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Cramming more molecules onto quantum circuits

The information society in which we live today has been made possible thanks
to the progressive reduction in the size of integrated circuits and memory stor-
age devices. In this context, one of the most self-evident technological indic-
ators of devices scale-down is the progressive increase in efficiency of magnetic
memories and microprocessors. The occupied area by memory unit determines
this efficiency. Namely, the number of bits per square inch or the number of
instructions per second which is capable of processing. Both are functions of
the device size.

In 1965 the 35th anniversary of the magazine "Electronics Magazine" was cel-
ebrated. Gordon E. Moore was asked to write an article in which he predicted
the electronics evolution over the next 10 years. In those times, Moore was
directing Fairchild laboratories. A semiconductor company founded by Moore
himself, along with others, after leaving the William Shockley laboratory. At
that time, the integrated circuits were only four years old. Moore had been
aware of the number of transistors and resistors replicated each year. Hence,
he forecast the same evolution for years to come: "Certainly over the short
term this rate can be expected to continue, if not to increase. Over the longer
term, the rate of increase is a bit more uncertain, although there is no reason to
believe it will not remain nearly constant for at least 10 years." [1]. The most
complex integrated circuits were made of 64 components, thus he advanced
that in the next 75 years, they should have a minimum of 64,000 components.
The number of components into integrated circuits followed, more or less, the
path that Moore had expected. In 1968, Moore, along with Robert Noyce
(other of the founders of Fairchild), founded the company named Intel, cre-
ating the first microprocessor. In 1975, Moore modified its own law, ensuring
that the growth rate would diminish, doubling the integration capacity each
24 months.

Moore’s law has an expiration date. We are probably living his last valid
decade and right now, in this last stage, is where nanotechnology emerges to
keep the present and as an alternative for the future. Nanotechnology refers
broadly to a field of applied science and technology whose unifying theme is
the control of matter on the atomic and molecular scale, normally 1 to 100
nanometers, and the fabrication of devices within that size range. It is a highly
multidisciplinary field, drawing from fields such as physics, materials science,
chemistry, biology, robotics and engineering. Nanotechnology can be seen as
an extension of existing sciences into the nanoscale, or as a recasting of existing
sciences using a newer, more modern term.

It is difficult to find an origin or a father to the nanoscience. Richard Feyn-
man thought that everything could be explained by motions and contortions of
atoms. Today he is considered one of fathers of nanoscience thanks to his talk
titled: "there is plenty of room at the bottom" which encourages researchers
to go further on the atomic scale, [2]. Already then, he proposed outlandish
ideas for that time as writing the Britannica Encyclopedia on the head of a pin.
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However had to spend several years before the nanotechnology would become
in a science with own name.

In 1981 G. Binnig and H. Rogher initiated a new era of surface science field
inventing the Scanning Tunneling Microscope (STM) [3]. In 1986, just five
years later, they received the Nobel Prize in Physics. The Scanning Tunnel-
ing Microscope has contributed vastly to the development of the nanoscience.
To me, this is one of the milestones of nanoscience. The big impact of this
technique is due to the ability of Scanning Tunneling Microscope to probe the
electronic structure, and a wide range of properties, of different kinds of sur-
faces with real space atomic resolution. In the last years, Scanning Tunneling
Microscope has been established as one of the most powerful techniques for the
study of several quantum-physical phenomena at the atomic scale. Also, the
Scanning Tunneling Microscope has been used to resolve the internal structure
of adsorbed atoms and molecules. In fact, the ability to discriminate between
chemically different atoms makes this technique unique compared to others
surface analytical techniques [4].

Speaking about the origin of Nanoscience, we should also include the con-
tribution of Eric Dexle in the 80’s. Dexle proposed engineering systems at
the molecular level, trying to build nanomachines made out of atoms. These
nanomachines would be able to construct other molecular components, which
would be part of other machines. His basic idea was that if you borrowed ideas
from nature, and the scientific advancement permits it, it would possible to
build machines that could influence the order of the atoms so precisely as to
emulate the biologic evolution process. In 1986, these ideas were collected in
his book titled: "The engines of creation", [5] and, as of today, nanomachines
and nanotechnology engineering is one of the most active areas in nanoscience.
Furthermore and finally, we should mentioned the Nobel Prize given in 1996 to
R. F. Curl, H. W. Kroto and R. E. Smalley for fullerenes and carbon nanotubes
structure elucidation, [6], and the discovery of the conductive polymers, Nobel
Prize 2000, [7]. These were important pieces for a new field to begin to walk,
leading to the development of a new science and technology of carbon known
as molecular electronics.

As the components size of integrated circuits decreases and the semiconductors
industry enters the nanoelectronics real, the principles of classical physics fail
as we enter the quantum physics’s world. To continue to fulfill Moore’s law
we must overcome certain limits imposed by the miniaturization of electronic
devices. It is essential to control the evolution of the physical properties as
quantum confinement emerges with the reduction of dimensionality. Moreover,
since the ultimate limit of Moore’s Law will be at the level of molecules or
atoms, controlling their optical, electrical, and magnetic properties and its
assembly capacity and synthesis, will be the only way to continue with this
famous law for the next ten, maybe fifteen years.

The molecular and atomic limit gives rise to what today is known as Mo-
lecular Electronics. This idea dates back to 1974 when Ari Aviram and Mark
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Ratner published an article called Molecular Rectifiers in Science magazine,
[8]. In this paper, based on the concept of charge transfer between molecules,
they discussed the theoretical possibility of building an electronic system which
could function as a rectifier diode using organic molecules. The device con-
sisted in three molecular parts: i) a charge acceptor molecule, ii) a molecular
group spacer, iii) and another molecule which is able to give electrons. The
proposed system would behave as a diode, being the current direction more
favorable in one direction than the opposite. The operating principle for this
molecular diode is based on the energy difference between the frontier orbitals
of the two π-system, acceptor and donor molecules. The spacer molecule is
responsible for maintaining the energy difference of the donor-acceptor fron-
tier orbitals, but in turn, allows a certain degree of transport, which has a
preferred direction within the device. Molecular electronics considers organic
molecules as nanoelectronic devices. These nanodevices are designed under
a controlled process of synthesis and self-assembly. Electrical circuits are as-
sembled through processes of self organization and self alignment, drawing on
the very nature of molecular systems.

Today, it has been demonstrated the applicability of organic molecules in
nanoelectronic devices such as Organic Light-Emitting Diode (OLED), and
organic f ield-effect transistor (OFET), and solar cells where charge transfer
phenomena are crucial. In the near future, the critical goal to be achieved in
molecular electronics is to use molecules as electronic and magnetic switches,
wires or components in nanocircuits [9–11]. Moreover, thanks to its magnetic
properties and the control that can achieved on them, organic molecules appear
as excellent candidates for new materials to advanced technology for memory
storage devices.

The study of the spin properties of these systems, either in tandem or as an
alternative to the electric charge as an information carrier, is called molecular
or organic spintronics. One requirement for spintronic devices is the efficient
injection of charge carriers from spin-polarized ferromagnetic electrode or a
semiconductor layer. Other requirements for these devices is to have a high-
spin relaxation time in order to achieve a good performance. Semiconductors
based on organic molecules have been suggested as good candidates in this
field due their magnetic properties. The use of magnetic molecules for inform-
ation technology is also one of the main objectives. Giant MagnetoResistance
(GMR) and Tunnel MagnetoResistance (TMR) discoveries in metallic spin
valves, [12], have revolutionized molecular applications in the field of magnetic
recording. The control of the magnetic properties of organic molecules consti-
tute a step towards its application in the growing field of spintronics, which
is based on the active manipulation and control of the degree of freedom of
electron spin. The success of modern spintronics devices depends crucially on
the ability to store and manipulate the electron spin state transport within a
properly chosen material. The ability to manipulate electron spin in molecular
materials offers a new interesting route, both from fundamental and technolo-
gical standpoints. This is mainly due to the unquestionable advantage of weak
spin-orbit coupling and hyperfine interaction of the electronic states of organic
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molecules that are involved in the process of electrical conductivity. This allows
for relaxation times of spin, and wave coherence lengths much longer than in
conventional metals or semiconductors. The fact that also these materials are
optically active makes them also good candidates for magneto optoelectronic
devices [13]. The control of these organic devices would allow for non-volatile
computer memories with one million times the surface density of bits in the
DRAM (Dynamic Random Access Memory) and current and power efficiency
with a billion times greater than circuits of conventional CMOS (complement-
ary metal-oxide-semiconductor).

Molecular electronics and spintronics can be considered as an advanced ref-
erence point when assessing the potential of nanotechnology in the field of
digital electronics and computers. The fact that the scale-down of electronic
devices can continue with their current exponential rate, described by Moore’s
law, implies that they will approach molecular dimensions within a decade.
In addition, Nanotechnology applications are not limited to the area of com-
puter electronics technology, but cover all imaginable areas in modern soci-
ety: Communication, medicine, pharmacy, chemistry, physics, environment,
sensors, mechanics, fuel, etc. Nanotechnology will not only keep Moore’s Law
until the end, but also, will serve as an alternative to current technologies,
once reached their present limit. Maybe in this context quantum computing
will also have something to say in the future.

”Still there is plenty of room at the bottom”
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Atomistic electronics.

Ferromagnets are the simplest example in condensed matter physics where the
time reversal symmetry is spontaneously broken. Because spins (angular mo-
mentum) change sign under time reversal, the spontaneous magnetization in
the ferromagnet breaks the symmetry. This is a macroscopic example. We
can find this behavior in the nanoscale in magnetic molecules where the mo-
lecular spin state is a consequence of the symmetry broken. Nevertheless, the
behavior of ferromagnets can dramatically change when we scale down its size
and temperature, ferromagnetic nanocontacts are a very good example of that
[14]. Low temperature techniques have revealed in last decades the existence
of unexpected phenomena such as superconductivity, Kondo effect and topo-
logical protected states between others.

The time reversal symmetry plays an important role in all these phenomena.
The 3-part of this thesis is focused in the magnetoresistance effect observed in
ferromagnetic systems such as Nickel, Iron or Manganese when a polarized tun-
nel current passes through them. The tunneling magnetoresistance (TMR) is a
direct consequence of the absence of time reversal symmetry in these systems.
In addition we will to present our result of the effect in the magnetoresist-
ance of an organic molecule such as the Manganese Phthalocyanine (MnPc),
a high magnetic spin state molecule, when is deposited on this kind of surfaces.

Actually, it is curious how the electronic properties can change when the spin
symmetry is kept or broken. In the part-2 of this thesis we will illustrate that
this molecule, the MnPc, can exhibit a Kondo-like resonance, which involves a
spin symmetry when it is deposited, at low temperature, on metallic surfaces
such as Bismuth or Lead. In this case the MnPc can act as a magnetic impur-
ity on a metal host.

From a theoretical point of view a magnetic impurity is anything that con-
tributes a Curie-weiss term to the magnetic susceptibility; in other words,
each localized spin state. When this impurity is deposited or embedded in a
metallic host, the impurity can be imagine such a charge excess which it should
be screened by the metal to avoid any macroscopic electric field. This argu-
ment was proposed by Friedel in the late 50s. Nevertheless this basic idea is
insufficient to explain the minimum in the electrical resistivity of Au observed
by de Haas, de Boer and van den Berg in 1934 [15], and the unconventional
resistivity behavior of other transition metals known today as Kondo effect.

The behavior of magnetic impurities in metals has posed problems to chal-
lenge the condensed matter theorist over the past sixty years. Nowadays there
is no a definitive or absolute way to resolve this problem, specially in realistic
complex system such as organic molecules. The Hamiltonian of the impurity
can be described by a very general Hamiltonian specifying all the N0 electrons
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and their interactions.

H =

N0∑
i=1

[
p2
i

2m
+ U(ri) + Vimp(ri)

]
+

1

2

N0∑
i 6=j

e2

|ri − rj|
+

N0∑
i=1

(ri)lii. (1)

The three first terms in the above equation are the kinetic energy of the elec-
trons, the periodic potential of the host metal due to the nuclei and the po-
tential due to the nucleus of the impurity respectively. The fourth term is the
Coulomb interaction between the electrons, and the last one is a relativistic
correction due to the spin-orbit coupling.

A first principles calculation resolution of this equation is very difficult because
the strong Coulomb interaction which cannot be treated perturbatively. By
the mid sixties, Hohenberg, Kohn and Sham [16, 17] proposed a self-consistent
field approach in which the problem is reduced to a single electron moving in
some averaged potential of all the other electrons, which has to be determ-
ined self-consistently. This is the beginning of the well-known today Density
Functional Theory (DFT). According to the DFT theory, the ground state
properties can be calculated exactly, in principle, since its energy is a univer-
sal functional of the electron density. The problem is that the functional is
non-local and is no known exactly. Hence, at the end, the Hamiltonian is solved
using different kind of local and non-local functional approximation which we
will describe in the part-1 of this thesis. Also in this part of the thesis we will
to describe different technical aspects of the Green’s Function formalism to the
transport problem, and the partition and operator theory used and developed
as a part of this thesis.

It is well-known that the local approximation to the functional does not work
well with strong correlated system, due to the self-interaction problem. The
spurious interaction of an electron with itself is not canceled because the exact
exchange potential is unknown and the Coulomb interactions are not well com-
pensated. In addition, to solve the Kondo problem, we shall be more interested
in the behavior of the system as a function of temperature and in the response
to dynamic probes such as the excitation spectrum of the system, rather than
ground state properties. Because all these problem, the Kondo effect has been
historically studied via simpler model Hamiltonians.

As experiments in nanoelectronics[18] or molecular electronics[19] become
more sophisticated, being able to reveal physical phenomena in unprecedented
detail, the need for an improvement of the theoretical description of the elec-
tronic structure of the studied systems is more and more pressing. Fortunately,
on many occasions, one can readily identify an active region, i.e., a region in
space where the relevant physics takes place and which may be the only one
needed of a sophisticated theoretical treatment. In electronic transport prob-
lems the active region is where the largest resistance is located. For instance,
when a single molecule is connected by metallic electrodes, the main source of
resistance is the molecule itself[19–23]. Another prototypical example of act-
ive region is the transition metal (TM) atom at the core of organic molecules
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such as Phthalocyanines[24]. When these molecules are adsorbed on metallic
surfaces, low-temperature scanning tunnelling spectroscopy usually reveals a
Kondo effect associated to the TM atom[25–27].

In last years, different authors have been proposed different approaches to
the Kondo problem from first-principles calculations. Notably the work of N.
Lorente’s team and D. Jacob between others to the Molecular Kondo prob-
lem. The more important part of this thesis has been the development of a
molecular approach to the Kondo problem from first principles calculations
without any parameters. For that, and in collaboration with D. Jacob, we
developed a partition technique to reduce the full Hamiltonian in the above
equation to an active space which has the full information to the system for
the Kondo effect. Then, using a constraint-DFT techniques, we remove the
electron-electron interaction to correct it via an exact diagonalization which at
the same time is the input of an impurity solver combined with a Dynamical
Mean Field Theory (DMFT) which allow us to obtain the excitation spectrum.

This set of approaches, which aims to compute the physical properties of real-
istic systems and therefore complex, whose starting point is an atomistic cal-
culation such as the DFT calculations, and generally requires a high level of
theory, is what is known as atomistic electronics.
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Part I

I Part: Theoretical Methods
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Chapter 1. Electronic Structure an interaction Methods 13

Chapter 1

Electronic Structure Methods.

In this thesis we have studied realistic systems, whose electronic structure can
not be determined either by heuristic approaches or by simple models, but
they need a clever mix of both due to the complexity of them.

This chapter summarizes the computational electronic structure methods em-
ployed in this thesis. In the first section we introduce basics features of stand-
ard density functional theory, largely following the excellent reference. In the
second section we introduce the basic kind of density functional. In the third
section we introduce the self-interaction problem and the Janak’s theorem.
Because it is very important in our work in the fourth section we introduce
the concept of local basis set. In the fifth section we introduce the general
theory of constrained DFT techniques which we will use in this thesis. In the
last section we briefly describe the basic aspect of the Dynamical mean field
theory used in this thesis and the basic concept of the exact diagonalization
techniques.

1.1 Density Functional theory.

To obtain the Hamiltonian of any system, firstly we need to solve the many-
body Schrödinger equation:

ĤΨ(~r1, ..., ~rN) = EΨ(~r1, ..., ~rN) (1.1)

Where E is the energy of the ground state.
Nevertheless, solving this equation for something bigger than the hydrogen
molecule is basically impossible, so we need approximations. In the present
work we have used the density functional theory (DFT) for this purpose.
The DFT is a mean field approach used to investigate the ground state elec-
tronic structure of an interacting electron system, where the density is the
fundamental variable. The origin of this theory dates to the 1920’s when
Thomas and Fermi described an independent particles system with electro-
static electron-electron interactions, moving under external potential vext in
terms of the electron density distribution n(~r). [28]

M. Soriano 13 Ph.D. Thesis



1.1 Density Functional theory. 14

Ĥ = T̂ + V̂ee +
N∑
i=1

V̂ext(~ri) (1.2)

T̂ is the Kinetic energy operator and V̂ee is the electron-electron interaction
due to electrostatic energy, and N is the number of electrons. To find the
ground state of this system, Thomas and Fermi applied the calculus of vari-
ations, writing an energy functional, E[n], where all terms in the Hamiltonian
are expressed as a function of the density.

E[n] = T [n] + Vee[n] +

∫
vext(~r)n(~r)d~r (1.3)

Here

Vee[n] =
1

2

∫
n(~r)n(~r ′)

|~r − ~r ′|
d~rd~r ′ =

1

2

∫
vintn(~r)d~r (1.4)

Since vint is the internal potential:

vint =

∫
n(~r ′)

|~r − ~r ′|
d~r ′ (1.5)

And

T [n] =

∫
t [n(~r)] d~r (1.6)

To define the kinetic energy in terms of the density is the most complicated
part in this approach, because the relationship between this energy and the
density distribution is unknown. In the Thomas Fermi Theory, t[n(~r)], is the
kinetic energy density for a system of noninteracting electrons with density
n. A functional is a mathematical function which depend on other functions;
In this case, The functional is a function depending on the electron density
function distribution. Using the calculus of variations, is possible to find the
extremes of this functional. Thomas and Fermi were interested in obtaining
the minimum of this object. Hence, keeping constant the number of electrons,∫
n(~r)d~r = N , and using the Lagrange multipliers method, they minimized

this system obtaining the corresponding Euler equation:

E[n]− λN = t[n(~r)] +

∫
[vint + vext − λ]n(~r)d~r (1.7)

Here λ is the Lagrange parameter. Setting:

δ {E[n]− λN} = 0 (1.8)

The Thomas-Fermi Theory certainly is a rough representation of the exact
solution of the many-electron Schrödinger equation, but in terms of the electron
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density distribution n(~r). However, although there is no clear connection
between the electron density theory and the solution of the Schrödinger
equation in terms of the wave function, Ψ(~r1, ..., ~rN), the suggestion that a
knowledge of the ground state electron density could determine the system
became the starting point of a new theory in the 1960’s. In two seminal papers,
Hohenberg, Kohn [29] and Sham [17] changed the vision and the application
of the computational quantum mechanics. This theory is what we call today
Density functional theory (DFT). [30]

1.1.1 The Hohenberg Theorem and Kohn-Sham equa-
tions

In 1964 Hohenberg and Kohn developed an exact formal variational principle
using an universal functional F [n(~r)], i.e independent of the external potential,
where the density, n(~r), was the variable fundamental [30]. The two funda-
mental theorems of this theory are:

Theorem 1: The external potential Vext(~r) is a unique functional of the elec-
tron density n(~r).

This theorem implies that the Hamiltonian and consequently the total ground
state energy can be expressed as a functional of the electron density, so then,
the equation 1.3 can be written as:

E[n] = F [n] +

∫
Vext(~r)n(~r)d~r (1.9)

Theorem 2: The ground state energy can be obtained on variational way.
i.e. the electron density n0(~r), which minimizes the total energy, is the exact
ground state density.

This theorem provides a minimization scheme for finding the exact ground
state energy and electron density if F [n(~r)] is known. Nevertheless, these the-
orem do not give any idea on how to derive F [n(~r)]. For this reason Kohn and
Sham provided a solution to this problem [17]. By applying the variational
principle of quantum mechanics, Kohn and Sham derived a set of single elec-
tron Schrödinger equations known as the Kohn-Sham equations:[

−1

2
∇2 + Veff (~r)

]
ψi(~r) = εiψi(~r) (1.10)

Where the set of single-electron wave functions must correspond to the elec-
tron density: n(~r) =

∑N
i=1 |φi(~r)|

2. The effective potential Veff (~r) involves
the total electrostatic potential and the derivative of the exchange-correlation
energy:

Veff (~r) = Vext(~r) +

∫
n(~r′)∣∣∣(~r)− (~r′)

∣∣∣d(~r′) +
∂EXC [n]

∂n(~r)
(1.11)
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1.2 Local and non-local density functional approximations. 16

In DFT calculation, the Kohn-Sham equations are solved self-consistently.
First we choose a trial n(~r) and then we evaluate Veff (~r) and a set ψi(~r).
Finally a new n(~r) can be found. This is repeated in an iterative way until
convergence. The total energy can then be found as:

E =
N∑
i=1

∈i − Vee + EXC [n]−
∫
∂EXC [n]

∂n(~r)
n(~r)d~r (1.12)

The Kohn-Sham equations are in principle exact. However, in practice the
exchange-correlation energy EXC [n] has to be approximated because its exact
functional form is unknown.

1.2 Local and non-local density functional ap-
proximations.

1.2.1 Local Density Approximation (LDA) and Generalized
Gradient Approximation (GGA).

The local density approximation assumes that the exchange and correlation
energy can be described in terms of the homogeneous electron gas approxima-
tion [31]. The homogeneous electron gas defines a system where the interacting
electrons are moving around a positive background, keeping the charge neut-
rality. The expression for the homogeneous electrons gas exchange energy is
known analytically [32]:

ELDA
X =

1

N

∑
k

nkΣX (k) (1.13)

Where N is the number of electrons, nk is ..., and ΣX(k) is the electron self
energy defined at the Fermi level as:

ΣX (kF ) = − e2 kF
π

(1.14)

kF is the wave vector at the Fermi energy, kF = 1
a0rs

(
9π
4

)1/3, a0 is the Bohr
radius a0 = ~2

me2
, and rs is the radius of the sphere which encloses one unit of

electron charge, rs =
(

3
4πn

)1/3, where n is the density. Normally, the exchange
energy of electron gas is expressed in terms of rs and in atomic units:

ELDA
X = −0.4582

rs
(1.15)

The correlation energy in the local density approximation is defined by the
Wigner formula (in atomic units):

Ec = − 0.44

rs + 7.8
(1.16)
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Chapter 1. Electronic Structure an interaction Methods 17

In the local density approximation the effects of the exchange and correlation
are local and depend only on the value of the electronic density at a point.
This approximation only can be applied in the limit of the low variation of the
electronic density. Moreover, the most surprising characteristic of this method
are the good results obtained using a very simple approximation based on the
jellium model and without evaluate accurately the exchange-correlation hole.
One of the disadvantages known to this approximations is the fact that the
binding energies tend to be too high.

One improvement of the local density approximation is the Generalized gradi-
ent approximation, where gradients of the density are introduced [33].

EGGA
XC [n (~r)] =

∫
εXC

[
n (~r) , ~∇n (~r)

]
n (~r) d3r (1.17)

It has been found that GGA usually gives a better description of the
energetics.

1.2.2 Hartree-Fock approximation and the B3LYP func-
tional

In traditional Hartree-Fock (HF) theory one writes antisymmetrized wave
functions [34] of the type:

Φ(~x1, ~x2) =
1√
2

[χi(~x1)χj(~x2)− χj(~x1)χi(~x2)] (1.18)

These antisymmetric wave function can be rewritten as a determinant which
is called Slater determinant. For an N-electron system the generalized Slater
determinant is:

Φ(~x1, ~x2, ..., ~xN) =
1√
N !

∣∣∣∣∣∣∣∣∣
χi(~x1) χj(~x1) · · · χk(~x1)
χi(~x2) χj(~x2) · · · χk(~x2)
...

...
...

χi(~xN) χj(~xN) · · · χk(~xN)

∣∣∣∣∣∣∣∣∣ (1.19)

An Slater determinant has N electrons occupying N spin orbitals without spe-
cifying which electron is in which orbital. The interchange of any two columns
of the determinant changes the sign of the determinant. This ensures compli-
ance with the Pauli exclusion principle.

|· · ·χm · · ·χn · · ·〉 = − |· · ·χn · · ·χm · · ·〉 (1.20)

Then, using the variational principle, we can obtain the best Slater wave func-
tion, |Ψ0〉 = |χ1χ2 · · ·χN , which gives the lowest possible energy:

E0 = 〈Ψ0|H|Ψ0〉 (1.21)
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1.3 The self-interaction problem 18

This minimization process leaves a set of eigenvalue equations, called the
Hartree-Fock equation, which determines the optimal spin orbitals.

Fχi(~x) = εiχi(~x) (1.22)

where F is the Fock operator. The Fock operator can be understood as a
Hamiltonian. In this Hamiltonian, the potential is the external potential and
the average potential experienced by the ith-electron due to the presence of the
other electrons. In the Hartree-Fock method, the many-body electron problem
has been replaced by a one-electron problem in which electron-electron inter-
actions are treated in an average way.

Hartree-Fock is a traditional alternative to DFT. Nevertheless, neither of them
describes well the energy levels. DFT calculations tend to reduce drastically
the energy separation between occupied and virtual energy levels and, in con-
trast, HF calculations tend to increase excessively this gap. For this reason,
a hybrid functional, such as B3LYP, mixing these two methods is commonly
used. Hybrid functionals include a mixture of Hartree-Fock exchange with
DFT exchange-correlation. The Becke Three (B3) Parameter Hybrid Func-
tionals have the form devised by Becke in 1993 [35]:

F [n] = AESlater
X + (1−A)EHF

X +B∆EBecke
X +EVWN

C +C∆Enon−local
C . (1.23)

Where A, B, and C are constants determined by Becke. There are several
variations of this hybrid functional. B3LYP uses the non-local correlation
provided by the LYP (Lee, Yang, Parr) expression [36], and VWN functional
(VWN: Vosko, Wilk, and Nusair 1980) for local correlation [31]. Note that
since LYP includes both local and non-local terms, the correlation functional
used is actually:

CELY P
C + (1− C)EVWN

C (1.24)

In other words, VWN is used to provide the excess local correlation required,
since LYP contains a local term essentially equivalent to VWN.

1.3 The self-interaction problem

A large number of problems in simple DFT approximations comes from the
interaction of an electron with the field it generates, which is known as the
self-interaction problem. In the HF equations the exchange term appears in
the place of the exchange-correlation potential of KS equations:(

− ~2

2m
∇2 + VH(r)

)
ψi(r)− e2

∑
j∈σ

∫
ψj(r)ψ∗j (r

′)

|r− r′|
ψi(r)dr =i ψi(r). (1.25)
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Chapter 1. Electronic Structure an interaction Methods 19

Consequently, the self-interaction cancels exactly, by construction. Self-
interaction mostly affects finite systems, or systems containing localized
electrons, while its effect is vanishing for delocalized electronic states in
extended systems (solids). In finite systems the presence of self-interaction
is reflected in an incorrect long-range behavior of the potential felt by an
electron.
Several recipes for "Self-Interaction Correction" (SIC) are known, but their
theoretical foundation is not completely convincing and their usage often meets
numerical trouble, so their usefulness is still a matter of debate. More advanced
functionals (e.g hybrid functionals) seem to perform better in this respect.

1.4 The concept of local Basis set.

The basis functions are a mathematical concept. Generally speaking, a base
is an ordered set that generates a given vector space. So, any element of the
vector space can be written as a linear combination of basis elements that, at
the same time, must be linearly independent from each other. In other words,
basis functions are the set of mathematical functions with which we generate
our vector space. In quantum mechanics, we want to solve the Schrödinger
equation on a complex Hilbert space. With this purpose, we will have to de-
cide whose basis set use to create this space. One way to generate this space is
using localized basis. Another is using plane waves. In the ab-initio molecular
electronics field is common to use the local basis formalism. The ratio between
computational time and result accuracy is better in the local basis codes in re-
lationship with the plane waves codes. Nevertheless, the description of a wave
function with plane waves is more accurately than the description of that wave
function with local basis because plane waves are a complete basis set.

In the localized basis formalism the wave function associated with a molecular
orbital ψi is defined as a linear combination of atomic orbitals.

ψi =
n∑
µ=1

Cµiφµ (1.26)

Where φµ is the wave function associated with the atomic orbital i. In this
approach the atomic orbitals are used as basis functions, assuming that mo-
lecular orbitals (ψi) can be written as a linear combination of them. Cµi are
the coefficients of the linear combination. Classically, these atomic orbitals
have been described as Slater Type Orbitals (STO). To improve the time of
the calculation, the shape of these STO functions can be approximated by
summing up a number of Gaussian Type Orbitals (GTO):

g(α, l,m, n;x, y, z) = Ne−αr
2

xlymzn (1.27)

Where N is a normalization constant, α is called the exponent, x, y and z are
the Cartesian coordinates and l, m and n are integral exponents at Cartesian
coordinates. The sum of exponents at Cartesian coordinates: L = l + m + n,

M. Soriano 19 Ph.D. Thesis



1.4 The concept of local Basis set. 20

is used analogously to the angular momentum quantum number for atoms to
mark functions as s-type, L = 0, p-type, L = 1 ..., assigning thus atomic or-
bital to basis functions:

L=0 → s-type; l = m = n = 0

s = Ne−αr
2

L=1 → p-type; l = 1,m = n = 0 (or another equivalent combination)

px = Ne−αr
2

X

py = Ne−αr
2

Y

...

Now the basis set is an ensemble of primitive Gaussians. For example, to de-
scribe an s-atomic orbital, we can use the following function:

ψs = −0.13N1e
−4.4r2 + 0.59N2e

−0.44r2 + 0.38N3e
0.17r2 + 0.13N4e

0.09r2

In this case, we have only used one basis function to describe the s-orbital.
Nevertheless, it is possible to describe this orbital with more than one basis
function as follows:

ψs = −0.13N1e
−4.4r2 + 0.59N2e

−0.44r2 + 0.38N3e
0.17r2

ψs′ = 0.13N4e
0.09r2

Now, the atomic s-orbital is described by two basis functions. This method
to increase the number of basis function is called “the segmentation method”.
Increasing the number of basis functions gives more accurate results, regardless
of the concommitant increase in the computational time. Hence, this method
really is an easy and useful method to obtain more basis functions based on
the same basis set.

In figure 1.1 we have plotted a base convergence curve for a benzene molecule.
This study has been performed applying the segmentation method. The chosen
functional is BPBE [33] and the basis set for the molecular hydrogen atoms is
STO-3G always [37]. The basis set for the carbon is the so called CRENBL
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Fig. 1.1: Benzene Convergence Curve based on the CRENBL basis set. In the plot we have represented the
chemical potential for this molecule as a function of the number of basis functions.

basis set with different segmentation levels. The computed property in this case
is the chemical potential of the molecule. The size of the sphere relates to the
number of basis functions, i.e., the bigger the sphere the more basis functions.
The figure 1.1 shows that an increase in the number of basis function results in
an increase in the chemical potential value until convergence. Also, this plot
shows how the choice of a correct segmentation method means a better result.
In BC5 and BC6 cases, the number of basis functions is the same. BC5 case
segments the s-orbital keeping the p-orbital contracted, while the BC6 case,
we segment both, s and p-orbitals. BC6 case is better than BC5 because is
always better to extend or to segment more the valence orbital than the core
orbitals. And in the carbon atom, strictly speaking, the valence orbital is the
p-orbital.
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Chapter 2

Quantum transport and ANT.G

2.1 Quantum Tunneling

The Quantum Tunneling refers to the non-

Fig. 2.1: Schematic representation of
Quantum Tunnelling. The energy of the
tunneled electron is kept constant whereas
the probability quantum amplitude decreases
through the barrier. d = x2 − x1. ψL

n (ψL
n′′ )

is the incoming(reflecting) wave function from
the left. ψR

n′ is the outgoing wave function to
the right

zero probability of an electron to be trans-
mitted through a potential barrier whose
energy is greater than the electron energy.
Quantum tunneling is the quantum mech-
anical phenomenon in which The Scan-
ning Tunneling Microscopy is based on.
In order to introduce basic concepts about
the theory of Scanning Tunneling Spectro-
scopy and Microscopy, we can use an ele-
mentary model of one-dimensional tunnel-
ing process. Assume that the differential
operator, H, of an electron moving along
in an one-dimensional potential, V (x) can
be written as:

H = − ~2

2m

d2

dx2
+ V (x) (2.1)

where m is the electron mass, ~ = h/2π and h is the Planck’s constant. V (x)
is a one-dimensional potential which is zero outside the interval [x1, x2], but
which varies in an arbitrary way inside this interval. In this case, we are go-
ing to consider a square potential barrier so that V (x) = V0. Every wave
function ψ(x), associated with a stationary state of energy E satisfy the one-
dimensional time-independent Schrödinger equation:

Hψ(x) = Eψ(x) →
[
− ~2

2m

d2

dx2
+ V0

]
ψ(x) = Eψ(x)

d2

dx2
ψ(x) +

2m

~2
[E − V0]ψ(x) = 0 (2.2)

M. Soriano 23 Ph.D. Thesis



2.1 Quantum Tunneling 24

We can obtain exactly a solution for this equation in which the wavefunction
is defined as a lineal combination of exponential functions of the type Cneiknx.
Cn are arbitrary complex constants and kn refers to the momentum of the
particle. Hence, for any E < V0 there exists an x-function solution of the form:

< V0 →


x < x1 → ψI(x) = C1e

ik1x + C
′
1e
−ik1x

x1 < x < x2 → ψII(x) = C2e
ρ2x + C

′
2e
−ρ2x

x > x2 → ψIII(x) = C3e
ik3x + C

′
3e
−ik3x

(2.3)

where

kn =

√
2mE

~
ρ2 =

√
2m(V0 − E)

~
(2.4)

In these solutions Cneiknx represents a wave propagator in a one-way, and
C
′
ne
−iknx in the opposite way along the same direction, commonly dubbed

propagation and reflexion waves, or incoming and outgoing waves. Boundary
conditions require that C2, C

′
3 → 0 at x→∞, and C1 = 1. In the barrier the

solution of the Schrödinger equation is an evanescent wave which looks like
ψII(x) = C

′
2e
−ρ2x. Also boundary conditions require the continuity of wave

functions and its derivative at points x1 and x2 as shown in figure 2.1.

C1e
ik1x1 + C

′

1e
−ik1x1 = C3e

ik3x2 (2.5)

k1

[
C1e

ik1x1 + C
′

1e
−ik1x1

]
= k3

[
C3e

ik3x2
]

(2.6)

Rewriting these equations in a matrix form we can obtain the transmission
matrix M: [

C1

C
′
1

]
=

M︷ ︸︸ ︷[
M11 M12

M21 M22

] [
C3

0

]
(2.7)

The boundary conditions showing in equations 2.5 and 2.6 are the elastic scat-
tering condition. Elastic transport means that the energy of the particle-wave
is kept constant along the tunneling process, i.e. the process is phase coherent.

Quantum mechanics establishes that the wave particle probability density,
ω(t, ~r) is equal to ω(t, ~r) = ψ(t, ~r)ψ∗(t, ~r). The Schrödinger equations for
both wave functions, ψ(t, ~r) and it complex conjugate, ψ∗(t, ~r) is written:

i~ ∂
∂t
ψ(t, ~r) = − ~2

2m
∆ψ(t, ~r) + V (t, ~r)ψ(t, ~r)

−i~ ∂
∂t
ψ∗(t, ~r) = − ~2

2m
∆ψ∗(t, ~r) + V (t, ~r)ψ∗(t, ~r)

Multiplying by −ψ(t, ~r) or ψ∗(t, ~r) as appropriate, and adding both equations:

i~ ∂
∂t

[ψ∗(t, ~r)ψ(t, ~r)] = − ~2
2m

[ψ∗(t, ~r)∆ψ(t, ~r)− ψ(t, ~r)∆ψ∗(t, ~r)]
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And assuming the local conservation of probability, i.e:

∂

∂t
ω(t, ~r) +∇~j(t, ~r) = 0 (2.8)

We can obtain the so called quantum probability density current, ~j(t, ~r):

~j(t, ~r) =
~2

2mi
[ψ∗(t, ~r)∇ψ(t, ~r)− ψ(t, ~r)∇ψ∗(t, ~r)] (2.9)

Probabilities currents associated with the incoming and outgoing waves are,
in our one-dimensional case:

jin(x1) =
~k
m
|C1|2 jout(x2) =

~k
m
|C3|2 (2.10)

These equations demonstrate that the probability current associated with a
wave-particle can be express in terms of probability density, which is uniform
throughout all space and independent on time.
The transmission coefficient T (E), is the ratio of the incoming and the outgo-
ing currents in the point x2:

T (E) =
jout(x2)

jin(x1)
=

∣∣∣∣C3

C1

∣∣∣∣2 (2.11)

In the same way, the reflexion coefficient R(E), is the ratio of the incoming
and the outgoing currents in the point x1:

R(E) =
jout(x1)

jin(x1)
=

∣∣∣∣C ′1C1

∣∣∣∣2 (2.12)

In a classical system, if E < V0, one would expect that the particle does not
pass through the barrier, and therefore, the wave-particle transmission prob-
ability (T), was zero (T = 0); However, in a quantum system there is any
probability of that the electron-wave passes through the potential barrier. We
can rewrite the equation 2.10 in terms of the elements of the transmission
matrix defined in equation 2.7, taking into account that C1 = M11C3:

jin(x1) =
~k
m
|C1|2 =

1

|M11|2
(2.13)

M11 =

[
cosh (2ρ2a)− i

2

(
k2 − ρ2

kρ2

)
sinh(2ρ2a)

]
e2ika (2.14)

Where a = d/2 and we have taken k1 = k2 = k. Now the transmission coeffi-
cient can be written as:

T (E) =

∣∣∣∣C3

C1

∣∣∣∣2 =

∣∣∣∣ C3

M11C3

∣∣∣∣2 =

∣∣∣∣ 1

M11

∣∣∣∣2 =
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=

[
cosh2 (2ρ2a)− i

2

(
k2 − ρ2

kρ2

)2

sinh2(2ρ2a)

]−1

=

=
1

1 +
(
k2+ρ22
2ρ2k

)2

sinh2(2ρ2a)
(2.15)

If we considerer the tunneling limit, where 2ρ2a >> 1 the transmission coeffi-
cient can be approximated as an exponential decay such as we have illustrated
in figure 2.1 into the barrier:

T (E) ≈
(

2ρ2k

k2 + ρ2
2

)2

e−4ρ2a (2.16)

To explain this effect we may recur to the Heisenberg uncertainty principle:

∆E∆t ≈ ~ ∆px∆x ≈ ~ (2.17)

Due the uncertainty, the electron energy can be represented by a normal
distribution function. At given time, the energy of electron can take any value
defined in this distribution function with more or less probability.
If an electron goes to the potential bar-

Fig. 2.2: Energy Distribution Function show-
ing the broadening of a energy level due to the
Heisenberg uncertainty principle

rier with energy, E ± δE, in such a way
that E < V0, the transmission probability
is proportional to the probability of what
electron has the barrier energy. Thus,
while V0 ∈ [E ± δE] is fulfilled, there will
be a non-zero probability of what the elec-
tron is transmitted despite the potential
barrier and leading to tunneling process.
Also, the Heisenberg uncertainty principle
can also be written as ∆px∆x ≈ ~. So, there is some uncertainty in the elec-
tron position. If the thickness of the barrier, d = x2 − x1 is inside of this
uncertainty, i.e. d ∈ [x±∆x], the wave function will have some probability to
cross the barrier before to vanish, resulting in a tunneling process.

2.2 From Bardeen to Landauer Formalism.

We are going to consider a simple tip-vacuum-surface junction based on the
unidimensional potential model explained in the last section. The vacuum
plays the role of the potential barrier height V0. If we assume that the tip-
surface difference in work functions is small, we may suppose a square potential
barrier developed between the tip and the surface, neglecting the thermal ex-
citation of electrons in the metal. The electron can tunnel from the tip to the
surface and vice versa. By applying a bias voltage, V, a net tunneling current
occurs and we end up with a model like figure 2.3.
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Fig. 2.3: Schematic one-dimensional energy diagram for a sample-tip tunnel junction with a width d. In this
representation a positive bias voltage has been applied to the sample, and electrons therefore tunnel from
occupied tip states into empty sample states. Occupied states in the tip/sample are darkened and the size
of horizontal arrows indicates different tunneling probabilities for electron of different energies. Tunneling
is only permitted within the small energy interval eV. Φs(Φt) is the work function of the sample(tip). The
density of states of the sample(tip), ρs(ρt), has been sketched. Ψn illustrates a wave function with energy
εn that decays exponentially in the junction but still has a non-zero amplitude at the position of the sample.
ψt
n is the incoming n-state wave function from the tip, and ψs

m(ψt
n′ ) is the transmitted(reflected) wave

functions to the m(n′)-state of the sample(tip). Evac is the vacuum energy, and εF,t(s) is the Fermi energy
of the tip(sample).

There is a finite probability for a tip wave function, ψn, with an energy εn,
between εF and εF − eV , to tunnel to an empty state in the sample. If we
assume that the potential barrier weight is equal to the average work func-
tion Φ = (Φs + Φt)/2, taking into account the applied bias, then V0 − εn ≈
Φ − εn + (eV/2). Using the solution obtained in equation 2.4 we can obtain
the tunnel probability as:

ω(d, t) = |ψn(0, t)|2 e−2ρd = |ψn(0, t)|2 e−2d
√

2m
~2 (Φ+ eV

2
−εn) (2.18)

Where

T (εn, d, V ) = e
−2d

√
2m
~2 (Φ+ eV

2
−εn) (2.19)

is the tunneling transmission probability for a trapezoidal barrier [38, 39] nor-
mally used in scanning tunneling spectroscopy (STS). Nevertheless, to evaluate
the tunneling current in a general situation Bardeen proposed a perturbative
method [40], where the tunneling current is viewed as the net effect of many
independent scattering events that transfer electrons across the tunneling bar-
rier. (The three wave functions draw in figure 2.3). In order to estimate the
tunneling current through the tip-sample junction, Bardeen proposed to evalu-
ate the tip and the sample separately. The isolated tip and surface Hamiltonian
are [41, 42]:

Hs = − ~2

2m
∇2 + Φs (2.20)
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Ht = − ~2

2m
∇2 + Φt (2.21)

where t(s) is relative to the tip(surface). Instead of trying to solve the com-
bined problem, Bardeen showed that electronic wave functions of the separate
sample and tip subsystems (Φs and Φt, respectively) can be obtained by solv-
ing the stationary Schrödinger equation. The rate of electron transfer, that
is, the tunnel current, can then be calculated by time-dependent perturbation
theory. Assume us that the subindex α is relative to the perturbed system,
then:

Hα = − ~2

2m
∇2 + Vα (~r) (2.22)

Since the electron is destroyed in the tip and generated on the surface, the
electron wavefunction as a function of time can be written as:

ψα(~r, t) = ψne
−itεn/~ +

∑
s

as(t)φs (2.23)

In the opposite case, i.e. an electron that is destroyed in the surface and gen-
erated in the tip, the electron wavefunction is:

ψα(~r, t) = ψse
−itεs/~ +

∑
n

an(t)φn (2.24)

Now the real goal is to obtain the as and an coefficients using perturbation
theory, but this is beyond the scope of this work. Bardeen showed that the
tunneling matrix element, Mmn, is determined by the overlap of the surface
wave functions of the two systems separated dÅ and can be expressed as:

Mmn = − ~2

2m

∫
d

(ψ∗n∇ψm − ψm∇ψ∗n)dS (2.25)

where the integral is calculated over a surface lying in the vacuum region
between the tip and surface. Later, Tersoff and hamann [43, 44], among other
[42, 45–48] developed different ways to calculate Bardeen’s matrix. In the
Tersoff-Hamann approximation, the solution of the Schrödinger equation for
a spherical potential were taken as tip wave functions, assuming that only the
s-wave solution was important. At low voltages, eV is small enough so that the
density of electronic states does not vary significantly at Fermi level, hence the
tunneling current is proportional to the Fermi local density of states (LDOS) at
the center of curvature of the tip. Hence, Tersoff-Hamann using the so-called
s-wave approximation and the Bardeen matrix, obtained the probability, ω, of
an electron to tunnel between a tip state ψm, and a sample state, ψn. A well
known result from first-order time-dependent perturbation theory is Fermi’s
golden rule, which states that the transition rate for an electron to tunnel from
an initial (tip) state, ψm, to a final (sample) state, ψn, is given by:

ωm→n =
2π

~
∑
n

|Mmn|2δ(Em − En) (2.26)
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Where the delta function indicates that only elastic tunneling is considered,
that is tunneling between states with the same energy at both sides of the
gap. With Fermis golden rule in mind, the tunnel current from the tip to the
sample, for a system with positive bias voltage, eV, on the sample, can be
written as:

It→s =
4πe

~

∫ ∞
−∞

ρt(ε)f(ε)T (ε)ρs(ε+ eV ) [1− f(ε+ eV )] dε (2.27)

where the factor of 2 in front accounts for electron spin. f(ε) = [1 +Exp((ε−
εF )/KbT )]−1 is the Fermi distribution function of the electrons at temperature
T and Kb is the Boltzmann’s constant. ρs(ρt) is the local density of states of
the sample(tip). Since KbT < ∆ε and the Fermi function can be approxim-
ated by a step function, and since a small bias voltage is applied, the tunneling
current can be calculate by summing over all the possible states:

It→s ≈
4πe

~

∫ eV

0

[ρt(εF − eV + ε)T (ε)ρs(εF + ε)] dε (2.28)

This equation shows the tunneling current as the tip-surface convolution of
the density of states. If the tunneling matrix element does not change appre-
ciably as a function of energy, it can be separated out in which case the tunnel
current can be expressed as a convolution of the surface and tip DOS. There
are several approximation to obtain, first this LDOS, and second to obtain the
Bardeen matrix. In this work, we have consider the Bardeen matrix as the
tip-surface hopping matrix, and we have obtained it using Density Functional
Theory (DFT) calculations.

Since

I = GV → dI

dV
= G → I =

∫
GdV

E = qV → dE

dV
= q → dV =

dE

q

I =

∫
GdV → I =

1

e

∫
GdE

Where V is the voltage, G the conductance, E de energy, q the electron charge
(e), and I the current. The conductance is:

G =
e2

h

∑
nm

[ρm(εF )Mnm ρn(εF + eV )M∗
nm] (2.29)

If we consider the ψm and ψn coupling states as a highway for which the elec-
tron can pass or cannot pass depending on the value of this coupling, we can
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treat this states as orbital, in the local orbital basis formalism, or conduction
channel, [46]. So, a bias zero, the tunnel conductance at Fermi level is related
here to the product of the orbital-resolved LDOS of the electrodes. Notice that
this result seems the conductance equation obtained by D. Jacob et.al. [49]
using the Green’s Functions formalism and the Landauer formula:

G =
e2

h
T (εF ) =

e2

h

∑
n

Tn(2.30)

Where Tn is the transmission functions writing as a function of the eigenchan-
nel, n. In the Green’s function formalism, we can obtain the transmission
matrix from the Caroli’s equation, [50].

T (E) = Tr
[
Ĝc(E)Γ̂t(E)Ĝ+

c (E) Γ̂s(E)
]

(2.31)

Where Ĝc(E) refers to the central region between electrodes and Γ̂t(E)(Γ̂s(E))
refers to the coupling matrix of the tip(sample) electrode. This is the Modus
operandi of ALACANT code. [51] Aqui iría como se va del one-electron al
many body en términos de transporte.
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Chapter 3

The partition Methods.

The partition of the Hamiltonian of systems consisting of several parts of
different nature and different physical relevance is particularly necessary
when correlations are important in some of these parts and standard density
functional theory (DFT) approximations do not capture the relevant physics
there. DFT implementations as those found in commonly used codes[52, 53]
usually make no distinction in the treatment of the different parts of a
physical system (DFT+U corrections, being an exception). As regards the
previous examples, an accurate calculation of the electronic structure of the
contacted molecule is imperative, in particular of the HOMO-LUMO gap
which is not correctly given by standard DFT approximations[54–58]. On
the contrary, the electronic structure deep into the bulk electrodes, which are
typically free-electron metals, needs little attention and even simple tight-
binding models can account for it[22, 59, 60]. Following with the second
example, in order to properly describe the Kondo effect electronic correlations
need to be taken into consideration at the TM atom (for instance through
DFT+DMFT schemes[27]) while the electronic structure of the organic ligands
and substrate can be safely described by standard DFT.
In this regard one first needs to obtain an effective description of the active
part. In other words, one looks for a non-Hermitian energy-dependent
“Hamiltonian" which includes the effect of the rest of the system. Once this
effective Hamiltonian has been obtained, one can try to improve the electronic
description or add the necessary terms to it to account for the required physics.
However, a preliminary step, with mathematical pitfalls easy to overlook, needs
to be taken first. This step consists of finding a precise mathematical definition
of the active region itself. This is done, in principle, through the selection of
a subset of basis elements that expand the vector subspace associated to such
region. For practical purposes many implementations of DFT make use of non-
orthogonal basis sets (typically atomic orbitals) which makes this selection
problematic due to the inherent ambiguity accompanying these subsets. In
other words, the vector subspace expanded by a non-orthogonal basis subset is
not orthogonal to the rest of the system from which we want it unambiguously
separated.
An important effort to address these issues has been made with the
development of Wannier functions [61–66] or localized molecular orbitals
[67, 68]. While constructing orthogonal basis sets is a successful approach,
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here we take an alternative route which does not require finding new basis
sets. Instead, we show in detail how to address the partitioning problem while
keeping the use of the original non-orthogonal basis sets on which the DFT
code of interest is based on. Partitioning techniques usually rely on Green’s
functions formalism. We show here how to obtain effective Hamiltonians
from reduced Green’s functions by proper projection and reversal engineering
operations in a general non-orthogonal metric. We calculate the projected or
local density of states (LDOS) and projected or local charge in simple examples
to illustrate the differences and the arbitrariness inherent to different ways of
performing the a priori same physical partition. The conductance, instead,
does not depend on the type of projection, as long as this removes parts of the
electrodes which are sufficiently far away from each other. We also discuss, for
completeness, the use of mixed basis set where direct and dual subspaces are
employed[69].
While this work is mainly motivated by problems where standard DFT fails,
the partitioning technique presented here can also be used in a variety of other
situations such as constrained DFT methodologies[70–72] or when rigorous
population analysis are needed. Some of the mathematical and conceptual
issues discussed here have been previously addressed in the literature [73–81],
but we believe that our approach to the problem may shed a new light on some
of the unresolved or controversial points. We begin by revisiting some basic
operator operations in a non-orthogonal metric in Sec. 3.1. In Sec. 3.2 we
discuss the dual basis and its relevance to the inversion operation. Section
3.3 presents the essential definitions of projectors along with the different
projections that can be carried out and in Sec. 3.4 the concept of non-integer
dimension of a subspace is introduced. Section 3.5 revisits the block-orthogonal
metrics introduced by Thygesen [69] along with the appropriate basis change
transformations. In Sec. 3.6 we show how different projections of the Green’s
function give rise to different definitions of the local density of states (LDOS)
and associated integrated charges, the popular Mulliken charges being one of
them. In Sec. 3.7 we show how to carry out reversal engineering procedures to
obtain effective Hamiltonians from the projected Green’s function and, finally,
in Sec. 3.8 we show how the conductance can be evaluated starting from any
type of projection, being the result independent on the chosen one. A brief set
of conclusions is presented at the end.

3.1 Operators in an arbitrary metric

We consider a vector space expanded by a finite and not necessarily orthogonal
basis set {|i〉} of dimension N . The inner product of its elements 〈i|j〉 = Sij
constitutes the overlap matrix, also called the metric of such basis set. We will
assume, for simplicity, {|i〉} to be real and normalized (〈i|i〉 = 1 ∀ i) so that S
is real symmetric. For the particular case of an orthogonal basis set the overlap
matrix becomes the identity matrix Sij = δij. The identity operator in terms
of this generic basis set is given by the completeness (or closure) relation:

Î =
∑
ij

|i〉S−1
ij 〈j|. (3.1)
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The representation of the identity operator in the basis set defining the metric
is the overlap matrix itself, 〈m| Î |n〉 = Smn ≡ (S)mn. For simplicity, we will
write S−1

ij instead of the less ambiguous expression (S−1)ij for the elements of
the inverse matrix. (Unless deemed necessary, this will apply to any matrix
inversion from now on).
In general, any one-body operator Â can be written or expressed in terms of
the basis set defining the metric:

Â =
∑
ij

|i〉 Ãij 〈j|, (3.2)

where Ã = S−1AS−1 is the “nucleus” or “nuclear” matrix of the operator.
One can easily obtain the matrix elements of the operator from the previous
expression:

〈m| Â |n〉 =
∑
ij

〈m|i〉 Ãij 〈j|n〉 =∑
ij

SmiÃijSjn = Amn.
(3.3)

Based on the generalized expression for an operator introduced in Eq. 3.2 one
can check a basic property for the identity operator:

ÎÂ =
∑
ijkl

|i〉S−1
ij 〈j|k〉 Ãkl 〈l| =

∑
ijkl

|i〉S−1
ij SjkÃkl 〈l| =∑

ikl

|i〉 δikÃkl 〈l| =
∑
il

|i〉 Ãil 〈l| = Â.
(3.4)

More interesting is the following result for the product of two operators [73]:

B̂Â =
∑
ijkl

|i〉 B̃ij 〈j|k〉 Ãkl 〈l| =
∑
ijkl

|i〉 B̃ijSjkÃkl 〈l|, (3.5)

expression from which the matrix elements of the product can be easily
obtained

〈m| B̂Â |n〉 =
∑
ijkl

〈m|i〉 B̃il 〈l|k〉 Ãkj 〈j|n〉 =∑
ijkl

SmiB̃ilSlkÃkjSjn =
(
BS−1A

)
mn
.

(3.6)

This result can be easily overlooked. In a general metric the product of
operators is not simply the product of their matrix representations.

3.2 The dual basis

Given a general basis set with a metric S (hereon called the direct basis set),
there exists a basis set dual to this with the property 〈i|j∗〉 = δij. Only for
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orthogonal basis sets both direct and dual sets coincide. In general, the nuclear
matrix of any operator, Ã, is the dual representation of this operator:

〈k∗| Â |l∗〉 = 〈k∗|

(∑
ij

|i〉 Ãij 〈j|

)
|l∗〉 = Ãkl. (3.7)

One can equally write or express any operator in terms of the dual basis set:

Â =
∑
ij

|i∗〉Aij 〈j∗|, (3.8)

where now the nuclear matrix is the representation of the operator in the direct
basis itself A. This can be easily proved by direct computation of the matrix
elements or by noting that

|i〉 =
∑
j

Sij |j∗〉 , (3.9)

or equivalently
|i∗〉 =

∑
j

S−1
ij |j〉 . (3.10)

As an example, the identity operator can also be written as

Î =
∑
ij

|i∗〉Sij 〈j∗| (3.11)

and, for later use, one can also write the identity operator in the following
“orthogonal” form:

Î =
∑
i

|i∗〉 〈i| =
∑
i

|i〉 〈i∗|. (3.12)

An interesting use of the dual basis concerns the inversion of an operator. The
inversion operation consists of the inversion of the nuclear matrix along with
the “dualization” of the basis in which this operator is written:

Â−1 =

[∑
ij

|i〉 Ãij 〈j|

]−1

=
∑
ij

|j∗〉 Ã−1
ji 〈i∗|. (3.13)

The validity of this expression can easily be checked by direct verification of
Â−1Â = Î. The resulting matrix elements of the inverse operator thus become

〈m| Â−1 |n〉 =
∑
ij

〈m|j∗〉 Ã−1
ji 〈i∗|n〉 =∑

ij

δmjÃ
−1
ji δin = Ã−1

mn.
(3.14)

Note that the inversion of an operator does not correspond to the inversion of
its matrix representation, but to the inversion of its nuclear matrix.
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3.3 Projection Operators: Basic considerations

For future use we now establish the basics concerning projection operations.
We begin by considering in this section the expression of the operator for
the projection onto a one-dimensional vector subspace expanded by a single
element |i〉 of the direct basis set. Taking into account the definition of the
identity operator in Eq. 3.1, it follows

P̂i =
∑
j

|i〉S−1
ij 〈j| = |i〉 〈i∗| =

∑
j

|j∗〉Sji 〈i∗|, (3.15)

where we have used the transformation between direct and dual basis, given
in Eqs. 3.9 and 3.10, to obtain the three equivalent expressions. With a non-
orthogonal basis set one can also write the adjoint of the previous operator:

P̂†i =
∑
j

|j〉S−1
ji 〈i| = |i∗〉 〈i| =

∑
j

|i∗〉Sij 〈j∗|. (3.16)

It is easy to show with the help of a generic element of the basis set, |k〉, that
the projector operator is non-Hermitian by comparing

P̂i |k〉 =
∑
j

|i〉S−1
ij 〈j|k〉 = δik |i〉 (3.17)

with
〈k| P̂i =

∑
j

〈k|i〉S−1
ij 〈j| = 〈i∗|Sik, (3.18)

which are obviously not the dual of each other. The Hermitian-adjoint
projector behaves similarly:

〈k| P̂†i =
∑
j

〈k|j〉S−1
ji 〈i| = 〈i| δik (3.19)

and
P̂†i |k〉 =

∑
j

|j〉S−1
ji 〈i|k〉 = Sik |i∗〉 (3.20)

are not dual of each other either. This result has important implications
when we intend to project a generic operator Â onto the mono-dimensional
vector subspace expanded by |i〉. One can perform what we call a Hermitian
projection using both projectors (Eq. 3.15 and 3.16):

Âi ≡P̂†iÂP̂i =
∑
kl

|i∗〉 〈i|k〉 Ãkl 〈l|i〉 〈i∗| =

|i∗〉Aii 〈i∗| .
(3.21)

Representing the resulting operator in the direct basis element one obtains

〈i| P̂†iÂP̂i |i〉 = 〈i|i∗〉Aii 〈i∗|i〉 = Aii. (3.22)

This projection has taken us onto the corresponding subspace expanded by the
dual basis element which gives the matrix element Aii as the representation
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in the direct basis element. There is an obvious alternative way of performing
the above projection operation:

Â∗i ≡P̂iÂP̂†i =
∑
jklm

|i〉 〈i∗|k〉 Ãkl 〈l|i∗〉 〈i| =∑
klm

|i〉 δikÃklδli 〈i| = |i〉 Ãii 〈i| .
(3.23)

Representing the resulting operator on the direct basis element one obtains

〈i| P̂iÂP̂†i |i〉 = 〈i|i〉 Ãii 〈i|i〉 = Ãii. (3.24)

Notice that the representation of this projection gives the corresponding
element of the nuclear matrix and not of the matrix representation of the
operator, Aii. We call this a dual projection as opposed to the previous direct
projection.
For future reference note that one can perform a non-Hermitian projection as

P̂iÂP̂i =
∑
kl

|i〉 〈i∗|k〉 Ãkl 〈l|i〉 〈i∗| =∑
klm

|i〉 δikÃklSliS−1
im 〈m| =

∑
lm

|i〉 ÃilSliS−1
im 〈m|,

(3.25)

from which, when represented on the mono-dimensional direct subspace, one
obtains

〈i| P̂iÂP̂i |i〉 =
∑
lm

〈i|i〉 ÃilSliS−1
im 〈m|i〉 =

(
ÃS
)
i
. (3.26)

Note also that there is an alternative way of performing a non-Hermitian
projection

P̂†iÂP̂†i =
∑
kl

|i∗〉 〈i|k〉 Ãkl 〈l|i∗〉 〈i| =∑
klm

|m〉S−1
miSikÃklδli 〈i|

(3.27)

with an associated representation given by(
SÃ
)
i
. (3.28)

Finally, and also for future reference, a straightforward application of the
inversion operation (Eq. 3.13) onto the projector operator gives

[
P̂†i

]−1

=

[∑
j

|j〉S−1
ji 〈i|

]−1

=
∑
j

|i∗〉Sij 〈j∗| = P̂†i . (3.29)

Since
[
P̂†i

]−1

P̂†i = P̂†i P̂
†
i 6= Î, the inversion of a projector operator is not a

true inverse, but a generalized inverse which obeys the Penrose condition [? ]:

P̂†i

[
P̂†i

]−1

P̂†i = P̂†i . (3.30)

M. Soriano 36 Ph.D. Thesis



Chapter 3. The partition Methods 37

3.4 Projection onto a subspace: Integer and
non-integer dimension.

The projection onto a subspace of dimension bigger than one is now carried
out by the generalized projectors

P̂M =
∑
m,i

|m〉S−1
mi 〈i| =

∑
m

|m〉 〈m∗|,

P̂†M =
∑
m,i

|i〉S−1
im 〈m| =

∑
m

|m∗〉 〈m|,
(3.31)

where m runs now over a selected subset M consisting of NM(< N) elements
of the direct basis set. As can be seen in the right-hand expressions, this
restricted summation also implies to run over the corresponding subset in the
dual space. The letters i and j will always denote the elements of the full direct
and dual spaces from now on. The remaining direct basis elements constitute
the subset R such that

Î = P̂M + P̂R = P̂†M + P̂†R. (3.32)

We now propose to write our full vector space as

Î = (P̂M + P̂R)̂I(P̂M + P̂R),

Î = (P̂†M + P̂†R)̂I(P̂†M + P̂†R),

Î = (P̂M + P̂R)̂I(P̂†M + P̂†R),

Î = (P̂†M + P̂†R)̂I(P̂M + P̂R).

(3.33)

The four equivalent expressions give rise to four different ways of partitioning
the full vector space:

Î = P̂MÎP̂M + P̂RÎP̂R (3.34)
Î = P̂†MÎP̂†M + P̂†RÎP̂†R (3.35)
Î = P̂MÎP̂†M + P̂MÎP̂†R + P̂RÎP̂†M + P̂RÎP̂†R (3.36)
Î = P̂†MÎP̂M + P̂†MÎP̂R + P̂†RÎP̂M + P̂†RÎP̂R (3.37)

By leaving Î in between the projectors the meaning of each term as partial
projections of the original full vector space becomes clear. Equations 3.34 and
3.35 contain what we have called non-Hermitian projections in previous section.
There the full vector space has been partitioned into two complementary
orthogonal subspaces (thereby the two cross projections are missing in the
expressions). Equations 3.36 and 3.37 contain Hermitian projections. These,
as we explain below, do not generate proper orthogonal vector spaces since
the cross projections do not vanish. A graphical illustration of the different
projection operations which will be useful in the ensuing discussion is shown
in Fig. 3.1.
We will first consider the result of performing the direct Hermitian projection:

ÎM = P̂†MÎP̂M =
∑
m,n

|m∗〉 〈m| Î |n〉 〈n∗| =∑
m,n

|m∗〉Smn 〈n∗|.
(3.38)

M. Soriano 37 Ph.D. Thesis



3.4 Projection onto a subspace: Integer and non-integer dimension. 38

The representation of this projection in the direct basis set is given by

〈m| ÎM |n〉 = Smn ≡ SM. (3.39)

While this result was somewhat expected,

Fig. 3.1: Schematic representation of the
two types of projections explained in the text
and the resulting subspaces. Areas within
the dashed lines represent subspaces with
non-integer dimension, i.e., not orthogonal to
the remaining area or subspace. The areas
delimited by the solid line represent subspaces
with integer dimensions, i.e., orthogonal to
each other.

it hides a pitfall since ÎM is not idempotent
(this is obvious by noticing that ÎMÎM 6=
ÎM). Therefore the partition it represents
is not a proper vector subspace. This
prompt us to introduce a quantity defined
by the integration of the diagonal elements
of a given projection represented in real
space. For the full vector space we started
with this one writes

D =

∫
〈~r| Î |~r〉 d~r. (3.40)

Explicitly evaluated one obtains

D =

∫ ∑
i,j

〈~r|i∗〉Sij 〈j∗|~r〉d~r =

∑
i,j

Sij

∫
φ∗iφ

∗†
j d~r =

∑
i,j

SijS
−1
ji = Tr

[
SS−1

]
= Tr [I] = N, (3.41)

which, obviously, is the number of elements of the full starting space, N . On
the other hand, when one evaluates such quantity for ÎM one obtains

DM =

∫
〈~r| ÎM |~r〉 d~r = Tr

[
SMS−1

M

]
, (3.42)

which is clearly 6= NM and may be a non-integer value. This “subspace” with
non-integer dimension is represented in Fig. 3.1 by the oval area within the
dashed lines. Another manifestation of this non-integer dimension is given by
the representation of ÎM in the dual subspace

〈m∗| ÎM |n∗〉 = S−1
M SMS−1

M . (3.43)

which is not equal to S−1
M , as naively expected.

The generalization of the direct Hermitian projection to any operator Â is
given by

ÂM = P̂†MÂP̂M =
∑
m,n

|m∗〉Amn 〈n∗| , (3.44)

whose representation in the direct basis subset is

〈m| ÂM |n〉 = AM (3.45)

and in the dual basis subset is

〈m∗| ÂM |n∗〉 = S−1
M AMS−1

M . (3.46)
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Likewise, the dual Hermitian projection, already introduced in the one-
dimensional case, defines a new “subspace”

Î∗M = P̂MÎP̂†M =
∑
m,n

|m〉 〈m∗| Î |n∗〉 〈n| =∑
m,n

|m〉S−1
mn 〈n|

(3.47)

with a non-integer dimension given by

D∗M =

∫
〈~r| Î∗M |~r〉 d~r = Tr

[
S−1

M SM

]
. (3.48)

which coincides with DM. Figure 3.1 depicts this subspace as a different
oval area within dashed lines. Its representation in the dual subspace is the
“expected” one

〈m∗| Î∗M |n∗〉 = S−1
M , (3.49)

but its representation in the direct subspace is not

〈m| Î∗M |n〉 = SMS−1
M SM. (3.50)

The generalized dual Hermitian projection to any operator Â is thus given by

Â∗M = P̂MÂP̂†M =
∑
m,n

|m〉 Ãmn 〈n|, (3.51)

whose representation in the direct basis subset is

〈m| Â∗M |n〉 = SMÃMSM. (3.52)

Notice that this matrix multiplication does not only involve matrices of reduced
dimension since the evaluation of Ã requires matrix representations in the
initial full vector space.
Lastly and for completeness we note that we can also perform non-Hermitian
projections. These projections also generate new subspaces, which in this case
have integer dimensions:

DM =

∫
〈~r| P̂†MÎP̂†M |~r〉 d~r =

∫
〈~r| P̂MÎP̂M |~r〉 d~r =

=

∫
〈~r| ÎM |~r〉 d~r = Tr [IM] = NM.

(3.53)

The subspace represented by ÎM is now orthogonal to the rest of the initial
vector space. This is depicted by the square area within solid lines in Fig. 3.1.
Operators projected in this manner can also be represented on the direct
and the dual subspaces and we will make use of these representations in the
following sections. It is, however, worth noting here that in order to recover
the equivalent of the one-dimensional representations in Eqs. 3.26 and 3.28
one must represent at the same time on both direct and dual subsets which
are orthogonal to each other:

〈m∗| P̂MÂP̂M |n〉 =
(
ÃS
)

M
(3.54)

and similarly:
〈m| P̂†MÂP̂†M |n

∗〉 =
(
SÃ
)

M
. (3.55)
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3.5 Block orthogonal metrics.

We revisit now, from a projection perspective, block-orthogonal metrics which
were already introduced in Ref. Thygesen:prb:06. The projectors introduced
in previous section can be used to build a new basis set:

{|i∆〉} = P̂M{|i〉}+ P̂†R{|i
∗〉} =

{
∑
m,j,i

|m〉S−1
mj 〈j|i〉}+ {

∑
r,j,i

|r∗〉Srj 〈j∗|i∗〉} = {|m〉}+ {|r∗〉}. (3.56)

{|i∇〉} = P̂†M{|i
∗〉}+ P̂R{|i〉} =

{
∑
m,j,i

|m∗〉Smj 〈j∗|i∗〉}+ {
∑
r,j,i

|r〉S−1
rj 〈j|i〉} = {|m∗〉}+ {|r〉}. (3.57)

Here the labels m and r run only over the subspace selected by the projector
operators. The representation of the identity operator in the basis set {|i∇〉}
is given by

〈m| Î |n〉 =
∑
i,j

〈m|i〉S−1
ij 〈j|n〉 = SM

〈r∗| Î |s∗〉 =
∑
i,j

〈r∗|i〉S−1
ij 〈j|s∗〉 = S−1

R

〈m| Î |r∗〉 =
∑
i,j

〈m|i〉S−1
ij 〈j|r∗〉 = 0

〈r∗| Î |m〉 =
∑
i,j

〈r∗|i〉S−1
ij 〈j|m〉 = 0

(3.58)

and similarly for the basis set {|i∇〉}. Here the labelsm,n and r, s run only over
the subspaces M and R∗, respectively. In matrix form the block-orthogonality
becomes clear:

S∆ =

(
SM 0
0 S−1

R

)
, S∇ =

(
S−1

M 0
0 SR

)
. (3.59)

The full identity operator can now be re-expressed with the help of these new
basis sets as

Î =
∑
i,j

|i∆〉
(
S̃∆

)
ij
〈i∆| =∑

m,n

|m〉
(
S̃∆

)
mn
〈n|+

∑
m,r

|m〉
(
S̃∆

)
mr
〈r∗|+

∑
r,m

|r∗〉
(
S̃∆

)
rm
〈m|+

∑
r,s

|r∗〉
(
S̃∆

)
rs
〈s∗|

(3.60)

or

Î =
∑
i,j

|i∇〉
(
S̃∇

)
ij
〈i∇| =∑

m,n

|m∗〉
(
S̃∇

)
mn
〈n∗|+

∑
m,r

|m∗〉
(
S̃∇

)
mr
〈r|

+
∑
r,m

|r〉
(
S̃∇

)
rm
〈m∗|+

∑
r,t

|r〉
(
S̃∇

)
rs
〈s|.

(3.61)
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The S̃∆ and S̃∇ matrices are the dual form of the block-orthogonal metrics in
Eq. 3.59 which are explicitly written as

S̃∆ =

(
[SM]−1 0

0 S∗R

)
, S̃∇ =

(
S∗M 0
0 [SR]−1

)
. (3.62)

Notice that S∗M(R) stands for [S−1
M(R)]

−1. The dual basis in these new metrics has
no direct correspondence with the direct and dual original basis sets. Using,
e.g., the metric ∆, we can now define new projector operators as

P̂∆
M = P̂∆†

M =
∑
m,n

|m〉 [SM]−1 〈n|,

P̂∆
R = P̂∆†

R =
∑
r,s

|r∗〉S∗R 〈s∗|
(3.63)

which add up to the identity operator

Î = P̂∆
MÎP̂∆

M + P̂∆
R ÎP̂∆

R . (3.64)

(In a similar manner one can define projectors associated with the other metric
∇.) The dimension of both partitions is now integer. For instance:

D =

∫
〈~r| P̂∆

MÎP̂∆
M |~r〉 d~r =∫ ∑

m,n

〈~r|m〉 [SM]−1 〈n|~r〉d~r = Tr [IM] = NM.
(3.65)

The generalized representation of any one-body operator in terms of these basis
sets is given by

A∆ =

(
AM (ÃS)MR

(SÃ)RM ÃR

)
(3.66)

which is not block-diagonal any more. The same obviously holds for the other
metric ∇:

A∇ =

(
ÃM (SÃ)MR

(ÃS)RM AR

)
. (3.67)

It is useful to propose matrix transformations connecting all the metrics we
have presented so far:

Π†∆AΠ∆ = A∆, (3.68)

and
Π†∇ÃΠ∇ = A∇. (3.69)

The matrices Π∇ and Π∇ are defined by

Π∆ =

(
I S−1

MR

0 S−1
R

)
, Π∇ =

(
I SMR

0 SR

)
. (3.70)

The Π matrices are overlap matrices between this new basis and the direct
basis: 〈i|i∆〉 = (Π∇)ii and the dual one 〈i∗|i∆〉 = (Π∆)ii. We can now write
the relationships

|i〉 =
∑
j

(
Π−1
∇
)
ij
|j∇〉 |i〉 =

∑
j

(
Π−1

∆

)
ij
|j∆〉 (3.71)
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3.6 The projected charge

A natural starting point for the evaluation of many physical quantities in
infinite systems which are characterized by a one-body Hamiltonian Ĥ is the
Green’s function operator:[

(ω − µ± iδ) Î− Ĥ
]

Ĝ(±)(ω) = Î, (3.72)

where µ and ω are the chemical potential and energy, respectively, and +(-)
denotes advanced(retarded) Green’s function. For all practical purposes the
Hamiltonian must be restricted to a finite region which is connected to the
rest of the world through an energy dependent self-energy operator Σ̂(ω):[

(ω − µ) Î− Ĥ− Σ̂(ω)
]

Ĝ(ω) = Î. (3.73)

At this point the Hamiltonian is supposed to represent a large enough system
and contain all possible physically relevant information. The particular form
of the self-energy operator Σ̂ (the retarded one from now on) is assumed not
to be relevant in what follows. Making use of Eq. 3.6, one can easily show
that the representation of Eq. 3.73 in matrix form is

G(ω) = S [(ω − µ) S−H−Σ(ω)]−1 S. (3.74)

For convenience this is usually written as

G̃(ω) = [(ω − µ) S−H−Σ(ω)]−1 , (3.75)

which, according to Eq. 3.13, can be directly obtained from the matrix
representation in the direct basis of the operator equation[

Ĝ(ω)
]−1

= (ω − µ) Î− Ĥ− Σ̂(ω). (3.76)

The partial charge or partial electronic density associated to a part of the space
or to a subset of atoms or orbitals[82–84] (what we have called subspace M in
previous sections) can be obtained from integration of the LDOS:

ρM =

∫ 0

−∞
DM(ω)dω, (3.77)

which, in turn, is computed through a projection of the Green’s function
operator. We begin by considering the direct Hermitian projection, as
explained in Sec. 3.4. For simplicity’s sake, we assume spin degeneracy from
now on:

DM(ω) = − 2

π
Im

[∫ 〈
~r|P̂†MĜ(ω)P̂M|~r

〉
d~r

]
. (3.78)

We now carry out the volume integral:∫ 〈
~r|P̂†MĜP̂M|~r

〉
d~r =

=

∫ ∑
m,n

〈~r|m∗〉
〈
m|Ĝ|n

〉
〈n∗|~r〉d~r =

=
∑
m,n

〈
m|Ĝ|n

〉∫
φ∗m(~r)φ†∗n (~r)d~r =

∑
m,n

GmnS
−1
nm.

(3.79)
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The LDOS associated with this projection is thus given by

DM(ω) = − 2

π
Im
{
Tr
[
GM(ω)S−1

M

]}
. (3.80)

Notice that when one integrates Eq. 7.4 up to ∞ one gets what we have
previously defined as dimension of the projected subspace DM. (We will use
the same letter for the ω-dependent quantity and the integrated one from now
on).
In the case of the dual Hermitian projection the partial electron density is
given by

ρ∗M = − 2

π

∫ 0

−∞
Im

[∫ 〈
~r|P̂MĜ(ω)P̂†M|~r

〉
d~r

]
dω =

= − 2

π

∫ 0

−∞
Im
{
Tr
[
G̃M(ω)SM

]}
dω.

(3.81)

We therefore may define

D∗M(ω) = − 2

π
Im
{
Tr
[
G̃M(ω)SM

]}
. (3.82)

The non-Hermitian projections give the well-known result known as Mulliken
population analysis[85]:

ρM =

∫ 0

−∞
DM(ω)dω =

= − 2

π

∫ 0

−∞
Im

[∫ 〈
~r|P̂MĜ(ω)P̂M|~r

〉
d~r

]
dω =

= − 2

π

∫ 0

−∞
Im

[∫ 〈
~r|P̂†MĜ(ω)P̂†M|~r

〉
d~r

]
dω =

= − 2

π

∫ 0

−∞
Im
{
Tr
[
G̃(ω)S

]
M

}
dω.

(3.83)

Finally, one can also evaluate the charge using the block-orthogonal metric ∆
discussed in Sec. 3.5:

ρ∆
M =

∫ 0

−∞
D∆

M(ω)dω. (3.84)

where the LDOS is given by

D∆
M(ω) = − 2

π
Im

[∫ 〈
~r|P̂∆

MĜ(ω)P̂∆
M|~r
〉
d~r

]
. (3.85)

Performing the projection and volume integration one obtains∫ 〈
~r|P̂∆

MĜP̂∆
M|~r
〉
d~r =∫ ∑

k,l

〈~r|k∗〉
〈
k|Ĝ|l

〉
〈l∗|~r〉d~r =

∑
k,l

〈
k|Ĝ|l

〉∫
φ∗k(~r)φ

†∗
l (~r)d~r =

∑
k,l

Glk[SM]−1
kl .

(3.86)
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Fig. 3.2: (a-b) View of an aluminum nanocontact for two different connections between the central region
M and the electrodes. (c-d) The same for a gold nanocontact with a cobalt atom embedded.

The LDOS is thus given by

D∆
M(ω) = − 2

π
Im
{
Tr
[
GM(ω)[SM]−1

]}
. (3.87)

Notice that Eq. 3.87 is different from Eq. 3.80. Likewise, for the alternative
block-orthogonal metric ∇ one gets

ρ∇M = − 2

π

∫ 0

−∞
Im
{
Tr
[
G̃M(ω)S∗M

]}
dω, (3.88)

from which we may define

D∇M(ω) = − 2

π
Im
{
Tr
[
G̃M(ω)S∗M

]}
. (3.89)

To illustrate the different results obtained from the different projections and
the different basis sets (direct and block- orthogonal) we have considered two
simple models of metallic nanocontacts. The first one is an Al nanocontact
with two slightly different atomic structures as shown in Figs. 3.2(a) and (b).
They differ in how strongly coupled the two central atoms are to the rest of the
system. The other model is a Au nanocontact with a Co atom in the middle
[Figs. 3.2(c) and (d)]. Again, two slightly different geometries with different
overlaps between the central atom and the electrodes are considered.
The selected region or subspace for projection, M, is indicated in both figures.
The DFT calculations have been performed with our ANT.G code [59] which
is based on the non-equilibrium Green’s function formalism and interfaces with
GAUSSIAN [53]. We have chosen a standard exchange-correlation functional
in the generalized gradient approximation[33, 35] for all calculations and
various basis sets explained in the caption of Table 3.1.
Table 3.1 shows the results for the charges associated to the different
projections along with the dimension of the projected subspace. As a reference,
the charge Q of the isolated M subspaces (when they are infinitely far apart
from the electrodes and therefore neutral) is also shown (second column). As
can be appreciated, the projected charges lie in a wide range of values. The
first result worth noticing is that the values of DM increase to insanely large
number as the basis set dimension increases. This is particularly notorious for
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Q ρM ρ∇M ρ∆
M DM ρ∗M ρM DM

Al(1) 6 6.38 2.89 11.39 16 6.03 34.94 45.16
Al(2) 26 24.03 22.52 26.87 36 23.52 30.44 41.86
Al(3) 26 23.20 22.76 35.10 72 25.83 410.49 495.00
Co(1) 17 12.96 15.26 24.66 44 22.82 753.18 1043.58
Co(2) 27 26.61 23.95 29.26 36 26.04 57.64 72.34
Co(3) 27 22.73 25.04 33.24 68 33.31 678.84 865.62
Al(4) 26 24.68 24.47 24.89 36 24.57 25.00 36.24
Co(4) 17 15.94 16.26 19.02 44 18.05 58.12 123.36
Co(5) 17 16.95 16.26 17.27 44 17.06 17.87 50.56

Table 3.1: Partial electronic charge in the central region (M) for four different systems, different basis sets,
and the different projections discussed in the text (the metric dimension of these is also shown). For all
atoms which are not part of the M region we have considered a minimal basis set (sp)[86]. For the Al
nanocontacts, cases (1), (2), and (3) correspond to Fig. 3.2(a) with the same minimal basis set for the
M region, the STO-3G basis set, and the 6-31G∗∗ basis set, respectively. Case (4) corresponds to Fig.
3.2(b) and the STO-3G basis set for the M region. For the Au-Co nanocontacts we consider the LANL2DZ
pseudopotentials basis set [(1)], the STO-3G basis set [(2)], and the 6-31G∗∗ basis set [(3)] for the Co atom
in the geometry shown in Fig. 3.2(c). Cases (4) and (5) correspond to Fig. 3.2(d) (two different distances,
but only (5) shown) and the basis set LANL2DZ. Spin-polarized calculations are performed in all last five
cases, but only the sum of spin-up and spin-down charges is shown.

the Al(3), Co(1), and Co(3) cases. This translates into unrealistic values of
ρM. Interestingly, the values of ρ∗M are very reasonable. The other three values
for the charge, ρM, ρ∆

M and ρ∇M, are all within acceptable limits, although still
present a large dispersion. In the case of nanocontacts with a single element
(Al) these values can be directly compared to the values of Q since we do not
expect a significant charge transfer between the electrodes and the M subspace.
It is worth noticing that the Mulliken value for the charge, ρM, generally lies in
between the other two values obtained from the two different block orthogonal
metrics ∆ and ∇. The last three rows present results where the M region has
been separated from the electrodes, reducing thus the overlap. The differences
between all values are consequently reduced as well, including ρM. For Co
a larger distance than for Al is required to get similar values for all types of
projections.

3.7 Reduced Green’s functions and effective
Hamiltonians

We are now fully equipped to obtain the effective Hamiltonian associated to
the M subspace, i.e, what we have called in the introduction the active region.
Our first aim is to obtain an expression similar to the one in Eq. 3.76, but
projected onto this region. Then one could read out the Hamiltonian and the
associated self-energy from it. The dual Hermitian projection of the Green’s
function operator onto this subspace, as defined in Eq. 3.51, is

P̂MĜP̂†M = P̂M

[
(ω − µ) Î− Ĥ− Σ̂

]−1

P̂†M (3.90)
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or equivalently[
P̂MĜP̂†M

]−1

=

[
P̂M

[
(ω − µ) Î− Ĥ− Σ̂

]−1

P̂†M

]−1

. (3.91)

Notice that [
P̂MĜP̂†M

]−1

6= P̂†M

[
Ĝ
]−1

P̂M, (3.92)

but we can always write[
P̂MĜP̂†M

]−1

= (ω − µ) ÎM − ĤM − Σ̂M, (3.93)

where the first two terms on the right-hand side are now direct projections

ÎM = P̂†MÎP̂M (3.94)

ĤM = P̂†MĤP̂M (3.95)

while the third one is given by

Σ̂M = P̂†MΣ̂P̂M + Σ̂
′

M. (3.96)

We need a new term added to the projected self-energy operator which is thus
defined by

Σ̂
′

M =
[
P̂MĜP̂†M

]−1

− P̂†M

[
Ĝ
]−1

P̂M. (3.97)

where both direct and dual projections appear in the definition. Making use
now of the definition of inverse, we carry out the projection and inversion in
the left-hand side of Eq. 3.93:

[
P̂MĜP̂†M

]−1

=

[∑
m,n

|m〉 G̃mn 〈n|

]−1

=∑
m,n

|m∗〉 [G̃M]−1
mn 〈n∗| ,

(3.98)

so that Eq. 3.93 becomes

[G̃M]−1 = (ω − µ) SM −HM −ΣM (3.99)

when represented in the direct basis. Finally we can obtain the self-energy
matrix:

ΣM = (ω − µ) SM −HM − [G̃M]−1. (3.100)

If required, we can also obtain Σ′M from Eq. 3.97. This way of obtaining
the self-energy associated to any subspace is often called “reversal engineering”
[76]. Notice that Eq. 3.100 is somewhat expected by looking at Eq. 3.75, but
our projector theory gives us a rigorous way of obtaining it. Following Eq.
3.44 one could also apply the alternative projection P̂†MĜP̂M and arrive at the
following representation in direct space

[GM]−1 = (ω − µ) S−1
M − H̃M − Σ̃M (3.101)
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from which we obtain another expression for the self-energy matrix:

Σ̃M = (ω − µ) S−1
M − H̃M − [GM]−1. (3.102)

Finally, the self-energy matrix in the case of the two introduced block
orthogonal metrics should be defined by

Σ∆
M = (ω − µ) SM −HM − SM[GM]−1SM, (3.103)

and
Σ∇M = (ω − µ) S−1

M − H̃M − S−1
M [G̃M]−1S−1

M . (3.104)

Notice that the expressions for the self-energy in Eqs. 3.100, 3.102, 7.1, and
3.104 are all different. In conclusion, the choice of projection for a fully non-
orthogonal basis set (direct or dual) or the choice of the block-orthogonal basis
set (∆ or ∇) determines both a Hamiltonian and an associated self-energy.
These two must go together for the evaluation of, e.g., conductance as next
section shows.

3.8 The transmission function from a reduced
Green’s function

The transmission function T , which enters Landauer’s formalism to compute
the conductance, G = 2e2

h
T , is given by:

T = Tr
[
t†t
]

(3.105)

where t = Γ
1/2
R G̃(+)Γ

1/2
L and t† = Γ

1/2
L G̃(−)Γ

1/2
R are transmission matrices

defined in terms of retarded (+) and advanced (-) Green’s functions and
coupling matrices to the right (R) and left (L) electrodes. We are assuming
here that there is no direct electronic coupling between electrodes and that
the self-energy Σ that appears in the Green’s function (see Eq. 3.75) is
known and equal to ΣR + ΣL. The coupling matrices are defined as usual:
Γ = i(Σ(+) −Σ(−)). The transmission matrices t† and t contain information
about transmission amplitudes between orbitals or basis elements at the
entrance and exit of the scattering region. By using the cyclic property of
the trace, the transmission function can thus be written in its most popular
form:

T = Tr
[
ΓLG̃(−)ΓRG̃(+)

]
, (3.106)

Notice that the final product of four matrices is not simply the result of
representing the product of operators

Γ̂LĜ(−)Γ̂RĜ(+), (3.107)

in a non-orthogonal basis set (see Sec. 3.1) .
We are now interested in expressing the transmission function in terms of
Green’s functions and coupling matrices reduced or projected to a central
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scattering region. As an example we will compute the conductance of the Al
nanocontact studied in Sec. 3.6 where the central region M is the same used to
analyse the projection of the charge [see Figs. 3.2 (a) and (b)]. First, to obtain
the self-energy representing the left electrode, we can perform a projection onto
the rest of the system:

P̂rĜP̂†r = P̂r

[
(ω − µ) Î− Ĥ− Σ̂L − Σ̂R

]−1

P̂†r. (3.108)

Following Eq. 3.100 we obtain a new left self-energy

ΣL|r = (ω − µ) Sr −Hr −ΣR|r − [G̃r]
−1, (3.109)

where P̂†rΣ̂RP̂r := ΣR|r. Then, by performing a new projection onto the
selected subspace M we obtain the new self-energy associated to the new right
electrode:

P̂MĜrP̂
†
M =

P̂M

[
(ω − µ) Îr − Ĥr − Σ̂R|r − Σ̂L|r

]−1

P̂†M,
(3.110)

ΣR|M = (ω − µ) SM −HM −ΣL|M − [G̃M]−1, (3.111)

where Σ̂L|M = P̂†MΣ̂L|rP̂M. Now the newly obtained G̃M, Σ̂L|M, and Σ̂R|M enter
Eq. 3.106. This double-projection procedure has been illustrated through the
dual Hermitian projection, but the same operations can be carried out with
the other projections and with the block-orthogonal basis sets, as explained in
previous section. In Figs. 3.3 (a) and (c) we plot the transmission function
obtained for the systems shown in Fig. 3.2 (a) and (b). We also show the
transmission for the same system with an intermediate distance [d = 3Å, Fig.
3.3 (b)] between the central region and the electrodes. The same basis set
has been used in the panels (a-c). Panel (d) shows the transmission with a
larger basis set for the structure in Fig. 3.2(a). Three different projections
have been used in all cases, as described by Eq. 3.100, 7.1, and 3.104. The
reduced Green’s functions and coupling matrices in Eq. 3.106 have been chosen
accordingly. When the central region is separated from the electrodes [see
Fig. 3.3 (c)], the direct tunnelling between electrodes is negligible and the
reduction operation is expected to be exact. In fact, the three projections give
identical results and equal to the transmission obtained from the full Green’s
function (black solid line). This corroborates the mathematical procedure
of reduction explained in previous section. On the other hand, when direct
tunnelling between electrodes is finite, differences are expected between the
full transmission and the ones obtained after reduction. This can be clearly
seen in Figs. 3.3 (a), (b), and (d).
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Fig. 3.3: Transmission function for an Al nanocontact as obtained from the full Green’s function (black
solid line) and from reduced Green’s functions with three different projections. Results obtained with the
STO-3G∗∗ basis set for all atoms are shown in panels (a-c) while results obtained using the 631-G∗∗ basis
set in the central region are shown in panel (d). The distance between the electrodes increases from (a) [see
Fig. 3.2 (a)] to (c) [see Fig. 3.2 (b)] while the atomic structure corresponding to panel (d) is the same as
for panel (a).
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Chapter 4

Introduction

4.1 Kondo effect. Brief history.

In 1934, Haas, de Boer and van den Berg

Fig. 4.1: Electric resistance variation with the
temperature. Figure taken from [15].

observed an anomalous behavior of the
resistivity measuring gold metal at low
temperatures[15].
A pure metal exhibits a residual value of
the resistivity at low temperature because
the electrical resistance usually drops as
the temperature decays since the scattering of the electrons, due to the
electron-phonon interaction, is reduced when the vibrations of the atoms are
small and the electrons travel more easily through the metallic crystal. But
gold showed an unexpected increase of the resistivity as we can see in fig. 4.1.
This experiment was the first experimental observation of the nowadays well-
known Kondo effect, and it is the original historical motivation for studying
this problem.
The origin of this anomalous behavior was in the presence of magnetic
impurities in the gold studied, as it was experimentally demonstrated in 1962
by Clogson et.al [87] and in 1964 by Sarachik et. al. [88]. These experimental
observations had already been predicted by different theorists since the early
50’s.
In 1950 Zener proposed the first model describing magnetic impurities in
metallic hosts [89]. The essence of this model is that an exchange interaction,
J . exists between the spin of the local magnetic impurity and the conduction
electrons. This model was followed by Owen [90] and Yoshida [91] between
others. In the 1958’s Friedel introduced the revolutionary idea at that time
that the impurities in a nonmagnetic metal can be described as scattering
processes, [92].
Three years after, Anderson proposed his famous model where the impurity
was treated as a localized state in the metal, [93]. In the scattering-theory is
missed the local electron-electron interactions. But if one considers the fact
that a very localized magnetic impurity can act as an atomic level, which
induces a narrow resonance around itself due to the hybridization with the
conduction electrons of the metal host, it becomes necessary to introduce a
Hubbard repulsion term that limits the number of electrons that can hold the
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said impurity. In other words the resonance would actually behave like a local
moment. To overcome this difficulty, Anderson had the idea to represent the
resonance as an additional electronic level inside the conduction band,

H =
∑
σ

εdd̂
†
σd̂σ +

∑
kσ

εkĉ
†
kσĉkσ+∑

k,σ

(Vkd̂
†
σd̂kσ + V ∗k ĉ†kσd̂σ) + U d̂†σd̂σd̂

†
−σd̂−σ

(4.1)

Here d̂†, d̂, ĉ† and ĉ are the impurity (d) and conduction electrons creation
and annihilation operators respectively. The first and second terms in the
above equation are the kinetic energy of the impurity level and the conduction
electrons. The last one is a two-level term with a on-site Coulomb repulsion
that models the impurity energy levels, and in the middle we can find a
hybridization term that couples the conduction electrons with the impurity
orbitals.
In this model the Hubbard U , usually called the charging energy, is large and it
can impose that there be only one electron occupying the impurity orbital, i.e.
εd < εF and then εd+U > εF . Thus one can find a magnetic moment localized
on the impurity. In the mean-field theory, the impurity spectral function,
Aσ(ω), is described by its Green’s Function Gσ(ω) = [ω − εd − Σ(ω)]−1 as

Aσ(ω) = − 1

π
ImGσ(ω), (4.2)

where the self energy, Σ(ω), is described by

Σ(ω) =
∑
k

|Vk|2

ω − εk + iδ
. (4.3)

In the Anderson model, the real part of the Self-energy is omitted because only
induces a shift of the impurity level.
Finally in 1964, J. Kondo published his model which gives name to this effect
[94]. The goal of Jun Kondo was to consider the scattering from a magnetic
impurity that interacts with the spins of the conducting electrons. This
scattering induces a spin flip in conduction electrons, anti-ferromagnetically
being coupled with the impurity, which come from the hybridization between
an orbital with strong on-site repulsion of the impurity and the conduction
states, instead by Coulomb exchange. The consequence of this spin fluctuation
is the screening of the local spin moment (effectively vanishing), which is
a correlated effect that can be written as U [n̂σ − 〈n̂σ〉][n̂−σ − 〈n̂−σ〉]. This
screening allows the emergence of a narrow peak at Fermi level in the spectral
function, which is the signature of the many-body Kondo ground state. In
figure 4.2 we have represented the spectral function in the case of the Anderson
model and in the case where the Kondo resonance is presented.
The connection between the Anderson and the Kondo model was exposed
by Schrieffer and Wolff in 1966, [95]. The Schrieffer-Wolff transformation is
a unitary transformation enabling one to obtain effective low energy physics
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Fig. 4.2: (a) Spectral function of one level Anderson impurity level.

from a given interacting and non-interacting Hamiltonians.

4.2 The Multichannel Anderson model.

The multichannel Anderson impurity model can be written as

H =
∑
dσ

εdd̂
†
σd̂σ +

∑
kσ

εkĉ
†
kσĉkσ+∑

k,σ

(Vkd̂
†
σd̂kσ + V ∗k ĉ†kσd̂σ) + U d̂†σd̂σd̂

†
−σd̂−σ.

(4.4)

This model is solved by both, the non crossing aproximation (NCA)
and the one crossing aproximation (OCA) through an expansion in the
hybridization strength around the atomic limit. The starting point is an
exact diagonalization of the impurity subspace including the Hubbard-type
interaction term,

Hd =
∑
dσ

εdd̂
†
σd̂σ + U d̂†σd̂σd̂

†
−σd̂−σ. (4.5)

The exact diagonalization of the above Hamiltonian gives a collection of many-
body states characterized by their energy, Em. One now introduces auxiliary
fields âm and â†m (called pseudo-particles) such that each impurity state is
represented by a corresponding pseudo-particle: â†m |PPV 〉 ≡ |m〉 and PPV
stands by the pseudo-particle vacuum. The completeness of the impurity
eigenstates imposes the following constraint

Q ≡
∑
m

â†mâm = 1 (4.6)

The physical electron operators d̂†dσ can now be expressed by the pseudo-
particle (PP) operators as

d̂†dσ =
∑
m,n

(F â†)m,nâ
†
nâm (4.7)
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Fig. 4.3: Diagrams for pseudo-particle self-energies in the NCA and OCA for some pseudo-particle m.

where (F â†)m,n ≡
〈
n|d̂†dσ|m

〉
are the matrix elements of the impurity-electron

creation operator. For later convenience we also de?ne the corresponding
matrix elements of the impurity-electron destruction operator as: (F â†)m,n ≡〈
n|d̂†dσ|m

〉
. The anti-commutation rules for the physical electron operators

then require that the PP d̂m is a boson (fermion) if the corresponding state
|m〉 contains an even (odd) number of electrons. In the PP representation we
can now rewrite the Hamiltonian of the generalized Anderson impurity model
as follows:

H =
∑
m

Emâ†mâm +
∑
kν

εkν ĉ
†
kν ĉkν+∑

kν,m,n

Vkνdĉ
†
kν â
†
m(F d)m,nând̂σ +H.c.

(4.8)

where we have included the constraint Q ≡ 1 into the Hamiltonian.
The NCA diagrams describe processes where a single electron (hole) jumps
from the bath to the impurity and back thereby temporarily creating a PP with
N + 1 (N − 1) electrons. The NCA equations correspond to a self-consistent
perturbation expansion to lowest order in the hybridization function. Since
the fermionic self-energies depend on the dressed bosonic propagators, and
vice versa, the NCA equations have to be solved self-consistently. Once the
NCA equations are solved the physical quantities can be calculated from the
PP self-energies. The OCA takes into account second order diagrams where
two bath electron lines cross as shown in Figure 4.3. The self-energies for the
PP’s again depend on the full propagators of other PP’s, and hence the OCA
equations also have to be solved self-consistently.
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4.3 Molecular Kondo Model from first principle
calculations

In this section we will introduce the molecular Kondo model developed in this
thesis. To undertake this we will use a toy model of few levels to explain the
most important and complex aspects of our approach.
The first thing to keep in mind to try this model is

Fig. 4.4: Picture C60 molecule at-
tached to gold electrodes. Floating
points represent the Bethe lattice.

that we go to work with complex systems. These
systems are molecules that are either adsorbed on
a metal surface, and are observed using an STM
tip, or they are contacted through a pair of metal
electrodes.
Our first approach is to do a DFT calculation
of the system to obtain the ground state. This
calculation is performed by solving the Kohn-Sham
Hamiltonian with our ANT.G code [59]. The way
of working of ANT.G is as follows. We built a
cluster that integrates both the molecule and a
representative portion of the metal or electrodes.
This cluster is then embedded in a tight-binding
network to simulate a semi-infinite system, usually
called the Bethe lattice. In Figure 4.4 we show a model representation of this
cluster, including the Bethe lattice. This system is solved with a DFT level of
theory thanks to the ANT interface with Gaussian [53]. The Bethe lattice is
attached to the cluster via a self-energy. The effective Hamiltonian of the full
system is thus defined by

Heff = HKS + Σtb,R + Σtb,L. (4.9)

Here HKS is the Kohn-Sham Hamiltonian obtained from Gaussian, Σtb,R and
Σtb,L are the self-energy due to the Bethe lattice in one and another electrode
(right and left). As we have emphasized in the figure 4.4 with a red box,
the molecule is confined spatially. In first approximation, all the atoms that
are part of the molecule of interest constitute the active space, and hence our
first step always is to project the above described effective Hamiltonian onto
the cited molecular space. To do this we use partitioning techniques through
projectors operators that we have developed in this thesis and explained in
chapter 3.
Projecting onto the molecular sub-space gives us a reduced effective Hamilto-
nian,

H∆
M = HKS

M + Σ∆
M , (4.10)

where H∆
M is the representation of P̂†MĤP̂M in the block orthogonal metric

described in section 3.5, and Σ∆
M is the self-energy defined in Eq. 7.1 as

Σ∆
M = (ω − µ) SM −HM − SM[GM]−1SM. (4.11)

To obtain the energies of the molecular levels, ε, we need to solve
the generalized eigenvalue equation H∆

MX = εS∆
MX, where S∆

M is the
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representation of the projection onto the molecular sub-space of the identity
operator in the block-diagonal metric. The transformation matrix, X, is the
matrix of the eigenvectors. The molecular wave functions, ψ, are thus described
by

ψα =
∑
i

Xαiφi, (4.12)

which obey 〈ψα|ψβ〉 = δαβ, i.e. the molecular representation is an orthogonal
basis set. Here φ are the atomic orbitals. Notice that the eigenvectors matrix
is a overlap matrix between the molecular and the atomic orbitals which can be
represented asXαi = 〈ψα|φi〉. Hence we can rewrite the molecular Hamiltonian
in the eigenvalue basis set of the Hamiltonian by performing a basis change in
the self-energy,

Σψ
M = X†Σ∆

MX†. (4.13)

And then, the molecular Hamiltonian is finally described by

Hψ
M = εKSM + Σψ

M . (4.14)

Note that although εKSM is diagonal, Σψ
M is not. We can advance that the

imaginary part of this molecular self-energy is the molecular hybridization,
which plays an important role in the Kondo physics.

Fig. 4.5: (a) Schematic picture of a molecule embedded in a metal host. (b-d) Toy model of Molecular
electronic levels. (b) The normal isolated molecular spectrum. (c) Typical molecular spectrum contacted
with or absorbed on a metal host. Notice that we are representing a situation in which the molecule received
charge from the metal. (d) Resulted molecular spectrum after treatment.

In figure 4.5 (a) we have represented a Schematic representation of this active
space. One problem after diagonalized the Hamiltonian is that we can find
a lot of molecular orbitals, as many as basis functions has the molecule. So
determining the physically relevant active space to the Kondo problem can be
a real headache, which is further complicated if we have also broken the spin
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symmetry to include the magnetic moment.
If we have an apparently simple system where the ground state of the isolated
molecule is non-magnetic, the determination of the active space can be made
very easily selecting the molecular levels around the Fermi level of the metal
host. For example, in figure 4.5 (b) we have represented the eigenvalues of an
isolated molecule. The eigenvalues are the energy of the molecular levels. In
figure 4.5 (c) we have plotted the same in the case that the molecule is attached
or embedded in a metal host. As shown by the fact that the LUMO is below
the Fermi level of the metal, we are assuming a charge transfer from the metal
host to the molecule. In this toy example, the active space interesting for
the Kondo problem could be in itself this orbital, the LUMO, which would
constitute the impurity level. From now, we will reduce the active space to
this unique orbital, since it is the only relevant molecular level. Notice that the
partition is immediate because the eigenvalues basis set of the Hamiltonian is
diagonal.
To solve the Kondo problem we need to include three fundamental quantities
that will be used as input in our impurity solver. These are the hybridization,
advanced in Eq. 4.13, the energy of impurity level and the electron-
electron interactions. Our objective is to obtain these quantities from a DFT
calculation, but we must bear in mind that the first step of the impurity
solver is an exact diagonalization which aimed firstly to correctly enter the
Coulomb interactions, and secondly to generate the pseudoparticles basis set,
described in Section 4.2. So considering that the first objective of the exact
diagonalization is the introduction of interactions, our next step should be to
eliminate themselves that we have introduced in the density functional through
the Hartree potential. This is what is known as the double counting correction.
The simplest approach to the double counting correction is

Hdc =
∑
i

U

2
ni(ni − 1)−

∑
i

J

2
(nσi (nσi − 1) + n−σi (n−σi − 1)). (4.15)

Here ni is the number of electrons in the active space. However, this equation
is not useful for molecular systems, (or in general any equations derivatives
thereof), since the parameters U and J are unknown. For this reason we
have proposed to use CDFT techniques to empty the active space, and thus
eliminate the electronic interaction of these molecular levels. In our model this
functional is given by

E[n(r), VM, µ] = E[n(r)] + VM

(∫
ωM(r)n(r)dr−NM

)
+

µ

(∫
(1− ωM(r)n0(r)dr +

∫
ωM(r)n(r)dr−Q

)
.

(4.16)

The weighting factor ωM, in the simplest case, is 1 in the volumetric region of
the molecule and 0 elsewhere, NM is the charge in the molecule (constrained
to be integer), and VM the Lagrange multiplier or potential that ultimately
controls this charge. For completeness of notation we have included the term
that controls the overall charge of the system, Q. This number is chosen in
such a way that the charge in the electrodes remains the same as that of the
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ground state calculation. As we will explain in detail in Chapter 7, we choose
to freeze the electron density of the electrodes (thereof the presence of n0(r)
in Eq. 4.16) and find in a self-consistent manner only the projected density
of the molecule n(r)M and the projected constrained Hamiltonian H−M to have
NM(< QM) electrons.
In figure 4.5 (d) we have schematically represented the screened molecular gap
due to the metal host, and the result of diagonalize H−M. It is a well known
problem that the Kohn-Sham eigenvalues underestimate the gap, and these
values must be corrected to obtain the actual value of the charging energy. In
the next section we discuss this phenomenon.
Finally we will discuss how to select the molecular level when the molecule is
magnetic.

Fig. 4.6: Toy model of the electronic molecular levels in the case of magnetic molecules. (a) Schematic
picture of a magnetic molecule embedded in a metal host. (b) Connection between the σ and −σ levels
by the inner product. (c-d) A way to understand the magnetic molecular levels by the inner product. (c)
non-magnetic case, (d) magnetic case.

When the molecule has a magnetic ground state, the determination of the
relevant molecular orbitals is complicated. First, as shown in the figure 4.6 we
have double molecular levels due to the spin broken symmetry. Unrestricted
DFT calculations compute the different spin orientations independently, so
that the dimension of our space is doubled. The magnetic moment can be
readily determined by the difference between the occupancy of spin in one
direction and the other, S = nσ − n−σ, but is more difficult to find the
original molecular orbitals, without spin broken symmetry, which have led
to this magnetic moment.
In an unrestricted DFT calculation the original wave function ψi is split into
to different spin dependent wave functions ψσj and ψ−σk . The problem is that
the eigenvalues are also split, and does not exit a direct relationship between
the sub-index i,j and k, i.e i 6= j 6= k. However we can establish a relationship
between these subscripts through the inner product of the spin dependent wave
functions,

〈
ψσj |ψ−σk

〉
. By definition,〈

ψσj |ψ−σk
〉

= 1, (4.17)
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if j and k come from the same wave function i, and〈
ψσj |ψ−σk

〉
= 0, (4.18)

otherwise. This is schematically represented in figure 4.6 (b). An additional
problem is that after the self-consistent processes the atomic contribution of
the spin dependent molecular orbital can change. As a result, we can find sev-
eral molecular levels that are a mix of original wave functions, allowing them
to appear at different energies, so in many cases the value of the inner product
is < 1, which complicates the search. In this case, one must also make a care-
ful analysis of the contribution of the atomic orbitals to the wave function, as
discussed in the following chapters.
Once found the spin dependent wave functions pairs, determining the magnetic
molecular orbital is trivial. As is shown in Figure 4.6 (c), if the eigenvalues
of both spin components of the same wave function are below the Fermi level,
the resulting molecular orbital is non-magnetic, and may be considered doubly
occupied. In contrast, if both are above the Fermi level, the molecular orbital
can be considered empty. Finally, if the spin dependent wave functions pairs
are located crossing the Fermi level as is shown in the figure 4.6 (d), we can
consider that we have a magnetic moment derived from this orbital.

4.4 The concept of charging Energy

Whenever we have a Kohn-Sham Hamiltonian of a semiconductor, such as
an organic molecule, we have a problem in their eigenvalues due to the
discontinuity derivative problem, i.e. we underestimate the gap (or the band-
gap) of the system whose origin is in the dependence of the exact energy
functional upon the number of electrons; in addition to the inherent self-
interaction problem due to the uncompensated Coulomb interaction. So it
is hard not to consider how will we use these eigenvalues for our model? In
this section we propose a self-consistent correction implemented in our ANT.G
code [59] to correct this problem.
The energy functional described in chapter 1 gives the next value of total
energy:

E =
N∑
i

εi − VH [n(r)] + EXC [n(r)]−
∫
δEXC [n(r)]

δn(r)
n(r)dr. (4.19)

This energy evolves in a continuous quadratic form with the total charge of
the system. This is shown in Figure 4.7 (a) [96]. The problem is precisely
the continuity, since the derivative of the energy with respect to the charge
must be discontinuous for every integer value, as is also shown in Figure
4.7 (a) in red [96]. In other words, the derivative of the functional energy
must be constant for any fractional value of charge between two consecutive
integers. The origin of this error lies precisely in the construction of the density
functional, because while this discontinuity is introduced into the kinetic term,
resulting in the infamous Kohn-Sham gap, i.e. EKS

g = εLUMO − εHOMO, not
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done properly in the exchange-correlation term. (The remaining terms, do not
present discontinuity and may be excluded from this analysis).

Eg =

∣∣∣∣ δTδn(r)

∣∣∣∣
N+δ

−
∣∣∣∣ δTδn(r)

∣∣∣∣
N−δ

+

∣∣∣∣ δExcδn(r)

∣∣∣∣
N+δ

−
∣∣∣∣ δExcδn(r)

∣∣∣∣
N−δ

= EKS
g +Exc

g (4.20)

The charging energy is a correction to the functional that allows us to enter
the discontinuity in the derivative of the energy functional due to exchange
term. This is shown in figure 4.7 (b).

Fig. 4.7: (a) Sketch of the total energy profile as a function of number of electrons in a generic atomic
system in contact with a reservoir. The bottom curve is simply the difference between the other two (the
LDA energy and the âexactâ result for an open system). Picture taken from [96]. (b) Sketch picture of the
gap problem and the Janak’s theorem correction [58, 97].

Inspired by the Cococcioni and Louie works between others [58, 96], we decided
to make a correction on our functional using the DFT+U theory. So, taking
advantage of the fact that we are emptying our system to eliminate the double
counting, we decided to compute the charging energy through the Cococcioni’s
definition [96] via the Lagrange multiplier introduced in the constrained-DFT.

U =
δV 0

M

δn
− δVM

δn
= (χo)

−1 − (χ)−1. (4.21)

Here V 0
M is the Lagrange multiplier on the Hamiltonian of the ground state after

empty the active space. This term is easily obtained from the first iteration
cycle in the emptying calculation. The screening by the metal host can be
obtained as the inverse of the former term in the above equation, χo. This
screening does not include the effects in the hybridization changes. These
effects are included in the second term which is the Lagrange multiplier after
the self-consistent process. Note that since we are blocking the metal host
density this screening arises only from the ground state of the metal host, and
not include any response due to the change in the charge of the active space.
The correction in the density functional is also a cuadratic term which can be
written as

E[n(r)] = EDFT [n(r)] +
U

2
n(1− n). (4.22)
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The derivative of this functional is

δE[n(r)]

δn
=
δEDFT [n(r)]

δn
+
U

2
− Un, (4.23)

which obeys that
δ2E[n(r)]

δn2
= 0, (4.24)

and hence
δ2EDFT [n(r)]

δn2
= U. (4.25)

By the Janak’s theorem [97] we can rewrite this equation in terms of the
eigenvalues of the Kohn-Sham Hamiltonian which allows us to correct our
eigenvalues in the following way

εi = εKSi − U

2
nei +

U

2
nhi . (4.26)

Here nei is the number of electrons in the i-orbital, and nhi is the number of
holes, (nhi = 1−nei ). Thus, the above expression takes into account a correction
to any orbital by it charge density. In the limit, for example, of completely
full HOMO or completely empty LUMO, this equation gets the correction
proposed by Louie [58],

εHOMO = εKSHOMO −
U

2
, (4.27)

εLUMO = εKSLUMO +
U

2
. (4.28)

We have implemented this procedure self-consistent in ANT.G following

USCF =
δV i=1

M

δn
− δV i>1

M (Ui−1)

δn
= (χo)

−1 − (χ)−1, (4.29)

where we have obtained the final correction computing the U in each cycle of
the calculation until convergence of the energy. Here i stand by the number of
cycles. We have plotted an schematic picture of that in figure 4.7 (b), where
Uk = EKS

g .
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Chapter 5

The Kondo effect in Manganese
Phthalocyanine on Bi(110).

5.1 The Manganese Phthalocyanine.

The phthalocyanines are organic molecules with a metal transition atom in the
center of its structure. The unique planar structure of these molecules, with
a number of carbon atoms where electrons are confined and delocalized at
the same time, gives them amazing electronic properties. Because of this,
they have attracted much attention in recent years due to their potential
applications in the field of molecular electronics and organic photovoltaics. In
addition, the metal atom in the center of the structure gives them a magnetic
moment, making therefore also interesting for molecular spintronics. This
magnetic moment depends on which is the central atom.
In this thesis we are interested in the Manganese

Fig. 5.1: Picture of the Man-
ganese Phthalocyanine. In gray
carbon atoms; in blue Nitrogen
atoms; in yellow central manganese
atom and in white hydrogen atoms.

Phthalocyanine (MnPc), showed in figure 5.1,
which has the highest magnetic moment of the
more studied range of the first transition series,
with S = 3/2. It is followed by the FePc (S = 1),
the CoPc (S = 1/2), the NiPc (S = 0) and finally,
by the CuPc (S = 1/2). In all of these molecules
have been observed the Kondo effect over the last
decade [25, 26, 98–101]. (citar todos los papers
pertinentes, y comentar los más relevantes). But
what makes it really interesting from a theoretical
point of view is the versatility of magnetic states
of high and low spin that may arise, and the
fact that this spin state can change when they are deposited on a metal
surface. Especially since these systems allow studying different kind of Kondo
physics such as ligand Kondo, orbital Kondo, mixed valenced regimen or the
underscreened Kondo effect.
The MnPc is a coordination complex with manganese center. The exchange-
induced magnetic moment of the Mn atom can be as high as S = 5/2, but
the strong coupling to the organic ligand usually quenches the spin into lower
values [102]. The MnPc has three unpaired electrons localized on the d-orbitals
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Fig. 5.2: (a) Schematic diagram of the MnPc d-orbitals energy levels due to the crystal field. (b) The MnPc
molecular orbitals around the chemical potential computed with DFT using a simple basis set. (c) The same
in (b) but with a double basis set.

of the central manganese atom with a S = 3/2 total magnetic moment. The
simplest image of the distribution of these electrons in the d-orbitals is given
by the splitting due to the crystal field. (See figure 5.2 (a)). This image is
also known as point charge approximation [103, 104]. Moreover this simplified
picture of the d-orbitals, embedded in an organic ligand, is not enough to
capture the nature of the molecular orbitals in these kind of molecules, as we
can see in the DFT spectrum showed in figure 5.2 (b) and (c). The d-orbitals
of the manganese atom are hybridized with the orbitals of the organic ligand,
forming a complex network of molecular orbitals. Hence, identifying the d-
orbitals such as molecular orbitals is not realistic at all.
The electronic structure of MnPc showed in figure 5.2(b,c) has been computed
in the framework of DFT via our ANT.G code [59] which interfaces with
GAUSSIAN [53]. We have used a standard exchange-correlation functional in
the generalized gradient approximation[33, 35]. We have employed a minimal
STO-3G basis set in the case (b) and a LANL2DZ double basis set in the case
(c). In this kind of calculations the molecular orbitals are described as a linear
combination of atomic orbital (LCAO approximation, equation: 1.26), which
directly are the eigenvectors of the Hamiltonian in the non-orthogonal basis
set. In the picture we have plotted the eigenvalue of the Hamiltonian in the
molecular representation described in section 4.3.
As shown in figure 5.2 (b) the high occupied molecular orbital (HOMO) of
up electrons is an extended molecular orbital formed by the p-orbitals of the
organic ligand of the phthalocyanine (C and N atoms). In contrast, the HOMO
of down electrons belongs to d-orbital of manganese atom in a 36 %. These
two molecular orbitals show the complexity of study the electronic structure of
this molecule. In figure 5.3 we have written the partial electronic charge of the
d-orbitals and its spin state. We have used the Mulliken partition explained
in chapter 3.
It is well known that a minimal basis set DFT calculation is not always enough
accurate to compute the electronic structure of this kind of systems. Because
of this, we wanted to compare a calculation with minimal basis with one double
base, to highlight the complexity of the problem with the growth of the base.
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Fig. 5.3: Partial electronic charge and spin state in the d-orbital of the Manganese atom

5.2 Experimental Motivation.

Although we studied the electronic and magnetic properties of phthalocyanines
on surfaces, the experimental motivation of this part of this thesis is the
Berlin J.I. Pascual’s group experiments [26], with who we had the pleasure
of collaborate.
The first experimental observation of

Fig. 5.4: Experimental observation of Kondo reson-
ance in MnPc on lead surface (a) and (b) images are
taken from [99]. .

Kondo effect in the MnPc was in
2007 [99] by Fu et.al. (fig. 5.4),
where the molecule was deposited on
a Pb(111) surface. The measure of
Kondo-type resonances in this exper-
iment is indisputable, but the origin
of this resonance was incorrectly as-
signed to a one-half spin state. In
2011, Kranke et.al. [25] measured this system again, already considering, the
origin of the Kondo-type resonance at a high spin state of the MnPc. We will
discuss this system in the next chapter.
Metal-phthalocyanines usually present a local reactive site in the metal atom
of their structures because this atom is unsaturated (can accept more bonds).
Because control over the magnetic moment of molecules and its interaction
with a substrate is a key issue in the emerging field of molecular spintronics
[105], the axial coordination, for example, of small molecules like CO, NO or
O2 to this center is very interesting since it can enable them act such as sensors
[106, 107]. From a experimental point of view, that opens a unique possibility
of controlling the magnetic moment in-situ by external chemical stimuli [108–
114].
When we started this collaboration, previous studied had shown how, for ex-
ample, that the attachment of NO molecule to a cobalt-tetraphenylporphyrin
(CoTPP) quenches its spin due to the oxidation process [112]. However the
general picture is more complicated, as the chemical bond to the reactant mo-
lecule causes the redistribution of charge in the d-orbitals of the metal center
and modifies the ligand field of the metal ion. This has critical consequences
for the magnetic ground state of the complex [113, 114].
On metal surfaces, the formation of a new ligand bond may additionally alter
the hybridization of molecular and substrate states, thus affecting the elec-
tronic and magnetic coupling of the metal ion to the substrate [109–111]. Un-
derstanding the response of these effects to the change in chemical coordination
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is crucial to gain the full control over the functionality of the magnetic system.
Pursuing this goal, few years ago, A. Stróżecka and J.I. Pascual measured zero
bias anomalies in a MnPc and a CO-MnPc molecules deposited on a Bismuth
surface. Notice that although now it has already been observed in repeated
occasions [25, 26, 98, 99], at that time was not expected to get Kondo effect
in systems such as MnPc due precisely to its high magnetic moment. Further-
more, it should to take into account that bismuth has the highest spin-orbit
interaction of the periodic table, and today understanding the interaction of a
magnetic impurity in the presence of a strong spin-orbit field remains challen-
ging.

Fig. 5.5: Adsorption of MnPc and CO-MnPc on Bi(110). (a) STM image of highly ordered MnPc island
(I=0.2 nA, V=250mV). (b) MnPc island after exposure to CO (I=0.1 nA, V=180mV). CO-coordinated
molecules can be distinguished by different apparent height. Inset images in (a) and (b) show schematic
pictures of the chemical structure of MnPc and CO-MnPc. (c) High resolution STM image of bare and
CO-ligated MnPc (I=0.1 nA, V=-250mV). (d) Adsorption model of MnPc on Bi(110).

The experiments were performed in a custom-made scanning tunneling
microscope working in ultrahigh vacuum at low temperature (5K). Atomically
clean Bi(110) single crystal surface was exposed at room temperature to a
flux of MnPc molecules (Sigma-Aldrich) thermally sublimed from a crucible.
As shown in Figure 5.5 (a), on this surface MnPc molecules self-assemble in
densely packed islands [115]. Each of MnPc molecules appears as a clove-like
protrusion, its bright center corresponding to the metal ion. Exact adsorption
configuration could be established by resolving simultaneously intramolecular
structure of MnPc and atomic structure of the underlying substrate (see e.g.
Fig. 5.5 (c)). Bi(110) is a pseudocubic surface of a bilayer-structure, with an
almost square unit cell containing two atoms [116]. One of the atoms binds to
the underlying layer; the other atom presents a dangling bond which is resolved
in the STM images. As shown schematically in Fig. 5.5 (d), MnPc adsorbs on
Bi(110) so that Mn ion is located directly above the dangling bond of the
substrate. This specific adsorption configuration indicates that the bonding
between MnPc and Bi(110) is dominated by the direct interaction between the
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metal atom and the dangling bond of the bismuth atom.
The MnPc covered sample was subsequently cooled down to 130K and exposed
to CO gas partial pressure of 10−7 mbar for 90 s. After CO exposure the
structure of the molecular islands remains unchanged, but several molecules
(∼10%) exhibit now larger apparent height (Fig. 5.5 (b)). We identify these
new molecules as CO-ligated MnPc. Figure 5.5 (c) shows a high resolution
STM image of the new species embedded in the MnPc island. Similarly
to MnPc, the CO-coordinated molecules exhibit fourfold symmetry, with a
central protrusion appearing 0.8Å higher than in case of MnPc, indicating
that a single CO molecule bonds directly to the transition metal ion. We
find only singly coordinated CO-MnPc, contrary to previously studied doubly
coordinated porphyrin molecules [117, 118].

Fig. 5.6: (a) dI/dV spectra of MnPc and CO-coordinated MnPc in the bias range close to EF , showing the
zero bias anomaly. The dotted spectrum is the reference curve on bare Bi surface. (b) Zero-bias feature of
MnPc measured at reduced temperature T=2.8K. The feature exhibits clear Fano line shape. Continuous
line (red) corresponds to the fit by Fano equation.

The differential conductance spectra (dI/dV ) measured close to EF reveals a
pronounced anomaly at zero bias with a dip-like line shape on MnPc (Fig. 5.6
(a)). We interpreted it as a fingerprint of the Kondo effect, as it was observed
before for MnPc and FePc on metal surfaces [25, 99, 119]. The zero-bias
features exhibit a clear Fano line shape (Fig. 5.6 (a) and (b)), commonly
observed for Kondo ground states of magnetic adsorbates [120]. Other possible
effects which could cause this anomaly, as e.g. inelastic spin flip excitation,
were carefully excluded by studying the temperature dependence of the line
shape. A Kondo temperature of TMnPc

K = 22± 6K can be approximated from
a fit to the anomaly’s line shape, (Fitting by Fano equation. Thermal and
instrumental broadening was removed).
When similar spectra were measured on CO-MnPc molecules, the anomaly
appears much broader, with a slightly different lineshape (Fig. 5.6 (a)). The
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broadening of the Fano resonance indicates that coordination of CO modifies
the magnetic state of the molecule. This modification is reversible and can
be controlled by selective removal of CO molecules using STM tips. In order
to detach an individual CO from its site, the STM tip was placed over CO-
MnPc molecule, feedback loop was opened and the sample bias was ramped. A
resulting current-voltage characteristics is shown in Fig. 5.7 (a). A sudden drop
of the tunneling current at a certain threshold voltage indicates the detachment
of the CO molecule from its coordination site (in the most cases to a new site in
a neighbor MnPc molecule). The resulting species recovers the usual clove-like
shape and a narrower zero bias anomaly characteristic of a bare MnPc molecule
(Fig. 5.7 (c)). To establish the underlying mechanism of CO detachment the
experimentalists noted that the threshold voltage increases linearly with the
distance between the tip and the molecule, as shown in Fig. 5.7 (b). This
behavior indicates that the desorption of CO is induced by the electric field
at the tunnel junction. The critical value of electric field, ε ∼= 1V/nm can be
extracted from the slope of the line.

Fig. 5.7: Desorption of CO molecules from MnPc islands. (a) I-V characteristics recorded during desorption
of CO. A sudden drop in current in observed marks the threshold voltage for CO detachment. (b) Threshold
voltage plot versus tip-sample distance. Zero position of the tip corresponds to the feedback parameters
Vf=100mV and If=100 pA. Each point is an average of over 30 measurements. Linear fit of the data
indicates that the process is driven by electric field of 1V/nm. (c) STM image and dI/dV spectrum of the
molecule before and after controlled CO desorption.

The origin of the zero-bias anomaly on the CO-MnPc molecules cannot be de-
duced directly from the experiments. As a first approach, one could associate
it to a fingerprint of a Kondo ground state with a larger Kondo temperature
(TCO−MnPc

K about 50 ± 10K can be fitted). However, an increase of Kondo
temperature upon coordination to CO is unexpected.
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5.3 Electronic structure of CO-MnPc.

A carbon monoxide (CO) molecule can react with a MnPc through the central
manganese atom. To study the electronic and magnetic properties of this new
molecule, we computed a DFT calculation using the ANT.G code [59]. As we
did in the case of the MnPc, we have used a standard exchange-correlation
functional in the generalized gradient approximation[33, 35] and a LANL2DZ
double basis set.

Fig. 5.8: (a) Picture of the COMnPc, frontal view. (b) horizontal view of the MnPc and COMnPc molecule,
before optimization. (c) Picture of the atomic orbitals in the CO molecule.

As shown in figure 5.8 (a-b), the CO is anchored parallel to the z-axis direction,
perpendicular to the plane of the molecule. When the CO molecule is attached
onto the MnPc, the molecule undergoes a small conformational change (see
figure 5.8 (b)). Thanks to the non-bonding electron pair in the CO molecule
showed in figure 5.8 (c), the coupling is preformed via a complex coordination
bond called π∗-back-bonding. This chemical bond drastically changes the
magnetic moment of the MnPc from S = 3/2 before the bonding to S = 1/2
after a CO bonded. Following the section 5.1 we show in table 5.1 the charge
and spin states of Mn d-orbitals in the case of the COMnPc molecule.

N Nup Ndown Spin
dz2 6 6.38 2.89 11.39
dxz 26 24.03 22.52 26.87
dyz 26 23.20 22.76 35.10

dx2−y2 17 12.96 15.26 24.66
dxy 27 26.61 23.95 29.26

Table 5.1: Partial electronic charge and spin state in the d-orbital of the Manganese atom for the COMnPc
molecule. N is the total number of electrons in the d-shell. Nup(Ndown) is the number of electrons oriented
in one or another of both spin directions. The d-orbital spin state (spin) is computed by the difference
between the number of electrons in both spin directions.

The π∗-back-bonding bond is formed by three different interactions between
the p-orbitals of the carbon monoxide and the d-orbitals of the Mn atom of
the Phthalocyanine. We have pictured these interactions in figure 5.9.
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Fig. 5.9: Interaction between the p-orbitals of the CO molecule and the d-orbitals of the MnPc. From (a)
to (e) : dz2 , dxz , dyz , dx2−y2 , dxy .

As we can see in this figure, the first interaction is performed between the non-
bonding electrons pair of the carbon monoxide and the manganese dz2-orbital.
A sigma bond arises from overlap of these orbitals. The other two interactions
are performed between the pz and py orbitals from the CO to the dxz and dyz
orbitals of the Mn respectively. In this case a π-bond arises from the overlap
of these orbitals.
The π∗-back-bonding involves a synergic process consisting of the donation of
the non-bonding electron pair from the filled p-orbital of the Carbon monoxide
to another anti-bonding orbital, empty in this case, of the Mn atom. The result
of this bond is the quenching of the magnetic moment before located on the
dz2 and the dxz/yz orbitals of the MnPc. The last two pictures in figure 5.9
(d,e) show the no interacting cases of the dx2−y2 and dxy orbitals with the
CO molecule, which allows them to allocated the one half spin state of the
COMnPc molecule.

5.4 Electronic structure of MnPc and COMnPc
on Bismuth.

Fig. 5.10: (a) Schematic diagram of the MnPc and CO-MnPc absorbed on Bismuth(110).

To rationalize the experimental results we performed density functional theory
(DFT) calculations of free and adsorbed MnPc and CO-MnPc molecules. All
calculations were performed using the Green’s function formalism implemented
in the ANT.G code, based on the Gaussian03/09 commercial code [53, 59]. We
used a general gradient approximation (GGA) with the Becke and Perdew-
Becke Ernzerhof exchange-correlation functional [33, 35] in combination with
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a common double local basis set LANL2DZ Different views of the computed
system are shown in Fig. 5.10. The Bi(110) surface was described using two
bilayers embedded on a tight-binding Bethe lattice.
Following the experimental results (Fig. 5.5), MnPc and CO-MnPc molecules
were placed with the manganese atom directly on top of a Bi atom with an
optimized distance to the surface. The molecule is rotated seven degrees with
respect to the high symmetry axis of the Bi(110) surface, so that four carbon
atoms of the phthalocyanine cycle and the central Mn ion are in direct contact
with Bi(110) dangling bonds.
A free MnPc has a spin state S = 3/2 due to three unpaired electrons localized

Fig. 5.11: (a) Local density of states. MnPc/Bi(110) (b) Local density of states. CO-MnPc/Bi(110)

on the manganese orbitals dxz/dyz, dz2 and dxy. The dxz/dyz orbitals, hosting
three electrons, are strongly hybridized with the phthalocyanine ring of the
molecule, masking the atomic character of its localized spin. The dxy orbital is
the deepest in energy and hosts the most localized unpaired electron. On the
Bi(110) surface, MnPc keeps two unpaired electrons in the d-orbitals, as we
find after an analysis of the molecular orbitals of the coupled molecule. The
net spin density in the dxz and dyz orbitals is reduced and results now from
four occupied molecular orbitals with different atomic contribution depending
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on the spin orientation (Fig.5.11). In addition, a spin polarization arises in
the ligands, opposite to that in the Mn core. Thus, the total spin is reduced
to S = 1, with two identifiable and localized unpaired electrons in the dz2 and
dxy orbitals (Fig.5.11).
Next, we perform a similar analysis for the CO-MnPC molecular complex. The
CO molecule stays perpendicular to the MnPc molecular plane (Fig. 5.11). It is
anchored to the manganese ion via its carbon atom through a synergic π∗-back-
bonding. As a result, the population of the Mn d-orbitals strongly changes.
The dz2 and the dxz/dyz orbitals loose their magnetic moment: the former is
emptied due to the overlap with a nonbonding orbital of CO and the latter is
fully occupied due to the bond with the px and the py orbitals of CO. The total
spin of the MnPc-CO complex is therefore reduced to S = 1/2, steaming from
the unpaired electron remaining localized in the dxy orbital. On the Bi(110)
surface, this spin state is maintained in a molecular orbital with strong atomic
dxy-orbital character but a finite contribution from the phthalocyanine cycle
(see Fig. 5.12(c)). In addition the CO coordination reduces significantly the
spin density induced in the phthalocyanine ring.

Fig. 5.12: (a) Schematic diagram of the MnPc d-orbitals energy levels deposited on Bi(110).
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Fig. 5.13: Schematic representation of the molecular orbitals and the spin state in the case of MnPc/Bi(110).

5.5 Kondo effect in MnPc and CO-MnPc.

However, an increase of Kondo temperature upon coordination to CO is
unexpected.
The strength of a Kondo screening channel depends, to a first approximation,
on its hybridization with the substrate. For MnPc on Bi(110), the spin-
polarized local density of states (LDOS) projected on the Mn-d orbitals shows
that each orbital hosting an unpair electron interacts differently with surface
(Fig.5.15 (a)). The Mn-dz2 orbital hybridizes with a dangling bond of Bi,
which leads to its substantial broadening. The dxy orbital, due to the absence
of z-component, remains highly decoupled and accordingly appears as narrow
peaks in the PDOS spectrum. In such system each unpaired spin is screened
via a separate Kondo screening channel, characterized by a different energy
scale and thus different Kondo temperature [25]. Such scheme may lead to an
underscreened spin, if the experimental temperature is larger than one of the
Kondo temperatures.
In the DFT framework, the orbital-substrate coupling is represented by a
hybridization function ∆ which allows for a qualitative analysis of the feasible
Kondo channels [60, 76].
Specifically, the prerequisite for the Kondo effect of the host orbital having
a finite coupling to the electron bath, is equivalent to having non-zero value
of the hybridization function ∆ at the Fermi level [27, 121]. The value of ∆
calculated for different Mn d-orbitals of adsorbed MnPc is shown in Fig. 5.15.
The dz2 orbital shows a peak in the hybridization function at the Fermi level
indicating that this orbital is strongly screened by the substrate. On the
contrary, the hybridization function of the dxy-orbital has a zero value in a

M. Soriano 75 Ph.D. Thesis



5.5 Kondo effect in MnPc and CO-MnPc. 76

Fig. 5.14: Spin density distribution to the MnPc/Bi(110) and the CO-MnPc/Bi(110).

broad energy window in the vicinity of the Fermi level. These results suggest
that the Fano resonance in the spectra of the MnPc molecule is a fingerprint
of a Kondo channel opened to screen the dz2 orbital. The unpaired spin of
the dxy-orbital is decoupled from the electron bath and this Kondo channel is
closed. On the basis of these simulations, we conclude that the spin of the
MnPc is underscreened.
It thus appears clear that the modification of the experimentally observed
Kondo resonance upon CO coordination is a direct consequence of the
redistribution of the d-electrons of the Mn atom. The spin-resolved LDOS of
the adsorbed CO-MnPc projected on the Mn d-orbitals (Fig.5.15) confirms that
the spin-polarization of the dz2 and dxz/dyz orbitals is reduced. Only the dxy-
orbital appears to be relevant for the magnetism of the complex. However, this
level is very localized and, as seen in Fig. 5.15, its corresponding hybridization
function is zero in the vicinity of the Fermi level. This means that we expect
no Kondo effect mediated by this orbital.
This apparent inconsistency with the experimental observations can be
bypassed by noting that the PDOS on the dxy-orbital shows a highly localized
branch pinned at the Fermi level. This state thus belongs to the lowest
unoccupied orbital of the molecule (LUMO), and is the only responsible for
the chemical potential line-up between the molecule and the substrate.In these
circumstances, charge fluctuations are expected to occur at the dxy-orbital.
When electronic correlations are considered, a mixed-valence regime is likely
to emerge, as it is known for the f -electron compounds [121]. In this situation,
one expects a resonance to appear at the Fermi level, similar as in the Kondo
regime but characterized by a larger width.
Finally, we comment on the possible role of the surface states in the screening
process on Bi(110). As a semimetal, bismuth is characterized by a low density
of bulk states at the Fermi level; its surfaces are however strongly metallic due
to the presence of the surface states. Therefore, the Kondo effect on bismuth
can be expected to involve surface states rather than bulk states. However,
strong spin-orbit coupling induces the spin polarization of the surface states
through the Rahsba effect [116]; the concept of screening in such system is
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not straightforward. The Kondo effect involving the chiral spin-states has
been recently intensively discussed in the context of topological insulators and
can be understood assuming a complex structure of the Kondo cloud with a
nontrivial spatial and spin dependence.

Fig. 5.15: (a) Hybridization function of MnPc/Bi(110) (b) Hybridization function of CO-MnPc/Bi(110) (c)
Molecular orbitals of COMnPc.

In summary, we have shown through experiments and theory that the coordin-
ation of a CO molecule to a manganese phthalocyanine on Bi(110) changes its
magnetic ground state. The attachment of CO molecule to the Mn ion, causes
a charge redistribution in the d-orbitals and a reduction of the spin of the
complex from S = 1 to S = 1/2. Our calculations suggest that CO coordina-
tion drives the complex from the Kondo screening regime into mixed-valence
regime, where the charge fluctuation are likely to occur. The change of the
magnetic ground state is reversible and can be controlled by selective desorp-
tion of individual CO molecules. Such chemical control over the molecular
spin opens the possibility of tuning in − situ of the magnetic properties of
molecular systems.
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Chapter 6

The Kondo effect in Manganese
Phthalocyanine on Pb(111).

6.1 Initial Motivation.

As we announced in the previous chapter, herein

Fig. 6.1: Experimental observation of
Kondo resonance in MnPc on lead
surface. The image is taken from [25].

we will focus on the MnPc/Pb(111) system
measured by Fu et.al. [99] and Franke et.al [25]
(shown in figure 6.1).
Whenever a magnetic atom or magnetic mo-
lecule is coupled to metallic electrodes the con-
duction electrons are likely to screen its mag-
netic moment through the Kondo effect [94, 121]
which is signaled by Fano-Kondo lineshapes in
the conductance spectra [122–126]. Atomic pre-
cision experimental control offers the possibil-
ity to study a wide range of electron correlation
phenomena related to the Kondo effect. For ex-
ample, the atomic-scale control of atoms or mo-
lecules adsorbed on metal surfaces or anchored
to nanoscopic electrodes allows for a direct ma-
nipulation of the orbital hybridization and for
a controlled tuning from the so-called under-
screened to the overscreened Kondo effects, both
regimes showing interesting non-Fermi liquid behavior [127].
Recently, underscreened Kondo effects have been reported for a C60 quantum
dot molecule coupled to metal leads [128] and for a Co(tpy-SH)2 complex
coupled to Au nanocontacts [129]. The overscreened Kondo effect, on the
other hand, has been very recently predicted to occur in Au nanocontacts
hosting a single Co atom [130].
Although this work has a great experimental motivation in the works men-
tioned above, as well as other experiment of phthalocyanines derived molecules
[98–101], the real motivation of this work is theoretical. Our goal was and is
to contribute to understanding, from an atomistic point of view, of the Kondo
effect in molecular complex systems where we can find high spin states. The
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latter makes the determination of the nature of the Kondo-like resonances ob-
served experimentally, thereof, their shape and evolution with temperature,
bias, gate and other parameters, is not trivial, nor is unclear at present.
Furthermore, since the MnPc is a coordination complex containing a transition
metal (TM) center where the strong coupling to the organic ligand quenches
the spin into a relative lower value of S = 3/2 [102], both one-body quenching
and many-body screening processes can coexist, when the molecule is depos-
ited on a metal surface. The separation of these two contributions from the
experimental signals is very difficult [131]. These two phenomena are very
difficult to disentangle their respective contributions to the experimental sig-
natures.
Here, by treating both screening and quenching on the same footing we elucid-
ate the relevant mechanisms behind the experimental observations in a single
MnPc absorbed on the Pb(111) surface in the normal (i.e., not supercon-
ducting) phase [25, 99]. This and similar systems have been studied both
experimentally and theoretically by different authors [25, 26, 99, 119, 132]. In
contrast to previous theoretical work [26, 132–134] our approach fully takes
into account the electronic correlations and hybridization of the entire Mn
3d-shell from two different approaches, the atomic and the molecular. This
allows us to get the first complete picture of the Kondo effect and molecular
quenching processes in a high-spin complex.

6.2 MnPc on Pb(111). Electronic Structure.

We considered a single MnPc adsorbed at the top site of a Pb(111) surface as
shown in Figure 6.2 (a). We first relaxed the atomic structure, orientation, and
distance of the molecule to the substrate which was represented by a cluster
consisting of five atomic layers. This is done through the common Kohn-Sham
(KS) approach to DFT using a standard GGA functional [35]) as implemented
in the Gaussian09 package [53]. Next we embed the cluster consisting of
the substrate and molecule (hereon called region C) into an effective semi-
infinite bulk electrode model as implemented in the code ANT.G [59, 60] which
interfaces Gaussian09. The KS Green’s function (GF) of the system C can now
be obtained as

G0
C(ω) = (ω + µ−H0

C − ΣS(ω))−1 (6.1)

where H0
C is the self-consistent KS Hamiltonian re-evaluated considering now

ΣS(ω), which is the embedding self-energy describing the semi-infinite bulk
electrode.
The spin polarized KS spectrum of all molecular orbitals close to the Fermi
energy is shown in Fig. 6.2 (b) along with their Mn 3d orbital character.
The ones depicted in gray do not have any Mn atomic character at all, being
completely localized on the organic ligand. A strong localization in the dx2−y2 ,
dxy and dz2 atomic orbitals is apparent, being signaled by a single molecular
orbital (per spin with strong atomic character. The dx2−y2 appears as an
empty molecular orbital, well above the Fermi level, the charge density in
this orbital (see Table I being only due to the contribution of many molecular
orbitals with negligible participation of the atomic orbital. The other two
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have a localized unpaired electron each. The third unpaired electron is shared
between the dxz/yz orbitals. The localized character of this spin is masked due
to the strong hybridization of these orbitals with the ligand, there being four
molecular orbitals (per spin) with significant dxz/yz atomic character.
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Fig. 6.2: (a) Top view of a PcMn adsorbed on a Pb(111) surface in its more stable configuration. (b)
Molecular orbital energy diagram as obtained from the projected spin-polarized KS Hamiltonian of the
adsorbed molecule. The Mn 3d orbital character (percentage) of each molecular orbital is shown. The
inset shows the schematics of the Mn 3d orbital energies and associated spins as considered in the OCA
calculations. (c) Orbital resolved imaginary part of the hybridization function for the Mn 3d orbitals as
obtained from the GGA non-magnetic electronic structure calculation.

In Fig. 6.2 (c) we show the imaginary part of the hybridization function ∆(ω)
which describes the broadening of the Mn 3d-levels due to the coupling to
the substrate and to the organic part of the molecule. We see that within an
energy window of ±1.0 eV around the Fermi level, only three out of the five
3d-levels are actually broadened (d3z2,xz,yz). The dxy and dx2−y2 orbitals, which
are parallel to the surface, show no hybridization at all in this energy window.
Outside this window, however, while the dxy orbital still does not show any
significant coupling, the dx2−y2 orbital presents a very large peak at −2.4 eV
(and many small peaks) which indicates a strong coupling to the organic ligand.
This is actually a manifestation of what crystal-field theory anticipates and the
DFT calculation shows, as described in the previous paragraph.
Since the dx2−y2 orbital is virtually empty and shifted to high energies, we
exclude this orbital from the AIM model from now on. The 3dz2 , dxz, and dyz
orbitals, being the only ones showing hybridization around the Fermi level, are
also the only ones susceptible to Kondo screening. All three orbitals feature a
strong peak in the hybridization function around the Fermi energy which stem
from coupling to molecular orbitals in the organic ligand which, in turn, couple
to the substrate. Note that due to symmetry reasons the direct coupling of
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the dxz and dyz orbitals in the top position is strongly suppressed. In contrast,
the 3dz2 orbital also couples to the substrate directly, resulting in a flatter
hybridization function.

6.3 MnPc on Pb(111). The atomic Model to the
Kondo Problem.

In order to capture many-body effects beyond the DFT level, we have
applied the DFT+impurity solver method for nanoscopic conductors developed
by one of us in earlier work [76, 135]. To this end the mean-field
KS Hamiltonian is augmented by a Hubbard-like interaction term ĤU =∑

αβγδσσ′ Uαβγδ d
†
ασd

†
βσ′dδσ′dγσ which accounts for the strongly interacting

electrons of the Mn 3d-shell. These are different from the bare interactions
due to screening processes. The screened Coulomb interaction within the Mn
3d-shell, Uαβγδ, has been determined using the constrained RPA approach
[136]. We find that the matrix elements Uαβγδ are somewhat anisotropic
with variations of up to 10% between different orbitals. For the intra-orbital
Coulomb repulsion Uαααα we have a mean value of 5.4 eV and for the inter-
orbital Coulomb repulsion Uαβαβ (α 6= β) a mean value of 4.1 eV. The orbital
anisotropy of the direct repulsion will be fully taken into account in our
calculations. The exchange matrix elements Uαββα, which give rise to the
Hund’s rule coupling JH , also become somewhat orbital-dependent. But here
we simply set JH to the orbital-averaged exchange interaction JH ≡ 〈Uαββα〉
for which we find 0.65 eV.
The interacting Mn 3d shell coupled to the rest of the system (organic scaffold
+ surface) thus constitutes a so-called Anderson impurity model (AIM). The
AIM is completely defined by the interaction matrix elements Uαβγδ, the
energy levels εd of the 3d-orbitals and the so-called hybridization function
∆d(ω). The latter describes the (dynamic) coupling of the Mn 3d-shell
to the rest of the system and can be obtained from the KS GF [135] as
∆d(ω) = ω + µ − ε0d − [G0

d(ω)]−1 where µ is the chemical potential, ε0d are
the KS energy levels of the 3d-orbitals and G0

d(ω) is the KS GF projected
onto the 3d-subspace. The energy levels εd are obtained from the KS levels,
εd = ε0d − Edc where, as usual in DFT++ approaches [137], a double counting
correction (DCC) has to be subtracted to compensate for the overcounting of
interaction terms. Here we employ the so-called fully localized or atomic limit
DCC [138], but generalized to the case of an anisotropic Coulomb repulsion:
Eα
dc =

∑
β Uαβαβ ·

(
nβ − 1

2M

)
−JH (N3d − 1) /2, where nα is the DFT occupation

of orbital α, N3d the total occupation of the Mn 3d-shell, and M , the number
of correlated orbitals.
The AIM problem is now solved using the one-crossing approximation (OCA)
[139]. This yields the electronic self-energy Σd(ω) which accounts for the
electronic correlations of the 3d-electrons due to strong electron-electron
interactions. The correlated 3d GF is then given by Gd = ([G0

d]
−1−Σd+Edc)

−1.
Correspondingly, the correlatedGF for C is given byGC = ([G0

C]−1−Σd+Edc)
−1

where Σd and Edc only act within the 3d subspace. From GC we can calculate
the transmission function T (ω) = Tr[ΓTG

†
C ΓSGC] where Γα ≡ i(Σα − Σ†α)
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Fig. 6.3: (a) Total spectral function of the Mn 3d-shell near the Fermi level for different temperatures.
(b) Orbital resolved spectral function of the Mn 3d-shell at low temperature (T ∼ 12 K) in a larger energy
window than in (a). (c) Transmission function for different filling Nd of the four Mn 3d-orbitals taken into
account in the OCA calculation at low temperature (T ∼ 12 K).

3z2 xz yz xy x2 − y2 tot.

GGA 1.19 1.18 1.19 1.04 0.67 5.27

GGA+OCA 1.32 1.13 1.16 1.04 (0.67) 5.32

Table 6.1: Orbital occupations of Mn 3d-shell as calculated with DFT on the level of GGA and with OCA.
Note that the x2 − y2-orbital was not taken into account in the OCA calculation (see text).

for α = T, S describes the coupling of C to the STM tip (T) and to the
semi-infinite Pb surface (S). Since the (small) voltage mainly drops between
tip and molecule, the transmission directly yields the differential conductance:
G(V ) = (2e2/h)T (eV ).
Let us now turn to the results of the OCA calculation for solving the generalized
AIM problem. We find that, except for the xy orbital, the orbitals of the Mn
3d-shell are in a mixed-valence state. There are strong fluctuations between a
five-fold degenerate atomic configuration with Nd = 4 electrons and maximal
spin Sd = 2 where all orbitals are singly occupied and three four-fold degenerate
atomic configurations with Nd = 5 electrons and S = 3/2 where one of the 3z2 ,
xz and yz orbitals is doubly occupied. This results in an average occupation of
the four Mn 3d-levels of Nd ≈ 4.6 electrons and an average total spin 〈Sd〉 ≈ 1.6
close to 3/2. The extra half-electron stems from the emptied x2 − y2 orbital
and is shared among the 3z2, xz, or yz orbitals. This leads to strong charge
fluctuations in these orbitals (see Tab. I) and thus quenching of their spin from
3/2 to ∼ 1. The xy orbital on the other hand is essentially singly occupied,
thus carrying a spin 1/2. Note that the individual orbital channels are not
in a mixed-valence situation as the individual occupations are clearly below
1.5 and therefore the Kondo effect in individual orbitals is possible despite the
Mn 3d-shell as a whole being in a mixed-valence state [127]. Although 〈Sd〉 is
finite, the expectation value for any of its projections is zero, since all states
with Szd = −Sd . . . + Sd contribute equally. Also note that 〈Sd〉 ∼ 3/2 is not
the expectation value of the total spin of the system but only of the Mn 3d-
shell. The spin of the whole system is lower due to screening by the Kondo
effect with the conduction electrons of the substrate and the organic rest of
the molecule as we will see below.
Fig. 2a shows the spectral function of the Mn 3d-shell for different
temperatures. We see a sharp Kondo-peak developing right at the Fermi level
when the temperature is lowered. As can be seen from Fig. 2b where we show
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the orbital-resolved spectral function on a larger energy scale than in Fig. 2a,
the Kondo peak stems from the 3z2 orbital, the only orbital directly coupling
to the substrate near the Fermi energy. Notice that in the existing literature
this orbital is considered to be quenched [99] and is excluded from correlated
models [140]. The Kondo temperature for this orbital is TK ∼ 100 K. The xz
and yz orbitals, on the other hand, each feature small bumps just below the
Fermi level with a much larger width (∼ 0.5 eV) than the Kondo peak in the 3z2

orbital. We interpret these pronounced peaks in the hybridization function for
the xz- and yz-orbitals as a result of these orbitals only coupling via the organic
ligands to the substrate. In other words, these bumps suggests the formation
of a many-body singlet state between the Mn 3d-level and a molecular orbital
in the organic rest of the molecule as in the zero-bandwidth Anderson impurity
model (see e.g. App. of ref. [121]). In this model the formation of the total
spin-singlet state between the strongly interacting impurity level and a single
non-interacting bath level gives rise to two strongly renormalized resonances
below and above the Fermi level. These resonances are precursors of the Kondo
peak which develops as more and more bath levels are added to the model.
Therefore we can think of the spin in the xz and yz orbitals as being screened
due to the formation of a many-body singlet state by strong coupling with the
organic ligand. The spin 1/2 in the xy orbital, on the other hand, remains
unscreened due to lack of hybridization with the substrate or molecule near
the Fermi level. This is in contrast to existing claims where this orbital is
considered to be screened and responsible for high-energy Kondo features Ref.
[99].
Therefore we are dealing here with a S = 3/2 underscreened Kondo effect
where only the spin S ≈ 1 within the 3z2, xz and yz orbitals is screened,
leaving a residual spin 1/2 in the Mn xy orbital which may lead to so-called
singular Fermi-liquid behavior [141]. Only the screening of the spin within
the 3z2 orbital gives rise to a Kondo resonance while no significant low-bias
experimental signatures are expected from the strongly coupled spin in the
xz/yz orbitals. Since the Kondo temperature of the 3z2 channel is too high, it
is not unrealistic to attribute the Shiba peaks in Ref. [25] to a low-energy scale
Kondo screening of the xy orbital in a lower symmetry experimental situation
[140].
The Kondo resonance appearing in the spectral function of the Mn 3d-shell
for low temperatures is somewhat asymmetric. This is mainly a result of two
effects: On the one hand charge fluctuations in the 3z2 orbital make the Kondo
peak asymmetric due to the proximity of the upper Hubbard peak. On the
other hand the modulation of the hybridization function due to the coupling
to the organic ligands near the Fermi level further enhances this asymmetry.
The bumps in the spectral function of the xz and yz orbitals on the other hand
do not have a significant contribution to the asymmetry of the Kondo peak
due to their small spectral weight. This asymmetry of the Kondo peak in the
spectral function is even more enhanced in the tunnelling spectra as can be
seen in Fig. 2c where we show the tunnel transmission T (ω) calculated for a
Pb tip positioned above the Mn atom in a distance of 5 Å. The reason for this
further enhancement is the modulation of the Mn 3d spectral function by the
DOS of the Pb tip and the Pb substrate. For a Au tip we actually find that
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the tunnel spectra (not shown) are a little bit less asymmetric. Therefore the
peak in the tunnel spectra just stems from the Kondo peak in the 3z2 orbital.
In fact, a sharp Kondo peak in either of the xz or yz channel would rather
give rise to a dip in the tunnelling, but not to a peak since the direct tunnel
matrix elements between the tip and these two orbitals vanish for symmetry
reasons.
Charge fluctuations usually have a strong effect on the Kondo screening. In
Fig. 2(c) we show the effect of altering the occupation of the Mn 3d-shell on
the tunneling spectra by shifting the Mn 3d-levels by a few decimal eV. We see
that the shape of the Kondo resonance and in particular its width is strongly
affected by the slight changes in the occupation of the Mn 3d-shell. In fact our
calculated lineshapes reproduce very well the variation of lineshapes measured
in recent experiments. Hence we conclude that the experimentally observed
variation in lineshapes for different PcMn molecules on the Pb(111) surface
[25, 99] is likely due to slight changes in the occupation of the Mn 3d-shell
induced by slight variations in the structure or environment of the molecule in
the experiments.
In summary, we have studied the correlated electronic structure of a MnPc
adsorbed on the Pb(111) surface, fully taking into account the strong electronic
correlations originating from the Mn 3d-shell. Our results show that the
adsorption does not essentially modify the total spin S = 3/2 of the molecule,
being distributed among four of the five 3d-orbitals. This finding is in stark
contrast to previous works which assume/find a spin 1 [140] or even a spin-1/2
state due to strong quenching with the substrate and organic ligand [99]. We
further find that the experimentally observed asymmetric Kondo resonance
in this system [25, 99] is due to an underscreened Kondo effect where a spin
1/2 in the Mn 3d-shell remains unscreened. The Kondo resonance in the
tunnel spectra actually stems from only one of the Kondo-screened orbitals.
Its peculiar lineshape arises from the modulation of the hybridization function
due to a strong coupling to the organic ligand, not being necessary to invoke
the superposition of two Kondo peaks with different Kondo temperatures as
done in Ref. [25].
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Chapter 7

Kondo effect in pure carbon
molecules.

We present a fully first-principles approach to the Kondo problem in purely
carbon-based molecules or organic radicals in proximity to metal electrodes.
In these molecules the screened spin may be an unpaired π electron delocalized
over many atoms or even the entire molecule. Our starting point is a
projection of the full Kohn-Sham Hamiltonian onto the molecule followed
by a selection of the active space, e.g., a selection of the relevant molecular
orbitals. A constrained density functional calculation allows us to avoid the
double- counting correction problem. Once obtained the appropriate single-
particle levels along with the hybridization function, the spectral density and
transmission function is computed through a DMFT impurity solvent. We
apply this technique to a C60 molecule contacted by Au electrodes. By gating
the system we study the zero-bias features arising in the mixed-valence, the
spin 1/2 Kondo, and the underscreened spin 1 Kondo regimes. This parameter-
free theory is successfully tested against a variety of experimental results.

7.1 Experimental Motivation

Kondo-like zero-bias resonances in transport experiments arise when spins or
unpaired electrons interact with the current-carrying metallic environment.
This traditional many-body problem has been increasingly investigated in
the past decade in a variety of systems, still being today a subject of great
interest because of its physical wealth, both from a fundamental point of view
and for their potential applications in the field of spintronics. The Kondo
resonance was first observed in semiconductor quantum dots [143]. Later,
a variety of systems such as carbon nanotubes [144], magnetic atoms and
molecules deposited on surfaces [145, 146], and spin impurities in graphene,
among others, have served as a playground for further studies of this many-
body phenomenon.
Regardless of the nature and complexity of the system at hand, the basic
theoretical model that is routinely used to gain insight into the Kondo effect
is the Anderson model, where a few parameters are fitted as needed. The
solutions to this model and variants of it are essentially well understood.
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Fig. 7.1: Quantum phase transition. (left) Color map over two Coulomb diamonds of the differential
conductance dI/dV (in units of 2e2/h, where h denotes Planck’s constant) as a function of bias voltage
Vb and gate voltage Vg at T = 535mK and B = 50. (right) Detail of the differential conductance in the
dotted white rectangle in (left), showing the singlet to triplet spin transition. Image taken from [142].

However, while Anderson impurity models describe in essence the phenomenon,
they may ignore important aspects of the nature of real systems, particularly
when it comes to a quantitative description. In this direction, a great effort has
been made to develop more sophisticated models and to find solutions to these,
among which one finds a combination of density functional theory (DFT) with
sophisticated many-body techniques such as numerical renormalization group
(NRG), time continuous Quantum Monte Carlo methods, and dynamical mean
field theory (DMFT) [135, 147, 148].
However, to the best of our knowledge, all these first-principles efforts have
been directed towards systems where the Kondo effect originates in magnetic
atoms with d- or f-type open shells and ultimately rely on atomic parameters.
These approaches are relatively successful in cases such as coordination
complexes, a primary example being transition metal phthalocyanines [27], but
are unable to treat purely carbon-based systems such as C60, carbon nanotubes,
other graphene derivatives, and organic radicals where the Kondo effect is
due to unpaired π electrons delocalized over many atoms or even the entire
molecule. In the case of organic radicals, for instance, which have recently
been stabilized and measured on metallic surfaces, the observed Kondo effect
does not count with theoretical support.

7.2 The theoretical model

Here we present a novel theoretical approach to the Kondo problem based
on the combination of DFT calculations and a DMFT impurity solver. Our
general goal is to describe with no parameters the experimental observations
of the Kondo effect on systems (mostly molecules) where the screened spin(s)
is not localized on a single magnetic atom, but is itinerant, typically an
unpaired π electron(s). We first rely on a DFT calculation to obtain the
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Fig. 7.2: (a) Schematic picture of the C60 molecule attached Gold electrodes. (b) Schematic representation
of the active space. (c-g) Evolution to a model of one level to explain the difference between the calculations.

Kohn-Sham Hamiltonian of the molecule as well as the hybridization function
of it. Since there is no privileged atom hosting the spin, we must work on
the basis of eigenstates (molecular orbitals) of the Hamiltonian. Secondly, we
select an active space composed of a set of molecular orbitals (MO’s), typically
the highest occupied (HOMO) and lowest unoccupied (LUMO), to properly
introduce the correlations on them. Because the Kohn-Sham Hamiltonian
already includes electronic interactions, we have to remove these prior to
the addition of correlations. For this we propose a new idea based on a
constrained DFT (CDFT) implementation that allows us to empty the active
space. The thus emptied single-particle Kohn-Sham Hamiltonian along with
the interactions between molecular orbitals are then introduced in the impurity
solver. Different levels of theory such as the non-crossing approximation (NCA)
or the one-crossing approximation (OCA) are used to obtain the spectral
function. As an example we study a C60 molecule coupled to gold electrodes, in
which Kondo resonances have been previously reported in different experiments
[142, 143, 146] for various regimes.
The electronic structure of the C60 molecule attached to two Au leads is
computed in the framework of DFT combined with the (non-equilibrium)
Green’s function formalism as implemented in our code ANT.G[59] which
interfaces with GAUSSIAN [53]. In all calculations we have used a standard
exchange-correlation functional in the generalized gradient approximation[33,
35]. We have employed a minimal spd−pseudopotentials basis set [86] and
the leads have been modelled by a finite pyramidal shape[149] embedded in a
(spd) tight-binding Bethe lattice model. This is shown in Fig. 7.3 (a).
When studying correlated states the first step is the selection of the physically
relevant electronic levels which define the so-called active space. To begin
with, we will project our Kohn-Sham Hamiltonian H0 onto the C60 molecule.
As discussed in our previous work[150], the mathematical partition of this
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Fig. 7.3: (a) Schematic picture of the C60 molecule attached Gold electrodes. (b) Molecular spectrum
(eigenvalues) and (c) transmission function of the system showed in (a) with three different charge states.

molecular bridge in different regions is not trivial due to the non-orthogonality
of the basis set. Here we have chosen to transform the original metric
of our basis to a block orthogonal metric[150], already introduced in Ref.
Thygesen:prb:06. Thus the projector operator onto the molecular subspace
is simply defined by the overlap matrix SM of the atomic orbitals basis
subset of the C60 molecule: P̂M =

∑
m,n |m〉 [SM]−1 〈n|. (Here on the sub-

index M will represent the projection onto the molecular subspace.) In order
not to loose essential information in the projection process, the Hamiltonian
projected onto the molecule, P̂MĤ0P̂M := H0

M, must be supplemented by a
self-energy obtained from reversal engineering of the projected Green’s function
P̂MĜ0P̂M := G0

M, where Ĝ0 is the retarded Green’s function operator of the
whole system[150]. The self-energy matrix, as represented in the basis set,
reads

Σ0
M = (ω − µ) SM −H0

M − SM[G0
M]−1SM. (7.1)

Here ω is the energy and µ the chemical potential which enforces the bound
charge condition∫

ρ0(r)dr−N0 =

− 2

π
Im

∫ 0

−∞

(∫ 〈
~r|Ĝ0|~r

〉
d~r

)
dω −N0 = 0,

(7.2)

where N0 is the total number of electrons of the molecular bridge and ρ0 is
the total electronic density. In what follows the index 0 will refer to the initial
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DFT calculation which is not allowed to break spin symmetry, as required by
our impurity solver.
The eigenstates of H0

M are MO’s modified by the electrodes. Since this
Hamiltonian results from a full DFT calculation of the molecular bridge
several effects such as the crystal field and charge transfer induced by the
electrodes already change the spectrum with respect to that of the bare
molecule. Figure 7.3 (b) shows the relevant part of the spectrum of H0

M.
As can be appreciated, the five-fold and three-fold degeneracies of the HOMO
and LUMO, respectively, are partially removed by the interaction with the
electrodes and the charge transfer.
Since charge transfer naturally occurs from the Au electrodes to the molecule,
our active space will be composed of the first 3 LUMO’s, later augmented
by the next 3 for reassurance. Likewise, if a gate voltage removes charge
from the molecule and takes the chemical potential into the HOMO’s one
should consider these 5 levels instead. Importantly, it must be borne in
mind that these KS levels already carry electronic interactions which must
be removed before including correlations. Usually, when correlations involve
only one atom, this double counting correction problem is taken care of by
parametrized atomic Coulomb and exchange terms. Since our goal is to obtain
a free-of-parameters theory, we propose a new idea based on CDFT techniques.
In essence we propose to empty the active space before adding the correlations
through the interaction integrals between MO’s.
CDFT is a self-consistent ground state technique designed to directly construct
charge and spin constrained states. In general, the CDFT makes use of
a density functional giving the energy E[ρ] and adds a Lagrange multiplier
term representing the constrain to yield a new functional. In our model this
functional is given by

E[ρ, VM, µ] = E[ρ] + VM

(∫
ωM(r)ρ(r)dr−NM

)
+

µ

(∫
(1− ωM(r)ρ0(r)dr +

∫
ωM(r)ρ(r)dr−Q

)
.

(7.3)

The weighting factor ωM, in the simplest case, is 1 in the volumetric region of
the molecule and 0 elsewhere, NM is the charge in the molecule (constrained
to be integer), and VM the Lagrange multiplier or potential that ultimately
controls this charge. For completeness of notation we have included the term
that controls the overall charge of the system, Q. This number is chosen in
such a way that the charge in the electrodes remains the same as that of
the 0-calculation. Furthermore, at this point we could carry out a standard
CDFT calculation. However, the purpose of our CDFT is to remove the charge
that later will be added along with correlations through the impurity solver.
Besides, we will use the hybridization function ImΣ0

M ≡ −π∆0
M corresponding

to the original 0-calculation and the original charge of the molecule QM. In
fact, after the impurity solver step, the resulting charge in the molecule should
be essentially the same as that of the 0- calculation. Therefore, we choose
to freeze the electron density of the electrodes (thereof the presence of ρ0

in Eq. 7.3) and find in a self-consistent manner only the projected density
of the molecule ρM and the projected Hamiltonian H−M constrained to have
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Fig. 7.4: (a) Local density of states projected onto the three LUMO’s orbitals (b) Hybridization function
projected onto the same orbitals. (The active space). (c) Toy picture to show the effect of the VM potential.
(d) Evolution of the eigenvalues of the Hamiltonian near the active space region showing the effect of the
CDFT.

NM(< QM) electrons. In practice the charge in the molecule is computed after
projecting the charge density and integrating:∫

ρM(r)dr = − 2

π
Im

∫ 0

−∞

(∫ 〈
r|P̂MĜ0P̂M|r

〉
dr

)
dω

= − 2

π
Im

∫ 0

−∞
Tr
{
GM(ω)[SM]−1

}
dω

(7.4)

In the 0-calculation we obtain QM ≈ 242 due to charge transfer from the
electrodes (the number of electrons for the neutral C60 is 240, which here is
chosen to be the value of NM). In any case, as shown below, this number can
be tuned at will through µ as if a gate voltage was present.
We are now ready to include many-body effects beyond the DFT level. We
will follow the DMFT+impurity solver method developed by D. Jacob et. al.
[76, 135]. Fig. 7.4 shows the level spectrum of the “emptied” system H−M.
The second ingredient is the electron-electron interaction terms for the
active space, which augment the single-particle Hamiltonian: HU =∑

αβγδσσ′ Uαβγδĉ
†
ασĉ

†
βσ′ ĉγσ′ ĉδσ. The integrals U can be easily computed from

those of the atomic orbitals φ(r):

Uijkl =

∫
d3rd3r′φ†iσ(r)φ†jσ′(r

′)φkσ′(r
′)φlσ(r)V (r− r′).

through the unitary transformation X defined by the eigenvectors of H−M:

Uαβγδ =
∑
ijkl

X†αiX
†
βjUijklXkγXlδ. (7.5)
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Fig. 7.5: Kondo resonance showing the singlet-triple transition.

We will reserve the Greek letter labels for the molecular orbitals basis set. In
table X we show the direct Coulomb repulsion (Uαααα, Uαββα) and the exchange
interaction (J ≡ Uαβαβ) for the three LUMO’s of the C60 molecule. These are
unscreened interactions.
The final ingredient is the hybridization function ∆0

M describing the (dynamic)
coupling of the molecular levels to the rest of the system and transformed to
the new basis of MO’s. In the same way, we should include the real part of
the non-interacting self-energy, <Σ0

a(h−a ), at the energy of the impurity level,
a, to include the splitting of the impurity levels due to the coupling with
the electrodes. Notice that this term is not included in the Hubbard-type
Hamiltonian, but with the dynamical correlations. This completes our first-
principles Anderson impurity model (AIM).
In addition to obtain the singlet-triplet transition previous observed in this
system [142], in the first instance we will propose to introduce a gate voltage
as a simple shift of the impurity levels. Since the real part of the non-
interacting self-energy is energy-dependent, the coupling with the leads is too.
The inclusion of this term allows us to include the change in the splitting of the
eigenstates of the empty non-interacting Hamiltonian due to the gate voltage in
both, the dynamical correlations and the Hubbard-type Hamiltonian, taking
always the value of the self-energy at the energy of the impurity level, i.e.
<Σ0

M(h−a ). In Fig. 7.4 we show the spectrum of H−M + <Σ0
M(h−a ).

Solving the AIM problem yields the interacting self-energy Σc. This self-energy
is a dynamical correlation add(above, onto) to the non-interacting Green’s
function, Ga = [(ω − µ)Ia − ha − iπ∆a − Σc

a]−1, which gives the spectral
function for the correlated molecular level, a. Note that ha = h−a + <Σ0

a(h−a ).
Including the dynamical correlations into the non-interacting retarded Green’s
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Fig. 7.6: Kondo resonance to different gate voltage.

function,

G = [(ω − µ)IAS −H−AS −Σ∆
L,AS −Σ∆

R,AS − Σc
AS]−1, (7.6)

gives an useful expression for the transmission function in terms of Landauer-
Butikker equation, T = Tr[G†ΓRGΓL]. In the above equation the subindex
AS stands by " Active space". The The differential conductance is thus
obtained by T = Tr[ARΓL], where ΓL is the coupling matrix defined by
ΓL = i[ΣL,AS − Σ†L,AS].
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Chapter 8

Magnetoresistance in Mn-Based
system

8.1 Green’s Function approach to the tunneling
problem.

In STM an extremely sharp conduct-
ing tip (in the best case monoatomic) is
brought into close proximity to a conduct-
ive sample, typically a few Angstroms.
Applying a small bias voltage between
the tip and the surface gives rise to a
nanoamperometric current. To obtain 2D
images, the motion of the tip is controlled
by a piezo-electric material. As the name
implies, this technique is based on the
quantum tunneling effect. For electrons in
the two conductors the gap between them
represents an impenetrable energy barrier
which cannot be overcome according to

classical theory, but since electrons are quantum mechanical objects, electrons
can tunnel through the barrier and a tunneling current between the tip and the
surface can take place. Therefore, the obtained images are related to the tip
and sample density of states, shown as different color scales or monochromatic
hues. In STM, several operational modes can be used to scan the surface. The
two most important modes are the so called constant height mode and con-
stant current mode. Working in constant height mode the tip surface distance
is kept constant and the changes in the current are measured. In contrast, the
constant current mode keeps constant the tunneling current using a feedback
system to adjust the tip-surface distance. In this mode, brighter areas appear
as due to a greater density of states. These brighter areas are also related
to higher elevations of the surface, hence allowing us to obtain a topographic
image. So far we have not mentioned the dependence of the DOS on the spin
degree of freedom.
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Fig. 8.1: Schematic representation of density of states convolution between a tip and a surface. Blue and
yellow arrows represent the relative magnetic orientation of the tip and the surface to each other. In the
a-case(b-case), the magnetic orientation of the tip and the surface is the same(opposite), the elastic electron
tunneling from the tip to the surface is represented by curved arrows. T ↑↑(T ↓↑) means that majority density
of states on tip and surface are parallel(antiparallel) as we show in a-case(b-case). t(s) and t′(s′) are relative
to the alpha and beta spin density of states of the tip(sample).

For magnetic materials the density of states splits up and there is a net imbal-
ance between the occupation of electrons whose spin is oriented in one direction
and the opposite. In the SP-STM techniques the tip is spin polarized and can
thus obtain information on the polarization of the surface or the sample. The
SP-STM is based on the fundamental property of magnetic materials, i.e., the
imbalance in occupation of electrons with different spins. Due to the quantum
mechanical exchange interaction between electrons, the density of states splits
up into minority and majority states, dubbed down and up states or beta and
alpha. The imbalance causes a spin polarization, in contrast to non-magnetic
materials, in which the number of up and down electrons are identical. The
splitting of the density of states has important consequences on the tunneling
current, as Julliere [151] showed in 1975. In fact, Julliere’s model assumes that
the tunneling current is determined solely by the spin polarization obtained
from the spin-split electronic density of states of the magnetic surface at the
Fermi energy.

When electrons tunnel between two magnetic materials, the magnitude of
the current is influenced by the magnetization of the two materials. This
phenomenon is called Tunneling MagnetoResistance effect, (TMR), and ori-
ginates from the fact that the probability for an electron to tunnel through the
barrier depends on the DOS convolution. The tunneling conductance depends
on the relative orientation of the magnetization of the two electrodes. For
parallel orientation, the convolution of alpha-alpha, beta-beta DOS usually is
higher than for antiparallel orientation, where the convolution is now alpha-
beta, beta-alpha. It’s easy to see why that is true in the figure 8.1. Normally
when the system have the same magnetization direction, is easy that the same
polarization densities of states for the tip and the sample are of the same scale.
Nevertheless, there is not any reason to think that this picture is always true
and in this work we will talk about that. The quantum conductance for the
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SP-tunnel current following the Landauer formalism is:

GParallel = GP =
e2

h

[
T ↑↑t→s + T ↑↑t′→s′

]
(8.1)

GAntiParallel = GAP =
e2

h

[
T ↓↑t→s + T ↓↑t′→s′

]
=
e2

h

[
T ↑↑t′→s + T ↑↑t→s′

]
(8.2)

t(s) refers to the alpha spin density of states of the tip(surface), while t’(s’)
refers to beta spin density of states. In the antiparallel case, we have inter-
changed the alpha and beta spin densities for the tip, exactly as we can see in
figure 8.1. The difference between the parallel and antiparallel conductance
can be written as:

Diff(G) =
e2

h
[GP −GAP ] =

e2

h

[
T ↑↑t→s + T ↑↑t′→s′ − T

↓↑
t→s − T

↓↑
t′→s′

]
(8.3)

The P and AP conductances are generally not identical and Diff(G) 6= 0,
leading to a variation of the tunneling current with the magnetic configuration
of the electrodes, and allowing for the emergence of magnetic contrast spec-
troscopy. The tunneling magnetoresistance is defined then as:

TMR(%) =
GP −GAP

GP +GAP

100 (8.4)

The TMR value can be positive or negative. When the value of TMR is
negative we talk about the negative tunneling magnetoresistance. Normally,
the TMR is positive because the convolution of the majority densities of states
(Parallel case) is usually larger than the mix convolution between the majority
and minority density of states (antiparallel case). However, when the density
of states changes abruptly at the Fermi level, the TMR can take negative
values and complicate the interpretation of STS images since in this case the
magnetic contrasts are reversed.

8.2 The electronic structure of the Mn surface.

The manganese grows on Fe (001) surface with tetragonal body center struc-
ture (TBC). In this structure, the magnetic coupling between the manganese
layers is antiferromagnetic. This surface is very reactive owning to 4eV Work
Function.

We have reproduced this surface using two levels of theory. First, using CRYS-
TAL, we have studied a periodic surface formed by seven layers of Manganese
in the TBC structure, and with two layers of ghost atom on top and on the
bottom of the surface. The use of ghost atom is recommended to obtain a
good surface work function.

In this calculation we have chosen a triple Aldrich complete basis set [37]
without pseudofunctional, and the GGA approximation in the functional,
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BPBE functional [152]. We have obtained that the antiferromagnetic coupling
between layers in this system is energetically more favorable than the ferro-
magnetic coupling. In the figure 8.2, we show the Density of state of this
surface, computed using the CRYSTAL code [153].

Fig. 8.2: Density of States of Mn surface.

Taking in account that we want realize the study of this surface in Gaussian,
we have reduced the number of layers with the aim to compare this periodic
surfaces with the finite surface or cluster computed in Gaussian. In this calcu-
lation we also have changed the base of the calculations because in Gaussian
we need to use the smallest possible base.

In Gaussian we have formed a small cluster of 64 atoms. The basis set now is
the CBL, i.e. the total compress CRENBL base, and the CBLE is the same
base extended in the valence orbitals, i.e. s and d orbitals. In figure 8.3 we
have shown the comparative DOS plots for this system:
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Fig. 8.3: In this figure we have shown different density of states plots. The Hamiltonian of yellow surfaces
are computed using the Gaussian code [154] and the Densities of States have obtained using the Green’s
Functions formalism. (see appendix C for details). Blue surfaces and their corresponding densities of states
are computed with CRYSTAL code. With the aim to compare these plots, we have used differents basis set
and different number of layers.
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Chapter 9

Inverse Magnetoresistance in
Magnetic Metals

9.1 Inverse Magnetoresistance in Magnetic Metals
in tunneling regimen.

When a bias voltage is applied between two ferromagnetic metallic materi-
als separated by a thin insulating or metallic barrier, the generated current
depends on the relative orientation of the spin magnetization. When par-
allel, the current IP is generally larger than when anti-parallel (IAP). This
difference lies at the heart of the magnetoresistance phenomenon which soon
after its discovery[155] found its way into applications. Typically defined as
MR = (IP−IAP)/(IP+IAP), the most extended idea is that theMR is positive,
i.e., IP > IAP, which can be naturally understood in terms of the convolution
of the density of states (DOS) of the two magnetic electrodes at the Fermi
energy. The opposite case, the inverse magnetoresistance when IP < IAP is
much less frequent[156–158] and not so easily rationalized.
Spin-polarized scanning tunnelling microscopy (SP-STM) exploits the differ-
ence between IP and IAP to characterize magnetic surfaces. Since the current
changes with the relative spin orientation between the magnetic tip and the
sample, the SP-STM can be used to map regions of different spin orientations
within otherwise identical crystallographic structure areas. For instance, high-
spin metals such as Co, Fe, or even Mn are frequently used in SP-STM studies.
Usually these materials appear as isomorphic growths of magnetic metals on
metal surfaces. Well-known examples are Co growth on Cu(111)[159–161] or
W growth on Cr(001). Another interesting material is Mn(001) which is ob-
tained by depositing Mn on Fe(001). The isomorphic growth onto Fe forms
a layered structure with the typical BCC crystal structure of Fe, showing an
unusual antiferromagnetic coupling between layers. This peculiar magnetic
structure has also been revealed on Cr surfaces by SP-STM. After choosing
a magnetic tip, typically Mn or Fe, the magnetic superstructure appears as
a current contrast between terraces or areas whose sign may change with the
sign of the bias voltage or even the magnitude.
For magnetic characterization purposes of single-element surfaces as the ones
mentioned above, it matters little whether the tunnelling magnetoresistance
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(TMR) is positive or negative. However, when SP-STM addresses surfaces
with different materials such as magnetic molecules on magnetic surfaces or
the same material with different crystallographic environments, it is crucial to
know whether the TMR is expected to be positive or negative. For instance,
if the TMR changes from positive to negative depending on whether the tip
is on the substrate or on the molecule, the wrong conclusion can be drawn
regarding the important aspect of the relative magnetic orientation between
regions. In fact, inverse TMR (I-TMR) have been experimentally reported in
recent years by several groups in quantum confined systems such as molecular
and metallic nanocontacts and magnetic nanoislands.
Although the SP-STM is a powerful tool to study magnetic surfaces, it is not
easy to determine the tip-surface relative magnetic orientation in absence of
magnetic field. Actually, SP-STM in magnetic fields where the magnetoresist-
ive phenomenon itself (i.e., a change in the resistance with applied magnetic
fields) is exploited is not so common. Theoretical techniques based on dens-
ity functional theory (DFT) are thus essential for a full understanding of the
experimental results. Here we model SP-STM in systems based on magnetic
transition metals of the first row of periodic table (from Mn to Ni) concluding,
contrary to commonly accepted wisdom, that the TMR is usually negative for
all of them. This finding is further rationalized in terms or orbital contribu-
tions to the TMR effect.
The spin-resolved tunnelling current is computed using spin-unrestricted first-
principles calculations in the framework of DFT and in combination with the
non-equilibrium Green’s function formalism as implemented in our ANT.G
code [59]. This code interfaces with Gaussian09 [53] which works with localized
orbital basis sets. The bias voltage V is accounted for in a fully self-consistent
manner as explained in Ref. louis. In all cases we have used a general gradi-
ent approximation through the Becke and Perdew-Becke-Ernzerhof exchange-
correlation functional [33, 35] The current is obtained by direct integration of
the energy-dependent and bias-dependent transmission function T (V, ω):

IP(AP)(V ) =
e

h

∫ εF+eV/2

εF−eV/2
TP(AP)(V, ω)dω, (9.1)

where εF is the Fermi energy of the system in equilibrium and P and AP denote
parallel and anti-parallel spin configurations. The transmission is in turn given
by

T = Tr[ΓT(ω, V )G−(ω, V )ΓS(ω, V )G+(ω, V )]. (9.2)

The dependence on energy and bias voltage will be assumed and dropped
from the expressions from now on. In Eq. 9.2 the matrix ΓT(S) is obtained
from the self-energy representing the bulk part of the tip (T) or substrate
(S): Γ = i[Σ† −Σ], and G(∓) = limη→0Ĝ(ω ± iη) is the advanced(retarded)
Green’s function.
We have investigated various tip/surface systems such as Mn/Mn(001),
Fe/Fe(001), Co/Co(111), and Ni/Ni(111) systems, as well as a prototypical
Ni nanocontact to compare with previous results. In all cases the surfaces and
tips are modelled using from two to four layers embedded in a minimal (spd)
tight-binding Bethe lattice model (see insets in 9.1 for details). In all cases
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various sets of parameters for the Bethe lattice have been tested, the main
conclusions being unaffected by the particular choice. We have also considered
a minimal basis set (spd) for all atoms attached to the Bethe lattice. The
others atoms have been defined by a LANL2DZ basis set. All tips have been
modelled within a pyramidal shape [149], following the crystal structure of the
surface.
We will first discuss the Mn/Mn(001) system. This surface is an isomorphic
growth of Mn on an Fe(001). The Mn/Fe(001) surface has a BCC crystal
structure, typical of Fe, with an anti-ferromagnetic coupling between layers.
The BCC structure of Mn is slightly distorted with respect to the Fe one with
a 0.166 nm interlayer distance and a lattice constant of a =, (data obtained
from previous experiments and calculations. We have considered two different
three-layered Mn surfaces of sizes 113 atoms (not shown) and 41 atoms [see
Fig. 9.1(h-j)]. Since the atomic and magnetic structure of the experimental
tips are unknown, we have considered two different models for the tips, both
ferromagnetic with a BCC(001) crystal growth. The first one is built with a
Mn bulk lattice constant of a = and used for the larger surface. The other tips
[see insets in Figs. 9.1 (h-j)] are built with an Fe lattice constant (a =) as if
Mn is just wetting an Fe tip and go along with the smaller surfaces. The latter
choice is inspired in recent experiments. The first model is thus less compacted
than the other ones.
In Figs. 9.1 (a-b) we show the P and AP current for the first model of the
Mn/Mn(001) system. We have computed a range of distances from a near
contact regimen (0.5 nm) to a pure tunnelling regime (0.9 nm), but we only
show the two extreme cases. Notice that the distances are measured from
the center of the apex tip atom to the center of the central surface atom. As
we can observe, the Mn/Mn(001) system has highly asymmetric conductance
with bias polarity. Its current-voltage characteristics presents a typical diode
behaviour. It also presents a negative differential resistance at positive bias.
The diode-like behaviour has been experimentally reported with an Fe tip.
Most importantly, for negative bias we obtain the expected positive TMR,
but, for positive bias we observe that IAP > IP, i. e., we obtain an I-TMR. In
the insets one can see the actual values which, as regards the I-TMR are fairly
independent of the distance while the TMR goes to zero for negative bias as
the distance increases. The inversion of the TMR with the sign of the bias
voltage has been experimentally reported before in a similar Co-based system.
In Figs. 9.1(c-d) we show the P and AP current for the other models of the
Mn/Mn(001) system. In all these cases, the tip-surface distance is kept at 0.9
nm, and we have studied the influence of the tip shape from atomically sharp
to plane tips.
As we can see in the I-V graphs, the TMR behavior is the same, i.e. negative
at positive bias and positive in the other bias direction. We can also observe
that the absolute value of the TMR decreases as compared with the previous
model of less compacted tip and, in general, with the planarity of the tips.
The diode-like behavior seems to be characteristic of sharp tips since it tends
to disappear for the planar ones [see Fig. 9.1(d)]. The negative differential
resistance has also disappeared from the bias window considered.
To gain insight into the shape of the I-V curves and into the origin of the
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Fig. 9.1: All distance in this picture have been measured consider the atoms likes dots. (a) Schematic
picture of the computed Mn(001) surface (TIP-A). (b,c,d) Spin polarized current and (e,f) TMR of the
system schematized in insert (a). (g-j) Spin Polarized current with different B-type tips. (g) The current of
the system drew in insert (h) at low bias.

I-TMR, we propose to resolve the transmission function given in Eq 9.2 in
atomic orbitals. It is well-known that one cannot obtain useful information
from the individual diagonal elements of the transmission matrix. Reducing
the Green’s function of the whole system by projecting it onto a few tip
atoms avoids this problem. Following the projector theory for non-orthogonal
basis sets developed by us in a previous work[150], we can obtain the reduced
transmission function. This is done by performing two consecutive projections.
The first one is a projection onto all tip atoms:

P̂tipĜP̂†tip = P̂tip

[
ωÎ− Ĥ− Σ̂T − Σ̂S

]−1

P̂†tip.

where Ĥ is the Hamiltonian operator of the atomically defined full system
and Î is the identity operator with a representation in the non-orthogonal
basis set given by the overlap matrix S. After performing the projection
one can obtain the self-energy matrix that replaces the whole substrate (not
only the bulk part S represented by the Bethe lattice) by reversal-engineering:
Σtip

S = ωStip −Htip − Σtip
T − [G̃tip]−1, where Σtip

T =: P̂†tipΣ̂TP̂tip (the symbol
=: stands for “is the representation of”) and Htip is the tip Hamiltonian
represented in the non-orthogonal basis set. The tilde in G̃ means that the
Green’s function is represented in the dual basis set, G̃ = S−1GS−1. The
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second projection is performed onto the apex tip atoms (ata):

P̂ataĜtip : P̂†ata = P̂ata

[
ωÎtip − Ĥtip − Σ̂tip

T − Σ̂tip
S

]−1

P̂†ata,

from which the final expression of the projected self-energies is obtained:
Σata

T = ωSata −Hata −Σata
S − [G̃ata]−1 and Σata

S =: P̂†ataΣ̂
tip
S P̂ata. The double

projection just described becomes essential in the contact regime, not so much
in the tunnelling regime. In the latter case a single-shot projection can also
be done.
Now we propose to rewrite Eq. 9.2 as T = Tr[ÃΓS]. Here Ã is the spectral
function defined by Ã = G̃+ΓTG̃− [162]. Application of the projector theory
explained above results in a transmission function which can be essentially
reduced to information at the apex tip atoms and allows us to study the
orbital contribution to the current directly from the diagonal elements of the
transmission function:

T = Tr[ÃataΓ
ata
S ] = 2π

∑
i=s,p,d

Ãi∆i +
∑
i 6=j

ÃijΓji. (9.3)

Here we have used the standard definition of hybridization function as Γii =
2π∆ii.
In the quantum transport context the hybridization function gives direct
information of how open or closed atomic orbitals are for conduction; in this
case the apex orbitals. The second term in the above equation represents the
mixing of the orbitals due to the coupling and is usually smaller than the first
term. The transmission function, to a very good extent, can always be read
from the first term of the above equation.
Now the different orbital contributions to the current can be separated as
well as the role played by the density of states (DOS) and the hybridization
function. We plotto observed in the systems plotted in figure 9.1, we have
represented in Fig. 9.2 the transmission (9.2.a), the atomic orbital resolved
transmission (9.2.b), the LDOS (9.2.c1) and the ∆ function (9.2.c2) for the
system drew in the figure 9.1(h,g) at −0.4/0.4V.
In fig. 9.2(a) we can see that the AP current is higher than the P at positive
bias, but not a negative bias in where the current is essentially not polar-
ized. In fig 9.2(b) we can observed that the transmission is essentially due
to a s-orbital. At positive bias we can observe a small d-orbital contribution
to the transmission only in one spin orientation. This contribution is due to
the compaction of the tip and it has a dz2 character. This unexpected contri-
bution of the d-orbital to the transmission is responsible for the inversion of
the TMR, in this case from negative to positive, at 0.6V in the system with a
high compacted tip (TIP-B) represented in fig. 9.2(d). We can assume that
high compacted tips favor a strong hybridization between the s and dz2 or-
bital which induces a positive TMR when the hybridization function is strong
enough.
In general, the hybridization function of s-orbital in metallic systems out of
the contact regimen is always one or more orders of magnitude higher than
the rest of orbitals. As we can see in fig. 9.2(c) the LDOS is not enough to
explain the inversion of the TMR or the diode effect. Notice that the LDOS of
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Fig. 9.2: (a-e) Analysis of the system drew in fig. 9.1(h). (a) Transmission function in the P (a1) and AP
(a2) cases. In black we have plotted the transmission from the Eq. 9.2. In Red and blue we have used the
Eq. 9.3. (b) Transmission function from the first term of the Eq. 9.3. Up (b1) and down (b2) contribution.
(c) LDOS (c1) and ∆ (c2). In green and red at 0.4V and in black at -0.4V. (d) Transmission from Eq. 9.3.
System drew in Fig. 9.1(i) at 0.6V. The insert show a zoom at this bias. (e) LDOS and ∆. System drew in
Fig. 9.1(a) at 0.9 nm.

s-orbital is higher at negative bias, where the current is negligible. In addition,
the LDOS is essentially symmetric under an inversion of polarization, which
not allows a magnetoresistive effect. Though the LDOS is not asymmetric
under a change of polarization, the ∆ yes it is. Hence the magnetoresistance is
due to a strong asymmetric hybridization of s-orbital with the up/down spin
channel in the surface. In the present case, this hybridization is independent
of the spin polarization of the tip and the inversion of TMR is thus controlled
by the difference in the available s-LDOS in the down channel.
Finally we can explain the tunnel effect and the NDC observed in fig. 9.1(b-d)
for low compacted tips. In figure 9.2(e) we have represented the LDOS and
the hybridization function of this system projected onto the orbital channel
responsible for the transmission function. In this case the transmission is only
controlled by the s atomic orbital channel. Concretely the transmission is
due to the s-down spin channel because the hybridization function in the s-up
channel is very low. In addition we can observe that the tunnel diode effect
observed in theses systems is due to the absence of LDOS at negative bias.
In contrast the NDC is due to the decrease in the hybridization function at
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high voltage and hence, the NDC is due to a resonant tunneling. The resonant
tunneling is due to localized tip states, since small displacements of the apex
atom tip can generate a second tunnel barrier and the concomitant resonant
tunneling effect.
We have studied this effect in other transition metals.
Near the contact regimen the antiparallel current is higher than the parallel
current in all studied cases. As we can see in the graphs when we move to
the tunneling regimen, the difference between the parallel and the antiparallel
current is reduced. The limit of this reduction is the Co case in which the
TMR is return normal.
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Chapter 10

MnPc on Mn surface.

10.1 Manganese Phthalocyanine on Manganese
little cluster.

In this section we have proposed a simplified model for the surface formed
by four or five manganese atoms. To study the magnetic interaction in this
model, we have proposed two different cases showed in figure 10.1:

Fig. 10.1: Simple Model representation. MnPc on Mn little cluster

In the figure 10.1, the CH45 model represents the case where the MnPc is
adsorbed on a hollow position on the Mn surface. This surface is represented
in a simplified form by four manganese atoms, and should be emphasized that
in this simplified model the four nitrogen atoms, painted in blue in the figure
10.1, lie on four the tetragonal body center (TBC) manganese surface. The
A45 model is adsorbed on top position on the simplified five manganese atoms
surface, with the four nitrogen atoms lie on a bridge formed between two man-
ganese atoms of the surface. Of course, four or five atoms is not a surface, but,
we assume with this model that the magnetic coupling is not dependent the
surface properties, but rather only dependent the kind of exchange.

To analyze the electronic structure of these two simple models, we have repres-
ented the spin of the MnPc and the energy of the system as a function of the
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multiplicity. See figure 10.2. The results in this case are the same that we have
obtained by the dimer model. In the case where the MnPc is on top position
on the little cluster formed by five manganese atoms, the magnetic interactions
leaves an antiferromagnetic coupling, (A45 model), with a coupling constants
of: J = 0.0745eV . The positive sign of the constant highlights the fact that
the coupling is antiferromagnetic.

Fig. 10.2: In this figure in red we have shown the variation of the energy with the multiplicity of the system
(M = 2S + 1). Black lines show the evolution of MnPc spin and dashed lines show the spin of surface
manganese atoms.

The figure 10.2 shows a clear image of the antiferromagnetic - ferromagnetic
transition. The red line represents the energy of the system as a function of
the multiplicity. In the CH45 case we can see that the magnetic coupling
in is ferromagnetic. The continuous black line shows the spin of the central
manganese atom of the Phthalocyanine. Dashed line show the spin distribution
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of the manganese atoms of the simplified surface, and we can observed that the
magnetic moment of the surface remains unchanged basically. The coupling
constant in the CH45 case is: J = −0.1173eV , the sign is negative because
the coupling is ferromagnetic.

10.2 MnPc on Mn. The Adsorption Geometry

With the aim to understand the magnetic contrast images in the manganese
phthalocyanine adsorbed on a manganese surface, we have carried out first-
principles studies on the structural and electronic properties of this system. We
have used a small monolayer cluster formed by sixty four atom of manganese
with a manganese phthalocyanine molecule adsorbed on it. Our calculations
were performed using density functional theory with generalized gradient ap-
proximation (GGA) implemented in Gaussian code [154]. The Becke exchange
gradient correction and the Perdew-Burke-Ernzerhof correlation gradient cor-
rection were used, i.e. the so called BPBE functional [152]. The basis set
consists of the double set calls LANL2DZ for the molecule and CRENBS for
the surface [37]. The limits of this functional and this set of basis have been
demonstrated in a previous section for the isolated systems. To study the ad-
sorption geometry of the molecule, we have proposed several initial adsorption
configurations including hollow (CH type), top (A type) and Bridge or Line
(L type) sites. We can see these adsorption geometries in figure 10.3. In all
cases we have studied two different rotation of the molecule, 45 and 0 degrees,
about the principal axis of the surface.

Fig. 10.3: Different adsorption geometries of the MnPc on Mn surface. The A letter A means that the
molecule is adsorbed on top position. CH refers to hollow position adsorption site, and L refers to bridge
position adsorption site. In all cases we have shown two different rotation of the molecule about the principal
axis of the surface: 45 and 0 degrees. The red square shows the adsorption position of minimum energy.
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Differences between these proposed structures lie in the position of the cent-
ral manganese atom of the molecule in relationship with manganese atoms
of the surface and the interaction of the four nitrogen atoms of the molecule
with these surface atoms. In the hollow site the central manganese atom of
the molecule lies on a hollow position formed by four manganese atoms of
the surface. In addition, when the molecule is rotated forty five degrees re-
garding the principal axis of the surface, four nitrogens of the molecules lie
on top of manganese atoms of the surface. The direct interaction between
nitrogen atoms and manganese surface atoms is relevant because the orbital
overlapping results in short-ranged interaction due the localization of atomic
wave function where the magnetic superexchange mechanism can be invoked.
Top-type adsorption sites leave the central manganese atom of the molecule in
direct contact with a surface manganese atom. Bridge-type adsorption sites
deposit the manganese atom of the molecule between two manganese atoms of
the surface contained on a line.

In each possible adsorption sites is necessary to study all possible spin config-
urations for the total system, the so called multiplicity (M),M = 2S+1 as well
as the equilibrium distance for each one of these spin values. Once done, we
have obtained that the adsorption site of minimum energy is the hollow type
site where the molecule is rotated forty four degrees regarding the principal
axis of the surface.

The equilibrium distance between the molecule and the surface is 2.3Å. In this
point, the magnetic coupling between the molecule and the surface is antifer-
romagnetic. The exchange mechanism is expected to be via superexchange
through four atoms of nitrogen. So, this ferromagnetic coupling is compatible
with Kanamori-Goodenough rules, and it is in agreement with the previous
results obtained for most simple models. It was observed that after adsorption
the charge transfer is very high, several electrons. With the aim to improve
the charge transfer we have studied other basis set. Concretely, we have stud-
ied our system using the so called CRENBL basis set with compressed in two
different levels. First, we have use the CRENBL compressed totally, the so
called CBL basis set. The end basis set that we have used is the compressed
CRENBL basis set, where valence orbitals have been extended. This basis set
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is what we call CBLE basis set. The charge transfer is of eight electrons in the
CRENBS basis set, of five electrons in the CBL basis set and of three electrons
in the CBLE basis set. The direction of the charge transfer is in all cases from
the surface to the molecule. In all cases we have obtained that the organic
part of the molecule (the rest of the molecule that does not contain hydrogen
or metallic atoms), is spin polarized due to the high charge in the molecule.
Also, we have obtained that the magnetic moment of the manganese atom of
the molecules remains unchanged despite the charge transfer. The change in
the number of transferred electrons, that we have obtained when we change
the basis set, is due to the change in the metal work function that take place,
when we have changed the basis set. The work function of the Mn surface is
around −1.5eV for CRENBS basis set, −2.2eV for CBL basis set and −3.2eV
for CBLE basis set. This last value is near to the convergence value of the
work function of this surface. Also is near to the experimental work function,
(around −4.0eV ).

In summary, in all cases that we have studied the adsorption distance is around
2.4Å and the magnetic coupling always is ferromagnetic. This result is in
agreement with simple models exposed previously in the section 3.4.3.
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Conclusion

In the first part of this thesis, we could say in summary that we have studied
the correlated electronic structure of a MnPc adsorbed on the Pb(111) surface
and on the Bi(110), as the CO-MnPc/Bi(110), fully taking into account the
strong electronic correlations originating from the Mn 3d-shell. Our results
show that the adsorption does not essentially modify the total spin S = 3/2 of
the molecule, being distributed among four of the five 3d-orbitals, in the case
of the MnPc on Pb(111), and in contrast with the MnPc on Bi(110), where
the spin state is reduced to S = 1.
We further find that the experimentally observed asymmetric Kondo reson-
ance in the MnPc on Pb(111) system [25, 99] is due to an underscreened
Kondo effect where a spin 1/2 in the Mn 3d-shell remains unscreened. The
Kondo resonance in the tunnel spectra actually stems from only one of the
Kondo-screened orbitals. Its peculiar lineshape arises from the modulation of
the hybridization function due to a strong coupling to the organic ligand, not
being necessary to invoke the superposition of two Kondo peaks with different
Kondo temperatures as done in Ref. [25].
In the case of the MnPc on Bi(110) we have also found an underscreened Kondo
effect due to the unhybridizated dxy orbital. And in the case of the CO-MnPc
we have attempt to defense a mix-valenced regimen due to the charge fluctu-
ations.

We have also presented a fully first-principles approach to the Kondo problem
in purely carbon-based molecules where the screened spin may be an unpaired
π electron delocalized over many atoms such as in the case of C60. Our start-
ing point is a projection of the full Kohn-Sham Hamiltonian onto the molecule
followed by a selection of the active space, e.g., a selection of the relevant
molecular orbitals. A constrained density functional calculation has allowed
us to avoid the double-counting correction problem. Once we have obtained
the appropriate single-particle levels along with the hybridization function, the
spectral density and transmission function was computed through a DMFT im-
purity solvent. We have applied this technique to a C60 molecule contacted by
gold electrodes. By gating the system we study the zero-bias features arising in
the mixed-valence regimen, the spin 1/2 Kondo, and the underscreened S = 1
Kondo regimes, where we have obtained the single-triplet transition, in agree-
ment with the experiments.

In the last part of this thesis we have demonstrated that the TMR is usually
negative in all transition metals from Mn to Ni. The high TMR observed in
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these systems is due to a spin polarization symmetry broken in the hybridiza-
tion function. The sign of TMR is controlled by the polarization of s-orbital,
changing with the sigh of the bias voltage. Out of the contact regimen, the
sporadic presence of d-orbitals strongly hybridized with the surface can induce
a positive TMR following the Julliere’s assumption.
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Appendix A: More about Density
Functional Theory

The Kohn-Sham equations

One year later, Kohn and Sham, making use of the density functional de-
veloped by Hohenberg and Kohn, proposed a self consistent method to solve
the Schrödinger equation, based on the Hartree’s method, but including the
exchange and correlation effects [17]. The fundamental ansatz of the Hartree’s
method is that any many-electron wave function can be written as a product
of a single electron wave function:

Ψ(~r1, ..., ~rN) = φ(~r1)...φ(~rN) (1)

The goal of Kohn-Sham approximation was to introduce an auxiliary system
of non-interacting electrons, with the same density of the original one, and
described by orthonormal wavefuncitons 〈φi|ψj〉 = δij.

n(~r) =
N∑
i=1

|φi(~r)|2 (2)

The universal density-energy functional, G[n], proposed by Hohenberg and
Kohn now is written as:

F [n] =
1

2

∫
n(~r)n(~r ′)

|~r − ~r ′|
d~rd~r ′ +G[n]

G[n] = T [n] + EXC [n] (3)

where T [n] is the kinetic energy of the auxiliary system of non-interacting elec-
trons. EXC [n] is the exchange-correlation energy functional accounting for all
the many-body effects. If the condition that the electronic density distribu-
tion, n(~r), varys sufficiently slowly,

∫
δn(~r)d~r = 0, is established, then:

EXC [n] =

∫
n(~r) ∈XC [n(~r)]d~r (4)

Here ∈XC , is the exchange and correlation energy per electron of a uniform
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electron gas of density n. The minimization of F [n] can now be done and
one-electron Schrödinger equations can be approximated by:{

−1

2
∇2 + vext(~r) + vint + µXC [n(~r)]

}
φi =∈i φi(~r) = ĤKSφi(~r) (5)

Where µXC [n(~r)] is the Lagrange parameter derived in the Hohenberg-Kohn
theory, whose physical meaning is the chemical potential, but now, this poten-
tial is expressed in terms of the exchange and correlation effects.

µXC [n(~r)] =
d {n ∈XC [n(~r)]}

dn
(6)

A self-consistently solution of the one-electron Schrödinger equations, leads
the ground state total energy of the system given by:

E =
N∑
i=1

∈i − Vee +

∫
n(~r) {∈XC [n(~r)]− µXC [n(~r)]} d~r (7)

Where ∈i is a Kohn-Sham eigenvalue, which only has physical meaning when
∈i=∈N , whereas N is the total number of electrons. In other words, the ei-
genvalue ∈N is the energy of the highest occupied eigenstate and determines
the location of the Fermi surface.[163]
Self-Consistent Kohn-Sham equations can be reduced to Self-consistent
Hartree equations neglects the many body exchange-correlations effects; Nev-
ertheless, kohn-Sham equations can not be resolved exactly, as can be those of
Hartree, because the exact exchange-correlations potential is unknown. This
fact fixes the importance of choosing the functional, since the practical useful-
ness of density functional theory depends entirely on whether approximations
for the functional EXC [n] could be found, which are at the same time suffi-
ciently simple and sufficiently accurate.

The Hohenberg-Kohn Theorem

In 1964, based on the Thomas-Fermi theory, Hohenberg and Kohn introduced
a universal functional F [n(~r)] where the density was the basic variable. They
developed an exact formal variational principle for the ground state energy of
an interacting electron gas in an external potential [30]. The goal of this theory
was to show that given an external potential, vext(~r), not only the Hamiltonian
is fixed, but also this potential, vext(~r) is a unique functional of the electronic
density, n(~r).

Ĥ = T̂ + V̂ee + V̂ext =
1

2

∫
∇ψ∗(~r)∇ψ(~r)d~r +

1

2

∫
ψ∗(~r)ψ∗(~r ′)ψ(~r ′)ψ(~r)

|~r − ~r ′|
d~rd~r ′+

+

∫
vext(~r)ψ

∗(~r)ψ(~r)d~r (8)
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n(~r) = 〈Ψ |ψ∗(~r)ψ(~r)|Ψ〉 (9)

Since Ψ is the ground state for the electronic density n(~r), if we suppose
now that another potential v′ext(~r) has the same n(~r) electronic density in the
ground state Ψ′, and assume that Ψ and Ψ′ satisfy different Schrödinger equa-
tions: ĤΨ = EΨ and Ĥ ′Ψ′ = E ′Ψ′; It easy to show that whereas E and E’
are the ground states energies, the initial assumption is inconsistent.

E ′ =
〈

Ψ′
∣∣∣Ĥ ′∣∣∣Ψ′〉 < 〈Ψ

∣∣∣Ĥ ′∣∣∣Ψ〉 = E − f
(
vext − v

′

ext

)
(10)

E =
〈

Ψ
∣∣∣Ĥ∣∣∣Ψ〉 < 〈Ψ′

∣∣∣Ĥ∣∣∣Ψ′〉 = E ′ − f
(
v
′

ext − vext
)

(11)

f
(
v
′

ext − vext
)

= −f
(
vext − v

′

ext

)
(12)

E+E’<EΨ′ + E
′

Ψ = E ′ − f
(
v
′

ext − vext
)

+ E − f
(
vext − v

′

ext

)
=

= E ′ + E − f
(
v
′

ext − vext
)

+ f
(
v
′

ext − vext
)

= E’+E (13)

Therefore, vext(~r) is a unique functional of n(~r), and also, Ψ, the ground state,
is a functional of n(~r). Taking into account this theorem, Hohenberg and Kohn
proposed a universal energy functional E[n], i.e. independent of the number
of particles and the external potential, vext(~r):

E[n] =

∫
vext(~r)n(~r)d~r + F [n] (14)

F [n] also is a universal density functional defined in terms of classical Coulomb
energy (the electron-electron interaction similar to that used in the Thomas
Fermi theory). G[n] involves the kinetic energy term, and as we have com-
mented in the main text, the exact definition of this term is unknown. Then
Hohenberg and Kohn proposed that G[n] was a universal energy-density func-
tional defined in terms of the one-particle density matrix, n(~r) = n1(~r, ~r ′), and
where the correlation and exchange energies have been taken into account.

F [n] =
1

2

∫
n(~r)n(~r ′)

|~r − ~r ′|
d~rd~r ′ +G[n] (15)

G[n] =
1

2

∫
∇~r∇~r ′n1(~r, ~r)d~r +

1

2

∫
C2(~r, ~r ′)

|~r − ~r ′|
d~rd~r ′ (16)

C2(~r, ~r ′) = n2(~r, ~r ′;~r, ~r ′)− n1(~r, ~r)n1(~r ′, ~r ′) (17)
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Where n2(~r, ~r ′;~r, ~r ′) is the two-particle density matrix, and C2(~r, ~r ′) is the
two-particle correlation energy. To minimize the functional is necessary to
keep constant the number of electrons. The variational principle proposed by
Hohenberg and Kohn reduces to the problem of, first, finding the minimum
among 3N-dimensional many-body wave function with a given density,

E = minΨ

〈
Ψ(~r1...~rN)

∣∣∣Ĥ∣∣∣Ψ(~r1...~rN)
〉

(18)

and then finding the minimum of a 3-dimensional density function: E =
minn(~r)E[n(~r)]. Hohenberg and Kohn also demonstrated that if we neglect
the exchange and correlations effects, we can approximate the kinetic energy
for a free electron gas as: G[n] = 3

10
[kF (n)]2 n, where KF is the Fermi mo-

mentum given by KF = (3π2n)
1/3. Applying the calculus of variations, they

obtained the following Thomas-Fermi equation:

n(~r) =
1

3π2
{2 [µ− vext(~r)− vint(~r)]}3/2 (19)

∇2vint(~r) = −4πn(~r) (20)

∇2vint(~r) = −27/2

3π
[µ− vext(~r)− vint(~r)]3/2 (21)
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