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Abstract—Some commonly used performance measures in
Genetic Programming are those defined by John Koza in his first
book. These measures, mainly computational effort and number
of individuals to be processed, estimate the performance ofthe
algorithm as well as the difficulty of a problem. Although Koza’s
performance measures have been widely used in the literature,
their behaviour is not well known. In this paper we study the
accuracy of these measures and advance in the understandingof
the factors that influence them. In order to achieve this goal, we
report an empirical study that attempts to systematically measure
the effects of two variability sources in the estimation of the
number of individuals to be processed and the computational
effort. The results obtained in those experiments suggeststhat
these measures, in common experimental setups, and under
certain circumstances, might have a high relative error.

I. I NTRODUCTION

Many different measures have been traditionally used by
the Genetic Programming (GP) community. The intrinsic com-
plexity of the behaviour of Evolutionary Algorithms has lead
to a large number of measures that reflects the different sides
of the phenomenon. Eiben and Smith distinguish two types
of performance measures: effectivity and efficiency [1]. The
former measures how good (or bad) is an algorithm finding
an solution, while the latter deals with the cost of finding a
solution, given that it was found.

Some popular performance measures widely used by GP
researchers and practitioners were introduced by John Koza
in the chapter 4 of his first book [2]. These metrics use an
effectivity measure, the accumulated success probability, to
generate two efficiency measures: the number of individualsto
be processed and the computational effort, both closely related
to each other. Thenumber of individuals to be processed, or
I(M, i, z), is an estimation of how many individuals should be
processed to obtain, at least, one success with a certain given
probabilityz. The algorithm is suppsed to be run several times.
I(M, i, z) is given by the equation

I(M, i, z) = Mi

⌈

ln(1 − z)

ln(1 − P (M, i))

⌉

(1)

where M is the population size and is supposed to remain
constant along the execution of the algorithm;i = 1, 2, ..., G is
the generation number and is an independent variable; finally

P (M, i) is the accumulated success probability in generationi
and is estimated as the ratio between the accumulated number
of successful runs (k(M, i)) and the number of runs in the
experiment (n), henceP (M, i) = k(M, i)/n. The operator
⌈. . .⌉ stands for the ceiling function, which rounds up its
argument.

Since I(M, i, z) is a function rather than a scalar, it is
not well suitable to serve as a simple statistic. There is a
simplification ofI(M, i, z) calledcomputational effort, or E,
which is simply the minimum value ofI(M, i, z), so

E = min
i

{

Mi

⌈

ln(1 − z)

ln(1 − P (M, i))

⌉}

(2)

Many statistical issues arise from the difference between the
definition ofI(M, i, z) andE and the estimation of those val-
ues that can be gathered empirically,Î(M, i, z) andÊ [3]. This
difference reduces the accuracy of these performance measures
and, although this subject has been investigated before, we
think that there is no understanding of the circumstances in
which these measures are reliable.

To our knowledge, the first person noticing the statistical
nature of computational effort was Angeline [4], he observed
a remarkable variance in the measurement ofE and suggested
using statistical tools to manage the randomness. Some time
after, Keijzer [5] bounded the estimation of with confidencein-
tervals and observed that sometimes the width of the intervals
are as large as the estimation ofE [5]. Some studies followed,
including the attempt made by Christensenet al to identify
and characterize systematically the sources of variability in
the measurement of Koza’s performance measures [3]. He
identified three sources of variability: the ceiling operator, the
estimation error of the accumulated success probability and the
minimum operator. Other works investigated how to use some
statistical tools with computational effort, mainly confidence
intervals [6], [7], toher authors studied the reliability [8], [9]
of confidence intervals or proposed alternative performance
measures [10].

This paper aims to quantify the error sources associated
to the measurement ofI(M, i, z) as well asE from a pure
empirical approach. We should emphasize that our goal is not
to explain the error sources, but rather to identify and quantify



the main factors that affect them. Inspired by Christensen,
we systematically study two variability sources, the ceiling
operator and the estimation error; however, in opposition to
Christensen’s work, we do not consider the minimum operator
an error source, but the distinction betweenI(M, i, z) and
computational effort. Our initial hypothesis is that the error
associated toI(M, i, z) and E is affected by two and only
two factors, the number of runsn, and the accumulated success
probabilityP (M, i). Nonetheless in this paper we only provide
evidence in favor thatn andP (M, i) affects the quality of the
measurement, the claim that onlyn and P (M, i) affects the
magnitude of the error is not demonstrated.

With these considerations, the paper has been structured
as follows. We first perform an exploratory study. Section 3
begins the study of the error associated withI(M, i) while
section 4 studies the error of the computational effort. Both
sections separates the study of hown andP (M, i) affect the
error. Finally, some conclusions and future work are outlined.

II. OVERVIEW OF PERFORMANCE MEASURES

There are two main problems concerning the experimenta-
tion that we have to face. First, since we are interested in
the accuracy of the measures under study, there is a need
to have something to compare with, to take as reference;
ideally it should be the exact measure, but clearly it is not
possible. Secondly, we need a high number of algorithm runs,
with a high consumption of computing resources. These two
problems can be solved using resampling methods.

Four classical GP study cases have been selected: Artificial
ant with the Santa Fe trail, 6-multiplexer, even 4-parity and a
linear regression [2]. They have been selected to representa
diversity of difficulties, from an easy problem (6-multiplexer)
to a difficult one (4-parity), with two intermediate problems
(artificial ant and regression). Each one of these domains was
run a high number of times,100, 000, with the exception
of the 4-parity, that was only run5, 000 times because its
greater population size required more computational resources.
The main advantage that it provides is that using all the
runs it is possible to calculate an accurate estimation of the
metrics under study. A second advantage is that once those
runs are executed and stored, they can be resampled to avoid
running again the algorithms, saving substancial computational
resources and time.

The object of this study is not the algorithm itself, but rather
the performance metrics, so the details of their implemen-
tation and the parameter tuning does not affect this study.
Consequently, we have used the default implementation of
the selected problems and parameters found in ECJ v18 [11],
which are based on the original settings used by Koza [2]. The
main parameters that we have used are reported in Table I, with
just minimal corrections such as the population size1.

The large number of runs executed yields a good estimation
of the true values of Koza’s metrics. Since they are the

1All the code, datasets and scripts needed to repeat the experiments are
available in http://atc1.aut.uah.es/∼david/cec2011
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Fig. 1. Number of individuals to be processed of200 pseudoexperiments
composed by50 runs. The mean value is plotted with a black solid line.

best estimation available for this study, we note them as
Îbest(M, i, z), P̂ best(M, i) and Êbest. The values of these
estimations are shown in Table II.

The variability of the estimation ofI(M, i, z) is depicted in
Fig. 1. It contains the outcome of200 simulated experiments
(or pseudoexperiments) with its average value. Each experi-
ment has been simulated taking50 samples with replacement
from the dataset. This figure shows that different pseudoexper-
iments usually yield different performance curves. Depending
on the domain, the variability of the curves changes, for
instance, if we compare the curves of the artificial ant and
the 6-multiplexer, we find less variability in the latter than in
the former. Notice that the scale used in the figure in both
cases is the same.

At this point it makes sense for us to hypothesize that the
problem difficulty plays a role, this hypothesis is based on the
apparent correlation between the success rate of each problem
and the dispersion of their̂I(M, i, z) curves. The two most
difficult problems, the artificial ant and the 4-parity, are those
with greater variability whereas the two easiest problems,6-
multiplexer and the regression, present less variability.

Fig. 2 shows the histograms of the computational effort
calculated for the problem domains under study. Each his-
togram uses5, 000 pseudoexperiments calculated using50
(bottom row), 200 (middle row) and500 (top row) runs
sampled from the datasets of runs. Histograms do not suggest
clearly a distribution function able to fit data in all the
cases. Computational effort in the regression problem takes
a triangular form while, for instance, the artificial ant seems
to fit better in a lognormal or a Weibull distribution. There
are also some outsider histograms, such us the parity problem



TABLE I
TABLEAU FOR THE PROBLEMS UNDER STUDY: ARTIFICIAL ANT WITH THE SANTA FE TRAIL , 6-MULTIPLEXER, EVEN 4-PARITY AND SYMBOLIC

REGRESSION.

Parameter Artificial ant 6-Multiplexer 4-Parity Regression
Population 500 500 4,000 500
Generations 50 50 50 50
Terminal Set Left, Right, Move, If-

FoodAhead
A0, A1, A2, D0, D1, D2,
D3, D4, D5

D0, D1, D2, D3, D4 X

Function set Progn2, Progn3, Progn4 And, Or, Not, If And, Or, Nand, Nor Add, Mul, Sub, Div, Sin,
Cos, Exp, Log

Success predicate Bestfitness = 0 Bestfitness = 0 Bestfitness = 0 Bestfitness ≤ 0.001
Initial depth 5 5 5 5
Max. depth 17 17 17 17
Selection Tournament (size=7) Tournament (size=7) Tournament (size=7) Tournament (size=7)
Crossover 0.9 0.9 0.9 0.9

Reproduction 0.1 0.1 0.1 0.1
Observations Timesteps=600 Even parity y = x4 + x3 + x2 + x

Santa Fe trail x ∈ [−1, 1]

TABLE II
BEST ESTIMATION OF SUCCESS PROBABILITY FOR THE ARTIFICIAL ANT PROBLEM. IT REPORTS NUMBER OF RUNS(n), NUMBER OF SUCCESSFUL RUNS

(k), BEST ESTIMATION OF SUCCESS RATÊP best(M, G), BEST ESTIMATION OF COMPUTATIONAL EFFORT(Êbest), BEST ESTIMATION OF

COMPUTATIONAL EFFORT WITHOUT CEILING OPERATOR(Êbest
c ) AND THEIR DIFFERENCE IN ABSOLUTE AS WELL AS RELATIVE VALUES.

Artificial ant 6-Multiplexer 4-Parity Regression

n 100,000 100,000 5,000 100,000

k 13,168 95,629 305 29,462

P̂ best(M, G) 0.13168 0.95629 0.061 0.29462

Êbest 490,000 24,000 14,800,000 117,000

Êbest
c 487,276 22,805 14,633,571 116,468

Difference 2,724 (0.5%) 1,195 (4.98%) 166,429 (1.13%) 536 (0.49%)

for n = 50 or the multiplexer withn = 50, nonetheless, the
latter can be explained by the grouping of the categories in
the histogram.

The lack of an obvious distribution able to describêE
confirms the previous result reported by Walkeret al in [7],
who also failed in finding a probability distribution able to
model Ê. We conjecture that there is an underlying random
variable associated to the accumulated success probability,
and this random variable is modified by several non-lineal
operations such us logarithms and the minimum operator, so
Ê in some sense follows the same distribution but it has been
”contaminated” by those operations. From another point of
view, differences in the distribution of̂E with different levels
of n suggest the presence of a sampling bias [12], and thus the
presence of other factors that influenceE. We suspect these
factor are the non-linear operations made by (1) and (2). More
research is needed to provide evidence in favor or against this
conjecture.

An important property of any estimator is its variability.
Fig. 2 illustrates a relationship between the variability of the
estimator and the number of runs: the higher isn, the narrower
is the distribution ofÊ. Let us, for instance, observe the
artificial ant, whenn = 50 most of the estimators are placed
between0 and1.5E6 individuals, if we increase the number
of runs to200, most of Ê take values between200, 000 and
800, 000; higher values ofn yield even less variability of the
estimations of computational effort, whenn = 500 Ê is mostly

placed in the range of300, 000 and700, 000. This behaviour
is observed also in the rest of problem domains. Since the
estimation ofI(M, i, z) andE depends on the estimation of
the accumulated probability, and its quality is highly dependent
on the number of runs [9], it makes sense to suppose that they
are related to each other. This fact is analyzed in more detail
in sections III-B and IV-B.

In any case, it is clear that performance measures contain
a variability that comes from the intrinsic stochastic nature of
experimentation. However the exact nature of the variability
and the factors that influence its magnitude is not yet clear,
so we move on to try to answer under which circumstances
Koza’s performance measures contain more variability and
quantify it.

III. A CCURACY OF THE NUMBER OF INDIVIDUALS TO BE

PROCESSED

We consider two sources of randomness in (1) associated to
the estimation of the number of individuals to be processed:
the ceiling operator and the estimation of the accumulative
success probability. Christensen identified a third sourceof va-
riability in the minimum operator, nevertheless, in our opinion,
the effects of this operator should be studied in the context
of computational effort because the minimum operator is
strictly associated to this metric. So far the minimum operator
is not included in the study of the number of individuals
and is included in the study of computational effort done in
section IV.
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Fig. 2. Histograms of the computational effort for the four problems under consideration. Each histogram represents the computational effort of5, 000
experiments that were simulated subsampling50, 200 and500 runs from the datasets.

A. Ceiling error in Î(M, i, z)

We begin the empirical study looking at the ceiling error.
Strictly speaking, the ceiling operator is not a randomness
source because it is a deterministic operator, but it removes in-
formation yielding discontinuities that increase the variability
of the estimation, and thus introducing an error in practical
terms.

In order to study the effects of the ceiling operator in the
estimation ofI(M, i, z), we define a new measureIc(M, i, z)
such as

Ic(M, i, z) = Mi
ln(1 − z)

ln(1− P (M, i))
(3)

which is (1) without the ceiling operator. Using (3) makes the
estimation of the ceiling error straightforward, it is justthe
differenceI(M, i, z) − Ic(M, i, z).

In this way we can measure the ceiling error just comparing
the number of processed individuals with and without the
ceiling operator. We have performed this comparison using
all the runs in the datasets and the results are shown in Fig. 3.
This figure represents the best estimation of the number of

individuals to be processed with (Îbest(M, i, z)) and without
(Îbest

c (M, i, z)) ceiling operator. The most obvious difference
is the sawtooth shape thatÎbest(M, i, z) has in some problem
domains, such as the multiplexer. This shape is also found in
the rest of the problems, nonetheless in different magnitude.
In the case of the parity problem it seems that there are
no discontinuities, however there are, but they so reduced
that only a zoom over the figure shows it. In any case,
Îbest(M, i, z) is strictly higher thanÎbest

c (M, i, z), so, as
Christensen reported, the ceiling error is biased and tendsto
increase the value ofIbest(M, i, z).

Interestingly, there seems to be a correlation between the
problem difficulty and the magnitude of the discontinuity; the
ceiling operator introduces more discontinuities in the mul-
tiplexer problem (̂Pbest(M, G) = 0.96), followed by the re-
gression (̂Pbest(M, G) = 0.29), artificial ant (P̂best(M, G) =
0.13) and finally the parity problem (̂Pbest(M, G) = 0.06).
This experiment confirms the relationship between the ceiling
error and the problem difficulty found by Christensen and
Oppacher using a synthetic expression ofP (M, i) [3]. Ex-
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Fig. 3. Comparison between the number of individuals to be processed
calculated using ceiling operator (solid red line) and not using it (dashed blue
line). I(M, i, z) curves have been calculated using all the samples in the
dataset and settingz = 0.99.

periments show that measuringI(M, i, z) in easy problems
tends to have more ceiling error than in hard problems.

Despite the potentially high impact that the ceiling operator
might have in the estimation, there is an easy solution, just
removing the operator. Koza introduced this operator to reflect
that it is not possible to carry out a fractional number of
experiments [2], however it is actually not supposed to be
interpreted physically, so the ceiling error can be removed
without any evident drawback. Nonetheless, the another source
of variability under study, the estimation error, is intrinsic to
the measure and thus cannot be removed.

B. Estimation error inÎ(M, i, z)

If we look in more detail (1), we can identify two fixed pa-
rameters,M andz, and one independent variable,i. All these
values are known, and thus they do not generate uncertainty.
Usually, the only element in (1) that is not perfectly known is
P (M, i), that is an unknown probability and must be estimated
empirically. The error associated to the estimation ofP (M, i)
is actually the only true source of error since this is the only
element in (1) that introduces uncertainty.

P̂ (M, i) is the estimation of a probability, and, if we do
not consider its variation in time, this probability in a fixed
generationi0 can be described using a binomial distribution,
which is a well known problem [13]. Irrespective of the
problem under study, the quality of the estimation of any
success probability only depends on the number of trials (or
runs in our case) and the magnitude of the probability [13],
this result let us limit our study to only those factors.

We begin investigating the influence of the number of runs
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Fig. 4. Boxplot of the absolute estimation error ofÎ(M, i, z) with several
values of number of runs. Each box represents the sum of the average
estimation error of5.000 pseudoexperiments.

with the following experiment. Given the four datasets, we
have calculated5, 000 values of Îc(M, i, z) using n runs
resampling with replacement from each dataset. The ceiling
function is removed to isolate the effects of the estimationer-
ror. For each value of̂Ic(M, i, z), its distance tôIbest

c (M, i, z)
has been calculated using the following formula

ξ =

R
∑

j=0

G
∑

i=0

Îbest
c (M, i, z) − Îj

c (M, i, z)

R
(4)

where ξ is the statistic that measures the average distance
betweenÎbest

c (M, i, z) and Îj
c (M, i, z), which is thejth curve

of the number of individuals to be processed.R the number
of pseudo experiments. All the experiments were carried out
with R = 5, 000 andG = 50. Of course, it is an error measure
and therefore low values means good estimations.

The boxplots of the estimation error calculated using the
method described earlier are depicted in Fig. 4. A glance to
this figure clearly suggests a strong relationship between the
number of runs and the average estimation error, more runs
yield better estimations ofI(M, i, z). The estimation error of
the 4-parity problem is not shown because it was found that
the low number of generations whereI(M, i, z) is defined (see
Fig. 1) generates an erratic behaviour of the statistic we use
to measure the distance.

Experimentation with the other factor under study, the
accumulated success probability, is more tricky.P (M, i) is
not an independent variable, but a dependent one and, unless
we used a syntheticP (M, i), we cannot manipulate it to
carry out the experiment. Additionally,P (M, i) is a function
rather than a scalar. These two facts difficult experimentation,
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Fig. 5. Scatterplot of the relative estimation error ofI(M, i, z) with several
values of success probability.200 pseudoexperiments withn = 100 were
carried out for each problem domain.

however, we can still perform an experiment to observe the
behaviour of the estimation error for different values of the
accumulated success probability. For each problem domain,
we have run200 pseudoexperiments withn = 100 following
the same procedure described above, but we have done a
different manipulation of data. Instead of measure how close
is Îbest

c (M, i, z) from Îc(M, i, z), we have stored the tuple
(P (M, i), εest(i)), wherei = 1, ..., G and

εest(i) = 100
Îbest
c (M, i, z)− Îc(M, i, z)

Îbest
c (M, i, z)

is the relative estimation error. In this way we obtainG = 50
tuples from each pseudorun, and we used200, so there are
10, 000 tuples in each problem domain.

The tuples that we have obtained are shown in the scat-
terplot depicted in Fig. 5. This figure shows a surprising
behaviour of the estimation error: it is not symmetrical andit
is biased. OverestimatingP (M, i) yields an underestimation
of I(M, i, z), on the contrary, an overestimation ofP (M, i)
generates an underestimation ofI(M, i, z). Fig. 5 shows that
the effects of overestimating or underestimatingP (M, i) are
not the same. An overestimation ofP (M, i) induces a higher
error in I(M, i, z) than a underestimation, it is specially
notorious in the case of the artificial ant and the 4-parity
problems. This asymmetry varies with the success probability,
while the minimum error tends to reduce with the probability,
the maximum error is almost constant. In any case, there is an
an asymptotic behaviour of the estimation error with very low
success probability that makes the estimation highly imprecise
in that region.

The magnitude of the maximum estimation error depends on
the success probability. Low probabilities yield higher estima-
tion error and higher success probabilities tend to generate less
estimation error. Nonetheless the error is biased in the endof
the execution of the algorithm (higher success rates), withthe
only exception of the multiplexer, which is the only one that
achieve a success rate close to1. It leads us to conjecture that
high success probabilities have associated higher estimation
error, however we feel unable to claim it with the evidence
shown, it should be confirmed by further research. In any case,
the magnitude of the bias seems to be rather significant in
almost all the cases, around30% and50%, with the exception
of the 6-multiplexer. We should remark that this experiment
used100 runs, which is a relatively high number of runs; it
is quite easy to find literature that reports experiments with
fewer number of runs, so we can expect that the estimation
error in those experiments were higher.

In average, the relative estimation error is notable and the
estimator is biased significantly, depending on the problem
domain. Nonetheless, these error might be, or not, significant
when the computational effort is calculated, which is the
objective of the next subsection.

IV. A CCURACY OF COMPUTATIONAL EFFORT

Common sense suggests that a good estimation ofI(M, i, z)
should also yield a good estimation of the computational
effort; this apparent correlation should link the factors of
I(M, i, z) with the factors ofE. However, common sense
might fail, therefore we have performed some experiments
to verify this hypothesis. We should point out that in this
section we only study one factor, the number of runs. There
are reasons to think that the magnitude of the accumulated
success probability plays an important role, however we must
face that this probability is not fixed with the generation time
and it is not an independent variable. Moreover, the variation
of P (M, i) plays an essential role in the measurement of
computational effort, and it is not possible to treat it as a
punctual estimator, like we did in the previous section. For
these reasons, in the following, this factor is excluded from
the study.

A. Ceiling error in E

Firstly it is worth to compare the computational effort with
and without ceiling operator when it is calculated using allthe
samples. These values, as well as their absolute and relative
difference, can be found in Table II. We found earlier that
easy problems -those with high success probability- generated
more ceiling error in the estimation ofI(M, i, z). Table II
shows that our experiments partially verify this behaviourin
the estimation ofE. The easiest problem, the 6-multiplexer
(P̂best(M, G) = 0.96), generated the biggest difference be-
tweenÊbest andÊbest

c , 4.98%, while the rest of the domains
achieve intermediate values of ceiling error: the artificial ant
(P̂best(M, G) = 0.13) with a difference of0.5%, the 4-parity
(P̂best(M, G) = 0.06) with 1.13% and finally the regression
problem (̂Pbest(M, G) = 0.29) with 0.49%.
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Fig. 6. Absolute ceiling error of computational effort withseveral number
of runs. Each box represents2, 000 pseudoexperiments.

There is no direct correlation between problem difficulty and
ceiling error when estimatingE. There may be two possible
explanations behind this fact. First, the ceiling operatorintro-
duces discontinuities inI(M, i, z) that might increase variance
when the minimum is calculated. From another perspective, we
observe that the 4-parity is the hardest problem but it has the
second highest ceiling error. There is an important issue with
this problem domain, as can be seen in Fig 1: the number of
generations given to the algorithm is too scarce, so it could
have affected the result of this experiment. So far, there seems
to be a tight correlation between the success probability of
a problem and the ceiling error associated toÊ. As we did
earlier, we pass though to study whether the number of runs
influences the ceiling error.

Fig. 6 shows a boxplot that represents the differenceÊ−Êc

of 2, 000 pseudoexperiments calculated with different values
of n. The use ofÊbest has been avoided to isolate the ceiling
error from the estimation error. We first observe that the
difference is always positive, meaning thatE > Ec, which is
not surprising because the ceiling operator always increases its
argument, unless it were an integer, which is rather unlikely.
No notable differences in the mean value of the difference
Ê − Êc are appreciated, only whenn is small, around50
runs, the tail of the distribution seems to be longer, with
more outsiders, but the median, as well as the first and third
quantiles, remains almost constant, regardless of the number
of runs.

This result is confirmed with a one-way ANOVA test, whose
result is shown in Table III. The ANOVA was calculated for
six levels of n (50, 100, 200, 300, 400 and 500) using the
square root ofÊ − Êc as independent variable. Using50

TABLE III
ANALYSIS OF VARIANCE FOR SIX LEVELS OF FACTORn, THE

INDEPENDENT VARIABLE IS THE SQUARE ROOT OF THE DIFFERENCE

Ec − E . RESIDUALS OF PROBLEMS MARKED WITH* DID NOT PASS THE
NORMALITY TEST. P-VALUES WITH SIGNIFICANCE (α = 0.01) ARE

MARKED IN BOLD .

Problem df Sum. sq. Mean sq. F-value p-value
Artificial ant 5 2445 489.03 0.9689 0.437
6-Multiplexer 5 5145 1029 5.1462 0.0001529*

4-Parity 5 236380 47276 4.9595 0.0002247*
Regression 5 4349 869.79 2.9602 0.01266

pseudoexperiments for each level, two problems (multiplexer
and parity) yielded statistical significance withα = 0.01
while two did not (artificial ant and regression). However,
the residuals of the multiplexer and the parity problems did
not pass the normality test, and therefore we cannot accept
their test as valid. The residuals of the other two problems
did pass the normality test, which are the two that did not
found differences, so, with these evidence, we conclude that
the number of runs does not affect the ceiling error when
estimating computational effort.

Experiments shown in this subsection were designed to
avoid the effects of the estimation error, which is just the factor
that we move forward to study.

B. Estimation error inE

Finally, we study the effects of the estimation error. This
study follows a procedure similar to the one used previously.
Given the datasets of the four selected problem domains,
100 experiments were simulated resamplingn runs with
replacement from the datasets. For each simulated experiment,
the error between the estimation and the best estimation of
computational effort was calculated. Two methods to calculate
computational effort were used, using the ceiling operatorand
not. In this way, we are able to measure the estimation error
as well as compare both methods of calculating computational
effort, so the statistic of relative estimation error is given by

εE
est(%) =

Ebest − E

Ebest

; εEc

est(%) =
Ebest

c − Ec

Ebest
c

The variation of the estimation error withn is shown in
Fig. 7. It shows some interesting behaviors. Probably, the
most important one from a practical point of view is the high
relative estimation error found in our experiments. Depending
on the problem, when the number of runs is not too high, an
estimation error of computational effort up to50% is found.
Error decreases rapidly with the number of runs, however there
is a point that a small reduction of the error requires a very
remarkable increment of the number of runs. Depending on
the context, incrementing the number of runs might not pay
off.

Another interesting property that Fig. 7 shows is the asym-
metry of the estimation error. It was previously shown that
estimation error ofI(M, i, z) is asymmetrical and we can
observe now that this behaviour is transferred to the estimation
error of E. The maximum overestimation ofE is bounded
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Fig. 7. Estimation error of computational effort with several values of number
of runs. Each box represents100 pseudoexperiments.

TABLE IV
ANALYSIS OF VARIANCE FOR SIX LEVELS OF FACTORn, THE

INDEPENDENT VARIABLE IS THE SQUARE ROOT OF THE ESTIMATION
ERROR OFEc . RESIDUALS OF PROBLEMS MARKED WITH* DID NOT PASS

THE NORMALITY TEST. P-VALUES WITH SIGNIFICANCE (α = 0.01) ARE

MARKED IN BOLD .

Problem df Sum sq Mean sq F value p-value
Artificial Ant 5 126.44 25.2874 12.579 1.035e-10
6-Multiplexer 5 95.09 19.0180 14.654 3.272e-12

4-Parity 5 98.72 19.7441 8.4623 4.308e-07*
Regression 5 106.12 21.2248 12.264 3.414e-10

and it tends to reduce its value asn increases. Unfortunately,
when E is underestimated, it tends to produce much higher
errors, nonetheless this difference tends to disappear when the
number of runs is increased. Finally, the ceiling operator does
not seem to influence the estimation error, the distribution
of the estimation error with and without ceiling operator is
similar, with the only exception of the 6-multiplexer, which is
also the most sensitive problem to the ceiling operator.

Although the variation of the estimation error shown in
Fig. 7 is rather clear, it is better support this conclusion with a
statistical test. We performed a one-way ANOVA of the square
root of the estimation error for the six levels ofn previously
shown, the result can be seen in Table IV. The test found
differences in the levels of the factor for the four problems
using a significance levelα = 0.01, however one problem,
the 4-parity, did not pass the normality test of its residues.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have carried out an empirical study about
the accuracy of Koza’s performance measures. Two sources
of variability were analyzed, the ceiling operator and the

estimation of the accumulated success probability. The former
introduces an error that does not depend on the number of
runs but varies withP (M, i). Our experiments showed that
this operator may introduce up to50% of variability in the
measure ofI(M, i, z) in an easy problem, nevertheless this
operator may be removed without any evident drawback. The
estimation ofP (M, i) introduces an intrinsic error that cannot
be removed, just reduced increasing the number of runs. The
experiments reported in this paper makes us doubt about the
reliability of I(M, i, z) and E under certain circumstances.
A natural step is try to understand why the error sources
have the behaviour that we observed and provide an analitycal
estimation of the error.
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