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The title material has a quasi-one-dimensional electronic structure and is of considerable interest because it
has a metallic phase with properties different from a simple Fermi liquid, a poorly understood “insulating” phase,
and a superconducting phase which may involve spin triplet Cooper pairs. Using the Slater-Koster approach and
comparison with published band-structure calculations we present the simplest possible tight-binding model for
the electronic band structure near the Fermi energy. This describes a set of ladders with weak (and frustrated)
interladder hopping. In the corresponding lattice model the system is actually close to one-quarter filling (i.e.,
one electron per pair of sites) rather than half-filling, as has often been claimed. We consider the simplest possible
effective Hamiltonian that may capture the subtle competition between unconventional superconducting, charge
ordered, and non-Fermi liquid metal phases. We argue that this is an extended Hubbard model with long-range
Coulomb interactions. Estimates of the relevant values of the parameters in the Hamiltonian are given. Nuclear
magnetic resonance relaxation rate experiments should be performed to clarify the role of charge fluctuations in
Li0.9Mo6O17 associated with the proximity to a Coulomb driven charge ordering transition.
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I. INTRODUCTION

The electronic properties of quasi-one-dimensional (Q1D)
materials are of particular interest because of the possibility
that they may exhibit properties characteristic of Luttinger
liquid rather than the conventional Fermi liquid metallic state
seen in three-dimensional metals. These systems may display
Luttinger liquid (LL) behavior above a temperature at which
the thermal energy kBT is larger than the interchain hopping
energy t⊥ (Ref. 1). In a LL charge and spin are carried by inde-
pendent collective excitations instead of the spin-1/2 charged
quasiparticles present in a Fermi liquid. Photoemission experi-
ments can probe the existence of a LL through the observation
of low-energy spinon and holon branches and a power-law
suppression of the density of states at the Fermi energy. Possi-
ble realizations of a LL have been investigated extensively
in recent years. Examples are the Q1D cuprate materials,
SrCuO2 (Ref. 2) and Sr2CuO3 (Ref. 3), Q1D organic crystals,4

carbon nanotubes,5,6 GaAs channels7,8 and more recently
one-dimensional Au chains deposited on Ge(001) surfaces.9

Apart from the intrinsic interest in finding a LL in actual
materials, quasi-one-dimensional materials often exhibit low-
temperature broken symmetry states including superconduct-
ing, charge and/or spin density waves, and Peierls phases.
These instabilities of the metallic phase occur at a crossover
temperature scale at which the system effectively becomes
three dimensional and so long-range order can occur at low
but finite temperatures. The physics associated with this
crossover, which goes from the pure one-dimensional to
the three-dimensional system as temperature, is reduced and
understanding the possible competing ground states at low
temperatures remains a formidable theoretical challenge.

Another example of a material which may exhibit one-
dimensional physics is the purple bronze Li0.9Mo6O17, which

shows some behavior consistent with a LL10 at sufficiently
high temperatures. Angular-resolved photoemission spectra
(ARPES) shows that quasiparticles do not exist in the system
since a power-law suppression in the density of states (DOS)
is found at the Fermi energy and dispersing spinon and holon
branches are seen in the spectral density. At sufficiently low
temperatures there is a transition to an insulating-like or semi-
conducting state from which superconductivity occurs at even
lower temperatures. The low-temperature “insulating” state is
poorly understood. The experimental data pose challenging
questions to address, apart from the LL behavior observed
above the crossover temperature scale. To understand the
mechanism of superconductivity it is important to determine
the symmetry of the Cooper pairs. It is also important to
characterize the “insulating” phase seen below Tm ∼ 25 K.
Finally, it is necessary to characterize the nature of the
excitations in the metallic state, in particular, if the material is
a “bad metal” with incoherent excitations or not.

Here we introduce a realistic microscopic model on a
lattice which can capture the essential physics observed. This
model consists of weakly coupled ladders describing the d

orbitals in the Mo atoms with strong on-site and off-site
Coulomb repulsion. Based on this model we establish that
Li0.9Mo6O17 should be regarded as a nearly quarter-filled
system and not as a nearly half-filled system. This means
that in the absence of longer-range Coulomb interactions the
systems would always be a metal. Thus, the finite spatial
extension of the Coulomb repulsion should not be neglected
and can lead to charge-ordering phenomena and a Wigner-Mott
insulator. The model contains rich physics since it contains
low dimensionality, strong Coulomb interactions, geometrical
frustration, and charge-order frustration. We discuss possible
ground states of the proposed model in different limits.

235128-11098-0121/2012/85(23)/235128(12) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.85.235128


JAIME MERINO AND ROSS H. MCKENZIE PHYSICAL REVIEW B 85, 235128 (2012)

QCP

0TQuantum critical

20101

10

20

30

Superconductor

Charge
ordered
insulator Fermi liquid

fluctuations 

Charge order
"bad" metal

T
m

crossover

T/K

P/kbar

FIG. 1. (Color online) A speculative temperature-pressure phase
diagram relevant to Li0.9Mo6O17. It assumes that at ambient pressure
the system is close to a quantum critical point for an insulating
charge-ordered phase. Fluctuations associated with this phase cause
the resistivity to increase with decreasing temperature below Tm. The
pressure dependence of this curve is taken from Fig. 3(a) in Ref. 11.
Associated with the quantum critical point (QCP) there is a crossover
from a quantum critical metal (or “bad” metal) to a Fermi liquid metal
at a temperature scale T0. The associated coherence temperature goes
to zero as the QCP is approached. Similar physics has been observed
in recent studies of a two-dimensional extended Hubbard model at
one-quarter filling (cf. Fig. 3 in Ref. 12).

From the model proposed, experimental observations, and
theoretical considerations we speculate that Li0.9MoO6O17 is
close to a quantum critical point dominated by charge-ordering
fluctuations. A possible schematic phase diagram is shown
in Fig. 1.

The present paper is organized as follows. In Sec. II we
briefly revise key experimental observations in Li0.9MoO6O17.
In Sec. III we discuss the one-electron tight-binding param-
eters appropriate for Li0.9Mo6O17 based on a Slater-Koster
parametrization and comparison with density functional theory
(DFT) calculations of the band structure. Section IV introduces
the Coulomb repulsion energies which are relevant for the
description of the title material. This leads to a minimal
strongly correlated model which consists on weakly coupled
ladders comprising the full three-dimensional crystal structure.
Finally, in Sec. V we discuss the theoretical implications of
the model obtained and possible consequences.

II. BRIEF REVIEW OF EXPERIMENTS

We now review some key observed properties of
Li0.9Mo6O17, with a particular emphasis on deviations from
the behavior seen in conventional metals and charge-ordered
insulators.

A. Electronic anisotropies

Recent measurements of the resistivity along the three
crystal axes yielded a resistivity anisotropy of: ρa : ρb : ρc �
80:1:1600 at T = 300 K and ρa : ρb : ρc � 150: 1: 1600 at
T = 4.2 K (Refs. 13–15). Much smaller anisotropies have

been observed by other authors.16,17 However, care must be
taken in measuring the conductivity parallel to the chains
because it can be reduced significantly if the current path is
not strictly parallel to the chains.15 These are consistent with
observed anisotropies in the superconducting upper critical
fields.13 Hence, these measurements corroborate the quasi-
one-dimensionality of the system in its electronic properties.

B. The bad metal

Transport properties of a wide range of strongly correlated
electron materials exhibit certain features that are distinctly
different from the electronic properties of elemental metals.18

These unusual properties arise from the emergence of a
low-energy scale which defines a temperature scale T0 (often
in the range 10–100 K) above which quasiparticles do not exist
and the material is referred to as a bad metal. Signatures of
this crossover from a Fermi liquid at low temperature to a bad
metal at temperatures above T0 include (i) the resistivity, Hall
coefficient, and thermopower have a nonmonotonic tempera-
ture dependence, (ii) with increasing temperature the intralayer
resistivity smoothly increases to values much larger than the
Mott-Ioffe-Regel limit (h2a/e ∼ 1 m�cm) corresponding to a
mean-free path comparable to the lattice constant a (Ref. 19),
(iii) at temperatures of order T0 the thermopower has values
as large as kB/e ∼ 80μV/K, and (iv) above T0 the Drude
peak in the frequency-dependent conductivity collapses and
the associated spectral weight shifts to higher frequencies.

It is important to realize that if quasiparticles do not
exist then the one-electron spectral function does not have
dispersive features (i.e., it is completely incoherent. This
means that above T0 the notion of a band structure and a
Fermi surface have no meaning. All of the above features in
the transport are captured by a dynamical mean-field theory
(DMFT) treatment of lattice Hamiltonians such as the Hubbard
model and Anderson lattice model.18 It is generally believed
that a small T0 is associated with proximity to a Mott insulator
or to a quantum critical point.12 An alternative picture of bad
metals can be given in terms of hard core bosons.20

Li0.9Mo6O17 exhibits many of the above signatures of bad
metallic behavior.

1. Resistivity

The magnitude of the resistivity parallel to the chains
is about 100 μ�cm at 100 K (Refs. 14 and 15). This is
comparable to that observed in other “bad metals” such as
optimally doped cuprate superconductors.19,21 For a double
chain, the conductivity can be written as σb = 4e2�b/[π (ac)h̄]
where �b is the mean-free path along the chains and a and
c are the unit cell dimensions perpendicular to the chain
direction. This leads to an estimate �b ∼ 5 − 7 Å, using the
experimental resistivities ρb ∼ 300–400 μ�cm at 300 K. This
estimate suggests that at T = 300 K the material is at the
Mott-Ioffe-Regel limit.

2. Thermoelectric power

The thermopower is positive in sign and a nonmonotonic
function of temperature, increasing from a value of approx-
imately 20 μV/K at low temperatures to a maximum of
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about 30 μV/K at 50 K and then decreasing slowly to a
value of about 10 μV/K around room temperature.22 Recent
measurements23 found that the magnitude of the thermopower
exhibited a significant sample dependence, with values as
large as 200 μV/K, and was interpreted in terms of bipolar
transport in an almost perfectly compensated metal. All of the
above behavior contrasts to what was observed in a simple
Fermi liquid in which the thermopower was approximately
linear in temperature for temperatures less than T0 (Ref. 24).
Furthermore, in contrast to experiments, the band structure
suggests that the thermopower should be negative since the
system has an electron-like Fermi surface, with two bands
close to one-quarter filling.

3. Frequency-dependent conductivity

The optical conductivity at both 10 and 300 K is relatively
flat as a function of frequencies of the scale of tens of
millielectronvolts,25 suggesting the absence of a Drude peak.
The total spectral weight at low frequencies is quite small,
corresponding to about one charge carrier per ten unit cells
if one integrates up to about 0.1 eV. For electric field
polarizations perpendicular to the chain direction there is a
clear energy gap of about 0.4 eV, at both 10 and 300 K. Hence,
the material has the very unusual property that it appears to be
conducting for transport parallel to the chains and insulating
for transport perpendicular to the chains.

4. Hall effect

The transverse conductivity σab increases by a factor of
about 60 as the temperature decreases from 300 to 25 K
(Ref. 15). The Hall coefficient increases by several orders of
magnitude from (1−3) × 10−9 m3/C to about 10−6 m3/C as
temperature decreases from 200 to 2 K (Refs. 16 and 23). This
is inconsistent with a simple Fermi liquid metal in which the
Hall coefficient should be independent of temperature. The
value obtained for Li0.9MoO6O17 assuming a Drude model
RH = −1/n|e| is RH ∼ −2 × 10−9 m3/C, assuming n = 1.9
electron charge carriers per unit cell. This value is consistent
with the absolute experimental value at T = 250 K although
with the opposite sign.26 The T dependence of RH shares some
similarities with the observed behavior in the organic charge
transfer salt tetramethyltetrathiafulvalene (TMTTF)2AsF6. In
this material, the Hall coefficient increases by a factor of about
100 as the temperature decreases from 200 to 100 K, at which
there is a charge-ordering transition.27 The Hall coefficient has
been calculated for a set of weakly coupled Luttinger liquids
with umklapp scattering associated with one-half filling.28

Similar results are expected near one-quarter filling. There
are small power-law temperature-dependent corrections to the
high temperature noninteracting value. The bandwidth sets the
scale for this temperature dependence. In summary, the Hall
effect is inconsistent with both a quasi-1D Fermi liquid and a
Luttinger liquid picture even at the qualitative level.

5. Thermal conductivity

The Lorenz ratio is about 10 to 30 times the Fermi liquid
value, implying a gross violation of the Wiedemann-Franz
law.15 This has been interpreted in terms of a Luttinger liquid
picture with spin-charge separation. The Hall Lorenz ratio

increases from about 100 to 105 times the Fermi liquid value
as the temperature decreases from 300 to 25 K (Ref. 15).

6. Angle-resolved photoemission spectroscopy

This measures the one-electron spectral density and
results10,29 have been interpreted in terms of Luttinger liquid
and non-Fermi liquid pictures. The characteristic features in
the spectral function of LL’s have been theoretically obtained
previously.30,31 The ARPES data display characteristic holon
and spinon branches as well as the characteristic suppression of
the single particle density of states (DOS) of a one-dimensional
system signaling the destruction of quasiparticles and of Fermi
liquid behavior. However, the exponent α characterizing the
DOS suppression depends on T varying between α ≈ 0.6 for
T � 200K and α ≈ 0.9 at T = 300K in contrast with the
T -independent α in a one band Luttinger liquid and has been
attributed to renormalization of α due to interaction of charge
neutral critical modes associated with the two bands crossing
the Fermi energy. The scaling of the spectral density with
temperature A(k,ω) = T ηA(vk/T ,ω/T ), violates the one-
band LL scaling relation η = (α − 1) since experimentally
η = 0.56 instead of η < 0. This unconventional quantum
critical scaling indicates the presence of quantum fluctuations
which can mask the pure LL behavior. Interestingly no warping
of the Fermi surface has been observed in ARPES yet.
LL behavior has also been observed in scanning tunneling
spectroscopy data32 with α ≈ 0.62 consistent with ARPES.

7. Nernst effect

Recent measurements have been interpreted in terms of
bipolar transport in an almost perfectly compensated metal
with close to equal numbers of electrons and holes.23 The
magnitude of the Nernst signal is four orders of magnitude
larger than the value given by Behnia’s simple Fermi liquid
expression.33

8. Magnetoresistance

This exhibits a number of unusual properties for all
temperatures.14,16 For magnetic fields parallel to the chains
there is a small negative magnetoresistance for all current
directions, suggesting the suppression of the “insulating”
state. For magnetic fields and currents both perpendicular
to the layers (the c-axis direction) there is a huge positive
magnetoresistance. At fields of 10 T it can be as large as 50-
and 500-fold at temperatures of 50 and 3 K, respectively.16

This is nonclassical as there is no Lorentz force since the
magnetic field and electric current are parallel. Similarily,
unusual behavior has also been seen in a wide range of other
strongly correlated low-dimensional metals.

C. The “insulating” state

Some properties suggest the possibility of an insulating or
semiconducting-like phase at low temperatures. However, it
should be stressed that one does not see activated behaviour
(i.e., clear evidence for an energy gap). It is observed that the
resistivity is a decreasing function of temperature from the
superconducting transition temperature Tc ∼ 1 K up to about
20 K. The resistivity then increases approximately linear with
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increasing temperature up to room temperature. The simplest
possible explanation would be that there is a metal-insulator
transition around 20 K. However, this is inconsistent with
several experiments we discuss below. First, the minimum
in the resistivity occurs at Tm at different temperatures for
different current directions, ranging from 15K � Tmin � 30K.
Increasing the pressure to 20 kbar Tm decreases from about 30
to 10 K (Fig. 1), and the magnitude of the resistivity decreases
significantly.11 Hence, it is not clear that the “insulating” state
exists at high pressures. We also note that high magnetic fields
parallel to the chain direction reduce the low-temperature
resistivity, which can be interpreted as a destruction of the
“insulating” state.14

The fact that the resistivity is a decreasing function of
temperature above the superconducting transition is rather
unusual and puzzling since one normally sees a direct
transition from a metallic phase to a superconducting phase.
However, there are other cases involving quarter-filled organic
charge transfer salts where a superconducting state occurs
close to a charge-ordered insulator [see the table in Ref. 34 and
the inset of Fig. 2 in Ref. 35]. Other quasi-one-dimensional
materials exhibit a resistivity with a similar temperature and
pressure dependence similar to that summarized in Fig. 1. For
example, Per2M(mnt)2 [M = Pt,Au] is a charge density wave
(CDW) insulator at ambient pressure, but above 0.5 GPa the
resistivity has a nonmonotonic temperature dependence.36

An important question is whether the “insulating” state
is a CDW driven by a Fermi surface instability with a
partially gapped Fermi surface. Such CDWs are observed
in other quasi-two-dimensional materials such as K0.3MoO3

and the transition-metal dicalchogenide compound 2H-NbSe2

(Ref. 37). The structural instabilities associated with the
CDW can be clearly seen in x-ray scattering. However,
high resolution x-ray scattering, neutron scattering,38 and
thermal expansion39 experiments on Li0.9Mo6O17 observed
no structural instability such as one would expect to be
associated with charge-ordering phenomena. However, ob-
serving a structural instability driven by Fermi surface nesting
requires a sufficiently large electron-lattice coupling which
may not be present. Other Mo compounds, such as the
blue bronze K0.3MoO3 which is quasi-two-dimensional, show
jumps in resistivity typical of a more conventional CDW
accompanied by a Peierls transition. A possible interpretation
of the observations in Li0.9Mo6O17 is that an unconventional
electronically driven CDW occurs which is not detectable with
structural analysis data. For example, the “insulating” state
may be a D-density wave (DDW) state, which has nodes in
the energy gap. Such a state has been proposed as the low-
temperature state of α-bisethylenedithio-tetrathiafulvalene
(BEDT-TTF)2KHg(SCN)4 (Ref. 40) and of the pseudogap
state in the cuprates.41 Since in a DDW state there is no
modulation of the charge density in real space it is hard to
detect the associated symmetry breaking or long-range order.

It is important to determine the possible nature of the
magnetic interactions if they exist in the “insulating” phase.
The temperature dependence of the magnetic susceptibility
has a Curie contribution from a small number of magnetic
impurities (about 10−4 per conduction electron).42 Subtracting
the Curie contribution, the remainder is weakly temperature
dependent, between about 10 and 200 K, characteristic of the

Pauli paramagnetism of a Fermi liquid metal. Hence, there is
no sign of the energy gap that is normally seen in CDWs and
charge-ordered insulators. Pauli susceptibility data13 lead to
χ (0) � 2.8 × 10−6, consistent with previous data.42 At low
temperatures the specific heat capacity has a term that is
approximately linear in temperature with a coefficient γ �
6 mJ/(mol K2) (Refs. 42 and 43). More recent data find that
the specific heat coefficient at temperatures right above the
superconducting transition temperature is γ � 1.6 mJ/(mol
K2). From the Fermi velocity obtained from band-structure
calculations44 h̄vF = 3.7eVÅ, one finds a bare density of states
at the Fermi energy due to the two Mo(dxy) one-dimensional
bands D(εF ) = 1.9 states/(eV cell). This unrenormalized bare
DOS is three times larger than the DOS obtained from the
experimental13 specific heat slope γ � 1.6 mJ/mol K2).

Experimental data lead to a Sommerfeld-Wilson ratio45

R ≡ 4π2k2
Bχ (0)/[3(gμB)2γ ] ≈ 2, indicating substantial elec-

tronic correlation effects.13

The fact that the charge transport properties (resistivity
and the Hall coefficient) show “insulating” behavior with
decreasing temperature while the thermodynamic properties
(specific heat and magnetic susceptibility) show Fermi liquid
properties is puzzling. One possible explanation is that the
second case is associated with low-energy spin excitations and
not charge excitations.

D. Superconducting state

The transition temperature Tc can vary between about 1 to
2 K depending on sample purity. Substituting Li ions with
K and Na ions led to a reduction in Tc and a correlation
between Tc with the residual resistivity.42 Such a sensitivity
is characteristic of an unconventional superconductor (i.e.,
non-s-wave pairing).46 Increasing the pressure to 20 kbar Tc

increases from about 1.8 to 2.5 K (Ref. 11). The upper critical
field for magnetic fields parallel to the chains may be above the
Chandrasekhar-Clogston-Pauli paramagnetic limit for a spin
singlet superconductor13 suggesting the possibility of a spin
triplet state.

E. Isoelectronic materials

It might be expected that the materials A0.9Mo6O17 with
the alkali metals A = K,Na,Tl have similar properties and
much can be learned from comparisons to A = Li. However,
it turns out that these materials have a slightly different crystal
structure, with separated metal-oxygen layers leading to a
significantly different electronic structure.47 Specifically, they
turn out to have three partially filled d-block bands and a
quasi-two-dimensional band structure and Fermi surface. They
undergo CDW instabilities due to a hidden Fermi surface
nesting.48 For A = K the CDW transition occurs at 120 K,
associated with a structural transition increasing the unit cell
dimensions four fold, as seen by x-ray scattering and electron
diffraction.49 At the transition about 50 percent of the charge
carriers are gapped out. For A = Na the CDW transition occurs
at 80 K, and the opening of the energy gap on two of the bands
crossing the Fermi energy has been seen in angle-resolved
photoemission spectroscopy (ARPES).50
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III. TIGHT-BINDING BAND STRUCTURE

To introduce the simplest strongly correlated model to
describe the electronic properties of Li0.9MoO6O17, we first
analyze the band structure published earlier using the extended
Hückel method51 and the local density approximation (LDA)
version of DFT.44

These calculations allow extracting the nominal valence
of the compound, LiMo6O17. The band structure shows the
existence of two dxy bands crossing the Fermi energy and
two dxz/dyz bands which are filled with two electrons leading
to six electrons in the unit cell. The dxz and dyz bands
are shifted away from the dxy bands and the Fermi energy
becoming completely filled due to hybridization with the
neighboring O atoms. This effectively leads to two isolated
dxy bands crossing the Fermi energy which contain two
electrons. Since there are four Mo atoms per unit cell, this
implies that each Mo chain atom has 1.5 electrons with one
electron in the dxz/dyz orbitals and half an electron in the dxy

orbitals. This corresponds to a chemical valence for LiMo6O17

of Li+1(Mo4.5+)2(Mo′6+)4(O2−)17 where Mo′ denote atoms
which are not in the conducting zig-zag chains. On the other
hand, the doped compound Li+0.9(Mo4.55+)2(Mo′6+)4(O2−)17,
has the Mo orbital with suppressed electron density Mo(4d1.45)
so that there are less than 0.5 electrons (about 0.45) per dxy

orbital of Mo.

A. Slater-Koster parameters

We parametrize the model using the Slater-Koster tight-
binding approach.52,53 We use 2px,2py,2pz orbitals as the
minimum basis set for describing O and 4dxy orbitals for
describing Mo. Using distances obtained from the x-ray crystal
structure54 we analyze the hopping amplitudes between Mo
and O atoms and the direct hopping amplitudes between the
Mo atoms. In a second stage, we single out the important
hopping amplitudes needed for an effective tight-binding
model Hamiltonian describing the dxy orbitals of Mo.

The distances and displacement vectors needed to define
the cosines between the various atoms are shown in Tables I
and II together with estimated hopping amplitudes obtained
from the Slater-Koster approach. The hoppings between the
Mo and O atoms are given by

tpxdxy
= m(

√
3l2Vpdσ + (1 − 2l2)Vpdπ ),

tpydxy
= l(

√
3m2Vpdσ + (1 − 2m2)Vpdπ ), (1)

tpxdxy
= lmn(

√
3Vpdσ − 2Vpdπ ),

TABLE I. Position vectors of the four partially filled Mo atoms
(Ref. 54) inside the unit cell of Li0.9Mo6O17 in units of the monoclinic
a, b, and c unit cell vectors (a = 12.762 Å, b = 5.523 Å, and c =
9.499 Å). The angle between the a and c axes of the monoclinic
crystal is β = 90.61◦.

Moi (RMoi
)a (RMoi

)b (RMoi
)c

Mo1 0.9939 0.25 0.23356
Mo4 0.16635 0.25 0.9206
Mo′

1 0.00613 0.75 0.7664
Mo′

4 0.8337 0.75 0.07938

TABLE II. Distances between Mo and O atoms (Ref. 54) and
hopping amplitudes in Li0.9Mo6O17. Hoppings are estimated based
on the Slater-Koster approach. The most relevant nearest-neighbor
Mo–Mo and Mo–O distances within the main ladder and between
different ladders are displayed. Hopping amplitudes are between 4dxy

orbitals Mo atoms and between 4dxy and 2py orbitals for Mo–O within
a chain. Distances are given in angstrom and hopping in electronvolts.
The labeling of the atoms follows Ref. 54 (see Fig. 2).

Atom-atom Distance (Å) Hopping (eV)

Mo1–Mo′
4 (in-chain) 3.725 0.1606

Mo1–O11 (in-chain) 1.873 1.515
Mo1–Mo4 (interchain) 3.6756 0.
Mo1–O1 (interchain) 1.873 0.
Mo1–Mo′

1 (interladder) 5.7655 0.018

where l,m,n are the direction cosines of the vector from the p

orbital to the d orbital and the parameters

Vpdσ = −29.5 eV

d
7/2
MoO

,

(2)

Vpdπ = 13.6 eV

d
7/2
MoO

,

where the distances are in Å and the parameters are appropriate
for Mo. According to the above equations one finds that only
the tpydxy

hopping amplitude between Mo and O atoms in a
chain is nonzero and the corresponding value is shown in
Table II. Also the hopping amplitude between different chains
in a ladder through an O atom is zero with the Slater-Koster
approach. The direct hopping between two dxy orbitals maybe
estimated from

tdxydxy
= 3l2m2Vddσ + (l2 + m2 − 4l2m2)Vddπ (3)

with the corresponding parameters

Vddσ = −213.3 eV

d5
MoMo

,

(4)

Vddπ = 115.2 eV

d5
MoMo

,

where again the distances are all in Å. The nearest-neighbor
intrachain hopping between Mo is then tMo1Mo′

4
= Vddπ at

a distance d = 3.725 Å and between Mo atoms at d =
3.69 Å in different chains tMo1Mo4 = Vddδ = 0 (Ref. 53). The
hopping amplitude between Mo atoms on different ladders is
nonnegligible tMo1Mo′

1
= Vddπ = 0.018 eV.

The largest contribution to the interaction between neigh-
boring Mo atoms in the chain comes from hopping through
intermediate O atoms. A straightforward estimate of this
hopping amplitude from perturbation theory gives

t(Mo−Mo) =
t2
pydxy

εMo − εO

= 0.9 eV, (5)

which leads to a half-bandwidth of 1.8 eV for the chain,
a value which is large compared to the LDA-DFT value
of about 0.9−1 eV (Ref. 44). Such a discrepancy may be
related to the breakdown of the perturbative form since
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|εMo − εO | ∼ tpydxy
using the values εMo(4d) = −11.56 eV

and εO(2p) = −14.13 eV. We will discuss in more detail
below how the effective nearest-neighbor hopping between Mo
atoms needs to be reduced by a factor of two with respect to the
Slater-Koster hoppings to correctly reproduce the LDA-DFT
bandwidths.

From the Slater-Koster analysis above we would arrive
at the conclusion that the zig-zag Mo chains are then
decoupled and only a nonzero interladder hopping exists.
However, DFT band-structure calculations do indicate the
existence of interchain hopping which is, however, much
weaker than the effective in-chain hopping. This is because
the direct Mo1–Mo′

4 bonding in the chain is essentially
of the π type whereas the interchain Mo1–Mo4 bond is of
the weak δ type since the chains are on top of each other.
Therefore, the interchain coupling should come from the small
δ-type coupling between the dxy orbitals of the Mo atoms.
Ladders are coupled through a direct hopping connecting
Mo dxy orbitals. The interladder Mo1–Mo′

1 bonding is of
the π type. On the other hand, hopping processes via two
intermediate O atoms should be very small. This is because
one of these intermediate oxygens is an apical O, (O4 in
Fig. 2 of Ref. 54) weakly hybridized to Mo1 via the O4

and O′
8 p orbitals. It is important to note that interchain

and interladder hoppings should be nonzero to recover the
dispersion along the c direction found in DFT caculations. A
three-parameter Slater-Koster approach53 to the bands would
lead to an interchain hopping amplitude tMo1Mo4 = Vddδ =
Vddσ /6 = −0.046 eV which has the opposite sign to the π

type of bond between different ladders tMo1Mo′
1
= 0.018 eV.

We will see below how the opposite signs between these two
hopping amplitudes are important in a tight-binding model
to capture the LDA-DFT band structure close to the Fermi
energy.

B. Effective tight-binding model for Li0.9Mo6O17

We have performed a tight-binding calculation in which we
include the four dxy orbitals of the Mo atoms and integrate
out the O atoms which are assumed to enter indirectly via
the Mo−Mo hopping amplitudes. We keep the most relevant
hopping amplitudes needed for the description of the band
structure. The simple tight-binding model for the dxy orbitals
is compared to previous44 and more recent55 LDA-DFT band-
structure calculations from which the hopping amplitudes can
be extracted.

The position of the atoms in the unit cell are expressed
as Ri = (RMoi

)aa + (RMoi
)bb + (RMoi

)cc and the momentum
wave vector k = kaa∗ + kbb∗ + kcc∗, all referred to the unit
cell coordinate system. A translation vector of the lattice reads
Rn = naa + nbb + ncc and the Bloch functions

|�Moi
(k)〉 = 1√

N

∑
Rn

eik·(Rn+RMoi
)|�Moi

(r − Rn − RMoi )〉 (6)

For the effective in-chain interaction we have

〈�Mo1 (k)|H |�Mo′
4
(k)〉 = 〈�Mo4 (k)|H |�Mo′

1
(k)〉

= −2tA(ka,kc) cos

(
k · b

2

)
, (7)

where A(ka,kc) = e
i2π[ka (RMo′

4
−RMo1 )a+kc(RMo′

4
−RMo1 )c]. The inter-

action between chains in the same ladder is described through
matrix elements as

〈�Mo1 (k)|H |�Mo4 (k)〉 = −t⊥eik·(a−c)eik·(RMo4 −RMo1 )

= −t⊥eik·δ⊥ (8)

where δ⊥ = 0.17a − 0.31c, and similarly for the Mo′
4–Mo′

1
interaction

〈�Mo′
1
(k)|H |�Mo′

4
(k)〉 = −t⊥e−ik·δ⊥

= 〈�Mo1 (k)|H |�Mo4 (k)〉∗. (9)

Two ladders in two neighboring unit cells are coupled through
the matrix element

〈�Mo1 (k)|H |�Mo′
1
(k)〉

= −t ′eik·aeik·(RMo′
1
−RMo1 ) − t ′eik·(a−b)e

ik·(RMo′
1
−RMo1 )

= −2t ′eik·δ1 cos

(
k · b

2

)
(10)

where δ1 ≡ a − b/2 + RMo′
1
− RMo1 = 0.01a + 0.53c. On

the other hand, the Mo4−Mo′
4 hopping amplitude between

ladders is weaker since they are at a larger distance and is
neglected

〈�Mo4 (k)|H |�Mo′
4
(k)〉 = 0. (11)

-1

-0.5

0

t=0.5, t ⊥=−0.024,  t’=0.036

(0,0) π/c,0)(0, π /b) (

FIG. 2. (Color online) Band structure for the lower two bands
obtained from the diagonalization of the 4 × 4 tight-binding matrix
defined in the text using t = 0.5 eV, t⊥ = −0.024 eV, t ′ = 0.036 eV.
These parameter values are chosen to produce band dispersions
comparable to LDA-DFT calculations (Ref. 44). The band dispersions
along the b and c directions are plotted. The horizontal line denotes
the Fermi energy.
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The final tight-binding 4 × 4 Hamiltonian to be diagonalized reads

H (k) =

⎛
⎜⎜⎜⎝

0 −t⊥eik·δ⊥ −2t ′eik·δ1 cos
( k·b

2

) −2tA(ka,kc) cos
( k·b

2

)
−t⊥e−ik·δ⊥ 0 −2tA(ka,kc) cos

( k·b
2

)
0

−2t ′e−ik·δ1 cos
( k·b

2

) −2tA(ka,kc) cos
( k·b

2

)
0 −t⊥e−ik·δ⊥

−2tA(ka,kc) cos
( k·b

2

)
0 −t⊥eik·δ⊥ 0

⎞
⎟⎟⎟⎠ .

In the absence of interladder hopping (t ′ = 0), the four
bands

ε(k) = ±t⊥ ± 2t cos

(
k · b

2

)
, (12)

which recovers the expected dispersions of the uncoupled two-
leg ladders, as it should.

Diagonalizing the Hamiltonian we obtain the band structure
along the b and c directions shown in Fig. 2. The effective
hopping between the nearest-neighbor Mo1-Mo′

4 atoms in
a chain is taken to be t = 0.5 eV to reproduce the DFT
bandwidth of the two lowest Mo dxy energy bands. We use
the hopping amplitudes t ′ = 0.036 eV a factor of 2 larger
than the one obtained from Slater-Koster in Table II and we
take the hopping between chains in the ladder opposite to t ′
and of magnitude t⊥ = −0.024 eV consistent with the type
of bonding (π vs. δ bonding). This set of parameters captures
the correct magnitude of the band dispersions along b, the
dispersion of the two lowest bands in the c direction due to
the combined coupling between ladders t ′ and the interchain
hopping amplitude t⊥. The magnitude of the values extracted
from the present analysis t⊥ and t ′ of about 0.03 eV are
consistent with recent preliminary estimates.29

The Fermi surface obtained from the diagonalization of the
4 × 4 Hamiltonian is shown in Fig. 3. This tight-binding Fermi

Γ
X

Y

c

b

t=0.5, t⊥=−0.024, t’=0.036

FIG. 3. (Color online) Fermi surface obtained from the diago-
nalization of the 4 × 4 matrix using t = 0.5 eV, t⊥ = −0.024 eV,
t ′ = 0.036 eV, and filling n = 1.9. The Fermi sheets corresponding
to the two separate bands are denoted in blue and red. Note that the
two sheets have opposite warping.

surface is close to the DFT Fermi surface (cf. Fig. 6. in Ref. 44)
except that the two Fermi sheets touch at the zone boundary in
the DFT Fermi surface. The filling is n = 1.9, with the warping
of the most-filled band opposite to the less-filled band. We note
that the opposite signs of t ′ and t⊥ found in the Slater-Koster
approach are essential for capturing the opposite warping of
the two Fermi sheets found in DFT.

1. Fermi surface nesting instabilities

The tendency of the system towards nesting instabilities
can be analyzed by computing the bare charge susceptibility,

χmm′(q) = 2

N

∑
k

f (εm(k + q)) − f (εm′(k))

εm(k + q) − εm′(k)
, (13)

between the different bands εm(k). From a simple inspection
of the Fermi surface in Fig. 3 one observes that since the two
Fermi sheets corresponding to the two bands are oppositely
warped the nesting condition is optimally satisfied with a
nesting vector which is about q ≈ (0,π/b,0) between the
two different bands. Evaluating χmm′ (q) shown in Fig. 4, a
divergence is observed in the interband susceptibility χ12(q)
when decreasing the temperature but not in the intraband
contributions.

C. Quarter filling or half filling?

From a band-structure point of view the apparent half-filling
arises because of the zig-zag structure of the chains which
leads to a folding of the Brillouin zone. However, the key
point (at least in terms of strong electronic correlations) is that
for LiMoO6O17 there would be one electron per two Mo ions.
In this sense the material should be viewed as being close to
one-quarter filling. This is important because it means that
long-range Coulomb interactions are required to produce an
insulating state. We also note that both ARPES and LDA give

TABLE III. Estimates of the Coulomb and hopping parameters
parameters for Li0.9Mo6O17. The on-site Coulomb repulsion U is
obtained from constrained DFT calculations (Ref. 44). We have
assumed V = 2t appropriate for having the material in the proximity
to a charge-order QCP (see Fig. 1). We have assumed a 1/d decay
of the further off-diagonal Coulomb parameters with d , the distance
between electrons in different sites. The Coulomb repulsion energies
and hopping amplitudes in this table can be identified in the schematic
structure of Fig. 5. All energies are given in eV.

t t⊥ t ′ U V V⊥ V ′ V ′′ V ′′′ V ′′′′

0.5 −0.024 0.036 6.4 1 1 0.7 0.66 0.65 0.53
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FIG. 4. (Color online) Wave-vector dependence of the three noninteracting charge susceptibilities. The three boxes correspond to decreasing
temperature from left to right. The three susceptibilities are associated with the two low-energy bands crossing the Fermi surface and shown
in Fig. 3 with t = 0.5 eV, t⊥ = −0.024 eV, t ′ = 0.036 eV, and filling n = 1.9. The interband susceptibility χ12 displays an instability at low
temperatures due to significant nesting between these two Fermi sheets.

kF � π/2b and this only corresponds to half-filling when b is
the nearest-neighbor distance.

D. Anisotropy in the conductivity

In a simple Fermi liquid picture the ratio of the conductivity
parallel and perpendicular to the chain directions is indepen-
dent of temperature and given by

σb

σa

∼
(

t

t ′

)2

. (14)

The estimates in Table III suggest an anisotropy ratio of about
100, which is consistent with that observed experimentally in
Refs. 14, 13, and 15, but much larger than reported in Refs. 17
and 16.

IV. EFFECTIVE STRONGLY
CORRELATED HAMILTONIAN

An effective Hamiltonian which can capture the electronic
properties of Li0.9MoO6O17 is now presented. We argue that
since the system is close to quarter-filling not only the on-site U

but also the off-site Coulomb repulsion V should be included to
account for charge-ordering phenomena. This minimal model
is an extended Hubbard model which reads

H = H0 + HU, (15)

where H0 is the noninteracting tight-binding Hamiltonian
which reads

H0 = −t
∑
α,l,iσ

(
c

(l)†
α,iσ c

(l)
α,i+1σ + c.c.

) − t⊥
∑
α,l,iσ

(
c

(l)†
α,iσ c

(l+1)
α,iσ + c.c.

)

= −t ′
∑
α,iσ

(
c

(l)†
α,2i−1σ c

(l+1)
α+1,2iσ + c.c.

)

− t ′
∑
α,i,σ

(
c

(l)†
α,2i+1σ c

(l+1)
α+1,2iσ + c.c.

)
, (16)

where the first term describes the kinetic energy of a single
ladder and the second term the hopping processes between
ladders. The index l denotes one of the two chains in a
ladder, α labels a specific ladder, and i runs from 1 to N ,
the number of sites in the chains. The parameters t , t⊥,

denote hopping amplitudes within a ladder whereas t ′ denotes
the hopping amplitude connecting nearest-neighbor ladders.
One only needs three hopping amplitude parameters for the
description of the band structure. The Coulomb interactions
are encoded in HU , which reads

HU = U
∑
α,l,iσ

n
(l)
αi↑n

(l)
αi↓ + V

∑
α,l,i

n
(l)†
α,i n

(l)
α,i+1 + V⊥

∑
α,l,i

n
(l)
α,in

(l+1)
α,i

+V ′∑
α,l,i

(
n

(l)
α,in

(l+1)
α,i+1 + n

(l)
α,i+1n

(l+1)
α,i

) + V ′′∑
α,l,i

n
(l)
α,in

(l)
α,i+2

+V ′′′ ∑
α,l,i

n
(l)
α,in

(l+1)
α+1,i+1 + V ′′′′ ∑

α,l,i

n
(l)
α,in

(l+1)
α+1,i . (17)

The parameters U , V , V⊥, V ′, and V ′′ denote intraladder
Coulomb interactions, whereas V ′′′, V ′′′′, and V ′′′′ denote
Coulomb interactions between nearest-neighbor ladders. A
schematic representation of the parameters entering the model
proposed are displayed in Fig. 5. In principle, the model keeps
the essential intraladder and interladder Coulomb repulsion
energies that may be relevant for Li0.9MoO6O17. Estimates
of the values of Coulomb repulsion energies entering the
Hamiltonian are provided and discussed below.

A. Model parameter values

In Table III we show the hopping amplitudes and Coulomb
parameters estimated for model (15). From the comparison to
the DFT-LDA calculations we found that the nearest-neighbor
hopping is t = 0.5 eV, the hopping between chains in the
same ladder is t⊥ = −0.024 eV, and between nearest-neighbor
chains in different ladders t ′ = 0.036 eV. We note that for the
case in which t ′ = −3t⊥/2, we have that the two bands cross
at kc = 0 in agreement with the DFT calculations. When the
same sign is used t ′ = 3t⊥/2, then the two bands do not cross
at kc = 0. So it is essential that t⊥ and t ′ do have opposite
signs to capture the appropriate warping and dispersions. The
on-site Coulomb repulsion is about U = 6.4 eV estimated
from constrained DFT44 calculations.

The unscreened Coulomb interaction between electrons in
nearest-neighbor Mo atoms within a chain is estimated to be
V = 2 eV, which is comparable to the bandwidth and therefore
relevant unless complete screening inside the crystal occurs.
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FIG. 5. Schematic representation of the model Hamiltonian (15)
to describe Li0.9Mo6O17. The hopping and Coulomb energies entering
the model describing electrons in the dxy orbitals of Mo are displayed.
A schematic view perpendicular to the b−c plane is shown noting
that the planes of the ladders in the real crystal are tilted with respect
to the b−c plane. The rectangle corresponds to the unit cell in the
b−c plane.

These values are large enough to lead to charge-ordered ground
states since the critical value Vc in a quarter-filled chain is
about V ≈ 2t . Screened values of V are reduced to about
V = 0.2 eV, assuming a dielectric constant of ε ≈ 10ε0 due to
the screening of the rest of the crystal.44

In a similar quarter-filled ladder56 compound NaV2O5

charge-ordering phenomena due to the off-site Coulomb
repulsion has been found. From DFT-based calculations the
parameters are estimated to be t‖ � 0.17 eV, t⊥ � 3t , and
U � 2.8 eV. The distance between vanadium ions along
the chain is approximately 3.8 Å and the nearest-neighbor
Coulomb repulsion V has been estimated57 to be V ≈ 2t

consistent with the zig-zag type charge ordering58 found in
these systems.

Experimental observations combined with the present
discussion suggest that in Li0.9Mo6O17, it is desirable that the
Coulomb repulsion V ∼ 0.5−1 eV so that the system is placed
near the QCP to a charge-order transition driven by V (cf.
Fig. 1). This requires that the long-range Coulomb repulsion
is only partially screened and is important to understand
the electronic properties of Li0.9Mo6O17. The relevance of
incomplete Coulomb screening to the electronic properties
of quasi-one-dimensional systems has already been pointed
out in the case of tetrathiafulvalene-tetracyanoquinodimethane
(TTF-TCNQ)59,60 crystals.

We now discuss the relevance of further neighbor Coulomb
interactions. The Coulomb repulsion between chains in the
same ladder should be similar to the nearest-neighbor V since
the distance between two neighboring Mo atoms in the same
chain is 3.725 Å and is 3.675 Å between atoms in different
chains, so V⊥ ≈ V . This parameter is important for stabilizing
a zig-zag type of charge-ordered state in the ladder. Comparing
the distances between different Mo atoms one realizes that
further neighbor interactions are relevant to the model. In fact,

the Coulomb repulsion between electrons on Mo atoms on
different zig-zag chains of the same ladder (see Fig. 5), V ′
is comparable to V and V⊥ since interladder distances are
between 5.256 and 5.366 Å. Since the next-nearest-neighbors
distance between two Mo is 5.52 Å due to the zig-zag
nature of the chains, we have that V ′′ is not negligible. On
the other hand, the nearest distance between Mo atoms in
nearest ladders is 5.77 Å so the Coulomb repulsion between
neighboring ladders V ′′′ is comparabe to V ′′. The off-site
Coulomb repulsion included in the model is cutoff at values
of the Coulomb repulsion at which V ′′′′ ∼ V/2 ∼ t , assuming
V ∼ 2t . Coulomb energies between farther distant neighbors
are neglected since they are smaller than the bare kinetic energy
of the electrons.

Hence, a minimal model should contain the nearest-
neighbor Coulomb interactions and possibly longer-range
Coulomb interactions between electrons in further distant Mo
atoms as represented in Fig. 5. Accurate screening calculations
in Li0.9Mo6O17 should be performed to pin down the values
of the off-site Coulomb repulsion and settle the relevance of
the longer-range Coulomb repulsion in Li0.9Mo6O17. Similar
conclusions have been reached based on estimates of the
Coulomb screening energy.61 Below we discuss the minimal
strongly correlated model (15) in some specific limits for
which there are known results.

The estimated hoppings and Coulomb parameters of the
model are summarized in Table III.

V. UNDERSTANDING THE MODEL HAMILTONIAN

In principle, the model (15) is effectively two dimensional
consisting of zig-zag ladders which are weakly coupled
through t ′ and there is also Coulomb repulsion between
electrons in different ladders. The relevance of the interladder
hopping interactions is settled by the temperature scale at
which actual experiments are undertaken. As a first step in the
understanding of the full complexity of the model we discuss
the physics of isolated chains and ladders for which much more
theoretical work is available. Therefore, we first consider the
model (15) in different limits assuming independent ladders
(t ′ = 0 and V ′′′ = V ′′′′ = 0) so we are left only with t , t⊥, and
the Coulomb repulsion energies U , V , V⊥, and V ′.

A. What is the ground state of the ladder model at one-quarter
filling and U → ∞?

We consider quarter-filled ladders assuming that doubly
occupied sites are forbidden (U → ∞). This model has
been studied numerically using density matrix renormalization
group (DMRG)62 and analytically through weak coupling RG
and bosonization techniques63 in different parameter ranges
which we now discuss.

1. t⊥ = V⊥ = V ′ = 0

The two chains comprising the ladder are completely
decoupled and the model maps onto the t−V model of spinless
fermions at half-filling. The ground state is a Luttinger liquid
for V < 2t and an insulator with long-range charge order for
V > 2t (Ref. 64). Even in the presence of the long-range
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Coulomb interaction decaying as 1/d, where d is the distance
between electrons in different sites, it is found that the Wigner
state with one electron at every other site of the lattice is
the ground state at one-quarter filling59 when t → 0. This is
satisfied in this case indicating that charge-ordered states are
nonfrustrated by the longer-range part of the Coulomb interac-
tion. Also recent DMRG calculations on two-leg ladders with
t⊥ = t show an insulating phase with a charge gap which is
interpreted as a result of dimerization of the rungs with one
electron localized on each rung of the ladder.65

2. t⊥ = V ′ = 0,V⊥ �= 0

This ladder model has been studied by bosonization and
RG approaches.63 There are two charge modes, total and
difference. For 0 < V < 2t , the difference mode can be
gapless. The other is gapped in the presence of a small
V⊥. This is a homogeneous insulating phase consistent with
DMRG results performed for t⊥/t < 1 (Ref. 62). When both
V = V⊥ > 2t the insulating phase has zig-zag charge order
with wave vector (π,π ). The role of V⊥ is crucial in locking
the charge-order waves running along the two independent
chains when these are decoupled. Interestingly, even at V = 0
and for any finite V⊥ the system displays a charge gap which
has an exponential dependence with V⊥ as in the half-filled
Hubbard model leading to a homogeneous insulator.

3. V ′ �= 0

This interaction frustrates charge order and should produce
a metallic state when V ′ ∼ V ∼ V⊥, even when V � t

(Ref. 66). In this limit, the model can be mapped onto a
classical Ising model with frustrated interactions which leads
to a disordered ground state. A quarter-filled one-dimensional
extended model67 with nearest, V , and next-nearest Coulomb
interactions, V ′ has been analyzed using DMRG which shows
a metallic state when V ′ ∼ V/2.

B. Triplet superconductivity

Quantum Monte Carlo calculations on a nearly quarter-
filled model of weakly coupled chains with on-site Coulomb
repulsion interaction U only and small U = 2t display f -wave
(spin triplet) superconducting tendencies due to 2kf -CDW
instabilities. The f -wave symmetry is related to the fact that
the electronic modulation is of about four lattice spacings
Q ≈ 2kf ≈ π/2 close to quarter-filling.68 Such behavior has
been confirmed by a random phase approximation (RPA)
analysis in weakly coupled quarter-filled chains with Coulomb
interactions up to third nearest neighbors in the presence of
interchain Coulomb repulsion.69 It is found that for U = 1.7t ,
t⊥ = 0.2t , and under the condition V ′ + V⊥ ≈ U/2, triplet
f -wave superconductivity wins over the d-wave channel.
This is because the presence of V⊥ enhances the 2kf -CDW
instabilities of the isolated chains. Triplet superconductivity
pairing has also been encountered in weak coupling RG
calculations on weakly coupled chains in the presence of both
intrachain and interchain Coulomb repulsion70 for moderate
values of the interchain Coulomb repulsion.

For the two-dimensional quarter-filled extended Hubbard
model it is found that introducing frustrating charge interac-

tions on the square lattice (e.g., along one diagonal) destabi-
lizes the stripe charge-ordered insulating phases producing a
charge-ordered 3-fold symmetric metallic state71 at large V

and at finite U . In the limit of U � t a metallic “pinball”
liquid state in which no doubly occupied sites (“pins”) can
occur.12,72 Melting the 3-fold state produces an “f -wave” spin
triplet superconducting state. How this particular symmetry
emerges can be seen from direct inspection of the 3-fold
charge-ordering pattern in real space which consists of placing
electrons on the closest sites not coupled via the Coulomb
interaction to a given occupied site, avoiding the off-site
Coulomb repulsion. Thus, the f -wave pairing found in the
isotropic triangular lattice is analogous to the dxy-wave pairing
found on the square lattice34 and results from electrons
avoiding the strongest nearest-neighbor Coulomb repulsion.

C. Doping the ladder away from one-quarter filling

Since Li0.9Mo6O17 is slightly doped away from one quarter-
filling it is worth considering this situation. Assuming that
t⊥ = V ′ = 0 and V⊥ �= 0 as above there is a metallic state
if the chemical potential is of the order of the gap of the
quarter-filled system63 based on weak coupling RG. This is
because a commensurate-incommensurate transition occurs
since Umklapp processes are suppressed as 4kf �= |G| where
G is a reciprocal vector of the lattice. On the other hand,
superconducting fluctuations in the doped quarter-filled ladder
are found to be of the singlet d-wave type but dominated by
the 4kf -CDW correlations. However, including longer-range
Coulomb interactions can change this picture and induce f -
wave triplet pairing. It remains an open question to understand
how the presence of V ′ can influence the superconducting
tendencies of the system in ladders doped away from quarter-
filling.

VI. CONCLUSION

The title quasi-one-dimensional material displays an in-
triguing competition between insulating, superconducting,
and “bad” metallic behavior. Besides the mechanism of
superconductivity, the nature of the “insulating” phase and
the unconventional metallic properties are poorly understood.
No evidence of a structural transition has been found accompa-
nying the occurrence of the “insulating” phase. Under pressure
the insulating phase is suppressed giving way to conventional
metallic behavior below a low-temperature crossover scale.

To understand these phenomena, we have derived a minimal
strongly correlated model for determining the low-energy
electronic properties of Li0.9Mo6O17. The one-electron part of
the Hamiltonian is obtained based on a Slater-Koster approach
and comparison to DFT band-structure calculations. The tight-
binding Hamiltonian consists of three hopping parameters
only: t , t⊥, and t ′, which capture the dispersion of the two
Mo(dxy) bands along the b direction crossing the Fermi energy,
the opposite warping of the two Fermi surface sections, and the
weak dispersion of the two bands in the c direction. These are
the main features found in full band-structure calculations. The
real-space tight-binding Hamiltonian describes zig-zag ladders
weakly coupled by the small interladder hopping t ′. In the
lattice model we note that the system is close to quarter-filling
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although the bands are nearly half-filled. This is a result of the
band folding associated with the four atoms in the unit cell
arising from the zig-zag structure of the ladders.

A reinterpretation of the physics of Li0.9Mo6O17 as a nearly
quarter-filled system instead of a nearly half-filled system is
suggested from the model introduced. Both the on-site U and
off-site Coulomb repulsion beyond the nearest neighbors are
found to be relevant since estimated values can be comparable
to the bandwidth of the material. Based on these estimates and
experiments under pressure we suggest that Li0.9Mo6O17 is
close to a charge-ordering transition driven by the Coulomb
repulsion. Based on the sensitivity of the material to external
pressure we argue that many of the anomalies observed
may arise due to the proximity to a quantum critical point
(QCP). The “bad” metal behavior is attributed to quantum
criticality: a metal with unconventional excitations arising
from the charge fluctuations occurring at all length scales
around the QCP. Associated with the QCP is the existence of
a crossover temperature T ∗ below which coherent excitations
and Fermi liquid behavior occurs on the metallic side of the
transition. This scale is suppressed as the QCP is approached.
Quantum fluctuations associated with charge order occur in the
proximity to the QCP which can lead to the enhancement in the
resistivity below Tm leading to a resistivity minimum which
has been found in other quasi-one-dimensional materials close
to CDW instabilities, such as Per2M(mnt)2 [M = Pt,Au]
(Ref. 36).

Spin triplet superconductivity can arise in systems in which
charge fluctuations associated with a nearby charge-ordered
phase dominate. In general, in ladder systems explored close
to quarter-filling, zig-zag charge order correlations are strongly

enhanced even by moderate interchain Coulomb repulsion V⊥,
as previous works have shown. In Li0.9Mo6O17, the fact that
V⊥ = V and the presence of next-nearest neighbors Coulomb
interaction and longer-range interactions along the chains due
to the zig-zag structure can favor spin triplet superconductivity.

Experiments probing the existence of large charge fluc-
tuations near the QCP are desirable to understand the en-
hancement of the resistivity with decreasing temperature.
X-ray diffraction finds no structural changes associated
with the upturn of the resistivity at Tm suggesting that a
purely electronic mechanism plays a major role. From the
T dependence of the 1/T1T -NMR spectra one could find
whether anomalous broadening or splitting of spectral lines73

occurs when lowering the temperature below Tm in analogy
to TMTTF2AsF6 (Ref. 74), in which the charge-ordering
transition detected by NMR is not accompanied by a change
of the structure. This kind of experiment could clarify the role
played by charge-ordering phenomena driven by the off-site
Coulomb repulsion as proposed here.
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