:

The region for which you selected help shows the name of a
folder. Its attributes are shown next to it, and its contents are
shown below.

The developer selects the last two words in the previous
message (the words "shown below"), and replaces them by a
reference as explained above. The new message will read

The region for which you selected help shows the name of a
folder. Its attributes are shown next to it, and its contents are
highlighted in light gray .

To Appear in CHI'94 Proceedings

7

and the appropriate region of the application display will be
highlighted in light gray. The internal representation of the
message will contain the expression

get-part (parent (parent (?selected-object))

 :contents)

which means, go to the parent of the selected object, then
go to its parent, and then find the part called :contents.

References to elements in the application model are inserted
by bringing up a view of the application model in
HUMANOID 's model visualizer tool, and selecting the
desired command, input or other component in that view.
The result is also a parenthesized expression that computes
the appropriate reference when the message is generated.
Rather than using colors, the references are substituted by
the name of the selected model element. For example, if
the developer points to the model of the Print command, the
reference will be substituted by the label "Print".

Defining New Messages
To generate new messages about an object that had no help
attached by default, help developers enter the help refining
mode, and then specify the object for which they want to
specify help by simply selecting it in the application
display. A menu allows them to specify the kind of help
message they want to create, and the help window shows a
default message for that kind of help. For instance, the
default for data messages is

The region highlighted in blue displays some data

The developer then proceeds to change the text and add
references as explained above.

CONCLUSIONS AND FUTURE WORK
Our approach to the automatic generation of help text, and
to the convenient customization of the automatically
generated help messages, has several benefits:

• Low cost for adding help systems for applications.
Default help comes for free, and there is an easy to
tailor help to specific applications.

• Tight integration between help messages and
application displays: users can point to the displays to
ask for help, and the displays are highlighted to show
the objects referred to in the text of the messages.

• Help messages are dependent on context (e.g., the
message for the name of a file can be different
depending on where in a window the file appears), and
are also dependent on the state of the application (e.g.,
the message for dimmed buttons is different from the
message of enabled buttons).

• Support for keeping the help system up to date when
the application or the interface are modified. The
automatically generated help messages will always be
up to date because they are generated from the model
that defines the application and its interface.
Customized messages can be flagged as potentially

needing revision because they include references to the
model (this last feature is not currently implemented).

• Consistent interface to help systems across
applications.

Future work on H3 will proceed along two directions. First,
we need to get feedback from help system developers and
end-users regarding the usability of the help generation tool
and the quality of the generated help. We have built help
systems for two simple applications (the folder manager
and an object browser), and are currently working on
constructing help for a large knowledge base development
environment. We expect to have to refine the interface to
the help system itself (i.e., the Display Manger). The
display manager has not been the emphasis of our work, but
we isolated it from the rest of the help system, so that we
can refine it without impacting the rest of the system.

The second direction is to enhance the sophistication of the
help system. We are interested in incorporating ideas from
Cartoonist to be able to show animations, and to produce
task-oriented help. Given that the models used in
HUMANOID and Cartoonist are similar, we expect to be
able to use their approach [2, 8].

ACKNOWLEDGEMENTS
Roberto Moriyon is supported by a grant from the Spanish
Ministry of Education and Science. Pedro Szekely and
Robert Neches are supported by ARPA through Contract
Numbers NCC 2-719 and N00174-91-0014.

REFERENCES
1. Feiner, S., and McKeown, K.: Coordinating Text and

Graphics in Explanation Generation. Proceedings
AAAI-90. Boston, MA, 1990.

2. Foley, J., Kim, W.C., Kovacevic, S., and Murray, K.:
UIDE - An Intelligent User Interface Design
Environment. Intelligent User Interfaces. J.W. Sullivan
& S. W. Tyler, Ed., Addison Wesley, 1991.

3. Luo, P., Szekely, P., and Neches, R.: Management of
interface design in HUMANOID . In Proceedings
INTERCHI’93. April 93.

4. Macintosh System 7. Apple Computer. 20525 Mariani
Ave. Cupertino, CA 95014.

5. Microsoft Windows. Microsoft Corporation. One
Microsoft Way. Remond, WA 98052.

6. Moore, J.D., and Swartout, W.R.: Pointing: A way
toward explanation dialogue. Proceedings of the Eighth
National Conference on Artificial Intelligence, 1990.

7. IBM OS/2. International Business Machines
Corporation. Old Orchard Rd., Armonk, NY 10504.

8. Sukaviriya, P., and Foley, J.: Coupling a UI
Framework with Automatic Generation of Context-

To Appear in CHI'94 Proceedings

8

Sensitive Animated Help. In Proceedings UIST’90,
Oct. 1990.

9. Szekely, P, Luo, and R. Neches. Facilitating the
Exploration of Interface Design Alternatives: The
HUMANOID Model of Interface Design. In
Proceedings SIGCHI’92. May 1992, pp. 507-515.

10. Szekely, P., Luo, P., and Neches, R.: Beyond Interface
Builders: Model-Based Interface Tools. In Proceedings
INTERCHI’93. April 93.

