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Abstract. Recently, bump formations in attractor neural networks with
distance dependent connectivities has become of increasing interest for
investigation in the field of biological and computational neuroscience.
Although the distance dependent connectivity is common in biological
networks, a common fault of these network is the sharp drop of the num-
ber of patterns p that can remembered, when the activity changes from
global to bump-like, than effectively makes these networks low effective.

In this paper we represent a bump-based recursive network specially
designed in order to increase its capacity, which is comparable with that
of randomly connected sparse network. To this aim, we have tested a
selection of 700 natural images on a network with N = 64K neurons
with connectivity per neuron C. We have shown that the capacity of
the network is of order of C, that is in accordance with the capacity
of highly diluted network. Preserving the number of connections per
neuron, a non-trivial behavior with the radius of the connectivity has
been observed. Our results show that the decrement of the capacity of
the bumpy network can be avoided.

1 Introduction

Recently, the bump formations in recurrent neural networks have been analyzed
in several investigations concerning linear-threshold units [1, 2], binary units [3]
and Small-World networks of Integrate and Fire neurons [4]. These bump for-
mations represent geometrically localized patterns of activity and have a size
proportional to the number of connections per neuron.
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It has been shown that the localized retrieval is due to the short-range connec-
tivity of the networks and it could explain the behavior in structures of biological
relevance as the neocortex [5].

In the case of linear-threshold neural network model, the signal-to-noise anal-
ysis has been used [1, 2] in the case of spatially organized networks. It has been
shown that the retrieval states of the connected network have non-uniform ac-
tivity profiles, when the connections are short-range enough, and that the level
of localization increases by increasing the gain or the neuron’s saturation level
[2].

The investigation of the spontaneous activity bumps in Small-World networks
(SW) [6, 7] of Integrate-and Fire neurons [4], has recently shown that the network
retrieves when its connectivity is close to the random and displays localized
bumps of activity, when the connectivity is close to the ordered. The two regimes
are mutually exclusive in the range of the parameter governing the proportion of
the long-range connections on the SW topology of Integrate-and-Fire network,
while the two behaviors coexist in the case of linear-threshold and smoothly
saturated units.

The result related to the appearance of bump formations have been recently
reported by us [3] in the case of binary model for associative network. We demon-
strated that the spatially asymmetric retrieval states (SAS) can be observed
when the network is constrained to have a different activity compared to that
induced by the patterns.

The model we studied in Ref.[3] has a symmetric and distance dependent
connectivity for all neurons within an attractor neural network (NN) of Hebbian
type formed by N binary neurons {Si}, Si ∈ {−1, 1}, i = 1, ..., N , storing p
binary patterns ηµ

i , µ ∈ {1...p} with symmetric connectivity between the neurons
cij = cji ∈ {0, 1}, cii = 0.

The corresponding Hopfield model is [8]:

H =
1

N

∑

ij

JijSiSj , (1)

with Hebbian learning rule:

Jij =
1

c

p
∑

µ=1

cij(η
µ
i − a)(ηµ

j − a). (2)

The learned patterns are drawn from the following distribution:

P (ηµ
i ) =

1 + a

2
δ(ηµ

i − 1) +
1 − a

2
δ(ηµ

i + 1),

where the parameter a is the sparsity of the code [9]. The number of connections
per neuron is C ≡ cN .

In order to introduce an asymmetry between the retrieval and the learning
states, a condition on the mean activity of the network has to be imposed:

Ha = NR(
∑

i

Si/N − a).



Here the parameter R controls the affinity of the system toward the appearance
of bump formations. This term favors states with lower total activity

∑

i Si that
is equivalent to a decrease of the number of active neurons. Thus, the above term
creates an asymmetry between the learning and the retrieval states. We showed
in Ref.[3] that this condition is a necessary and a sufficient condition for the
observation of bump formations. Similar observations have been reported in the
case of linear-threshold network [1], where in order to observe bump formations,
one has to constrain the activity of the network. The same is true in the case
of smoothly saturating binary network [2], when the highest activity level, that
can achieved by the neurons, is above the maximum activity of the units in the
stored pattern.

As we have shown in Ref.[3], when the bump appears, the capacity of the
network drops dramatically because the network decreases its effective size to
the size of the bump.

On the other side, the spatially restricted activity means that the effective
coding is restricted to very sparse coding. Usually, the capacity of the network,
keeping patterns with sparsity a, is proportional to 1/a| log a| and increases with
the sparsity. Therefore a question arise: Is it possible to use the sparsity of the
code, imposed by the bump in order to increase the capacity of the network?

In this paper we are trying to use explicitly the sparseness of the code,
imposed by the bump appearance, in order to increase the capacity of a two-
dimensional network that stores natural images. By means of simulations, we
show that the capacity of the network can be increased to the limits typical for
sparsely connected network, e.g. to achieve capacities of order of C.

2 Theoretical analysis

The theoretical analysis of the present model has been explained in details in
Ref.[3]. Here we briefly present the main points of this analysis and the most
important results.

For the theoretical analysis of the spatially asymmetric states (SAS), we
consider the decomposition of the connectivity matrix cij by its eigenvectors

a
(k)
i :

cij =
∑

k

b
(k)
i b

(k)
j , (3)

with

bk
i ≡ a

(k)
i

√

λk/c (4)

where λk label the corresponding (positive) eigenvalues.
Following the classical analysis of Amit et al. [10], we study the following

binary Hopfield model [8]:

H = − 1

cN

∑

ijµ

Siξ
µ
i cijξ

µ
j Sj −

s
∑

ν=1

hν
∑

i

ξν
i Si + NRSib0

i , (5)



where the Hamiltonian (5) has been represented in terms of the variables ξµ
i =

ηµ
i − a. The second term in the Hamiltonian introduces a small external field

h, which will tend later to zero. This term is necessary to take into account
the finite numbers of overlaps that condense macroscopically. The third term
imposes an asymmetry in the neural network’s states, which is controlled by the
value of the parameter R. This term is responsible for the bump formations. In
Eq. (5) the over line means a spatial averaging (.i) = 1

N

∑

i(.).
Following the classical analysis [10], we use the variables mµ

ρk for each replica
ρ and each eigenvalue, which are the usual overlaps between neurons and pat-
terns. In addition, we also use two other order parameters (OP)

qρ,σ
k = (bk

i )2Sρ
i Sσ

i ,

which is related to the neuron activity, and the parameter rρ,σ
k , conjugate to

qρ,σ
k , that measures the noise in the system. The indexes ρ, σ = 1, ..., n label

the different replicas, while the role of the connectivity matrix is taken into
account by the parameters bk

i .
Finally, by using the replica symmetry ansatz and the saddle-point method

[10], we obtain the following expression for the free energy per neuron:

f =
1

2c
α(1 − a2) +

1

2

∑

k

(mk)2 − αβ(1 − a2)

2

∑

k

rkqk +
αβ(1 − a2)

2

∑

k

µkrk +

+
α

2β

∑

k

[ln(1 − β(1 − a2)µk + β(1 − a2)qk) − (6)

− β(1 − a2)qk(1 − β(1 − a2)µk + β(1 − a2)qk)−1] −

− 1

β

∫

dze−
z
2

2

√
2π

ln 2 coshβ



z

√

α(1 − a2)
∑

l

rlbl
ib

l
i +

∑

l

mlξibl
i + Rb0

i



,

where α = p/N is the storage capacity, µk = λk/cN and we have used the fact
that the average over a finite number of patters ξν can be self-averaged [3], [10].

The equations for the OP rk, mk and qk are respectively:

rk =
qk(1 − a2)

(1 − β(1 − a2)(µk − qk))
2 , (7)

mk =

∫

dze−
z
2

2

√
2π

ξibk
i tanhβ



z

√

α(1 − a2)
∑

l

rlbl
ib

l
i +

∑

l

mlξibl
i + Rb0

i



 (8)

and

qk =

∫

dze−
z
2

2

√
2π

(bk
i )2 tanh2 β



z

√

α(1 − a2)
∑

l

rlbl
ib

l
i +

∑

l

mlξibl
i + Rb0

i



.(9)
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Fig. 1. Left:Phase diagram for α = 0.001 (α/c = 0.02). The SAS region, where local
bumps are observed, is relatively large. The Z region corresponds to trivial solutions
for the overlap. Right: SAS region for different values of α. High values of α limit the
SAS region.
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Fig. 2. The critical storage capacity αc as a function of R for a = 0.4, showing a drop
on the transition to a bump state.

The numerical analysis of the above equations for T = 0 gives a stable
region for the solutions corresponding to bump formations for different values
of the load α, the sparsity a and the retrieval asymmetry parameter R, shown
in Fig.1. As can be seen, the sparsity of the code a enhances the SAS effect,
although it is also observed for a = 0. As we expected, the asymmetry factor
R between the stored and retrieved patters is very important in order to have
spatial asymmetry. The diagram in Fig.1 shows a clear phase transition with R.
Only for intermediate values of R, the bump solution exists.

The dependence of the critical storage capacity αc on the asymmetry pa-
rameter R is shown in Fig.2. The figure presents a drastic drop of αc at the
transition from homogeneous retrieval (symmetric) state to spatially localized
(bump state). Effectively only the fraction of the network in the bump can be
excited and the storage capacity drops proportionally to the size of the bump.



Fig. 3. Schematics of the two stage pattern storage. The first stage forms a bumps in
RNN 1 that contains few patterns. The second stage records this bump in a cumulative
RNN with high capacity. The fan-out recovers the original image.

3 Computer experiments

As we mentioned in the Introduction, we have performed computer experiments
to show that the capacity of the network can be increased to the limits typical
for sparsely connected network.

As a test we used the natural image database of van Hateren [11], as well as
the Waterloo set of images. In order to make the simulation easier, we decreased
the resolution of the images down to 256 by 256 points. We have used randomly
selected subsets of up to 300-700 images of van Haterens database and also
consecutive images of that database. No difference in the results, concerning the
capacity of the network has been found. Waterloo dataset is very small and was
used as a reference set together with the van Heteren database. Once again it
was found that the results do not depend of the database source.

For the de-correlation of the image, we used a border detector, converting
the original image into an image that represents its borders. The simulations
show that the exact type of the border detector does not affect the results. Each
pixel of the resulting image is represented by a neuron in the network. We tested
binarised version of the images borders as well as the discrete (gray) values of
the pixels in order to train the network. Both of them give approximately the
same results.

We applied a two stage learning procedure Fig.3. In the first stage we trained
a Hebbian network with spatially dependent connectivity and probability of
connections p(r) ∝ const + e−r2/2σ2

, where r is the radius of connectivity. The
trained network contains few patterns, or even only the pattern in question. Then



Fig. 4. The contours of Lena and the bump formation with sparsity a = 0.005 and
r = 15. The bump represents a compact area.

Fig. 5. Fanout to recover the image from its bump. Usually the bump is unique, al-
though up to 4 separate bumps are easily observable.

we raised the threshold in order to observe a bump with determined sparsity. The
bump formation is sufficiently noise resistant and stable in order to reconstruct
the complete image. An example of such a bump is given in Fig. 4. The location
of the bump depends exclusively on the topology of the network and on the
pattern. For a typical image, usually only one of few (two to three) bumps are
formed.

In the second stage, we used the bump in order to train a Hebbian network
with exactly the same topology, that contains only bumps from a variety of the
images. We referred this network as a Cumulative Recurrent Neural Network
(CRNN).

In a parallel work [12] we have shown that the image can be restored effec-
tively from its bump. This gives us an opportunity to save only the bump in a
network and to associate another feed-forward network in order to restore the
image in question.
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Fig. 6. Typical behavior of the order parameter m, normalized to the sparsity of the
pattern as a function of the network load α. The dashed curve is the “recovering” of
an arbitrary not memorized pattern, e.g. the noise level.

Roughly speaking the fan-out part of the network connects a dilation of the
bump/bumps to all the neurons of the fan-out network. The rest of the neurons,
i.e. the neurons outside of the bump are not connected to the fan-out layer.
Thus if the areas of two different bumps do not intersect, the recovered patterns
clearly do no interact, Fig.5.

The intersecting bumps, when they are orthogonal enough, do not cause a
problem. In other words, with capacity up to the critical capacity αc, we have
a good recovery of the initial pattern. The details of this results are presented
in Ref.[12]. The noise level is usually less than the dashed line in Fig.6 that is a
small quantity compared to the signal.

In order to keep the network in regime C ∝ N , the connectivity of the system
must be large enough. In these simulations we used C = 300, that is suitable for
computer simulations. It fits well into the computer memory, it is large enough
in order to be in the range ∝ N and shows a rich behavior. For this value of C,
the correlation radius r can vary from 10 to the size of the image.

For large values of r, no bump formations can be observed. Therefore, one
can expect that the capacity of the network will reach its asymptotic limit pro-
portional to 1/a| log a|. However, the pattern is very unstable and susceptible to
noise, which makes the capacity close to zero, Fig.7(right).

When r is very small, the network effectively converts into locally connected
network. In this case the capacity is small, Fig. 7(left), but not too small because
the pattern are spatially correlated (the borders are continuous curves) and
therefore the bump is well formed. Thus, different images are kept in different
parts of the cumulative CRNN and they are essentially orthogonal.

For intermediate levels of the correlation radius r, one can achieve capacity
close to the theoretical capacity α = 1.58 for sparse random network, Fig. 6.

The critical capacity versus the load is shown in Fig.8. One can see that the
critical capacity has a maximum near r = 20 and in general it is very high. It
is of the same order as the critical capacity of a very sparse network, up to the
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Fig. 8. Non-trivial behavior of the critical storage capacity during the bump formation
phase. For r = 31.3, αc drops to 0.

correlation radius where the bumps disappear and the capacity drops sharply to
zero.

4 Conclusion

In this paper we have shown that by using a special two-stage learning procedure
and a bumpy network, one can increase the storage capacity of this network even
with Hebbian learning rule. This feature is based on the theoretical background,
showing that the location of the bump is only slightly dependent on the patterns
already stored in the network. Therefore, one can use the bump as an intrinsic
characteristic of the image and the topology of the network . The architecture is
promising when another, fan-out layer is added to it, because this allows a total
recovering of the image with relatively few connections.
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