
    

 
 

AUTONOMOUS UNIVERSITY OF MADRID 

BIOCHEMISTRY DEPARTMENT 

 

 

 

 

 

 

 

Deregulated microRNAs in breast cancer 

and their potential role as diagnostic and 

prognostic biomarkers 

 

 

 

Nerea Matamala Zamarro 

 

 

 

 

 

 

 

MADRID, 2015 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cover design by Matamala Diseño Gráfico 

Press financed by Human Cancer Genetics Programme (CNIO) 

 



    

 
 

 

BIOCHEMISTRY DEPARTMENT 

FACULTY OF MEDICINE 

AUTONOMOUS UNIVERSITY OF MADRID 

 

 

Deregulated microRNAs in breast cancer 

and their potential role as diagnostic and 

prognostic biomarkers 

 

Doctoral thesis of 

Nerea Matamala Zamarro, 

M.Sc. in Biomedical Research 

 

Thesis directors 

Dr. Javier Benítez Ortiz 

Dr. Beatriz Martínez Delgado 

 
 

 

 

 
HUMAN GENETICS GROUP 

HUMAN CANCER GENETICS PROGRAMME 

SPANISH NATIONAL CANCER RESEARCH CENTRE 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    

 
 

 
 
 
 
 
 

This thesis, submitted for the degree of Doctor of Philosophy  

at the Autonomous University of Madrid, has been elaborated in the  

Human Cancer Genetics laboratory at the Spanish National Cancer Research Center (CNIO), 

under the supervision of Dr. Javier Benítez Ortiz and Dr. Beatriz Martínez Delgado. 

 

 

 

 

 

 

 

 

This work was supported by following grants and fellowships:  

 

  “LIFE: desafío integral al cáncer de mama”, funded by Centro para el Desarrollo 

Tecnológico Industrial (CDTI), Ministerio de Economía y Competitividad (MINECO), and 

Fondo Europeo de Desarrollo Regional (FEDER), 2012-2014; Dr. Javier Benítez Ortiz 

 EACR Travel Fellowship Award, 2014; Nerea Matamala Zamarro 

 

 
 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A mis padres, a mi hermana y a Mario 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Acknowledgements 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    

 
 

Esta tesis doctoral no hubiese sido posible sin la ayuda de un sinfín de personas. Espero 

saber transmitir mediante estas líneas mi inmensa gratitud a todas ellas. 

En primer lugar me gustaría dar las gracias a Javier Benítez por su labor en la dirección 

de esta tesis y por darme la oportunidad de iniciarme como científica. Gracias por la 

confianza depositada, la orientación recibida, y la libertad para tomar decisiones en el 

proyecto. Por enseñarme a resolver los problemas, ayudarme a superar las situaciones 

difíciles y compartir la alegría de los buenos momentos. Por tu disponibilidad y por ser en 

gran parte el responsable del buen ambiente que se respira en el programa de Genética del 

Cáncer Humano, ha sido un auténtico placer trabajar en un lugar así.   

Muchas gracias también a Beatriz Martínez por ser una excelente supervisora. Por 

resolver todas mis dudas, por tus sabios consejos y por estar siempre dispuesta a ayudarme. 

Por ser tan cercana y comprensiva, y transmitirme tu buena energía y optimismo. 

Especial agradecimiento a las pacientes con cáncer de mama por su continua y excelente 

colaboración, sin ellas este libro estaría en blanco. De igual manera quisiera agradecer a 

todos los profesionales que han colaborado recogiendo muestras y datos clínicos de las 

pacientes: a José Ignacio Arias del Hospital Monte Naranco y a Pablo Isidro Marrón del 

Biobanco del Principado de Asturias (Oviedo), a Rebeca Miñambres de Sistemas Genómicos 

(Valencia), a Mª Ángeles Castilla del Hospital Virgen del Rocío (Sevilla) y, en especial, a Maite 

Vargas por acogerme en el laboratorio de Anatomía Patológica del Hospital Virgen de la 

Macarena, por tu cercanía y buena disposición, y por ayudarme a conseguir gran parte del 

material utilizado en esta tesis. 

Igualmente quiero dar las gracias a los compañeros del CNIO que han colaborado 

directamente en este proyecto: a Edu y a Gonzalo de la Unidad de Bioinformática por 

resolverme muchas dudas, por vuestra paciencia y por enseñarme tanto; a Guada y a Puri de 

la Unidad de Genómica por vuestra ayuda con los arrays; a las chicas de la Unidad de 

Inmunohistoquímica por vuestra asistencia con las parafinas; a Kira y a Toya por echarme 

una mano con las interminables extracciones de RNA; y a Lucía Inglada por tus consejos en el 

análisis estadístico. 



 
 

Muy especialmente quiero agradecer a los compañeros del grupo de Genética Humana 

toda su ayuda, cariño y buenos momentos vividos. A Ali por ser la primera en recibirme 

cuando llegué al CNIO con esa calurosa bienvenida: por fin una española!!! Por tener 

siempre una solución para todos los problemas, por tu cercanía y complicidad. A Maika por 

ser tan cariñosa siempre y haberme hecho reír tanto. A Samu por sorprenderme con tus 

preguntas y ocurrencias, y por animar a todos con tu energía. A Kira por ser siempre tan 

positiva y contagiarme tu optimismo. A Carlos por inundar el laboratorio con tu música y tu 

sentido del humor, y por tener siempre unas palabras de ánimo. Dale duro que eres el 

siguiente! A Javi por interesarte siempre por cómo estaba, por tus consejos, tus bromas y tu 

cercanía, se agradece mucho tener a alguien así cerca. A Ale por tu dulzura y simpatía, y por 

calmarme los nervios en aquel Progress en el que tú me presentabas. Aunque se te vaya un 

poco la cabra, has sido una compi de escritorio genial! A Bea por tu sinceridad y 

espontaneidad, y por aquel bombón que será difícil de olvidar... A Ana Osorio y María García 

por ser excelentes científicas y estupendas personas, por vuestra simpatía y por darme 

siempre buenos consejos. A Oriol y Fati por vuestro sentido del humor y vuestro ingenio. A 

Toya por echarme una mano cuando la he necesitado. Y a Miguel Urioste por acercarme a 

las pacientes y recordarme la razón por la que investigamos.  

Y como no, dar las gracias a mis rusas por ser tan buena gente y ponerse tan bien los 

sombreros al estilo Muñoveros. A Miljana por introducirme en el maravilloso mundo de los 

miRNAs, a Marta por resolverme todas mis dudas informáticas, por tu dulzura y tus ánimos 

con la tesis (hay luz al final del túnel!), a Vero por tu alegría y por estar siempre dispuesta a 

ayudar, y sobre todo a Tere por arrancarme siempre una sonrisa, por tu amistad y por toda 

tu ayuda en el laboratorio, has sido un ejemplo a seguir!  

Quiero agradecer a los estudiantes y residentes que han traído aire fresco al laboratorio, 

en especial a Natalia, Ana la serbia, Sergio, Sofía y Laura Pena, por vuestra simpatía y 

cariño. Asimismo agradezco al resto de grupos del programa de Genética del Cáncer 

Humano que hayan sido encantadores conmigo siempre que les he pedido ayuda. Al CEGEN: 

Sara, Charo, Nuria, Belén, Tais, Guille y Ana, por aguantar todas las cuantis que he puesto y 

por estar siempre dispuestos a dejarnos una caja de puntas. A los Endocrinos: Iñaki, María A, 

Aguirre, María C, Lara, Álvaro, Rocío, Lucía, Alberto, Cristina y Meme, por vuestros consejos 

y ayuda siempre que la he necesitado. A los Citogenéticos: Ana, Alba, Miguel, Carra, Sandra, 



    

 
 

Mamen, Luis, Miriam, Rocío, Sara y Juan, por vuestra cercanía y aportaciones en los lab 

meetings. A los Epidemiólogos por vuestros consejos en los seminarios. A Irene por 

encargarte de trámites, llamadas y papeleos varios, y a Celia por hacerlo cuando Irene no 

está. 

De igual modo me gustaría agradecer a todos mis compañeros del laboratorio de 

Genética del Hospital Virgen del Rocío, en especial a los becarios con los que tanto he 

compartido y con los que me he reído una jartá: Juancho, Rocío, María G, Belén y Mari Valle. 

Por los breaks, los delfines y las vacas, las escapadas a comer fuera, los vasos rotos en Pepe 

el muerto, la sangre de Cristo del Garlochi, las reuniones de castores, el notiweb, los 

rebujitos y las sevillanas. En especial nada hubiese sido lo mismo sin mi Mari Valle, porque 

fuiste un gran apoyo desde el primer día que llegué a Sevilla, por tu alegría y tu energía y 

porque tienes un corazón enorme.  

Gracias a los que me dieron la primera oportunidad en el mundo de la investigación. Al 

laboratorio de Biología Molecular del IVO: María, Antonio, Zaida y José Antonio, por vuestra 

cercanía y generosidad (todavía guardo aquel balón…). A Daniela y Anne del laboratorio de 

Biología Molecular de la Universidad de York por vuestra gran simpatía y cariño, que tanto 

se agradecen cuando vives en el extranjero. 

Quiero agradecer a mis chicas del Erasmus: Maca, Isa y Claudia, que durante un tiempo 

fueran mi familia, por todo lo que vivimos juntas y por seguir ahí a pesar de la distancia. En 

especial a mi Clau porque no sé qué hubiese hecho sin ti, por tu comprensión, sinceridad y 

sensibilidad. 

También quiero dar las gracias a mi gente de Valencia. A los biolokos, por haber 

compartido muchas horas de clase, de exámenes y de fiestas. En especial a José y Cris, por 

tener siempre una sonrisa en la cara y un rato para un café. A las pelus: Emma, Amparo, 

Laura y Carmen, por las cenitas, los bailes, las charlas y los viajes. Mi agradecimiento va 

sobre todo para Amparo porque desde el primer día conectamos y por haber compartido 

tantas cosas: carreras en la playa, marchas en la montaña, paseos en bici, clases de tango, 

conciertos y salidas nocturnas. A Kike, por seguir siendo el mismo chico con el que iba en 



 
 

autobús a clase, por defenderme de los malhechores de la noche, por tus CDs de música y las 

tardes de piscina. 

A la gente de ese gran pueblo que es Muñoveros por ser sencillamente geniales, por 

vuestra cercanía, alegría y generosidad, y por demostrar que juntos podemos hacer grandes 

cosas.   

Muchas gracias a mis tíos y primos porque aunque somos muchos y estemos 

desperdigados siempre hacemos el esfuerzo por reunirnos, por vuestro apoyo y vuestro 

cariño. En especial gracias a Patri, Laura, Pablo, Cris y María, por compartir veranos, 

navidades y demás fiestas de guardar. Mil gracias a Pablo por ser el artista de la familia y 

haberme hecho una portada tan chula. 

Me gustaría agradecer a mis abuelos, estén donde estén, por haberse preocupado tanto 

por mí y haberme cuidado. En especial a Fernanda por ser la mejor amama que se puede 

tener.  

A mis padres por haberme apoyado siempre, por vuestro amor incondicional y esfuerzo 

para que no nos falte nada. Gracias por cuidarme, por confiar en mí y por estar orgullosos de 

todo lo que hago. A Elena por ser mi hermanita del alma, porque contigo he crecido en 

muchos aspectos y porque aunque estemos lejos eres un gran apoyo. 

Finalmente a Mario por hacerme feliz cada día. Gracias por tu comprensión y ternura, 

por cuidarme con esas comidas tan ricas, por preocuparte por mí y hacerme reír, por todo lo 

que hemos compartido y lo que nos queda por compartir. Por hacerme sentir muy especial. 

Porque sencillamente te quiero.  

A todos ellos, y a todos los que se me olvidan, Gracias! 

 

 

 

 



    

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Summary / Resumen 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    

 
 

SUMMARY 

During the past few years, a large number of studies have explored the value of gene 

expression profiling in breast cancer (BC), revealing the existence of at least four major 

molecular subtypes with different clinical features (luminal A, luminal B, Her2 and triple 

negative (TN)). However, few reports have investigated the usefulness of microRNA (miRNA) 

expression profiling in BC management. Given the important role that miRNAs play in 

tumorigenesis and their great potential as novel clinical biomarkers, we aimed to investigate 

their deregulation in BC and their diagnostic and prognostic utility. We performed miRNA 

expression profiling in a large series of primary breast tumors and normal breast tissues, and 

identified a number of miRNAs commonly and specifically deregulated in the four subtypes, 

many of them not previously reported. In addition, five miRNA signatures that discriminate 

breast tumors and BC molecular subtypes with high sensitivity and specificity were defined. 

We hypothesize that these signatures might be informative for BC diagnosis. The most 

relevant tumoral miRNAs were analyzed in two independent series of plasma. MiR-505-5p, 

miR-125b-5p, miR-21-5p and miR-96-5p were confirmed to be overexpressed in the plasma 

of BC patients when compared with healthy women (AUC=0.61-0.72), and we found that the 

levels of miR-505-5p and miR-21-5p decreased in a group of treated patients. Our results 

demonstrate the potential utility of these miRNAs as non-invasive biomarkers for early BC 

detection. We have also defined a set of 17 miRNAs that are downregulated in breast 

tumors of node-positive TN patients with poor outcome. Moreover, we found that miR-30c-

5p and miR-195-5p are associated with recurrence, and that miR-195-5p might be an 

independent prognostic marker in triple negative breast cancer (TNBC). Thus, analysis of 

miR-195-5p expression could serve to define a group of TN patients who may benefit from a 

more aggressive therapy. Finally, we found that two miRNAs that are specifically 

overexpressed in TN tumors, miR-498 and miR-187-5p, target the 3'UTR of the BRCA1 gene. 

Furthermore, we demonstrated that miR-498 regulates BRCA1 expression in BC cell lines 

and its inhibition leads to reduced proliferation in TNBC cells. These results shed light on the 

mechanisms behind the decreased expression of BRCA1 in sporadic TNBC. In summary, our 

findings bring new insights in the deregulation of miRNAs in BC molecular subtypes and 

their potential use as BC biomarkers. 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    

 
 

RESUMEN 

En los últimos años numerosos estudios han investigado el valor de los perfiles de 

expresión génica en el cáncer de mama (CM), revelando la existencia de al menos cuatro 

subtipos moleculares con distintas características clínicas (luminal A, luminal B, Her2 y triple 

negativo (TN)). Sin embargo, pocas investigaciones han explorado la utilidad de los perfiles 

de expresión de microRNAs (miRNA) en el manejo del CM. Teniendo en cuenta el 

importante papel que los miRNAs juegan en la carcinogénesis y su gran potencial como 

nuevos biomarcadores, el objetivo de esta tesis ha sido investigar su desregulación en CM y 

su utilidad diagnóstica y pronóstica. Hemos obtenido los perfiles de expresión de miRNAs de 

una gran serie de tumores primarios de mama y tejidos mamarios normales, y hemos 

identificado miRNAs comúnmente y específicamente desregulados en los cuatro subtipos, 

muchos de ellos no reportados hasta el momento. Además hemos definido cinco firmas de 

miRNAs que discriminan los tumores de mama y los subtipos moleculares de CM con gran 

sensibilidad y especificidad. Los miRNAs tumorales más relevantes fueron analizados en dos 

series independientes de plasmas, confirmándose la sobreexpresión de los miR-505-5p, 

miR-125b-5p, miR-21-5p y miR-96-5p en el plasma de pacientes con CM en comparación con 

mujeres sanas (AUC=0.61-0.72). Además, los niveles de expresión de los miR-505-5p y miR-

21-5p disminuyeron en un grupo de pacientes tratadas. Nuestros resultados demuestran la 

posible utilidad de estos miRNAs como biomarcadores no invasivos para la detección 

temprana del CM. También hemos definido un conjunto de 17 miRNAs que están 

infraexpresados en tumores de mama de pacientes TN con ganglios positivos y mal 

pronóstico. Además, hemos encontrado que los miR-30c-5p y miR-195-5p están asociados 

con recurrencia y que el miR-195-5p podría ser un marcador de pronóstico independiente 

en cáncer de mama triple negativo (CMTN). De esta forma, el análisis de la expresión del 

miR-195-5p en tumores podría servir para definir un grupo de pacientes TN que podrían 

beneficiarse de una terapia más agresiva. Finalmente, hemos encontrado que dos miRNAs 

que están específicamente sobreexpresados en tumores TN, miR-498 y miR-187-5p, tienen 

como diana la región 3’UTR de BRCA1. Además, hemos demostrado que el miR-498 regula la 

expresión de BRCA1 en líneas celulares de CM, y que su inhibición da lugar a una reducción 

en la proliferación de las células TN. Estos resultados arrojan luz sobre los mecanismos 

responsables de la disminución en la expresión de BRCA1 en CMTN esporádico. En resumen, 



 
 

nuestros descubrimientos aportan nuevos conocimientos sobre la desregulación de los 

miRNAs en los subtipos moleculares de CM y sobre su posible uso como biomarcadores.   
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ECL  Enhanced chemiluminescence  
ECM  Extracellular matrix 
EDTA  Ethylenediaminetetraacetic acid 
EGFR  Epidermal growth factor receptor 
ER  Estrogen receptor 
FC  Fold change 
FDR  False discovery rate  
FFPE  Formalin fixed paraffin embedded  
GATA3  GATA binding protein 3 
GTP  Guanosine-5'-triphosphate 
HER2  Human epidermal growth factor receptor 2 
HIF-1  Hypoxia-inducible factor-1 
HMGA1  High mobility group AT-hook 1 
HR  Hazard ratio 
HRP  Horseradish peroxidase  
HSP70  Heat shock 70kD protein 
H2  Her2 
ID4  Inhibitor of DNA binding 4 
IHC  Immunohistochemistry 
KEGG  Kyoto encyclopedia of genes and genomes 
KNN  k-nearest neighbor 
KRAS  Kirsten rat sarcoma viral oncogene homolog 
LNA  Locked nucleic acid 
lnRNA  long non-coding RNA 
LA  Luminal A 
LB  Luminal B 

http://www.genome.jp/kegg/
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LOH   Loss of heterozygosity 
MAPK  Mitogen-activated protein (MAP) kinase 
miRNA  microRNA, micro ribonucleic acid 
mRNA  Messenger ribonucleic acid 
MRPL19 Mitochondrial ribosomal protein L19 
mTOR  Mechanistic target of rapamycin (serine/threonine kinase) 
NBS1  Nijmegen breakage syndrome 1 
NPM1  Nucleophosmin (Nucleolar phosphoprotein B23, Numatrin) 
PALB2  Partner and localizer of BRCA2 
PARP   Poly (ADP-ribose) polymerase 
PBS  Phosphate buffer saline  
PCR  Polymerase chain reaction 
PIK3CA  Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha 
PI3K  Phosphatidylinositol 3-kinase 
PR  Progesterone receptor 
PTEN  Phosphatase and tensin homolog 
qRT-PCR Quantitative real-time PCR  
RAD50  RAD50 homolog (S. cerevisiae) 
RAD51  Recombination protein A 51 
RF  Random forest 
RFS  Relapse-free survival 

RISC  RNA-induced silencing complex 

RNA  Ribonucleic acid 
RNase  Ribonuclease 
ROC  Receiver operating characteristic 
ROR  Risk of relapse 
RPM  Rotations per minute 
RS  Recurrence score 
RT  Reverse transcriptase  
RT  Room temperature 
SDS  Sodium dodecyl sulfate  
SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SNP  Single nucleotide polymorphism 

SRC  v-src avian sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog 

STK11  Serine/threonine kinase 11 

SVM  Support vector machines  

TBS  Tris buffered saline 

TERT  Telomerase reverse transcriptase 

TGF-β  Transforming growth factor beta 

TN  Triple negative 

TNM  Tumor, node, metastasis 

TOP2A  Topoisomerase (DNA) II alpha 170kDa 

TP53  Tumor protein p53  
UTR  Untranslated region 
VEGF   Vascular endothelial growth factor  
WHO  World health organization 
WST-1  Water-soluble tetrazolium salt 
XRCC2  X-ray repair complementing defective repair in Chinese hamster cells 2 
YWHAZ  Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta
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1. BREAST CANCER 

1.1. Mammary gland and breast cancer 

The mammary gland is a highly specialized organ that is responsible for lactating. Both 

males and females have glandular tissue within the breasts, however, after puberty the 

glandular tissue begins to develop in response to estrogen release in females. The biological 

role of the mammary glands is to produce milk to nourish a newborn infant and to pass 

antibodies needed for infant’s protection against infections while the immature immune 

system is initiating its function.  

The mammary gland is formed by fifteen to twenty lobes that are arranged radially and 

delimited by septa of conjunctive tissue and adipose tissue in the subcutaneous layer 

(Figure 1A) (Ali and Coombes, 2002). Each lobe is formed by smaller functional units, the 

lobules, from which ducts converge towards the main duct of the lobe: the lactiferous duct. 

The lactiferous ducts are responsible for delivering the milk to the surface of the skin and 

out of the mother through tiny pores in the nipple (Hassiotou and Geddes, 2013). 

Ductal mammary epithelium is comprised of two layers of cells: a luminal/inner layer of 

secretory epithelial cells that enclose the ductal lumen, and a basal/outer layer of 

contractile myoepithelial cells that surround the luminal layer (Figure 1B) (Visvader, 2009). 

The basal layer lies on the basement membrane and is thought to contain multipotent 

mammary stem cells.  The epithelial ductal tree is embedded within a complex stroma, the 

mammary fat pad, which contains fibroblasts, adipocytes, blood vessels, nerves and various 

immune cells, all of which are important for normal mammary development and function 

(Hassiotou and Geddes, 2013). 

Breast cancer is a complex disease resulting from abnormal and disorganized 

proliferation of cells that compose breast tissue. About 95% of malignant breast tumors are 

carcinomas, which originate from the epithelium of the mammary gland. Carcinomas 

developing from the ducts are known as ductal carcinomas (the most common ones), while 

those developing from lobules are known as lobular carcinomas. Neoplastic transformation 

typically proceeds from a benign, well-differentiated localized tumor, carcinoma in situ, to 

http://en.wikipedia.org/wiki/Mammary_ductal_carcinoma
http://en.wikipedia.org/wiki/Lobular_carcinoma
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invasive cancer that penetrates basal membrane infiltrating the fatty tissue of the breast, 

and ultimately to metastatic tumor that disseminates to other parts of the body through 

lymphatic and blood vessels.  

 

Figure 1. A) Anatomy of the human mammary gland. Each mammary gland contains 15–20 lobes, 
each lobe containing a series of branched ducts that drain into the nipple (adapted from Ali and 
Coombes, 2002). B) Schematic representation of a terminal duct (adapted from Visvader, 2009).  

 

1.2. Epidemiology 

Worldwide, breast cancer is the second most frequent cancer and, by far, the most 

common cancer among women. In 2012 it was estimated that 1.67 million of women were 

diagnosed with breast cancer, accounting for one quarter of the total new cancer cases in 

women (Ferlay et al., 2014). Breast cancer is the most common cancer in women in both 

developing and developed regions, although incidence rates vary considerably across the 

world, with the highest rates in Western Europe (96 per 100,000) and the lowest in Middle 

Africa (27 per 100,000) (Figure 2) (Servick, 2014). This variation is likely due to differences in 

reproductive and hormonal factors and the availability of early detection services.  

Regarding mortality, breast cancer ranks as the fifth cause of death from cancer overall 

with 522,000 deaths estimated in 2012. It is the most deadly cancer in women in developing 

regions and the second cause in developed regions. The decrease in breast cancer death 

rates in developed countries over the last 25 years is a result of early detection through 

mammography, improvements in treatments and the implement of genetic testing (Ferlay 

et al., 2014). 
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Figure 2. Estimated age-standarized incidence and mortality rates of breast cancer per 100,000 
women in 2012 (adapted from Servick, 2014). 

 

1.3. Risk factors 

As breast cancer is a multifactorial disease, both genetic and non-genetic factors are 

involved in its development (Cuzick, 2008; McPherson et al., 2000). Being a woman is the 

main risk factor for breast cancer. Men can develop breast cancer, but this disease is about 

100 times more common among women than men. As with many other cancers, the 

incidence of breast cancer increases with age. About 2 out of 3 invasive breast cancers occur 

in women over the age of 55. Mammography density is an important factor in terms of 

breast cancer risk. Women with dense breasts (higher percentage of non-fatty tissue) are up 

to 5 times more likely to develop breast cancer compared with women with less dense 

breasts. In addition, dense breast tissue can make mammograms less accurate.  

http://www.cancer.org/cancer/breastcancerinmen/index
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Family history and genetics are linked with increased breast cancer risk. Up to 7% of 

breast cancer cases are thought to be hereditary, with mutations in BRCA1 and BRCA2 genes 

accounting for a substantial proportion of high risk families. Having one first-degree relative 

(mother, sister or daughter) with breast cancer doubles a woman’s risk. The risk is further 

increased with a larger number of affected first-degree relatives or relatives who developed 

the disease before the age of 50. In addition, a woman with cancer in one breast has 3- to 4-

fold increased risk of developing a new cancer in the other breast or in another part of the 

same breast, and some types of benign breast disease are linked with increased breast 

cancer risk. Race and ethnicity also play a role in breast cancer incidence: studies show that 

white women are more likely to develop breast cancer than African American women, 

although African American women develop more aggressive breast tumors.  

Reproductive factors are well established risk factors for breast cancer. The modification 

of sex hormones levels (mainly estrogen exposure) may explain the link between these 

factors and breast cancer risk. Nulliparous women or women who have their first child after 

the age of 30 have a higher risk of breast cancer compared to women who gave birth before 

age 30. The relative risk increases by about 3% for each year older a woman is when she first 

gives birth. Subsequent births reduce relative risk by about 7% per birth. Breastfeeding is 

protective, especially if a woman breastfeeds for longer than 1 year. Breast cancer risk 

increases for each year younger at menarche and for each year older at menopause. 

Women using oral contraceptives and women using hormone replacement therapy for 

menopausal symptoms have slightly greater risk of breast cancer. Finally, lifestyle can 

influence the chances to develop breast cancer. Obesity is associated with a twofold 

increase in the risk of breast cancer in postmenopausal women. Saturated fat intake, lack of 

physical exercise, alcohol use and tobacco smoking are probable causes of breast cancer. 

1.4. Genetic susceptibility 

As mentioned before, positive family history is one of the most important risk factors for 

developing breast cancer. A large majority of breast cancer cases are sporadic, usually 

detected in older patients (>55 years), while approximately 5-7% of breast cancer cases 

arise in patients with strong familial aggregation of breast tumors with various affected 

members throughout several generations (Figure 3A) (Melchor and Benitez, 2013). These 
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families show an apparently dominant inheritance pattern and are characterized by an early 

age of onset, overrepresentation of ovarian cancers, bilateral breast cancers and/or male 

breast cancers. 

Current genetic landscape of breast cancer susceptibility consists of two rare high-

penetrance (>10-fold risk) susceptibility genes, several rare moderate-penetrance (2-4 fold 

risk) genes, and a large number of common low-penetrance (<1.5-fold risk) alleles 

(Ghoussaini et al., 2013). Family-based linkage analysis and positional cloning led to the 

identification of high-penetrance genes BRCA1 (Miki et al., 1994) and BRCA2 (Wooster et al., 

1994), two tumor-suppressor genes involved in DNA repair that may explain around 25% of 

familial breast cancer risk. Lifetime risks of breast and ovarian cancer by the age 70 years 

are 65 and 39%, respectively, among women carrying BRCA1 mutations, and 39 and 11% for 

BRCA2-mutation carriers. As tumor suppressor genes, mutation of both alleles is required 

for neoplastic transformation to occur. The mutation inherited through the germ line is 

often small and causes premature protein truncation, while the wild-type allele is usually 

lost somatically in the tumor cell (loss of heterozygosity). Cancer predisposition syndromes 

due to mutations in PTEN (Cowden syndrome), STK11 (Peutz-Jeghers syndrome), TP53 (Li-

Fraumeni syndrome) and CDH1 are also associated with high risk of breast cancer and 

account for 5% of the familial risk. Moderate-penetrance genes have been identified 

through their involvement in biological pathways that include BRCA1 and BRCA2, and have 

also been reported in about 5% of familial breast cancers. Such is the case of CHEK2, ATM, 

BRIP1, PALB2, RAD50, RAD51B, RAD51C, RAD51D, XRCC2 and NBS1. Finally, genome-wide 

tag SNP association studies have led to the identification of nearly one hundred common 

low-susceptibility loci (Michailidou et al., 2015). Unlike high-susceptibility genes, most of the 

variants identified in these loci are found in non-coding regions of the genome and are likely 

to involve regulation of genes in multiple pathways. These genes explain altogether around 

14% of familial cancer risk.  

Still, approximately half of familial breast cancer cases show no mutations in any of 

these genes, and are classified as BRCAX families (Figure 3B) (Melchor and Benitez, 2013). 

These families may either carry a mutation in a gene still not associated with breast cancer 

or be explained by additive low-penetrance loci (polygenic model). Modern sequencing 

technologies, analysis of non-coding RNA expression (such as microRNA and lncRNA) and 
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epigenetic studies will add more details to the description of the complex genetic architec-

ture underlying hereditary breast cancer. 

 

Figure 3. Genetic landscape of breast cancer susceptibility. A) A minor fraction of breast cancer cases 
are hereditary. B) Proportion of familial breast cancer patients explained by the 
identified susceptibility genes (adapted from Melchor and Benitez, 2013).  

 

2. BREAST CANCER HETEROGENEITY 

Breast cancer is a highly heterogeneous disease including a number of different entities 

with specific histopathological features, biological behaviors, clinical outcomes and 

responses to therapies. The identification of these entities is essential for cancer 

management since it allows for the categorization of patients into clinically relevant 

subgroups to aid prognostication and determine the appropriate therapy. Historically, 

breast cancer classification has been addressed with different perspectives, from the more 

traditional histopathological subgroups to the newer molecular subtypes.    

2.1. Histopathological classification 

Breast cancer is classified by pathologists on its histological appearance together with 

clinical and pathological factors. The histological classification of breast carcinoma is based 

on the wide range of morphological phenotypes that tumors exhibit. Many different 

histological types are described in the latest edition of the WHO classification of breast 

tumors (Lakhani et al., 2012), including invasive breast carcinomas, precursor lesions, lesions 

of low malignant potential, benign epithelial proliferations, fibroepithelial, myoepithelial 

and mesenchymal neoplasms, among others. Invasive breast carcinoma comprises 70-80% 
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of all cases and is a group of malignant epithelial tumors characterized by invasion of 

adjacent tissues and a marked tendency to metastasize to distant sites. Invasive carcinoma 

of no special type (previously known as invasive ductal carcinoma not otherwise specified) 

comprises the largest group of invasive breast cancers. It is a heterogeneous group of 

tumors that fail to exhibit sufficient characteristics to achieve classification as a specific 

histological type such as lobular, tubular, cribiform or mucinous carcinomas. A major 

disadvantage of this classification is that it is unable to reflect the much wider heterogeneity 

of breast cancer, because it groups within the same class tumors that have a very different 

biological and clinical profile. As a result, a variety of clinical and pathological factors are 

routinely used to categorize patients with breast cancer. 

Tumor grade is one of the most important tumor intrinsic characteristics that can be 

determined by histopathological analysis of breast cancer. The grade of a breast cancer is 

representative of the aggressive potential of the tumor, with low grade cancers tending to 

be less aggressive than high grade cancers. The grading system most widely used is the 

Nottingham Histologic Score system (the Elston-Ellis modification of Scarff-Bloom-

Richardson grading system) (Bloom and Richardson, 1957; Elston and Ellis, 1991). In this 

scoring system pathologists assess the degree of differentiation (tubule formation and 

nuclear pleomorphism) and the proliferative activity (mitotic index) of a tumor. High-grade 

breast cancers tend to recur and metastasize early while patients with low-grade tumors 

generally have a very good clinical outcome. However, many breast cancers fell into the 

intermediate grade category that is very heterogeneous with varying prognosis. 

Incorporation of tumor stage allows a more accurate prediction of patient prognosis 

and has led to the development of the Nottingham Prognostic Index (Galea et al., 1992). The 

staging system for breast cancer is based on the TNM (Tumor, Node, Metastasis)-

classification and reflects the extent of spread of the cancer when it is first diagnosed. The 

TNM staging takes into account the size of the tumor (T), the lymph node involvement (N) 

and the presence or absence of distant metastases (spread to distant organs) (M). Once the 

T, N and M are determined, a stage of 0, I, II, III, or IV is assigned, with stage 0 being in situ, 

stage I being early stage invasive cancer, and stage IV being the most advanced. In general, 

TNM stage is inversely correlated with the prognosis. 
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Immunohistochemical (IHC) biomarkers such as the expression of estrogen receptor 

(ER), progesterone receptor (PR) and human epidermal growth factor receptor (HER2) 

provide additional therapeutic predictive value. In general, ER expression is associated with 

a favorable prognosis and response to endocrine therapy while HER2 amplification suggests 

aggressive behavior and response to anti-Her2 therapy (trastuzumab) (National Institutes of 

Health Consensus Development, 2001). Therefore, the current approach incorporates IHC 

biomarkers with tumor grade, tumor stage, presence of extensive vascular invasion and 

patient's age. Most of these variables are combined in Adjuvant! Online 

(www.adjuvantonline.com), a free web-based tool that predicts breast cancer outcomes and 

the efficacy of adjuvant therapy in patients with breast cancer. 

However, although the existing classification has been fundamental for prognostic and 

predictive evaluation in groups of patients, its role in evaluating risk in an individual patient 

with breast cancer is more limited, as tumors with apparent similarities in clinical and 

pathological characteristics may have different responses to therapy and clinical outcomes. 

This inaccuracy leads to overtreatment of some patients with unnecessarily toxic therapies 

and to undertreatment of others who receive false assurance of a favorable prognosis 

(Bergh and Holmquist, 2001). In addition, this classification provides limited insight into the 

complex underlying biology and the molecular pathways driving the disease in different 

subtypes. As a result, a molecular classification of breast cancers based on their gene 

expression profile has been proposed in recent years. 

2.2. Molecular classification: intrinsic subtypes 

Gene expression profiling using microarray technology allows simultaneous 

measurement of the expression of thousands of genes in a single tissue sample and 

represents a valuable tool to assess molecular and potential biological differences in breast 

cancers. Using this technology, Perou, Sorlie and colleagues (Perou et al., 2000; Sorlie et al., 

2001) demonstrated the stratification of breast tumors into several major subtypes beyond 

the traditional hormone receptor-positive and hormone receptor-negative subgroups. The 

most reproducibly identified molecular subtypes among the hormone receptor-positive 

tumors are the luminal A and luminal B groups. The HER2 and basal-like groups are the 

major molecular subtypes identified among hormone receptor-negative tumors. Other 
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molecular subtypes such as luminal C and normal breast-like groups have also been 

identified in some studies, but are less well characterized than the luminal A, luminal B, 

HER2, and basal-like types. These breast cancer molecular subtypes not only have distinct 

gene expression profiles, but also have unique clinical features, prognosis and response to 

therapy, as summarized in Table 1 (Schnitt, 2010). 

Table 1. Clinical and pathological features of major molecular subtypes of breast cancer determined 
by gene expression profiling (adapted from Schnitt, 2010). 

 
 

Luminal A subclass are mostly ER-positive low-grade tumors characterized by a high 

expression level of luminal cytokeratins (CKs 8/18/19), ER, PR, BCL2 and P27KIP1, and a low 

expression of TP53 and HER2. Luminal B subtype share many of these characteristics but 

tend to have higher grade and lower expression of hormone receptors and may overexpress 

HER2. Basal-like tumors are high grade ER- and PR-negative tumors with low levels of 

luminal CKs, BCL2, P27 and HER2, and a high expression of basal CKs 5/6/14/17, TP53 and 

epidermal growth factor receptor (EGFR). HER2 tumors are more likely to be high grade and 

are characterized by a low, if any, expression level of ER, PR and P53 and a high expression 

of HER2. 

The different gene expression patterns observed in breast tumors reflect their biological 

diversity and are associated with distinct prognosis (Figure 4) (Sorlie et al., 2001; Sorlie et 

al., 2003). An important finding is the separation of ER-positive tumors into at least two 

distinctive groups with a different disease course: luminal A with the best prognosis and 
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luminal B with a worse outcome, in particular with respect to relapse. Basal-like and HER2 

tumors have the worst prognosis, presenting the shortest overall survival and relapse-free 

survival.  

 

Figure 4. Kaplan–Meier analysis of disease outcome in breast cancer patients stratified according to 
the intrinsic subtypes. A) Time to development of distant metastasis in 97 sporadic cases. B) Overall 
survival for 72 patients with locally advanced breast cancer (adapted from Sorlie et al., 2003).  

 

Molecular subtypes have also proved to have significant predictive value for therapeutic 

response of breast cancer. Table 2 summarizes the treatment recommendations adopted by 

the 13th St Gallen International Breast Cancer Conference (2013) Expert Panel (Goldhirsch 

et al., 2013). Luminal cancers are generally hormone receptor-positive and appropriate for 

endocrine therapy. Luminal A subtype is less responsive to chemotherapy than luminal B 

tumors and therefore chemotherapy is not usually recommended for this subgroup of 

patients. HER2 positive tumors are suitable for targeted therapy such as trastuzumab with 

great clinical success. Chemotherapy is also appropriate for this group except for patients at 

very low risk. Basal-like subtype is resistant to current targeted therapies for breast cancer 

but benefits from chemotherapy much more than ER-positive tumors (Colleoni et al., 2000). 

Table 2. 2013 St Gallen consensus definition of intrinsic subtypes of breast cancer and 
recommendations of systemic treatment (adapted from Goldhirsch et al., 2013). 

Intrinsic subtype IHC definition Type of adjuvant therapy 

Luminal A ER+,PR+,HER2-,Ki67low Endocrine therapy alone* 
Luminal B ER+,HER2-,Ki67high/PRlow Endocrine + cytotoxic therapy 
Luminal B ER+,HER2+,anyKi67,anyPR Endocrine + cytotoxics + anti-HER2 therapy 
HER2 ER-,PR-,HER2+ Cytotoxics + anti-HER2 therapy 
Basal-like ER-,PR-,HER2- Cytotoxic therapy 

*Cytotoxics may be added in patients at high risk (high 21-gene RS, high 70-gene RS, grade 3, high 
nodal status) 
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2.3. Surrogate classifications 

The main problem of the original molecular classification is that it has been derived from 

investigations on fresh frozen tissue, and it is not applicable to formalin-fixed and paraffin-

embedded (FFPE) material, limiting its use in the clinical practice. More recently, a gene 

expression assay using 50 genes (PAM50) has been developed for use on FFPE tissue (Parker 

et al., 2009). The assay is based on quantitative real-time reverse transcription-polymerase 

chain reaction (qRT-PCR) of genes involved in proliferation, ER and ER-regulated genes, 

HER2, and basal and myoepithelial characteristics. The predictor accurately identifies the 

major molecular subtypes of breast cancer and generates risk-of-relapse (ROR) scores. The 

ability of the ROR score to predict prognosis has been confirmed in several retrospective 

investigations using tumor samples of patients with long-term follow-up data and of 

patients enrolled in randomized, clinical trials (Ellis et al., 2011; Nielsen et al., 2010). The 

PAM50 test is currently being developed for clinical use on the NanoString nCounter 

Analysis System (Prosigna™ Breast Cancer Gene Signature Assay, NanoString Technologies, 

Seattle) (Geiss et al., 2008; Reis et al., 2011). 

Another attempt to bring the molecular classification of breast cancer into the clinical 

practice has been the use of the more familiar immunohistochemical markers. Accordingly, 

the combined evaluation of ER, PR, HER2 and Ki67 immunoreactivity would approximate the 

molecular classification of luminal A, luminal B, HER2-enriched and basal-like breast cancers. 

In fact, the panelists of the last St. Gallen Conference have endorsed the use of this markers 

to identify breast cancer subtypes and to inform the choice of the systemic treatments 

(Table 2) (Goldhirsch et al., 2013). However, recent studies have indicated that other 

markers in addition to ER, PR, HER2 and Ki67 are required to more accurately approximate 

the molecular subtypes. As an example, some basal-like breast cancers will not show the 

expected triple negative (ER, PR and HER2 negative) immunophenotype, and vice versa not 

all the immunohistochemically triple negative breast cancer will be classified as basal-like by 

gene expression profiling (Carey et al., 2010). The basal-like group can be defined more 

precisely using, in addition to ER, PR, and HER2, antibodies to CK5/6 and EGFR as basal-like 

cancers are most often triple negative and also express CK5/6 and/or EGFR. IHC-based 

definition of luminal A and luminal B breast tumors is also imperfect when compared with 
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gene expression profiling. As a result, a cut-point of >20% for PR has been proposed to 

define luminal A subtype (Prat et al., 2013).    

2.4. Triple negative breast cancer: a clinical challenge 

Triple negative breast cancers are defined as tumors that lack ER and PR expression and 

HER2 overexpression. These tumors represent an important clinical challenge because they 

do not respond to current targeted therapies for breast cancer, being chemotherapy the 

only option for triple negative patients. Moreover, these tumors are associated with the 

most aggressive clinical behavior and poorest prognosis in breast cancer. 

Around 15% of invasive breast cancers are triple negative tumors. Even though there is 

considerable overlap between the profiles of triple negative and basal-like tumors, not all 

basal-like cancers determined by gene expression profiling lack ER, PR and HER2, and 

conversely, not all triple negative breast cancers express basal markers at the protein level. 

It is estimated that nearby 80% of basal-like cancers are triple negative and around 70% of 

triple negative tumors show a basal-like phenotype. The remainder 30% of triple negative 

tumors consists of a variety of molecular subtypes that are biologically distinct (Badve et al., 

2011). In addition to this molecular heterogeneity, there is a histologic diversity. Although 

most of triple negative cancers are invasive carcinomas of no special type, other rare types 

are also included, ranging from those with an excellent prognosis to aggressive metaplastic 

carcinomas. Therefore, there is a clinical need to identify prognostic and predictive markers 

to substratify patients with triple negative cancers into groups that can be managed more 

efficaciously with specific therapies.  

2.4.1. Similarities with basal-like breast cancers 

Due to their large overlap, triple negative tumors show many characteristics that are 

associated with basal-like cancers. Typically they are grade 3 carcinomas with elevated 

mitotic count, high apoptotic rate, geographic or central tumor necrosis or fibrosis, a 

pushing border of invasion and a stromal lymphocytic response. In addition to the lack of 

expression of ER, PR and HER2, they frequently express basal cytokeratins (particularly CKs 

5, 14 and 17) and the EGFR (Her1). Compared with other subtypes, they are more likely to 

express myoepithelial markers, such as caveolins, c-kit and P-cadherin, and less likely to 
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express epitelial markers, such as e-cadherin. They also have high expression of genes 

associated with proliferation (Ki67 and TOP2A) and up to 70% of them show TP53 gene 

mutations and/or nuclear accumulation. Expression of p53 homolog p63 is also upregulated 

(Carey et al., 2010). 

Triple negative and basal-like cancers occur more frequently in younger patients (<50 

years old) and generally behave aggressively. Women of African ancestry have been shown 

to have higher rates of triple negative disease, probably due to mutations that predispose to 

this subtype. The pattern of spread of tumors with a basal-like phenotype is different from 

that of other subtypes: while luminal tumors typically cause late bone metastases, triple 

negative breast cancer is more likely to cause early visceral metastases, fundamentally in 

brain and lungs. In addition, triple negative breast cancers are associated with a higher 

recurrence rate after diagnosis, a shorter disease-free interval, a shorter period from the 

time of recurrence until death and a shorter overall survival. The peak risk of recurrence is 

between the first and third years and the majority of deaths occur in the first 5 years 

following therapy (Dent et al., 2007). 

2.4.2. Triple negative breast cancer and the BRCA1 pathway  

There is increasing evidence to suggest a link between BRCA1 pathway and triple 

negative breast cancers. The majority of tumors in BRCA1 mutation carriers are triple 

negative and show morphological and immunohistochemical similarities to basal-like 

cancers. Both triple negative and BRCA1-mutated tumors are characterized by high 

histological grade, atypically medullary features, high proliferation indices, pushing borders 

and lymphocytic infiltrate. Both lack ER, PR and HER2 expression and show p53 

immunoexpression and TP53 somatic mutations, EGFR expression, peculiar patterns of cell-

cycle protein expression and characteristic copy number aberrations. All this characteristics 

has led to the definition of the BRCAness phenotype (Turner and Reis-Filho, 2006). 

Moreover, it has been shown that BRCA1-mutated tumors consistently segregate with 

sporadic basal-like breast cancers in hierarchical clustering analysis using microarray 

expression profiling data. By contrast, tumors from BRCA2 mutation carriers are 

predominantly hormone receptor positive and show similar gene expression profiles to 

sporadic luminal cancers (Sorlie et al., 2003). 
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Even though BRCA1 somatic mutations have not been identified in sporadic triple 

negative tumors, a reduced expression of the BRCA1 gene has been observed in most of the 

cases, which indicates a central role of BRCA1 in the development of basal-like carcinomas. 

This low expression has been associated with BRCA1 promoter hypermethylation, loss of 

heterozygosity (LOH) at the BRCA1 locus and overexpression of two proteins: HMGA1 and 

ID4 (Mueller and Roskelley, 2003; Turner et al., 2007). Nevertheless, it seems that other 

mechanisms might also be involved in the inactivation of BRCA1 in sporadic triple negative 

tumors as those already described cannot account for the entire reduction of BRCA1 in 

these tumors. 

2.4.3. Treatment strategies 

Given the lack of hormone receptors and HER2 overexpression, chemotherapy is the 

only possibility for patients with triple negative disease. Regimens based on anthracyclines 

or taxanes are effective with high in-breast response rates. However, relapse rates are high 

in patients who do not achieve a pathologic complete response, resulting in a short disease-

free survival and overall survival. Hence, other agents such as EGFR inhibitors, Src inhibitors, 

anti-angiogenic agents (Bevacizumab), androgen receptor targeted agents, poly(ADP-ribose) 

polymerase (PARP) inhibitors and platinum salts are currently being evaluated. In particular, 

platinum compounds and PARP inhibitors are effective in tumors with a dysfunctional 

BRCA1 pathway (Hudis and Gianni, 2011). The ongoing trials will show if these agents are 

more effective than conventional therapy and whether they are able to improve outcomes 

in this poor-prognosis group of patients.  

2.5. Gene expression predictors of breast cancer outcomes 

During the last decade, several gene signatures have been described for predicting 

outcome in patients with breast cancer. Two of them, Oncotype DX (Paik et al., 2004) and 

Mammaprint (Glas et al., 2006), have been validated with consistent results across multiple 

studies and have been shown to provide independent prognostic information beyond 

standard clinicopathological variables. These predictors have been endorsed by the 2013 St 

Gallen International Breast Cancer Expert Panel (Goldhirsch et al., 2013) and are the most 

widely used clinical gene-expression assays. 
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Oncotype is a 21-gene signature generated to predict prognosis of node-negative 

patients treated with tamoxifen. This assay uses qRT-PCR to measure the expression of 5 

reference genes and 16 genes of interest related to proliferation, HER2 and ER signalling. 

The resulting recurrence score (RS) is 0 to 100, which translates into three risk-group 

categories: low (RS <18), intermediate (RS from 18 to <31) and high (RS ≥31). An interesting 

feature of this test is the fact that frozen tissues are not needed since the score is generated 

using RNA from FFPE tumors. Oncotype has been approved to identify a subgroup of 

patients within the ER-positive, node-negative breast cancer group who would benefit from 

addition of chemotherapy and more importantly to identify patients who could possibly be 

spared cytotoxic therapy. Currently, the RS is undergoing prospective validation as part of 

the Trial Assigning Individualized Options for Treatment (TAILORx) trial in order to establish 

if adjuvant chemotherapy improves survival in the group of patients with the intermediate 

score (Sparano and Paik, 2008).  

Mammaprint is a 70-gene signature established to predict outcome in node-negative 

patients irrespective of ER status. The assay is based on a microarray platform that 

measures the expression of 70 genes associated with proliferation, invasion and 

angiogenesis. Initially the test could only be performed on fresh tumor (rarely available), but 

improvements in RNA processing have enabled its use in FFPE tissue. MammaPrint divides 

node-negative patients in two groups of low and high risk of recurrence. Currently this assay 

is undergoing prospective validation as part of the Microarray for Node-Negative Disease 

Avoids Chemotherapy (MINDACT) trial in order to establish if lymph node–negative breast 

cancer patients with low risk of recurrence according to Mammaprint but at high risk of 

recurrence based on clinicopathological factors can be safely spared adjuvant chemotherapy 

without affecting survival outcomes (Cardoso et al., 2008). 

Although promising, these gene expression assays assign almost all patients with 

hormone receptor negative disease as high risk. They have been shown to made robust 

prognostic predictions within the group of ER-positive patients but not within the ER-

negative disease (Fan et al., 2011). Hence, other signatures able to predict survival within 

the HER2-positive and triple negative cancers are urgently needed. 



52 
 

2.6. New technologies and novel subgroups 

A new breast cancer subtype, known as claudin-low, has been identified in human 

tumors, in mouse tumors (Herschkowitz et al., 2007) and in a panel of breast cancer cell 

lines (Prat et al., 2010). These tumors are poor prognosis ER-, PR- and HER2- invasive ductal 

carcionomas characterized by low expression of genes involved in tight junctions and cell-

cell adhesions including claudins 3, 4, and 7, occludin and E cadherin, showing high 

expression of epitelial to mesenchymal transition genes and stem cell features. As a 

consequence of the identification of this novel subgroup, triple negative breast cancers 

would be further subdivided into basal-like and claudin-low tumors.   

More recently, the emergence of next generation sequencing has allowed the 

characterization of the mutational landscape of breast cancer. These analysis have identified 

likely genomic drivers of the four classical subtypes by focusing on the detection of genes 

more frequently mutated than expected by chance (Banerji et al., 2012; Stephens et al., 

2012; The Cancer Genome Atlas, 2012). Somatic mutations in only three genes (TP53, 

PIK3CA and GATA3) have been shown to occur at >10% incidence across all breast cancers, 

although their frequency is different among the intrinsic subtypes. 

The same technology has been used in the Molecular Taxonomy of Breast Cancer 

International Consortium (METABRICK) study in which the integrated analysis of both 

genomic and transcriptomic data across 2000 breast tumors has revealed ten different 

subtypes of breast cancer (Curtis et al., 2012a). In this analysis, germline variants and 

somatic aberrations were found to be associated with alterations in gene expression, 

although somatic copy number alterations accounted for the greatest variability in gene 

expression. Unsupervised analysis of joint copy number and gene expression data revealed 

ten novel subgroups with distinct clinical outcomes and patterns of chemosensitivity 

(IntClust 1-10). This genome-driven integrated classification has just been simplified into a 

gene-expression based method that has been validated in 7500 breast tumors (Ali et al., 

2014). The clinical relevance of the IntClust classification and its implications for the 

development of new targeted therapies will be disclosed in the next years. 
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3. MICRORNAs AS MASTER GENE REGULATORS  

3.1. MicroRNA biogenesis and function 

MicroRNAs (miRNA) are small (~22 nucleotides) single-stranded non-coding RNAs that 

have an important function in gene expression regulation. After the discovery of the first 

miRNA lin-4 in Caenorhabditis elegans in 1993 (Lee et al., 1993), these small RNAs have 

been found to be an abundant class of RNAs in plants, animals and DNA viruses. MiRNAs act 

as negative regulators at post-transcriptional level by binding at the 3’ untranslated regions 

(3’UTRs) of their target messenger RNAs (mRNAs). Depending on the level of 

complementarity between miRNA “seed” sequence and its target, they trigger either 

translational repression or mRNA degradation (Bartel, 2009). The exact mechanisms of 

miRNA function are still far from being fully understood and are a matter of active research. 

With more than 2500 reported human miRNAs (miRBase 21.0 release, June 2014), and each 

one potentially regulating hundreds of mRNAs, miRNAs represent one of the largest classes 

of gene regulators. Since many of these miRNA targets are involved in various signaling 

pathways, their impact on gene expression can be significantly amplified. In addition, many 

miRNAs are evolutionarily conserved from worms to humans, which implies that they are 

essential both during development and in the adult body. MiRNAs can function as master 

gene regulators, play an important role in many cellular processes such as differentiation, 

proliferation, apoptosis and stress response, and their alteration contributes to a range of 

human diseases, including cancer. 

The biogenesis of miRNAs involves a complex protein system (Figure 5). MiRNAs, which 

generally seem to be transcribed by RNA polymerase II, are initially made as large RNA 

precursors that are called pri-miRNAs. The pri-miRNAs are processed in the nucleus by 

Drosha, a member of the RNase III enzyme family, in conjunction with the double-stranded 

RNA-binding protein Pasha, into ~70-nucleotide pre-miRNAs, which fold into imperfect 

stem-loop structures. After exported from the nucleus in a GTP-dependent fashion by 

exportin 5, the pre-miRNAs are subsequently processed by a second RNase III endonuclease 

called Dicer, releasing mature double-stranded miRNAs (~22 nucleotides in length), which in 

turn are incorporated into the RNA-induced silencing complex (RISC). One of the strands is 
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preferentially incorporated while the other is degraded giving rise to a functional RISC 

complex that can target specific protein-coding mRNAs (Esquela-Kerscher and Slack, 2006). 

 

Figure 5. MiRNA biogenesis and functions (adapted from Esquela-Kerscher and Slack, 2006). 

 

3.2. Alteration of miRNA expression in cancer 

MiRNAs have been proposed to have a central role in controlling cellular transformation 

and tumor progression since they can function as tumor suppresors and oncogenes 

(oncomiRs). The downregulation or deletion of a miRNA that targets an oncogene leads to 

tumor formation, and vice versa, the amplification or overexpression of a miRNA that 

targets a tumor suppressor results in tumorigenesis (Esquela-Kerscher and Slack, 2006). 

MiRNA genes are usually located in small chromosomal alterations in tumors (in 

amplifications, deletions or linked to regions of loss of heterozygosity) or in common 

chromosomal-breakpoints that are associated with the development of cancer (Calin et al., 

2004). In addition to structural genetic alterations, miRNAs can also be silenced by promoter 
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DNA methylation, loss of histone acetylation and abnormalities in miRNA-processing genes 

and proteins. Somatic mutations in miRNA seed sequence could lead to lack of repression of 

oncogenic mRNAs and/or aberrant downregulation of tumor supressive genes, but these 

seem to be infrequent (Diederichs and Haber, 2006). 

Cancer cells show alterations in their miRNA expression profiles, and emerging data 

indicate that these patterns could be useful in improving the classification of cancers and 

predicting their behaviour. The first evidence of involvement of miRNAs in human cancer 

came from molecular studies characterizing the 13q14 deletion in human chronic 

lymphocytic leukemia (CLL). Two miRNAs, miR-15a and miR-16-1, located within this región 

were identified to be either deleted or downregulated in >50% CLL (Calin et al., 2002). 

Further studies have shown that miR-15a and miR-16-1 negatively regulate BCL2, an anti-

apoptotic gene that is often overexpressed in many cancers, including leukaemias and 

lymphomas (Cimmino et al., 2005). Following this initial discovery, abnormal expression of 

miRNAs has been found in both solid and hematopoietic tumors by various genome-wide 

miRNA expression analysis techniques (Lu et al., 2005; Volinia et al., 2006). Cancer cells 

show distinct miRNA profiles compared with normal cells, and different miRNA expression 

profiles have been reported in tumors of different origin. Indeed, miRNA expression 

profiling seems to be a more accurate way of classifying tumors than gene expression 

profiling (Lu et al., 2005). Furthermore, miRNAs have one great practical advantage over 

mRNA: they are relatively well preserved in FFPE tissues presumably due to their small size 

and possibly a sheltered micro-environment (Hasemeier et al., 2008). 

3.3. MiRNAs in breast cancer 

Accumulating evidence demonstrates that aberrant expression of miRNAs is associated 

with breast cancer. The seminal study of miRNA expression in 76 breast tumors and 10 

normal breast tissues led to the identification of 29 miRNAs whose expression is significantly 

dysregulated in breast cancer with the most consistently dysregulated miRNAs being miR-

125b, miR-145, miR-10b, miR-21 and miR-155. Mir-10b, miR-125b and miR-145 were found 

to be downregulated, whereas miR-21 and miR-155 were upregulated, suggesting that they 

may potentially act as tumor suppressor genes or oncogenes, respectively (Iorio et al., 

2005). Follow-up studies based on different technologies have validated some of these 
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miRNAs and identified new ones, suggesting reproducibility of miRNA deregulation in breast 

cancer (Farazi et al., 2011; Persson et al., 2011; Sempere et al., 2007; Volinia et al., 2006; 

Volinia et al., 2012). Since the number of annotated miRNAs increases every year, new 

miRNAs are still expected to be asociated with breast cancer.  

In addition, some studies have correlated miRNA expression with specific breast cancer 

histopathological features such as tumor stage, proliferation index, vascular invasion, ER, PR 

and HER2 status (Iorio et al., 2005; Lowery et al., 2009; Mattie et al., 2006; Volinia et al., 

2012). Furthermore, preliminary studies suggest that miRNA signatures could define, 

similarly to what has been found by expression profiling of coding genes, the different 

intrinsic molecular subtypes (luminal A, luminal B, basal-like, HER2+). By analyzing the 

expression of 309 human miRNAs, Blenkiron and colleagues detected a number of miRNAs 

differentially expressed between these molecular subtypes (Blenkiron et al., 2007). 

Identification of miRNAs specific of breast cancer molecular subtypes would be of great 

relevance due to their potential influence on the different behavior of these tumors. 

Subtype-specific miRNAs could be used for classification purposes, as well as to provide 

better understanding of the biology of these groups of tumors, especially in the case of 

triple negative cancers, which are associated with the most aggressive clinical behavior and 

poorest prognosis in breast cancer and do not respond to current targeted therapies.  

3.4. Circulating miRNAs as novel non-invasive biomarkers 

Perhaps the most attractive application of miRNAs as cancer biomarkers comes from the 

finding of circulating miRNAs in different body fluids such as plasma, serum, urine, saliva, 

milk, etc. Tumor-specific miRNAs were first discovered in the serum of patients with diffuse 

large B-cell lymphoma (Lawrie et al., 2008). Since then, circulating miRNAs are attracting a 

great deal of attention as novel cancer biomarkers due to their ease of access and 

remarkable stability. It has been consistently shown that circulating miRNAs remain stable 

after being subjected to severe conditions that would normally degrade most RNAs, such as 

boiling, very low or high pH levels, extended storage, and 10 freeze–thaw cycles (Chen et al., 

2008). This stability can be partially explained by two mechanisms: (i) protection of secreted 

miRNAs by the membrane of vesicles of endocytic origin called exosomes or microvesicles 

(30–100 nm) (Valadi et al., 2007), and (ii) stabilization of secreted miRNAs by their 
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association with RNA-binding proteins, such as AGO2 and NPM1 (Arroyo et al., 2011). 

Importantly, exosomes represent a newly discovered mechanism by which donor cells can 

communicate and influence the gene expression of recipient cells (Valadi et al., 2007), and 

studies have shown that tumor-derived exosomes can promote tumor progression (Skog et 

al., 2008). Although it is unclear how circulating miRNAs are liberated into body fluids, the 

packaging of specific miRNA populations into microvesicles appears to be a selective 

process. Studies in malignant mammary epitelial cells have demonstrated that the cellular 

and the extracellular miRNA profiles are different, suggesting that specific miRNAs are 

selected to be intracellularly retained or released by exosomes (Pigati et al., 2010). In 

addition, it seems that certain circulating miRNAs could be differentially expressed in the 

serum and plasma of breast cancer patients when compared with healthy individuals (Asaga 

et al., 2011; Cuk et al., 2013; Chan et al., 2013; Roth et al., 2010), indicating that these 

molecules may reflect the presence of a tumor. Nevertheless, few studies have been 

conducted in this area and further research is required.  

In summary, the findings discussed above highlight the potential clinical utility of 

circulating miRNAs in breast cancer diagnosis. Studies in large cohort of patients with well-

defined clinical data are needed in order to identify circulating miRNAs that could 

discriminate breast cancer patients from healthy individuals with robustness and 

reproducibility. In addition, their analysis in treated patients will shed light on their 

correlation with tumor dynamics. 
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A large number of studies have explored the value of gene expression profiling in breast 

cancer, thus leading to some very interesting findings that have been successfully translated 

to the clinic. However, few reports have investigated the usefulness of miRNA expression 

profiling in breast cancer diagnosis, prognosis and treatment. Given the important role that 

miRNAs play in tumorigenesis and their great potential as novel clinical biomarkers, the 

specific goals of this thesis were: 

 

1. To identify miRNAs differentially expressed in breast tumors and the main molecular 

subtypes of breast cancer (luminal A, luminal B, Her2 and triple negative) and to 

establish miRNA signatures for their discrimination. 

 

2. To study in plasma the status of the most deregulated miRNAs identified in breast 

tumors and to analyze their utility as non-invasive biomarkers for early breast 

cancer detection. 

 

3. To identify prognostic and/or predictive miRNAs in triple negative breast cancer 

patients. 

 

4. To investigate the involvement of miRNAs in BRCA1 regulation in sporadic triple 

negative breast cancer. 
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1. PATIENTS AND SAMPLES 

1.1. Types of samples and ethics statement 

Samples used in this thesis were collected from breast cancer patients and healthy 

women of the same ethnicity (white Spaniards) in five Spanish institutions: Hospital Virgen 

de la Macarena and Hospital Virgen del Rocío (Sevilla), Hospital Monte Naranco and 

Biobanco del Principado de Asturias (Oviedo) and Sistemas Genómicos (Valencia). Two 

different types of samples were obtained:  

Formalin-fixed paraffin embedded (FFPE) breast tumors were obtained from patients 

undergoing surgery for breast cancer. In addition, normal breast tissues were acquired after 

breast reduction surgery from healthy women with no family history of cancer and were 

used as control samples. FFPE tissues were stained by hematoxylin and eosin and examined 

by two pathologists (Ricardo González-Cámpora and Primitiva Menéndez). The tumoral area 

was identified and macrodissected from 3 sections of 30 μm thicknesses for subsequent 

RNA extraction. 

Plasma samples were collected from breast cancer patients and healthy women. 

Plasma from breast cancer patients were divided into two groups: those obtained at the 

time-point of diagnosis before any treatment such as surgery, radiation or systemic therapy 

(pretreated) and those obtained after treatment (postreated). EDTA blood samples were 

processed for plasma within 1 hour of collection. Blood was centrifuged at 3000 g for 20 

minutes at 10ºC followed by further centrifugation of the supernatant at 15500 g for 10 

minutes at 10ºC to remove cell debris. The plasma was stored at -80ºC until use.  

The study was performed in accordance with the principles of the Declaration of 

Helsinki. Written informed consent was obtained from all patients prior to sample 

collection, and the study was approved by the ethics committee of Instituto de Salud Carlos 

III (Madrid), Hospital Virgen del Rocío and Virgen de la Macarena (Sevilla) and Hospital 

Monte Naranco (Oviedo). 
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1.2. Patients’ clinical data 

Clinicopathologic features (age at diagnosis, histological type, tumor size, histologic 

grade, lymph node status, stage and expression of ER, PR, c-erb B2 and Ki-67) were retrieved 

from all patients. Tumors were classified as triple negative, Her2, luminal B or luminal A 

based on the expression of inmunohistochemical markers (ER, PR, c-erb B2 and Ki-67), 

following the criteria adopted in the 12th St Gallen International Breast Cancer Conference, 

2011 (Goldhirsch et al., 2011) and the definition of luminal A tumors proposed by Prat et al. 

(Prat et al., 2013). A summary of these criteria is shown in table 3. In the case of a weak 

positive reaction of c-erb B2, fluorescent in situ hybridization was performed to confirm the 

overexpression of this receptor. 

Table 3. Criteria used in this thesis to classify breast tumors into the main 
molecular subtypes. 

Molecular subtype IHC definition 

Luminal A ER+, PR high (≥20%), HER2-, Ki67 low (≤14%) 
Luminal B ER+, HER2-, Ki67 high (>14%) or PR low (<20%) 
 ER+, HER2+, any Ki67, any PR 
HER2 ER-, PR-, HER2+ 
Triple negative ER-, PR-, HER2- 

 

In addition, follow-up information was obtained from triple negative patients with the 

objective of performing survival analysis. Relapse-free survival (RFS) was defined as the time 

between initial diagnosis and relapse or death by the disease, with observations censored at 

last follow-up if no event had occurred. Median follow-up time of patients alive was 62 

months (range: 57–99 months). Patients had not been treated with any systemic 

neoadjuvant therapy and had received adjuvant chemotherapy consisting in most cases in 

taxanes and/or anthracyclines. 

1.3. Samples cohorts 

During the elaboration of this thesis four different studies were performed including 

variable number of samples.  
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First study: one hundred and twenty-two FFPE breast tumors, as well as 11 normal 

breast tissues, were used for microarray profiling. Breast tumors were divided into a training 

(n=61) and a test set (n=61). Both series comprised a similar number of samples from each 

molecular subtype. 

Second study: plasma samples were collected from 83 breast cancer patients and 26 

healthy women for study of selected miRNAs in blood. Plasma from breast cancer patients 

were divided into two groups: those obtained at the time-point of diagnosis before any 

treatment (n=36) and those obtained after treatment (n=47). In addition, a validation set of 

plasma samples from 114 pretreated breast cancer patients and 116 healthy women was 

obtained. 

Third study: twenty-one FFPE breast tumors from triple negative patients included in 

the first study were used here for survival analysis. A second series of 22 TN FFPE tumors 

was obtained for validation of selected miRNAs.  

Fourth study: a panel of 6 human cell lines was used as a model to study functional 

effects of miRNA expression and inhibition. Five of them (MDA-MB-231, Hs578T, SKBR3, 

BT474 and MCF7) corresponded to sporadic breast tumors and were representative of the 

main molecular subtypes of breast cancer, and one (HEK-293T) was derived from an 

embryonic kidney. 

2. RNA EXPRESSION ANALYSIS 

2.1. RNA extraction and quantification 

Total RNA was extracted from FFPE tissues using miRNeasy FFPE Kit (Qiagen, Valencia, 

CA, USA) according to the manufacturer’s instructions. RNA from plasma was extracted from 

250 ml of plasma using miRNeasy Mini Kit (Qiagen, Valencia, CA, USA) and the modified 

Exiqon protocol that includes the addition of MS2 RNA (Roche, Basel, Switzerland), a carrier 

RNA that ensures the highest and most consistent yield of RNA in the samples. The final 

elution volume was 50 μl. Finally, RNA from cell lines was extracted using miRNeasy Mini Kit 
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(Qiagen) according to the manufacturer’s instructions. RNA quality and quantity were 

assessed by NanoDrop Spectophotometer (NanoDrop technologies, Wilmington, DE, USA). 

2.2. Microarray hybridization 

MicroRNA expression profiling was performed using miRCURY LNATM microRNA Array 

7th generation – hsa, mmu & rno (Exiqon A/S, Vedbaek, Denmark), in a single-color 

experimental design. The miRCURY LNATM microRNA Array 7th generation – hsa, mmu & rno 

contains capture probes for all microRNAs in human, mouse, rat and their related viruses as 

annotated in miRBase Release v.18.0. This includes probes for 1919 human miRNAs in 

quadruplicate: 1894 miRNAs from miRBase Release 18.0 and 25 hsa-miRPlus not included in 

miRBase (Exiqon proprietary). In addition, 82 control probes are included: 52 spike-in 

control probes to ensure optimal labeling and hybridization, 7 negative control probes and 

23 probes complementary to small nuclear RNAs. 

Labeling and hybridization procedure was performed as recommended by 

manufacturer, using miRCURY LNA™ microRNA Hi-Power Labeling Kit (Exiqon). First, 300ng 

of total RNA was treated with Calf Intestinal Alkaline Phosphatase (CIP) to remove the 5’-

phosphates from the microRNA termini. The 5 ul –reaction contained 0.5 ul of CIP buffer, 

0.5 ul of CIP enzyme, 1 ul of synthetic RNA spike-in and 3 ul of RNA. The reaction was 

incubated at 37ºC for 30 min and 95ºC for 5 min. Second, a Hy3 fluorescent label was 

attached enzymatically to the 3’-end of the microRNAs in the total RNA sample. The 12.5 ul -

reaction contained 3 ul of labeling buffer, 1 ul of labeling enzyme, 1.5 ul of Hy3 fluorescent 

dye, 2 ul of DMSO and 5 ul of CIP treated RNA. The reaction was incubated at 16ºC for 1h 

and heat inactivated by incubation at 65ºC for 15 minutes. Third, labeled samples were 

combined with 200 ul of hybridization buffer, denatured at 95ºC for 2 min and loaded onto 

a miRCURY LNA™ microRNA array slide. Hybridization took place over 16h at 56ºC using 

Agilent Hybridization chambers SureHyb and a rotating oven.  

Arrays were then washed, dried and scanned with Agilent G2565AA Microarray Scanner 

System (Agilent Technologies, Santa Clara, CA, USA), with the laser set to 635nm, at Power 

80 and PMT 70 setting, and a scan resolution of 10μm. To avoid ozone bleaching, 

microarrays were scanned in an ozone-free environment (less than 2 ppb ozone). 
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Fluorescence intensities on scanned images were measured with Agilent Feature Extraction 

software, version 10.7.3 (Agilent Technologies), using the modified Exiqon protocol. 

Reproducibility and reliability of each single microarray was assessed using Quality Control 

report data. Microarray dataset is publically available at NCBI’s Gene Expression Omnibus 

database http://www.ncbi.nlm.nih.gov/geo/ under GEO accession number GSE58606.  

2.3. Microarray data analysis  

2.3.1.  Normalization and pre-processing 

Microarray background subtraction was carried out using normexp method. Processed 

intensity data were then log2 transformed and normalized using quantiles between arrays 

normalization. Replicate probes were merged by their mean profile and the data set was 

filtered to eliminate miRNAs with low expression variation across samples (VAR<0.03), 

reducing the number of miRNAs to 698.  

2.3.2. Clustering 

In order to obtain clustering of the data, unsupervised hierarchical clustering was 

performed using Gene Cluster software with average linkage clustering, Pearson correlation 

and uncentered metrics (http://rana.stanford.edu/software). Java Tree View was used for 

image visualization (http://jtreeview.sourceforge.net). The level of expression of each 

miRNA in each sample, relative to the median level of expression of that gene across all the 

samples was represented using a red-black-green color scale. Green corresponds to 

expression value below median, black equal to median, and red above the median.   

2.3.3. Differential expression analysis 

Differentially expressed miRNAs were obtained by applying linear models with R limma 

package (Smyth G) (Bioconductor project, http://www.bioconductor.org), implemented in 

the POMELOII tool (http://asterias.bioinfo.cnio.es/). To account for multiple hypotheses 

testing, the estimated significance level (p value) was adjusted using Benjamini & Hochberg 

False Discovery Rate (FDR) correction (Benjamini et al., 2001). FDR<0.05 was set as 

threshold to select significantly differentially expressed miRNAs. 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58606
http://www.bioconductor.org/
http://asterias.bioinfo.cnio.es/


70 
 

2.3.4. Building miRNA microarray classifiers  

In order to identify the smallest set of miRNAs that better discriminate breast tumors 

from normal breast tissues, and each molecular subtype from the rest of subtypes, five 

miRNA microarray classifiers were generated using samples from the training set. The 

predictors were built with the 698 miRNAs used in the differential expression analysis and 

the most relevant miRNAs were chosen using correlation feature selection, a method that 

evaluates a set of features on the basis of the following hypothesis: "A good feature subset 

is one that contains features highly correlated with the class, yet uncorrelated with each 

other".  

We evaluated the performance of different methods that have been shown to function 

well with microarray data (Romualdi et al., 2003; Wessels et al., 2005): support vector 

machines (SVM), k-nearest neighbor (KNN) and random forest (RF), and that are included in 

the Prophet tool (http://babelomics.bioinfo.cipf.es/). These algorithms were applied to: i) 

61 breast tumors and 7 normal breast tissues, ii) 15 triple negative and 46 non-triple 

negative tumors, iii) 13 Her2 and 48 non-Her2 tumors, iv) 17 luminal B and 44 non-luminal B 

tumors, and v) 16 luminal A and 45 non-luminal A tumors. The classification performance 

was evaluated by 5-fold cross validation repeated 10 times: samples were randomly divided 

into 5 sets with each set containing a fair representation of the classes to be learned. A 

predictor was built based on the data of 4 of these sets and tested in the remaining set of 

samples to determine its efficiency. This process was repeated 10 times with different 

combinations of samples and average classification efficiency was determined. Classifiers 

producing the minimal root median square error (RMSE) and maximal accuracy, Mathews 

correlation coefficient (MCC) and area under the curve (AUC) were selected.  

To validate the performance of the selected classifiers, we used the samples from the 

test set: i) 61 breast tumors and 4 normal breast tissues, ii) 16 triple negative and 45 non-

triple negative tumors, iii) 13 Her2 and 48 non-Her2 tumors, iv) 16 luminal B and 45 non-

luminal B tumors, and v) 15 luminal A and 46 non-luminal A tumors. Sensitivity and 

specificity values were estimated based on the confusion matrix. 
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2.3.5. MiRNA target prediction 

A number of computational prediction programs have been developed to identify 

putative miRNA targets based on sequence complementarity between the miRNA and its 

potential mRNA target 3’ untranslated region (3’UTR) (Bartel, 2009). The most important 

factor for miRNA target prediction seems to be perfect complementarity to the 5’ region of 

the miRNA centered on nucleotides 2-8, which is called “miRNA seed” (Figure 6A). 

Furthermore pairing to the 3’ region of the miRNA can also compensate for a mismatch in 

the seed region. These so called “3’-compensatory sites” are centered on miRNA 

nucleotides 13-17 (Figure 6B). In an attempt to increase target prediction specificity some 

prediction algorithms are relying on target site evolutionary conservation and 

thermodynamic stability of the RNA-RNA duplex. To determine potential mRNA targets for 

specific miRNAs we have used several publically available target prediction algorithms, 

namely, TargetScan (http://www.targetscan.org/),  miRanda (http://www.microRNA.org/), 

Pita (http://genie.weizmann.ac.il/pubs/mir07/mir07_dyn_data.html), MicroTar 

(http://tiger.dbs.nus.edu.sg/microtar/), RNAHybrid (http://bibiserv.techfak.uni-

bielefeld.de/rnahybrid/) and DIANA microT (http://diana.imis.athena-

innovation.gr/DianaTools/index.php?r=microT_CDS/index). 

In addition, we have used a number of databases that compile experimentally validated 

miRNA-gene interactions, such as Diana TarBase (http://diana.imis.athena-

innovation.gr/DianaTools/index.php?r=tarbase/index), OncomirDB 

(http://bioinfo.au.tsinghua.edu.cn/member/jgu/oncomirdb/index.php), and miRecords 

(http://mirecords.biolead.org/). 
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Figure 6. Types of miRNA target sites. A) Canonical, 6-8 nt seed-matched sites. B) Atypical 3’ pairing. 
Vertical dashes indicate contiguous Watson-Crick pairing (adapted from Bartel, 2009). 

 

2.3.6. MiRNA pathway analysis 

DIANA miRPath pathway enrichment analysis (http://diana.imis.athena-

innovation.gr/DianaTools/index.php?r=mirpath/index) was used to gain insight into global 

molecular networks and canonical pathways related to deregulated miRNAs. DIANA 

miRPath is a web-based computational tool developed to identify molecular pathways 

potentially altered by the expression of single or multiple microRNAs. The software 

performs an enrichment analysis of multiple microRNA target genes (predicted or 

experimentally validated) comparing each set of microRNA targets to all known KEGG 

pathways. Those pathways showing p-value <0.05 were considered significantly enriched 

between classes under comparison.  
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2.4. Real time quantitative PCR (qRT-PCR) 

2.4.1. Detection of miRNA by qRT-PCR 

Quantification of the expression of the most relevant miRNAs was performed by qRT-

PCR using miRCURY LNATM Universal RT microRNA PCR system (Exiqon) according to the 

manufacturer’s protocol. In the case of FFPE tissues and cell lines, 12 ng of total RNA was 

reverse-transcribed with universal poly-T primers in 30 μl reactions. In the case of plasma 

samples and due to the low RNA concentrations, RNA amounts were used based on starting 

volume rather than RNA quantity, and 6 ul of total RNA was reverse-transcribed with 

universal poly-T primers in 20 ul reactions. In both cases, a 10 ul –reverse reaction contained 

2 ul of Reaction Buffer, 1 ul of Enzyme Mix, 0.5 ul of synthetic RNA spike-in (Uni Sp6), 

nuclease-free water and 3 ul of RNA. The RNA spike-in is a synthetic template that allows 

the control of the quality of the cDNA synthesis. The reaction was carried out at 42ºC for 60 

min and 95ºC for 5 min on a GeneAmp PCR System 9700 Thermal Cycler (Applied 

Biosystems). The cDNA samples were stored at -20ºC until further usage. 

The rest of steps were common for FFPE tissues, cell lines and plasma. cDNA was 10x 

diluted and amplified by qPCR with miRNA-specific primers optimized with LNA. Briefly, in a 

10 ul –reaction, 4 ul of diluted cDNA were mixed with 5 ul SYBR Green master mix and 1 ul 

PCR primer mix. The amplification conditions consisted of an initial step at 95ºC for 10 

minutes, followed by 50 cycles of 10 seconds at 95ºC and 1 minute at 60ºC. MiRNA 

expression levels were detected using ABI Prism Sequence Detection System 7900HT 

(Applied Biosystems). All reactions were performed in triplicate and no-template controls 

were included in each run. In order to assess amplification specificity, dissociation curves 

and replicate assays were examined and those miRNAs whose dissociation curve showed 

unspecific amplification or inconsistent replicate Cq values were removed from further 

analysis. MiR-103a-3p was used to normalize miRNA expression as it appears in the 

literature as widely-used endogenous control for miRNA qRT-PCR and was stably expressed 

among our samples. Relative expression was calculated using the comparative cycle 

threshold (∆∆Ct) method implemented in qBasePLUS software (Biogazelle). 
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2.4.2. Detection of mRNA by qRT-PCR 

Five hundred nanograms of total RNA was reverse transcribed using the High-Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems) and random primers following 

manufacturer’s instructions. Briefly, in a 20 ul –reaction, 10 ul of template RNA were mixed 

with 2 ul of RT Buffer (10x), 0.8 ul of dNTP mix (100 mM), 2 ul of random primers (10x), 1 ul 

of MultiScribe Reverse Transcriptase (50 U/ul), 1 ul of RNAse inhibitor (20 U/ul) and 

nuclease-free water. The reaction mixture was incubated at 25ºC for 10 min, 37ºC for 2h 

and 85ºC for 5 min. The cDNA was then 10x diluted and amplified by qPCR with the use of 

FAM/NFQ fluorescently labeled probes TaqMan (Roche Universal Probe library, Roche), 

specific primers (Sigma-Aldrich, St. Louis, MO, USA) and TaqMan Universal PCR Maser Mix 

(Applied Biosystems). The primers and probes used are listed in Table 4. In brief, the 12.5 ul 

–reaction contained 1.25 ul of forward and reverse primers (10 uM), 0.125 ul of TaqMan 

probe (10 uM), water and 6.25 ul of TaqMan Universal PCR Master Mix (2x). The 

amplifications conditions consisted of an initial step at 95ºC for 10 minutes, followed by 45 

cycles of 15 seconds at 95ºC and 1 minute at 60ºC. mRNA expression levels were detected 

using ABI Prism Sequence Detection System 7900HT (Applied Biosystems). All reactions 

were performed in triplicate and no-template controls were included in each run. In 

addition, each set of primers was tested for efficacy using serial dilutions of a control cDNA 

sample. Normalization of mRNA expression was carried out using ACTB and MRLP19 as 

reference genes. Relative expression was calculated using the comparative cycle threshold 

(∆∆Ct) method implemented in qBasePLUS software (Biogazelle). 

Table 4. Oligonucleotide primers and probes used for mRNA qRT-PCR. 

Gene name Primers Sequence (5’-3’) 

BRCA1 Forward primer ttaaagaaagaaaaatgctga 

 Reverse primer ggtggtttcttccattgacc 

 Universal Probe Library #82 

ACTB Forward primer ccaaccgcgagaagatga 

 Reverse primer ccagaggcgtacagggatag 

 Universal Probe Library #64 

MRLP19 Forward primer ggaatgttatcgaaggacaag 

 Reverse primer caggaagggcatctcgtaag 

 Universal Probe Library #42 
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2.5. Statistical analysis 

Statistical analysis was performed using GraphPad PRISM 5 software (GraphPad 

Software, La Jolla, CA) and SPSS software package, version 17.0 (IBM). In all the analysis, a 

two-tailed p-value<0.05 was considered statistically significant. 

2.5.1. Differential expression and ROC curve analysis 

Kolmogorov–Smirnov test was used to analyze the normal distribution of the miRNA 

expression levels, and unpaired t test or Mann–Whitney test were applied when 

appropriate to evaluate differences in miRNA expression between two groups. MiRNA 

discrimination potential was analyzed by computing receiver operating characteristic (ROC) 

curves and calculating areas under the curves (AUC) with corresponding 95% confidence 

intervals (CI), as well as the optimal specificity and sensitivity values. For associations 

between miRNA expression levels and clinicopathologic characteristics of the patients at the 

time of breast cancer diagnosis, non-parametric Mann–Whitney test (two groups’ 

comparison) and Kruskal Wallis test (multiple groups’ comparison) were applied. 

2.5.2. Survival analysis 

Estimation of survival time distribution was performed using Kaplan-Meier method and 

differences between survival curves were assessed for statistical significance with log-rank 

test if the proportional hazard assumption was valid, or Gehan–Breslow–Wilcoxon test 

otherwise. A univariate Cox proportional hazards regression analysis was conducted to 

determine the impact of miRNA expression status on RFS. To adjust for other prognostic 

factors potentially acting as confounding variables (tumors size, age at diagnosis, Ki-67 

expression levels and nodal status), we used multivariate Cox proportional hazards 

regression model. The prognostic value of the miRNAs analyzed was tested by comparing 

patients with expression levels ≥median versus those with expression levels <median.  
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3. CELL LINES AND FUNCTIONAL STUDIES 

3.1. Breast cancer cell lines 

A panel of 6 human cell lines was used as a model to study functional effects of miRNA 

expression and inhibition. Five of them (MDA-MB-231, Hs578T, SKBR3, BT474 and MCF7) 

corresponded to sporadic breast tumors and were representative of the main molecular 

subtypes of breast cancer (Table 5). These cell lines were obtained from the Cancer 

Epigenetics Group at the Bellvitge Institute for Biomedical Research (Barcelona, Spain). The 

sixth cell line (HEK-293T) was derived from an embryonic kidney and was obtained from the 

Cytogenetics Group at the Spanish National Cancer Research Centre (Madrid, Spain).  

Table 5. Breast cancer cell lines used in this thesis. 

Breast cancer cell line Molecular subtype IHC markers 

MDA-MB-231 Triple negative ER-, PR-, Her2- 

Hs578T Triple negative ER-, PR-, Her2- 

SKBR3 Her2 ER-, PR-, Her2+ 

BT474 Luminal B ER-, PR+, Her2+ 

MCF7 Luminal A ER+, PR+, Her2- 

 

3.2. Manteinance and subculturing of cells 

Cell lines were grown in RPMI-1640 (Sigma-Aldrich) or Dulbecco’s Modified Eagle’s 

Medium (DMEM, Sigma-Aldrich) containing 10% fetal bovine serum, 1% 

penicillin/streptomycin and 0.5% fungizone (Gibco, Life Technologies). In the case of BT474 

cells, the medium was completed with 0.01 mg/ml of insulin (Sigma-Aldrich). Cells were 

maintained in an atmosphere of 5% CO2 in air at 37ºC and were passaged at approximately 

80-90% confluence.  

3.3. Luciferase reporter assay 

To verify direct binding of miR-498 and miR-187-5p to BRCA1, we performed target in 

vitro assays using luciferase reporter system (Figure 7). Pre-miRNA oligonucleotides (pre-

miR-498, pre-miR-187-5p, pre-miR-146a-5p and non-targeting control) were purchased 

from Ambion (Life Technologies). In brief, 100 ng of Firefly Luciferase-BRCA1 3’UTR 
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construct, together with 7.5 ng of Renilla Luciferase vector and 6 pmol (50 nM) of individual 

pre-miRNA oligonucleotides or mock transfection control, were transfected using 

Lipofectamine 2000 reagent (Invitrogen, San Diego, CA) into 293T cells in a 96-well plate 

format following manufacturer’s instructions. Cells were grown for 48h, after which cells 

were harvested and luciferase activity was assayed with Dual-Glo Luciferase Assay System 

(Promega) according to manufacturer’s instructions. Experiments were performed in 

triplicate and normalization was achieved using Renilla luciferase activity.  

 

Figure 7. Outline of the luciferase reporter assay. Firefly luciferase gene, with 3’UTR region of 
interest cloned immediately downstream of the stop codon, codes for an oxidative enzyme that 
converts luciferin substrate into oxiluciferin in a reaction that emits light. Photon emission is 
detected by luminometer, and the signal intensity is directly proportional to the amount of the 
enzyme. In the presence of a miRNA that binds to the 3’UTR and induces either mRNA degradation 
or translational inhibition, production of luciferase enzyme is reduced/abolished resulting in lower 
signal emission. 
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3.4. MiRNA transfection 

In order to express or inhibit miR-498, synthetic pre-miR-498 or anti-miR-498 

oligonucleotides were transfected into MCF7 or HS678T cells, respectively, using 

Oligofectamine reagent (Invitrogen). Pre-miRNA oligonucleotides were purchased from 

Ambion (Life Technologies) and anti-miRNA oligonucleotides from Exiqon. One day before 

transfection, cells were seeded in 6-well plates with 2 ml of growth medium without 

antibiotics to a density of 60%. Stock transfection mixes were made according to 

manufacturer’s instructions. Briefly, 5 ul of Oligofectamine reagent was diluted in 15 ul of 

Opti-MEM I Medium with L-glutamine (Invitrogen, CA, USA) and incubated 5 minutes at RT. 

In another tube, pre-miRNA or anti-miRNA oligonucleotides were diluted with Opti-MEM to 

a final concentration of 25nM. Both mixes were incubated together for 20 minutes at RT to 

allow complex formation between miRNA and lipids. To transfect cells, the growth media 

was removed and replaced with 800 ul of Opti-MEM media, and 200 ul of the appropriate 

transfection mix. Control cells were treated with a non-targeting miRNA or with no miRNA 

precursor or inhibitor (mock). Cells were incubated at 37ºC for 6 h, after which media was 

replaced with the same volume of fresh full growth media. At 48 hours after transfection 

cells were harvested for mRNA and/or protein analysis. 

3.5. Cell proliferation assay 

Cell proliferation assay was assessed by using water-soluble tetrazolium salt (WST-1) 

assay. HS578T cells were seeded in 96-well plates one day before transfection at 30-40% 

confluence in antibiotic-free media. Cells were transfected using Oligofectamine (Invitrogen) 

with 25 nM of anti-miR-498, non-targeting miRNA or mock transfection control. Cells were 

incubated in 10µl of WST-1 (Roche) diluted in 200 μl normal culture medium at 37ºC for 2h. 

The assay is based on the cleavage of the red WST-1 tetrazolium salt to yellow soluble 

formazan by metabolically active cells. The formazan dye is quantified by optical density at 

450 nm by means of a multi-well spectrophotometer (Perkin Elmer, Massachusetts, USA). 

Cell viability was determined at 24, 48, 72, 96, 120 or 144 hours after transfection. Each 

value represents the average of six independent replicates. 



    

79 
 

4. PROTEIN-BASED ASSAYS 

4.1.  Protein extraction and quantification 

Since BRCA1 protein is predominantly expressed in the nucleus, nuclear protein 

extraction was performed. Cells were trypsinized and washed twice with PBS 1X. Cell lysates 

were prepared by resuspending cell pellets in 200 ul of RSB buffer (Tris 10 mM pH 7.5, NaCl 

10 mM and MgCl2 3 mM,) with protease inhibitor (Roche) per 106 of cells, and by incubating 

20 min on ice. After centrifugation at 2000 rpm for 5 min at 4ºC, supernatant contains the 

cytoplasmic fraction and the remaining pellet the nuclear fraction. In order to remove any 

contaminating cytoplasm, pellets were again resuspended in 200 ul of RSB buffer containing 

protease inhibitor and centrifuged, and the remaining pellet was washed twice with 200 ul 

of RSB buffer without protease inhibitor. The pellet was then dissolved in 20 ul of NB buffer 

(Tris 10 mM pH 7.5, NaCl 0.4 mM and EDTA 1 mM) containing protease inhibitor, shaked in a 

rotor for 15 min at 4ºC and centrifuged at 11000 rpm for 5 min at 4ºC. Supernatant was 

collected and protein concentration was measured by Lowry assay method (Bio-Rad 

laboratories, Hercules, CA, USA) using bovine serum albumin (BSA) (Sigma-Aldrich) to create 

a standard curve with known concentrations of protein. 

4.2.  Western blot analysis 

Equal amounts of protein (50µg) were separated by SDS-PAGE on 6% home-made gels 

at 75 V for 1.5 hour using a Mini-PROTEAN Tetra cell electrophoresis chamber (Bio-Rad). 

Briefly, 10 ml of resolving gel contained 2 ml of 30% acrylamide, 2.5 ml of 1.5 M Tris (Ph 

8.8), 0.1 ml of 10% SDS, 0.1 ml of 10% ammonium persulfate, 0.008 ml of TEMED and water; 

and 5 ml of 5% stacking gel contained 0.83 ml of 30% acrylamide, 0.63 ml of 1 M Tris (Ph 

6.8), 0.05 ml of 10% SDS, 0.05 ml of 10% ammonium persulfate, 0.005 ml of TEMED and 

water. After electrophoresis, proteins separated on the gel were electrotransferred during 

1h at 60V to nitrocellulose membrane (Whatman) using 1x NuPAGE Transfer buffer 

(Invitrogen) with 10% methanol and a Mini Trans-Blot Cell (Bio-Rad). The membranes were 

blocked overnight at 4ºC with 5% non-fat dry milk in 1xTBS with 0.05% Tween (TBS-T) 

detergent, washed with TBS-T and incubated with primary antibody overnight at 4ºC. For 

BRCA1 detection, mouse antibody against BRCA1 (OP92, Calbiochem, Darmstadt, Germany) 
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at 1/100 dilution was used. For HSP70/HSC70 detection (loading control), mouse antibody 

against HSP70/HSC70 (ADI-SPA-820, Enzo Life Sciences) at 1/2000 dilution was used. Next, 

membranes were washed three times for 10 minutes with TBS-T and incubated with the 

corresponding horseradish peroxidase (HRP) conjugated (Dako, Glostrup, Denmark) 

secondary antibody at 1/10000 dilution for 2 hours at room temperature. After washing the 

membranes three times for 10 minutes with TBS-T, the antibody visualization was carried 

out with Amersham ECL Western Blotting Detection Reagent (GE Healthcare Life Sciences 

Buckinghamshire, UK) and Ortho CP-G Plus x-ray films (AGFA, Mortsel, Belgium). Films were 

scanned and signal was quantified using Image J program. BRCA1 protein content was 

determined relative to HSP70/HSC70 protein content.  
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1. DEREGULATED MICRORNAs IN BREAST CANCER MOLECULAR 

SUBTYPES 

A large number of studies have explored the value of gene expression profiling in breast 

cancer, thus leading to the stratification of breast tumors into at least four major subtypes: 

luminal A, luminal B, Her2 and triple negative (Hu et al., 2006; Perou et al., 2000; Sorlie et 

al., 2001; Sorlie et al., 2003). However, few reports have investigated the usefulness of 

miRNA expression profiling in breast cancer diagnosis. Taking into account the important 

role that miRNAs play in tumorigenesis and their ability to classify human tumors accurately 

(Lu et al., 2005), the first objective of this thesis was to identify miRNAs associated with 

breast tumors and with the main molecular subtypes of breast cancer, and to explore their 

discriminatory potential. 

 

1.1. miRNA expression profiles in breast tumors and normal breast tissues 

We explored the expression of 1919 human miRNAs in 122 primary breast tumors (31 

triple negative, 27 Her2, 33 luminal B and 31 luminal A) and 11 normal breast tissues by 

using LNA based microarrays. After filtering the data to remove miRNAs with low expression 

variation across samples (VAR<0.03), we obtained 698 miRNAs for further analysis. 

Unsupervised hierarchical clustering (Figure 8) showed that miRNA expression profiling 

clearly separated breast tumors from normal breast tissues, although a perfect stratification 

was not observed according to the molecular subtype of the samples. While most triple 

negative and luminal B tumors clustered as two homogenous groups, luminal A and Her2 

tumors were dispersed across the cluster exhibiting heterogeneous miRNA expression 

profiles. The right branch of the cluster, in which normal breast tissues were included, 

consisted of a higher proportion of ER-positive and low-moderate grade tumors, while the 

left branch was enriched in ER-negative and high grade tumors. 
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Figure 8. Unsupervised hierarchical clustering (Pearson correlation, average linkage clustering) over 
698 miRNAs in 133 breast samples. Each column represents a breast sample and each row 
corresponds to a miRNA. Heatmap colors indicate relative miRNA expression: over-expression is 
represented in red and repression in green. Molecular subtype of the tumors, inmunohistochemical 
marker for ER and histologic grade are represented by color labels. 
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1.2. Identification of miRNAs specifically and commonly deregulated in 

breast cancer molecular subtypes 

In order to detect significantly deregulated miRNAs in breast tumors and breast cancer 

molecular subtypes, supervised analysis was performed. A total of 194 miRNAs showed 

significant differential expression (FDR<0.05) between breast tumors and normal breast 

tissues: 117 were upregulated in breast tumors while 77 were downregulated. Eleven of 

these differentially expressed miRNAs had a fold change (FC)≥2 (Table 6).  

Table 6. Top 11 miRNAs with the greatest difference in expression between breast tumors and 
normal breast tissues (FDR<0.05, FC≥2).  

Gene Name  FDR  Fold Change  Median Normal 
Breast 

Median Breast 
Tumors 

miR-125b-5p  1E-07 4.1 ↓ 10.9 8.6 
miR-21-5p  9.07E-05 3.2 ↑ 6.5 8.3 
miR-3613-3p  7.16E-05 3.1 ↑ 7.3 8.7 
miR-4668-5p  0.000194 2.8 ↑ 6.6 8.2 
miR-4516  1.77E-05 2.5 ↓ 11.0 9.7 
miR-548as-3p 0.000167 2.4 ↑ 6.4 7.7 
miR-3656  2.00E-07 2.2 ↓ 9.4 8.4 
miR-4488 1.80E-06 2.2 ↓ 8.8 7.7 
miR-5704  5.04E-05 2.2 ↑ 7.3 8.3 
miR-141-3p  0.003198 2.0 ↑ 7.3 8.0 
miR-638  0.000536 2.0 ↓ 8.7 7.9 

FDR: False Discovery Rate adjusted p-value. 

 

Comparison of the miRNA expression profile of each molecular subtype with the normal 

breast tissues led to the identification of 335, 98, 157 and 249 differentially expressed 

miRNAs in triple negative, Her2, luminal B and luminal A tumors, respectively (Figure 9A). In 

order to detect miRNAs specifically deregulated in each molecular subtype, we compared 

these results by using a Venn diagram. We identified 105, 1, 39 and 17 miRNAs specific for 

triple negative, Her2, luminal B and luminal A tumors, respectively, as well as 52 miRNAs 

commonly deregulated in the four molecular subtypes (Figure 9B and Supplementary Table 

S1).  
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Figure 9. Deregulated miRNAs in breast cancer molecular subtypes. A) miRNAs differentially 
expressed (FDR<0.05) between normal breast tissues and each molecular subtype. B) Venn diagram 
showing miRNAs specifically up or downregulated in each molecular subtype, and those commonly 
deregulated in all the subtypes. TN: triple negative, H2: Her2, LB: luminal B, LA: luminal A, N: normal 
breast tissues.  
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1.3. miRNA signatures for breast tumor and breast cancer molecular 

subtype prediction  

To identify the smallest set of miRNAs discriminating breast tumors from normal breast 

tissues, and each molecular subtype from the rest of subtypes, five miRNA microarray 

classifiers were generated. Breast tissues were divided into two groups: a training set (61 

breast tumors and 7 normal breast tissues) used for the discovery phase and a test set (61 

breast tumors and 4 normal breast tissues) used for the validation phase. Both series 

comprised a similar number of samples from each molecular subtype. Clinicopathologic 

characteristics of patients included in each series are shown in Table 7. 

The predictors were built with samples from the training set and the 698 miRNAs used 

in the differential expression analysis. For the identification of the most representative 

miRNAs we used correlation feature selection and employed 5-fold cross-validation 

repeated 10 times to estimate how accurately the predictive model will perform in an 

independent data set. We used different algorithms that have been shown to function well 

with microarray data: support vector machines (SVM), k-nearest neighbor (KNN) and 

Random Forest (RF), and we selected SVM because it showed the best performance for the 

five different situations, producing the minimal root median square error (RMSE) and 

maximal accuracy, Mathews correlation coefficient (MCC) and AUC (Supplementary Table 

S2). Using this algorithm, we generated a 25-miRNA signature for breast tumor prediction 

with 100% sensitivity and 83% specificity, and a 8, 7, 16 and 3-miRNA signature for triple 

negative, Her2, luminal B and luminal A prediction, respectively, with high sensitivity (>93%) 

and specificity (99%). The list of miRNAs that compose each signature is shown in Table 8. 

Some of the miRNAs identified were detected as specifically deregulated (in the case of 

molecular subtypes) or commonly deregulated (in the case of breast tumors) in the 

differential expression analysis.  

 

 

 

http://en.wikipedia.org/wiki/Accuracy
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Table 7. Patients’ clinicopathologic characteristics at the time of breast cancer diagnosis. 

Parameter  Training set (n=61)  Test set (n=61) 

Age, years  n=45 n=45 

Mean 62 59 

Range 33-89 28-82 

Tumor size  n=42 n=39 

T1 (≤ 2cm) 23 (55%) 21 (54%) 

T2 (2.1-5cm) 14 (33%) 15 (38%) 

T3/T4 (>5cm) 5 (12%) 3 (8%) 

Grade  n=39 n=38 

I 4 (10%) 1 (3%) 

II 10 (26%) 15 (39%) 

III 25 (64%) 22 (58%) 

Nodes  n=41 n=39 

negative 16 (39%) 16 (41%) 

positive 25 (61%) 23 (59%) 

Stage n=40 n=36 

I 12 (30%) 11 (30%) 

II 17 (43%) 15 (42%) 

III 8 (20%) 9 (25%) 

IV 3 (7%) 1 (3%) 

ER n=61 n=61 

negative  28 (46%) 30 (49%) 

positive 33 (54%) 31 (51%) 

PR n=61 n=61 

negative 30 (49%) 32 (52%) 

positive 31 (51%) 29 (48%) 

KI-67 n=60 n=59 

low (<14%)  15 (25%) 17 (29%) 

intermediate-high (≥14%) 45 (75%) 42 (71%) 

Her2 n=60 n=61 

negative 45 (75%) 45 (74%) 

positive 15 (25%) 16 (26%) 

Subtype  n=61 n=61 

Luminal A 16 (26%) 15 (25%) 

Luminal B 17 (28%) 16 (26%) 

Her2 13 (21%) 14 (23%) 

Triple negative 15 (25%) 16 (26%) 
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Table 8. Performance of the 5 miRNA signatures for the prediction of breast tumors and breast 
cancer molecular subtypes.  

Classifier Dataset Accur. 
(%) 

Sensitiv. 
(%) 

Specific. 
(%) 

miRs 
(n) 

miRNA signature 

Breast 
tumors 

Training 
61 BT 
7 NT 

98 100 83 25 miR-125b-5p*,miR-3613-3p*, 
miR-4668-5p*,miR-3656*,miR-
5704*,miR-3676-3p,miR-3196, 
miR-3941*,miR-585,miR-1264*, 
miR-200a-3p*,miR-1273g-3p, miR-
5581-3p,miR-877-5p*,miR-96-
5p*,miR-744-3p*,miR-2276*,miR-
342-5p*,miR-760*,miR203*, 
miRPlus-A1086,miR-185-5p*,miR-
20b-5p,miR-4521*,miR-4692 

Test 
61 BT 
4 NT 

100 100 100 

Triple 
negative 
tumors 

Training 
15 TN 
46 RT 

98 95 99 8 miR-125b-5p,miR-126-3p*,miR-
214-3p*,miR-29c-3p,miR-4290, 
miR-3149,miR-10b-5p*,miR-
5193* Test 

16 TN 
45 RT 

98 94 100 

Her2 
tumors 

Training 
13 H2 
48 RT 

98 93 99 7 miR-5704,miR-3676-3p,miR-
1264,miR-3195,miR-205-5p, miR-
4536-3p,miR-4692 

Test 
13 H2 
48 RT 

100 100 100 

Luminal B 
tumors 

Training 
17 LB 
44 RT 

97 93 99 16 miR-205-5p,miR-320a,miR-10a-
5p,miR-130a-3p,miR-1273g-3p, 
miR-15b-5p*,miR-4667-5p,miR-
4633-5p,miR-4800-5p,miR-708-
5p,miR-1321,miR-125b-1-3p, miR-
374a-5p,miR-3912,miR-221-3p, 
miR-3161 

Test 
16 LB 
45 RT 

95 94 95 

Luminal A 
tumors 

Training 
16 LA 
45 RT 

98 97 99 3 miR-3676-3p,miR-532-3p,miR-22-
5p 

Test 
15 LA 
46 RT 

96 93 97 

*miRNAs detected as specifically deregulated (in the case of molecular subtypes) or commonly 
deregulated (in the case of breast tumors) in the previous analysis. BT: breast tumors, NT: normal 
breast tissues, TN: triple negative, H2: Her2, LB: Luminal B, LA: Luminal A, RT: Rest of tumors.  
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In order to validate the discriminatory potential of the 5 miRNA signatures, we classified 

an independent series of 65 samples (test set) in a blind approach. Patients in the test set 

were correctly identified with 100% sensitivity and 100% specificity using the breast tumor 

miRNA signature, 94% sensitivity and 100% specificity using the triple negative miRNA 

signature, 100% sensitivity and 100% specificity using the Her2 miRNA signature, 94% 

sensitivity and 95% specificity using the luminal B miRNA signature, and 93% sensitivity and 

97% specificity using the luminal A miRNA signature (Table 8).  

 

1.4. Pathway enrichment analysis 

Given the fact that a single miRNA can target a large number of mRNA transcripts, 

aberrant expression of a set of miRNAs could have significant effect on cellular function by 

affecting multiple signaling pathways. To get more insight into the biological relevance of 

deregulated miRNA expression in breast cancer molecular subtypes, we used Diana miRPath 

web-based computational tool and investigated biological processes that are predicted to 

be targeted collectively by each of the 5 miRNA signatures identified. KEGG pathway 

enrichment analysis has revealed that the miRNAs that compose each signature are 

expected to regulate multiple pathways that are known to be relevant for cancer 

development and progression, such as PI3K-Akt, MAPK, Wnt, mTOR, p53, Notch, ErbB, 

VEGF, TGF-beta and HIF-1 signaling pathways. Top 10 statistically significant biological 

functions enriched in each miRNA signature are shown in Table 9. Interestingly, ErbB 

signaling pathway is one of the most significantly overrepresented pathways in the Her2 

miRNA signature, indicating that the deregulation of miR-1264, miR-205-5p, miR-4536-3p 

and miR-4692 may contribute to the alteration of the ErbB signaling pathway in this group 

of tumors. Of note, some of the biological functions enriched in each miRNA signature are 

common to other cancers such as chronic myeloid leukemia, thyroid, prostate, endometrial, 

bladder or small cell lung cancer, suggesting potential similarities in the molecular 

mechanisms that operate in particular breast cancer molecular subtypes and different types 

of cancer. 
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Table 9. Top 10 significantly enriched signaling pathways associated with the different miRNA 
sigantures.  
 

MiRNA signature KEGG pathway p-value #genes #miRNAs 

Breast tumors  

25-miR signature  

MAPK signaling pathway 2.56E-38 131 21 

Regulation of actin cytoskeleton 8.01E-31 108 19 

Ubiquitin mediated proteolysis 2.40E-29 82 16 

Axon guidance 1.58E-27 72 18 

Wnt signaling pathway 2.22E-25 80 21 

Neurotrophin signaling pathway 5.47E-25 69 18 

Gap junction 1.25E-21 55 18 

Endocytosis 7.46E-21 99 17 

ErbB signaling pathway 7.84E-21 53 17 

PI3K-Akt signaling pathway 9.03E-21 151 18 

Triple negative 

tumors 8-miR 

signature 

PI3K-Akt signaling pathway 9.54E-17 93 8 

Protein digestion and absorption 1.18E-14 33 6 

ECM-receptor interaction 1.18E-14 29 8 

Focal adhesion 2.88E-14 60 8 

Small cell lung cancer 1.14E-11 30 7 

MAPK signaling pathway 2.58E-08 66 7 

Insulin signaling pathway 2.58E-08 39 8 

Lysine degradation 7.43E-08 17 6 

mTOR signaling pathway 9.06E-08 22 8 

Prostate cancer 1.05E-07 27 6 

HER2 tumors  

7-miR signature  

Adherens junction 5.06E-12 22 3 

Thyroid cancer 1.80E-11 12 3 

Prostate cancer 1.01E-10 22 3 

Endometrial cancer 1.97E-09 15 3 

Bladder cancer 1.56E-06 12 3 

Wnt signaling pathway 1.71E-06 28 5 

Glioma 2.44E-06 16 4 

ErbB signaling pathway 6.28E-06 16 4 

Endocrine and other factor-regulated 

calcium reabsorption 1.92E-05 14 3 

Aldosterone-regulated sodium 

reabsorption 3.99E-05 10 3 

Luminal B tumors 

16-miR signature  

TGF-beta signaling pathway 4.08E-38 43 12 

Prostate cancer 8.62E-25 42 12 

mTOR signaling pathway 5.26E-24 33 12 

Pathways in cancer 5.43E-19 115 15 

Chronic myeloid leukemia 7.96E-18 34 11 

Endocytosis 5.76E-16 75 13 

Wnt signaling pathway 4.51E-14 60 13 

PI3K-Akt signaling pathway 4.99E-14 108 13 

Focal adhesion 7.26E-13 70 14 

ABC transporters 1.26E-12 21 9 



92 
 

Luminal A tumors 

3-miR signature   

Mucin type O-Glycan biosynthesis 0.009179 4 2 

Valine, leucine and isoleucine 

biosynthesis 0.019153 1 1 

Fanconi anemia pathway 0.019153 6 2 

MAPK signaling pathway 0.019153 19 2 

Endocytosis 0.019153 16 2 

Focal adhesion 0.019153 16 2 

Fc gamma R-mediated phagocytosis 0.019153 9 2 

Pentose phosphate pathway 0.032454 3 2 

PI3K-Akt signaling pathway 0.032454 22 2 

Fc epsilon RI signaling pathway 0.032454 7 2 
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2. CIRCULATING MICRORNAs IN EARLY BREAST CANCER 

DETECTION 

Circulating miRNAs are attracting the attention of researchers as they are highly stable, 

resistant to degradation and can be easily obtained by non-invasive procedures (Chen et al., 

2008). Although it is unclear how these extracellular miRNAs are liberated into plasma, 

there is evidence that some miRNAs are selectively released from malignant mammary 

epithelial cells while retained by non-malignant cells (Pigati et al., 2010). Taking into account 

the potential clinical relevance of circulating miRNAs in breast cancer, the second objective 

of this thesis was to study in plasma the status of the most deregulated miRNAs identified in 

breast tumors and to analyze their utility as non-invasive biomarkers for early breast cancer 

detection. 

 

2.1. Validation of the most relevant miRNAs in breast tumors by qRT-PCR  

We selected miRNAs with the smallest FDR and highest FC when comparing breast 

tumors and normal breast tissues and tried to validate them by qRT-PCR in 44 tumors from 

the test set (11 from each molecular subtype) and 12 normal breast tissues. A total of 19 

miRNAs were selected: 10 from the breast tumor classifier and 9 from the differential 

expression analysis. Unfortunately, 8 were discarded due to unspecific amplification or no 

amplification (miR-3613-3p, miR-4668-5p, miR-5704, miR-1264, miR-5581-3p, miR-548as-

3p, miR-3686, miR-4419b), and therefore 11 could be analyzed: 5 from the breast tumor 

classifier and 6 from the differential expression analysis. MiR-103a-3p was used for data 

normalization as it is a widely-used endogenous control for miRNA qRT-PCR and was stably 

expressed among our samples. Statistical analysis led to the validation of all of them (p-

value<0.05) except miR-1273g-3p. Hence miR-183-3p, miR-96-5p, miR-142-3p, miR-141-3p, 

miR-21-5p and miR-200a-3p were confirmed to be significantly upregulated in breast 

tumors whereas miR-125b-5p, miR-3656, miR-638 and miR-505-5p were confirmed to be 

downregulated (Figure 10). 
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Figure 10. Validation of most relevant miRNAs by qRT-PCR in breast tumors and normal breast 
tissues. Scatter plots show relative expression levels of miR-183-3p, miR-96-5p, miR-142-3p, miR-
141-3p, miR-21-5p, miR-200a-3p, miR-125b-5p, miR-3656, miR-638 and miR-505-5p in 44 breast 
tumors (T) and 12 normal breast tissues (N).   
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2.2. From tumor to plasma: analysis of circulating miRNAs 

 In order to evaluate the expression of our selected miRNAs in plasma, amplification 

by qRT-PCR was performed in 26 healthy individuals, 36 pretreated and 47 postreated 

breast cancer patients. Clinicopathologic details of patients included in each series are 

shown in Table 10. Of note, most of the patients had an early-stage breast cancer. Among 

10 miRNAs analyzed, 9 had detectable levels of expression in plasma and only miR-183-3p 

could not be detected. Comparison of the expression levels in pretreated breast cancer 

patients and normal individuals led to the identification of 5 differentially expressed miRNAs 

in plasma: miR-3656, miR-505-5p, miR-125b-5p, miR-21-5p and miR-142-3p. In addition, 

although not significant, miR-96-5p showed a trend (p-value<0.1). Interestingly, some of the 

miRNAs analyzed were deregulated in opposite directions when compared with tumors. 

That is, miR-21-5p, miR-142-3p and miR-96-5p were both overexpressed in breast tumors 

and plasma from breast cancer patients, whereas miR-3656, miR-505-5p and miR-125b-5p 

were downregulated in breast tumors but upregulated in plasma from breast cancer 

patients (Figure 11). A selective release of certain miRNAs from tumors to plasma might be 

the explanation for this discordance.  

Next we compared the expression levels of the 5 significant miRNAs and the one with p-

value<0.1 in pretreated breast cancer patients and patients who underwent surgery and/or 

systemic therapy. While miR-125b-5p, miR-142-3p and miR-96-5p did not show a significant 

change in their levels, the expression of miR-3656, miR-21-5p and miR-505-5p was 

significantly reduced in plasma after treatment, suggesting that these miRNAs may be 

sensitive to changes in tumor mass (Figure 11).   
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Table 10. Patients’ clinicopathologic characteristics at the time of breast cancer diagnosis. 

Parameter 
Plasma Pretretaed - 

Discovery (n=36) 
Plasma Postreated - 

Discovery (n=47) 
Plasma Pretreated - 
Validation (n=114) 

Age, years  n=35 n=46 n=114 

Mean 57 50 57 

Range 33-82 28-74 28-85 

Tumor size  n=35 n=33 n=99 

T1 (≤2cm) 26 (74%) 20 (61%) 69 (70%) 

T2 (2.1-5cm) 8 (23%) 13 (39%) 30 (30%) 

T3/T4 (>5cm) 1 (3%) 0 0 

Grade  n=33 n=34 n=102 

I 7 (22%) 4 (12%) 16 (16%) 

II 13 (39%) 10 (29%) 48 (47%) 

III 13 (39%) 20 (59%) 38 (37%) 

Nodes  n=34 n=42 n=107 

negative 20 (59%) 19 (45%) 63 (59%) 

positive 14 (41%) 23 (55%) 44 (41%) 

Stage n=34 n=32 n=96 

I 18 (53%) 10 (32%) 36 (38%) 

II 12 (35%) 19 (59%) 48 (50%) 

III 3 (9%) 3 (9%) 12 (12%) 

IV 1 (3%) 0 0 

ER n=36 n=42 n=113 

negative  10 (28%) 16 (38%) 28 (25%) 

positive 26 (72%) 26 (62%) 85 (75%) 

PR n=34 n=42 n=113 

negative 9 (26%) 19 (45%) 35 (31%) 

positive 25 (74%) 23 (55%) 78 (69%) 

KI-67 n=34 n=35 n=113 

low (≤14%)  10 (29%) 9 (26%) 31 (27%) 

intermediate-high (>14%) 24 (71%) 26 (74%) 82 (73%) 

Her2 n=34 n=39 n=112 

negative 26 (76%) 30 (77%) 78 (70%) 

positive 8 (24%) 9 (23%) 34 (30%) 

Subtype  n=36 n=36 n=113 

Luminal A 10 (28%) 9 (25%) 33 (29%) 

Luminal B  16 (44%) 14 (39%) 52 (46%) 

Her2  4 (11%) 5 (14%) 9 (8%) 

Triple negative 6 (17%) 8 (22%) 19 (17%) 
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Figure 11. Relative expression levels of circulating miRNAs deregulated in the plasma of 36 
pretreated breast cancer patients (Pre) in comparison with 26 healthy individuals (N). Although not 
significant, miR-96-5p showed a trend (p-value<0.1). In addition, miRNA plasma concentration was 
quantified in 47 postreated breast cancer patients (Post).  

 

2.3. Marker validation 

The 5 significant miRNAs identified were then subjected to validation in a second set of 

plasma from 114 pretreated breast cancer patients and 116 healthy women. Since miR-96-

5p showed some evidence in the previous analysis, we decided to include this miRNA in the 

validation stage as well. Table 10 summarizes the clinicopathologic features of the patients, 

showing again a high proportion of early-stage breast cancers. The expression levels of miR-

505-5p, miR-125b-5p, miR-21-5p and miR-96-5p were confirmed to be significantly 

overexpressed in the plasma of breast cancer patients (Figure 12A). ROC curve analysis was 

performed to evaluate the diagnostic utility of these miRNAs. The resultant curves showed 

that miR-505-5p and miR-96-5p were the most valuable biomarkers for discriminating 

patients from healthy individuals, with AUC of 0.7213 (95% CI: 0.6558 to 0.7867, p<0.0001) 

and 0.7167 (95% CI: 0.6507 to 0.7827, p<0.0001), respectively, and sensitivity and specificity 

at the optimal cutoff of 75% and 60% for miR-505 and 73% and 66% for miR-96-5p, 

respectively. MiR-125b-5p and miR-21-5p showed AUC of 0.6368 (95% CI: 0.5642 to 0.7093, 

p<0.03699) and 0.6070 (95% CI: 0.5336 to 0.6803, p<0.03742), respectively (Figure 12B). 
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Figure 12. Circulating miRNAs validated as being overexpressed in the plasma of 114 breast cancer 
patients (Pre) when compared with 116 healthy women (N). A) Relative expression levels of miR-
505-5p, miR-96-5p, miR-125b-5p and miR-21-5p with their corresponding p-values. B) ROC curves for 
each miRNA and the resultant area under the curve (AUC). 
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2.4. Association between circulating miRNA expression and 

clinicopathologic characteristics 

We further compared the expression of circulating miR-505-5p, miR-125b-5p, miR-21-

5p and miR-96-5p with clinicopathologic characteristics in the 114 pretreated breast cancer 

patients. The variables evaluated were: age of the patient at diagnosis, tumor size, histologic 

grade, lymph node, ER, PR and Her2 status, ki-67 levels and molecular subtype. Non-

parametric Mann–Whitney test (for two groups’ comparison) and Kruskal Wallis test (for 

multiple groups’ comparison) were applied. Significant higher levels of miR-505-5p were 

observed in older patients, lower grade and ER positive tumors. Significant differences were 

also observed among molecular subtypes, with luminal A tumors with the highest levels of 

miR-505-5p (Figure 13). No significant associations between circulating miR-125b-5p, miR-

21-5p and miR-96-5p and clinicopathologic features were detected.  

 

Figure 13. Association between circulating miR-505-5p expression and different clinicopathologic 
characteristics in 114 pretreated breast cancer patients. A) age at diagnosis, B) histologic grade, C) 
ER status, and D) molecular subtype. 
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3. PROGNOSTIC MICRORNAs IN TRIPLE NEGATIVE BREAST 

CANCER PATIENTS 

Triple negative breast cancer (TNBC) is a very aggressive form of breast cancer with 

higher recurrence rates and greater likelihood of death compared to other breast cancer 

subtypes (Dent et al., 2007). Moreover, the lack of response to endocrine and anti-Her2 

therapies makes its treatment an extremely challenging process. Taking into account the 

absence of prognostic and predictive markers in this subtype of breast cancer, the third 

objective of this thesis was to identify miRNAs that can distinguish at the time of diagnosis 

between high and low risk TNBC patients. This subclassification would permit the 

administration of different treatments to patients with different clinical outcomes. 

 

3.1. miRNAs diferentially expressed in node-positive triple negative 

patients with different outcome  

Since nodal status is known to be an independent prognosis factor for breast cancer, we 

decided to explore if this factor was also associated with survival in our series of 21 triple 

negative tumors with available follow-up information. As expected, nodal status divided the 

patients in two groups: those with good prognosis (node-negative, 0.8 cumulative 

proportion of surviving) and those with worse prognosis (node-positive, 0.4 cumulative 

proportion of surviving) (Figure 14A). Since node-positive triple negative tumors were 

associated with a more variable outcome, we decided to focus on this group of patients to 

identify miRNAs linked to prognosis. 
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Figure 14. Kaplan-Meier survival curves of two different cohorts of triple negative patients based on 
nodal status: A) 20 patients used for microarray and qRT-PCR expression analysis, and B) 22 patients 
used for qRT-PCR expression analysis. Patients at risk at the indicated time intervals are shown at the 
bottom of the graph.  

 
 

Follow-up studies have demonstrated that the prognosis of TNBC patients is highly time 

dependent, with some patients experiencing disease recurrence in the first 3-5 years 

following diagnosis and other patients having excellent long term survival (Liedtke et al., 

2008; Mulligan et al., 2008). In order to detect differentially expressed miRNAs between 

node-positive triple negative patients with RFS shorter than 5 years and patients with longer 

RFS, differential expression analysis was performed with the 698 miRNAs obtained after 

microarray data filtering. A total of 17 miRNAs showed significant differential expression 

(FDR<0.05) and all of them were downregulated in triple negative patients with worse 

prognosis (Figure 15).  

 
Figure 15. miRNAs differentially expressed (FDR<0.05) between 6 node-positive triple negative 
patients with RFS shorter than 5 years and 4 node-positive triple negative patients with longer RFS. 
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3.2. miRNAs associated with recurrence in node-positive triple negative 

patients 

We performed survival analysis of node-positive triple negative patients to investigate 

associations between the expression levels of the 17 differentially expressed miRNAs and 

RFS. By using univariate Cox proportional hazards regression analysis we identified 4 

miRNAs significantly related to outcome: let-7b-5p, miR-195-5p, miR-24-3p and miR-30c-5p 

(hazard ratio (HR): 8.957; 95% confidence interval (CI): 1.024-78.310, p=0.048) (Figure 16).  

 

Figure 16. Kaplan-Meier survival curves of 10 node-positive triple negative patients based on the 
expression of let-7b-5p, miR-195-5p, miR-24-3p and miR-30c-5p. Patients at risk at the indicated 
time intervals are shown at the bottom of each graph. 
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3.3. Validation of prognostic miRNAs in triple negative patients 

To validate the prognostic value of let-7b-5p, miR-195-5p, miR-24-3p and miR-30c-5p, 

we analyzed their expression levels by qRT-PCR in the same 21 triple negative patients plus 

a second cohort of 22 triple negative patients. In this second cohort we could also observe a 

strong relationship between nodal status and clinical outcome, with all node-negative 

patients surviving after 5 years of diagnosis and node-positive patients having 40% 

probability of relapse-free survival (Figure 14B).  

Univariate Cox proportional hazards regression analysis confirmed that miR-30c-5p was 

significantly associated with RFS in both node-positive (HR: 4.101; 95% CI: 1.264-13.299, 

p=0.019) and all triple negative patients (HR: 4.157; 95% CI: 1.350-12.800, p=0.013) (Figure 

17A,B). Likewise, miR-195-5p was significantly related to outcome in all triple negative 

patients (HR: 3.338; 95% CI: 1.171-9.516, p=0.024) and almost significant in node-positive 

triple negative patients (HR: 2.717; 95% CI: 0.898-8.217, p=0.077) (Figure 17C,D). In 

addition, the combination of miR-30c-5p and miR-195-5p showed a significant association 

with RFS, with patients having both miRNAs overexpressed experiencing a significantly 

better outcome than patients having both of them underexpressed (Figure 17E,F). 

Analysis of histopathological variables (tumors size, age at diagnosis, Ki-67 expression 

levels and nodal status) confirmed the association of tumor size (HR: 1.379; 95% CI: 1.154-

1.648, p<0.001) and nodal status (HR: 4.700; 95% CI: 1.347-16.399, p=0.015) with RFS. 

Multivariate Cox proportional hazards regression analysis including tumor size and nodal 

status revealed an independent association of miR-195-5p with RFS in both node-positive 

and all triple negative patients (Table 11). However, after adjustment for these cofactors, 

miR-30c-5p lost its association in node-positive patients and showed weak evidence in all 

triple negative patients, indicating that expression of this miRNA may be correlated with 

tumor size. In fact, we found that triple negative tumors expressing low levels of miR-30c-5p 

were significantly bigger than tumors expressing high levels (Supplementary Figure S1).     
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Figure 17. Kaplan-Meier survival curves of 24 node-positive triple negative patients (A, C, E) and the 
whole cohort of 43 triple negative patients (B, D, F) based on the expression of miR-30c-5p, miR-195-
5p and the combination of both. Patients at risk at the indicated time intervals are shown at the 
bottom of each graph.  
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Table 11. Multivariate Cox regression analysis of prognostic factors for RFS. 
 

 Patients Comparison p-value HR (95% CI) p(adj) 

MiR-30c-5p   

 Node-positive TN MiRNA overexpression vs 

underexpression 

0.010 2.649 (0.720-9.749) 0.143 

 Tumor size  1.251 (1.013-1.545) 0.037 

 All TN  MiRNA overexpression vs 

underexpression 

0.006 3.322 (0.964-11.447) 0.057 

 Tumor size  1.210 (0.990-1.479) 0.063 

 Nodal status  6.466 (1.438-29.076) 0.015 

MiR-195-5p  

 Node-positive TN MiRNA overexpression vs 

underexpression 

0.059 7.924 (2.149-29.223) 0.002 

  Tumor size  1.523 (1.201-1.931) 0.001 

 All TN  MiRNA overexpression vs 

underexpression 

0.015 6.788 (2.101-21.931) 0.001 

  Tumor size  1.436 (1.165-1.770) 0.001 

  Nodal status  10.459 (2.178-50.228) 0.003 

P-values in the univariate analysis calculated with log-rank test; p(adj) as calculated in the 
multivariate analysis by using Cox regression model in node-positive triple negative patients and the 
whole series of triple negative patients with RFS as endpoint; TN, triple negative; HR, hazard ratio; 
CI, confidence interval. 

 
 
 

3.4. Pathway enrichment analysis 

To get more insight into the role of miR-30c-5p and miR-195-5p in TNBC, we used Diana 

miRPath web-based computational tool and investigated biological processes that are 

predicted to be targeted collectively by both miRNAs. KEGG pathway enrichment analysis 

has revealed that miR-30c-5p and miR-195-5p target different effectors of pathways 

involved in cell cycle, proliferation, angiogenesis, apoptosis and cell survival (Table 12). 

Hence, downregulation of miR-30c-5p and miR-195-5p in triple negative breast tumors 

could confer them enhanced proliferative, angiogenic and invasive potentials. 
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Table 12. Top 10 significantly enriched signaling pathways associated with miR-30c-5p and miR-195-
5p. 

KEGG pathway p-value Genes 

Ubiquitin mediated 
proteolysis 

4,78E-14 UBE2R2,BTRC,RFWD2,FBXW7,TRIM37,WWP1,CUL2, 
SMURF2,NEDD4L,UBE4A,HERC3,UBE2J1,UBE2I,SOCS3, 
CBLB,SKP2,SOCS1,UBE3C,BIRC6,SMURF1,UBE2Q1, 
RCHY1,UBE2K,SIAH1,NEDD4,UBE2F,UBE2D1,CDC27, 
UBE2D2,UBE2G1,CUL3,PPIL2,UBE4B 

B cell receptor signaling 
pathway 

3,24E-09 SOS2,RAF1,BCL10,KRAS,IKBKB,PPP3CA,NFAT5,PIK3CD, 
PPP3CB,NFATC2,PIK3R1,SOS1,DAPP1,AKT3,MAP2K1, 
RASGRP3,VAV3,NFATC3,LYN 

Prostate cancer 1,05E-08 SOS2,RAF1,BCL2,IGF1R,KRAS,IKBKB,AR,PIK3CD,CCND1, 
CCNE2,E2F3,PIK3R1,SOS1,AKT3,PDGFC,CCNE1,MAP2K1, 
FGFR1,FOXO1,PDGFA 

PI3K-Akt signaling 
pathway 

1,08E-08 PRLR,YWHAH,MYB,SOS2,ITGA9,ITGA8,COL24A1,CCND2, 
RAF1,BCL2,EFNA3,PPP2R2B,IGF1R,FGF20,PPP2R5C, 
KRAS,CDK6,IFNAR2,GHR,IKBKB,GNG10,DDIT4,PIK3CD, 
CCND1,EIF4E,CCNE2,PPP2R1A,EIF4B,PIK3R1,SOS1, 
IL2RA,YWHAZ,IRS1,INSR,FGF2,FGF18,AKT3,PDGFC, 
CCNE1,FOXO3,MAP2K1,ITGA4,ITGA6,VEGFA,FGFR1, 
PPP2R1B,FGF7,KDR,CSF1,BCL2L11,CCND3,PDGFA 

Neurotrophin signaling 
pathway 

1,08E-08 CAMK2D,SOS2,SH2B3,CAMK4,NTRK3,FRS2,RAF1,BCL2, 
KRAS,IKBKB,PIK3CD,MAPK8,KIDINS220,ARHGDIA, 
PIK3R1,SOS1,IRS1,RPS6KA3,AKT3,FOXO3,MAP2K1, 
IRAK2,PRDM4,RAP1B,ABL1,MAP3K5 

Long-term depression 1,14E-07 GNA12,GUCY1A3,CRHR1,GNA13,RAF1,IGF1R,GNAI3, 
KRAS,GRIA2,NOS1,PPP2R1A,GNAQ,MAP2K1,PRKG1, 
PPP2R1B,LYN 

Melanoma 1,92E-07 RAF1,IGF1R,FGF20,KRAS,CDK6,PIK3CD,CCND1,E2F3, 
PIK3R1,FGF2,FGF18,AKT3,PDGFC,MAP2K1,FGFR1,FGF7, 
PDGFA 

Non-small cell lung 
cancer 

2,61E-07 SOS2,RAF1,RARB,KRAS,CDK6,PIK3CD,CCND1,E2F3, 
PIK3R1,SOS1,AKT3,FOXO3,MAP2K1 

p53 signaling pathway 7,30E-07 ZMAT3,RFWD2,CCND2,CDK6,CHEK1,CASP3,CCND1, 
CCNE2,SHISA5,RCHY1,SESN1,SIAH1,TNFRSF10B,CCNE1, 
PPM1D,CCND3 

Cell cycle 1,25E-06 ESPL1,YWHAH,SMAD2,CDC14A,ORC2,CCND2,ORC4, 
DBF4,STAG2,WEE1,CDK6,CHEK1,CCNA1,CCND1,CCNE2, 
SKP2,E2F3,CDC14B,YWHAZ,TFDP1,CCNE1,CDC27,ABL1, 
CCND3,CDC25A 
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4. MICRORNA REGULATION OF BRCA1 GENE EXPRESSION IN 

SPORADIC TRIPLE NEGATIVE BREAST CANCER 

Sporadic triple negative tumors share many characteristics with BRCA1-mutated breast 

tumors, which reveals a possible role of BRCA1 dysfunction in the pathogenesis of sporadic 

TNBC. Despite being BRCA1+/+, most sporadic triple negative tumors have a reduced 

expression of the BRCA1 gene (Mueller and Roskelley, 2003; Turner et al., 2007), suggesting 

that other mechanisms might be involved in BRCA1 somatic inactivation. Considering the 

central role that miRNAs play in gene expression regulation, the last objective of this thesis 

was to investigate the involvement of miRNAs in BRCA1 regulation in sporadic triple 

negative breast cancer.  

 

4.1. Triple negative-specifc miRNAs predicted to target BRCA1  

In an attempt to identify miRNAs regulating the BRCA1 gene, five different target 

prediction algorithms (Miranda, Pita, TargetScan, Microtar and RNAhybrid) were used with 

the 78 miRNAs specifically upregulated in sporadic triple negative tumors identified in the 

first part of this thesis (Supplementary Table S1). We selected miR-498 and miR-187-5p 

since they were predicted to bind to the 3'UTR of the BRCA1 gene with high scores by at 

least two prediction methods (Table 13, Figure 18A). Overexpression of these two miRNAs 

in sporadic triple negative tumors could lead to reduced levels of BRCA1 expression.  

 

Table 13. miRNAs specifically overexpressed in triple negative breast tumors that are predicted to 
target the 3’UTR of BRCA1 by at least two prediction methods. 

miRNA 
mature 

Gene Agreement Miranda Pita Microtar RNAHybrid Targetscan 
Mean 
value 

hsa-miR-
498 

BRCA1 2 0.9006 - - - 1 0.9503 

hsa-miR-
187-5p 

BRCA1 3 0.9123 - 0.0022 0.0900 - 0.3348 
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4.2. BRCA1 is a target of miR-498 and miR-187-5p  

We investigated whether the 3’UTR of BRCA1 is a functional target of miR-498 and miR-

187-5p by using a reporter vector into which the entire 3’UTR of BRCA1 was inserted 

downstream of the firefly luciferase reporter gene. This reporter vector was transiently 

transfected into 293T cells together with pre-miR-498, pre-miR-187-5p, non-targeting 

control, positive control (pre-miR-146a-5p) or no miRNA precursor. Each experiment was 

performed in quadruplicate. An average of 35% and 50% reduction of reporter activity as 

compared to the mock transfection control was observed for miR-498 and miR-187-5p, 

respectively (Figure 18B), indicating that these miRNAs target BRCA1 3’UTR. Similar to 

previous studies, the degree of luciferase inhibition with miR-146a-5p reached 60%. 

 

 

Figure 18. Negative regulation of BRCA1 expression by miR-498 and miR-187-5p. A) Schematic 
representation of miRNA binding sites within the BRCA1 3’UTR. B) Relative luciferase activity of a 
reporter vector carrying the BRCA1 3’UTR downstream of the firefly luciferase gene. The vector was 
co-transfected with each of the indicated miRNA precursors or with no miRNA precursor (mock) into 
293T cells. Error bars represent standard deviation for four replicates of one representative 
experiment. Data were normalized versus the luciferase levels generated by the mock transfection. * 
p<0.05.  
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4.3. MiR-498 and miR-187-5p expression in breast tumors and breast 

cancer cell lines of different subtypes 

In the first part of this thesis, we found that miR-498 and miR-187-5p expression was 

increased in sporadic triple negative breast tumors but not in other subtypes when 

compared with normal breast tissues (Figure 19A). We next analyzed the expression of miR-

498 and miR-187-5p in 5 different breast cancer cell lines, including two triple negative 

(MDA-MB-231 and HS578T), one Her2 (SKBR3), one luminal B (BT474) and one luminal A 

(MCF7) cell line. We found that miR-498 was expressed at high levels in a triple negative cell 

line (HS578T) while miR-187-5p was highly expressed in a luminal cell line (BT474). 

Regarding BRCA1 expression, lower levels were found in the triple negative and the Her2 

cell lines when compared with the luminal cell lines (Figure 19B). Since we were interested 

in miRNAs with increased expression levels in triple negative cell lines and negatively 

correlated with BRCA1 expression levels, we decided to focus on miR-498 for following 

experiments. 

 

 

Figure 19. miR-498 and miR-187-5p expression levels in breast tumors and breast cancer cell lines of 
different subtypes. A) Relative expression of miR-498 and miR-187-5p in 11 normal breast tissues 
(N), 91 non triple negative tumors (non TN) and 31 triple negative tumors (TN). B) Relative 
expression of miR-498, miR-187-5p and BRCA1 in two triple negative (MDA-MB-231 and HS578T), 
one Her2 (SKBR3), one luminal B (BT474) and one luminal A (MCF7) breast cancer cell lines. Error 
bars represent standard deviation for triplicates of one representative experiment. 
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4.4. MiR-498-mediated regulation of BRCA1 in breast cancer cell lines 

Since miR-498 was expressed at high levels in HS578T cells and at low levels in MCF7 

cells, we next investigated the consequences of miR-498 inhibition in HS578T cell line and of 

miR-498 overexpression in MCF7 cell line. As expected, miR-498 inhibition led to an increase 

in the amount of BRCA1 (480% increase at the mRNA level and 164% increase at the protein 

level) while its overexpression produced a reduction of BRCA1 (38% decrease at the mRNA 

level), as compared with mock transfection (Figure 20). These results demonstrate that miR-

498 regulates the expression of BRCA1 in breast cancer cells. 

 

 

Figure 20. BRCA1 expression levels after miR-498 inhibition or overexpression. A) Relative mRNA 
levels of BRCA1 after transfection of HS578T cells with anti-miR-498, non-targeting control or no 
miRNA inhibitor. B) Western blot analysis of BRCA1 expression in HS578T cells after transfection 
with anti-miR-498, non-targeting control or no miRNA inhibitor. Full-length BRCA1 was detected 
using a monoclonal anti-BRCA1 antibody (Calbiochem, #OP92) and HSC70/HSP70 served as a loading 
control. C) Relative mRNA levels of BRCA1 after transfection of MCF7 cells with pre-miR-498, pre-
miR-146a-5p, non-targeting control or no miRNA precursor. Error bars represent standard deviation 
for triplicates of one representative experiment. * p<0.05.  
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4.5. Inhibition of miR-498 reduces proliferation in triple negative breast 

cancer cells  

To gain more insight into the biological effect of miR-498 on breast tumorigenesis and 

given that BRCA1 is presumed to have a growth suppressor function (Holt et al., 1996; 

Thompson et al., 1995), we transfected HS578T cells, which previously showed elevated 

levels of miR-498, with anti-miR-498 or mock and analyzed the cell growth by WST-1 cell 

viability assay. Figure 21 shows that inhibition of miR-498 resulted in reduced proliferation 

in comparison to mock transfected cells. These results indicate that down-regulation of 

BRCA1 by miR-498 can promote proliferation and contribute to tumorigenesis. 

 

 
Figure 21. Effect of miR-498 inhibition on proliferation of HS578T cells. WST-1 cell viability assay was 
performed at 24, 48, 72, 96, 120 and 144 hours after transfection of HS578T cells with anti-miR-498 
or mock transfected. 
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1. MICRORNA DEREGULATION IN BREAST CANCER MOLECULAR 

SUBTYPES 

Breast cancer is a highly heterogeneous disease. In the past few years, gene expression 

profiling has identified at least four major subtypes (luminal A, luminal B, Her2 and triple 

negative) with distinct biological features, clinical outcomes and responses to therapies 

(Perou et al., 2000; Sorlie et al., 2001; Sorlie et al., 2003). As a consequence of this 

subclassification, a number of therapies that target specific molecules involved in cancer 

progression have been developed, improving survival of patients. Nevertheless, although 

breast cancer-related genes have been extensively investigated, little is known about the 

role of miRNAs in breast cancer molecular subtypes. In a preliminary study, Blenkiron and 

colleagues (Blenkiron et al., 2007) showed that miRNAs might contribute to the stratification 

of breast tumors into the intrinsic subtypes. Since miRNAs are key regulators of many 

cellular processes, identification of subtype-specific miRNAs would provide better 

understanding of the biology of these tumors, especially in the case of triple negative 

cancers, which are associated with the most aggressive clinical behavior and do not respond 

to current targeted therapies. By analyzing the expression levels of 1919 human miRNAs in a 

large series of breast tumors and normal breast tissues, we aimed to find miRNAs associated 

with breast cancer and identify those miRNAs specifically deregulated in breast cancer 

molecular subtypes. 

1.1. MiRNA expression profiling differentiates breast tumors from normal 

breast tissues although stratification of molecular subtypes is imperfect 

We first performed unsupervised hierarchical clustering of our samples and observed a 

clear separation between breast tumors and normal breast tissues, thus confirming previous 

studies that suggest that miRNA expression profiling can be used to classify breast tissues 

(Iorio et al., 2005; Lu et al., 2005). We detected common expression profiles in tumors 

having the same molecular subtype, but also clusters of samples belonging to different 

subtypes (Figure 8). One possible explanation could be that miRNAs are regulating multiple 

processes in the cell and our samples could be grouping not exclusively according to their 

molecular subtype but to other tumor characteristics. Interestingly, Rothé et al. came to the 
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same conclusion after comparing clustering of breast tumors based on miRNA and mRNA 

expression profiles (Rothe et al., 2011). For instance, it has been suggested that miRNA 

expression profiles may discriminate tumors of breast cancer patients with different 

prognosis (Perez-Rivas et al., 2014) and could predict BRCA mutation status in hereditary 

tumors (Tanic et al., 2015). Therefore, miRNAs may offer additional information on breast 

tumors stratification. Another explanation to our imperfect unsupervised cluster could be 

the stratification of breast tumors into new molecular entities. The integration of DNA copy 

number alterations, DNA methylation, exome sequencing and mRNA, miRNA and protein 

expression has led to the identification of novel subtypes with characteristic alterations 

(Curtis et al., 2012b; Network, 2012; Prat et al., 2010). New subtypes could be also present 

in our samples, making it difficult the stratification into the four classical subtypes. Further 

studies are needed in order to obtain a comprehensive picture of breast cancer 

heterogeneity that would allow improvements in the clinical management of the patients. 

1.2. MiRNAs commonly and specifically deregulated in breast cancer 

molecular subtypes 

In order to identify miRNAs associated with breast tumors and the intrinsic subtypes, 

we performed a supervised analysis. The large amount of deregulated miRNAs identified in 

our set of breast tumors highlights the important role that miRNAs play in breast 

tumorigenesis. Among the most deregulated miRNAs, miR-125b-5p and miR-21-5p have 

been repeatedly associated with breast cancer (Iorio et al., 2005; Volinia et al., 2006). MiR-

21-5p is known to function as an oncogene by targeting tumor suppressor genes including 

tropomyosin 1 (TPM1), programmed cell death 4 (PDCD4) and phosphatase and tensin 

homolog (PTEN), leading to cell proliferation and inhibition of apoptosis and regulating 

cancer invasion and metastasis in breast cancer (Frankel et al., 2008; Huang et al., 2009; Zhu 

et al., 2007). MiR-125b-5p is upregulated in many cancers but downregulated in others such 

as breast cancer, and controls many different cellular processes by targeting numerous 

transcription factors such as ETS1, E2F3 and BCL3 (Guan et al., 2011; Huang et al., 2011; 

Zhang et al., 2011). We found that both miR-21 and miR-125b were deregulated through all 

the molecular subtypes, underlying their essential role in breast cancer. In addition and due 

to the large number of miRNAs analyzed in the present study, we have identified new 
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miRNAs that have not been associated with breast cancer before, expanding the knowledge 

on miRNA deregulation in breast cancer. Some of the most significant ones are deregulated 

through all the molecular subtypes, like miR-3613-3p, miR-4668-5p, miR-4516, miR-548as-

3p, miR-4488, miR-3656 and miR-5704, making them ideal candidates for breast cancer 

detection. 

Even though several studies have focused on the identification of miRNAs associated 

with breast cancer, little is known about deregulated miRNAs in breast cancer molecular 

subtypes. By analyzing the expression of 309 human miRNAs, Blenkiron and colleagues 

detected some miRNAs differentially expressed among the intrinsic subtypes (Blenkiron et 

al., 2007). In the present study, we analyzed the expression of 1919 human miRNAs and 

consequently identified a larger number of miRNAs associated with tumor subtypes (Figure 

9). Interestingly, comparison of our results with the ones obtained by Blenkiron et al. 

revealed similar patterns of expression for several key miRNAs (Figure 22). Of note, all these 

miRNAs seem to be associated with ER status. For example, miR-150, miR-155 and miR-187 

are upregulated in triple negative and Her2 tumors when compared with luminal samples, 

while miR-145, miR-199a, miR-30a, let-7a, let-7b, let-7c, let-7f and miR-342 are 

downregulated in triple negative and Her2 samples when compared with luminal tumors. 

These results are consistent with previous studies that suggest that the expression levels of 

miR-155 are inversely correlated with ER (Lu et al., 2012) while the expression of miR-342 is 

higher in ER positive tumors compared with triple negative tumors (Lowery et al., 2009). In 

addition, overexpression of miR-150 and miR-155 and downregulation of miR-145, miR-30a 

and members of the let-7 family has been associated with breast cancer progression, tumor 

aggressiveness, self-renewal and loss of differentiation (Bussing et al., 2008; Chen et al., 

2012; Cheng et al., 2012; Huang et al., 2013; Zou et al., 2012), thus explaining the 

differences observed between luminal and non-luminal tumors. 
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Figure 22. miRNAs associated with breast cancer molecular subtypes in the study carried out by 
Blenkiron et al. that have a similar pattern of expression in the present study. Colors represent the 
average expression value for each group of interest: dark red indicates high expression and dark 
grey, low expression. 

 

To our knowledge, this is the first report that takes into account the miRNA expression 

profile of normal tissues to obtain miRNAs associated with breast cancer intrinsic subtypes. 

We believe that this approach might be more appropriate for the identification of 

specifically deregulated miRNAs. For example, we found that miR-342 is downregulated in 

triple negative and Her2 when compared with luminal tumors, as previous studies have 

suggested (Blenkiron et al., 2007; Lowery et al., 2009). However, all the subtypes showed 

overexpression of this miRNA when compared with the normal tissues, suggesting that the 

upregulation of this miRNA might play a general role in breast tumorigenesis and could not 

be specific to ER positive tumors.  

Interestingly, we could only identify one specific miRNA for Her2 tumors (Figure 9B). 

These results are in accordance with the ones obtained by van Schooneveld et al. (van 

Schooneveld et al., 2012). After comparing miRNA expression profiles of tumor subtypes, 

they could not find any specific miRNA for Her2 tumors while identified triple negative 

subtype as the subgroup with more specific miRNAs. These findings suggest that Her2 

subtype might enclose tumors with diverse miRNA profiles, making it difficult the 

identification of exclusive miRNAs. In fact, when compared with the normal tissues, Her2 

was the subtype with less differentially expressed miRNAs, highlighting its heterogeneous 

miRNA profile. On the other hand, a great number of specifically deregulated miRNAs were 
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identified for triple negative tumors, including several members of the let-7 family (let-7d-

5p, let-7i-5p, let-7a-5p, let-7d-3p). Let-7 is a family of miRNAs highly conserved across 

species and is often cited as the archetypal tumor-suppressing miRNA family. It has been 

shown that downregulation of let-7 promotes self-renewal and leads to a less differentiated 

cellular state in human and murine breast cells (Ibarra et al., 2007; Yu et al., 2007). Thus, 

misregulation of member of this family in triple negative breast tumors could explain at 

least in part why this subtype tends to grow and spread more quickly than other types of 

breast cancer and why triple negative cancer cells are often poorly differentiated. 

1.3. miRNA signatures predict breast cancer molecular subtypes  

Machine learning is a promising tool in disease diagnosis since it allows the recognition 

of expression patterns in groups of samples and the use of these patterns for the 

classification of new samples. In fact, several prognostic classifiers are currently used as 

treatment decision tools. The 70-gene predictor Mammaprint (Glas et al., 2006) and the 21-

gene signature Oncotype (Paik et al., 2004) predict risk of recurrence in early-stage breast 

cancer patients and inform the utility of chemotherapy as part of the treatment plan. By 

using support vector machines, we have generated five microarray classifiers that 

discriminate breast tumors and breast cancer molecular subtypes with high sensitivity and 

specificity (Table 8). The accuracy for our classifiers is in the range 0.97-0.98, suggesting 

excellent classification ability. These classifiers have been validated in an independent set of 

samples with similar sensitivity and specificity, confirming the potential of these miRNAs to 

stratify breast tumors. Since inmunohistochemical (IHC) tests can be limited by their need of 

well-preserved tissues and the subjective interpretation of stain intensity by pathologists 

(Dunstan et al., 2011), we consider that the microarray classifiers reported here could be 

useful tools to complement IHC tests for breast cancer classification. MiRNAs have been 

shown to be unusually well-preserved in a range of specimen types and are ideal substrates 

for the molecular characterization of FFPE tissues due to their small size and resistance to 

degradation (Liu et al., 2009). Nevertheless, since reproducibility is a major criticism about 

microarray technology, validation in a prospective multicenter trial is required before any 

translational application.  
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The signatures generated here include miRNAs that have previously been associated 

with breast cancer and other cancers, and that are implicated in the regulation of cellular 

processes such as proliferation, migration, invasion and apoptosis. The pathways predicted 

to be significantly enriched for each signature are closely related to cancer development 

and progression, suggesting that the identified miRNAs are biologically relevant and their 

choice is not arbitrary. The Cancer Genome Atlas Network has recently shown that somatic 

mutations in PIK3CA, TP53, MAP3K1 and MAP2K4 genes occur at high incidence across 

breast cancer molecular subtypes (Cancer Genome Atlas, 2012). Interestingly, PI3K-AKT, P53 

and MAPK signaling pathways are predicted to be associated with the identified signatures 

with high statistical significance, which suggests that deregulation of these miRNAs might 

contribute to the alteration of these pathways in breast cancer. 

Some of the miRNAs that compose each signature have previously been associated with 

the corresponding intrinsic subtype, thus confirming the utility of these signatures in the 

prediction of breast cancer molecular subtypes. For example, reduced levels of miR-29c has 

been found in basal-like cancers when compared with other subtypes (Sandhu et al., 2014); 

a lower expression of miR-205 is associated with HER2 breast tumors (Mattie et al., 2006) 

and interestingly, miR-205 has been reported to regulate Her3 in human breast cancer (Iorio 

et al., 2009) and, in turn, to be regulated by Her2 (Adachi et al., 2011); miR-221 increases 

proliferation in ER-positive cells (Di Leva et al., 2010); and miR-22 is a suppressor of ER alpha 

and is downregulated in ER-positive breast cancer cells and clinical samples (Xiong et al., 

2010). Consequently, we hypothesize that the identified miRNA signatures could be 

informative for breast cancer diagnosis and might assist in defining specific targets for 

future therapy. 
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2. CIRCULATING MICRORNAs AS EARLY DETECTION MARKERS 

FOR BREAST CANCER 

Despite improvements in screening techniques and treatment strategies, breast cancer 

is still one of the leading causes of cancer death among women (Ferlay et al., 2015), mainly 

due to late stage at initial diagnosis. Thus, efficient diagnostic tools are urgently needed to 

improve early breast cancer detection and consequently patient outcome. Even though 

mammography is the most reliable way to detect breast cancer, it has some limitations 

including low sensitivity in dense breasts, severe pain caused to some women  or radiation 

risk, especially for women below age 35 (Kolb et al., 2002; Law and Faulkner, 2001; Sharp et 

al., 2003). Biopsy is the method used to establish a definitive diagnosis but it is an invasive 

procedure. Serum tumor markers such as CEA or CA 15-3, although being promising at the 

time of their identification, are not recommended by the ASCO and other expert panels for 

screening or diagnosis of breast cancer due to their low sensitivity in early stages of the 

disease (Harris et al., 2007). Consequently, there is an urgent need for the identification of 

sensitive, specific and non-invasive markers for early breast cancer detection. Given the 

important role that microRNAs play in tumorigenesis and their remarkable stability in body 

fluids, we have evaluated their potential as novel non-invasive breast cancer biomarkers by 

analyzing two independent series of plasma. 

2.1. Comparison of miRNA expression between tumor and plasma 

In the first part of this thesis, we have identified a large number of miRNAs deregulated 

in breast tumors when compared with normal breast tissues. Since these miRNAs might be 

relevant for breast cancer detection, we decided to investigate the expression of the most 

relevant ones in plasma. First, we validated their deregulation in tumors by qRT-PCR. A 

strong correspondence between microarray expression and qRT-PCR was observed, as 91% 

of the explored miRNAs were validated (p-value<0.05). These results are in line with those 

reported by Git et al., where a high correlation (0.82-0.92) between Exiqon platform and 

qPCR was described (Git et al., 2010). However, the validation of significant tumoral miRNAs 

in plasma was more controversial. Among 10 miRNAs analyzed in the discovery set, 5 were 

found differentially expressed in the plasma of breast cancer patients when compared with 
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healthy women and one showed a trend. However, only half of these six miRNAs were 

deregulated in the same direction as in tumors (miR-21-5, miR-142-3p and miR-96-5p). 

Dissimilar patterns of miRNA expression between tumor and plasma have been reported 

recently. Chan et al. performed miRNA profiling of tumors and sera from breast cancer 

patients and healthy individuals and observed 73 miRNAs deregulated in breast tumors and 

85 in plasma. However, only 21 were in common in both tissues, and 13 of them were 

deregulated in opposite directions (Chan et al., 2013). Similarly, Pigati et al. studied the 

liberation of miRNAs from malignant and non-malignant mammary cells into body fluids and 

suggested that miRNAs are released from breast cancer cells in a selective manner and 

therefore, extracellular and cellular miRNA profiles are different (Pigati et al., 2010).  

2.2. miR-505-5p, miR-96-5p, miR-125b-5p and miR-21-5p are deregulated in 

tumors and plasma of breast cancer patients  

Validation in a second series of plasma led to the confirmation that miR-505-5p, miR-

125b-5p, miR-21-5p and miR-96-5p are overexpressed in the plasma of breast cancer 

patients. Since these miRNAs are significantly deregulated both in tumor and plasma from 

pretreated breast cancer patients, we hypothesize that miR-505-5p, miR-125b-5p, miR-21-

5p and miR-96-5p might be candidates for non-invasive breast cancer detection. 

Overexpression of circulating miR-21-5p has been described in breast cancer patients (Asaga 

et al., 2011; Mar-Aguilar et al., 2013; Ng et al., 2013; Si et al., 2013) but also in other cancers 

such as esophageal, gastric, colorectal and lung (Du et al., 2014; Wang and Zhang, 2012; 

Zheng et al., 2011). These findings show the potential utility of circulating miR-21-5p as a 

broad-spectrum biomarker for the detection of various cancers and not specifically for 

breast cancer diagnosis. Mir-125b-5p has also been reported to be upregulated in the serum 

of breast cancer patients (Mar-Aguilar et al., 2013; Wang et al., 2012) and has been 

associated with chemotherapeutic resistance, with non-responsive patients having higher 

expression levels (Wang et al., 2012). To the best of our knowledge, this is the first report of 

circulating miR-505-5p and miR-96-5p being associated with breast cancer. Nevertheless, 

downregulation of miR-505 and upregulation of miR-96-5p have been reported in breast 

tumors and have been related to increased cell proliferation (Li et al., 2014; Yamamoto et 

al., 2011). 
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 ROC curve analysis showed that the discrimination potential of these four miRNAs was 

acceptable, with AUC ranging from 0.6070 to 0.7213, being miR-505 and miR-96-5p the 

most valuable biomarkers for discriminating breast cancer patients from healthy individuals. 

In addition, the levels of miR-505-5p and miR-21-5p were significantly reduced after 

surgery/treatment, suggesting that the expression of these two miRNAs is dependent on 

tumor dynamics. Although quantification of levels of miR-505-5p and miR-21-5p in the same 

cohort of patients is required, the reduction of expression in the postreated group indicates 

the potential utility of these miRNAs to monitor treatment response and highlights their 

clinical value for breast cancer detection and surveillance.  

Moreover, we found significant higher levels of circulating miR-505 in patients with 

luminal low-grade tumors, suggesting that this miRNA could be used not only in the 

detection and surveillance of breast cancer but also in the recognition of luminal subtypes. 

Similar to other studies (Asaga et al., 2011; Wang and Zhang, 2012), circulating miR-21 did 

not show any association with age of the patient, tumor size, grade, lymph node, ER, PR and 

Her2 status, ki-67 levels and molecular subtype. Contrarily, other reports have shown an 

association with larger tumor size and lymph node metastasis (Si et al., 2013). Although 

higher expression levels of circulating miR-125b have been related to higher tumor grade 

and lymph node metastasis (Wang et al., 2012), we did not observed any association with 

these factors. In order to use circulating miRNAs as a liquid biopsy, further studies with 

larger cohorts of patients are required to elucidate the relationship between miRNA 

expression levels and clinicopathologic features of breast cancer patients. 

In conclusion, we have reported and validated the overexpression of miR-505-5p, miR-

125b-5p, miR-21-5p and miR-96-5p in the plasma of breast cancer patients and 

demonstrated the potential utility of these miRNAs as non-invasive biomarkers for breast 

cancer screening. A great advantage of our study is that most of the patients had an early 

stage breast cancer at the time of blood sample collection, which highlights the relevance of 

the identified miRNAs in early breast cancer detection. Although promising, prospective 

studies on larger cohorts of patients are required to confirm the diagnostic value of these 

miRNAs.  
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3. MICRORNAs ASSOCIATED WITH RECURRENCE-FREE SURVIVAL 

IN TRIPLE NEGATIVE BREAST CANCER 

Triple negative tumors are associated with the most aggressive clinical behavior and 

poorest prognosis in breast cancer (Dent et al., 2007). Due to the lack of therapeutic targets, 

chemotherapy is the only possibility for triple negative patients, but although some patients 

have an excellent response, others experience early disease recurrence in the first 3-5 years 

following diagnosis (Liedtke et al., 2008; Mulligan et al., 2008). During the last decade, 

several gene expression signatures for outcome prediction have been described and 

validated in breast cancer with consistent results (Glas et al., 2006; Paik et al., 2004). 

However, these assays are not useful in ER-negative disease (Fan et al., 2011) and therefore, 

identification of robust prognostic and predictive markers in triple negative patients is 

urgently needed. In this context, we used miRNA expression profiling to find miRNAs that 

can distinguish groups of triple negative patients with different clinical outcomes.  

3.1. Deregulated miRNAs in node-positive triple negative patients with 

different outcome 

While women with node-negative triple negative tumors generally have an excellent 

five-year disease-free survival when treated, the presence of any lymph node metastases at 

the time of diagnosis is a negative prognostic indicator (Hernandez-Aya et al.; Rakha et al., 

2007). In accordance to these data, we found that most node-negative women in our two 

cohorts of triple negative patients survived after 5 years of diagnosis but only 40% of node-

positive women had no disease recurrence at the end of this period. In order to identify 

miRNAs that can distinguish node-positive patients with different outcome, the expression 

of 1919 human miRNAs was analyzed by microarray technology in 10 node-positive triple 

negative patients. Among the 17 miRNAs identified, only two (let-7i-5p and let-7a-5p) were 

specific of triple negative subtype, suggesting that most of the miRNAs involved in the 

aggressiveness of triple negative tumors are not subtype specific. The miRNAs identified 

showed significant lower expression in patients with shorter RFS, indicating that the 

expression of these miRNAs might be lost in highly aggressive triple negative tumors. In fact, 

most of these miRNAs have been reported to act as cancer suppressor genes by inhibiting 
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cell migration, invasion and proliferation. Similarly, Avery-Kiejda et al. suggested that miRNA 

expression profiles tend to be downregulated in node-positive triple negative patients while 

are overexpressed in node-negative disease (Avery-Kiejda et al., 2014).  Interestingly, many 

of the identified miRNAs belong to a miRNA cluster, such as miR-23b/27b/24-1 cluster in 

chromosome 9, miR-23a/24-2/27a cluster in chromosome 19 and let-7a/7b cluster in 

chromosome 22. Since it has been shown that clustered miRNAs have a tendency to 

coordinately regulate target genes (Grun et al., 2005; Hausser and Zavolan, 2014), 

deregulation of these miRNAs might have an additive effect in the same molecular pathway. 

Surprisingly and contrarily to what has been published before in breast cancer (Yan et al., 

2008), miR-21 was found underexpressed in patients with worse prognosis. Although 

further investigation is required, a different role of miR-21 in triple negative disease could 

be the explanation for this finding. 

3.2. MiR-30c-5p and miR-195-5p are associated with recurrence in triple 

negative breast cancer 

We found that decreased expression levels of let-7b-5p, miR-195-5p, miR-24-3p and 

miR-30c-5p were significantly associated with increased risk of recurrence of node-positive 

TNBC patients. However, validation by qRT-PCR in a larger cohort of patients confirmed the 

prognostic value of only miR-30c-5p and miR-195-5p in both node-positive and the whole 

group of triple negative patients. Moreover, the stratification of the patients according to 

the combination of both miRNAs resulted in a great separation of high- and low-risk groups. 

Interestingly, the pathway enrichment analysis suggested that these miRNAs seem to 

collectively target a broad range of signaling pathways related to proliferation, invasion and 

cell cycle regulation. 

It has been suggested that miR-195-5p acts as a tumor suppressor gene, the expression 

of which is downregulated in breast cancer (Li et al., 2011). More importantly, its 

overexpression in breast cancer cells inhibits cell proliferation, reduces cell colony 

formation, suppresses cell migration and promotes apoptosis through inhibition of RAF-1 

and cyclins E1 (CCNE1) and D1 (CCND1) (Li et al., 2011; Luo et al., 2014; Yang et al., 2013). 

Furthermore, the expression of miR-195-5p has recently been associated with sensitivity to 

the anthracycline drug Adriamycin (also known as Doxorubicin), and it has been shown that 
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multidrug-resistant breast cancer tissues have low levels of this miRNA (Yang et al., 2013). 

Likewise, miR-30c-5p has been reported to regulate invasion and proliferation in breast 

cancer cells by targeting the oncogene KRAS and the cytoskeleton network genes encoding 

twinfilin 1 (TWF1) and vimentin (VIM) (Bockhorn et al., 2013; Tanic et al., 2012). Moreover, 

miR-30c-5p has lately been shown to be downregulated in Doxorubicin-resistant breast 

cancer cell lines and its overexpression sensitivizes tumor cells to Doxorubicin by inhibiting 

the anti-apoptotic gene YWHAZ (Fang et al., 2014).    

Of note, miR-195-5p exhibited association with poor prognosis even after adjustment 

for relevant clinical variables, indicating that this miRNA might be an independent 

prognostic marker in TNBC. Although preliminary, the association of miR-195-5p with 

disease recurrence could potentially serve to define a group of triple negative patients who 

may benefit from a more aggressive therapy. On the other hand, we found that the 

expression of miR-30c-5p seems to be associated with tumor size in triple negative patients. 

Similarly, Tanic et al. showed that the overexpression of miR-30c-5p in the TNBC cell line 

MDA-MB-436 reduces KRAS levels and inhibits proliferation (Tanic et al., 2012). Hence, 

tumors that express low levels of miR-30c-5p might proliferate more and increase in size. 

Furthermore and taking into consideration the association of both miRNAs with Doxorubicin 

sensitivity (Fang et al., 2014; Yang et al., 2013), therapeutic delivery of miR-195-5p and miR-

30c-5p could improve chemotherapy response in triple negative patients with low levels of 

these miRNAs. Although our results may require further external validation in a larger 

cohort, the prognostic and predictive value of these two miRNAs in TNBC is promising. 
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4. MiR-498 REGULATES BRCA1 EXPRESSION IN SPORADIC TRIPLE 

NEGATIVE BREAST CANCER 

In early 1990s, family-based linkage analysis and positional cloning led to the 

identification of high-penetrance genes BRCA1 (Miki et al., 1994) and BRCA2 (Wooster et al., 

1994), two tumor-suppressor genes that are frequently mutated in hereditary breast 

cancers. During the past two decades, BRCA1 has been found to play a critical role in various 

cellular processes, including DNA repair by distinct pathways, cell cycle checkpoints control, 

centrosome amplification, transcriptional activation of target genes, and ubiquitin ligation 

(Drost and Jonkers, 2014; Narod and Foulkes, 2004). While the specific functions of BRCA1 

are still being elucidated, it is clear that functional BRCA1 protein is required to prevent 

breast transformation (Xu et al., 1999). Although sporadic triple negative tumors share 

many characteristics with BRCA1-germline mutated breast tumors, they usually do not 

present somatic mutations in the BRCA1 gene. However, several studies have shown that 

most sporadic triple negative tumors have a reduced expression of the BRCA1 gene (Mueller 

and Roskelley, 2003; Turner et al., 2007), which suggests a possible role of BRCA1 

dysfunction in the pathogenesis of sporadic triple negative breast cancer. Taking into 

consideration that miRNAs function as negative regulators of gene expression, we 

investigated their possible involvement in the inactivation of BRCA1 in sporadic triple 

negative tumors. 

4.1. BRCA1 is a target of miR-498 and miR-187-5p  

In the first part of this thesis, we identified 78 miRNAs that were overexpressed in 

sporadic triple negative tumors but not in other breast cancer subtypes when compared 

with normal breast tissues. Since reduced expression of BRCA1 in triple negative tumors 

could be produced by high levels of a miRNA targeting this gene, we investigated if these 

miRNAs have binding sites in the 3’UTR of BRCA1. At least two bioinformatics algorithms 

predicted with high scores that miR-498 and miR-187-5p bind to the 3'UTR of the BRCA1 

gene, and we functionally validated these results by luciferase reporter assay. In addition, 

we have confirmed with similar levels of repression, previous studies that report that miR-

146a targets BRCA1 3’UTR (Garcia et al., 2011; Shen et al., 2008).  
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The role of miR-498 in cancer development has not been well documented. While it 

seems to be dowregulated in some cancers such as colon and ovarian cancer (Gopalan et al., 

2015; Kasiappan et al., 2012), its overexpression has been reported in metastatic medullary 

thyroid carcinoma and retinoblastoma (Santarpia et al., 2013; Zhao et al., 2009). Regarding 

its targets, miR-498 has been shown to bind to the 3’UTR of HER2 and TERT (Kasiappan et 

al., 2012; Leivonen et al., 2014), but reports showing targeting of BRCA1 have not been 

described so far. Similarly, high levels of miR-187-5p have been associated with ovarian 

cancer (Chao et al., 2012) but its downregulation has been reported in clear cell renal cell 

carcinoma and prostate cancer (Fuse et al., 2012; Zhao et al., 2013). Interestingly, its 

overexpression has been associated with poor outcome in breast cancer, leading to a more 

aggressive phenotype (Mulrane et al., 2012). These findings suggest that miR-498 and miR-

187-5p might act as oncogenes or tumor suppressors depending on the cellular context, as it 

happens with other miRNAs such as miR-125b-5p. 

4.2. MiR-498 regulates BRCA1 expression in breast cancer cell lines 

After analyzing the expression of miR-498 and miR-187-5p in breast cancer cell lines of 

different subtypes, we found that miR-498 was overexpressed in the triple negative cell line 

HS578T while miR-187-5p seemed to be overexpressed in the luminal cell lines BT474 and 

MCF7. Since we were interested in miRNAs with increased expression levels in triple 

negative cell lines and negatively correlated with BRCA1 expression levels, we decided to 

focus on miR-498 for following experiments. We functionally demonstrated the interaction 

between miR-498 and BRCA1 in breast cancer cell lines: inhibition of miR-498 in HS578T cell 

line increased BRCA1 levels and its overexpression in MCF7 cell line reduced BRCA1 

expression. These results suggest that miR-498 regulates BRCA1 expression in breast cancer 

and its overexpression could contribute to the pathogenesis of sporadic TNBC via BRCA1 

downregulation. These findings confirm previous studies that suggest that miRNA 

deregulation might be involved in the inactivation of BRCA1 in sporadic breast cancer 

(Garcia et al., 2011; He et al., 2014; Moskwa et al., 2011; Tan et al., 2014).  
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4.3. MiR-498 plays a role in triple negative breast cancer cell proliferation  

In addition, we have demonstrated that miR-498 inhibition leads to reduced 

proliferation of triple negative breast cancer cells. Our findings are consistent with a role of 

miR-498 in the regulation of BRCA1, since induction of BRCA1 expression has been shown to 

inhibit growth in breast tumors and cell lines (Holt et al., 1996). Hence, our data support 

that miR-498 promotes cell proliferation in triple negative breast cancer through direct 

regulation of BRCA1 expression. Although the effect of miR-498 deregulation on DNA repair 

needs to be investigated, the findings reported here have potential clinical implications. The 

most relevant one is that tumors with high levels of miR-498 might be more sensitive to 

PARP inhibitors and DNA damaging chemotherapeutic agents. Therefore, the monitoring of 

miR-498 expression could serve to identify a group of breast cancer patients that may 

benefit from these therapies.  

In conclusion, this study sheds light on the mechanisms behind the decreased 

expression of BRCA1 in sporadic TNBC. Determination of these mechanisms is essential to 

increase our understanding of triple negative breast cancer etiology and to permit better 

therapeutic approaches. 
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CONCLUSIONS 

 

1. We have defined five miRNA signatures that discriminate breast tumors and the 

main breast cancer molecular subtypes with high sensitivity and specificity. Pathway 

enrichment analysis indicates that these miRNAs might regulate different biological 

processes related to cancer development and progression.  

 

2. Comparison of miRNA expression between tumor and plasma showed dissimilar 

patterns of expression for some miRNAs, which could indicate a selective release 

from breast cancer cells into the blood. We have reported and validated the 

overexpression of miR-505-5p, miR-125b-5p, miR-21-5p and miR-96-5p in the plasma 

of breast cancer patients when compared with healthy women and demonstrated 

the potential utility of these miRNAs as non-invasive biomarkers for early breast 

cancer detection.  

 

3. We have identified a set of 17 miRNAs that are downregulated in breast tumors of 

node-positive triple-negative patients with poor outcome. Moreover, we found that 

miR-30c-5p and miR-195-5p are associated with recurrence in triple negative breast 

cancer, and that miR-195-5p might be an independent prognostic marker that could 

serve to define a group of triple negative patients who may benefit from a more 

aggressive therapy. 

 

4. Two triple-negative specific miRNAs, miR-498 and miR-187-5p, were found to target 

BRCA1 3’UTR. We demonstrated that miR-498 regulates BRCA1 expression in breast 

cancer cell lines and its inhibition leads to reduced proliferation in triple negative 

breast cancer cells. Our results shed light on the mechanisms behind the decreased 

expression of BRCA1 in sporadic triple negative breast cancer. 
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CONCLUSIONES 

 

1. Hemos definido cinco firmas de miRNAs que discriminan los tumores de mama y los 

principales subtipos moleculares de cáncer de mama con gran sensibilidad y 

especificidad. El análisis de enriquecimiento funcional indica que estos miRNAs 

podrían estar regulando distintos procesos biológicos relacionados con el desarrollo 

y la progresión del cáncer.  

 

2. La comparación de la expresión de ciertos miRNAs en tumores y plasma mostró 

patrones de expresión diferentes para algunos miRNAs, lo que podría indicar que 

existe una liberación selectiva por parte de las células cancerosas a la sangre. Hemos 

validado la sobreexpresión de los miR-505-5p, miR-125b-5p, miR-21-5p y miR-96-5p 

en el plasma de pacientes con cáncer de mama en comparación con mujeres sanas, y 

hemos demostrado la posible utilidad de estos miRNAs como biomarcadores no 

invasivos para la detección temprana del cáncer de mama.  

 

3. Hemos identificado un grupo de 17 miRNAs que están infraexpresados en tumores 

de mama de pacientes triple negativas con ganglios positivos y mal pronóstico. 

Además, hemos encontrado que los miR-30c-5p y miR-195-5p están asociados con 

recurrencia y que el miR-195-5p podría ser un marcador de pronóstico 

independiente en cáncer de mama triple negativo. El análisis de la expresión del 

miR-195-5p en tumores podría servir para definir un grupo de pacientes triple 

negativas que podrían beneficiarse de una terapia más agresiva. 

 

4. Hemos encontrado que dos miRNAs específicos de tumores triple negativos, miR-498 

y miR-187-5p, tienen como diana la región 3’UTR de BRCA1. Además, hemos 

demostrado que el miR-498 regula la expresión de BRCA1 en líneas celulares de 

cáncer de mama, y que su inhibición da lugar a una reducción en la proliferación de 

las células triple negativas. Estos resultados podrían explicar la disminución en la 

expresión de BRCA1 que se observa en cáncer de mama esporádico triple negativo. 
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Supplementary Table S1. Specifically up or downregulated miRNAs in breast cancer molecular 
subtypes after comparison with normal breast tissues. 

Molecular 
subtype 

Deregu 
lation 

Number miRNAs 

Triple 
negative 

Up 78 miR-642b-5p,miR-4795-3p,miR-4653-3p,miR-3124-3p,miR-
4501,miR-4698,miR-1973,miR-3976,miR-4417,miR-634,miR-
4723-5p,miR-150-5p,miR-4639-3p,miR-659-5p,miR-4633-5p,miR-
5584-3p,miR-4449,miR-921,miR-5000-3p,miR-4707-3p,miR-513a-
5p,miR-519e-5p,miR-552,miR-4431,miR-4677-3p,miR-4329,miR-
1273e,miR-711,miR-4503,miR-3687,miR-492,miR-3591-5p,miR-
5588-3p,miR-874,miR-181a-2-3p,miR-4636,miR-498,miR-4782-
5p,miR-490-5p,miR-548ao-3p,miR-5193,miR-3648,miR-4511,miR-
1827,miR-187-5p,miR-550b-2-5p,miR-4674,miR-3912,let-7d-
3p,miR-2113,miR-4264,miR-675-3p,miR-5689,miR-4784,miR-
1285-5p,miR-4694-5p,miR-5089,miR-5187-5p,miR-650,miR-506-
5p,miR-891a,miR-1265,miR-1197,miR-3944-5p,miR-4683,miR-
4536-3p,miR-3618,miR-4535,miR-4778-5p,miR-3925-5p,miR-
1321,miR-4436b-5p,miR-3161,miR-5006-3p,miR-3606,miR-146a-
5p,miR-5580-5p 

Down 27 miR-554,miR-4444,miR-629-5p,miR-10a-5p,miR-140-3p,miR-
374a-5p,miR-124-5p,let-7d-5p,miR-4791,miR-548o-3p,miR-
1202,miR-4328,miR-448,miR-382-3p,miR-29b-2-5p,miR-590-
3p,miR-10b-5p,let-7i-5p,miR-4301,miR-126-3p,miR-199a-5p,miR-
3607-3p,miR-214-3p,miR-491-3p,miR-4285,miR-5701,let-7a-5p 

Her2 Up 0 - 

Down 1 miR-574-3p 
Luminal B Up 23 miR-16-5p,let-7g-5p,miR-23a-3p,miR-200c-3p,miR-34a-5p,miR-

101-3p,miR-26b-5p,miR-193a-3p,miR-30b-5p,miR-20a-5p,miR-
29a-3p,miR-15a-5p,miR-27b-3p,miR-93-5p,miR-4714-5p,miR-
1280,miR-29b-3p,miR-15b-5p,miR-26a-5p,miR-374b-5p,miR-
429,miR-107 

Down 16 miR-184,miR-4462,miR-4649-5p,miR-1299,miR-4433-3p,miR-
4472,miR-302a-3p,miR-4507,miR-3646,miR-371b-5p,miR-
4497,miR-4787-5p,miR-548ap-5p,miR-548j,miR-3940-5p,miR-
4505,miR-1275 

Luminal A Up 5 miR-4421,miR-3667-5p,miR-5196-3p,miR-548k,miR-331-3p 

Down 12 miR-486-5p,miR-4492,miR-664-3p,miR-124-3p,miR-4446-5p,miR-
3664-5p,miR-513b,miR-3620,miR-4769-3p,miR-4646-3p,miR-
3182,miR-4723-3p 

Common Up 25 miR-21-5p,miR-3613-3p,miR-4668-5p,miR-106b-5p,miR-200a-
3p,miR-5704,miR-1278,miR-182-5p,miR-1264,miR-96-5p,miR-
190b,miR-3611,miR-185-5p,miR-339-5p,miR-7-5p,miR-340-
5p,miR-203,miR-342-5p,miR-1244,miR-600,miR-760,miR-92a-2-
5p,miR-219-2-3p,miR-553,miR-4521 

Down 27 miR-889,miR-192-3p,miR-432-5p,miR-1224-5p,miR-1205,miR-
1228-5p,miR-571,miR-1229,miR-4253,miR-2276,miR-577,miR-
548s,miR-744-3p,miR-1207-5p,miR-1270,miR-877-5p,miR-499a-
5p,miR-574-5p,miR-718,miR-4695-3p,miR-3164,miR-3148,miR-
3941,miR-4488,miR-4516,miR-3656,miR-125b-5p 
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Supplementary Table S2. Comparison of the performance of different algorithms used for the 
classification of breast tumors and the different molecular subtypes.  

Classifier Algorithm Accuracy MCC RMSE AUC miRNAs 

Breast tumors 
vs normal 
breast tissues 

KNN 0.95 0.74 0.18 0.91 25 
 SVM 0.98 0.90 0.06 0.92 

RF 0.92 0.49 0.22 0.91 

Triple negative 
vs rest of 
tumors 

KNN 0.78 0.31 0.37 0.82 8 
 SVM 0.98 0.95 0.05 0.97 

RF 0.80 0.42 0.36 0.84 

Her2 vs        
rest of tumors 

KNN 0.69 0.15 0.44 0.60 7 
 SVM 0.98 0.94 0.05 0.96 

RF 0.78 0.00 0.41 0.50 

Luminal B vs 
rest of tumors 

KNN 0.76 0.38 0.41 0.72 16 
 SVM 0.97 0.93 0.07 0.96 

RF 0.80 0.45 0.41 0.67 

Luminal A vs 
rest of tumors 

KNN 0.70 0.02 0.44 0.61 3 
 SVM 0.98 0.97 0.04 0.98 

RF 0.71 -0.05 0.44 0.57 

KNN: K Nearest Neighbor, SVM: Support Vector Machine, RF: Random Forest, MCC: Mathews 
Correlation Coefficient, RMSE: Root Median Square Error, AUC: Area Under the Curve. 
 
 
 

 
Supplementary Figure S1. Differences in size of triple negative tumors expressing high or low levels 
of miR-30c-5p.  
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