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Balanced Boosting with Parallel Perceptrons

Iván Cantador and José R. Dorronsoro ?

Dpto. de Ingenieŕıa Informática and Instituto de Ingenieŕıa del Conocimiento
Universidad Autónoma de Madrid, 28049 Madrid, Spain

Abstract. Boosting constructs a weighted classifier out of possibly weak
learners by successively concentrating on those patterns harder to clas-
sify. While giving excellent results in many problems, its performance
can deteriorate in the presence of patterns with incorrect labels. In this
work we shall use parallel perceptrons (PP), a novel approach to the
classical committee machines, to detect whether a pattern’s label may
not be correct and also whether it is redundant in the sense of being
well represented in the training sample by many other similar patterns.
Among other things, PP allow to naturally define margins for hidden unit
activations, that we shall use to define the above pattern types. This pat-
tern type classification allows a more nuanced approach to boosting. In
particular, the procedure we shall propose, balanced boosting, uses it to
modify boosting distribution updates. As we shall illustrate numerically,
balanced boosting gives very good results on relatively hard classification
problems, particularly in some that present a marked imbalance between
class sizes.

1 Introduction

As it is well known, boosting constructs a weighted classifier out of possibly
weak learners by successively concentrating on those patterns harder to classify.
More precisely, it keeps on each iteration a distribution dt(X) of the underlying
X patterns, and after a new hypothesis ht has been constructed in the t–th
iteration, dt(X) is updated to

dt+1(X) =
1
Zt

dt(X)e−αtyXht(X), (1)

where yX = ±1 is the class label associated to X, Zt is a probability normal-
ization constant and αt is related to the training error εt of ht (more details in
the third section). Therefore, after each iteration boosting concentrates on the
patterns harder to classify, as we have e−αtyXht(X) > 1 if yXht(X) < 0, i.e., X
has been incorrectly classified; as a consequence, the training error εt will tend
to 0 under mild hypothesis on the weak learner [6]. The final hypothesis is the
average h(X) =

∑
t αtht(X) of the successively built weak hypotheses ht.

Boosting has been used with great success in several applications and over
various data sets [2]. However, its has also been shown that it may not yield
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such good results when applied to noisy datasets. In fact, assume that a given
pattern has label noise, that is, although clearly being a member of one class, its
label corresponds to the alternate class. Such a label noisy pattern is likely to
be repeatedly misclassified by the successive hypotheses which, in turn, would
increase its sampling probability and cause boosting to hopelessly concentrate
on it. Although this fact may be useful in some instances, its most likely conse-
quence is to deteriorate the final hypothesis. The just described situation may
very well happen when dealing with imbalanced data sets, where the number of
patterns from one class (that we term the positive one) is much smaller than
that from others. There are many examples of this situation, as well as a large
literature on this topic, with many techniques having been applied [3, 7]. Most
real world classification problems involve imbalanced samples and for them we
should expect patterns to fall within three categories: redundant (i.e., easy to
classify and likely to be overrepresented in the sample), the just described label
noisy and, finally, borderline patterns, i.e., those whose classification could be
different after small perturbations and upon which classifier construction should
concentrate. To successfully deal with imbalanced data sets it is quite important
to detect and handle these three pattern categories correctly.

In this work we introduce a new technique for redundant, label noisy and
borderline pattern detection that, in turn, will suggest a new new procedure
for boosting’s probability update (1) depending on what pattern cathegory X
is in. The assignment of X to one of these types is based on another concept
of margin that arises naturally in the training of parallel perceptrons (PP), a
type of committee machines introduced by Auer et al. in [1] and that will be
described in section 2. A key part of the PP training procedure is an output
stabilization technique that tries to augment the distance of the activation of a
perceptron to its decision hyperplane, i.e., its activation margin, so that small
random changes on an input pattern do not cause its being assigned to another
class. The activation margins are also learned in some sense during training
and can be used for the above classification of training patterns, as it will be
described in section 3. In turn, knowing which kind of pattern a given one is
can be used to adjust boosting’s probability updates. We will do so here by
changing the exponent in (1) to αtR(X)yXht(X), where the R(X) factor will
reflect the nature of the pattern X. More precisely, R(X) will be 1 for redundant
patterns and −1 for noisy ones. We shall consider in section 3 several options
for choosing R(X) for borderline patterns; as we shall see in section 4, best
results will be obtained by what we shall call balanced boosting, whose results
are comparable to those of boosted multilayer perceptrons (MLPs) but with
much smaller training times. Finally, the paper will close with a brief summary
section and a discussion of further work.

2 Parallel perceptron training

PPs have the same structure of the well known committee machines [5], that is,
they are made up of an odd number of standard perceptrons Pi with ±1 outputs,



and the machine’s one dimensional output is simply the sign of the sum of these
perceptrons’ outputs (that is, the sign of the overall perceptron vote count).
They are thus well suited for 2–class discrimination problems, but it is shown in
[1] that they can also be used in regression problems. In more detail, assume we
are working with D dimensional patterns X = (x1, . . . , xD)t, where the D–th
entry has a fixed 1 value to include bias effects. If the committee machine (CM)
has H perceptrons, each with a weight vector Wi, for a given input X, the output
of perceptron i is then Pi(X) = s(Wi ·X) = s(acti(X)), where s(·) denotes the
sign function and acti(X) = Wi · X is the activation of perceptron i due to X.
The final output h(X) of the CM is h(X) = s

(∑H
1 Pi(X)

)
where we take H to

be odd to avoid ties. We will assume that each input X has an associated ±1
label yX and take the output h(X) as correct if yXh(X) > 0. If this is not the
case, i.e. whenever yXh(X) = −1, parallel perceptron training applies the well
known Rosenblatt’s rule

Wi := Wi + ηyXX. (2)

to all wrong perceptrons, i.e. those Pi verifying yXPi(X) = −1 (η denotes a
possibly varying learning rate). Moreover, when a pattern X is correctly classi-
fied, PP training also applies a margin–based output stabilization procedure to
those perceptrons for which 0 < yXacti(X) < γ. Notice that for them a small
perturbation could cause a wrong class assignment.

The value of the margin γ is also adjusted dynamically from a starting value.
More precisely, as proposed in [1], after a pattern X is processed correctly, γ
is increased to γ + 0.25η if for all correct perceptrons we have yXacti(X) > γ,
while we decrease γ to γ − 0.75η if 0 < yXacti(X) < γ for at least one correct
perceptron. PPs can be trained either on line or in batch mode; since we will use
then in a boosting framework, we shall use this second procedure. Notice that
for the margin to be meaningful, weights have to be normalized somehow; we
will make its euclidean norm to be 1 after each batch pass. In spite of their very
simple structure, PPs do have a universal approximation property. Moreover, as
shown in [1], PPs provide results in classification and regression problems quite
close to those offered by C4.5 decision trees and only slightly weaker that those of
standard multilayer perceptrons (MLPs). Finally, their training is extremely fast,
specially when compared to that of MLPs, something quite useful in boosting,
where repeated batch trainings will have to be performed.

3 Boosting parallel perceptrons

As mentioned in the introduction, boosting constructs after each iteration a
weak hypothesis ht over the current distribution dt, and updates it according
to the rule (1), in which Zt =

∑
X dt+1(X) is a probability normalization, αt =

ln ((1− εt)/εt) /2, and εt is the iteration error with respect to dt, i.e.,

εt =
∑

{X : yXht(X)=−1}

dt(X).



Pattern set neg. boostPP pos. boostPP bal. boostPP

R 1 1 1

N −1 −1 −1

nB− 1 −1 0

other B 1 1 1

Table 1. The table gives the R(X) labels for training patterns for negative, positive
and balanced boosting. All tend to avoid label noisy patterns and their main difference
is in the handling of near noisy borderline patters. Standard boosting sets R(X) = 1
in all cases.

As mentioned in the introduction, boosting may not yield good results when
applied to noisy datasets, as these will be repeatedly misclassified by the succes-
sive hypotheses, increasing their sampling probability and causing boosting to
hopelessly concentrate on them. in it. On the other hand, PP’s activation mar-
gins can be used to detect not only label noisy patterns but also those that are
redundant and borderline. In more detail, PPs adaptively adjust these margins,
making them to converge to a final value γ. If for a pattern X its i–th percep-
tron activation verifies |acti(X)| > γ, s(acti(X)) is likely to remain unchanged
after small perturbations of X. Thus if for all i we have yXacti(X) > γ, X is
likely to be also correctly classified later on. Those patterns are natural choices
to be taken as redundant. Similarly, if for all i we have yXacti(X) < −γ, X is
likely to remain wrongly classified, and we will take such patterns as label noisy.
The remaining X will be the borderline patterns. We shall use the notations Rt,
Nt and Bt for the redundant, noisy and borderline training sets at iteration t.
To take into account this categorization, we may introduce a pattern dependent
factor R(X) in the boosting probability actualization procedure as follows

dt+1(X) =
1
Z ′

t

dt(X)e−αtR(X)yXht(X),

with Z ′
t again a normalization constant. If we set the factor R(X) to be 1, we

just recapture standard boosting, while if we want to diminish the influence of
label noisy patterns X ∈ Nt, we put R(X) = −1; since they are not correctly
classified, then αtR(X)yXht(X) > 0 and hence, dt+1(X) < dt(X). Moreover,
we would like to keep boosting focused on borderline patterns, even if they are
temporarily misclassified. To do so, we have several options. First we can just
proceed as in standard boosting, setting R(X) = 1 when X ∈ B; for borderline
patterns incorrectly classified this will augment their subsequent probability,
while it will diminish it for those well classified. Notice that if the latter are close
to the separating hyperplane, they may not be correctly classified afterwards,
causing boosting to refocus on them.

However, when dealing with unbalanced datasets, accuracy, that is the per-
centage of correctly classified patterns, may not be a relevant criterium, as it
would be fulfilled by the simple procedure of assigning all patterns to the (possi-
bly much larger) negative class. It may thus be convenient to lessen the impact



std. boostMLP std. boostPP

Dataset % positives a a+ a− g a a+ a− g

Ionosphere 35.9 88.40 73.53 96.71 84.3 85.49 68.91 94.85 80.8
(0.32) (1.89) (1.51) (2.02)

Diabetes 34.9 73.80 60.63 80.84 70.0 73.16 57.99 81.42 68.7
(0.25) (1.75) (0.97) (1.06)

Cancer 34.5 95.82 94.19 96.68 95.4 95.64 93.32 96.86 95.1
(0.13) (0.55) (0.25) (0.52)

Vehicle 25.7 83.16 65.35 89.30 76.4 79.04 55.33 87.30 69.5
(0.10) (0.60) (1.15) (1.05)

Glass 13.6 95.82 88.00 97.01 92.4 95.71 86.83 97.13 91.8
(0.22) (1.52) (1.06) (1.84)

Vowel 9.1 99.66 98.22 99.80 99.0 99.46 96.56 99.76 98.1
(0.01) (0.12) (0.28) (0.80)

Thyroid 7.4 98.73 91.30 99.32 95.2 97.33 80.14 98.85 89.0
(0.05) (0.32) (0.19) (1.20)

Table 2. Accuracies and g values for the standard boosting procedures over 7 UCI
datasets using MLPs and PPs as learning algorithms. The more complex structure of
MLPs gives better accuracies, although those of PPs are quite close in all problems
except two.

in training of the more abundant majority negative class. Redundant pattern
removal partially takes care of this but it is also interesting to avoid mistrain-
ing effects by near noisy label negative patterns, that is, the set nB−

t of those
negative patterns X with a wrong margin yXacti(X) < 0 in all perceptrons in
the t iteration. This can be done by lowering their dt+1(X) probabilities, for
which one option is to set R(X) = −1; we should expect this to augment the
accuracy a+ of the positive class, while lowering the accuracy a− of the nega-
tive class. We shall call the resulting procedure positive boosting. Of course, we
may do the opposite, applying what we may call negative boosting by setting
R(X) = 1 for X ∈ nB−

t , which in turn should increase the accuracy a− of the
negative class. A third, more balanced option is to augment the probability of
positive borderline patterns (i.e., to set R(X) = 1) but to be more “neutral”
on the nB−

t patterns, setting R(X) = 0 for them, which will essentially leave
their previous probabilities unchanged. While a+ would then be smaller than in
positive boosting, the overall classification should be more balanced. We shall
call the resulting procedure balanced boosting. We will measure the balance of
positive and negative accuracies using the g coefficient, i.e., the geometric ratio
g =

√
a+a− of the positive a+ and negative a− accuracies, first proposed in [7].

We shall report next numerical results over seven datasets.

4 Numerical results

We shall use 7 problem sets from the well known UCI database (listed in table
2) referring to the UCI database documentation [4] for more details on these



std. boostPP neg. boostPP pos. boostPP bal. boostPP

Dataset a a+ a− a a+ a− a a+ a− a a+ a−

Ionosphere 85.49 68.91 94.85 85.09 67.45 95.09 65.97 89.85 52.50 84.97 71.44 92.65
(1.51) (1.21) (1.40) (1.20)

Diabetes 73.16 57.99 81.42 73.29 59.07 81.04 57.76 94.85 37.56 72.08 73.18 71.49
(0.97) (0.88) (0.96) (0.88)

Cancer 95.64 93.32 96.86 96.03 94.27 97.02 96.39 99.15 94.91 96.32 96.07 96.50
(0.25) (0.18) (0.22) (0.16)

Vehicle 79.04 55.33 87.30 79.68 55.04 88.27 72.09 95.52 63.93 78.61 72.41 80.78
(1.15) (0.97) (0.46) (0.75)

Glass 95.71 86.83 97.13 96.09 87.33 97.51 94.76 90.17 95.53 96.33 89.33 97.46
(1.06) (0.78) (0.39) (0.88)

Vowel 99.46 96.56 99.76 99.52 97.44 99.73 95.56 99.89 95.12 99.39 98.33 99.50
(0.28) (0.35) (0.13) (0.24)

Thyroid 97.33 80.14 98.85 97.73 83.42 98.88 94.66 99.56 94.27 97.66 96.60 97.74
(0.19) (0.32) (0.21) (0.27)

Table 3. Accuracies for the boosting procedures over 7 UCI datasets (the lower values
give the standard deviations of 10 times 10–fold cross validation); best values in bold
face. While it only gives the best result in the glass problem, the overall accuracy of
balanced boost is quite close to the best one, while giving a good balance between a+

and a−.

problems. Some of them (glass, vowel, vehicle, thyroid) are multi–class prob-
lems; to reduce them to 2–class problems, we are taking as the minority classes
the class 1 in the vehicle dataset, the class 0 in the vowel data set, and the class
7 in the glass domains (as done in [3]), and merged in a single class both sick
thyroid classes. In general they can be considered relatively hard problems and,
moreover, some of these problems provide well known examples of highly imbal-
anced positive and negative patterns, that make difficult classifier construction,
as discriminants may tend to favor the (much) larger negative patterns over the
less frequently positive ones. This is the case of the glass, vowel, thyroid and, to
a lower extent, vehicle problems. In all problems we will take the minority class
as the positive one.

PP training has been carried out as a batch procedure. In all examples we
have used 3 perceptrons and parameters γ = 0.05 and η = 10−2; for the thyroid
dataset, we have taken η = 10−3. As proposed in [1], the η rate does not change
if the training error diminishes, but is decreased to 0.9η if it augments. Training
epochs have been 250 in all cases; thus the training error evolution has not been
taken into account to stop the training procedure. Anyway, this error has an
overall decreasing behavior. We have performed 10 boosting iterations. In all
cases we have used 10–times 10–fold cross validation. That is, the overall data
set has been randomly split in 10 subsets, 9 of which have been combined to
obtain the initial training set, the size of which has. To ensure an appropriate
representation of positive pattern, stratified sampling has been used. The final



Dataset std. boostMLP std. boostPP neg. boostPP pos. boostPP bal. boostPP

Ionosphere 84.3 80.8 80.1 68.7 81.4
(1.89) (2.02) (1.52) (1.85) (2.01)

Diabetes 70.0 68.7 69.2 59.7 72.3
(1.75) (1.06) (0.92) (0.92) (1.15)

Cancer 95.4 95.1 95.6 97.0 96.3
(0.55) (0.52) (0.49) (0.25) (0.38)

Vehicle 76.4 69.5 69.7 78.1 76.5
(0.60) (1.05) (0.99) (0.67) (0.88)

Glass 92.4 91.8 92.3 92.8 93.3
(1.52) (1.84) (1.38) (1.32) (1.96)

Vowel 99.0 98.1 98.1 97.5 98.9
(0.12) (0.80) (0.66) (0.25) (0.48)

Thyroid 95.2 89.0 90.8 96.9 97.2
(0.32) (1.20) (0.50) (0.18) (0.35)

Table 4. g values over 7 UCI datasets for the various boosting procedures (the lower
values give the standard deviations of 10 times 10–fold cross validation). Best values
(in bold face) are given by MLPs and positive boosting in two cases. Balanced boost
gives best values in the other three, and it is the second best in the other 4.

PPs’ behavior has been computed on the remaining, unchanged subset, that we
keep for testing purposes.

As mentioned before, accuracy is a first measure of a classifier’s efficiency.
Table 3 gives overall, positive and negative accuracies for the four construction
procedures (best values are in bold face). It can be seen that negative boosting
gives the best results in 4 cases. Standard and balanced boosting give the best
accuracy on one problem each, but they are quite close in all others anyway. On
the other hand, while positive boosting gives the best accuracy for the cancer
dataset, the accuracy it achieves is the lowest in all the other. As it may be
expected, it also achieves the highest a+ values, while standard and, of course,
negative boosting strongly favor the negative class. In any case, table 3 also shows
that balanced boosting gives the best balance between positive a+ and negative
a− accuracies. The better inter–class performance of balanced boosting can also
be seen in table 4. Balanced boosting achieves the best g values for 5 datasets and
is a close second in the other two. Positive boosting gives the highest g for the
cancer and vehicle datasets and comes second in two other problems. However,
its g performance is quite poor for the diabetes and ionosphere problems. For
their part, the g performance of standard and negative boosting comes behind,
and while closer for other datasets, it is clearly poorer on the diabetes, vehicle
and thyroid cases. The boosting performance of PPs is further compared in
tables 2 and 4 with that of standard multilayer perceptrons (MLPs). As they are
more powerful, boosted MLPs give clearly better accuracies than boosted PPs in
the ionosphere and vehicle problems, worse in the cancer and glass problems and
similar in the others. When g values are considered in table 4, balanced boosting
gives the best results in 3 problems, while MLP and positive boosting are better



over 2 each; in all these 4 cases, balanced boosting g values are second best.
In other words, balanced boosting gives the best overall performance among PP
boosting methods, and that performance is comparable to that of MLP boosting,
that has a much greater complexity and is considerably costlier to train.

5 Conclusions and further work

In this paper we have discussed how the concept of activation margin that arises
very naturally on parallel perceptron training can be used to provide a more nu-
anced approach to boosting. This is done adding an extra factor R(X) to boost-
ing’s exponential probability update, whose values depend on the categorization
of a given pattern X as redundant, label noisy or borderline obtained in terms of
X’s activation margins. We set R(X) = 1 for redundant and R(X) = −1 for la-
bel noisy patterns, which causes boosting to lower their subsequent probabilities.
Within borderline patterns we consider separately the near label noisy negative
patterns. Setting R(X) = 1 for them would increase their subsequent probabil-
ities, augmenting thus the negative accuracy a−, while a+ would increase if we
set R(X) = 1. An equilibrium can be obtained setting R(X) = 0, thus keeping
the probability of X essentially unchanged. The resulting procedure, balanced
boosting, gives better PP classifiers in terms of the equilibrium between positive
and negative accuracies, while achieving absolute accuracies close to the best
achieved by the other methods. This performance is comparable to that of MLP
boosting, while PP complexity is lower and training times much shorter than
those of MLPs. Further work will concentrate on the effectiveness of general joint
PP–boosting approach to malicious noise problems.
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