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Fluorescence quenching in graphene: A fundamental ruler and evidence for transverse plasmons
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Graphene’s fluorescence quenching is studied as a function of distance. Transverse decay channels, full
retardation, and graphene-field coupling to all orders are included, extending previous instantaneous results. For
neutral graphene, a virtually exact analytical expression for the fluorescence yield is derived, valid for arbitrary
distances and only based on the fine structure constant α, the fluorescent wavelength λ, and distance z. Thus
graphene’s fluorescence quenching measurements provide a fundamental distance ruler. For doped graphene and
at appropriate energies, the fluorescence yield at large distances is dominated by transverse plasmons, providing
a platform for their detection.
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I. INTRODUCTION

The optical properties of graphene have attracted immense
attention due to the potential applications in the field of
photonics and optoelectonics.1 Absorption, for instance, has
the universal value ≈πα for light in the visible spectrum,
depending on the fine-structure constant α, but not on the
material’s properties,2,3 providing a decisive clue for its
original identification.4 The large intrinsic carrier mobilities
and doping tunability have led to a number of propos-
als for optoelectronic applications,1,5–7 where the engineer-
ing of long-lived graphene plasmons could play a major
role.8–10

Graphene (and its oxide) exhibits excellent quenching
of nearby fluorescent materials,11–14 a property shared with
carbon nanotubes.15,16 This technique has allowed spectacular
contrast images, enabling far easier optical identification12

(and prospects for device manipulation17) of graphene’s
flakes. Given the mature nature of fluorescent microscopy,
particularly in the biological sciences, their combination with
increasingly available and versatile graphene nanostructures
could open interesting research directions.14 Furthermore,
graphene’s fluorescence quenching has also been proposed
as a convenient probe of the intrinsic excitations of doped
graphene such as plasmons.18

Here, we theoretically address the effect of graphene on
the fluorescent material’s yield as a function of the distance
z within a unifying formalism. By this, we also discuss the
transverse decay channels known to lead to characteristic
features only found in graphene.19 The process implies non-
radiative (Förster20,21) decay of the excited dye, with energy
transfer to graphene’s excitations. This mechanism is expected
to dominate over competing charge-transfer processes except,
perhaps, in near contact situations.22,23 Our motivation stems
from the seemingly paradoxical coexistence in graphene of
very strong fluorescence quenching and nominally weak
coupling to the electromagnetic field, as judged from the
absorption results.

The distance behavior of fluorescence quenching as a
function of the distance z of a dye molecule with respect to
a metal surface was found long ago to be z−4.24 This law has
repeatedly been found in subsequent studies of energy transfer
involving various kinds of nanomaterials.25 For graphene, the

topic has been discussed by Swathi and Sebastian, treating
the (instantaneous) longitudinal coupling between graphene
and fluorescent material to lowest order, and again obtaining
the z−4 law.26 Here, we extend their calculations in three
significant ways: (i) we include transverse decay channels in
the calculations, (ii) the coupling between graphene and the
electromagnetic field is taken to all orders, and (iii) we use the
full (retarded) photon propagator.

Our results for undoped graphene are as follows: (i) a
compact, analytical approximation is obtained and shown to
provide a virtually exact description of the fluorescent yield
for all distances. This analytical expression only depends on
the ratio of the distance to the emitting wavelength (z/λ) and
the fine-structure constant α. A fluorescence measurement
thus becomes a distance ruler, based only on fundamental
constants—a long sought goal of the field. (ii) Retardation
is shown to modify the z−4 law into a slower z−2 behav-
ior, with the transverse decay channel dominating at long
distances.

For doped graphene, we show that the fluorescence yield
is mostly determined by the plasmonic modes18 where at
certain frequencies transverse plasmons yield the dominant,
extremely slowly decaying contribution at large distances.
This should help to detect these modes characteristic to
graphene and intimately linked to the chirality of its elementary
excitations.

The paper is organized as follows. In Sec. II, we introduce
the formalism defining the atom-field coupling in the presence
of graphene and the induced fluorescence quenching. In
Sec. III, we present our results and then close with a summary.
In the Appendix, details on the explicit form of the decay rates
are given.

II. FORMALISM

A. Atom-field coupling in the presence of graphene

We consider a fluorescent atom modeled by a two-level sys-
tem and the electromagnetic field described in a gauge without
scalar potential. Within the standard dipole approximation, an
excited atom will decay into the ground state at a rate (γ ) given
by27

h̄γ = −2ω2p∗
α ImDαβ(r,r; ω) pβ, (1)
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where p is the dipole matrix element between ground and
excited states, separated in energy by h̄ω. D represents the
retarded photon Green’s function defined as usual,

Dαβ(r,r ′; ω) = − i

h̄

∫ ∞

0
dt eiωt 〈[Aα(r,t),Aβ(r ′,0)]〉, (2)

where A(r) is the vector potential operator at the atom’s
location. Notice that Eq. (2) corresponds to the photon
propagator without the fluorescent atom, but in the presence
of graphene.

In vacuum (that is, without graphene), the photon Green’s
function Dαβ

0 (r − r ′; ω) is given by the Fourier transform of

Dαβ

0 (k,ω) = μ0c
2

ω2−c2k2 (δαβ − kαkβ

k2 ) + 1
2ε0ω2

kαkβ

k2 . Later inclusion
of graphene, assumed perpendicular to the z axis, will preserve
the parallel (to graphene’s plane) component of momentum,
q = (q1,q2), as a good quantum number. Therefore, it is
convenient to employ the following representation for the
vacuum Green’s function:

Dαβ

0 (z,z′; q,ω) = 1

2π

∫
dkz eikz(z−z′) Dαβ

0 (k,ω), (3)

with k = (q,kz). Physically, Eq. (3) represents the vector
potential in a plane perpendicular to the z axis located at the
position z due to currents in a parallel plane at location z′.

The in-plane components of the tensor Dij

0 , decomposed
into longitudinal and transverse contributions, are given by

Dij

0 (z,z′) = dle
−q ′ |z−z′ | qiqj

q2
+ dte

−q ′ |z−z′|
(

δij − qiqj

q2

)
, (4)

with i(j ) = 1,2 and q ′ =
√

q2 − (ω/c)2. The functions
dl,t (q,ω) are given by (dependencies removed for clarity)

dl = q ′

2ε0ω2
, dt = − c−2

2ε0q ′ . (5)

The remaining tensor components are written as

Diz
0 (z,z′) = Dzi

0 (z,z′) = iqi

q ′ dle
−q ′ |z−z′ | sgn(z − z′) (6)

and

Dzz
0 (z,z′) = 1

ε0ω2
δ(z − z′) − q2

q ′2 dle
−q ′ |z−z′ |. (7)

The presence of a graphene plane at the location z1 modifies
the vacuum Green’s function as follows:

Dαβ(z,z′) = Dαβ

0 (z,z′) + Dαi
0 (z,z1)e2χijDjβ

0 (z1,z
′), (8)

where the sum over repeated indexes is assumed. e is the
electron charge and χij (q,ω) represents graphene’s current-
current total response to external fields. The latter, decomposed
into longitudinal and transverse contributions, is given by

χij = χl

1 − e2dlχl

qiqj

q2
+ χt

1 − e2dtχt

(
δij − qiqj

q2

)
, (9)

where we take the noninteracting (random-phase approxi-
mation), well-known expression for the longitudinal28 and
transverse29 components at zero doping:

χl = − gsgv

16h̄v

ω2√
q2 − (ω/v)2

, χt = gsgv

16h̄
v
√

q2 − (ω/v)2,

(10)

with spin and valley degeneracies, gs = gv = 2, and
graphene’s velocity v. For finite doping, we refer to the
expressions given in Refs. 29 and 30.

The previous calculation of Swathi and Sebastian26 would
correspond to zero doping and retaining only the (numerator of
the) longitudinal response (χl) in Eq. (9), while setting c → ∞
in the photon propagator (instantaneous limit).

B. Fluorescence quenching

Consider the graphene sheet placed at the origin (z1 = 0)
and the excited atom at a distance z. The expression (1) for the
decay rate can be decomposed as

h̄γnr
r

= −2ω2p∗
α

{
1

(2π )2

∫
q≷ω/c

d2q ImDαβ(z,z)

}
pβ, (11)

with the (graphene’s modified) photon Green’s function given
by Eq. (8). The q label classifies the final field states into
evanescent excitations (q > ω/c), and propagating excitations
(q < ω/c), the latter being the observed photons. Therefore,
the total decay rate is given by the radiative and nonradiative
contributions to the decay rate,

γ = γnr + γr . (12)

Let us consider the rate of observed photons �. In addition to
γr,nr , it will depend on the rate at which the atom is pumped into
the excited state γexc. Furthermore, not all propagating photons
are observed, a fraction being later absorbed by graphene
γabs. The excitation rate is hardly affected by the presence of
graphene and the fraction of emitted photons later absorbed is,
up to logarithmic corrections, of the order of the fine-structure
constant (α = e2

4πε0h̄c
). Therefore, the ratio of the total observed

fluorescence when the atom is at distance z, �(z), to that at
infinite distance, �∞, can be written as

�(z)

�∞
=

(
1 + γnr

γr

)−1

, (13)

where the neglected terms amount to minute relative correc-
tions of order α2 in the expression (13).

III. RESULTS

A. Zero doping

We have evaluated the distance dependence to undoped
graphene of the observed fluorescence, Eq. (13), with γr,nr

obtained from Eqs. (11) and (8). There is a sharp difference in
graphene’s effect on the nonradiative and radiative contribu-
tions to the decay. Graphene modification of the (radiative)
vacuum decay is a weak effect, proportional to α (up to
logarithmic corrections). Therefore, setting γr ≈ γ0, with the

vacuum decay rate given by h̄γ0 = p2ω3

3πε0c3 , the results can be
written as

γnr

γr

≈ γnr

γ0

= β1γ̃1f̃1 + β2γ̃2f̃2 + β3γ̃3f̃3, (14)
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with the physically relevant magnitudes given by

γ̃1 = 32

29π3
α

(
λ

z

)4

, (15a)

γ̃2 = 3

26π
α

(
λ

z

)2

, (15b)

γ̃3 = 3

4
παg(2π2αz/λ) −−−−→

z
λ
� 1

2π2α

3

24π3α

(
λ

z

)2

, (15c)

where the function g(a) can be written in terms of the sine and
cosine integrals (si,ci) as

g(a) = −ci(a) cos(a) − si(a) sin(a). (16)

The coefficients β1,2,3 are mere geometric factors depend-
ing on the emitting dipole orientation, with β1 = (p2

‖/2 +
p2

z )/p2, β2 = p2
z/p

2, and β3 = (p2
‖/2)/p2. All information

about graphene in Eq. (14) is relegated to the dimensionless
factors f̃i , derived and discussed in the Appendix.

The first term, γ̃1, coincides with the unretarded contri-
bution to the decay into graphene’s longitudinal (charged
excitations), previously considered.26 The other two terms
(15b) and (15c), absent in a nonretarded calculation, prevail
at large distances. The contribution of Eq. (15b) comes from
charged excitations, whereas Eq. (15b) is due to transverse
excitations. Quantitatively, it is the last term, (15c), which
provides the dominant large distance asymptotic behavior.

B. Analytical approximation

Our analytical approximation consists in setting the func-
tions f̃i equal to one. The approximation f̃i ≈ 1 for i =
1,2 holds when x0 
 1 and x2

0 (
π2α2

g

4 − 1) 
 1, where x0 =
1

4π
v
c

λ
z
, with graphene’s fine-structure constant αg = c

v
α. For

graphene parameters, the latter condition dominates and
can be recast as x0 � 2

παg
or, equivalently, z

λ
� α

8 ≈ 10−3,
justifying our analytical approximation. The approximation
f̃3 ≈ 1 applies for x0 
 1, implying z

λ
� v

4πc
≈ 10−4.

The exact and approximate nonradiative decays are plotted
in Fig. 1. One sees that the approximation only fails in the
extreme subwavelength regime. Furthermore, even though
the exact decay rate saturates for (z/λ) → 0, whereas the
approximate one diverges, this saturation value is so huge
that the difference between exact and approximate results
has virtually no impact on � as seen in the inset of Fig. 1,
where the exact and approximate curves are indistinguishable.
Figure 1 confirms that retardation channels, γ2,3, control the
decay at large distances, leading to a z−2 behavior dominated
by graphene’s transverse excitations of Eq. (15c).

C. Fundamental ruler

Notice that only α, z, and λ appear in expressions (15),
without any reference to graphene’s properties. This implies
that a measurement of the fluorescence quenching amounts
to a measurement of the distance z, in terms of the light’s
wavelength λ, and the fine-structure constant α. In other words,
it provides us with a fundamental distance ruler.

In general, one would expect graphene’s properties to
drop out from dimensionless optical properties involving
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FIG. 1. (Color online) Distance dependence of the analytical
approximation for the decay channels (γ̃i , solid lines) compared
to the exact results (γ̃i f̃i , dashed lines). Black solid (dashed) line:
γ̃1 (γ̃1f̃1). Red solid (dashed) line: γ̃2 (γ̃2f̃2). Green solid (dashed)
line: γ̃3 (γ̃3f̃3). (Exact results correspond to λ = 500 nm.) Inset:
Fluorescence as a function of distance. Black line: exact result. Red
line: analytical approximation.

graphene’s excitation within the light cone, such as the
absorption. There, ω � vq, and graphene’s response becomes
local, leaving α as the sole coupling scale. But a cursory appli-
cation of this reasoning to our case would justify expressions
like Eqs. (15) only for distances z � λ, where graphene’s
light-cone excitations dominate. Surprisingly, the analytical
expressions apply for virtually arbitrary short distances, im-
plying graphene’s excitations deep into the evanescent region
where the q dependence does not seem obviously negligible.
A further surprise is the enormous efficacy of graphene as a
fluorescence quencher, particularly in view of the nominally
weak coupling with the field, set by α. Both facts, range
and strength, can be explained if the naive nominal range
for the expected disappearance of graphene’s Fermi velocity
v in the expressions z � λ can be extended to much shorter
distances z 
 λ. Our approximations show that this is indeed
the case. The blowup of (λ/z)4 in the first term of Eq. (14)
when (z/λ) → 0 more than compensates the overall factor α,
leading to strong quenching, as experimentally observed.11–13

D. Finite doping

Graphene’s fluorescence quenching in doped graphene due
to graphene’s longitudinal coupling to the light field has first
been analyzed in Ref. 18 within the unretarded approximation.
For large frequencies, h̄ω � 2EF , the fluorescence yield of
undoped graphene is obtained. For frequencies h̄ω � 2EF ,
the quenching behavior is dominated by longitudinal plasmon
excitations, leading to a characteristic exponential decay with
distance.

Here, we extend the discussion by also analyzing the
transverse plasmon excitations.19 These exist in the range
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1.667 < � � 2 with � = ω/(vkF ), leading to a decay rate
γt , which dominates at long distances:

h̄γt = ω2

c2
p2

‖
q ′

p

4ε0
e−2q ′

pz 1

1 − q ′
p

d
dq ′ ln χt |q ′=q ′

p

, (17)

where q ′
p =

√
q2

p − (ω/c)2, with plasmon momentum qp. Ap-
proximating graphene’s transverse response by the long-
wavelength limit, we obtain the following analytical expres-
sion:

γt

γ0

= 3π

2

p2
‖

p2

α

�
f (�)e−z/z0 , (18)

with z−1
0 = 4α(vF /c)kF f (�) and

f (�) = �

4
ln

∣∣∣∣2 + �

2 − �

∣∣∣∣ − 1. (19)

In Fig. 2, the distance dependence of the various decay
channels is shown for � = 1.75 as obtained numerically. The
response is controlled by the singular features in the dispersion
relation, leading to an exponential distance law. The transverse
decay channel γ3 is almost entirely due to the transverse
plasmon mode γt , and dominates the long-distance behavior
beyond a crossover length zc, whose frequency dependence is
shown in the inset of Fig. 2. We finally note, that the extremely
slow decay rate of γt as well as the large distance required for
the onset of the power law in Eq. (15c) can be linked to the
condition 1 − dtχt ≈ 0.

IV. SUMMARY

We first studied the fluorescence quenching efficacy of
undoped graphene as a function of distance, including
transverse decay channels, retardation, and graphene-field
coupling to all orders. For shorter distances, we confirm the
validity of previous lowest-order, unretarded results, albeit
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FIG. 2. (Color online) Distance dependence for the decay chan-
nels γi for doped graphene for � = 1.75. Black solid line: γ1.
Red solid line: γ2. Green solid line: γ3. Green dashed line: γt .
Inset: crossover length as a function of frequency. (Numerical values
correspond to λ = 500 nm and electronic density n = 1012 cm−2.)

with modifications in range and saturation value. Retardation
changes the distance law to (λ/z)2, with both longitudinal
(charged) and transverse (chargeless) graphene’s excitation
contributing to it, the latter dominating in the truly large
distance asymptotic regime.

A compact, virtually exact analytical expression has been
obtained for the zero-doping fluorescence yield for all dis-
tances. It involves only α and z/λ, and therefore, endows
graphene’s fluorescence quenching measurements with the
unique status of a fundamental ruler.

We also showed that measurements of the fluorescence
quenching efficacy of doped graphene at appropriate frequen-
cies and large distances give direct evidence of the existence
of transverse plasmons unique to two-band materials such as
graphene.

Finally, we note that our results might also be important
because nonradiative decay of fluorescent materials amounts
to electron-hole (carrier) generation in graphene. Direct
(propagating field) photogeneration of carriers is inefficient
in graphene (absorption ≈ πα), whereas indirect photogener-
ation by the evanescent field (that is, fluorescence quenching)
can be very effective, ultimately controlled by the dye’s
absorption and quantum yield. This suggests new ways of
enhancing graphene’s photoresponsivity.31–33
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APPENDIX: EXPLICIT FORM OF DECAY RATES

Here we outline the derivation of the nonradiative decay
channels at zero doping

h̄γnr = −2ω2p∗
α

{
1

(2π )2

∫
q>ω/c

d2q ImDαβ(z,z)

}
pβ. (A1)

As the nonradiative decay rate only exists in the presence
of graphene, we classify its contributions according to the
nature of graphene’s excitations: longitudinal (charged) and
transverse. Longitudinal (l) excitations couple to both in-plane
(p‖) and out-of-plane (pz) components of the dipole matrix
elements. Graphene’s transverse (t) excitations only couple
to the in-plane (p‖) dipole matrix element. Therefore, for the
nonradiative decay channels we write

γnr = γl,‖ + γl,z + γt,‖. (A2)

Let us consider γl,‖ first. Selecting the longitudinal part of
Eq. (9) in Eq. (8), it is straightforward to show that Eq. (A1)
leads to

h̄γl,‖ = −2ω2
p2

‖
4π

∫ ∞

0
q ′ dq ′ e−2q ′z Im

d2
l χl

1 − dlχl

, (A3)

where we have traded q for q ′ in the integration. Notice that,
although the exact (i.e., retarded) photon propagators are used,
the only manifestation of light’s velocity c in γl,‖ would be
the substitution: v−2 → ṽ−2 = v−2 − c−2, within the square
root of χl at zero doping. The quantitative irrelevance of this
replacement makes the instantaneous approximation for γl,‖
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correct. The integration in Eq. (A3) then leads to the first term
of γnr/γr given in the main text, with the dimensionless factor
f̃1 given by

f̃1 = 1

3!x4
0

∫ 1

0
dx

x3e−x/x0
√

1 − x2

1 − x2 + π2α2
g

4 x2
, (A4)

where x0 = 1
4π

ṽ
c

λ
z
, with graphene’s fine-structure constant

αg = c
v
α. The approximation f̃1 ≈ 1 holds when x0 
 1 and

x2
0 (

π2α2
g

4 − 1) 
 1. For graphene parameters, the latter condi-
tion dominates and can be recast as x0 � 2

παg
or, equivalently,

z
λ

� α
8 ≈ 10−3, justifying our approximation f̃1 ≈ 1.

Now, we consider the nonradiative decay channel coupling
graphene’s longitudinal response with an out-of-plane dipole.
Using Eqs. (6) and (8), Eq. (A1) leads to

h̄γl,z = −2ω2 p2
z

2π

∫
q ′ dq ′ e−2q ′z

(
1 + ω2

c2q ′2

)
Im

d2
l χl

1 − dlχl

.

(A5)

The integration can be rewritten as the two first terms of γnr/γr

given in the main text, where the new dimensionless factor f̃2,
corresponding to the second term in the sum of Eq. (A5),
appears. It is given by

f̃2 = 1

x2
0

∫ 1

0
dx

xe−x/x0
√

1 − x2

1 − x2 + π2α2
g

4 x2
. (A6)

The approximation f̃2 ≈ 1 has the same range of validity as
that of f̃1.

Finally, we consider graphene’s transverse excitation chan-
nels. Using the transverse components of Eqs. (4) and (9) in
(8), Eq. (A1) leads to

h̄γt,‖ = −2ω2
p2

‖
4π

∫
q ′ dq ′ e−2q ′z Im

d2
t χt

1 − dtχt

, (A7)

an integration that can be rewritten as the third term of γnr/γr

given in the main text, with the corresponding dimensionless
parameter f̃3 given by

f̃3 = 1

g
(
2π2α z

λ

)
∫ 1

0
dx

xe−x/x0
√

1 − x2

x2 + (
πv
2c

α
)2

(1 − x2)
, (A8)

with the function g(a) defined34 as

g(a)=
∫ ∞

0
dx

xe−x

x2 + a2
= −ci(a) cos(a) − si(a) sin(a). (A9)

The approximation f̃3 ≈ 1 applies for x0 
 1, implying z
λ

�
v

4πc
≈ 10−4, as stated in the main text.

The function g(a) exhibits the following asymptotics:35

g(a � 1) = 1

a2

(
1 − 3!

a2
+ 5!

a4
− · · ·

)
,

(A10)
g(a 
 1) = − ln(eCa),

with Euler constant C. The first limit in Eq. (A10) for a =
2π2α z

λ
� 1 explains the large distance asymptotic behavior

of γ̃3 as discussed in the main text.
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