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Abstract. In this work we will apply Diffusion Maps (DM), a recent
technique for dimensionality reduction and clustering, to build local mod-
els for wind energy forecasting. We will compare ridge regression models
for K—means clusters obtained over DM features, against the models ob-
tained for clusters constructed over the original meteorological data or
principal components, and also against a global model. We will see that
a combination of the DM model for the low wind power region and the
global model elsewhere outperforms other options.

1 Introduction

Local models are a natural and attractive option when trying to approach pro-
cesses with high variance data or whose underlying phenomena are known to
possibly correspond to quite different settings. However, to identify the appro-
priate local feature areas may be quite difficult, particularly for high dimensional
data that do not lend themselves easily to such a task. Unsupervised clustering
methods, such as K-means, appear as an attractive option. However, clustering
is often more an art than a technology and while many methods have been pro-
posed, simple approaches are usually followed in practice, in particular K—means
which is applied assuming an Euclidean distance in the feature space. Besides
fixing the number K of clusters, an adequate sampling is also an important issue
when working with high dimensional data as samples are then bound to be very
sparse. Moreover, the features to be used may not be homogeneous, something
probably better to be handled outside the chosen clustering procedure.

In this paper we will address the above issues in the context of wind energy
prediction. Wind power clearly presents wide, fast changing fluctuations, cer-
tainly at the individual farm level but also when the production of much larger
areas is considered. This is the case of Spain, the world’s fourth biggest producer
of wind power, where wind is currently the third source of electricity. The well
known, sigmoid-like structure of wind turbine power curves clearly shows differ-
ent regimes at low, medium and high wind speeds. Compounded with this are
wind speed frequencies, that follow a Weibull distribution, that is, a stretched
exponential with low wind having large frequencies. While the above does not



directly apply when a wide area is considered, different regimes also appear.
Wind energy forecasting for large areas also implies high dimensional features
as the predictive variables, that are the outputs of numerical weather prediction
(NWP) models such as the ECMWEF or GFS ones given for large grids that
cover the areas under study. Global models may find it difficult to handle these
regimes and local models are natural alternatives [1,9].

This high dimension suggests to precede clustering by some dimensionality
reduction (DR) technique, preferably one that is likely to yield an Euclidean
metric for the new features. Diffusion Maps (DM) [5], a novel spectral technique
for DR, is particularly suited to these requirements. In fact, there is a natural
diffusion metric in the original feature space that corresponds with Euclidean
metric in the embedded space. This means that clustering methods that rely on
Euclidean metrics, particularly K—means, should work well on the new features.
DM also allows to control to some extent the effects of the underlying data
distribution and, moreover, it allows to work with heterogeneous variables. In
other words, DM can be a powerful tool for finding informative clusters in high
dimensional, heterogeneous data.

Of course, DM is not the only option. Straight K—means clustering can cer-
tainly be used. Moreover, NWP variables for a large area usually show high
correlation among different grid points. This may suggest that variance-based
DR methods such as Principal Component Analysis (PCA) may be a useful
alternative. We shall consider these three options here in order to, first, iden-
tify local clusters and then to construct local models to be compared against a
global one. Many paradigms can be considered for model building but here we
will concentrate on the simplest alternative, ridge regression, i.e., regularized lin-
ear least squares, certainly not the strongest possible method but a good option
to measure the usefulness of local methods against a global one.

The paper is organized as follows. We will review in Sect. 2 DM from a
general point of view, as well as its use over heterogeneous data. In Sect. 3 we
will consider K—means on DM, PCA and the original features, we will compare
local ridge regression models on these clusters, we will discuss their effectiveness
and we will conclude on how to combine local and global models for better
predictors. Section 4 ends this paper with a brief discussion and conclusions.

2 Diffusion Maps Review

The key assumption in Diffusion Maps (DM) is that the data to be studied
lie in a low—dimensional manifold whose geometry can be described through
a Markov chain diffusion metric. To capture this intrinsic geometry, the first
step is to build a connectivity graph using the sample points S = {z1,...,2,}
as graph nodes and defining a symmetric weight matrix W;; = w(z;,z;). The
most common way to build this matrix is to use the Gaussian Kernel and define
w(zi, z;) = exp (—||z; — x;|[*/0?), where o determines the radius of the neigh-
borhoods centered at individual sample points. We start with this matrix towards
defining a Markov chain over this graph. We first choose a parameter « € [0, 1]



Algorithm 1 Diffusion Maps Algorithm.

Input: S = {z1,...,z,}, the original data set.

Output {W'(z1),...,¥"(2,)}, the embedded data set.

: Construct G = (S W) where W is a symmetric distance matrix, Wi; = w(z;, ;).
Define the initial density function as g(x:) = >°7_, w(zi, ;).

w(z,y)
a(z)¥q(y)> "
Let g(®(2;) = > =1 w(® (z;,2;) be the graph degree. Define the transition prob-

Normalize the weights by the density, w(o‘)(ac7 y) =

oW b

() (@ @
ability Pfj = p(o‘)’t(aciwj) = %ﬁ;’?)

Obtain the eigenvalues {\L},>o and eigenfunctions {¢;},>0 of P*.

Compute the embedding dimension using a threshold d = max{l : |\}| > §|A}|}.
7: Formulate Diffusion Map, ¥'(z) = (A{o] (z),..., \jp7(2)).

that is used to control the combined effects of manifold geometry and sample
distribution and define w(®) (x;, v;) = %, where g(x;) = 327 w(wi, z;)
is the degree at the i—th node of the W matrix. We define now the new a—degree
at z; as g\ (z;) = Z? L w'® (x;,2;) and arrive at the transition probability

(@)
P (zi,25) = ﬁ Notice that when o = 0, we are essentially defining

the weight matrix typically used in spectral dimensionality reduction [3]. In this
case, the infinitesimal generator Lg of the resulting Markov chain acts on an f
as Lo(f) = # - %f [5], with A the manifold’s Laplace—Beltrami operator.
However, when o = 1 the infinitesimal generator L; verifies L1(f) = Af and
it is not influenced by the underlying density ¢ (this will not be the case for
o = 0 unless ¢ is uniform). We will consider here the case & = 1 and write just
p'(xi, x;) if a t-step Markov chain is used. We will denote by P! the matrix of
transition probabilities in ¢ steps (P}, = p'(xi,2;)).

Let A\, vi(xz), i = 0,...,n — 1, be the eigenvalues and eigenvectors of P,
where we assume 1 = \g = --- > \,_1; P! has then eigenvalues )\E and the same
eigenvectors ¥; (). To select for a given ¢ the embedding dimension d = d(t) we
may fix a precision ¢ and choose d = max{l : [\]| > §|\{|}. The embedding pro-
jection is then W' (z) = (\[¢](z),..., Ay ()7, with 7 the transpose operator.
The previous steps are summarized in Algorithm 1.

The Euclidean distance || (z) —@*(2)[|* = 37, A7 (45 (2) —1;(2))? in the em-

bedding coincides with the diffusion distance D2(z, 2) = ||pt(z, ) —pi(2,")] |2LQ(¢L),
where ¢ is the stationary distribution of the P-Markov process. In other wordos,
if the diffusion distance D; approximates the manifold metric, we get the orig-
inal data embedded in a lower dimension space for which Euclidean distance
captures the original local geometry, something very convenient if we want to
apply K—means. Once we have obtained K clusters {C1,...,Ck} over the em-
bedded features, they can be projected back into clusters {Aj,..., Ax} in the
original space S defined as A; = {z;|¥(x;) € C;}.

A limitation of the above scheme is that it implicitly assumes the attributes
to be homogeneous; however, real-life datasets are frequently heterogeneous,



something that often cannot be handled just by normalizing the data. In [10] a
method is proposed to adapt DM to work with heterogeneous features just by
dealing separately with groups of attributes that are deemed to be homogeneous.
More precisely, assume that we have M such groups; we then split each pattern
x; into M new, lower dimensional ones z}" and build the corresponding sample
sets {S}M_,. We now apply DM as described before to each S, obtaining
M embeddings {¥,,}M_, that capture the geometry associated to each feature
subset. Now, these ¥,, are given by eigenvalue—eigenvector products, with the
eigenvectors being comparable across the embeddings since they have unit norm.

W m,i

We can make eigenvalues also comparable if we re-scale them as Ao = S
, A

Thus the union of the normalized features gives a set of homogeneous features
that still represent the intrinsic geometry of our original data and we can simply
apply DM again to this new dataset to get the final lower dimensional embedding.

In summary, DM makes possible low dimensional embeddings of heteroge-
neous data while transforming the original space metric into an Euclidean one.
However, they require proper choices for the parameters o and 0. Moreover, a
main drawback (as it also happens in spectral DR) is the difficulty to apply the
computed DM projection to new, unseen patterns. There are several proposals
for this such as Nystrom formulae [4] or Laplacian Pyramids [10], but this is still
an area where further work is needed.

3 Experiments

In this section we will apply K—means clustering based on DM to build local
models for predicting the wind energy production in Spain and compare it with
the results of K—means applied to either the original full dimensional data or
to PCA lower dimensional features. Once clusters are defined, we will use Ridge
Regression (RR) [7] for model building. Recall that RR adds a ¢ regularization
term to an Ordinary Least Square (OLS) regression, so the optimization problem
becomes min,, || Xw — y||3 + 7||w||3. This prevents over—fitting in plain OLS but
requires a procedure to compute the penalty term . While stronger models
could be considered [2,8], our primary interest here is whether DM-based local
models improve on either other local models or global ones. If so, stronger models
should also benefit from this, although we will not consider them in this work.

We will use as inputs NWPs from the European Centre for Medium—Range
Weather Forecasts (ECMWTF) [6] and consider five surface variables: wind speed
(V), its horizontal and vertical components (V, and V), pressure (p) and temper-
ature (7T'), which we normalize component—wise to zero mean and unit variance.
These variables are available over a rectangular 522-point, 0.5° resolution grid
that covers the Iberian peninsula. Pattern dimension is thus 2,610 = 5 x 522.
Two year data will be considered, the first one for training purposes and the
second for testing. Since eight forecasts are given daily, training sample size is
thus 2,910 = 365 x 8, close to feature dimension and hence making regularization
mandatory.
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Fig. 1: Wind power histograms for the clusters obtained using the 3 approaches.

We will use NWPs and wind energy production data y for cluster definition.
Wind power is obviously unknown for the test dataset so we will use as a proxy
the wind power forecast of a global model. We already mentioned the difficulties
associated with the application of DM to test patterns. We will skip on them by
building the DM features and clusters, as well as the plain and PCA clusters,
over the full two year dataset. This confers some advantage to the local models
over the global one, partially compensated by the global model influencing cluster
definition. In any case, and as mentioned before, the computation of DM features
for new patterns is an area of active research.

We consider wind power production and the NWP variables as heterogeneous
and build first DM features separately on the y, V, V,, V,,, T and p variables.
In all of them we define the graph’s weight matrix using a Gaussian Kernel with
bandwidth o equal to the dataset diameter. We arrived at this value heuristi-
cally after visually analyzing the structure of the resulting embeddings. We also
work with ¢t = 1, i.e., considering the one—step diffusion distance on the original
feature space and final embedding dimension was obtained using a § = 0.1 pre-
cision parameter. Embedding dimensions for the above variables were 1, 6, 3, 5,
1 and 1 respectively and the final dimension for the DM embedding is 5. There-
fore, we also considered a 2,610 to 5 dimension reduction for PCA. Finally, the
choice of K is always difficult. We will consider 3 clusters that hopefully capture
high, medium and low ranges of wind power. While initial centroids are ran-
domly chosen in K—means, we found that the DM parameters used lead to very
stable cluster structures that are essentially independent of centroid initializa-
tion. Figure 1 gives the cluster histograms of the local wind power distributions
for each approach. As it can be seen, the 3 DM clusters offer a more clear—cut
structure while the other two methods seem to differentiate less between wind
energy regimes.

Once DM, PCA and original feature clusters are defined, we build a global
model and also three local RR models, one per cluster, that we denote as GM,
LMpn, LMpc and LMg, respectively. Prior to model building we select the
optimal regularization parameters for all the RR models by grid search for v in
the interval [1072,10%], with a logarithmic step of 0.1 and using as validation
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Fig. 2: Average wind versus actual power (top) and average wind versus predicted
power (bottom) for the 3 clusters.

set the last 20% patterns of the first year data clusters. As usually done in wind
energy, we measure model performance by the mean absolute error (MAE) and
the relative mean absolute error (RMAE). The MAE is defined as the mean of
the differences between the predictions and the real values. The RMAE computes
the mean for the ratio of the absolute errors over actual wind power. Table 1a
contains local model errors per cluster as well as the cluster errors of the global
model. As we can see, the local models beat the global one in the first, low
wind power cluster C; but GM beats them in Cs and particularly in the high
wind power cluster Cs. A reason for this can be seem in Fig. 2 that depicts for
the 3 LMpy clusters the relationships between average wind and power (top)
and between average wind and predicted power (bottom). Cluster Cs3 has the
fewest number of points but presents several marked outliers; these two facts
clearly penalize the local C3 models. Table 1a also gives values for the standard
deviations of MAE and RMAE, although they are rather conservative (assuming
independence for these errors would lead to divide the values given by the square
root of sample size and, hence, much smaller values).

These facts suggest to build predictors combining a local model on the C;
cluster and the global one on the other two. Table 1b contains the MAE and
RMAE errors of the individual GM, LMpy, LMo, and LMpc, and of the com-
bined models CMpm:.c, CMor,c and CMpc.q. It shows that there is a clear
advantage of the combined models over the global one and that the gain is
largest for the CMpa.g model. While modest at first sight (a MAE of 3.37%
against 3.48% for GM), such gains may have a large economic impact, as wind
energy represents about 16% of Spain’s electricity demand.



Table 1: (a) Errors per cluster (top). (b) Global errors (bottom).

MAE RMAE stdAE stdRAE
LMpm GM LMpwm GM LMpwm GM LMpwm GM
Cy 2.29 2.53 19.54 22.98 1.88 1.94 31.49 40.66
Co 4.01 3.83 19.93 18.34 3.20 3.16 72.67 65.63
Cs 5.94 5.73 15.67 13.93 4.76 4.94 23.13 21.20
MAE RMAE stdAE stdRAE
LMo, GM LMo, GM LMoy GM LMo, GM
Cq 2.52 2.69 18.76 20.10 1.95 2.14 22.94 23.78
Co 3.72 3.65 20.52 19.37 3.11 3.15 38.75 40.73
Cs 5.40 4.77 24.14 20.36 4.39 4.26 94.33 93.43
MAE RMAE stdAE stdRAE
LMpc GM LMpc GM LMpc GM LMpc GM
Cq 2.53 2.66 18.99 20.01 1.95 2.10 23.24 23.84
Cs 3.68 3.64 20.39 19.62 3.08 3.12 37.37 40.48
Cs 5.21 4.78 22.91 20.11 4.31 4.28 93.32 92.68
GM LMpwm LMo, LMpc |CMpwm,c | CMor,c | CMpc;a
MAE 3.48 3.47 3.56 3.53 3.37 3.40 3.42
RMAE 19.89 19.24 20.52 20.34 18.35 19.32 19.46
stdAE 3.16 3.19 3.21 3.17 2.80 2.87 2.88
stdRAE 51.60 52.80 51.25 50.87 44.98 44.12 44.37

4 Conclusions

Local models are obviously useful in many applied problems, being wind energy
forecasting a clear example. The main obstacle for their construction usually is
how to define the local regions on which models will be built. A natural option
is K—means clustering that requires to choose an adequate metric, something
always difficult and more so when we also have to deal with the high dimensional,
heterogeneous features that arise in wide area wind energy forecasting. In this
work we have applied to this task Diffusion Maps (DM), a novel dimensionality
reduction technique that lends itself naturally to work with heterogeneous data
and that has the very important property that Euclidean metric in the projected
space is naturally related to a diffusion distance on the original features. This
distance is in turn related to a Markov process whose infinitesimal generator is
just the Laplace—Beltrami operator of the underlying manifold. We can expect
that the Euclidean metric in the reduced features captures the original space
metric and, thus, standard K-means on the embedding results in meaningful
clusters for the original features.

We have compared this approach with clusters obtained by straight Euclidean
K-—means on the full features and on PCA features with the same dimension as
the DM ones, building local ridge regression models that, in turn, are compared
with a global one. The local models beat the global one over a low wind power
cluster, with DM a clear winner, but the global model performs better on the
other medium and high wind power clusters. This suggests to define a mixed



model, using the DM local model for the low wind power cluster and the global
one for the other two. This model outperforms the others.

We can conclude that DM dimensionality reduction and clustering is an ef-
fective tool for local model building, although further work is needed. In fact,
DM features are derived after an spectral analysis of the sample distance matrix.
As it is also the case with spectral dimensionality reduction and clustering, this
makes costly to assign new, unseen patterns to already defined clusters. Tools
to alleviate this are Nystrom formulae or Laplacian Pyramids. We are currently
doing research on this for wind energy and other applied problems.
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