
Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844

Vol. III (2008), Suppl. issue: Proceedings of ICCCC 2008, pp. 480-485

Simulating NEPs in a cluster with jNEP

Emilio del Rosal, Rafael Nuñez, Carlos Castañeda, Alfonso Ortega

Abstract: This paper introduces jNEP: a general, flexible, and rigorous implementation

of NEPs (the basic model) and some interestenting variants; it is specifically designed to

easily add the new results (filters, stopping conditions, evolutionary rules, and so on) of the

research in the area. jNEP is written in Java; there are two different versions that implement

the concurrency of NEPs by means of the Java classes Process and Threads respectively.

There are also extended versions that run on clusters of computers under JavaParty. jNEP

reads the description of the currently simulated NEP from a XML configuration file. This

paper shows how jNEP tackles the SAT problem with polynomial performance by simulating

an ANSP.

Keywords: NEPs, natural computing, simulation, clusters of computers

1 Introduction

1.1 NEPs

NEP stands for Network of Evolutionary Processors. NEPs are an abstract model of distributed/parallel sym-

bolic processing presented in [1, 2]. NEPs are inspired by biological cells. These are represented by words which

describe their DNA sequences. Informally, at any moment of time, the evolutionary system is described by a

collection of words, where each word represents one cell. Cells belong to species and their community evolves

according to mutations and division which are defined by operations on words. Only those cells are accepted as

surviving (correct) ones which are represented by a word in a given set of words, called the genotype space of the

species. This feature parallels the natural process of evolution. Each node in the net is a very simple processor

containing words which performs a few elementary tasks to alter the words, send and receive them to/from other

processors. Despite the simplicity of each processor, the entire net can carry out very complex tasks efficiently.

Many different works demonstrate the computational completeness of NEPs [4][10] and their ability to solve NP

problems with linear or polynomial resources [11][2]. The emergence of such a computational power from very

simple units acting in parallel is one of the main interests of NEPs.

NEPs can be used to accept families of languages. When they are used in this way they are called Accepting

NEPs (ANEPs). Several variants of NEPs have been proposed in the scientific literature. NEP (the original model)

[2], hibrid nets of evolutionary processor (HNEP) [4] and nets of splicing processors NEPS or NSP [10]. This

last model uses a splicing processor, which adds a new operation (splicing rules) to mimic crossover in genetic

systems. In section 3.1 we show an example of ANSP (the accepting variant of NSPs) solving the SAT problem.

Nevertheless, all of them share the same general characteristics.

A NEP is built from the following elements: a) a set of symbols which constitutes the alphabet of the words

which are manipulated by the processors, b) a set of processors, c) an underlying graph where each vertex rep-

resents a processor and the edges determine which processors are connected so they can exchange words, d) an

initial configuration defining which words are in each processor at the beginning of the computation and e) one or

more stopping rules to halt the NEP.

An evolutionary processor has three main components: a) a set of evolutionary rules to modify its words, b)

some input filters that specifies which words can be received from other processors and c) an output filter that

delimits which words can leave the processor to be sent to others. The variants of NEPs mainly differ in their

evolutionary rules and filters. They perform very simple operations, like altering the words by replacing all the

occurrences of a symbol by another, or filtering those words whose alphabet is included in a given set of words.

NEP’s computation alternates evolutionary and communication steps: an evolutionary step is always followed

by a communication step and vice versa. Computation follows the following scheme: when the computation starts,

every processor has a set of initial words. At first, an evolutionary step is performed: the rules in each processor

modify the words in the same processor. Next, a communication step forces some words to leave their processors

and also forces the processors to receive words from the net. The communication step depends on the constraints

imposed by the connections and the output and input filters. The model assumes that an arbitrary number of copies

of each word exists in the processors, therefore all the rules applicable to a word are actually applied, resulting in

a new word for each rule. The NEP stops when one of the stopping conditions is met, for example, when the set of

Copyright © 2006-2008 by CCC Publications - Agora University Ed. House. All rights reserved.

Simulating NEPs in a cluster with jNEP 481

words in a specific processor (the ouput node of the net) is not empty. A detailed formal description of NEPs can

be found in [1], [4] or [10].

1.2 Clusters of computers

Running NEPs simulators on cluster is one of the possible ways of explointing the inherent parallel nature of

NEPs. The Java Virtual Machine (JVM), which can be considered the standard Java, cannot be run on clusters.

Several attempts have tried to overcome this limitation, for example: Java-Enabled Single-System-Image Com-

puting Architecture 2 (JESSICA2) [8], the cluster virtual machine for Java developed by IBM (IBM cJVM) [3],

Proactive PDC [12], DO! [9], JavaParty [6], and Jcluster [7].

The simulator described in this paper has been developed with both JVM and JavaParty.

2 jNEP

A lot of research effort has been devoted to the definition of different families of NEPs and to the study of their

formal properties, such as their computational completness and their ability to solve NP problems with polynomial

performance. However, no relevant effort, apart from [5], has tried to develop a NEP simulator or any kind of

implementation. Unfortunately, the software described in this reference gives the possibility of using only one

kind of rules and filters and, what is more important, violates two of the main principles of the model: 1) NEP’s

computation should not be deterministic and 2) evolutionary and communication steps should alternate strictly.

Indeed, the software is focused in solving decision problems in a parallel way, rather than simulating the NEP

model with all its details.

jNEP tries to fill this gap in the literature. It is a program written in Java which is capable of simulating almost

any NEP in the literature. In order to be a valuable tool for the scientific community, it has been developed under

the following principles: a) it rigorously complies with the formal definitions found in the literature; b) it serves as

a general tool, by allowing the use of the different NEP variants and is ready to adapt to future possible variants,

as the research in the area advances; c) it exploits as much as possible the inherent parallel/distributed nature of

NEPs.

The jNEP code is freely available in http://jnep.e-delrosal.net.

2.1 jNEP design

jNEP offers an implementation of NEPs as general, flexible and rigorous as has been described in the previous

paragraphs. As shown in figure 1, the design of the NEP class mimics the NEP model definition. In jNEP, a NEP

is composed of evolutionary processors and an underlying graph (attribute edges) to define the net topology and

the allowed inter processor interactions. The NEP class coordinates the main dynamic of the computation and

rules the processors (instances of the EvolutionaryProcessor class), forcing them to perform alternate evolutionary

and communication steps. It also stops the computation when needed. The core of the model includes these two

classes, together with the Word class, which handles the manipulation of words and their symbols.

Figure 1: Simplified class diagram of jNEP

482 Emilio del Rosal, Rafael Nuñez, Carlos Castañeda, Alfonso Ortega

We keep jNEP as general and rigorous as possible by means of the following mechanisms: Java interfaces and

the develop of different versions to widely exploit the parallelism availble in the hardware platform.

jNEP offers three interfaces: a) StoppingCondition, which provides the method stop to determine whether a

NEP object should stop according to its state; b) Filter, whose method applyFilter determines which objects of

class Word can pass it and c) EvolutionaryRule, which applies a Rule to a set of Words to get a new set. jNEP tries

to implement a wide set of NEPs’ features. The jNEP user guide (http://jnep.e-delrosal.net) contains the updated

list of filters, evolutionary rules and stopping conditions implemented.

Currently jNEP has two list of choices to select the parallel/distributed platform on which it runs (any combina-

tion of them is also available in http://jnep.e-delrosal.net). Concurrency is implemented by means of two different

Java approaches: Threads and Processes. The first needs more complex synchronization mechanisms. The second

uses heavier concurrent threads. The supported platforms are standard JVM and clusters of computers (by means

of JavaParty).

3 jNEP in practice

jNEP is written in Java, therefore to run jNEP one needs a Java virtual machine (version 1.4.2 or above) installed

in a computer. Then one has to write a configuration file describing the NEP. The jNEP user guide (available at

http://jnep.e-delrosal.net) contains the details concerning the commands and requirements needed to launch jNEP.

In this section, we want to focus on the configuration file which has to be written before running the program, since

it has some complex aspects important to be aware of the potentials and possibilities of jNEP.

The configuration file is an XML file specifying all the features of the NEP. Its syntax is described below in BNF

format, together with a few explanations. Since BNF grammars are not capable of expressing context-dependent

aspects, context-dependent features are not described here. Most of them have been explained informally in the

previous sections. Note that the traditional characters <> used to identify non-terminals in BNF have been replaced

by [] to avoid confusion with the use of the <> characters in the XML format.

- [configFile] ::= <?xml version="1.0"?> <NEP nodes=“[integer]”> [alphabetTag] [graphTag] [processorsTag] [stoppingConditionsTag] </NEP>

- [alphabetTag] ::= <ALPHABET symbols=“[symbolList]”/>

- [graphTag] ::= <GRAPH> [edge] </GRAPH>

- [edge] ::= <EDGE vertex1=“[integer]” vertex2=“[integer]”/> [edge]

- [edge] ::= λ

- [processorsTag] ::= <EVOLUTIONARY_PROCESSORS> [nodeTag] </EVOLUTIONARY_PROCESSORS>

The above rules show the main structure of the NEP: the alphabet, the graph (specified through its vertices) and

the processors. It is worth remembering that each processor is identified implicitly by its position in the processors

tag (first one is number 0, second is number 1, and so on).

- [stoppingConditionsTag] ::= <STOPPING_CONDITION> [conditionTag] </STOPPING_CONDITION>

- [conditionTag] ::= <CONDITION type=“MaximumStepsStoppingCondition” maximum=“[integer]”/> [conditionTag]

- [conditionTag] ::= <CONDITION type=“WordsDisappearStoppingCondition” words=“[wordList]”/> [conditionTag]

- [conditionTag] ::= <CONDITION type=“ConsecutiveConfigStoppingCondition”/> [conditionTag]

- [conditionTag] ::= <CONDITION type=“NonEmptyNodeStoppingCondition” nodeID=“[integer]”/> [conditionTag]

- [conditionTag] ::= λ

The syntax of the stopping conditions shows that a NEP can have several stopping conditions. The first one

which is met causes the NEP to stop. The different types try to cover most of the stopping conditions used in the

literature. If needed, more of them can be added to the system easily. The jNEP user guide explains their semantics

in detail.

- [nodeTag] ::= <NODE initCond="[wordList]" [auxWordList]> [evolutionaryRulesTag] [nodeFiltersTag] </NODE> [nodeTag]

- [nodeTag] ::= λ

- [auxWordList] ::= λ | auxiliaryWords="[wordList]"

- [evolutionaryRulesTag] ::= <EVOLUTIONARY_RULES> [ruleTag] </EVOLUTIONARY_RULES>

- [ruleTag] ::= <RULE ruleType=“[ruleType]” actionType=“[actionType]” symbol=“[symbol]” newSymbol=“[symbol]”/> [ruleTag]

- [ruleTag] ::= <RULE ruleType="splicing" wordX=“[symbolList]” wordY=“[symbolList]” wordU=“[symbolList]” wordV=“[symbolList]”/>

[ruleTag]

- [ruleTag] ::= <RULE ruleType="splicingChoudhary" wordX=“[symbolList]” wordY=“[symbolList]” wordU=“[symbolList]” wordV=“[symbolList]”/>

[ruleTag]

Simulating NEPs in a cluster with jNEP 483

- [ruleTag] ::= λ

- [ruleType] ::= insertion | deletion | substitution

- [actionType] ::= LEFT | RIGHT | ANY

- [nodeFiltersTag] ::= [inputFilterTag] [outputFilterTag]

- [nodeFiltersTag] ::= [inputFilterTag]

- [nodeFiltersTag] ::= [outputFilterTag]

- [nodeFiltersTag] ::= λ

- [inputFilterTag] ::= <INPUT [filterSpec]/>

- [outputFilterTag] ::= <OUTPUT [filterSpec]/>

- [filterSpec] ::= type=[filterType] permittingContext=“[symbolList]” forbiddingContext=“[symbolList]”

- [filterSpec] ::= type=“SetMembershipFilter” wordSet=“[wordList]”

- [filterSpec] ::= type=“RegularLangMembershipFilter” regularExpression=“[regExpression]”

- [filterType] ::= 1 | 2 | 3 | 4

The preceding set of rules describe the elements of the processors: their initial conditions, rules, and filters.

We have applied the same philosophy as in the case of stopping conditions, which means that our systems supports

almost all kinds found in the literature at the moment. Future types can also be added. The reader may refer to the

jNEP user guide for further detailed information.

- [wordList] ::= [symbolList] [wordList]

- [wordList] ::= λ

- [symbolList] ::= a string of symbols separated by the character ’_’

- [boolean] ::= true | false

- [integer] ::= an integer number

- [regExpression] ::= a Java regular expression

3.1 An example: solving the SAP problem with linear resources

Reference [10] describes a NEP with splicing rules (ANSP) which solves the boolean satisfiability problem

(SAT) with linear resources, in terms of the complexity classes also present in [10]. We can use jNEP to actually

build and run this ANSP. The following is a broad summary of the config file for such a ANSP, applied to the

solution of the SAT problem for three variables. The entire file can be downloaded from jnep.e-delrosal.net.

<NEP nodes="9">

<ALPHABET symbols="A_B_C_!A_!B_!C_AND_OR_(_)_[A=1]_[B=1]_[C=1]_[A=0]_[B=0]_[C=0]_#_UP_{_}_1"/>

<!-- WE IGNORE THE GRAPH TAG TO SAVE SPACE. THIS NEP HAVE A COMPLETE GRAPH -->

<STOPPING_CONDITION>

<CONDITION type="NonEmptyNodeStoppingCondition" nodeID="1"/>

</STOPPING_CONDITION>

<EVOLUTIONARY_PROCESSORS>

<NODE initCond="{_(_A_)_AND_(_B_OR_C_)_}" auxiliaryWords="{_[A=1]_# {_[A=0]_# {_[B=1]_#

{_[B=0]_# {_[C=1]_# {_[C=0]_#"> <!-- INPUT NODE -->

<EVOLUTIONARY_RULES>

<RULE ruleType="splicing" wordX="{" wordY="(" wordU="{_[A=1]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="(" wordU="{_[A=0]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[A=0]" wordU="{_[B=0]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[A=0]" wordU="{_[B=1]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[A=1]" wordU="{_[B=0]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[A=1]" wordU="{_[B=1]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[B=0]" wordU="{_[C=0]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[B=0]" wordU="{_[C=1]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[B=1]" wordU="{_[C=0]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[B=1]" wordU="{_[C=1]" wordV="#"/>

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="4" permittingContext="" forbiddingContext="[A=1]_[B=1]_[C=1]_[A=0]_[B=0]_[C=0]_#_UP_{_}_1"/>

<OUTPUT type="4" permittingContext="[C=1]_[C=0]" forbiddingContext=""/>

</FILTERS>

</NODE>

<NODE initCond=""> <!-- OUTPUT NODE -->

<EVOLUTIONARY_RULES>

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="1" permittingContext="" forbiddingContext="A_B_C_!A_!B_!C_AND_OR_(_)"/>

<OUTPUT type="1" permittingContext="" forbiddingContext="[A=1]_[B=1]_[C=1]_[A=0]_[B=0]_[C=0]_#_UP_{_}_1"/>

</FILTERS>

</NODE>

484 Emilio del Rosal, Rafael Nuñez, Carlos Castañeda, Alfonso Ortega

<NODE initCond="" auxiliaryWords="#_[A=0]_} #_[A=1]_} #_} #_1_)_}"> <!-- COMP NODE -->

<EVOLUTIONARY_RULES>

<RULE ruleType="splicing" wordX="" wordY="A_OR_1_)_}" wordU="#" wordV="1_)_}"/>

<RULE ruleType="splicing" wordX="" wordY="!A_OR_1_)_}" wordU="#" wordV="1_)_}"/>

<RULE ruleType="splicing" wordX="" wordY="B_OR_1_)_}" wordU="#" wordV="1_)_}"/>

<RULE ruleType="splicing" wordX="" wordY="!B_OR_1_)_}" wordU="#" wordV="1_)_}"/>

<RULE ruleType="splicing" wordX="" wordY="C_OR_1_)_}" wordU="#" wordV="1_)_}"/>

<RULE ruleType="splicing" wordX="" wordY="!C_OR_1_)_}" wordU="#" wordV="1_)_}"/>

<RULE ruleType="splicing" wordX="" wordY="AND_(_1_)_}" wordU="#" wordV="}"/>

<RULE ruleType="splicing" wordX="" wordY="[A=1]_(_1_)_}" wordU="#" wordV="[A=1]_}"/>

<RULE ruleType="splicing" wordX="" wordY="[A=0]_(_1_)_}" wordU="#" wordV="[A=0]_}"/>

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="1" permittingContext="1" forbiddingContext=""/>

<OUTPUT type="1" permittingContext="" forbiddingContext="#_1"/>

</FILTERS>

</NODE>

<NODE initCond="" auxiliaryWords="#_1_)_} #_)_}"> <!-- A=1 NODE -->

<EVOLUTIONARY_RULES>

<RULE ruleType="splicing" wordX="" wordY="A_)_}" wordU="#" wordV="1_)_}"/>

<RULE ruleType="splicing" wordX="" wordY="(_!A_)_}" wordU="#" wordV="UP"/>

<RULE ruleType="splicing" wordX="" wordY="OR_!A_)_}" wordU="#" wordV=")_}"/>

<RULE ruleType="splicing" wordX="" wordY="B_)_}" wordU="#" wordV="UP"/>

<RULE ruleType="splicing" wordX="" wordY="C_)_}" wordU="#" wordV="UP"/>

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="1" permittingContext="[A=1]" forbiddingContext="[A=0]_1"/>

<OUTPUT type="1" permittingContext="" forbiddingContext="#_UP"/>

</FILTERS>

</NODE>

<NODE initCond="" auxiliaryWords="#_1_)_} #_)_}"> <!-- A=0 NODE -->

<EVOLUTIONARY_RULES>

<RULE ruleType="splicing" wordX="" wordY="OR_A_)_}" wordU="#" wordV=")_}"/>

<RULE ruleType="splicing" wordX="" wordY="(_A_)_}" wordU="#" wordV="UP"/>

<RULE ruleType="splicing" wordX="" wordY="!A_)_}" wordU="#" wordV="1"/>

<RULE ruleType="splicing" wordX="" wordY="B_)_}" wordU="#" wordV="UP"/>

<RULE ruleType="splicing" wordX="" wordY="C_)_}" wordU="#" wordV="UP"/>

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="1" permittingContext="[A=0]" forbiddingContext="[A=1]_1"/>

<OUTPUT type="1" permittingContext="" forbiddingContext="#_UP"/>

</FILTERS>

</NODE>

<!-- NODES FOR ’B’ AND ’C’ ARE ANALOGOUS TO THOSE FOR ’A’. WE DO NOT PRESENT THEM TO SAVE SPACE-->

</EVOLUTIONARY_PROCESSORS>

</NEP>

With this config file, at the end of its computation, jNEP outputs the interpretation which satisfies the logical

formula contained in the file, namely:

(_A_)_AND_(_B_OR_C_): {_[C=0]_[B=1]_[A=1]_} {_[C=1]_[B=1]_[A=1]_} {_[C=1]_[B=0]_[A=1]_}

This ANSP is able to solve any formula with three variables. The formula to be solved must be specified as the

value of the initCond attribute for the input node.

4 Conclusions and further research lines

jNEP is one of the first and more complete implementations of the family of abstract computing devices called

NEPs. jNEP simulates not only the basic model, but also some of its variants, and is able to run on clusters of

computers.

In the future we plan to offer full acces to the cluster version by means of the web. We also plan to develop

a graphic user interface to ease the definition of the NEP being simulated. jNEP will be used as a module in the

design of an automatic programming methodology to design NEPs to solve a given problem.

Acknowledgement: This work was supported in part by the Spanish Ministry of Education and Science (MEC) under Project TSI2005-

08225-C07-06.

References

[1] J. Castellanos, C. Martin-Vide, V. Mitrana, and J. M. Sempere. “Networks of evolutionary processors”. Acta Informatica,

39(6-7):517-529, 2003.

Simulating NEPs in a cluster with jNEP 485

[2] Juan Castellanos, Carlos Martin-Vide, Victor Mitrana, and Jose M. Sempere. “Solving NP-Complete Problems With Net-

works of Evolutionary Processors.” Connectionist Models of Neurons, Learning Processes and Artificial Intelligence : 6th

International Work-Conference on Artificial and Natural Neural Networks, IWANN 2001 Granada, Spain, June 13-15,

Proceedings, Part I, 2001.

[3] http://www.haifa.il.ibm.com/projects/systems/cjvm/index.html

[4] E. Csuhaj-Varju, C. Martin-Vide, and V. Mitrana. “Hybrid networks of evolutionary processors are computationally com-

plete.” Acta Informatica, 41(4-5):257-272, 2005.

[5] M. A. Diaz, N. Gomez Blas, E. Santos Menendez, R. Gonzalo, and F. Gisbert. “Networks of evolutionary processors (nep)

as decision support systems.” In Fith International Conference. Information Research and Applications, volume 1, pages

192-203. ETHIA, 2007.

[6] http://wwwipd.ira.uka.de/JavaParty/

[7] http://vip.6to23.com/jcluster/

[8] http://i.cs.hku.hk/ wzzhu/jessica2/index.php

[9] Pascale Launay, Jean-Louis Pazat. “A Framework for Parallel Programming in Java.” INRIA Rapport de Recherche Publi-

cation Internet - 1154 decembre 1997 - 13 pages

[10] Florin Manea, Carlos Martin-Vide, and Victor Mitrana. “Accepting networks of splicing processors: Complexity results.”

Theoretical Computer Science, 371(1-2):72-82, February 2007.

[11] Florin Manea, Carlos Martin-Vide, and Victor Mitrana. “All np-problems can be solved in polynomial time by accepting

networks of splicing processors of constant size.” DNA Computing, pages 47-57, 2006.

[12] http://www-sop.inria.fr/sloop/javall/

Emilio del Rosal, Rafael Nuñez, Carlos Castañeda, and Alfonso Ortega

Universidad Autónoma de Madrid

Departamento de Ingeniería Informática

Av/Francisco Tomás y Valiente 7 - 28049 Madrid (Spain)

E-mail: emilio.delrosal@uam.es

