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Abstract. In this paper, we examine the problem of efficiently computing aggre-
gate functions over polygonal regions of space. We first formalize a class of effi-
cient region-based aggregation model, where the aggregation query is computed
by representing the query region with pre-defined regions using set operations. By
focusing on a grid tessellation, we first generalize the aggregation problem from
the case of query regions that are isothetic rectangles to polygons with isothetic
edges, and show that the aggregation query can be answered linear in the number
of vertices of the polygonal region. It is efficient since it is independent of the
size of query region or the number of objects intersecting with the database. We
further show how to produce approximate aggregations for query regions having
the shape of arbitrary polygons, and support optimal block reads from the disk.

1 Introduction

It is becoming a relatively common occurrence in data base problems that the data
that one has to access can be considered elements of some metric space, and that the
structure of the space enters prominently into query processing considerations. In this
paper we are interested in a specific area of query processing for such types of data,
namely spatial aggregation. A typical example is constituted by two-dimensional, pos-
sibly dense, distributions of values over rectangular domains, which we call images.
(Actual images are, of course, a sub-class of our definition. Entities that fit our defi-
nition are, e.g., records of the geographic distribution of certain quantities.) It will be
convenient to model these data distribution as functions from a given (rectangular, n-
dimensional) domain to the set of all possible values of point-wise observations, so the
data that we are interested in are functions g : R → ν, where R ⊆ R is a finite rect-
angle isothetic to the axes of Rn, and ν is the observations data type. A typical query
condition on a data base of such objects would be formulated in terms of aggregated
values over sub-regions of R, that is, using a polygon P , and assuming ν ordered and
additive, we would ask for conditions of the type

∑
i∈P g(i) > a.

The amounts of data involved are sizable: an image, e.g. reporting the localization
of certain proteins in a sizable area of the brain can have a size of several GB; the size
of the data collected in other disciplines, from meteorology to oceanography, can easily
be of the same order of magnitude.

In this paper we study polygonal aggregation queries that can be efficiently per-
formed on point-indexed data overlaid on a uniform grid tessellation. The efficiency of
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the algorithms presented here allows this tessellation to be very fine, to include thou-
sands or tens of thousands of cells per image. A naı̈ve scheme for evaluating the exam-
ple query could be as follows.

i) store the value of the obwerved quantity for all the cells in a 2D array;
ii) determine the cells that intersect the query polygon;
iii) compute the aggregate (i.e., the sum) for all the cells the pass the test ii).

The complexity of this solution is in the intersection, plus the cost of accessing the
qualifying cells, which increases with the area of the query polygon. Solutions based
on spatial indices suffer, to a lesser extent, of the same problem [4]. In this paper we
show that with suitable pre-computation, the linear dependency on the area of the query
polygon can be eliminated, making the time complexity of the aggregation computation
a function of the complexity of the boundary of the query region.

We have chosen not to deal with any specific aggregation function, but to determine
the minimal properties that the aggregation mechanism must satisfy for our algorithm to
be applicable. We consider this the only formally correct methodology, and we strongly
advocate it for future work on the subject.

There is a significant body of research related to this problem, mainly in the areas
of computational geometry and on-line analytical processing.

Agrawal and Erickson [1] survey a number of related problems that have been clas-
sified under the term range searching in computational geometry. Ho et. al., [6], intro-
duced range-sum queries in data cubes, and considered the aggregate operations SUM
and MAX computed over rectangular regions. For computing sums, the efficiency of
computation is achieved through the use of the so-called prefix sums. The technique
has been further studied and applied in [5, 2, 7]. However, the prefix sum algorithm is
restricted to query regions that are rectangles isothetic to the axes, and punctiform data.
A variant of the same approach is the box sum query ([12]), in which the data as well
are isothetic rectangles.

In this paper, we study the efficient aggregation over arbitrary isothetic polygonal
regions. By using a form of prefix sums, we generalize the range sum aggregation [6]
from rectangles to isothetic polygons, and show that the aggregation can be computed in
a time linear in the number of vertices of the query polygon. This method yields constant
aggregation time for range sum over rectangles, for which the number of vertices is
constant and equal to four.

2 A General Polygonal Aggregation Model

In this section we introduce our abstract model of geometric aggregation. We are in-
terested in (possibly dense) sets of points in a domain that, for the time being, we will
assume to be R2. A region in R2 is a compact, closed subset of R2 and a database D
of R2 is a countable set of regions of R2. We will be concerned with a rather restricted
class of functions on these regions, a class that we shall call (geometric) aggregation
functions.

In general, two functions enter into play in aggregation over a region: a weight
function g : Rd → τ defined over the region and an aggregation functional f such that,
for the region ri ⊆ dom(g), f(ri)(g) is the aggregation of g over the region ri.
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Definition 1. Given a databaseD of regions in Rd, a (geometric) aggregation structure
on D is a pair (f,+) where f : 2R

d → (Rd → τ) → τ , and τ has a Abelian group
structure, + being its group function (that we will often write in the guise of a binary
operator). As customary for Abelian groups, we will write −b in lieu of b−1 and use the
shorthand a− b for a+ (−b).

Example: Consider a region in which a weight function g : Rd → R is defined. Then
the pair (f,+) where f(r)(g) =

∫
r
g and + is the sum of real numbers is a geometric

aggregation structure.

Note that the operation +, defined on the group τ can be extended to functions
g, h : A → τ in a point-wise manner: (g + h)(x) = g(x) + h(x). Similarly, for
the function f , if X,Y ⊆ Rd, then (f(X) + f(Y ))(g) = f(X)(g) + f(Y )(g). (e.g.
(
∫
X

+]intY )(g) =
∫
X
g +

∫
Y
g.)

Consider now a database D = {t1, . . . , tn} in which each region ti has associated
a point function gti : ti → τ .

Definition 2. Given a database D, a function Σ : R2d → R is a (region-based) ag-
gregation function for D if there exists a geometric aggregation structure (f,+) such
that:

i) ∀q ⊆ Rd,Σ(q) =
∑

t∈D f(q ∩ t)(gt) (q, t compact, closed);
ii) ∀t1, t2 ∈ Rd, t1 ∩ t2 = ∅ ⇒ Σ(t1 ∪ t2) = Σ(t1) + Σ(t2).

A few observations should be made on this formula. Consider a database D =
{t1, t2} such that t = t1 ∩ t2 6= ∅ and a region q such that t1 ∪ t2 ⊆ q. Then

Σ(q) =
∑

i

f(q ∩ ti)(gi) = f(t1)(g1) + f(t2)(g2) (1)

Note that, from the aggregation point of view, the region t is counted twice, once in
f(t1)(g1) and the other in f(t2)(g2). This generates the wrong semantics for certain
aggregations. For example, if Σ(t) = |t| then aggregating over f would not be the
correct way of computing the area of a composite region.

This assumption produces correct results when the measurements represented by
the regions are logically independent. In most applications, f is an operator that acts on
a function defined on the objects of the database. If the point-wise functions represent
independent measurements then the semantics that we are using is sensible.

Example: In the database D = {t1, t2}, let there be functions gi : ti → R associated to
each region ti, and let f(ti)(gi) =

∫
ti
gi. If t1, t2 are geographic areas and g1 measures,

say the local production of wheat while g2 measures the local production of oat then
the aggregate of g1 and g2 measures the whole production of grain in the area “q.” In
this case, it is correct to count the region t1 ∩ t2 twice: once for wheat and once for oat.

This assumption is justified on pragmatic grounds, and it has no practical conse-
quences: our technique will apply exactly to isothetic polygons (and approximately to
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Jornadas de Ingenieŕıa del Software y Bases de Datos (JISBD)
A Coruña, 5–7 Septiembre 2011

47



arbitrary polygons), a circumstance that eliminates the need to overlap simple regions
in order to create a complex one, and from which most of the unwanted intersections
come.

Proposition 1. Let Σ be an aggregation function built on the aggregation (f,+). Then,
for all regions t, t′ ⊆ Rd the following three equalities hold:

i) Σ(t ∪ t′) = Σ(t) + Σ(t′)−Σ(t ∩ t′);
ii) Σ(t ∩ t′) = Σ(t) + Σ(t′)−Σ(t ∪ t′);
iii) Σ(t− t′) = Σ(t)−Σ(t ∩ t′).

The technique that we are presenting here, much like that in [6] is based on the idea
of pre-computing the values of Σ for a relatively low number of regions in such a way
that the values Σ(q) can be computed for a certain set of query objects Q by combining
the pre-computed values using the equalities i)-iii) of Proposition 1 (in addition to the
group properties of +).

We begin with a controlled way of generating the regions over which we want to
compute the aggregation. The regions are computed starting with a base (a set of ele-
mentary regions), and combining them with formulas of limited complexity in the set
algebra (R,Ω) where R is a set of compact, closed region over Rd and Ω = {∩,∪,−}.

A formula on this algebra using the variables of a set of names X is an element of
the set Ω(X) defined as the smallest set such that X ⊆ Ω(X) and for all e, e′ ∈ Ω(X)
and ⊗ ∈ {∪∩,−} we have e⊗ e′ ∈ Ω(X).

Given a formula e(x1, · · · , xn) ∈ Ω(X), its length |e| is the number of occurrences
in it of the symbols of Ω. It is easy to see that if |e| = k, then e contains at most 2k
variables.

The general idea of our method is to translate limited length formulas in the set
algebra (that is, formulas that can be used to compose “query” regions) into limited
length formulas in the algebra (dom(τ), {+,−}) in such a way that all the values Σ(t)
that appear in the target formula belong to a finite set of pre-computed values.

Due to the equality a∩b = a∪b− (a−b)− (b−a) every formula in the set algebra
can be expressed using the reduced set of operators Ω = {∪,−}. From now on, any
query region will be intended to be composed using these two operators only, although,
for the sake of simplicity, we will keep using the ∩ operator for general formulas.

Theorem 1. Let r be a region expressed as q = e(a1, · · · , an), where e ∈ Ω(a1,
· · · , an) then there are integers ξi, ηi such that Σ(q) =

∑
i ξiΣ(ai)+

∑
i ηiΣ(∩ki

j=1aij ).

The proof is based on a repeated application of Proposition 1, throught which we
can eliminate all the set operation ∪ and − from Σ(q).

Lemma 1. Let Q = {q1, · · · , qn} be a set of regions, m an integer, and let

Q′ = {
k⋂

i=1

qji | qji ∈ Q ∧ k ≤ m}

Φ = {Σ(a) | a ∈ Q ∪Q′}.
Then for every region q in the set F = {q | q = e, e ∈ Ω(Q), and |e| < m} there is a
formula e′ ∈ (Φ, {+,−}) such that Σ(q) = e′, and |e′| < 2m
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Proof. Since every e is in conjunctive normal form, so we only need to apply properties
i) and iii) of Proposition 1. We introduce two operations (+ and −) in e′ by applying
i) and one operator (−) by applying iii). Since |e| < m, at most 2m operators will be
introduced. So |e′| < 2m.

As it is, this result is not very useful because the set Q′ grows like nm and the
number of pre-computed values that it is necessary to consider becomes soon excessive.
There are cases, however, in which many of the intersections that appear in Q′ are
empty, so that the size of Q′ is much smaller than the theoretical maximum.

In the following theorem, we will consider one of these cases, of great interest for
applications to geometric data.

Theorem 2. Let Q = {d1, · · · , dm, c1, · · · , cm} be a set of regions such that for all
i 6= j, di ∩ dj = ∅, ci ∩ cj = ∅, and ∪mi=1ci ⊆ ∪mi=1di. Let r = ∪mi=1di − ∪mi=1ci, then
α(r) =

∑m
i=1 α(di)−

∑m
i=1 α(ci).

Proof.

Σ(r) = Σ(∪mi=1di − ∪mi=1ci)
= Σ(∪mi=1di)−Σ(∪mi=1di ∩ ∪mi=1ci) (by iii) of Prop.1)
= Σ(∪mi=1di)−Σ(∪mi=1ci) (because ∪mi=1ci ⊆ ∪mi=1di)
=
∑m

i=1 Σ(di)−
∑m

i=1 Σ(ci) (from di ∩ dj = ∅, ci ∩ cj = ∅, i 6= j)
(2)

Note that this is essentially equivalent to the range sum proof for the two-dimensional
case.

In our setting, we consider only grid tessellations [8], called simply tessellations
when this generates no ambiguity. The pre-computation over a tessellation T is usu-
ally stored a two dimensional array Ts[nx, ny], each element containing the aggre-
gate value over a cell of the tessellation. As in [6], we use a prefix array to contain
pre-computed values over Ts. This is also a two dimensional array, F [nx, ny], with
F [i, j] =

∑nx−1
i=0

∑ny−1
j=0 Ts[i, j], where

∑
is the sum operator of definition 1.

Every point (x, y) in the domain of interest belongs to a unique cell of the tessel-
lation, whose aggregation value is contained in an element Ts[i, j] of the tessellation
array. If ∆x,∆y are the sizes of the cell along the two axes, and xT , yT the coordi-
nates of the point of Ts[0, 0] with minimal coordinates, then i = b(x− xT )/∆xc, and
j = b(y − yT )/∆yc. We assume that an origin x0, y0 is given outside of the region of
interest, with xo < xT and y0 < yT .

3 Polygonal aggregation over the prefix array

A isothetic polygon P over a tessellation T is a non self-intersecting polygon whose
vertices are vertices of the cells of T. It follows from this that all the edges of P are
either edges of T or unions of contiguous edges. A isothetic polygon with k sides can
be represented by the list P = [p0, · · · , pk−1], of its vertices pi, 0 ≤ i ≤ k − 1, its
edges being the segments (pi, p(i+1) mod k), 0 ≤ i < k− 1 (from now on we will write
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simply (pi, pi+1), the modulo k being implicit). We assume that the representation is
minimal, viz. that no three consecutive vertices in the sequence are aligned. An edge
of a isothetic polygon is vertical (resp. horizontal) if its two vertices have the same x
(resp. y) coordinate.

Since we assume that the origin O has smaller coordinate values that any of the
vertices in the tessellation T, and every edge of a isothetic polygon is formed by edges
of T, O is never collinear to any edge of the polygon: any line from O intersects an
edge of P at most once, and the lines that intersect an edge are neither horizontal nor
vertical. Based on the Jordan curve theorem [3], we define the following notions. Given
a isothetic polygon P , an edge e of P , and the origin O, we call e entering (resp.
leaving) if a straight line segment from O through any point in e intersects P an odd
(resp. even) number of times (without counting the intersection at P ).

In order to determine whether a segment is entering or leaving there is a simple
standard algorithm that, for a polygon with k segments, runs in time O(k). Consider
a point P ≡ (x, y) and a segment s between two points p1 = (x1, y1) and p2 =
(x2, y2). The line containing s divides the plane in two parts that, taking as a reference
the direction p1 → p2, we will call the “left” and the “right” part of the plane. The
position of p with respect to s can be determined by the sign of the expression

LR(p, s) = (x2 − x1)y + (y2 − y1)x+ (x1y2 − x2y1) (3)

so that
LR(p, s) < 0⇒ p is on the left half-plane of s
LR(p, s) = 0⇒ p is on the line through s
LR(p, s) > 0⇒ p is on the right half-plane of s
The important observation here is the following: take two consecutive segments si

and si+1 on the contour. The status of the segment changes from entering to leaving or
vice-versa if and only if the origin changes from one half-plane to another (i.e. if the
origin is on the left of si but on the right of si+1; the case LR(0, s) = 0 is somewhat
special). This gives us a way to trace changes in the orientation of each segment in
constant time, that is, in O(k) for all segments.

The following procedure takes one segment, and the values of LR and of the po-
larity for the previous one, and returns the orientation of the segment (+1 or -1) and its
LR value:

polarity(lr, p, s)
if LR(0, s) = 0→ return (lr, p);

LR(0, s) · lr > 0→ return (LR(0, s), p);
LR(0, s) · lr < 0→ return (LR(0, s),−p);

fi end

To start the method, we observe that the segments that abut to the vertex with mini-
mal X and Y are always entering.

If (pi, pi+1) is an edge of P , then the point pi is labeled positive (resp. negative) if
(pi, pi+1) is labeled entering and pi is closer to (resp. farther from) the origin O that
pi+1, or if (pi, pj) is leaving and pi is farther (resp. closer) to the origin O than pi+1.
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The following lemma shows that the property of being positive or negative can
be assigned to vertices unambiguously, even without making reference to the edges to
which they belong.

Lemma 2. Let pi be the vertex of a isothetic polygonP , belonging to the edges (pi−1, pi)
and (pi, pi+1). Then pi is positive (resp. negative) in (pi−1, pi) if and only if it is positive
(resp. negative) in (pi, pi+1).

Proof. (sketch) The two edges to which p belongs are either labeled entering or labeled
leaving. The vertex in each edge might be closer or farther to the origin. This gives to
eight possible topological relationships as shown in Figure 1. The proof is straightfor-
ward by checking each of them.
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origin E: enteringL: leaving

Fig. 1. Eight topological relationships formed by a vertex (positive or negative) and its edges
(entering or leaving) of a isothetic polygon

The following lemma gives us a fast procedure for assigning a polarity to all the
vertices of a straight polygon once we know the sign of one of them.

Lemma 3. Let P be a isothetic polygon over tessellation T, P = p0, · · · , pk−1. For
every vertex pi, 0 ≤ i ≤ k − 1, if pi is positive (resp. negative), then pi+1 (or p0 if
i = k − 1) is negative (resp. positive).

After we use Figure 1 to decide whether the first vertex is positive or negative, we
can apply Lemma 3 to assign the polarity to all other vertices.

3.1 Computing Geometric Aggregation

With the edges and vertices duly labeled, we now proceed to the computation of the
geometric aggregation. The first step in this is to introduce the concepts of leaf edge
and leaf rectangle.
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Let p0, p1, p2, p3 be four consecutive vertices of a isothetic polygon P . The edge
e = (p1, p2) is called a leaf edge if 1) edge (p0, p1) is equal to or shorter than edge
(p2, p3); 2) the rectangle r formed by p0, p1, p2 is contained in P , and r does not inter-
sect any edge of P except at point p0 and p3. Figure 2 shows all the cases of leaf edges.
In these cases, we call (p0, p1) and (p2, p3) the side edges of the leaf edge (p1, p2). For
a leaf edge e, its leaf rectangle is the rectangle formed by p0, p1, p2 with an open edge
at p0. For example in the case 1 of Figure 2, the leaf rectangle is formed by p′0, p1 and
p2, where p′0 = (p0.x+ 1, p0.y).

p p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p p
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Fig. 2. Eight cases of leaf edge (p1, p2) of a isothetic polygon

Lemma 4. Every isothetic polygon with more than four vertices has at least one leaf
edge.

Proof. Let P be a isothetic polygon with more than 4 vertices. No isothetic polygon
with more than four edges is convex, so we can use the following procedure to split P
into isothetic polygons with fewer vertices until all pieces are rectangles.

Consider a isothetic polygon P ′ with more than 4 vertices. Find a vertex p which
has internal angles in P ′ greater than π, extend an edge that contains p inside P ′ until
it reaches another edge of P ′. Now P ′ can be split into two entities – a rectangle,
and a isothetic polygon having fewer vertices than P ′. The operation is repeated on the
remaining straight polygon until all the pieces are rectangles. If we needm splits before
all the pieces are rectangles, we have m+ 1 rectangles. Every time we split a isothetic
polygon, we add two “new” edges. An edge is new if it contains points which belongs
the interior of the original isothetic polygon P . So we add at most 2m new edges. The
total number of edges of m+ 1 rectangles is 4m+ 4. So there must exist one rectangle
that has three edges which are not new. These three edges must be consecutive in the
rectangle, and the middle one satisfies our definition of a leaf edge.
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The following theorem shows how to compute aggregation over a isothetic polygon
using the prefix array F .

Theorem 3. Let P = p0, · · · , pk−1 be a isothetic polygon over tessellation T, F be the
prefix array over the tessellation T and origin O. Then,

Σ(q) =

k∑

i=0

(−1)i0+iF [pi.x+ δxi , pi.y + δyi ] (4)

where pi0 is the vertex with minimal x and y coördinates, and δxi (resp. δyi ) is −1 or 0
depending on whether the vertical (resp. horizontal) edge for pi is entering or leaving.

Proof. First we show that (−1)i0+i always correctly computes whether pi is positive
or negative. Because of Lemma 3, we only need to show that the factor is positive for
pi0 , which is the case because (−1)i0+i0 = (−1)2i0 = 1.

Next we consider the simplest case of isothetic polygons, namely rectangles. Let
p0.x = p1.x. From theorem 2,

Σ(q) = F (p0.x−1, p0.y−1)−F (p1.x−1, p1.y)+F (p2.x, p2.y)−F (p3.x, p3.y−1),
(5)

which coincides with (4) for rectangles.
The case where k > 4 can be proved by induction over k. Suppose Equation 4 is

true for any number of vertices less than k, we need to prove that any isothetic polygon
P with k vertices (k > 4) can be reduced to two isothetic polygons P1, P2 with fewer
vertices, and satisfy:

i) Σ(P ) = Σ(P1) + Σ(P2);
ii) P1 ∪ P2 = P , and P1 ∩ P2 = ∅.

The idea is to find a leaf edge e, whose existence is guaranteed by Lemma 4. Then we
decompose P into a isothetic polygon P1 and a leaf rectangle P2, where P2 is formed
by leaf edge e and the other shorter edge that connects to e.

There are eight cases for a leaf edge, we just show one case here. The proof for the
others is similar. As shown in Figure 3, edge (pi+1, pi+2) is the leaf edge. We define
three new points p′i, p and p′, where p′i.x = pi.x + 1, p′i.y = pi.y, p.x = pi.x + 1,
p.y = pi+2.y, p′.x = p.x+ 1, p′.y = p.y.

Obviously P1 ∪ P2 = P , P1 ∩ P2 = ∅, P1 is a isothetic polygon, and P2 is a
rectangle. According to Figure 1, we know pi, pi+2 are positive in P , p is positive in
P1, pi+2, p

′
i are positive in P2, pi+1 is negative in P , and p′ and pi+1 are negative in

P2. It is easy to verify that

F (p′i.x−1, p′i.y−1)−F (pi+1.x, pi+1.y−1)+F (pi+2.x, pi+2.y)−F (p′.x−1, p′.y)+F (p.x, p.y) =

F (pi.x, pi.y − 1)− F (pi+1.x, pi+1.y − 1) + F (pi+2.x, pi+2.y) (6)

So we have Σ(P1) + Σ(P2) = Σ(P ).
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Fig. 3. Decomposition a isothetic polygon into a isothetic polygon and a rectangle for the first
case in Figure 2

3.2 Aggregation Algorithm for Isothetic Polygons

The aggregation algorithm (Algorithm 3.2) is based on theorem 3. HereP = {P[i]}, i =
1, . . . , k is the list of points (indexed as an array) that define the query region, and
F = {F[i,j]}, i = 1, . . . , nx, j = 1, . . . , ny is the matrix with the prefixes. The function
min coord returns the index of the point with the minimal x coordinate and, if more
than one such points exists, the point among them with the minimal y coordinate.

In the algorithm, line 1 determines the vertex with two entering edges, lines 12-16
compute whether an edge is entering or leaving, lines 18-21 and lines 22-25 compute
δxi and δyi . The complexity of Algorithm 1 is given by the following theorem.

Theorem 4. Algorithm 1 computes the aggregation for isothetic polygons correctly and
its time complexity is O(k), where k is the number of vertices in q. If the prefix array is
stored on disk, Algorithm 1 needs at most k I/O reads.

Proof. The correctness of Algorithm 1 is guaranteed by Theorem 3. The algorithm
is independent of the size of tessellation T. Since F is only accessed k times in the
algorithm, so if F is stored in the disk, Algorithm 1 needs at most k I/O reads.

4 Combining Prefix Sum Arrays with R-trees

So far, we have assumed that the prefix sum is stored in an array and that the aggregation
algorithm would use all the elements of the array. This would be clearly wasteful if there
are cells in the tessellation whose pre-aggregate value is the identity of the + operation
of the aggregation group. The aggregation would be more efficient if we could group
clusters of non-zero cells into rectangles attached to prefix arrays. In this section, we
outline a method that uses R-trees to speed up the computation of the prefix sum. What
we are doing here is similar in spirit to [12], which keeps partial subtotals in the nodes
of a BA-tree. The interested reader can find the details of the method in [11].

The idea here is to use several prefix arrays instead of one, and attach them to nodes
of R-trees. However, the R-trees need to be constructed by first finding dense regions of
the tessellation.

Given a tessellation T, let r be a rectangle whose vertices are from T. Let nz(r) be
the total number of cells in r with non-zero values, and |r| the total number of cells in
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Σ(P, F )→
i0 := min coord(P );

α δx := δy := −1
sign := 1;
prev := enter;
i := i0;
sum := F[P[i].x+ δx,P[i].y+ δy];
repeat

β p := P[i];
p2 := P[i + 1 modk ];
p3 := P[i - 1 modk ];
if LR(O, p1, p2) = LR(O, p2, p3) then
current := prev;

else
if prev = enter then
current := exit;

else
current := enter;

fi
fi
sign := -sign;
∆x := 0
if (prev = enter and p1.x = p2.x) or (current = enter and p3.x = p2.x) then
∆x := −1;

fi
∆y := 0
if (prev = enter and p1.y = p2.y) or (current = enter and p3.y = p2.y) then
∆y := −1;

fi
sum := sum + sign*F[p2.x+∆x, p2.y +∆y];

until i = i0;
return sum;

Table 1. Algorithm to compute exact aggregations on isothetic polygons. Notes: in α, P [i0] has
two entering edges; in β, p is the “previous” vertex, p1 is the “current” vertex, and p2 is the “next”
vertex.

r. The density of r over T is defined as ρ(r) = nz(r)/|r|. Clearly ρ(r) is the probability
that a cell in r have non-zero value, and 0 ≤ ρ(r) ≤ 1.

Our idea of space optimization is to find a set of disjoint rectangles that covers all
the cells with non-zero values in T, then attach prefix arrays only to the rectangles with
high density. The problem is how to increase the area of those rectangles while keeping
the node density high.

We use the MX Quadtree to find rectangular regions with high density. The MX
Quadtree recursively decomposes a raster into four blocks of equal area until the rect-
angles are decomposed into single cells. Empty cells are merged into larger cells. Four
occupied cells are not merged. For details, see [10, 9].
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To construct a MX Quadtree for a tessellation T, T is extended to a matrix with
additional cells of zero value, so that the numbers of cells along X and Y are equal
to n4 for some n. Then we construct an MX Quadtree that contains all the cells with
non-zero value using the standard insertion algorithm. For each node d in the tree, its
bounding box, denoted by bdc, is the minimal rectangle containing all the cells in d
with non-zero value. We denote the total number of cells in d with non-zero values as
nz(d) = nz(bdc), and the density of d as ρ(d) = ρ(〈d〉). All the leaf nodes represent
cells in T and if d is a leaf node, then nz(d) = 1 and ρ(d) = 1.

Let M be a MX Quadtree for the tessellation T, let desc be the descendent relation
on M, and h a density threshold; an internal node d in M is said to be selected by h
(sel(h, d)) if it satisfies the following two conditions:

i) ρ(d) ≥ h (the density of the node is no less than the density threshold);
ii) desc(d′, d) ⇒ ρ(d′) < h (the density of any of the ancestor of d is less than the

density threshold).

We have:

(d1 6= d2 ∧ sel(h, d1) ∧ sel(h, d2))⇒ 〈d1〉 ∩ 〈d2〉 = ∅ (7)

that is, if two distinct nodes are both selected by a same threshold, their bounding boxes
are disjoint. This means that there will be no overlap if we build prefix arrays for them.
Further, the node density of any ancestor node is lower than the given threshold, in a
sense that the bounding box for any selected node has been maximally enlarged in T.

We define the total space for prefix arrays over h, S(h), as
∑

d:sel(h,d)bdc and the
total number of data nodes over h, N(h), as the total number of nodes selected by h
plus the number of cells which have non-zero values and are not descendent of any
selected nodes.

Based on the MX Quadtree M and the density threshold h, we can construct a R-tree
using two sets of data nodes. The first set contains only rectangles that are the minimal
bounding boxes of all the selected internal nodes. The second set contains point data
for all the remaining cells which are not descendent of any selected node. For each of
the selected nodes, the prefix array is computed over its minimal bounding box.

For the R-tree thus constructed with hybrid data nodes over a given density threshold
h, the total space used for prefix arrays is S(h) and the size of the R-tree is N(h).

In particular, if we choose the density threshold to be no greater than that of the root
in the MX Quadtree, only the root will be selected, and the R-tree will be reduced to
a single-node tree, which means that we will create a single prefix array for the whole
tessellation.

With the increase of the density threshold, the selection of internal nodes will be
moved from the root down the MX Quadtree tree. Since the minimal bounding box
of any selected node is a region of any of its ancestor nodes, the total space used for
prefix arrays will be decreased. Meanwhile the total number of data nodes is increasing.
In selecting an appropriate threshold, we will get a R-tree which is a tradeoff between
space and aggregation query time.

We define the node density set of M, Den(M), as the set of node density values
of all the nodes in M. Let d1, d2 ∈ Den(M) be two consecutive density values, which
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means there exists no value in Den(T) between d1 and d2. Then for any value d3, d1 <
d3 < d2, d1 and d3 will select the same set of nodes. This is straightforward since there
exists no node with density between d1 and d3.

So the node density set of T can be used as the list of candidate density thresholds.
Besides, we can filter all those values which are less than the root density since they
will produce the same single node R-tree.

To tradeoff between space for prefix arrays and the size of hybrid R-tree, we can
define linear cost function such as S(h) + k1N(h), where k1 is a constant. For ap-
plications when aggregation query time is more critical, it may be more imperative to
penalize the effect of having larger hybrid R-trees. In practice, we have found the cost
function S(h) + k2 ∗N(h)2 to be adequate in achieving a balance between space and
time.

Once the cost function is chosen, we can simply calculate the cost for every value
in the node density set, identify the density threshold with the lowest cost, generate the
prefix arrays, and construct the hybrid R-tree.

For a hybrid R-tree generated from tessellation T, set h̄ = minargh∈Den(M) cost(h),
then the total space for prefix arrays of T is S(h̄h, and its total number of data nodes is
N(h̄)

In [11] an algorithm is presented for the construction of the R-tree. We show there
that the construction algorithm has time complexity O(n2 log n) and space complexity
O(n). The complexity of the aggregate computation is that of the search in an R-tree
which, although has a worst case performance of O(n) (therefore it represents no im-
provement over the naı̈ve algorithm, has an average case performance of O(log n).

5 Conclusions

In this paper, we present a generalization of the prefix array technique to deals with
general isothetic polygons. For non-self intersecting polygons defined by the edges of
a tessellation over which computed values of the aggregate are available, we show that
the aggregation can be computed in a time linear in the number of vertices of the query
polygon. This reduces to constant time for rectangles, in which the number of vertices
becomes a constant four.

We further show how to apply the aggregation algorithm to polygons by combining
it with concave polygon scan conversion and contour tracing algorithms. Optimal block
I/O can be achieved based on a general assumption for storing the prefix arrays.

To avoid wasting space for subregions in the tessellation that have aggregation value
zero, and expensive update operation to prefix arrays, we introduce a hybrid R-tree
which combines the advantage of the efficiency of prefix arrays and flexibility of R-
trees. Experiments have shown that the hybrid R-tree helps us achieve a good balance
between the tree size and total space for prefix arrays.
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