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Post-processing approaches for improving
people detection performance

Álvaro Garcı́a-Martı́n and José M. Martı́nez

F

Abstract—Nowadays, people detection in video surveillance environ-
ments is a task that has been generating great interest. There are many
approaches trying to solve the problem either in controlled scenarios
or in very specific surveillance applications. We address one of the
main problems of people detection in video sequences: every people
detector from the state of the art must maintain a balance between the
number of false detections and the number of missing pedestrians. This
compromise limits the global detection results. In order to reduce or relax
this limitation and improve the detection results, we evaluate two differ-
ent post-processing subtasks. Firstly, we propose the use of people-
background segmentation as a filtering stage in people detection. Then,
we evaluate the combination of different detection approaches in order
to add robustness to the detection and therefore improve the detection
results. And, finally, we evaluate the successive application of both
post-processing approaches. Experiments have been performed on two
extensive datasets and using different people detectors from the state
of the art: the results show the benefits achieved using the proposed
post-processing techniques.

Index Terms—People detection, people-background segmentation,
segmentation confidence map, segmentation mask, decision-level fu-
sion, fusion methods.

1 INTRODUCTION
Within the computer vision field, particularly in the
research area of digital image and video processing,
there exists a rich variety of algorithms for segmentation,
object detection, event recognition, etc, which are being
used in security systems. People detection is one of the
most challenging problems in this field. The complexity
of the people detection problem is mainly based on the
difficulty of modeling persons because of their huge
variability in physical appearances, articulated body
parts, poses, movements, points of view and interactions
among different people and objects. This complexity is
even higher in real world scenarios such as airports,
malls, etc, which often include multiple persons, mul-
tiple occlusions and background variability.

The main contribution presented in this paper is
the application of two subtasks of people detection
post-processing. The first one is based on the people-
background segmentation. People-background segmen-
tation gives us information about where there are not
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people in the scene. We can use this information to elimi-
nate or, at least, reduce the number of false positives. The
second one is based on the combination at decision-level
of multiple people detectors from the state of the art in
order to take advantage of their independent strengths
and at the same time reduce their drawbacks and lim-
itations. And, finally, we also evaluate the successive
application of both post-processing approaches in order
to combine both improvements.

The remainder of this paper is structured as follows:
Section 2 describes the related state of the art; Sections
3 and 4 describe the two different proposed approaches;
Section 5 discusses the experimental results. Finally,
Section 6 summarizes the main conclusions and future
work.

2 STATE OF THE ART

As discussed previously, this article is focused on people
detection post-processing approaches. For this reason,
the following sections include a brief state of the art
of people detection and selected post-processing ap-
proaches.

2.1 People detection

Every people detection approach consists mostly of two
phases: firstly, the design and training (if training is
required) of a person model based on characteristic
parameters such as motion, dimensions, silhouette, etc.
Secondly, the adjustment of this person model to the
candidates to be person in the scene. All candidates
that adjust to the model will be detected or classified
as person, whilst all the others will not be detected or
classified as person. Therefore, these two main critical
tasks of people detection (object detection and person
model) determine the global detection performance.

There are two main conventional object detection ap-
proaches: one based on some kind of segmentation of the
scene in foreground (objects) and background [1]–[13]
and one based on an exhaustive scanning approach [14]–
[42]. There are also some approaches that try to combine
both approaches together [43], [44]. In any case, the result
of this stage is the location and dimension (bounding
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box or blob) of the different objects candidates to be a
person.

In relation to the chosen person model, there are two
main discriminative information sources to characterize
the people model: appearance and motion. Nowadays
in the existing literature, most methods are only based
on appearance information or they add robustness to
the detection with motion information through tracking
algorithms. However, human appearance varies due to
environmental factors such as light conditions, clothing,
contrast, etc, apart from the huge intrinsic people vari-
ability such as different heights, widths, poses, etc. For
these reasons, there are some approaches which try to
avoid these factors using only motion information [1],
[16].

There are many approaches that use appearance in-
formation to define the person model. This is because
appearance is more discriminant than motion. We clas-
sified the appearance models according to simplified
human models or complex models. There are simple
person models that define the person as a region or
shape, i.e., holistic models [2]–[10], [14], [15], [17]–[20],
[23]–[38], [42] and more complex models that define the
person as combination of multiple regions or shapes,
i.e., part-based models [11]–[13], [21], [22], [25], [39]–
[41], [43], [44]. Although the vast majority of approaches
are mainly based on appearance information, there are
some approaches that combine appearance and motion
information in order to improve the detection results.
Some authors combine appearance and motion expand-
ing previous detectors based on appearance to more than
one frame [14], [17], [19]; in this way they are able to
easily introduce motion information in the person model
and add robustness to the detector.

Lately, the most popular approaches (detection-by-
tracking approaches) are those that combine detection
and tracking in order to improve the detection results [2],
[15], [18], [20]–[30]. In this case, the motion information
is not implicitly part of the person model but it is still
useful in order to filter or extrapolate detections over
time. On the other hand, [28], [30] not only combine
detection and tracking information but also propose the
combination of two independent and implicit person
models: one model based on appearance and another
model based on motion.

2.2 People detection post-processing

Traditionally, the typical additional preprocessing sub-
tasks in people detection are not oriented to one spe-
cific processing task, i.e., they are oriented to en-
hance/adapt/reduce the video information before being
analyzed. For example: camera motion compensation,
camera calibration, noise removal, etc. In turn, the typical
additional post-processing subtasks are applied over the
detection outcome. They are oriented to filter or verify
the final detections using any additional information
source. The most typical ones are those based on tracking

information [25], [30], [45] which study the detections
evolution over time. Other approaches use some kind of
scene/contextual restriction (spatial, people size, sym-
metry, etc) or motion restrictions. In relation to scene
restrictions, Geronimo et al. [46] describes different pre-
processing subtasks with a clear focus on driver assis-
tance systems such as exposure time, gain adjustments
and camera calibration. On the other side, Eiselein et al.
[47] proposes the use of motion restrictions combining
people detection and optical flow in order to reduce the
number of missing detections in a tracking system.

Any fusion technique attempts to combine the infor-
mation from all available sources into a unified repre-
sentation. This provides better information for human
or machine perception as compared to any of the input
sources. One of the data fusion models most commonly
used in image processing applications is the three-level
fusion model. It is based on the levels at which informa-
tion is represented [48]. This model classifies data fusion
into three levels: data or pixel-level fusion, feature fusion
and decision fusion. At the lowest level, the fused pixel
is derived from a set of pixels from the multiple input
sources. At the intermediate level, the features for each
object are independently extracted in each information
source; these features crate a common feature space for
object classification. Finally, at the highest level, decision-
level fusion corresponds to combining decisions from
several experts.

In the case of people detection, every people detector
must build up some form of dense confidence map [26]
(explicitly or implicitly), which consists of the contin-
uous detection confidence score for each location and
scale. Felzenszwalb et al. [41] combines or fuses the
confidence map of several independent body parts at
pixel-level in order to obtain a final confidence map.
There are some approaches that combine or fuse more
than one feature at feature-level in order to improve the
detection results: [14], [17] combine appearance and mo-
tion expanding previous features based on appearance to
more than one frame, whilst Gan and Cheng [49] uses
the feature HOG-LBP (combination of the HOG [33] and
LBP [50] features). Finally, every people detector must
compare the previously defined/trained person model
with the input image and make a final decision accord-
ing to a similarity criterion. There are some approaches
that combine or fuse multiple detectors at decision-level
using multi body part detectors [39] or detectors [28].

In this work, we evaluate two new subtasks of people
detection post-processing and their successive applica-
tion in typical video surveillance environments (see Fig-
ure 1). The first one is based on the people-background
segmentation [51]. The second one is the combination
or fusion of up to six independent, appearance based
people detectors at decision-level and their combina-
tion with a motion based people detector. In any case,
the proposed post-processing subtasks are based only
on some kind of people detection information. There-
fore, they can be considered as any other additional
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Figure 1. Block diagram of the proposed people detection
post-processing configurations.

post-processing step in any people detection system,
i.e., they do not interfere or are independent of any
other additional improvement using tracking informa-
tion, scene/contextual restrictions, etc.

3 PEOPLE DETECTION USING PEOPLE-
BACKGROUND SEGMENTATION CONFIDENCE

As already mentioned, every people detector from the
state of the art must keep a balance between Precision
and Recall rates. For this reason, the global detection
performance is mainly limited by the number of possible
false detections. Our main idea consists in reducing or
relaxing this limitation using people-background seg-
mentation. The proposed filtering approach has been
implemented as a post-processing, but it can be used
as either a preprocessing or post-processing stage.

3.1 People-background segmentation

People-background segmentation [51] is a two-class seg-
mentation ensuring that no people or body parts are
appearing in the background class. This type of seg-
mentation is useful not only as a people detection pre-
processing or post-processing step, but also for other
video analysis processes such as tracking and people
density estimation. While the focus of person detection
approaches are on obtaining a high detection perfor-
mance and on reducing false positive detections. People-
background segmentation aims at determining the areas
without people in the scene by giving a higher penalty to
pixels incorrectly classified as background. This results
in a segmentation mask with a bias on the background
as opposed to a segmentation with a bias on people.

The chosen people-background segmentation method
[51] uses the DTDP detector [41] in order to detect
different body parts and extends this representation by
appropriately grouping them. Then, they fuse detection
confidence maps according to regions that are expected
to be covered by the body parts. The corresponding
background segmentation mask is finally generated after
binarization and post-processing. Therefore, although
the people-background segmentation [51] is based on
[41], the objective and result are fairly different from the
traditional people detection approaches.

(a) (b)

(c) (d)

Figure 2. People detection system example: (a) people
detections; (b) people detections over the DEBP seg-
mentation confidence map; (c) people detections over
the DEBP-P segmentation mask; and (d) final people
detections.

3.2 People detection post-processing based on
people-background segmentation

In this section, we describe the people detection sys-
tem that includes a post-processing or filtering stage
using the people-background segmentation (see Figure
2). Firstly, people detections could be obtained using
any people detector from the state of the art and the
people-background segmentation is obtained with the
approach proposed in [51] (see previous section 3.1).
Then, both information sources are combined with the
aim of eliminating or reducing the number of false detec-
tions while keeping, as much as possible, the number of
positive detections. The combination of human detection
and people-background segmentation is made with the
detections and the people-background confidence map
(Dependent Extended Body Parts, DEBP, confidence map
[51]) or the binarized and post-processed segmentation
mask (Dependent Extended Body Parts Post-processed,
DEBP-P, segmentation mask [51]).

Our main objective is to demonstrate the utility of
combining people-background segmentation instead of
traditional foreground-background segmentation tech-
niques. The evaluation with other combination tech-
niques or strategies is out of the scope of this paper,
but is part of the extensions of this work in the future.

Figure 2 shows one example where two false positives
are eliminated using the people-background segmenta-
tion map (black blobs in Figure 2-b) and the people-
background segmentation mask (red blobs in Figure 2-c).

In general, any people detection outcome always con-
sists of a list of N detections in each frame t. Each
detection n (n = 1, ..., N ) is represented by its position
(x, y) and dimensions (w, h), i.e., bounding box (or blob)
Bn(x, y, w, h) and a People-detection Confidence PCn



4

SCC = 0.87 SCC = 0.50 SCM = 0.93 SCM = 0.38
(a) (b) (c) (d)

Figure 3. Examples of segmentation confidence SCC/M

associated with a positive and a false detection: (a) and
(b) using the DEBP confidence map SCC ; (c) and (d)
using the DEBP-P segmentation mask SCM .

(0 ≤ PCn ≤ 1). In order to process every detection,
it has been defined a People Segmentation Confidence
associated with every detection SCn (0 ≤ SCn ≤ 1).
This associated confidence is the averaged segmentation
confidence over the corresponding blob. In the case of
the DEBP confidence map C(x, y), it is the averaged of
the confidence values SCC

n .

SCC
n =

1

w · h
∑

x,y∈Bn

C(x, y) (1)

However, in the case of the DEBP-P segmentation
mask M(x, y) (a binarized and post-processed version of
the DEBP confidence map), the segmentation confidence
corresponds to the percentage of pixels classified as peo-
ple versus the number of pixels classified as background
SCM

n .

SCM
n =

1

w · h
∑

x,y∈Bn

M(x, y) (2)

Figure 3 shows SCC and SCM examples over a posi-
tive and a false detection.

Then the final list of detections consists of the initial
N detections with a new associated confidence. This
new confidence is the combination of the detection and
segmentation confidences PSCn (0 ≤ PSCn ≤ 1):

PSCn = PCn · SCn (3)

Figure 4 shows one additional experimental example
where it is shown the people detection performance with
and without the proposed post-processing step. Figure
4(a) shows the Precision-Recall curve, whilst Figure 4(b)
shows the relation between the true positive and false
positive detection rate. In both cases, we can see how
the use of the proposed post-processing step improves
detection performance. In the first case, the Precision-
Recall curve is significantly improved. In the second
case, according to the selected threshold: (1) the number
of true positives are maintained while reducing signifi-
cantly false positives (straight line), or (2) the number of

(a)

(b)

Figure 4. People detection performance example with and
without the proposed post-processing step: (a) Precision-
Recall curve; and (b) Percentage of false positive (Fp)
and true positive (Tp) detections with and without the
proposed post-processing. According to the selected
threshold, the number of true positives are maintained
while reducing false positives a 81% (straight line or 0.15
threshold), or the number of true positives is reduced a
3% but reducing the number of false positives a 29%
(dotted line or 0.3 threshold).

true positives is slightly reduced but reducing more the
number of false positives (dotted line).

4 DECISION-LEVEL FUSION OF PEOPLE DE-
TECTORS

In this section, we evaluate the decision-level fusion
of independent appearance based people detectors. All
detectors or experts are run in parallel, and the final
decision is obtained as a combination of local expert
responses using fusion methods widely studied in the
literature. However, they are adapted to the particular
case of people detection fusion at decision-level [52]:
average, product, minimum, maximum, median and
majority vote.
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Figure 5. Evaluation criteria for comparing bounding
boxes [53]: (left) relative distance; (right) cover and over-
lap.

Every people detector has its advantages and disad-
vantages, mainly because, each of them is based on
different object extraction approaches and/or person
models. The objective of this work is neither to eval-
uate individual detectors nor to analyze the correlation
among them, but to evaluate that the fusion improves
results. Frame by frame, every detector has different
results; the main idea consists in keeping the correct
true positive detections selected by a certain number of
detectors and, at the same time, eliminating those false
positive detections selected by only one or a smaller
number of detectors.

In relation to the selected fusion techniques, our main
objective is to validate the utility of combining multiple
detectors in order to improve the final results. Therefore,
the detectors and fusion techniques can be replaced
by others without great difficulty. The use of different
modules (detectors or fusion techniques) will vary the
overall performance of the system, but the combination
of detectors will be useful for improving the system. The
evaluation with other detectors or more complex fusion
techniques or strategies is out of the scope of this paper,
but is part of the extensions of this work in the future.

In order to combine or fuse the different detectors,
firstly, it is necessary to find matches or correspondences
between every detector with the other detectors; the
chosen matching criterion is the Multiple Hypotheses
Simplification Criteria (MHSC) [30]. The MHSC allows
us to compare hypotheses at different scales using the
three evaluation criteria defined by Leibe et al. [53]:
relative distance, cover and overlap. The relative dis-
tance (dr) measures the distance between the bounding
box centers in relation to their size; cover and overlap
measure how much of one bounding box hypothesis is
covered by the other and vice versa (see Figure 5). A
matching is considered true if dr ≤ 0.5 (corresponding
to a deviation up to 25% of the true object size) and cover
and overlap are both above 50%.

Every people detector l has generally a different out-
come N l in each frame t. The number of detections
and the detections themselves are not always matched
between approaches (there is no unequivocal relation-

ship between detectors’ outcomes), so we are not able
to apply directly the traditional fusion techniques [52]:
average, product, minimum, maximum, median and
majority vote. Instead, we evaluate the use of the five
first mentioned fusion techniques but taking into account
the minimum number of matches required in the fusion
(variation of majority vote) in order to validate the
fusion. Therefore, we perform the fusion and evaluate
the five fusion techniques for each possible number of
matches m (m = 1, ..., L). Assuming that one match
corresponds actually to no matching, i.e., the detection
is presented in only one detector. The final outcome is
again a list of Nout detections, where each detection n
(n = 1, ..., Nout) is represented by three components:
(1) the matched averaged bounding box Bout

n , (2) the
People-detection Confidence resulting to apply the cor-
responding fusion technique PCout

n (0 ≤ PCout
n ≤ 1) and

(3) the corresponding number of matches mout
n . Each

final bounding box Bout
n is obtained as the average of

the respective matched bounding boxes, whilst each final
People-detection Confidence PCout

n is obtained applying
the corresponding fusion technique over the People-
detection Confidence of the respective matched bound-
ing boxes.

Figure 6 shows a visual fusion example with three
detectors, whilst Algorithm 1 shows the corresponding
fusion example pseudo-code. Following the example, we
have three different people detectors outputs L = 3
(l = 1, 2, 3) in Figure 6 (a), (b) and (c); therefore, there
are five fusion techniques for each possible number of
matches (m = 1, 2, 3) among detectors (each detector
has N l = 5, 4, 4 detections respectively). The final lout in
Figure 6 (d) is the list of matched detections between the
three detectors outputs. For example, the final detection
number 7 is the result of matching the detections 5 and 4
from detectors 1 and 3 respectively. The final bounding
box Bout

7 is the average bounding box between both of
them

Bout
7 (x, y, w, h) =

(
B1

5(x, y, w, h) + B3
4(x, y, w, h)

)
2

(4)

and the final People-detection Confidence PCout
n is the

corresponding fusion technique over them

PCout
n = fusion

(
PC1

5 , PC3
4

)
(5)

5 EXPERIMENTAL RESULTS

In order to evaluate our people detection approach, we
compare in this section the original performance and the
post-processed performance over seven people detection
approaches. They have been chosen in order to cover
the state of the art classification for people detection
that we propose (see section 2.1): Edge [44], HOG [33],
ISM [53], TUD [40], DTDP [41], ACF [42] and IMM [28].
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(a) (b)

(c) (d)

Figure 6. Visual people detection fusion example: (a)
people detector outcome l1; (b) people detector outcome
l2; (c) people detector outcome l3; and (d) final people
detection fusion outcome lout (see Algorithm 1). Blue
color corresponds to mout

5 = 3, green color corresponds
to mout

2,4,6,7 = 2 and red color corresponds to mout
1,3 = 1.

Algorithm 1 People detection fusion example pseudo
code.
• L = 3 (l = 1, 2, 3).

• lout = fusion


l = 1, N1 = 5

{
B1

1 , PC1
1

}
, ...,

{
B1

5 , PC1
5

}
.

l = 2, N2 = 4
{
B2

1 , PC2
1

}
, ...,

{
B2

4 , PC2
4

}
.

l = 3, N3 = 4
{
B3

1 , PC3
1

}
, ...,

{
B3

4 , PC3
4

}
.

• Nout = 7, lout =
{
Bout

1 = B1
4 , PCout

1 = PC1
4 ,m

out
1 = 1

}
,...{

Bout
7 =

(B1
5+B3

4)
2

, PCout
7 = fusion∗ (PC1

5 , PC3
4

)
,mout

7 = 2

}
.

∗average, product,minimum,maximum or median.

According to the chosen object detection approach, Edge
combines segmentation and exhaustive search and the
rest of them are based on exhaustive search. According
to the chosen person model, the IMM includes the use
of motion, appearance and their combination, the rest of
them are based only on appearance: holistic (HOG, ISM,
ACF) or part-based (Edge, TUD, DTDP).

Despite the fact that all algorithms performance de-
pends on the hit rate, or confidence level of the decision,
we only classify objects detected in previous stages as
person or non-person. Consequently, the maximum or
minimum Recall and Precision will be limited by previ-
ous stages. Edge is mainly limited by the segmentation
step. Moreover, HOG, ISM, TUD, DTDP, ACF and IMM,
are limited by the image scanning.

5.1 Experimental datasets

We use two different available people detection datasets
from the state of the art. With the first one, the PDds
dataset [54], we will make a deep analysis of the results
over typical people detection scenarios and complexities.

And with the second one, we will also include a brief
evaluation over a typical surveillance setup for crowd
analysis PETS 2009/2010 benchmark.

5.1.1 PDds dataset
The Person Detection dataset (PDds) [54] includes five
different complexity categories depending on two people
detection critical factors: classification and background
complexity (low, medium and high). It mainly excels
other datasets from the state of the art in the amount
of sequences (90 videos) and variability of sequences.
The experimental dataset includes both non-rigid and
rigid people/objects differing in size, motion and textu-
ral appearance. These people/objects are involved in a
number of interactions and in different contexts, like typ-
ical every-day situations or surveillance video scenarios.
Regarding the backgrounds, it includes in-door and out-
door scenarios with different background complexities
(textural, lighting changes, multimodal, etc.). On the one
hand, the background complexity is defined as the diffi-
culty to detect the initial objects candidate to be person.
This is due to the presence of edges, multiple textures,
lighting changes, reflections, shadows and any kind of
background variation. On the other hand, the people
classification complexity is defined as the difficulty to
verify every object candidate to be person. It is related
to the number of objects, their velocity, partial occlusions,
pose variations and interactions between different peo-
ple and/or objects.

The dataset has been divided in two datasets (A and
B). Dataset A includes 29 sequences including the five
different complexity categories, whilst B includes 61
sequences of the highest complexity category (C5). Fol-
lowing [28], this dataset B has been divided in train and
test sequences in order to evaluate the motion approach
and appearance-motion combinations. The test dataset is
composed of 36 sequences1. The training dataset is com-
posed of the other 25 sequences. The dataset B includes
the 61 sequences (train and test) but the named dataset
B with motion only includes the 25 test sequences.

A summary of the complexity levels of the selected
experimental sequences is shown in Table 1. In addition,
Figure 7 shows some example frames from several se-
quences of the experimental datasets A and B, including
the annotated ground truth.

5.1.2 PETS 2009 dataset
This second chosen dataset consists of sequences ex-
tracted from the PETS 2009/2010 benchmark2. It includes
several sequences recorded outdoors from an elevated
viewpoint, of the same location, corresponding to a typ-
ical surveillance setup for crowd analysis. The sequences
are classified originally according to three scenarios (S1,
S2 and S3) and three progressive difficulty levels (L1, L2

1. Test sequences (referring to PDds numbering): 2-5, 7-8, 12, 14, 18,
32, 34, 36-38 and 40-61.

2. http://www.cvg.rdg.ac.uk/PETS2009/
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Dataset A Category C1 Dataset A Category C4

Dataset A Category C2 Dataset A Category C5

Dataset A Category C3 Dataset B Category C5

Figure 7. Experimental dataset examples. Every example shows three random frames from a sequence.

Category #Sequences #Frames Complexity
Dataset A Dataset B Classification Background

C1 6 0 1824 Low Low
C2 6 0 2649 Medium Low
C3 4 0 3143 Medium Medium
C4 5 0 5301 High Low
C5 8 61 15441 High High

Table 1
Sequences categorization from evaluation dataset PDds

[54].

and L3) for each scenario. These scenarios include high
complexity in terms of crowds and occlusions (generally
more than 10 pedestrians are present simultaneously).

In particular, [55] provides the ground truth of eight
sequences of the PETS dataset, namely S1L1 (1 and 2),
S1L2 (1 and 2), S2L1, S2L2, S2L3 and S3L1. The annota-
tions only include the first view of each sequence. The
main difference among the eight sequences is the num-
ber of pedestrians. We classify the whole set of sequences
independently of the original scenario purpose (S1 for
person count and density estimation, S2 for people
tracking and S3 for flow analysis and event recognition).
In our experiments, we classify the sequences according
to the number of people present simultaneously and,
therefore, the degree of occupation of the scene (low,
medium or high). Table 2 includes a description of
each sequence and complexity classification in terms of
occupation. Figure 8 shows sample images of the used
sequences.

5.1.3 Experimental setup
In order to evaluate different people detection ap-
proaches, we need to quantify the performance results.
In the state of the art, performance can be evaluated
at two levels: sequence sub-unit (frame, window, etc)
or global sequence. Sub-unit performance is usually
measured in terms of Detection Error Tradeoff (DET)

Sequence Up to # Occupation #Frames
PETS2009-S2L1 8 Low 795
PETS2009-S3L1 7 Low 107
PETS2009-S1L1-1 34 Medium 221
PETS2009-S1L1-2 26 Medium 241
PETS2009-S2L2 35 Medium 436
PETS2009-S1L2-1 42 High 201
PETS2009-S1L2-2 40 High 131
PETS2009-S2L3 42 High 240

Table 2
Sequences categorization from evaluation dataset

PETS2009. Occupation in terms of number of
pedestrians present simultaneously. Complexity

classification.

[33], [56] or Receiver Operating Characteristics (ROC)
[57], [58] curves. Global sequence performance is usually
measured in terms of Precision-Recall (PR) curves [22],
[37], [59]. The first level gives us information about the
classification stage, while the second one provides over-
all system performance information. In order to evaluate
a video surveillance system, it is more interesting to com-
pare the overall performance. In both cases the detectors
output is a confidence score for each person detection,
where larger values indicate higher confidence. Both
evaluation methods compute progressively the respec-
tive parameters such as the number of false positives,
Recall rate or Precision rate, from the lowest possible
score to the highest possible score. Each score threshold
iteration provides a point on the curve.

The integrated Average Precision (AP) has been
used to summarize the overall people detection perfor-
mance, represented geometrically as the area under the
Precision-Recall curve (AUC-PR). In order to take into
account not only the yes/no detection decision but also
the precise persons locations and extents, we validate the
detection hypotheses with the annotated ground-truth
applying also the same matching criteria MHSC used
on the decision-level fusion process (see section 4). Only
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(a) (b) (c)

Figure 8. Experimental sequences examples: (a) PETS2009-S2-L1, (b) PETS2009-S1-L1-2 and (c) PETS2009-S1-L2-1.

one hypothesis per object is accepted as correct, so any
additional hypothesis on the same object is considered
as a false positive. All the approaches use the default set-
tings proposed by their respective authors: the Edge and
IMM results have been obtained with the original code,
the HOG results have been obtained using the available
binaries3, the ISM results have been obtained using the
available code and binaries4, the TUD results have been
obtained using the available code5, the DTDP results
have been obtained using the available code [60] and the
ACF results have been obtained using the available code
and INRIA person model6. In the case of the people-
background segmentation, it has been obtained using
the original code (following [51], the chosen empirical
binarization threshold is 0.8).

In order to apply any of the proposed post-processing
approaches, the People Segmentation Confidence and
People-detection Confidence are assumed to be normal-
ized, SCn (0 ≤ SCn ≤ 1) and PCn (0 ≤ PCn ≤ 1) (see
sections 3.2 and 4). The People Segmentation Confidence
is already by definition normalized SCn (0 ≤ SCn ≤ 1)
[51]. However, every people detector use the default set-
tings proposed by their respective authors and therefore,
has different People-detection Confidence output space
or range (see examples in Figure 9). We normalize every
detector under evaluation PCn (0 ≤ PCn ≤ 1). The
normalization is performed according to the probabil-
ity density function of the People-detection Confidence,
which has been learnt or estimated using the respective
detectors outputs over the INRIA dataset [33]. Figure
9 shows examples of different People-detection Confi-
dence density functions (empirical and approximation).

5.2 Original detectors
5.2.1 Evaluation dataset PDds
Table 3 shows the original people detection results. The
results over dataset A show clearly that all algorithms
perform worse at higher complexity categories (from C1
to C5). All detectors provide similar or comparable re-
sults per each category. Due to the greater complexity of
the dataset B, the results are worse than those obtained in

3. http://pascal.inrialpes.fr/soft/olt/
4. http://www.vision.ee.ethz.ch/∼bleibe/index.html
5. http://www.d2.mpi-inf.mpg.de/andriluka cvpr09
6. http://vision.ucsd.edu/∼pdollar/toolbox/doc/index.html

the dataset A. In this case, the Edge and TUD approaches
provide significantly worse results than the other ap-
pearance based approaches. Again, all the appearance
based detectors provide similar results in dataset B with
motion. Moreover, the results show how the combination
of appearance and motion provide better results than the
single appearance versions.

5.2.2 Computational cost

According to the computational cost, each detector’s
results has been obtained with the available code, im-
plemented with different tools and programming lan-
guages, so a fair comparison is not possible. For this
reason and according to the original implementations,
we have decided to classify them in three categories: real
time (Edge and ACF), near real time (HOG and DTDP)
or no-real time (ISM, IMM and TUD). The tests have
been performed on a Pentium IV with a CPU frequency
of 2.4 GHz and 3GB RAM.

The Edge detector [44] combines segmentation and
exhaustive search in order to achieve robustness and
real time operation. It is a real time adaptation of the
people detection approach [39]. The Edge approach [44]
is implemented in C++ (OpenCV) and the computational
cost is around 0.02 seconds per frame with 352x288
images.

The ACF detector proposes a very fast exhaustive
search and a holistic person model using aggregate
channel features. The ACF approach [42] is implemented
in Matlab and the computational cost is around 0.02
seconds per frame with 352x288 images.

The HOG detector [33] is based on exhaustive search
and a holistic person model using the Histogram of
Oriented Gradients. It consists in scanning the full image
looking for similarities with the chosen person model,
evaluating different detection windows with a classifier
at multiple scales and locations. The HOG approach [33]
is implemented in C++ and the computational cost is
around 1 second per frame with 352x288 images (there
is a faster implementation in OpenCV that runs around
0.1 seconds per frame).

The DTDP detector [41] is based on exhaustive search
and a part-based person model. The DTDP approach
[41] is implemented with Matlab and the computational
cost is around 2 seconds per frame with 352x288 images
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(a) (b) (c)

Figure 9. People-detection Confidence output distributions empirical and approximation examples: (a) ISM detector,
(b) TUD detector and (c) DTDP detector.

Dataset Category Edge HOG ISM TUD DTDP ACF IMM
A C1 0.98 0.92 0.95 0.93 0.96 0.94 -
A C2 0.93 0.86 0.91 0.88 0.92 0.88 -
A C3 0.85 0.74 0.80 0.75 0.81 0.80 -
A C4 0.89 0.82 0.84 0.84 0.86 0.84 -
A C5 0.70 0.71 0.71 0.67 0.74 0.78 -
B C5 0.59 0.66 0.69 0.56 0.68 0.72 -
B C5 motion 0.58 0.66 0.64 0.56 0.67 0.70 0.60
Dataset Category Edge+IMM HOG+IMM ISM+IMM TUD+IMM DTDP+IMM ACF+IMM -
B C5 motion 0.62 0.68 0.67 0.62 0.70 0.72 -

Table 3
Original results over dataset PDds in terms of AUC-PR.

(there is a faster implementation in OpenCV that runs
around 1 second per frame).

The ISM people detector [53] is based on exhaustive
search and a holistic person model. It consists in scan-
ning the full image looking for similarities with the
chosen person model at multiple scales and locations
by local features matching. The chosen person model
is based on appearance information using the SIFT fea-
tures. On the second hand, the IMM detector [30] is a
variation of the ISM detector where the chosen person
model is based in the characteristic movements of people
using the MoSIFT features. Both approaches have been
implemented with C++ and have similar computational
cost between 4-7 seconds per frame with 352x288 images.

The TUD people detector [40] is based on exhaustive
search and a part-based person model. It is a part-based
adaptation of the original ISM detector [53] using picto-
rial structures. The TUD approach [40] is implemented
with Matlab subroutines and C++, the computational
cost is several orders of magnitude greater than the other
approaches.

5.3 Results using people-background segmentation
confidence

5.3.1 Evaluation dataset A
Tables 4 and 5 show the people detection results using
the DEBP confidence map and the DEBP-P segmentation
mask respectively. The use of the people-background
segmentation allows us to reduce the number of false
detections and, therefore, in almost all the cases we

improve the global detection results. The use of DEBP
confidence map provides good segmentation results but
the DEBP-P segmentation mask provides better results
thanks to the use of a segmentation post-processing. For
this reason, the detection improvements obtained with
the DEBP-P segmentation mask (average improvement
of 3.8%) are significantly better than the ones obtained
with the DEBP confidence map (average improvement
of 2.8%) with the inconveniences of binarization (see
section 3 for more details).

According to the experimental dataset, the results
show that in both cases (DEBP and DEBP-P) the highest
improvements are obtained in categories C3 (average
improvement of 6.8 and 9.3% respectively) and C5 (av-
erage improvement of 3.1 and 4.3% respectively). It is
due mainly to the background complexity: these two
categories (C3 and C5) present medium or high back-
ground complexity, being the background complexity
one of the main factors that produce false detections.
For the same reason, the lowest improvements (except
the simplest category C1) are obtained in categories C2
(average improvement of 1.7 and 2.0%) and C4 (aver-
age improvement of 1.4 and 2.2%). This is because the
complexity of these categories lies on the classification.

According to thedetection approach, in general the
results show that in both cases (DEBP and DEBP-P)
there are detection improvements. In particular the HOG
approach presents negative results in category C1 be-
cause it generates bigger blobs than the other detectors.
Every blob always contains the person and a small part
of background around, but in this case the background
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Edge %∆ HOG %∆ ISM %∆ TUD %∆ DTDP %∆ ACF %∆ Total %∆Total
A.C1 0.99 +1.0 0.91 -1.1 0.98 +3.2 0.96 +3.2 0.96 +0.0 0.94 +0.0 0.96 +1.1
A.C2 0.95 +2.2 0.86 +0.0 0.93 +2.2 0.91 +3.4 0.92 +0.0 0.90 +2.3 0.91 +1.7
A.C3 0.90 +5.9 0.79 +6.8 0.87 +8.8 0.83 +10.7 0.85 +4.9 0.83 +3.8 0.85 +6.8
A.C4 0.89 +0.0 0.83 +1.2 0.87 +3.6 0.85 +1.2 0.87 +1.2 0.85 +1.2 0.86 +1.4
A.C5 0.73 +4.3 0.73 +2.8 0.74 +4.2 0.70 +4.5 0.74 +0.0 0.80 +2.6 0.74 +3.1
Total 0.89 - 0.82 - 0.88 - 0.85 - 0.87 - 0.86 0.86 -
%∆Total - +2.7 - +1.9 - +4.4 - +4.6 - +1.2 +2.0 - +2.8

Table 4
People detection performance using the DEBP confidence map over dataset A. Percentage increase (%∆) over the

original performance (see section 5.2.1).

Edge %∆ HOG %∆ ISM %∆ TUD %∆ DTDP %∆ ACF %∆ Total %∆Total
A.C1 0.99 +1.0 0.91 -1.1 0.98 +3.2 0.97 +4.3 0.96 +0.0 0.94 +0.0 0.96 +1.2
A.C2 0.95 +2.2 0.86 +0.0 0.94 +3.3 0.91 +3.4 0.92 +0.0 0.91 +3.4 0.92 +2.0
A.C3 0.92 +8.2 0.78 +5.4 0.89 +11.3 0.87 +16.0 0.87 +7.4 0.86 +7.5 0.87 +9.3
A.C4 0.90 +1.1 0.84 +2.4 0.88 +4.8 0.86 +2.4 0.87 +1.2 0.85 +1.2 0.87 +2.2
A.C5 0.74 +5.7 0.73 +2.8 0.75 +5.6 0.72 +7.5 0.75 +1.4 0.80 +2.6 0.75 +4.3
Total 0.90 - 0.82 - 0.89 - 0.87 - 0.87 - 0.88 0.87 -
%∆Total - +3.6 - +1.9 - +5.6 - +6.7 - +2.0 +2.9 +3.8

Table 5
People detection performance using the DEBP-P segmentation mask over dataset A. Percentage increase (%∆)

over the original performance (see section 5.2.1).

around is bigger, so the associated confidence computed
over the corresponding blob (see equation 1) is affected
negatively.

5.3.2 Evaluation dataset B
Table 6 shows the people detection results using the
DEBP confidence map and the DEBP-P segmentation
mask. As in the evaluation of dataset A, in almost
all the cases we improve the global detection results:
we can see how the improvements obtained with the
DEBP-P segmentation mask (average improvement of
2.5%) are significantly better than the ones obtained
with the DEBP confidence map (average improvement
of 1.4%). In general the improvements obtained with
dataset B are smaller than the ones obtained with dataset
A. The results are comparable with the results obtained
in categories C2 and C4 of dataset A. The main reason
for this is that the complexity of dataset B lies not only
on background complexity, but also on the classification
complexity.

5.3.3 Evaluation dataset B with motion
Table 7 shows the people detection results using the
DEBP confidence map and the DEBP-P segmentation
mask. As in the evaluation of dataset A and dataset B
without motion, in almost all the cases we improve the
global detection results: we can see how the improve-
ments obtained with the single appearance versions with
the DEBP-P segmentation mask and with the DEBP
confidence map (average improvement of 3.0 and 1.9%
respectively), or motion versions (average improvement
of 2.5 and 1.5% respectively) are quite similar to the ones

Edge HOG ISM TUD DTDP ACF Total
B.C5* 0.60 0.66 0.69 0.58 0.69 0.73 0.66
B.C5 (%∆)* +1.7 +0.0 +0.0 +3.6 +1.5 +1.4 +1.4
B.C5** 0.61 0.66 0.70 0.60 0.69 0.73 0.67
B.C5 (%∆)** +3.4 +0.0 +1.4 +7.1 +1.5 +1.4 +2.5

Table 6
People detection performance using the DEBP

confidence map* or DEBP-P segmentation mask** over
dataset B. Percentage increase (%∆) over the original

performance (see section 5.2.1).

obtained with the dataset B without motion (see previ-
ous section 5.3.2). However, the results show how the
use of motion and the proposed post-processing obtains
the best final results, with the DEBP-P segmentation
mask and with the DEBP confidence map (AUC-PR Total
average of 68∼69%).

5.3.4 Computational cost

The proposed post-processing approach includes two
main tasks, the computation of the people-background
segmentation and the combination of detection and seg-
mentation confidences. According to the original com-
putational cost (see section 5.2.2), the additional compu-
tational cost of the second task is almost insignificant
(averaged of the dense confidence or percentage of fore-
ground pixels -see section 3.2-). However, the first step
introduces a considerable additional computational cost.
The people-background segmentation is based on the
DTDP detector [41] and has a comparable computational
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Edge HOG ISM TUD DTDP ACF Total IMM
B.C5 motion* 0.59 0.65 0.66 0.58 0.68 0.72 0.65 0.62
B.C5 motion (%∆)* +1.7 -1.5 +3.1 +3.6 +1.5 +2.9 +1.9 +3.3
B.C5 motion** 0.60 0.66 0.66 0.60 0.68 0.72 0.66 0.62
B.C5 motion (%∆)** +3.4 +0.0 +3.1 +7.1 +1.5 +2.9 +3.0 +3.3

Edge+IMM HOG+IMM ISM+IMM TUD+IMM DTDP+IMM ACF+IMM Total
B.C5 motion* 0.63 0.68 0.69 0.64 0.71 0.72 0.68
B.C5 motion (%∆)* +1.6 +0.0 +3.0 +3.2 +1.4 +0.0 +1.5
B.C5 motion** 0.64 0.68 0.69 0.65 0.71 0.74 0.69
B.C5 motion (%∆)** +3.2 +0.0 +3.0 +4.8 +1.4 +2.8 +2.5

Table 7
People detection performance using the DEBP confidence map* or DEBP-P segmentation mask** over dataset B with

motion. Percentage increase (%∆) over the original performance (see section 5.2.1).

cost, i.e., the computational cost is around 2 seconds per
frame with 352x288 images in Matlab (using the faster
implementation of DTDP in OpenCV, it also runs around
1 second per frame).

The proposed approach has been implemented as a
post-processing stage. However, it could also be applied
as a preprocessing step. This would produce similar de-
tection results and at the same time, a computational cost
reduction of the subsequent people detector approach.

5.4 Results using decision-level fusion

5.4.1 Evaluation dataset A

According to the original results that have been already
discussed in section 5.2.1, we have evaluated every
possible minimum number of matches m (m = 1, ..., L)
required in the fusion. Figure 10 shows the average
results fusing the six detectors over the five experimental
dataset complexity categories (C1-C5). Firstly, the effect
of the minimum number of matches required in the
fusion is clear. With low concurrence requirements m = 1
or high concurrence requirements m = 6 the final results
are clearly worse. In the first case, it is because every
detection is considered in the fusion, so every indepen-
dent and isolated detection error is included in the final
results. In the second case, there are missing detections
due to the excessive detection concurrence requirements.
The best results are obtained around m = 3. In relation
to the fusion technique, the product method provides
clearly the worst fused results: the product method is
optimal only if all the detectors are totally independent.
Although all the detectors are independently build, there
is some kind of dependence since all of them are based
on people appearance. The rest of fusion methods pro-
vide similar results, being slightly better the average.

In order to visualize the detection results per each
experimental dataset complexity category, we have se-
lected the best number of minimum matches required
for each configuration (m = 3) and the best performance
fusion method (average). All experimental results are
available as additional material (http://www-vpu.eps.
uam.es/publications/PeopleDetectionPostProcessing/).

Figure 10. Total average fusion performance over dataset
A, for each fusion technique [52] (average, product, min-
imum, maximum and median) and minimum number (m)
of matches required in the fusion.

m = 3 Edge HOG ISM TUD DTDP ACF Total
A.C1 1.0 +2.0 +8.7 +5.3 +7.5 +4.2 +6.4 +5.6
A.C2 0.96 +3.2 +11.6 +5.5 +9.1 +4.3 +9.1 +7.1
A.C3 0.87 +2.4 +17.6 +8.8 +16.0 +7.4 +8.8 +10.1
A.C4 0.92 +3.4 +12.2 +9.5 +9.5 +7.0 +9.5 +8.5
A.C5 0.82 +17.1 +15.5 +15.5 +22.4 +10.8 +5.1 +14.4
Total 0.91 +5.6 +13.1 +8.9 +12.9 +6.7 +7.8 +9.2

Table 8
People detection performance fusing the six detectors

using average fusion over dataset A. Percentage
increase (%∆) over the original individual performance

(see section 5.2.1).

Table 8 shows the people detection performance fusing
the six detectors per each experimental dataset complex-
ity. The results clearly show that the proposed people de-
tection fusion improves considerably the original people
detection results. The average improvements obtained
for each experimental dataset complexity are between 5.6
and 14.4%. Finally, the average improvements obtained
are clearly higher in more complex scenarios (C3-C5)
than in the simplest ones (C1-C2). It is logical because the
range of possible improvement is greater and the advan-
tage of combining detectors is more evident (allowing to
reduce errors and increase the overall detection rate).
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m = 3*/2** Edge HOG ISM TUD DTDP ACF Total
B.C5* 0.74 +25.4 +12.1 +7.2 +32.1 +8.8 +2.8 +14.8
B.C5** 0.76 - +15.2 +10.1 - +11.8 +5.6 +10.7

Table 9
People detection performance fusing the six* or four

detectors (HOG, ISM, DTDP and ACF)** using average
fusion over dataset B. Percentage increase (%∆) over
the original individual performance (see section 5.2.1).

According to the individual people detector results,
the improvements on those detectors with worse original
performance are logically greater than the improvements
on those detectors with better original performance. On
the one hand, the HOG approach provides the worst
original performance results (see section 5.2.1) and the
greatest improvement (average improvement 13.1%). On
the other hand, the Edge detector provides the best
original performance results (see section 5.2.1) and the
lowest improvement (average improvement 5.6%).

5.4.2 Evaluation dataset B
As already commented, the detectors and fusion tech-
niques can be replaced by others without great difficulty.
The use of different modules will vary the overall per-
formance of the system, but the combination of detectors
and additional post-processing stages will always be
useful for improving the system (except in the ideal case
of perfect detection). In order to validate this statement,
we have defined two different people detection fusion
configurations with the available sources: the first one
including the six detectors in the fusion and the second
one including only the four best detectors over dataset
B (HOG, ISM, DTDP and ACF).

As in the evaluation of dataset A, in order to visualize
the detection results, we have selected the best number
of minimum matches required for each configuration
(m = 3 and m = 2 respectively) and we have selected
only the best performance fusion method (average).

Table 9 shows the people detection performance of
both configurations. In almost all the cases we improve
the global detection results: we can see how the final
results obtained fusing only the best four detectors (76%)
are better than the ones obtained fusing the six detectors
(74%).

In relation to the individual people detector results,
on the one hand, the TUD approach provides the worst
original performance results (see section 5.2.1) and the
greatest improvement (average improvement between
32.1%). On the other hand, the ACF detector provides the
best original performance results (see section 5.2.1) and
the lowest improvement (average improvement between
2.8∼5.6%).

5.4.3 Evaluation dataset B with motion
According to the original results and following the same
evaluation scheme as in the evaluation of dataset B

(see previous section 5.4.2), we have defined the same
two people detection fusion configurations and the same
evaluation parameters (average fusion method and min-
imum matches required for each configuration).

Table 10 shows, firstly, the people detection perfor-
mance fusing six or four appearance based detectors
respectively and the motion based detector performance.
In this case, the results are quite similar to the ones
obtained with the dataset B without motion (see previ-
ous section 5.4.2). And secondly, table 10 also shows the
appearance and motion based detectors combinations.
Again, in almost all the cases we improve the global
detection results, we can see how the results obtained
fusing only the best detectors (76%) are better than the
ones obtained fusing the six detectors (74%).

According to the individual people detector results,
on the one hand, the TUD+IMM and Edge+IMM ap-
proaches provide the worst original performance results
(see section 5.2.1) and the greatest improvement (av-
erage improvement of 19.4%). On the other hand, the
ACF+IMM detector provides the best original perfor-
mance results (see section 5.2.1) and the lowest improve-
ment (average improvement between 2.8∼5.6%).

Finally, the results show how the use of motion and
the proposed fusion obtains the best final results (AUC-
PR final between 74 or 76%).

5.4.4 Computational cost
In this case, the proposed post-processing approach only
includes two additional tasks, the matching and fusion
between detectors.

According to the original computational cost (see
section 5.2.2), the additional computational cost is al-
most insignificant (see section 4). For this reason the
computational cost will be established by the chosen
people detection approaches. Assuming that we run all
people detectors in parallel, the final fusion approach
computational cost will be established by the detection
approach with the higher computational cost (in this case
the TUD or TUD+IMM detector).

5.5 Results using both post-processing approaches
In this section, we evaluate the successive application
of both post-processing approaches. In first place, we
present the results over the PDds dataset (A, B and B
with motion). And, in second place, we also present the
results over an additional dataset designed for specific
crowd analysis: PETS 2009 benchmark.

5.5.1 Evaluation dataset PDds
In order to present the final results combining both
post-processing approaches, we use the post-processing
configurations with the best independent results and
the best successive application order, i.e., we first apply
the segmentation post-processing and then the decision-
level fusion. We make use of the DEBP-P segmentation
mask. In the evaluation of dataset A, we combine the six
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m = 3*/2** Edge HOG ISM TUD DTDP ACF Total IMM
B.C5 motion* 0.72 +24.1 +9.1 +12.5 +28.6 +7.5 +2.9 +14.1 +20.0
B.C5 motion** 0.74 - +12.1 +15.6 - +10.4 +5.7 +11.0 -

m = 3*/2** Edge+IMM HOG+IMM ISM+IMM TUD+IMM DTDP+IMM ACF+IMM Total
B.C5 motion* 0.74 +19.4 +8.8 +10.4 +19.4 +5.7 +2.8 +11.1
B.C5 motion** 0.76 - +11.8 +13.4 - +8.6 +5.6 +9.8

Table 10
People detection performance fusing the six* or four (HOG, ISM, DTDP and ACF)** appearance and/or motion based
detectors combinations using average fusion over dataset B with motion. Percentage increase (%∆) over the original

individual performance (see section 5.2.1).

detectors and in the case of dataset B (with or without
motion), we fuse the four best detectors (HOG, ISM,
DTDP and ACF). Additional experimental results are
available as additional material (http://www-vpu.eps.
uam.es/publications/PeopleDetectionPostProcessing/).

Tables 11 and 12 show the results of the successive ap-
plication of both post-processing approaches in dataset
A and B without/with motion respectively. The original
people detection results have been already discussed
in section 5.2.1 and both independent post-processed
results in sections 5.3 and 5.4. In relation with the
original results and as in the previous independent
post-processed results, in all cases there is a significant
improvement. However, the global results and the im-
provements are higher than the ones obtained with the
individual post-processing approaches. In the case of
dataset A, the average improvement obtained (11.2%) is
higher than the ones obtained using only the fusion post-
processing approach (9.2%, see Table 8). In the case of
dataset B and B with motion, the average improvements
obtained with the appearance based detectors (12.1 or
17.0% respectively) are higher than the ones obtained
using only the fusion post-processing approach (10.7 or
11.1% respectively, see Tables 9 and 10). And, finally,
the average improvement obtained with the appearance-
motion based detectors (15.6%) is higher than the ones
obtained using only the fusion post-processing approach
(9.8%, see Table 10). The results show that the additional
improvements obtained in dataset B (with or without
motion) are higher than the ones obtained in dataset A
(C1-C4). It is logical because those scenarios (B and A.C5)
are more complex and therefore the range of possible
improvement is greater.

Finally, in order to summarize all the different detec-
tion results, Table 13 shows only the average detection
results of the four detection configurations (original ap-
proach, using people-background segmentation, using
decision-level fusion and using both post-processing
approaches) on the experimental dataset PDds.

5.5.2 PETS2009 dataset
In this section, we also evaluate the successive ap-
plication of both post-processing approaches over an
additional challenging dataset: PETS 2009 benchmark.
As in the previous section, we use the post-processing

m = 3 Edge HOG ISM TUD DTDP ACF Total
A.C1 1.0 +2.0 +8.7 +5.3 +7.5 +4.2 +6.4 +5.7
A.C2 0.97 +4.3 +12.8 +6.6 +10.2 +5.4 +10.2 +8.3
A.C3 0.89 +4.7 +20.3 +11.3 +18.7 +9.9 +11.3 +12.7
A.C4 0.94 +5.6 +14.6 +11.9 +11.9 +9.3 +11.9 +10.9
A.C5 0.85 +21.4 +19.7 +19.7 +26.9 +14.9 +9.0 +18.6
Total 0.93 +7.6 +15.2 +10.9 +15.0 +8.7 +9.7 +11.2

Table 11
People detection performance using the DEBP-P

segmentation mask, fusing the six detectors and using
average fusion over dataset A. Percentage increase
(%∆) over the original individual performance (see

section 5.2.1).

configurations with the best independent results (HOG,
ISM, DTDP and ACF) and the best successive ap-
plication order, i.e., we first apply the segmenta-
tion post-processing and then the decision-level fu-
sion. Additional experimental results are available
as additional material (http://www-vpu.eps.uam.es/
publications/PeopleDetectionPostProcessing/).

The results show clearly how the performance decreas-
esfrom the simplest sequences to the medium and high
complexity sequences (see Table 2). The HOG detector
provides the worse results in all the sequences. The main
reason for this behavior is that the HOG detector is based
on a holistic person model and presents difficulties deal-
ing with occlusions. On the other hand, the DTDP de-
tector is a part-based version of the HOG, and provides
the best results in all the sequences independently of the
complexity. In general, both ACF and ISM approaches
have acceptable results over low complexity categories.
However, they presents more difficulties dealing with
partial occlusions than the DTDP over more complex
sequences.

Table 15 shows the best combination obtained us-
ing both proposed post-processing approaches, i.e., the
DEBP-P and only the two best detectors (DTDP and
ACF). Again the results show clearly how the use of
both post-processing approaches improve the final detec-
tion results in different complexity sequences (average
improvement of 9.6%), being this improvement more
significant in more complex scenarios (6.9∼18.4%) than
the simplest ones (3.7∼7.0%).
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m = 2 HOG ISM DTDP ACF Total
B.C5 0.77 +16.7 +11.6 +13.2 +6.9 +12.1
B.C5 motion 0.78 +18.2 +21.9 +16.4 +11.4 +17.0

m = 2 HOG+IMM ISM+IMM DTDP+IMM ACF+IMM Total
B.C5 motion 0.80 +17.6 +19.4 +14.3 +11.1 +15.6

Table 12
People detection performance using the DEBP-P segmentation mask, fusing the four detectors (HOG, ISM, DTDP
and ACF) and using average fusion over dataset B without/with motion. Percentage increase (%∆) over the original

individual performance (see section 5.2.1).

Dataset B motion
Dataset A Dataset B Appearance Appearance+IMM

Original 0.84 0.65 0.64 0.67
People-background segmentation 0.87 0.67 0.66 0.69

Decision-level fusion 0.91 0.76 0.74 0.76
Both post-processing approaches 0.93 0.77 0.78 0.80

Table 13
Total people detection performance average results: original detection results (see section 5.2.1), using

people-background segmentation confidence (see section 5.3), using decision-level fusion (see section 5.4) and
using both post-processing approaches on the experimental dataset (dataset A, B, B with motion and B with motion

combining appearance and the motion information of the IMM detector).

HOG ISM DTDP ACF
PETS2009-S2L1 0.60 0.78 0.93 0.85
PETS2009-S3L1 0.68 0.82 0.93 0.94
PETS2009-S1L1-1 0.40 0.45 0.63 0.63
PETS2009-S1L1-2 0.41 0.49 0.73 0.68
PETS2009-S2L2 0.50 0.55 0.66 0.58
PETS2009-S1L2-1 0.28 0.30 0.48 0.44
PETS2009-S1L2-2 0.34 0.36 0.50 0.51
PETS2009-S2L3 0.31 0.34 0.55 0.47

Table 14
Original results over dataset PETS 2009 in terms of

AUC-PR.

m = 1 DTDP ACF Total
PETS2009-S2L1 0.95 +2.2 +11.8 +7.0
PETS2009-S3L1 0.97 +4.3 +3.2 +3.7
PETS2009-S1L1-1 0.68 +7.9 +7.9 +7.9
PETS2009-S1L1-2 0.75 +2.7 +10.3 +6.5
PETS2009-S2L2 0.71 +7.6 +22.4 +15.0
PETS2009-S1L2-1 0.51 +6.3 +15.9 +11.1
PETS2009-S1L2-2 0.54 +8.0 +5.9 +6.9
PETS2009-S2L3 0.60 +9.1 +27.7 +18.4
Total 0.71 +6.0 +13.1 +9.6

Table 15
People detection performance using the DEBP-P

segmentation mask, fusing the best two detectors (DTDP
and ACF) and using average fusion over dataset

PETS2009. Percentage increase (%∆) over the original
individual performance.

6 CONCLUSIONS

Firstly, we have presented a new subtask for people
detection filtering.This subtask enhances people detec-
tion results making use of the information about where
there are not people obtained with people-background
segmentation. The experimental results show the per-
formance of our proposal over the proposed evaluation
dataset PDds. There is a global detection improvement
in almost every category and original people detection
approach, being this improvement more clear in those
scenarios with medium or high background complexity.
It is logical because those scenarios are more likely to
generate false detections. The results also show how the
use of motion in addition to our approach obtains the
best final results.

Secondly, we have evaluated the combination or fu-
sion of six independent appearance based people de-
tectors at decision-level. We have also evaluated their
combination with a motion based people detector. In
order to fuse the different detectors, we have evalu-
ated a multiple matching criteria and the application
of traditional fusion techniques: average, product, mini-
mum, maximum and median. The experimental results
show the performance of our proposed approach with
the mentioned fusion techniques. The product method
shows clearly worse results, whilst the average method
provides slightly better results than the other three meth-
ods. There is a global detection improvement in every
category and original people detection approach. This
improvement is more clear in those scenarios with higher
complexity, since those scenarios are more likely to gen-
erate false detections and missing detections. Again, the
results show how the use of motion in addition to the
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proposed fusion obtains the best final results.
And, finally, we have also evaluated the successive ap-

plication of both post-processing approaches over both
chosen evaluation datasets from the state of the art:
PDds and PETS2009. The results show the additional
improvements obtained in all the cases thanks to the
combination of both post-processing stages.

As future work, we will try to improve the segmen-
tation confidence using its evolution over time or its
combination with another more traditional segmentation
strategy: color based, motion based, etc. After showing
that this processing allows improving detection results,
we will study the use of the people-background seg-
mentation as a preprocessing state in order to main-
tain/reduce computation cost. In addition, other combi-
nations of detection and segmentation confidences may
be explored. In relation to the fusion post-processing
approach, we will explore other more complex fusion
possibilities, not only fixed fusion rules but also trainable
fusion rules or adaptive weights based on online quality
estimation, and not only parallel fusion schemes but also
cascade, hierarchical or hybrid. It is clear that “indepen-
dently built” detectors exhibit positive correlation, and
this is attributed to the fact that difficult parts of the
decision space are difficult for all detectors. So we also
propose to explore other independent detectors (e.g.,
based on motion) or other fusion techniques robust to
decision correlations. Finally, we also propose a further
evaluation including other different evaluation setups
(point of view, occupation, etc), i.e., other complexity
categories over the evaluation datasets.
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