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aMachine Learning Group, ICTEAM Institute, Université catholique de Louvain,
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Abstract

Identifying the optimal subset of regressors in a regression bagging ensemble
is a difficult task that has exponential cost in the size of the ensemble. In this
article we analyze two approximate techniques especially devised to address
this problem. The first strategy constructs a relaxed version of the problem
that can be solved using Semidefinite Programming. The second one is based
on modifying the order of aggregation of the regressors. Ordered Aggregation
is a simple forward selection algorithm that incorporates at each step the re-
gressor that reduces the training error of the current subensemble the most.
Both techniques can be used to identify subensembles that are close to the
optimal ones, which can be obtained by exhaustive search at a larger com-
putational cost. Experiments in a wide variety of synthetic and real-world
regression problems show that pruned ensembles composed of only 20% of the
initial regressors often have better generalization performance than the orig-
inal bagging ensembles. These improvements are due to a reduction in the
bias and the covariance components of the generalization error. Subensem-
bles obtained using either SDP or Ordered Aggregation generally outperform
subensembles obtained by other ensemble pruning methods and ensembles
generated by the Adaboost.R2 algorithm, negative correlation learning or
regularized linear stacked generalization. Ordered Aggregation has a slightly
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better overall performance than SDP in the problems investigated. How-
ever, the difference is not statistically significant. Ordered Aggregation has
the further advantage that it produces a nested sequence of near-optimal
subensembles of increasing size with no additional computational cost.

Key words: Regression, Ensemble Learning, Bagging, Boosting,
Semidefinite Programming, Ensemble Pruning

1. Introduction

Ensembles have the potential to improve the performance of an individ-
ual predictor by combining the outputs of a collection of complementary
predictors. A widely used algorithm to build ensembles for classification and
regression is bagging [6]. In bagging, different models are generated by ap-
plying the same learning algorithm to independent bootstrap samples of the
original training data. If the learning algorithm used is unstable (that is,
if small changes in the training set lead to different models), a collection of
diverse regressors can be induced from the different bootstrap samples. If
the errors of these elements are uncorrelated, improved predictions can be
obtained by averaging the outputs of the regressors in the ensemble. This
mechanism generally reduces the variance component of the generalization
error [7, 8, 49]. Bagging is a very robust learning algorithm, which can per-
form well even when data are noisy [17, 41]. Furthermore, including more
elements in a bagging ensemble does not generally lead to overfitting [11].
Typically, the prediction error decreases monotonically with the ensemble
size, and asymptotically approaches a constant level, which is considered the
best result that bagging can achieve.

Another popular ensemble algorithm is boosting. Boosting was originally
developed for classification problems [19, 46]. In boosting, a sequence of
models is induced from a given dataset using a fixed learning algorithm and
different weights for the different training instances. The first model in the
sequence is learned using equal weights. The (n+1)th model in the ensemble
is constructed by modifying the weights of the instances used for induction:
Larger weights are assigned to training examples that are incorrectly labeled
by the nth model in the sequence. By contrast, the weights of correctly
labeled instances are lowered. The final prediction of the boosting ensemble
is a weighted combination of the predictions of the individual models. The
weights in this combination are determined by the error on the training
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data: The lower the training error of the model, the higher its weight in the
ensemble prediction and vice versa. Boosting has been shown to perform well
in several benchmark classification problems [3, 9, 41]. However, it is very
sensitive to noise in the class labels and its effectiveness is severely reduced
in noisy domains [17, 41]. Boosting has also been adapted to solve regression
problems [1, 18, 19, 21]. In this work we use the Adaboost.R2 algorithm, one
of the extensions of Adaboost for regression proposed in [18]. This variant
of boosting has been selected because of its good performance in several
regression problems [18]. Furthermore, Adaboost.R2 is used as a benchmark
for comparison in previous work on regression ensembles [12, 56, 1].

An important shortcoming of ensemble methods is that, in many prob-
lems of practical interest, many predictors are needed to achieve good gener-
alization performance. Large ensembles require more storage space and take
longer to make predictions. A possible way to alleviate this problem is to
replace the original ensemble by a representative subset of predictors. This
approach has been shown to be effective in classification problems: Pruned
subensembles can in fact outperform the original ensembles from which they
are extracted [2, 13, 30, 33, 34, 35, 55, 31]. Nevertheless, the task of se-
lecting from a pool of predictors a subset whose performance is optimal is
a difficult problem. On the one hand, it is computationally expensive: The
search is conducted in the space of 2M − 1 non-empty subensembles that can
be extracted from an ensemble of size M . On the other hand, even if the
search were feasible, the selection is made in terms of an objective function
estimated on the training data. Since we are interested in out-of-sample per-
formance, finding the optimum in the training set does not guarantee optimal
generalization properties.

Previous studies have shown that the generalization performance of re-
gression bagging ensembles can be improved by selecting a subset of com-
plementary regressors whose prediction errors are uncorrelated [39, 56, 26].
These techniques can be used in principle to prune other types of ensembles
in which the final prediction is obtained by averaging over the individual
predictors that make up the ensemble [44, 54, 37, 32]. The main goals of
this research are to design extensions to regression problems of pruning tech-
niques that have been previously introduced in the context of classification
problems, to analyze their properties and to evaluate their performance. The
first technique investigated is an adaptation of the pruning method based on
Semi-definite Programming (SDP) introduced in [55]. An alternative ap-
proach to ensemble pruning consists in modifying the order of aggregation in
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the ensemble [31]. Starting with an empty subensemble, Ordered Aggrega-
tion follows a forward selection strategy and incorporates the regressor that
reduces the training error of the current subensemble the most, until a stop-
ping criterion is met. In the current work we show that the subensembles
identified by the ordering procedure are very similar both in performance
(quantified in terms of either the training error or the test error) and in com-
position to optimal subensembles of the same size, identified by exhaustive
search. The optimality of the subensembles is determined in terms of the
training set alone, which are the only data available for induction.

As noted earlier, minimizing a measure of performance on the training
set does not necessarily lead to improvements in generalization capacity. To
evaluate the generalization performance of the pruned subensembles and to
compare it with other ensemble generation and ensemble-pruning methods,
we carry out extensive experiments in 24 synthetic and real-world datasets.
The results of these experiments show that SDP-pruning and Ordered Aggre-
gation are effective methods for identifying subensembles with good general-
ization performance not only in classification problems, but also in regression
tasks. A detailed analysis of the components of the generalization error of
the subensembles confirms that the improvements in prediction accuracy
arise because both SDP-pruning and Ordered Aggregation select from the
original ensembles subsets of regressors that simultaneously have a low bias
(i.e. their individual errors tend to be low) and small or negative correlations
(i.e. their predictions are complementary).

In the problems investigated, and for a large range of pruning rates,
pruned subensembles obtained with these two methods outperform single
neural networks, complete ensembles built either with bagging or Adaboost.R2
and other pruning techniques based on genetic algorithms [56]. The differ-
ences observed are statistically significant. The performance of the subensem-
bles identified via SDP-pruning or by Ordered Aggregation is comparable
with the subensembles identified by other pruning methods described in the
literature [39] and with the ensembles generated by negative correlation learn-
ing [29] or regularized linear stacked generalization [43]. The overall perfor-
mance of Ordered Aggregation is slightly better than SDP. However, the
difference is too small to be statistically significant. The simple forward se-
lection used in Ordered Aggregation has the advantage of producing a nested
sequence of near-optimal subensembles of increasing size. By contrast, SDP
requires to solve a different semi-definite programming problem for each en-
semble size, which entails a correlative increase in computational costs.
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The article is organized as follows: Section 2 introduces the problem of
selecting an optimal subensemble from a pool of regressors generated with
bagging. Since this problem is NP-hard, approximate methods have to be
used in practice. Near-optimal solutions can be found by SDP-pruning or
by Ordered Aggregation. An empirical analysis of these techniques is pre-
sented in Section 3. Specifically, Section 3.1 shows that the subensembles
identified using either SDP-pruning or Ordered Aggregation are very close
to the optimal subensembles obtained by exhaustive search. These near-
optimal subensembles actually outperform the original complete ensembles
from which they are extracted. The bias-variance-covariance analysis pre-
sented in Section 3.2 elucidates the origin of the improvements obtained.
The results of the extensive assessment of the performance of the pruning
methods analyzed are presented in Section 3.3. Finally, Section 4 summarizes
the results and conclusions of this work.

2. Selection of Optimal Subensembles

Consider a regression problem. The goal is to learn a function that pre-
dicts the dependent variable y ∈ R in terms of the attributes x ∈ X using
a set of training data D = {(x1, y1), ..., (xN , yN)}, whose instances are in-
dependently drawn from a probability distribution P(x, y). Bagging works
by combining the prediction of a collection of regressors. Each of these re-
gressors is constructed by applying a fixed learning algorithm on a different
bootstrap sample from the original training data D. Let f̂i(x) be the pre-
diction given by the ith regressor built with Di, the ith bootstrap sample
from the training data. The prediction of the ensemble is the average of the
individual predictions of the M regressors in the ensemble

M−1

M
∑

i=1

f̂i(x), i = 1, 2, . . . ,M. (1)

The generalization error of the ensemble is

L =

∫

(

M−1

M
∑

i=1

f̂i(x)− y

)2

P(x, y)dxdy, (2)

where y = f(x), f is the target function to approximate, and P(x, y) is the
probability distribution of the data. After some algebra (2) can be expressed
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as

L = M−2

M
∑

i=1

M
∑

j=1

Cij (3)

where

Cij =

∫

(

f̂i(x)− y
)(

f̂j(x)− y
)

P(x, y)dxdy . (4)

The value Cii is the average squared error of the ith ensemble member. The
off-diagonal terms {Cij, i 6= j} correspond to correlations between the pre-
dictions of the ith and jth ensemble members [56, 39].

Consider a bagging ensemble of sizeM . Our goal is to select the subensem-
ble of u regressors {s1, s2, . . . , su} that minimizes the error

L(u) = u−2

u
∑

i=1

u
∑

j=1

Csisj , (5)

where {s1, s2, . . . , su} is a subset of the indices that label the ensemble mem-
bers {1, 2, . . . ,M}. Since the actual generalization error cannot be computed,
the selection of the optimal subensemble is made on the basis of the training
error. The expression for the training error is identical to (5), except that the
average over P(x, y) in the calculation of Cij is replaced by a sample average
over the training data

C(tr)ij =
1

N

N
∑

n=1

(

f̂i(xn)− yn

)(

f̂j(xn)− yn)
)

. (6)

Hence, the information needed for the optimization problem is contained in
the matrix C

(tr), which is estimated on the training set. This estimate is
expected to be close to the true C matrix, which is calculated as an aver-
age over the actual distribution of the data, so that minimizing the train-
ing error leads to the minimization of the generalization error. This is not
necessarily the case in actual regression problems: minimizing the training
error sometimes leads to overfitting, and, consequently, to the selection of
subensembles whose generalization performance is suboptimal. In the exper-
iments performed, overfitting becomes manifest in the fact that, typically,
the subensembles that minimize the error on the training data tend to be
smaller than the subensembles that are optimal when the error is estimated
on an independent test set.
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In any case, even if it were possible to accurately predict the generaliza-
tion error from the training data only, finding the optimal subensemble is a
computationally expensive problem that involves comparing the performance
of all the possible 2M−1 non-empty subensembles that can be extracted from
the original ensemble. In fact, the problem of selecting the optimal subensem-
ble from a given ensemble is NP-hard (see Appendix A). This implies that
finding the exact solution is infeasible for large ensembles. In this work we
analyze two techniques that can identify near-optimal subensembles at a re-
duced computational cost1. The first method solves a relaxed version of the
problem using semidefinite programming (SDP). The second one is based on
modifying the order of aggregation of the regressors in the ensemble, which
in standard bagging is random.

2.1. Ensemble pruning via semidefinite programming

The method based on Semidefinite programming (SDP) introduced in
[55] by Zhang et al. to prune classification ensembles can be extended to
ensembles of regressors. In classification tasks the subensemble selection
problem is formulated in terms of an M × M matrix G, whose diagonal
terms Gii measure the individual training errors of the ensemble members
and whose off-diagonal terms Gij, i 6= j measure the number of common
training errors between classifiers i and j. The goal is to find the sub-matrix
of G, of dimensions u× u, that corresponds to a subensemble of size u that
minimizes the sum of the elements in G. This process need not provide
the subensemble of size u with the minimum training error. However, it
guarantees that the subensemble elements have small training error rates and
that they tend to make incorrect predictions for different training instances.

The problem described in the previous paragraph is a standard 0-1 opti-
mization problem that is also NP-hard. Zhang et al. reformulate this problem
so that it has the same optimal solutions as an instance of the max-cut prob-
lem of size u (MC-u). This problem consists in partitioning the vertices of
an edge-weighted graph into two sets, one of which has as size u, so that the
total weight of edges crossing the partition is maximized. Good approximate
solutions to the max-cut problem can be obtained using an algorithm based
on SDP [23, 24]. Therefore, good approximations to the problem of selecting

1Source code available for both pruning techniques at
http://www.eps.uam.es/~gonzalo/publications/
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an optimal subensemble of size u can be found by solving the corresponding
instance of the MC-u problem.

The ensemble pruning problem of Zhang et al. is formulated in [55] as

min
u

uTGu

s.t.
∑

i ui = u,
ui ∈ {0, 1},

(7)

The binary variable ui takes the value 1 if ith predictor is selected and 0 if it is
not selected. Without the cardinality constraint,

∑

i ui = u, there is a trivial
solution to the problem, in which none of the regressors is selected. They
then propose the transformation ui = (vi+1)/2 with vi ∈ {−1, 1}. With this
change of variables, the objective function is proportional to (v+e)TG(v+e),
where e is a column vector composed of M ones. The constraint

∑

i ui = u
becomes (v+ e)T I(v+ e) = 4u, where I is the identity matrix. Defining the
matrices

H =

(

eTGe eTG

Ge G

)

,

D =

(

M eT

e I

)

,
(8)

and extending the vector v with one additional component v0 that takes
value one, (7) becomes

min
v

vTHv

s.t. vTDv = 4u,
v0 = 1,
vi ∈ {−1, 1} ∀i 6= 0.

(9)

This problem is equivalent to

min
v

H • vvT

s.t. D • vvT = 4u,
v0 = 1,
vi ∈ {−1, 1} ∀i 6= 0.

(10)

where A •B =
∑

ij AijBij . This latter formulation of the problem is equiv-
alent to the MC-u problem [55]. The goal is now to construct the relaxed
version of the problem that can be efficiently solved using SDP. The con-
straint v0 = 1 in (10) is relaxed to v0 ∈ {−1, 1} without modifying the
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problem, because −v is feasible whenever v is feasible. Next, the constraints
vi ∈ {−1, 1} are rewritten in the form diag(vvT ) = e

min
v

H • vvT

s.t. D • vvT = 4u,
diag(vvT ) = e.

(11)

The problem can be expressed in terms of a positive semidefinite matrix V

of rank one
min
V

H •V

s.t. D •V = 4u,
diag(V) = e,
V � 0.
rank(V) = 1.

(12)

This reformulation is possible because vvT = V if and only if V � 0 and
rank(V) = 1.

From this reformulation it is possible to obtain a convex SDP optimization
problem from (12) by dropping the rank constraint

min
V

H •V

s.t. D •V = 4u,
diag(V) = e,
V � 0.

(13)

This SDP problem can be efficiently solved in polynomial time with a suit-
able optimizer, such as the one designed in [5]. As described in [55], from
a solution matrix V of (13), a solution vector u is obtained by a random-
ized approximate algorithm [23, 24]. Specifically, the components of u are
determined by sampling v from a Gaussian distribution N (0,V) and then
applying the rule

ui =

{

1 if sign(vi) = sign(v0)

0 if sign(vi) 6= sign(v0)
. (14)

If the targeted number of regressors in the subensemble is not correctly de-
termined by the application of this rule, Zhang et al. use a greedy algorithm
that incorporates or removes elements in u, as needed, causing the least de-
terioration in (7). This procedure is repeated ten times and the best solution
is retained.
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Even though (13) can be cast in a form that is equivalent to the MC-u
problem, the approximation bounds that hold for the relaxed version of this
problem [23, 24] are not applicable in the relaxed version of subset selection.
Subset selection and the MC-u problem share optimal solutions but not opti-
mal values. The reason is that the objective function in (13) does not exactly
match the objective in the MC-u problem [55]. Despite this lack of guaran-
tees for the quality of the approximation, the procedure described is very
effective in selecting near-optimal ensembles in classification tasks [55, 31].

The approach described above for pruning classification ensembles can
be extended to prune regression ensembles. For this, we observe that the
generalization error of the initial bagging ensemble can be expressed in terms
of the matrix C in (3). Thus, the subensemble selection problem consists
in finding a subensemble of size u for which the sum of the elements in the
corresponding sub-matrix of C is as low as possible. An approximate solution
to this problem can be obtained using the method of Zhang et al. to prune
classification ensembles. The difference lies in the matrix that is used to
guide the optimization process. In [55] it is the matrix G. In the regression
case, this matrix is replaced by an appropriate estimate of the matrix C, the
matrix C

(tr), defined in (6). The diagonal elements of this matrix measure the
individual squared errors on the training set, and the off-diagonal elements
correspond to correlation-like values.

The computational cost of selecting a subensemble of size u by solving
problem (13) is O(M3), where M is the size of the initial ensemble. The
computation of C(tr) is O(M2 · N). Therefore, the total cost of the SDP
method for pruning regression ensembles is O(M3 + M2 · N), where N is
the size of the training set D. Extracting all near-optimal subensembles of
sizes u = 1, 2, . . . ,M , implies solving (13) M times, with an overall cost
O(M4 +M3 ·N).

2.2. Ordered Aggregation

Another strategy that can be used to find an approximate solution to
the subensemble selection problem is based on modifying the order in which
the predictors are aggregated into the ensemble. This strategy has been suc-
cessfully used for pruning classification ensembles [13, 30, 33, 34, 35, 45, 31].
Specifically, one of the goals of [31] was to determine the relevance of the
choice of ordering heuristic to the performance of the resulting pruned en-
sembles. The conclusion of that study is that the effectiveness of different
heuristics that take into account both the individual prediction accuracy and
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the complementarity of the classifiers is very similar. The goal of the present
work is to extend this analysis to regression problems, where the optimiza-
tion of the training error provides a natural criterion for the selection of
subensembles. The effectiveness of Ordered Aggregation in regression bag-
ging ensembles was assessed in [26]. In the present investigation we provide
a more detailed analysis of Ordered Aggregation and a more extensive eval-
uation, including comparisons with related ensemble creation and ensemble
pruning methods, such as negative correlation learning, SDP-pruning, the
pruning method proposed by Perrone and Cooper [39], the genetic algorithm
described in [56] and regularized linear stacked generalization ensembles ob-
tained using the lasso [43].

From the initial pool of M regressors generated by bagging, ordered ag-
gregation builds a sequence of nested ensembles, in which the ensemble of
size u contains the ensemble of size u − 1. The algorithm starts with an
empty ensemble that grows by incorporating at each iteration the regressor
that reduces the training error of the enlarged subensemble the most. In par-
ticular, the regressor selected in the uth iteration is the one that minimizes
the expression

su = argmin
k

u−2(
u−1
∑

i=1

u−1
∑

j=1

C(tr)sisj
+ 2

u−1
∑

i=1

C(tr)sik
+ C(tr)kk ) (15)

where k ∈ {1, .., N}\{s1, s2..., su−1} and {s1, s2..., su−1} label regressors that
have been incorporated in the pruned ensemble at iteration u − 1. Fig. 1
displays the pseudo-code for Ordered Aggregation.

This process can be seen as an ordering of the regressors of the complete
ensemble because the subensemble generated at iteration u includes all the
regressors of the subensemble generated at iteration u− 1. The subensemble
of size u with 1 ≤ u ≤ M is obtained by taking the first u regressors from
the ordered sequence. Subensembles selected by Ordered Aggregation need
not be optimal. In particular, the optimal subensemble of size u (the one
with the lowest mean squared error on the training data) need not include
all the regressors of the optimal ensemble of size u−1. Nonetheless, Ordered
Aggregation is expected to identify near-optimal solutions of the subensemble
selection problem.

The time-complexity of this algorithm, as a function of the number of
regressors in the bagging ensemble, can be readily estimated. Each of the M
iterations requires the extraction of the regressor that minimizes (15) from
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Input: Training data D = {(x1, y1), ..., (xN , yN )} with xi ∈ X ,
yi ∈ Y and i = 1, ..., N . Vector of regressors R =
{f̂1(·), . . . , f̂M (·)}

1. For i = 1, . . . ,M :

(a) For j = 1, . . . ,M :

i.
Cij ← N−1

∑N
n=1

[(

f̂i(xn)− yn

)

(

f̂j(xn)− yn

)]

2. s← empty vector

3. For u = 1, . . . ,M :

(a) min← +∞
(b) For k in {1, . . . ,M}\{s1, . . . , su}:

i. value ← u−2(
∑u−1

i=1

∑u−1
j=1 Csisj + 2

∑u−1
i=1 Csik +

Ckk)))
ii. if value < min

A. su ← k

B. min← value

4. return s

Output: Ordered vector of regressors.

R = {f̂s1(·), . . . , f̂sM (·)}

Fig. 1: Pseudo-code that implements Ordered Aggregation.
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the remaining pool of regressors. This task has a cost O(((M + 1)− u) · u),
where 1 ≤ u ≤ M is the current iteration. Therefore, the total complexity
of the ordering is O(M3). Finally, because computing C

(tr) takes O(M2 ·
N) steps the final cost is O(M3 + M2 · N). In contrast to SDP-pruning,
where selecting subensembles of different sizes requires separate executions
of the algorithm, Ordered Aggregation generates a sequence of near-optimal
subensembles of increasing size at no additional cost.

2.3. Related work

The key to the improvements in the performance of the ensemble is the
complementarity of the predictions given by the individual ensemble members
[12, 17, 26, 49]. Individual measures of accuracy or measures of diversity
cannot be used in isolation to improve the performance of the ensemble.
Successful ensemble pruning techniques need to encourage complementarity
among the selected predictors.

The idea of modifying the order in which the classifiers are aggregated in
the ensemble was introduced as a possible improvement of ensemble learning
in [39] by Perrone and Cooper. However, the order of aggregation proposed in
that work is based on the individual properties of the ensemble members (e.g.
the mean squared error of each neural network). The joint performance of the
predictors is considered only at a later stage, to decide whether a candidate
neural network does not lead to a reduction of the subensemble error and
should therefore be excluded from the current subensemble. Specifically, [39]
suggests to swap such a network with the closest un-tested network in the
ordered sequence. The pruning method stops when none of the un-tested
networks in the ordered sequence provide a reduction of the subensemble
error.

Building an ensemble of regressors whose predictions have small or neg-
ative correlations is one of the design goals of negative correlation learning
[29]. In this learning algorithm, diversity is encouraged by simultaneously
training a collection of networks using a cost function that includes a cor-
relation penalty term in addition to the prediction error. The correlation
penalty term encourages the specialization of the individual networks and
cooperation among them. However, the strength of the penalty needs to be
to be carefully tuned for each problem. If it is too small, the cooperation
among the ensemble members will not be sufficient to produce significant im-
provements in performance. If the penalty is too large, the learning process is
ineffective: the cost function is dominated by the penalty term and becomes
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insensitive to prediction errors. A further difficulty of this method is that
the correlation penalty introduces a coupling among the parameters of the
different ensemble members. This coupling increases the dimensionality of
the parameter space in which the search is conducted and makes the learning
process more difficult.

Genetic algorithms (GAs) have also been proposed for the selection of
a near-optimal subensemble from a complete bagging ensemble. In [56] the
output of the ensemble is a weighted average of the outputs of each ensemble
member. The optimal set of weights of the ensemble members is found by
minimizing a function that estimates the generalization error of the ensemble.
The minimization problem is solved by GASEN (Genetic Algorithm based
Selective ENsemble), a standard GA with a floating-point encoding scheme
for the real-valued weights. Once evolution has finished, the neural networks
whose optimized weights are below a specified threshold are removed from
the ensemble. The final ensemble output is the average over the predictions
of the networks retained in the ensemble. The experiments carried out in
[56] establish GA as a viable strategy to prune bagging ensembles. However,
the ensembles considered in that work are rather small. In fact, for the
ensemble sizes considered (20 networks) exhaustive search is still feasible. In
this work we show that this GA can also be used to extract subensembles with
good prediction properties from larger ensembles, such as the ones typically
generated in bagging (≈ 100 learners).

Subset selection techniques [25, 36] can also be used to identify subsets
of predictors that outperform the original complete ensemble. The stacked
generalization method described in [43] is illustrative of this approach. In
stacked generalization, the vector of predictions of the different ensemble
members for each training sample is considered as a data instance in a new
feature space [53]. These instances are then used to train a meta-learner
that produces the final ensemble prediction. In practice, the predictor used
for output combination can be built using any learning algorithm. There is
extensive empirical evidence that stacking predictors tends to overfit unless
the combiner function is sufficiently smooth [43]. Specifically, linear combi-
nations generally perform better than non-linear models [48]. Nevertheless,
when the number of the predictors in the ensemble is large, even linear mod-
els tend to overfit [13]. This problem can be alleviated by the application of
regularization techniques [43]. If regularization is performed via the lasso [47]
or the elastic net regression [57] some of the coefficients of the linear model
will take value zero. Therefore, the corresponding predictors can be removed
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from the ensemble, because they are not involved in the combined prediction.
In contrast to the ensemble pruning methods considered in this work, which
assume equal weights, the remaining predictors can have different weights
in the final prediction. In this work, we analyze the performance of ensem-
bles of this type generated via stacking combined with lasso regularization.
Instead of the lasso other subset selection techniques can be used [36]. Ex-
periments on a variety of regression problems show that variants of these
subset selection techniques in which uniform weights are used (instead of the
actual non-zero weights calculated) have poorer generalization performance.
In consequence, these variants are not considered for further evaluation.

3. Empirical Analysis and Evaluation

In this section we carry out an empirical analysis of SDP-pruning and
Ordered Aggregation and evaluate their performance. For this purpose, we
report the results of experiments on a wide range of problems, which include
synthetic and real-world data from different domains of application. The
list of problems is displayed in Table 1. In Section 3.1, the subensembles
identified by these two approximate strategies are compared with the optimal
subensembles of the same size obtained by exhaustive search. From the
results of these experiments one concludes that the subensembles obtained by
SDP-pruning and Ordered Aggregation are near-optimal and that they can
improve the prediction accuracy of the original bagging ensembles from which
they are extracted. The bias-variance-covariance decomposition presented in
Section 3.2 provides some insight into the mechanism by which these pruning
methods improve the generalization performance. Finally, in Section 3.3
the prediction accuracy of the subensembles identified by SDP-pruning and
Ordered Aggregation is quantified and compared to related methods, which
have been described in Section 2.3.

3.1. Optimality of the selected subensembles

SDP-pruning and Ordered Aggregation are approximate optimization
methods. Therefore, they can select subensembles that are suboptimal.
Globally optimal subensembles of a given size, u, can actually be identified
using exhaustive search. Therefore, we have performed a series of exper-
iments to determine how similar are the subensembles identified by these
methods and the optimal ones. Optimality is defined in terms of the train-
ing data, because those are the only instances available for induction. The
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question is whether the minimization of the training data leads to improve-
ments of the generalization performance. To elucidate this point, further
comparisons are made in terms of the performance on the training data and
on an independent test set. The experiments are carried out in the regres-
sion problems Servo, Pollution, Boston and Solder. The results obtained in
these regression tasks are representative of the problems considered in our
research.

For each dataset, 10-fold cross-validation is used to estimate the squared
prediction error. This cross-validation process is repeated 10 times for differ-
ent random partitions of the data. The values reported are averages of the
cross-validation estimates over these different partitions. The experiments
involve building 100 different bagging ensembles of M = 32 predictors. As
base learners we use feed-forward neural networks with a single hidden layer
of sigmoidal neurons and a linear unit in the output layer. The networks
are trained during 1000 epochs using the quasi-Newton optimization method
BFGS [38]. A weight decay strategy is used in the training process to limit
the amount of overfitting [27]. Previous to the generation of the bagging
ensemble, the optimal architecture of the networks and the optimal value for
the weight decay constant are estimated based on a separate 10-fold cross-
validation estimate on the training data. Different architectures (3, 5, and
7 hidden units) are explored. We also consider ten evenly-spaced values
for the logarithm of the weight decay constant in the interval [−6, 2]. All
possible combinations of the number of hidden units and of the values of
the weight decay constant are tried to determine which set of parameters
provides the best regression fit. Once the best architecture and decay con-
stant are found, a bagging ensemble is generated using neural networks with
these hyper-parameters. The computations are performed using the neural
networks package [50] of the R statistics software [42].

For each ensemble, optimal subensembles of sizes u = 1, . . . ,M are iden-
tified by exhaustive search. SDP-pruning and Ordered Aggregation are used
to generate near-optimal subensembles of different sizes. Fig. 2 displays for
each problem the percentage of regressors that appear both in the optimal
subensembles and in the approximate ones (either the one identified by Or-
dered Aggregation or by SDP-pruning) as a function of the subensemble size
1 ≤ u ≤ 32. The curves show that the subensembles identified by SDP-
pruning are very similar to those obtained by exhaustive search. Ordered
aggregation identifies subensembles that share on average at least 70 percent
of their elements with the optimal ones.
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Table 1: Characteristics of the datasets used in the experiments.

Dataset Cases Attr. Source

Attitude 30 6 R
AutoPrice 159 15 Weka
Bodyfat 252 14 Weka
Bolts 40 7 Weka
Boston 506 13 UCI-Repository
Chick 578 3 R
Concrete Slump 103 7 UCI-Repository
Fires 517 13 UCI-Repository
Friedman1 - 10 [20]
Friedman2 - 4 [20]
Friedman3 - 4 [20]
Loblolly 84 2 [28]
Longley 16 6 R
Orange 35 2 R
Ozone 330 8 UCI-Repository
Peak - 20 [10]
Pollution 60 15 Weka
Rock 48 3 R
Sensory 576 11 Weka
Servo 167 4 UCI-Repository
Solder 720 5 R
Theoph 132 4 R
Tooth 60 2 R
Wisconsin 198 35 UCI-Repository

Next, the prediction error of these subensembles is estimated in the train-
ing set and in an independent test set. Optimality is defined in terms of the
prediction accuracy in the training set only. Note that the performance of
subensembles that are optimal in training need not be optimal in terms of
the generalization error. Fig. 3 displays the evolution of the average train
and test errors of the subensembles obtained by Ordered Aggregation, SDP-
pruning and exhaustive search as a function of the subensemble size. The
error of the original bagging ensemble is also displayed for comparison. In
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Fig. 2: Average fraction of common regressors between the optimal subensemble and
subensembles obtained by SDP-pruning (top curve), or Ordered Aggregation (bottom
curve) as a function of the subensemble size.

standard bagging the error decreases approximately monotonically as more
regressors are incorporated into the ensemble. This behavior should be ex-
pected from the random order in the aggregation of regressors.

For the majority of the problems investigated, the empirical curves that
trace the dependence of the error of the optimal and near-optimal ensembles
as a function of ensemble size are qualitatively similar both for the training
error and for the test. They exhibit an initial reduction of the error, which
is steeper than in the standard bagging ensemble. At intermediate ensemble
sizes the error curves display a fairly broad minimum. Beyond this minimum
the error slowly increases and eventually approaches the error level of the
complete bagging ensemble from below.

The training error curves for the subensembles obtained by exhaustive
search are a lower bound to the corresponding curves of the subensembles
obtained by means of SDP-pruning and Ordered Aggregation. The training
error curve for SDP-pruning is almost identical to the one corresponding to
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optimal pruning. The curves for Ordered Aggregation are only slightly above
the optimal ones. This means that even though some regressors included by
ordered aggregation replace others that appear in the optimal solution, their
aggregate performance is still close to optimal.

The test error curves are less smooth than the training error curves. In
a small number of regression problems, such as Solder, the test error curves
for the ensembles identified by SDP or Ordered Aggregation do not exhibit
a minimum. For such problems these pruning methods are not effective,
as evidenced by the results summarized in Table 2. In the majority of the
problems investigated SDP and Ordered Aggregation are effective pruning
techniques. In these regression tasks, the patterns in the error curves for
the training set are also present in the test error curves, albeit with some
differences. Similarly as in training a minimum in the test error curves ap-
pears at intermediate subensemble sizes. The value of this minimum error for
the pruned subensembles is also significantly lower than the best error of a
standard bagging ensemble. In contrast to the average training error curves,
there are no clear differences in generalization performance among the differ-
ent subensembles. Another salient difference is that the minimum appears
earlier in the aggregation process in the training error curve than in the er-
ror curve for the test set. An apparent manifestation of overfitting is that
the minimum generally appears at larger subensemble sizes in the test error
curves than in the training error curves. The subensembles that minimize
the error on the training data are generally smaller than the subensembles
that are optimal when the error is estimated on an independent test set. This
means that, in general, it is difficult to estimate from the training data where
exactly the global minimum in the test error curve lies. Nevertheless, the er-
ror curves are rather flat around the minimum. Therefore, small errors in
the estimation of the size of the ensemble that corresponds to the minimum
do not have a large impact on the generalization performance.

3.2. Bias-variance-covariance decomposition of the generalization error

A bias-variance-covariance decomposition of the generalization error is
carried out to analyze the dependence of the error on the size of the ensem-
ble and to investigate the mechanisms by which ensemble pruning improves
generalization performance. Since the regressors that make up a bagging
ensemble are generated from bootstrap samples of the same original train-
ing data D and they use the same learning algorithm (e.g. neural networks
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Fig. 3: Average training (left column) and test (right column) errors of the subensembles
obtained by means Ordered Aggregation, SDP-pruning and the optimal subensembles
found by the exhaustive search algorithm. Optimality is defined in terms of the error in
the training set.
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with a fixed architecture), they can be seen as realizations of a random vari-

able drawn from a probability distribution P
(

f̂i(·)
)

. As shown in [49] the

squared error of a regression ensemble of size u for a test instance (x, y) is
composed of three terms: the average bias, the average variance and the
average covariance of the individual regressors in the ensemble

L(u)(x, y) = u−1Var(x) + (1− u−1)Cov(x) + Bias
2
(x, y), (16)

with the definitions

Bias(x, y) = u−1

u
∑

i=1

Bias(f̂i|x, y), Var(x) = u−1

u
∑

i=1

Var(f̂i|x),

Cov(x) = (u− 1)−1u−1
∑

j 6=i

Cov(f̂i, f̂j|x) , (17)

where

Bias(f̂i|x, y) = ED

{

f̂i(x)− y
}

, (18)

Var(f̂i|x) = ED

{

(

f̂i(x)− ED

{

f̂i(x)
})2

}

, (19)

Cov(f̂i, f̂j|x) = ED

{(

f̂i(x)− ED

{

f̂i(x)
})(

f̂j(x)− ED

{

f̂j(x)
})}

(20)

are the bias, variance and covariance of the ith regressor in the ensemble.
In standard bagging the variances and biases of all regressors are equal.
Therefore, the expected regression error of a standard bagging ensemble of
size u is

L(u)(x, y) = u−1Var(x) + (1− u−1)Cov(x) + Bias2(x, y) , (21)

where Var(x) and Bias(x, y) are the expected variance and bias of a regressor

drawn from the distribution P
(

f̂i(·)
)

and Cov(x) is their average covariance.

Consider the original bagging ensemble of size M . The selection strate-
gies used in SDP-pruning and in aggregation ordering have the effect of
modifying the distribution of the regressors that make up the near-optimal
subensembles of size u ≤M . Instead of being independent of the subensem-
ble size, this distribution changes as new regressors are aggregated into the

partial subensemble. Let P
(

f̂i(·); u
)

denote the distribution of the regressors
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that are part of the near-optimal subensemble of size u. The bias-variance-
covariance error decomposition for the near-optimal subensembles is

L(u)(x, y) = u−1Varu(x) + (1− u−1)Covu(x) + Bias2u(x, y) (22)

where Varu(x, y) and Biasu(x, y) are the expected variance and bias of a

regressor drawn from the distribution P
(

f̂i(·); u
)

and Covu(x) is the average

covariance between the members of a near-optimal subensemble of size u. As
a result of the selection strategies, the values of Biasu(x, y) and Varu(x) (the
average bias and variance of a regressor in a near-optimal subensemble of size
u) are expected to be lower than Bias(x) and Var(x) (the average bias and
variance bias and variance of a regressor in a standard bagging ensemble) at
least up to intermediate subensemble sizes. A similar behavior is expected
for Covu(x). In this manner, near-optimal subensembles can achieve a lower
error than standard bagging subensembles for u = 1, 2, . . . , (M − 1). Note

that when u = M , whereM is the size of the original ensemble, P
(

f̂i(·); u
)

=

P
(

f̂i(·)
)

, CovM(x) = Cov(x) and the errors of all ensembles are equal.

The asymptotic error of bagging for such a test instance is

limu→∞L
(u)(x, y) = Bias2(x, y) + Cov(x) ≥ 0. (23)

Hence, it is possible that the subensemble at iteration u has a lower error
than this asymptotic limit if the inequality

u−1Varu(x) + (1− u−1)Covu(x) + Bias2u(x, y) < Bias2(x, y) + Cov(x) (24)

is satisfied. This inequality is fulfilled if the approximate strategy selects from
the complete ensemble a set of regressors which have low bias, low variance
and also small or negative correlations. In the experiments carried out the
inequality is fulfilled for a large range of subensemble sizes.

Fig. 4 and Fig. 5 display the average value over the test instances of the
squared error, and of its components (squared bias, variance and covariance),
as a function of ensemble size for standard bagging, Ordered Aggregation and
SDP-pruning for the synthetic regression problems Peak and Friedman1 and
for the real-world problems Pollution and Chick. The characteristics of these
problems are displayed in Table 1. In each problem the original bagging en-
semble is composed of 100 neural network with 5 units in the hidden layer.
These networks are generated on independent bootstrap samples from a fixed
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Fig. 4: From top to bottom: average over the test instances of the squared error, squared
bias, variance and covariance as a function of ensemble size for bagging, Ordered Aggre-
gation and SDP-pruning for the synthetic regression problems Peak and Friedman1.

23



0 20 40 60 80 100

3
0

0
0

5
0

0
0

7
0

0
0

9
0

0
0

Pollution

Subensemble Size

A
vg

. 
S

q
u

a
re

d
 E

rr
o

r

Bagging
Ordered Aggregation
SDP−pruning

0 20 40 60 80 100

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

Chick

Subensemble Size

A
vg

. 
S

q
u

a
re

d
 E

rr
o

r

Bagging
Ordered Aggregation
SDP−pruning

0 20 40 60 80 100

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

Pollution

Subensemble Size

A
vg

. 
S

q
u

a
re

d
 B

ia
s

Bagging
Ordered Aggregation
SDP−pruning

0 20 40 60 80 100

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

Chick

Subensemble Size

A
vg

. 
S

q
u

a
re

d
 B

ia
s

Bagging
Ordered Aggregation
SDP−pruning

0 20 40 60 80 100

1
0

0
0

0
3

0
0

0
0

5
0

0
0

0

Pollution

Subensemble Size

A
vg

. 
V

a
ri

a
n

ce

Bagging
Ordered Aggregation
SDP−pruning

0 20 40 60 80 100

4
0

0
6

0
0

8
0

0
1

2
0

0
1

6
0

0

Chick

Subensemble Size

A
vg

. 
V

a
ri

a
n

ce

Bagging
Ordered Aggregation
SDP−pruning

0 20 40 60 80 100

−
1

0
0

0
1

0
0

2
0

0
3

0
0

Pollution

Subensemble Size

A
vg

. 
C

o
va

ri
a

n
ce

Bagging
Ordered Aggregation
SDP−pruning

0 20 40 60 80 100

3
0

4
0

5
0

6
0

7
0

8
0

9
0

Chick

Subensemble Size

A
vg

. 
C

o
va

ri
a

n
ce

Bagging
Ordered Aggregation
SDP−pruning

Fig. 5: From top to bottom: average over the test instances of the squared error, squared
bias, variance and covariance as a function of ensemble size for bagging, Ordered Aggre-
gation and SDP-pruning for the regression problems Pollution and Chick.
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training set. In the case of the synthetic problems Peak and Friedman1 the
training set is randomly generated and contains 200 instances. The test set
is independent of the training data and consists of 2000 elements. In the
case of the real-world problems Pollution and Chick, sub-sampling is used to
carry out the estimations [40]. Specifically, the data are randomly split in a
training set and a test set containing 2/3 and 1/3 of the instances, respec-
tively. The values of the test error and of its components are estimated by
averaging over 1000 realizations of each problem (for Pollution 5000 realiza-
tions are used as a consequence of the reduced number of instances available
for this problem). The error curves exhibit similar features to those in Fig.
3. For standard bagging, the values of the average squared bias variance and
covariance remain approximately constant as the number of regressors in the
ensemble varies. In contrast with standard bagging, the average squared bias,
variance and covariance typically increase with the size of the subensembles
selected using Ordered Aggregation and SDP-pruning. A lower covariance
among the ensemble members was also observed in [29] and is a consequence
of minimizing (5) [12, 29].

According to (21) and (22), as the size of the ensemble grows, the squared
bias and the covariance become the most important terms in the error de-
composition. The variance term is inversely proportional to u, the size of the
subensemble. Therefore, its contribution to the generalization error becomes
smaller as the number of predictors of the ensemble increases. For sufficiently
large subensemble sizes the test error of the complete ensemble in standard
bagging is approximately equal to the sum of the squared bias and the covari-
ance term (23). In consequence, even though the predictors included in the
smaller subensembles by SDP-pruning and Ordered Aggregation also have
low variance, the main reason for the improvements in performance is that
the first regressors incorporated by these strategies have low bias and also
small or negative covariance.

3.3. Generalization Performance

In this section we assess the generalization performance of SDP-pruning
and Ordered Aggregation and compare these techniques with predictors of
different types: a single neural network, bagging, Adaboost.R2, negative
correlation learning ensembles (NCL) and regularized stacked generalization
combined the lasso (SG-lasso), as described in [43], and the ensemble pruning
methods of Perrone and Cooper [39], and GASEN[56]. The experiments are
carried out on 24 regression problems from the UCI-Repository [4], from the
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Weka Data Mining Tool [52] and from other sources [10, 14, 20, 28, 42]. They
include synthetic and real-world problems from different fields of application.
Table 1 displays the number of instances, the number of attributes and the
source of the different datasets considered.

For each real-world dataset, 10×10-fold cross-validation is used to esti-
mate the squared regression error. For the synthetic datasets (Friedman1,

Friedman2, Friedman3, and Peak) the values reported are averages over 100
independent realizations of the train and test datasets. The training set and
the test set contain 200 and 2000 instances, respectively. Data attributes are
normalized so that they have zero mean and unit variance on the training
set for each dataset. The computation of the estimates for each training and
testing partition involves the following steps: (i) Generate a bagging ensem-
ble of 100 neural networks from the training set using bootstrap sampling.
The architecture of these neural networks and the weight decay constant used
is determined as in Section 3.1. Then, the neural networks are trained over
1000 epochs using the best combination of parameters found. (ii) A single
neural network and a boosting ensemble of size 100 are also built using the
same network configuration as in the bagging ensemble. The boosting ensem-
ble is generated using the Adaboost.R2 algorithm with a linear loss function
[18]. A 100 neural network NCL ensemble is generated as described in [29] by
training each network during 100 epochs using gradient descent. The weights
of the networks are initially set to the values provided by bagging. The λ
parameter of the NCL ensemble is set equal to 0.99, as suggested in [12].
Instead of using a fixed value, λ could be determined by cross-validation.
However, the results obtained are very similar and do not compensate the
increased computational cost. The resulting predictors are then used as a
benchmark for performance comparison. (iii) A subensemble of 20 neural net-
works (i.e. u = 20) is extracted from the original pool of classifiers generated
by bagging using SDP-pruning, as described in Section 2.1. The complete
bagging ensemble is then ordered according to Ordered Aggregation and the
first 20 regressors of the ordered sequence are selected and aggregated in a
pruned subensemble. Additionally, the bagging ensemble is pruned using
the technique described by Perrone and Cooper in [39] and using the ge-
netic algorithm GASEN introduced in [56]. GASEN is configured to select
subensembles of the same size as SDP-pruning and Ordered Aggregation (20
neural networks from the original pool of 100). These pruned predictors are
also used as a benchmark for performance comparison. (iv) We also gen-
erate a regularized linear stacked generalization ensemble (SG-lasso), where
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the coefficients that combine the outputs of the different predictors are es-
timated using the lasso, as described in [43]. The initial predictors used in
this ensemble method are the 100 neural networks generated in bagging. The
regularization parameter of the lasso is selected from a grid of 100 potential
values using a nested 10-fold cross-validation to estimate the mean squared
error. Only the training data are used to compute this estimate. (v) The
error of each method is estimated on the corresponding test set.

Table 2 shows the average mean squared error estimated either by 10×10-
fold cross-validation (real-world problems) or in the test set (synthetic data)
for each dataset and each prediction method. The figures displayed are scaled
by a factor shown in the first column of the table. The next five columns
of the table display the error of a single neural network, the complete bag-
ging ensemble, the boosting ensemble, the NCL ensemble and the regular-
ized linear stacked generalization ensemble (SG-lasso), respectively. Finally,
the four last columns of the table display the average errors of the bagging
subensembles selected by SDP-pruning, Ordered Aggregation, the method
of Perrone and Cooper and the genetic algorithm GASEN. To determine
whether the observed improvements in accuracy are statistically significant
a paired Wilcoxon-test [51] is performed, as suggested in [16]. Error values
that are significantly better than bagging according to the Wilcoxon text at
an α-value of 0.05 are highlighted in boldface. Error values that are signif-
icantly worse than bagging are underlined. Similarly, error values that are
significantly better than boosting are marked with the symbol ◭. Values
that are significantly worse than boosting are marked with the symbol ⊳.

From these results one can see that bagging ensembles often outperform
a single neural network. NCL ensembles and regularized linear stacked gen-
eralization ensembles also provide more accurate predictions than bagging or
boosting in most of the problems investigated. The subensembles obtained
by SDP-pruning and Ordered Aggregation that contain only 20 regressors
have a good overall generalization performance in the regression problems
investigated. In general, these pruned bagging ensembles outperform sin-
gle networks, boosting ensembles and complete bagging ensembles. Table
3 shows that the pruning rates obtained by SDP-pruning and Ordered Ag-
gregation (20%) are generally higher than those achieved by the method
proposed by Perrone and Cooper (≈ 33 networks on average). Regularized
linear stacked generalization ensembles contain an average of ≈ 19 neural
networks.

An overall comparison of the performance of the different methods in
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Table 2: Average mean squared error normalized by the corresponding scaling factor. The figures displayed correspond to
a single neural network, complete bagging ensembles, Adaboost.R2 ensembles, negative correlation learning (NCL) ensem-
bles, regularized linear stacked generalization ensembles (SG-lasso), and pruned bagging ensembles selected by SDP-pruning,
Ordered Aggregation (OA), the method of Perrone and Cooper (P&C) and the genetic algorithm GASEN.

Dataset Scaling Neural Net Bagging Adaboost NCL SG-lasso Pruned Bagging

Factor SDP OA P&C GASEN

Attitude ×101 9.45±7.90 8.63±4.95 8.83±4.97 8.59±5.51 8.54±5.92 8.29±5.18 ◭ 8.29±5.11 ◭ 8.35±5.55 ◭ 8.33±5.01 ◭

AutoPrice ×107 1.17±0.86 ⊳ 0.74±0.59 ⊳ 0.56±0.40 0.71±0.58 ⊳ 0.62±0.47 ⊳ 0.63±0.50 ⊳ 0.63±0.50 ⊳ 0.65±0.50 ⊳ 0.68±0.51 ⊳

Bodyfat ×1 2.96±3.76 1.89±2.76 ◭ 2.55±2.00 2.33±2.66 ◭ 2.22±2.74 ◭ 2.12±2.78 ◭ 2.10±2.78 ◭ 2.15±2.87 ◭ 2.01±2.81 ◭

Bolts ×101 5.31±7.70 ◭ 6.56±7.69 ◭ 9.72±13.28 6.07±7.80 ◭ 4.01±6.26 ◭ 4.57±7.17 ◭ 4.50±7.01 ◭ 4.43±7.21 ◭ 5.81±7.44 ◭

Boston ×101 1.27±0.64 ⊳ 1.15±0.64 ⊳ 1.00±0.43 1.02±0.57 1.06±0.52 1.07±0.55 ⊳ 1.07±0.55 ⊳ 1.10±0.57 ⊳ 1.13±0.60 ⊳

Chick ×101 5.44±3.66 ⊳ 6.57±3.58 ⊳ 3.89±2.74 3.93±2.40 4.62±2.39 ⊳ 4.82±2.43 ⊳ 4.88±2.60 ⊳ 5.77±3.40 ⊳ 6.23±3.58 ⊳

Concrete Slump ×101 3.41±2.15 3.23±1.54 3.12±1.43 2.98±1.45 ◭ 2.81±1.40 ◭ 2.85±1.42 ◭ 2.85±1.44 ◭ 2.97±1.48 ◭ 3.16±1.60
Fires ×103 1.82±4.04 1.55±3.49 ⊳ 1.15±2.59 1.48±3.75 1.62±3.43 ⊳ 1.32±3.06 ⊳ 1.31±3.05 ⊳ 1.58±3.51 ⊳ 1.63±3.40 ⊳

Friedman1 ×1 4.82±1.29 ◭ 4.85±0.44 ◭ 5.05±0.76 4.34±0.46 ◭ 4.23±0.53 ◭ 4.45±0.46 ◭ 4.45±0.46 ◭ 4.55±0.48 ◭ 4.71±0.45 ◭

Friedman2 ×104 2.68±0.89 ⊳ 2.19±0.16 2.17±0.13 2.20±0.16 2.02±0.14 ◭ 2.06±0.14 ◭ 2.06±0.15 ◭ 2.06±0.15 ◭ 2.15±0.15 ◭

Friedman3 ×10−2 1.83±0.25 ⊳ 1.70±0.21 ◭ 1.74±0.22 1.69±0.21 ◭ 1.69±0.22 ◭ 1.67±0.22 ◭ 1.67±0.22 ◭ 1.68±0.22 ◭ 1.71±0.22 ◭

Loblolly ×1 4.45±8.93 ◭ 6.39±6.36 ◭ 10.93±9.60 3.95±6.30 ◭ 4.27±5.65 ◭ 3.96±6.24 ◭ 3.93±6.22 ◭ 3.96±5.91 ◭ 6.07±8.12 ◭

Longley ×10−1 8.25±16.10 ⊳ 13.08±24.85 ⊳ 5.63±8.13 5.21±5.66 5.14±9.54 4.79±7.82 ◭ 4.81±7.89 ◭ 5.20±8.94 10.53±45.79

Orange ×102 2.21±1.80 1.85±1.32 1.97±1.44 1.58±0.83 ◭ 1.75±1.12 1.68±1.09 ◭ 1.66±1.06 ◭ 1.64±1.09 ◭ 1.70±1.16 ◭

Ozone ×101 1.69±0.44 ◭ 1.65±0.43 ◭ 1.86±0.48 1.65±0.43 ◭ 1.67±0.46 ◭ 1.65±0.44 ◭ 1.65±0.44 ◭ 1.64±0.43 ◭ 1.66±0.44 ◭

Peak ×101 3.16±0.53 ⊳ 2.63±0.34 ⊳ 2.47±0.23 1.98±0.28 ◭ 1.56±0.23 ◭ 2.37±0.34 ◭ 2.37±0.34 ◭ 2.59±0.33 ⊳ 2.55±0.34 ⊳

Pollution ×103 5.90±6.54 3.94±3.25 7.50±11.19 2.85±1.71 ◭ 4.55±9.95 ◭ 3.25±2.49 ◭ 3.20±2.47 ◭ 3.36±4.18 ◭ 3.47±2.29 ◭

Rock ×104 8.46±10.24 ⊳ 6.77±6.81 ◭ 7.44±7.54 6.82±6.74 ◭ 7.98±7.83 7.28±7.41 7.25±7.36 7.63±7.56 7.07±7.18 ◭

Sensory ×10−1 5.34±0.95 ◭ 5.35±0.92 ◭ 5.63±0.98 5.28±0.90 ◭ 5.47±0.91 ◭ 5.19±0.91 ◭ 5.20±0.92 ◭ 5.28±0.92 ◭ 5.35±0.96 ◭

Servo ×10−1 3.27±3.28 ⊳ 2.63±2.35 ⊳ 1.70±1.78 2.40±2.11 ⊳ 1.94±1.84 ⊳ 2.03±1.77 ⊳ 2.05±1.81 ⊳ 2.06±1.69 ⊳ 2.43±2.03 ⊳

Solder ×1 9.04±3.37 ◭ 8.36±3.13 ◭ 9.44±3.53 8.83±3.37 ◭ 8.48±3.33 ◭ 8.43±3.23 ◭ 8.41±3.20 ◭ 8.33±3.12 ◭ 8.41±3.14 ◭

Theoph ×1 5.30±3.77 ⊳ 4.43±2.27 ⊳ 3.04±2.15 3.74±2.24 ⊳ 2.87±1.75 3.42±2.00 ⊳ 3.41±2.01 ⊳ 3.25±1.93 ⊳ 4.11±2.25 ⊳

Tooth ×101 1.40±0.69 ◭ 1.43±0.71 ◭ 1.52±0.79 1.42±0.69 ◭ 1.45±0.71 ◭ 1.44±0.72 ◭ 1.44±0.72 ◭ 1.44±0.72 ◭ 1.46±0.73
Wisconsin ×102 9.64±2.66 9.18±2.48 ◭ 9.70±2.31 9.30±2.49 ◭ 9.84±2.62 9.13±2.39 ◭ 9.13±2.40 ◭ 9.09±2.40 ◭ 9.24±2.48 ◭
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Table 3: Average number of networks in the pruned subensembles obtained by the method
of Perrone and Cooper (P&C) and in the ensembles generated by regularized linear stacked
generalization using the lasso (SG-lasso).

Dataset # of Neural Networks

P & C SG-lasso

Attitude 16.62±12.94 10.27±2.80
AutoPrice 24.16±7.72 31.43±15.38
Bodyfat 26.87±10.03 20.35±4.24
Bolts 17.20±9.10 12.75±2.75
Boston 52.21±17.35 20.71±8.47
Chick 71.81±10.54 34.78±5.19
Concrete Slump 33.41±14.82 16.97±4.14
Fires 3.19±2.70 11.22±9.12
Friedman1 42.08±13.76 20.80±10.78
Friedman2 23.66±9.82 12.73±2.77
Friedman3 35.52±11.37 15.74±7.00
Loblolly 38.65±18.77 20.19±4.08
Longley 6.80±4.98 8.07±3.22
Orange 23.67±12.34 11.25±3.07
Ozone 35.80±18.16 14.48±5.17
Peak 90.59±6.53 53.71±5.21
Pollution 21.29±17.64 14.79±5.46
Rock 12.56±7.97 8.31±2.64
Sensory 63.64±13.72 28.64±6.47
Servo 36.43±12.82 21.85±10.94
Solder 53.76±11.09 18.62±4.41
Theoph 12.76±14.30 14.77±8.94
Tooth 15.65±8.38 10.05±3.45
Wisconsin 43.72±17.60 19.27±4.78
Average 33.42±21.33 18.82±10.17
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the collection of problems investigated can be made using the framework
proposed by Demšar in [16]. On the basis of the results of Friedman test
on the average ranks of each algorithm in the problems investigated, the
hypothesis that their performances are equivalent can be rejected at α = 0.05.
A Nemenyi test is used to determine whether the differences in average rank
among the different algorithms are significant. Fig. 6 displays the results
of this test for α = 0.05. In this figure, algorithms whose differences in
performance are not statistically significant are linked with a solid black
line. Differences in performance between algorithms whose average ranks are
further than a critical distance (CD) are statistically significant.

In the collection of regression problems investigated pruned ensembles,
regularized linear stacked generalization ensembles and negative correlation
learning ensembles have a better overall performance than the correspond-
ing complete bagging ensembles, boosting ensembles and single neural net-
works. Notwithstanding, the differences in average rank are only statistically
significant for SDP-pruning and Ordered Aggregation. In these problems
subensembles selected by Ordered Aggregation or SDP-pruning have better
overall generalization performance than the subensembles selected by the
method of Perrone and Cooper, SG-lasso and the genetic algorithm GASEN.
Furthermore, the differences in the average ranks with respect to this lat-
ter method are statistically significant. Ordered Aggregation also performs
slightly better than SDP-pruning, although the difference between their av-
erage ranks is not statistically significant.

2 3 4 5 6 7 8

Neural Network
Bagging
Adaboost.R2
GASEN

Ordered Aggregation
SDP−pruning

Perrone & Cooper
NCL

SG−lasso

CD

Fig. 6: Results of a Nemenyi test on the average ranks of the different regression systems:
a single neural network, bagging, boosting (Adaboost.R2), negative correlation learning
(NCL), regularized linear stacked generalization (SG-lasso) and pruned subensembles se-
lected by SDP-pruning, Ordered Aggregation, the method of Perrone and Cooper and
GASEN. The critical difference (CD) between average ranks is displayed at the top of the
figure.

The curves in Fig. 7 trace the dependence of the average squared error
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for bagging, Ordered Aggregation, boosting, negative correlation learning
(NCL) and regularized linear stacked generalization (SG-lasso) as a function
of the ensemble size for a representative subset of the regression problems
investigated. For SDP-pruning, because of its high computational cost, only
the average error of the subensemble of size u = 20 is displayed. For the ge-
netic algorithm GASEN, the method of Perrone and Cooper and regularized
linear stacked generalization we display their corresponding mean squared
error evaluated at the average number of networks used for prediction. The
average error of a single neural network is also marked as a horizontal line
for reference. The curves for bagging and Ordered Aggregation exhibit a
qualitative behavior that is similar to the curves depicted in Fig. 3. The
error decreases almost monotonically as a function of the size of a randomly
ordered bagging ensemble. Modifying the order of the aggregation accord-
ing to the procedure described leads to an initially steeper descent of the
error curves, which, with some exceptions (e.g. Solder, Tooth) is followed
by a broad minimum and a final rise to the error level of the complete bag-
ging ensemble. In fact, because the error curves are rather flat around the
minimum, any value between 15% and 25% percent of the original pool of
regressors yields similar results. The performance of the subensembles se-
lected by SDP-pruning is similar to the performance of the subensembles
obtained by Ordered Aggregation for size u = 20. However, in some cases
SDP-pruning leads to slightly higher error rates (e.g. Tooth). The subensem-
bles selected by GASEN exhibit in general a higher prediction error than the
subensembles selected by either SDP-pruning or Ordered Aggregation. The
method of Perrone and Cooper provides better results than those of these two
pruning strategies in some problems (e.g.Tooth, Wisconsin). Nevertheless,
in several other problems worse results are observed (e.g. Pollution, Peak,
Friedman1, Boston). In particular, the method of Perrone and Cooper tends
to underprune and selects subensembles that are too large. Regularized lin-
ear stacked generalization (SG-lasso) generates the most accurate ensembles
in some problems, e.g. Peak and Friedman1. Nevertheless, the prediction
performance of this ensemble method is severely impaired in some cases, e.g.
Wisconsin and Pollution. Finally, NCL provides in general better results
than bagging and boosting with a few exceptions (e.g. Solder, Wisconsin).
This is in agreement with the findings of [12].

The behavior of boosting ensembles is more erratic, reflecting the lack of
robustness of this method. Boosting outperforms bagging, Ordered Aggre-
gation and SDP-pruning in a few regression problems (e.g. Boston, Peak).
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Fig. 7: Error curves for standard bagging, Ordered Aggregation, negative correlation learn-
ing (NCL) and Adaboost.R2 as a function of the ensemble size for a variety of regression
problems. The error of a single Neural Network is displayed as an horizontal line for ref-
erence. The error for a subensemble of size u = 20 selected with SDP-pruning is marked
with a cross. The average error of the method of Perrone and Cooper, the genetic algo-
rithm GASEN and regularized linear stacked generalization (SG-lasso) are also displayed
at the corresponding average number of selected networks.
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However, boosting has a detrimental effect in others (e.g. Tooth, Pollution,

Wisconsin). A similar deterioration of performance of boosting has been de-
tected in noisy classification problems [17, 35]. The origin of this behavior
is that boosting tends to assign larger weights to incorrectly labeled training
instances. The learning algorithm is thus forced to reduce the error rate of
those instances. This emphasis on examples that are difficult to predict tends
to distort the original problem, leading to overfitting and consequently, to a
poor generalization performance.

4. Conclusions

Extracting an optimal subensemble from an original regression ensemble
is a difficult problem that can be shown to be NP-hard. In this paper we
analyze two approximate techniques to address this problem. The first one
is based on a Semidefinite Programming relaxation of the original problem.
This method is an extension to regression ensembles of the work [55], which
introduced SDP-pruning for classification ensembles. The second technique is
Ordered Aggregation[26]. This is a forward selection strategy starts with an
empty subensemble and incorporates in each step the regressor that reduces
the training error of the current subensemble the most. Even though these
approximate strategies can lead to suboptimal solutions, a detailed analysis
in ensembles of intermediate size shows that the subsets selected have a near-
optimal performance and share a large percentage of regressors with optimal
subensembles obtained by exhaustive search.

The error of standard bagging ensembles typically decreases monotoni-
cally as the size of the ensemble is increased. By contrast, for the subsets
selected by these techniques, the curves that trace the dependence of the
subensemble error as a function of its size show that the minimum error is
attained in subensembles of intermediate size. The features of these curves
are qualitatively similar for both the training and testing errors. However,
the minimum in the test error curves appears at larger sizes than in the
curves for the training error. This minimum is generally below the asymp-
totic error of the complete bagging ensemble. This means that generalization
performance of the ensemble can be improved by retaining only a subset of
the regressors generated. A bias-variance-covariance decomposition of the
test error shows that the key to the improvements in generalization perfor-
mance is the selection of subsets of regressors whose bias is low and whose
correlations are small or negative.
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An extensive empirical investigation shows that pruned ensembles ob-
tained by retaining only 20% of the original networks in a bagging ensemble,
either using Ordered Aggregation or SDP-pruning, have the best overall per-
formance. In most of the regression problems analyzed the generalization
accuracy of Ordered Aggregation is slightly better than SDP. However, the
differences found are not statistically significant. By contrast, the improve-
ments over a single neural network, complete bagging ensembles, ensembles
generated with Adaboost.R2 and pruned bagging ensembles identified by the
GASEN algorithm [56] are statistically significant. Ensembles generated by
negative correlation learning (NCL) [29], regularized stacked generalization
(SG-lasso) [43], and pruned subensembles obtained using the method pro-
posed by Perrone and Cooper in [39] or with the GASEN algorithm [56]
have a slightly better overall performance than bagging or boosting, but the
differences in rank are not statistically significant. The method of Perrone
and Cooper has the drawback that the pruning rate is not fixed beforehand.
Different pruning rates are achieved in the different regression problems. In
general, they are larger than the 20% rate selected for Ordered Aggrega-
tion, SDP-pruning and GASEN. Regularized linear stacked generalization
and NCL produce ensembles that often have worse prediction performance
than the subensembles identified by SDP-pruning and Ordered Aggregation.
However, the differences in average rank are not statically significant. The
number of networks selected in stacked generalization ensembles is on average
very similar to the size of the subensembles identified by these two approx-
imate ensemble pruning strategies. NCL uses a larger number of networks
for prediction.

An advantage of Ordered Aggregation is that it is a simple forward selec-
tion procedure that generates a nested sequence of subensembles of increasing
size at no extra cost. By contrast, if SDP is used, one needs to solve a dif-
ferent semi-definite programming problem for each subensemble size. This
entails a correlative increase in computational costs.
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A. Optimal subensemble selection is an NP-hard problem

In this section we show that finding the subensemble with the minimum
training error is an NP-hard problem. The proof proceeds by finding a prob-
lem that is known to be NP-complete and then showing that every instance of
such problem can be reduced in polynomial time to the optimal subensemble
selection problem [15, 22]. Consider the Subset Sum problem [15]. This prob-
lem consists in extracting from a given set of integers S = {n1, n2 . . . , nM :
ni ∈ Z} a non-empty subset of elements whose sum is equal to zero. Assume
that an algorithm A exists that can find in polynomial time the subensemble
of an ensemble regressors whose combined prediction has the lowest mean
squared error (MSE) on the dataset D. If this were the case, the Subset

Sum problem would also be solvable in polynomial time. To show how this
could be accomplished, consider an ensemble of M regressors. Assume that
the ith regressor in the ensemble outputs the integer value ni ∈ S indepen-
dently of the input. Define a regression problem that consists in predicting
the value 0 independently of the input. The goal is then to select a non-
empty subensemble {s1, s2, . . . , su}, 1 ≤ u ≤ M whose combined prediction
(u−1

∑u

i=1 nsi , independent of the input) is as close to zero as possible. This
can be achieved by minimizing the squared prediction error

MSE ≡

(

u−1

u
∑

i=1

nsi − 0

)2

=

(

u−1

u
∑

i=1

nsi

)2

. (25)

Since the MSE is a non-negative value, if a subensemble whose mean squared
error is zero exists, then algorithm A should find it in polynomial time.
Finding a subensemble whose MSE is zero is equivalent to finding a subset
{ns1 , ns2 , . . . , nsu} ⊂ S whose elements sum to zero

MSE ≡

(

u−1

u
∑

i=1

nsi

)2

= 0⇐⇒
u
∑

i=1

nsi = 0 . (26)

Therefore, {ns1 , ns2 , . . . , nsu} would be a solution to the Subset Sum problem.
Conversely, if no subset of S exists whose elements add up to zero, algorithm
A would return a subset whose mean squared error is greater than zero.
Since the Subset Sum is NP-complete, unless NP is equal to P, no algorithm
with the properties of A exists. Hence, the problem of finding the optimal
subensemble of a regression bagging ensemble is at least as hard as any NP-
complete problem; i.e. it is NP-hard.
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