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Relational Concepts and the Fourier Transform:an Empirical StudyEduardo P�erez1 and Larry Rendell21 Universidad Aut�onoma de Madrid, E.T.S. Inform�atica,Madrid E-28049, Spaine-mail: eduardo.perez@ii.uam.es2 University of Illinois, Dept. of Computer Science and Beckman InstituteUrbana, IL 61801, USAe-mail: rendell@cs.uiuc.eduAbstract. Lack of domain knowledge may impose primitive data rep-resentations. Then, complex (non-linear) relationships among attributescomplicate learning, especially for typical learning methods. These meth-ods fail because their bias does not match the complex relational struc-tures relevant to the domain. However, more recent approaches to learn-ing have implemented biases that allow learning of structured, albeitcomplex, concepts. One of such approaches, based on the Fourier trans-form of Boolean functions, is studied and compared empirically to others,based on constructing new features or extracting relations from propo-sitional training data. Controlled experiments help to characterized thekinds of concept that allow each approach to outperform the others.This characterization, which implicates parameters of Fourier complex-ity, other measures of concept di�culty, and the relational structure ofthe target concepts, is also discussed with respect to di�cult real-worlddomains.1 Introduction: Motivation and BackgroundWhen lack of domain knowledge forces the use of primitive data representations,complex relations among attributes prevail and complicate learning signi�cantly.Then, typical learning methods fail because their similarity-based bias does notmatch the complex relational structures relevant to the domain. It is true thatany learner must be biased in some way [18, 8]. Thus, no learning system canbe the best uniformly over all concepts [16], mainly because of the extremelylarge number of random (unstructured) concepts [1]. However, more recent ap-proaches to learning have implemented biases that allow learning of structured,albeit complex, concepts. One of such approaches is to change the representationof the examples, introducing new terms (features or relations among attributes)to narrow the gap between primitive input representation and target concept [4].Some machine learning methods, such as Fringe [9] and MRP [10], automate thisrepresentation change. Another approach, studied in computational learning the-ory [2, 6], explicitly introduces a representation based on the Fourier transform



of Boolean functions in order to capture complex relations underlying the targetconcept. This paper empirically compares both approaches and characterizes thekinds of concept that allow each approach to outperform the other. This char-acterization, which implicates parameters of Fourier complexity, other measuresof concept di�culty, and the relational structure of the target concepts, is alsodiscussed with respect to di�cult real-world domains.The rest of this section reviews basic de�nitions and terminology relevantto the Fourier transform, and illustrates this representation in the context oflearning. In Section 2, the learning accuracy of four learning systems is de-scribed empirically as a function of Fourier complexity. The results from theseexperiments are discussed and compared with previous ones regarding ConceptVariation, another measure of learning di�culty. Then, Section 3 extends the em-pirical comparison by considering one algorithm from the computational learningtheory literature, which is explicitly designed to learn in terms of the Fouriertransform. This algorithm is compared again, in Section 4, to the other learn-ers, but this time using target concepts that cover a wider range of the Fouriercomplexity spectrum and include combinations of complex relations among at-tributes. Section 5 discusses algorithm limitations and extensions suggested bythe empirical comparisons, and analyzes related work.To consider the Fourier transform in the context of learning Boolean func-tions, it is convenient to view every Boolean function f asf : f0; 1gn ! f+1;�1g : (1)Any such function, or concept, can be expressed as the sign of a linear combi-nation of Fourier terms �z(x), that is,f(x) = sign0@ Xz2f0;1gn f̂(z)�z(x)1A ; (2)where sign(x) = +1 if x � 0, and sign(x) = �1 otherwise. To simplify thenotation, the sign function is often left out but implicitly understood whenconverting real numbers to Boolean values. Each f̂(z) is the coe�cient of aFourier term, and each Fourier term �z(x) is a parity function de�ned by�z(x) = (�1)z1x1+z2x2+:::+znxn : (3)That is, the characteristic vector z of the Fourier term �z(x) is a binary vectorwhose active bits (i.e., bits set to 1) serve to select the corresponding bits (orattribute values) from an example input vector x, and then the parity of theselected input bits is the value of �z(x). The number of active bits in z de�nesthe degree of a Fourier term �z(x) or a coe�cient f̂(z). The coe�cient of theFourier series of f are real numbers that can be computed byf̂(z) = 12n Xx2f0;1gn f(x)�z(x) : (4)



Although each real function has a unique Fourier series, di�erent real functionscan be interpreted as the same Boolean function (since only the sign is retained).Hence, learning systems approximating Boolean functions by real functions maychoose among several Fourier decompositions for the same Boolean function.The spectral norm of f , denoted by L(f), is de�ned as the sum of absolutevalues of all Fourier coe�cients of f :L(f) = Xz2f0;1gn jf̂(z)j : (5)It can be shown that L(f) � 1, for all f . However, L(f) is the sum of 2n absolutevalues of Fourier coe�cients, possibly resulting in a large sum unless there areonly a few non-zero coe�cients, or unless the number of coe�cients that are\large" is \small". Some classes of Boolean functions have only a few non-zeroFourier coe�cients, and consequently have small spectral norm. It is commonterminology to refer to polynomially bounded spectral norms as \small". Havingsmall spectral norm implies learnability (with membership queries and underuniform distribution assumptions) [5].The spectral norm depends on the absolute value, not the degree, of thenon-zero coe�cients. Consider, for instance, the following functions, each witha single non-zero coe�cient of degree 1, 2, 3 and 4 respectively:p1(x) = �1 : �1000:::0(x) [� x1] ;p2(x) = �1 : �1100:::0(x) [� x1 � x2] ;p3(x) = �1 : �1110:::0(x) [� x1 � x2 � x3] ;p4(x) = �1 : �1111:::0(x) [� x1 � x2 � x3 � x4] : (6)They all have spectral norm equal to 1, but may not be equally di�cult to learn.In particular, for learning methods based on the similarity-based bias [14], the�rst function is a trivial target concept; the others are typically considered ofhighest di�culty. Nevertheless, the small spectral norm of these and other hardconcepts suggests that an algorithm based on the Fourier transform can learnthem under certain circumstances (e.g., with the help of membership queries).The set of Fourier terms constitutes a basis that allows any function to beexpressed as a linear combination of the basis (parity) functions. Thus, non-linearrelationships among variables are captured within the Fourier terms, not by theFourier series itself. That is, complex attribute interaction can be expressed assimple (linear) combinations of complex basis functions. This is also a goal ofsome machine learning methods considered in the next section.2 Fourier Complexity and Learning PerformanceThis section empiricallly studies learning performance as a function of Fouriercomplexity. The complexity of a Fourier series can be characterized by two pa-rameters: the number and the degree of Fourier terms with non-zero coe�cients.The following experiments show the e�ect of these parameters on the learn-ing accuracy of several learning systems. The systems considered here are C4.5
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Fig. 1. Predictive accuracy as a function of Fourier complexity



trees, C4.5 rules, Fringe, and MRP. C4.5 provides the baseline performance of asimilarity-based learner that does not change the representation of the examplesduring learning [13]. Fringe, however, changes the representation by introduc-ing new features that result from combining attribute pairs at the end of eachpath from the root of a decision tree constructed using a previous representa-tion [9]. MRP, which �nds relations among primitive attributes by means ofmultidimensional projection, extracts their extensional representation from thetraining data, and uses them as new predicates for the test nodes of a decisiontree [10].The Boolean functions used here as target concepts are characterized by twoparameters: they have at most k non-zero Fourier terms, and each term has de-gree d. For each pair of values (k; d), 8 functions of 12 variables were generated byrandomly choosing their Fourier coe�cients from f0.0,0.1,0.2,. . . ,0.9,1.0g. Theperformance measure used was predictive accuracy (i.e., percentage of correctclassi�cation measured over all data points not used for training). Each algo-rithm was run 5 times for each function and size of training data, except thatFringe was too slow to be run for k > 7. For each algorithm, its average accuracyfor di�erent values of k, d, and training size are shown in Figure 1. Each of theseaverages summarizes 40 accuracy values (5 values for each of 8 target concepts).The number of terms k was set to values 3, 5, 7, 11, and 15 to observe its e�ectin learning di�culty. The three graphs in each row of Figure 1 correspond toa particular value of k. Each column corresponds to a di�erent size of trainingdata. Each graph plots an algorithm's accuracy as a function of d, the degree ofthe Fourier terms (or number of parity bits). Note that d = 1 is the extreme caseof no parity involved, and so the functions generated with d = 1 are weightedlinear thresholds of at most k input variables.Figure 1 shows an expected degradation of performance for the four learningsystems as either parameter, k or d, of the Fourier series increases. However, dseems to have a stronger e�ect than k. Consider the leftmost column of graphs.Even for a very small number of terms (e.g., 3), d = 6 is su�cient to bringall learning curves to the level of guessing, and thus increasing k cannot makethings worse once d is high (� 6). When d is low (e.g., 2), then increasing thenumber of terms reduces accuracy notably. However, this e�ect is more gradual(for the k values used here). Note that d is bounded by n, but k can be as largeas n(n � 1) : : : (n � d + 1). Since the spectral norm (i.e., the sum of absolutevalues of the Fourier coe�cients) does not depend on d, it seems to capture onlya certain aspect of learning di�culty: one which is independent of the degree ofparity involved . However, most current learning systems are extremely sensitiveto (even small) increases in the degree of the Fourier terms.The performance of MRP (relative to that of the other learners) in thiscontext is similar to what was observed in the context of increasing conceptvariation [11]. Here, MRP's degradation with increasing d (degree of parity) isnot worse and sometimes considerably better than the degradation experiencedby the other learners. Also, as training data increases (from left to right columnin Figure 1), MRP is the only one of the four systems studied that can take



advantage of increasing data regardless of function complexity. Nevertheless,when the number of Fourier terms becomes large (e.g., 15), a training sample of1% is not su�cient to allow learning by any of the systems used here.The leftmost column of graphs in Figure 1 also shows that MRP's advantagehas a counterpart. When d = 1, no complex interactions are involved; the targetfunctions are linear thresholds. The other learners can �nd a more accuratehypothesis because their SBL bias is appropriate for these concepts. MRP's lessrestrictive bias is more likely to over�t spurious regularities appearing in smalldata samples. On the other hand, larger data samples remove this disadvantage(e.g., consider the accuracies for d = 1 in graphs k = 7 and 11 as data increases).The above analysis, in particular with respect to the e�ect of the degreeof Fourier terms in performance, suggests a link between Fourier complexityand Variation (used in [11] as a measure of concept di�culty). The (average)variation of a Boolean concept is de�ned in [15] asVn = 1n2n nXi=1 Xneigh(x;y;i)�(x; y) ; (7)where the inner summation is taken over all 2n pairs of neighboring points thatdi�er only in their i-th attribute, and �(x; y) equals 0 if two neighboring examplesx and y belong to the same class, or equals 1 otherwise. Intuitively, Vn measuresthe roughness of a Boolean concept as a surface in instance space. If many pairsof neighboring examples (i.e., having Hamming distance 1 in Boolean domains)do not belong to the same class, then variation is high. Then, the connection
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Fig. 2. Concept variation increases with Fourier complexity



between Variation and Fourier Complexity can be partly anticipated by notingthat the two parity functions of n inputs have the highest variation, and thevariation captured individually by each Fourier term of degree d is at most d=n(being exactly that fraction when no overlap with other Fourier terms occurs).That is, variation tends to diminish proportionally with d. Thus, functions withonly a few non-zero Fourier coe�cients of moderate to high degree can still bedi�cult to learn by most current systems due to the high variation involved inthe Fourier series of such functions. Similarly, increasing the number of non-zeroFourier terms also brings up variation, but at a signi�cantly lower rate. This iscon�rmed empirically as Figure 2 illustrates. All curves show a rapid increase ofvariation with d. Although increasing k raises each curve as a whole, this e�ectbecomes almost imperceptible for k > 11.Because the spectral norm L(f) depends on the absolute value of the non-zero coe�cients but not on their degrees, it is not correlated to variation. Forinstance, parity functions with the highest variation still have the lowest spec-tral norm. Thus, the spectral norm might also seem unrelated to the notionof learning di�culty as witnessed by the performance of many typical learningsystems. However, results in computational learning theory strongly tie the spec-tral norm to learnability. In particular, any class of functions with polynomiallybounded spectral norm is learnable through membership queries (under uniformdistribution over the input space) [5]. Thus, it is important to �nd good upperbounds of spectral norm for interesting classes of functions. The di�culty of suchtask is acknowledged by Bellare [2], and he only gives upper bounds for simpleclasses (e.g., conjunctions, disjunctions, and parity trees) and classes of functionswhose inductive structure simpli�es the direct computation of the spectral norm(e.g. comparison functions, and each output bit in addition) . Some functions inthe latter group, such as majority functions and linear thresholds on the numberof bits, will be part of those used in the remaining experiments.3 Algorithms Based on the Fourier TransformA survey of learning methods based on the Fourier transform highlights two al-gorithms, one for each of two di�erent kinds of function described next [6]. Thesealgorithms do not rely directly on the spectral norm but on the distribution ofthe non-zero Fourier coe�cients with respect to the degree of the terms. Thus,some Boolean functions have good approximations in terms of a few low-degreeterms, and others can be accurately approximated using only a few high-degreeterms. That is, the factor discriminating two relevant kinds of function is notthe spectral norm itself (i.e., the sum of absolute values of Fourier coe�cients)but its growth rate with respect to the coe�cients' degree. For one kind of func-tion, most of the spectral norm accumulates rapidly (on low-degree terms); forthe other, the spectral norm concentrates on high-degree terms. Both cases areillustrated with the thin-line curves in Figure 3; the straight line represents aborderline between the two kinds of function and, hence, an unfavorable casefor algorithms speci�cally targeting either kind of function. Because the spec-
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Fig. 3. Spectral norm growth for benchmark concepts from Appendix Atral norm of di�erent functions can vary greatly in absolute terms, we focus onthe normalized cumulative spectral norm, using this as vertical axis in Figure 3.This axis measures the sum of squared Fourier coe�cients (instead of their ab-solute values), up to a certain degree indicated by the horizontal axis. Thus,since Pz2f0;1gn(f̂(z))2 = 1 (as shown in [6]), the normalized cumulative normof any function is 0 for d = 0, and 1 for d = n, regardless of how large the actualspectral norm of that function is.For each of the two kinds of functions characterized above as extreme cases,Mansour [6] describes one learning algorithm: the Low Degree algorithm (LD),and the Sparse Function algorithm. The latter relies on membership queries, andis consequently excluded from our experiments since none of the other learn-ers considered here uses such queries. The Low Degree algorithm uses O(nd)randomly selected examples to estimate the Fourier coe�cients of degree d orsmaller. Recall that the Fourier coe�cients can be computed byf̂(z) = 12n Xx2f0;1gn f(x)�z(x) : (8)However, since f is not known at learning time, the coe�cients are estimated byf̂est(z) = 1m mXi=1 f(Xi)�z(Xi) ; (9)from a set of classi�ed examples fX1; X2; : : : ; Xmg randomly chosen for training.Thus, the Low Degree algorithm, LD(d), outputs the Boolean functionh(x) def= sign0@ Xz2f0;1gn; degree(z)�d f̂est(z)�z(x) :1A (10)



As d increases, the number of terms to consider grows quickly, and so does thenumber of coe�cients that need to be estimated. Consequently, increasing dmeans that more examples are required for accurate estimation.Table 1. Algorithm comparison based on Fourier series controlled by k and dParameters of Predictive Accuracythe target function's 1% Training data 10% Training dataFourier series MRP LD(d) Di�erence MRP LD(d) Di�erenced = 2 76.3 73.0 3.3 100.0 94.4 5.6k = 3 d = 4 70.9 56.4 14.5 98.5 71.0 27.5d = 6 57.5 52.8 4.7 89.0 59.5 29.5d = 2 61.3 69.3 -8.0 96.1 87.9 8.2k = 7 d = 4 52.5 55.5 -3.0 80.3 68.1 12.2d = 6 51.2 53.3 -2.1 68.8 58.1 10.7d = 2 56.6 67.0 -10.4 79.9 85.4 -5.5k = 15 d = 4 50.2 55.2 -5.0 62.3 67.2 -4.9d = 6 49.9 52.7 -2.8 52.6 57.9 -5.3To observe the inuence of d in LD's performance, we ran LD under the sameexperimental design discussed in Section 2 except that now, due to LD's longerrunning times, only a subset of the original values of k, d, and training size areused. Here, LD is compared only to MRP, the system that was more resistant toFourier complexity in the previous experiments. In each run, LD is provided withthe actual value of d used to generate the target concept. The results are shownin Table 1, together with the corresponding results for the best performer fromSection 2. It was observed in Figure 1 that the accuracy of four learners degradesquickly as d grows. Like the others, LD experiences a performance degradationfor any given k. However, the accuracy degradation observed in Figure 1 forincreasing k seems to a�ect LD to a lesser extent than the other four learningsystems. As shown in Table 1, LD's resistance to increasing k is superior toMRP's, and is due to its ability to retain a large number (nd) of Fourier termsin its hypothesis, but this also slows down its learning and classi�cation. Thisfeature, initially presented as bene�cial, can also reduce LD's predictive accuracywhen learning other concepts, such as those considered next.4 Relational Concepts and the Fourier TransformThe above comparison of systems' performance is based on randomly generatedconcepts with controlled Fourier complexity. We now extend the comparisonto consider the benchmark concepts used in [10] to evaluate MRP (see Ap-pendix A). These concepts were designed to have small representation in termsof relations (some of which could be complex relations). Despite their complex-ity, these concepts have a clearer structure than those generated randomly for



the previous experiments. Now, we characterize also these benchmark conceptsin terms of their Fourier complexity. First, they all have small spectral norm,ranging from 1.0 to 17.4 and averaging 5.3 (over all 40 concepts). Thus, theyshould be e�ciently learnable by membership queries, as suggested in [5]. How-ever, the learning model and systems studied here do not consider exploiting thebene�t of membership queries. Despite their small spectral norm, some of theseconcepts still have a relatively large number of Fourier terms, ranging from 1 to512, with an overall average of 103 terms per concept.These concepts can also be characterized with respect to how fast their spec-tral norm grows with respect to the degree of Fourier terms. This allows position-ing each benchmark concept within the range between the two kinds of functiondescribed in Section 3 (thin lines in Figure 3). The result of such process is thatthese concepts are scattered throughout the entire range between the two ex-treme cases. To illustrate this, four curves corresponding to spectral norm growthmeasured on benchmark concepts are shown as thick lines in Figure 3. Three ofthe thick-line curves correspond to individual concepts, each one selected as aclose match to one the previous curves. The fourth one corresponds to the aver-age over all 40 benchmark concepts. This average is slightly skewed toward thecase of quickly growing spectral norm (i.e., the case of functions mostly de�nedon low-degree terms). This suggests that on average these concepts are closer tothe extreme favorable to LD than to the opposite end. However, because theseconcepts are scattered between both ends, LD's performance varies considerablyfrom concept to concept.Figure 4 summarizes how LD's accuracy varies with respect to d, for thebenchmark concepts of Appendix A. All curves are based on �ve learning trialsper concept, each one using a randomly generated training sample covering 10%of the 12-dimensional instance space. The top three graphs correspond to thesame three concepts selected for Figure 3 as representatives of two extreme casesand one intermediate case of spectral norm growth. For each extreme case, LDachieves its highest accuracy at a di�erent end of the d axis. The leftmost graph,corresponding to a concept with mostly low-degree terms, indicates a clear lossin accuracy as the complexity of the model being �t (that is, d) increases. Therightmost graph corresponds to a parity concept, that is, a concept with just oneFourier term, but a term of a high-degree. Although LD is not designed for thiskind of concept, this rightmost graph serves to illustrate some problems that maya�ect LD in other situations as well. Note that LD's accuracy increases sharplyat d = 10, and that the target concept is a parity function of 10 inputs. Thus,for concepts involving parity of p bits, LD(d)'s accuracy misleadingly decreasesas d grows from 0 to p � 1. This is the same behavior observed in the leftmostgraph. However, in the parity case, d must be allowed to grow more if the highestaccuracy is to be reached, whereas in the leftmost graph, any increase in d wasto produce only less accurate hypotheses (due to over�tting). Thus, hill-climbingapproaches to grow d gradually can be misled easily.The top middle graph in Figure 4 corresponds to a concept whose Fouriercoe�cients are more or less evenly distributed over mid-degree terms (from d = 4
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Fig. 4. LD(d)'s accuracy on benchmark concepts from Appendix Ato d = 9). Again, this is not the case most favorable to LD, as witnessed by itshighest accuracy of about 50%. The structure of this concept is such that can beexpressed concisely in terms of two relations: a parity of 4 bits and a combinationof two linear threshold functions over the same set of 6 bits. Note again somesharp increases in accuracy at d = 4 and d = 10(= 4 + 6). Thus, the previousobservation about the misleading decay in accuracy as d grows also a�ects thisconcept (although to a lesser degree).On average over these 40 concepts, LD(d)'s accuracy (bottom of Figure 4)has a smooth peak toward the low degree end, which is consistent with the obser-vation that the average spectral norm growth is skewed toward quickly growingfor small d (recall the dotted line in Figure 3). LD's average performance overthese concepts is lower than MRP's, shown as dashes in the bottom graph ofFigure 4. Even after selecting d� as the best d for each benchmark concept indi-vidually, LD(d�) still has an average accuracy (dotted line) about 10 percentagepoints below MRP's.5 Discussion: Results, Extensions and Related WorkOur experiments show that LD(d) is better than other algorithms when learn-ing low-degree functions (Figure 1 and Table 1), but worse when learning otherbenchmark concepts (Figure 4). In both test environments, all concepts have lowspectral norm (possibly a general necessary condition for learning). However,



MRP's benchmark concepts covered a wider range along distribution of spectralnorm; that is, they included low-degree functions, sparse functions, and inter-mediate cases. As we argued in [10], these concepts were motivated by di�cultreal-world problems where lack of domain knowledge forces primitive represen-tations and makes relations among attributes more relevant. Thus, for instance,molecular biologists form protein folding theories that involve complex relationsamong amino acids occupying consecutive positions in the protein sequence. Inparticular, Chou and Fasman [3] use a condition for �-helix formation that re-quires a sequence of 6 consecutive amino acids containing at least 4 helix formers(which are just amino acids known to favor the formation of helical structuresin the process of protein folding). Assuming that 5 of the 20 amino acids used inproteins are helix formers, there are �64��54�20(6�4) = 3:75 million sequencesof amino acid satisfying the above condition. The underlying similarity amongmany of those sequences cannot be judged in terms of coincidences betweenindividual amino acid positions (primitive attributes). This di�cult real-worlddomain demands a direct analysis of relations among primitive attributes.In other domains, such as �nancial markets, relevant indicators are derivedfrom ratios and other non-linear relationships among input variables. MRP andLD take di�erent approaches to learn in these situations. The former attemptsto extract relevant relations (of any kind) from the training data available; thelatter tries to construct such relations in terms of a low-degree Fourier transform.There are ways for each algorithm to mutually bene�t from the other, as we willdiscuss next.We have used the most straightforward implementation of the Low Degreealgorithm [6]. This could be extended with parameters to control the maximumnumber of terms in the hypotheses, or the minimum absolute value acceptablefor a Fourier coe�cient to keep the corresponding term. Also, knowledge aboutwhich inputs (not just how many inputs) need to be considered in the Fourierterms can reduce running times considerably. Instead of considering all nd terms,it would then be enough to consider the 2d terms involving the selected attributesas suggested by [6]. Similarly, additional knowledge can constrain LD's searcheven further. The learner can be given knowledge of related sets of input at-tributes, or it can obtain such knowledge by techniques similar to those used inMRP. This type of knowledge can speedup new versions of the LD(d). On theother hand, the explicit incorporation of the Fourier basis into the search fornew representations performed by algorithms like MRP can also be bene�cial.An alternative approach related to the Fourier transform and similar to theLow Degree algorithm was developed by Seshu [17]. He proposed a decision-treelearner, R-splitter , that could split the data using any of the 2R parity functions(or parity features) over a subset of R variables, previously selected by the systemfrom the original set of n input variables. Here, R is a system parameter similarto LD's d. Unlike LD, R-splitter does not express hypotheses as sums of possiblyexponentially many parity features (or Fourier terms). Instead, at each decisionnode, R-splitter �rst estimates the information provided by each split based onany individual input variable, and then if such splits are not useful, it considers



splitting on parity features. Although the system considers all 2R parity featureslike LD does, R-splitter chooses only one parity feature to split the data at thecurrent node, and then proceeds to recursively re�ne each child of the currentnode. Thus, R-splitter decides dynamically how many parity functions (of degreeat most R) to keep in its �nal hypothesis. This is similar to the way MRPdynamically �nds relations in the training data, but MRP is not limited tousing parity relations. It extracts the extensional representation of the relevantrelations from the data.The second basic algorithm reviewed in [6] is the Sparse Function algo-rithm [5]. It learns functions that can be accurately approximated by a smallnumber of Fourier coe�cients corresponding to high-degree terms. Both algo-rithms, Low Degree and Sparse Function, learn classes of Boolean functions interms of a di�erent class [12], namely, the class of real functions. The algorithmsare not restricted to output a Boolean function, that is, one whose only possiblevalues are �1 and +1. Instead, they output a real function to be interpreted asBoolean (see Section 1). This suggests that separating the two Boolean values atzero may not always be the best choice [7]. A new question related to this issueis whether the method used to estimate the Fourier coe�cient is always the best.Both algorithms base their coe�cient estimation in the (canonical) de�nition ofthe coe�cients given by f̂(z) = 12n Xx2f0;1gn f(x)�z(x) : (11)This de�nition forces the Fourier transform to be a strictly Boolean function.Thus, for instance, the function majority of four inputs (which returns true ifand only at least two of its inputs are 1) has the following Fourier series:maj4(x1; x2; x3; x4) =+0:375�0000(x)� 0:375�0001(x) � 0:375�0010(x) � 0:125�0011(x)�0:375�0100(x)� 0:125�0101(x) � 0:125�0110(x) + 0:125�0111(x)�0:375�1000(x)� 0:125�1001(x) � 0:125�1010(x) + 0:125�1011(x)�0:125�1100(x) + 0:125�1101(x) + 0:125�1110(x) + 0:375�1111(x) :However, being a linear threshold, this function can be expressed more conciselyin terms of low-degree coe�cients only, as follows:maj4(x1; x2; x3; x4) = �0:5�0001(x)� 0:5�0010(x)� 0:5�0100(x)� 0:5�1000(x) :These series are two di�erent real functions, but the same Boolean function(when considering only their sign). Learners based on estimation of Fourier co-e�cients should be prepared to choose among competing sets of coe�cients.6 ConclusionThis paper has brought together approaches from the machine learning commu-nity and the computational learning theory community. The unifying context
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9. Giulia Pagallo and David Haussler. Boolean feature discovery in empirical learning.Machine Learning, 5:71{99, 1990.10. Eduardo P�erez and Larry A. Rendell. Using multidimensional projection to �ndrelations. In Proc. of the 12th Int. Conf. on Machine Learning, pages 447{455.Morgan Kaufmann Publishers, Inc., 1995.11. Eduardo P�erez and Larry A. Rendell. Learning despite concept variation by �ndingstructure in attribute-based data. In Proc. of the 13th Int. Conf. on MachineLearning, pages 391{399. Morgan Kaufmann Publishers, Inc., 1996.12. Leonard Pitt and Leslie G. Valiant. Computational limitations of learning fromexamples. Journal of the Association for Computing Machinery, 35(4):965{984,October 1988.13. J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Pub-lishers, Inc., Palo Alto, CA, 1993.14. Larry Rendell. A general framework for induction and a study of selective induc-tion. Machine Learning, 1(2):177{226, 1986.15. Larry A. Rendell and Raj Seshu. Learning hard concepts through constructiveinduction: Framework and rationale. Computational Intelligence, 6:247{270, 1990.16. Cullen Scha�er. A conservation law for generalization performance. In Proc. ofthe Eleventh Int. Conf. on Machine Learning, pages 259{265, 1994.17. Raj Seshu. Solving the parity problem. In Proc. of the 4th European WorkingSession on Learning, pages 263{271, Montpellier, France, December 1989.18. Satosi Watanabe. Knowing and Guessing. John Wiley & Sons, New York, 1969.Appendix A. Benchmark ConceptsThe following concepts, used as benchmark in [10], are members of the groupsdescribed below, where the notation xi::j is shorthand for xi; xi+1; xi+2; :::; xj :Fp(2;11) Fp(3;10) Fp(4;9) Fp(5;8) Fcp(2;11) Fcp(3;10)Fcp(4;9) Fcp(5;8) Fcdp(1;9) Fcdp(2;10) Fcdp(3;11) Fp(3;6)^(2)Fp(3;6)_(2) Fp(3;6)�(2) Fp(3;6)^(3) Fp(3;6)_(3) Fp(3;6)�(3) Fp(3;6)^(2�or�3)Fp(3;6)_(2�or�3) Fp(3;6)�(2�or�3) Fmj(4;8) Fmj(3;9) Fmj(2;10) Fmx6Fmx6c(6;7) Fmx6c(5;8) Fmx6c(4;9) Fmx6c(3;10) Frk(5;7) Frk(6;7)Frk(6;9) Frk(7;9) Fnm(4;5;7) Fnm(5;6;9) Fgw(3;10) Fgw(4;9)Fgw(5;8) Fsw(3;10) Fsw(4;9) Fsw(5;8)Parity. Let odd(s)=true i� an odd number of bits in s are 1. Then,Fp(i;j) def= odd(xi::j); Fcp(i;j) def= odd(xi::6)^ odd(x7::j), andFcdp(i;j) def= odd(xi::4)^ [odd(xi+j=2::8)_ odd(xj::12)]Majority. Fmj(i;j) def= maj(xi::j), maj(s)=true i� at least half of the bits in s are 1.Parity and counters. Let l-in(s)=true i� exactly l bits in s are 1. Then, for l 2f2; 3; 2-or-3g and r 2 f^;_;�g, Fp(i;j)r(l) def= odd(xi::j)r l-in(x7::12).Multiplexors. Let mx(i; j; d0; d1; d2; d3) = d2i+j , mxc(0; 0; d0::i) = V(d0::i),mxc(0; 1; d0::i) = W(d0::i), mxc(1; 0; d0::i) =L(d0::i), and mxc(1; 1; d0::i) = :L(d0::i).Then, Fmx6 def= mx(x1; x2; x3; x6; x9; x12), and Fmx6c(i;j) def= mxc(x1; x2; xi::j)Linear thresholds. Let w(s) be the number of ones in s. Then, we de�ne Frk(i;k) def=w(x6�bk=2c::7+bk=2c) = i, Fnm(i;j;k) def= w(x6�bk=2c::7+bk=2c) 2 fi; jg,Fgw(i;j) def= w(xi::6) > w(x7::j), and Fsw(i;j) def= w(xi::6) = w(x7::j).


