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Conductance through a Ti-atom impurity in Ag(100) and Au(111):
An ionic model considering spin fluctuations
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We describe the interaction between a transition-metal atom and a noble-metal surface by using an ionic
model in which the first Hund’s rule determines the filling of the atom’s d levels, and spin fluctuations occur
due to the electron exchange between the metal band and the atom states. We apply our model to the case
of adsorbed Ti atoms on noble-metal surfaces (Ag and Au) in which conductance measurements in scanning
tunneling microscope experiments suggest a mixed-valence regime according to the position and width of the
atomic resonance. By introducing, in our calculation, these two parameters as extracted from the experiment,
we satisfactorily reproduce the experimental results in both cases. We find, in the Ag(100) surface, that the
conductance spectrum reflects electronic characteristics of the metal surface modified by the presence of the
magnetic atom; whereas, in the Au(111) case, only the projected density of states on the Ti atom determines
the conductance spectrum shape.
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I. INTRODUCTION

The Kondo effect1 and reminiscences of the Fano
phenomena2 have been detected in the conductance
measurements of noble-metal surfaces with adsorbed 3d

transition-metal atoms in scanning tunneling microscope
(STM) experiments.3–7 An experimental study of the
temperature dependence of the Kondo resonance for an
individual Ti atom resting on a Ag(100) surface was
performed using a variable temperature STM over the
temperature range of T = 6–49 K.7 The spectrum obtained for
T = 6.8 K was decomposed into a narrow Fano resonance at
the Fermi level and a broader Fano resonance located slightly
above the Fermi energy. The narrow resonance has a width of
10.5 mV, and it was identified as a Kondo resonance; whereas,
the broader one has a width of 78 mV, and it was assumed
to originate from a bare Ti d resonance.7 The intrinsic local
density of states (LDOS) for the Ti atom was obtained at
different temperatures by thermally broadening the sum of the
two Fano resonances before being fitted to each experimental
spectrum. In this way, it was found that the Kondo component
of the Ti LDOS broadens quadratically at low temperatures
and follows a simple functional dependence that is well
explained by the Fermi-liquid treatment of the Kondo effect.7

In an ensuing paper, Luo et al.8 concluded that, in impurity
systems, such as Ti atoms on Au (Ref. 6) or Ag (Ref. 7)
surfaces, the line shape cannot be explained without invoking
the interference between the Kondo resonance and the impurity
level. However, in the mixed-valence regime where the
impurity levels are located within the linewidth from the Fermi
energy, the density of states at the Fermi level due to the broad-
ening becomes significant, and a specific calculation for the im-
purity level in the mixed-valence regime should be performed.

The quantity calculated in Ref. 8 was the LDOS of the
conduction electrons around the impurity site, which was

obtained from the impurity Green’s function using inaccurate
expressions of the zero-order Green’s function and of the
scattering matrix as pointed out by Kolf et al.9 Although Luo
et al. corrected these problems, the fitting of the experimental
curves shown in Ref. 10 did not change with respect to the one
shown in the previous paper;8 however, we have found that
this fitting cannot be reproduced by means of the expressions
and the parameters used in Ref. 10 (see the Appendix) as also
discussed in Sec. III.

In the present paper, we calculate the LDOS for a Ti
impurity atom on either Ag(100) or Au(111) surfaces by
using an ionic model previously developed for analyzing the
behavior of the Kondo resonances as a function of the d

filling of transition-metal impurities.11 The main assumptions
are that the exchange energy is large enough to determine
the atomic low-energy electronic configurations (first Hund’s
rule) and the crystal-field terms small compared with the
energies related to the first Hund’s rule. In this way, the local
electronic structure of individual transition-metal impurities,
having different d-level configurations on a Au surface, was
appropriately reproduced.6 In the Ti/Ag(100) system, we now
find that the line shape of the measured conductance reflects
electronic characteristics of the metal surface modified by the
presence of the magnetic atom due to a non-negligible tip-
substrate interaction,12–16 whereas, in the case of Ti/Au(111),
the interaction atom surface prevails, and the conductance line
shape is only determined by the projected density of states on
the Ti-atom impurity.

II. THEORY

In our approach, we introduce the following extended
Anderson Hamiltonian:

H = Hleads + Hatom + Hint + Htip sustrate. (1)
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In Eq. (1), Hleads = ∑
k,α,σ εkαĉ

†
kασ ĉkασ describes the free

electrons of the leads where ĉ
†
kασ (ĉkασ ) is the creation

(annihilation) operator associated with the state kασ (α = 1,2
refers to the tip and the metal surface, respectively; σ is the spin
projection), Hatom describes the d electrons of the atom, Hint

designates the interaction between the kασ and the d electrons,
and Htip sustrate accounts for the tip-substrate interaction given
by

Htip sustrate =
∑
k,k′,σ

[wkk′ ĉ
†
k1σ ĉk′2σ + H.c.]. (2)

The critical point is the description of the d electrons; for a
free atom, we consider the following Hamiltonian:

Hatom =
∑
m,σ

εmn̂mσ +
∑
m

Udn̂m↑n̂m↓ + 1

2

∑
m�=m′,σ

Jd n̂mσ n̂m′−σ

+ 1

2

∑
m�=m′,σ

(
Jd − J x

d

)
n̂mσ n̂m′−σ

− 1

2

∑
m�=m′,σ

J x
d ĉ†mσ ĉm−σ

�

c
†
m′−σ ĉm′σ

+ (crystalline-field terms). (3)

In Eq. (3), n̂mσ = ĉ
†
mσ ĉmσ , and ĉ

†
mσ (ĉmσ ) denotes the creation

(annihilation) operator of the localized d electrons in the
orbital m with spin σ . The intra-atomic Coulomb interactions
Ud and Jd as well as the intra-atomic exchange interaction
J x

d are assumed to be constants independent of the m-orbital
index. The fifth term, related to spin-flip processes, restores the
invariance under rotation in spin space, and the last one has to
be with the crystalline-field effects. In this representation, Hint

is given by

Hint =
∑

k,α,m,σ

(Vkαmĉ
†
kασ ĉmσ + c.c.), (4)

where Vkαm, spin independent, defines the coupling between
the conduction kασ and the localized mσ electrons.

A crucial approximation to analyze Hamiltonian (3) is to
assume the exchange interaction J x

d to be large enough to make
the first Hund’s rule operative. Then, the atomic lower-energy
configurations correspond to the states with a maximum
electron spin, say S, compatible with the crystalline-field
effects. Fluctuations associated with the Kondo resonance that
take one electron from the leads and change the atomic wave
function from S − 1/2 to S (for a less than half-filled atomic
shell) are well contemplated by using the projector operator
language.17 In this approach, we can write Eqs. (3) and (4) in
the following way:11

Hatom = ES

∑
M

|S,M〉 〈S,M|

+ES−1/2

∑
m

|S − 1/2,m〉 〈S − 1/2,m|

Hint =
∑

k,α,M,σ

[VkαMσ ĉ
†
kασ |S − 1/2,M − σ 〉 〈S,M| + c.c.].

(5)

Here, |S,M〉 denotes the electronic configuration of the atom
with total spin S and spin projection M , and

VkαMσ =
√[

S + M∗ sgn(σ )
]

10S
Vkα, (6)

where Vkα is the sum over m of Vkαm.11 A similar approach
has been used in the past for studying the valence fluctuations
between two magnetic 4f configurations.18

By using ab initio calculations based on density func-
tional theory, it was found19–21 that 3d transition-metal
atoms adsorbed in noble surfaces have 3d moments close
to the atomic values given by Hund’s first rule. Therefore,
we consider the S − 1/2 = 1 to S = 3/2 spin fluctua-
tion in the case of Ti adsorbed in Ag(100) and Au(111)
surfaces.

All the physical magnitudes of interest related to the Ti/Ag
and Ti/Au interacting systems can be obtained from the
following Green’s-Keldysh functions:22

GMσ (t,t ′) = i�(t ′ − t)
〈{∣∣ 3

2 ,M + σ
〉〈1,M|(t ′); |1,M〉

× 〈
3
2 ,M + σ

∣∣
(t)

}〉
, (7)

FMσ (t,t ′) = i
〈[∣∣ 3

2 ,M + σ
〉〈

1,M
∣∣
(t ′); |1,M〉〈 3

2 ,M + σ
∣∣
(t)

]〉
,

(8)

by taking into account the norm condition within the selected
configuration subspace,

∑
M

∣∣ 3
2 ,M

〉〈
3
2 ,M

∣∣ +
∑
m

|1,m〉〈1,m| = 1̂. (9)

In Eqs. (7) and (8), the {;} and [;] symbols denote anticonmu-
tator and conmutator, respectively. The F functions provide
the atom-state occupation in the nonequilibrium situations.17

A. Current and conductance calculation

We assume two leads, 1 (the tip) and 2 (the metal surface).
The current in the tip, for instance, is determined by the time
variation in the total electron charge (e being the elemental
charge unit),

I σ
tip = −e

d

dt

∑
k

〈n̂k1σ 〉 = ie

h̄

∑
k

〈[ĉ†k1σ ĉk1σ ,Ĥ ]〉.

By solving the conmutator, we obtain the following expression:

I σ
tip = 2e

h̄
Im

∑
k

[∑
M

V ∗
k1Mσ

〈∣∣ 3
2 ,M + σ

〉 〈1,M| ĉk1σ

〉

+
∑
k′

w∗
kk′ 〈c†k′2σ ck1σ 〉

]
t

, (10)
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where VkαMσ is given by Eq. (6). The crossed terms involving
the atom states are calculated by using the following Green’s
functions:

FMσ [ĉk1σ (t)] = i
〈[∣∣ 3

2 ,M + σ
〉〈1,M(t ′)|; ĉk1σ (t)

]〉
,

(11)
F

ĉ
†
k′2σ

[ĉk1σ (t)] = i〈[ĉ†k′2σ (t ′); ĉk1σ (t)]〉

evaluated at equal time values t = t ′, accordingly with the
expressions,〈∣∣ 3

2 ,M + σ
〉 〈1,M|t ĉk1σ (t)

〉 = FMσ (ck1σ )

2i
,

(12)

〈ĉ†k′2σ (t) ĉk1σ (t)〉 =
F

ĉ
†
k′2σ

(ck1σ )

2i
.

We are interested in calculating the current in the tunnel-
ing regime with respect to the tip-atom and tip-substrate
interactions. Therefore, the equations of motion of these
Green’s functions are solved by conserving only terms that
lead to a second-order approximation in Vk1 and wkk′of
Eq. (10),

i
d

dt
FMσ [ĉk1σ (t)] = εk1FMσ [ĉk1σ (t)] + Vk1MσFMσ (t,t ′)

+
∑
k′

wkk′FMσ [ĉk′2σ (t)] . (13)

We integrate Eqs. (13) by using the boundary condition at the
initial time t = t0 (noninteracting systems) which relates the
F function to the advanced Green’s function G,

FMσ [ĉkασ (t0)] = [2 〈n̂kασ (t0)〉 − 1] GMσ [ĉkασ (t0)] ,

where 〈n̂kασ (t0)〉 = (e(εkα−εFα )/kBT + 1)−1 = f<(εkα − εFα) is
the Fermi function at temperature T (εFα is the Fermi energy

of the lead α). This yields

FMσ (ck1σ ) = −i

∫ t

t0

dτ Vk1Mσ (τ ) {FMσ (τ,t)

− ξk1σGMσ (τ,t)} e−i
∫ t

τ
εk1(τ ′)dτ ′

− i
∑
k′

∫ t

t0

dτ wkk′ (τ ) {FMσ [ck′2σ (τ )]

− ξk1σGMσ [ck′2σ (τ )]} e−i
∫ t

τ
εk1(τ ′)dτ ′

, (14)

where we have defined ξk1σ = [2 〈nk1σ (t0)〉 − 1].
By following a similar procedure, we arrive at the following

expression for F
ĉ
†
k′2σ

[ĉk1σ (t)] at equal time values t = t ′:

F
ĉ
†
k′2σ

(ĉk1σ )

= −i
∑
k′′

∫ t

t0

dτ wkk′′
{
F

ĉ
†
k′2σ

[ck′′2σ (τ )]

− ξk1σ G
ĉ
†
k′2σ

[ck′′2σ (τ )]
}
e−i

∫ t

τ
εk1(τ ′)dτ ′

− i
∑
M

∫ t

t0

dτ Vk1Mσ

{
F

ĉ
†
k′2σ

(|1,M〉 〈
3
2 ,M + σ

∣∣
τ

)
− ξk1σG

ĉ
†
k′2σ

(|1,M〉 〈
3
2 ,M + σ

∣∣
τ

)}
e−i

∫ t

τ
εk1(τ ′)dτ ′

. (15)

Equations (10), (12), (14), and (15) yield I σ
tip. In the stationary

case, by considering the Fourier transform of the Green’s

functions and using the identity,

Im
∫ ∞

−∞
dω

[F − ξk1σG]

ω − εk + iη

=
∫ ∞

−∞
dω Im {F − 2ξk1σG} πδ (ω − εk) , (16)

we obtain the following equation:23

I σ
tip

e
/
h

= Im

{
6

15

at

∫ ∞

−∞
dω [F1σ − 2ξ1σ G1σ ] +

∑
M,k′′


Mσ
ats

∫ ∞

−∞
dω [FMσ (ĉk′′2σ ) − 2ξ1σGMσ (ĉk′′2σ )]

+
∑
M,k′′


Mσ∗
ats

∫ ∞

−∞
dω

[
F

ĉ
†
k′′2σ

(|1,M〉 〈
3
2 ,M + σ

∣∣) − 2ξ1σ G
ĉ
†
k′′2σ

(|1,M〉 〈
3
2 ,M + σ

∣∣)]

+
∑
k′,k′′


ts

∫ ∞

−∞
dω

[
F

ĉ
†
k′2σ

(ĉk′′2σ ) − 2ξ1σG
ĉ
†
k′2σ

(ĉk′′2σ )
]}

, (17)

where now ξ1σ = [2f<(ω − εF1 ) − 1] with εF1 = εF + V , εF is the Fermi energy of the system at equilibrium, and V is the
applied bias voltage. The following quantities have been introduced in Eq. (17) by neglecting the k dependence of the atom-surface
coupling terms and assuming a flat density of states of the tip (ρtip) around the Fermi level:


at = π
∑

k

|Vk1|2δ(ε − εk1) ≈ π |V1|2 ρtip,


Mσ
ats = π

∑
k

V ∗
k1Mσ wk′kδ(ε − εk1) ≈ πV ∗

1Mσwρtip,


ts = π
∑

k

w∗
k′kwk′′kδ(ε − εk1) ≈ π |w|2 ρtip.

By also assuming that the atom-tip interaction is negligible with respect to the atom-surface interaction, we can write Im F (ω) =
2[2f (ω − εF ) − 1]Im G(ω), finally arriving at the expression,

I σ
tip

2e2/h
= 2 Im

{
6

15

∫ ∞

−∞
dω [f< (ω − εF ) − f< (ω − εF − V )] 
atG1σ (ω)

+
∑
M,k′′

∫ ∞

−∞
dω [f< (ω − εF ) − f< (ω − εF − V )] 
Mσ

ats GMσ (ĉk′′2σ )
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+
∑
m,k′′

∫ ∞

−∞
dω [f< (ω − εF ) − f< (ω − εF − V )]
Mσ

ats G
ĉ
†
k′′2σ

(|1,M〉 〈
3
2 ,M + σ

∣∣)

+
∑
k′,k′′

∫ ∞

−∞
dω [f< (ω − εF ) − f< (ω − εF − V )] 
tsGĉ

†
k′2σ

(ĉk′′2σ )

}
. (18)

Equation (18) provides us the tunneling current without any approximation related to the atom-substrate interaction.

B. Green’s functions calculation: Equation of motion method

The equations of motion of the crossed Green’s functions appearing in Eq. (18) are solved up to a second order in the
coupling with the substrate (Vk2) and by conserving only diagonal terms,∑

k′′
GMσ (ĉk′′2σ ) =

∑
k′′

Vk′′2Mσ

� − εk′′2
GMσ ,

∑
k′

G
ĉ
†
k′2σ

(|1,M〉 〈
3
2 ,M + σ

∣∣) =
∑
k′

V ∗
k′2Mσ

� − εk′2
GMσ , (19)

∑
k′,k′′

G
ĉ
†
k′2σ

(ĉk′′2σ ) =
∑
k′

1

� − εk′2
+ 6

15

∑
k′′

Vk′′2

� − εk′′2
G1σ

∑
k′

V ∗
k′2

� − εk′2
.

We now introduce Eqs. (19) into Eq. (18) and neglect the k dependence of the atom-surface coupling term; by taking into account
that the unperturbed substrate Green’s function is given byGS

0 = ∑
k′′

1
ω−εk′′2−iη

, we arrive at the following expression for the
conductance at low bias voltage values:

G

G0
= 4

{
6

15

∫ ∞

−∞
dω 
atIm G1σ

d

dω
f< (ω − εF ) + 6

15
V2

∫ ∞

−∞
dω 
σ

atsIm
[
GS

0G1σ

] d

dω
f< (ω − εF )

+ 6

15
V ∗

2

∫ ∞

−∞
dω 
σ∗

ats Im
[
GS

0G1σ

] d

dω
f< (ω − εF ) +

∫ ∞

−∞
dω 
tsIm

[
GS

0 + 6

15
|V2|2 GS

0G1σGS
0

]
d

dω
f< (ω − εF )

}
,

(20)
with 
σ

ats = πV ∗
1 wρtip and G0 = 2e2/h, the quantum of conductance.

Finally, by assuming a flat substrate density of states around the Fermi energy, we can write (20) as17

G

G0
= 4π
tsρsus

∫ ∞

−∞
dω

[
1 + 6

15

as

{(
q2 − 1

)
Im G1σ + 2q Re G1σ

}] d

dω
f< (ω − εF ) , (21)

where 
as = π |V2|2ρsus with ρsus = Im GS
0/π and q = V1/wV2πρsus + Re GS

0/Im GS
0 .

In the case of a negligible coupling between the tip and the substrate (w → 0), we have that q ≈ V1/wV2πρsus � 1, and the
conductance at low voltages and low temperatures is determined by the impurity spectral density around the Fermi energy:

G

G0
= 4
at

∫ ∞

−∞
dω

6

15
Im G1σ

d

dω
f<.

In the opposite limit, the coupling tip substrate w is the dominant one, q ≈ qc = Re GS
0/Im GS

0 , and the microscope probe only
“sees” the local change in the substrate density of states produced by the interaction with the impurity atom.6 In this case,

G

G0
= 4
ts

∫ ∞

−∞
dω Im

[
GS

0 + 6

15
|V2|2 GS

0G1σGS
0

]
d

dω
f< (ω) .

Finally, the required Green’s function in Eq. (21) is calculated by solving its equation of motion up to second order in the coupling
with the substrate (Vk2) as explained in Ref. 11, neglecting the tip-atom interaction Vk1. For the nonmagnetic substrate case, the
expression is as follows:[

ω − εI − 1

5

∑
k

V 2
k2

� − εk2
− 1

15

∑
k

V 2
k2f< (εk2 − εF2)

� − εk2

]
G1σ (� )

= 〈|3/2,3/2〉 〈3/2,3/2| + |1,1〉 〈1,1|〉 − 1

15π

∑
k

V 2
k2

� − εk2

∫ ∞

−∞
dω′f<

(
ω′ − εF2

)
Im

G1σ

(
ω′)

� ′ − εk2
, (22)

where εI = E3/2 − E1 and � ≡ ω − iη with η → 0. In all the integrals in Eq. (22), we have considered Im
∑

k

V 2
k2

�−εk2
= 
as =

π |V2|2 ρsus.
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III. RESULTS AND DISCUSSION

A. Ti in Ag (100)

In this case, εI = −20 and 
as = 120 meV were chosen for
reproducing the characteristics of the observed conductance
spectrum7 (the position of the d resonance and the widths
of both broad and narrow resonances); the half-width of the
d resonance in our model is given by 
 = ( 1

5 + 1
15 )
as for

Eqs. (22) accordingly. The local density of states at the Ti
impurity atom, ρd (ω) = 1

π
Im G1σ (ω), is shown in Fig. 1 for

a temperature of T = 6.8 K.
This is a mixed-valence regime evolving from a Kondo

regime, corresponding to a relation εI /2
 = −0.3; the prob-
abilities of occurrence of the electronic configurations with
S = 3/2 and S = 1 given by

∑
M 〈|S,M〉 〈S,M|〉 are 0.55 and

0.45, respectively.
The measured conductance7 is well fitted by using the

expression (21) together with values of q between 1.8 and
2.4 (qc = 1.2) and 
ts between 0.1 and 0.07 meV as shown in
Fig. 2.

In Fig. 3, we compare our best result obtained for q = 1.8
(slightly displaced on the x axis in order to get a better
adjustment to the experimental curve) with the theoretical
proposal of Luo et al.8,10 based on their Eqs. (A1)–(A4)
and the corresponding set of parameters for Ti/Ag presented
in the Appendix. As we can see from Fig. 3, the excellent
fit of the experimental data shown in Ref. 10 is far from
being reproduced by using the corresponding expressions
and parameters of Refs. 8 and 10. On the other hand, our
proposal, based on an ionic model in which the first Hund’s
rule is imperative, provides a very good description of the
measured conductance when including the tip-metal surface
interaction. In the case of Ti interacting with Ag(100), this
interaction is important but is not dominant (q ≈ 2); therefore,
the microscope probe is sensing both the tip-atom and the
tip-metal currents.

The dependence of the conductance with the temperature is
shown in Fig. 4 where we can observe that the general trends
of the experimental results7 are well reproduced.

-0.09 -0.06 -0.03 0.00 0.03 0.06 0.09
0

1

2

3

4

ρ d
(e

V
)-1

Energy (eV)

FIG. 1. Local density of states for the Ti impurity atom in Ag(100)
calculated by using the ionic model Hamiltonian (1).
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G
 (
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ni

ts
)

V (mV)

FIG. 2. (Color online) The conductance as a function of the
applied voltage for Ti/Ag(100). Our calculations, Eqs. (21) and (22),
for different q values: 1.8 (solid black line), 2.0 (solid gray line), 2.2
(dashed line), and 2.4 (dotted line). Empty circles correspond to the
experimental curve from Ref. 7.

In the case of Ti atoms adsorbed in Ag(100), the impurity
level is located within the linewidth from the Fermi energy, and
the density of states at the Fermi level due to the d resonance
becomes significant. Therefore, within this mixed-valence
regime, it is not possible to separate the contribution provided
by the d-resonance broadening from that provided by the
strong correlation effects around the Fermi energy. We adopted
the following criterion for defining a temperature dependence
of the width of the low-energy resonance peak from the change
in the local density of states in the Ti atom with temperature:
the full width at half maximum of the resonance peak is
measured with respect to the horizontal line indicated in Fig. 5.
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 Ref. 10
 This paper

FIG. 3. (Color online) The conductance as a function of the
applied voltage for Ti/Ag(100). Comparison of our result for q = 1.8
(solid line) with the one obtained with expressions (A1)–(A4) and
parameter values given in the Appendix8,10 (dotted line). Open circles
correspond to the experimental result from Ref. 7.
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FIG. 4. (Color online) The calculated conductance spectrum
for Ti/Ag(100) as a function of the applied voltage for several
temperature values.

We found that the width calculated in this form increases
quadratically at low temperatures but becomes a linear function
as the temperature is raised above 30 K, a similar result to the
one discussed in Ref. 7. We also found that the temperature
dependence of the resonance width for T < 50 K is well
fitted by the expression 2
K =

√
(αkBT )2 + (2kBTK )2 with

α = 2.56 and TK = 63 K as shown in the inset of Fig. 5. In the
same figure, we can see that raising the temperature suppresses
the Kondo effect, causing the peak to approach the position
of the bare resonance. The renormalized d level of half-width

 ≈ 32 meV acquires a strong temperature dependence on
a scale of T ≈ 
, a typical behavior of the mixed-valence
regime.24

B. Ti in Au(111)

The shape and width of the measured conductance spec-
trum in this case6 is well reproduced by choosing εI = 10,
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FIG. 5. (Color online) Temperature dependence of the local
density of states for the impurity Ti atom in Ag(100). The low-energy
resonance width as a function of temperature is shown in the inset.
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FIG. 6. (Color online) The conductance as a function of the
applied voltage for Ti/Au(111). Comparison of our result [Eqs. (21)
and (22)] for q � 1 (solid line) with the one obtained with expressions
(A1)–(A4) and parameter values given in the Appendix8,10 (dotted
line). Open circles correspond to the experimental result from Ref. 6.


as = 500 meV, and considering the limit q � 1. Therefore,
in the Au substrate case (qc = 2.2), the observed conductance
spectrum around the Fermi level is practically determined by
the local density of states in the Ti atom as we can see in Fig. 6.
The theoretical curve resulting from Eqs. (A1)–(A4) and the
corresponding set of parameters for Ti/Au in the Appendix is
also shown in Fig. 6. It can be observed, as in the Ti/Ag case,
that the excellent fit of the experimental data shown in Ref. 10
is far from being reproduced.

In the Ti/Au (111) system, a mixed-valence regime
evolving to an empty orbital regime is found; in this case,

 = 
as/5 and εI /2
 = 0.05. The S = 1 configuration
has a larger probability of occurrence (0.64) than the
electronic configuration with S = 3/2 (0.36). In Fig. 7,
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FIG. 7. (Color online) Temperature dependence of the local
density of states for the impurity Ti atom in Au (111). The inset
is a blowup of the near-to-zero energy values.
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the temperature dependence of the local density of states
in the Ti atom is shown. We can observe that the slightly
insinuated Kondo structure, which appears merged into the
atomic resonance at very low energy, disappears for T >

50 K (see the inset in Fig. 7) and that the resonance
peak tends to the renormalized d level of half-width 
 ≈
100 meV.

IV. CONCLUSIONS

The Ti impurity atom in both Ag(100) and Au(111)
surfaces is described by using an ionic Hamiltonian and
assuming the d-orbital occupancy determined by the first
Hund’s rule. The electron exchange between the atom-level
and the surface-band states makes the total atom spin S

fluctuate between S = 1 and S = 3/2. The position and
width of the atomic resonance used in our model are extracted
from the measured conductance spectra.6,7 In this form, the
mixed valence expected in both cases, Ti/Ag and Ti/Au,
satisfactorily reproduces the characteristics of the observed
conductance spectra shape and the temperature dependence.

We should also comment that the solution presented for
the equation of motion method up to second order in Vk , as
discussed in Sec. II B, provides a good description of the
mixed-valence regime, namely, when the resonance is close
to the Fermi energy (|εI − εF | < 
).25 In the Ti/Ag case for
which the mixed-valence regime is near the crossover with the
Kondo regime, the line shape of the measured conductance
reflects electronic characteristics of the metal surface modified
by the presence of the magnetic atom. In the Ti/Au case,
the mixed-valence regime is near the crossover with the
empty orbital regime, and the conductance spectrum shape
is determined mainly by the local density of states in the Ti
atom.
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APPENDIX

Luo et al.8 proposed that the physical quantity measured by
the STM is essentially the local density of states of conduction
electrons around the impurity site [Eq. (3) of Ref. 8],

δρc (r,ω) = −�ρ0
[(

q2
c − 1

)
Im Gd (ω) − 2qc Re Gd (ω)

]
,

(A1)

with the impurity Green’s function Gd (ω) given by [Eq. (4) of
Ref. 8],

Gd (ω) = G0
d (ω) + G0

d (ω)Td (ω)G0
d (ω), (A2)

where qc = −Re G0
c (ω) /ImG0

c (ω) and G0
c(ω) is the retarded

Green’s function for the nonperturbed conduction electrons.
In the infinite correlation limit (U → ∞) [Eq. (5) of Ref. 8],

G0
d (ω) = 1 − n/2

ω − εd + i�
, (A3)

and the expression used for the scattering matrix [Eq. (1) of
Ref. 10] is as follows:

Td (ω) = aeiδ

ω − εK + i
K

. (A4)

The fitting parameters are (n,εd,�,εK,
K,a,δ,qc) =
(0.38; 2.3; 65.0; −1.9; 4.0; 28.2; 2.7; 2.0) for Ti/Au and
(0.53;13.4;38.8; − 1.4;5.2;144.9;3.0;1.8) for Ti/Ag (the Fermi
energy εF = 0 and the unit of energy is meV).10
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