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Negative scattering asymmetry parameter for dipolar particles: Unusual reduction
of the transport mean free path and radiation pressure
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Lossless dielectric nanospheres (made of nonmagnetic materials) with relatively low refraction index may
present strong electric and magnetic dipolar resonances. We establish a relationship between the optical force
from a plane wave on small electric and magnetic dipolar particles, the transport cross section, and the scattering
asymmetry parameter g. In this way we predict negative g (that minimize the transport mean free path below
values of the scattering mean free path) for a dilute suspension of both perfectly reflecting spheres as well as of
lossless dielectric nanospheres made of moderate permittivity materials, e.g., silicon or germanium nanospheres
in the infrared region. Lossless dielectric Mie spheres of relatively low refraction index (as low as 2.2) are shown
to present negative g in specific spectral ranges.
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Propagation of light and image formation in turbid media
has long been a subject of great interest [1] and constitutes
the core of powerful techniques with countless applications
including biomedical imaging [2] and dynamic spectroscopy
techniques [3], characterization of composite materials and
complex fluids [4], remote sensing or telecommunications
[5] to mention a few. Our current understanding of the
diffusive transport through nonabsorbing media is based on the
knowledge of two key quantities: the transport and scattering
mean free paths (MFPs). The scatter density and cross section
define the scattering MFP �s . The relevant scattering length
for diffusive light power transport is the transport MFP �∗.
Both quantities are connected by the scattering asymmetry
parameter g defined [6,7] as the average of the cosine of the
scattering angle g ≡ 〈cos θ〉 with �∗ = �s

1−g
, where �∗ is usually

equal to or larger than �s , i.e., g is positive. For instance, the
isotropic Rayleigh scattering of small particles leads to g ∼ 0
while Mie particles (or human tissue) [7] scatter strongly
in the forward direction (small scattering angles) and hence
g ∼ 1. Negative values of g were reported [8] for magnetic
particles having electric permittivity ε > 1 and large values of
the magnetic permeability μ � 1. Nevertheless, no concrete
example of such particles that might present g < 0 in the
visible or infrared regions has been proposed yet. However,
recently it has been shown that subwavelength spheres made of
nonabsorbing dielectric material with relatively low refractive
index produce anisotropic angular distributions of scattered
intensity [9–12]. As we will show here, these particles can
present negative-g values in specific wavelength regions, i.e.,
a random dispersion of such particles will show the unusual
characteristic of having �∗ < �s , even in the absence of
positional correlations.
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The transport mean free path can be strongly modified by
the presence of short-range structural order in the system
[13,14]. Positional correlations usually lead to positive-g
values, i.e., to �∗ values significantly larger than �s , which are
responsible, for example, for the relatively large conductivity
of disordered liquid metals [15] or the transparency of the
cornea to visible light [16]. However, short-range order can
also lead to negative values of the asymmetry parameter as it
has been recently shown in experiments in colloidal liquids
[17] and amorphous photonic materials [18]. These negative
values, observed at specific wavelength regions, have been
associated [17,18] with enhanced backscattering at Bragg-like
matching resonances [19].

The unusual observation of negative-g factors has been
limited to systems with appropriate short-range correlation
between scatters. While it is frequently argued that the
scattering from Mie spherical particles leads to g > 1, in this
work we show that nonabsorbing Mie spheres of relatively low
refraction index m present negative-g factors in specific spec-
tral ranges. Previous numerical work [20] reported calculated
negative-g factors for dielectric spheres having refractive index
m larger than 3.1. However, the physical origin of these results
was not discussed. Interestingly, as we will see, they represent
a specific example of small particles, whose scattering may be
completely described by a dipolar response to both the electric
and magnetic fields. In contrast, we show that relatively large,
nondipolar, dielectric spheres may lead to g < 0 for m as low
as 2.2.

As we will see, there is a close relationship between
transport parameters of a dilute suspension of dipolar particles
and the theory of optical forces on magnetodielectric small
particles [10,11,21], in which it has been shown that, in
addition to the force due to the electric and magnetic
induced dipoles, there is an additional component due to
the interaction between both of them, which was associated
with the angular distribution of scattered intensity [10–12].
Maxima and (negative) minima of the g factor are obtained for
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the so-called Kerker conditions [11,22,23] of zero-backward
or almost zero-forward differential scattering cross sections
(DSCSs). These conditions can be satisfied by hypothetical
magnetic particles [8,22,23] as well as by small dielectric
particles of high refractive index (e.g., of Si or Ge), which
have recently been shown to behave as magnetodielectric
[9,12], i.e., whose scattering is effectively dipolar, being well
characterized by the Mie coefficients a1 and b1, both being of
comparable strength. A dilute suspension of such particles near
the almost-zero-forward scattering condition, will minimize
the transport mean free path below the scattering mean free
path.

The asymmetry factor g = 〈cos θ〉 is defined [6,7] as the
average of the cosine of the scattering angle θ over the particle
differential scattering-cross-section distribution dσs/d�:

g = 〈cosθ〉 =
∫

dσs

d�
cosθ d�∫
dσs

d�
d�

=
∫

dσs

d�
cosθ d�

σs

, (1)

where σs is the scattering cross section. Let us compute
the g factor for a dielectric dipolar sphere of radius a and
real refractive index mp immersed in an arbitrary lossless
medium with relative dielectric permittivity ε and magnetic
permeability μ. For spherical particles, the g factor does
not depend on the polarization of the incident light and
can be expressed in terms of the Mie coefficients an and
bn (see Sec. 4.5 in Ref. [7]). In Fig. 1(a) we show the g

factor map for a nonabsorbing Mie sphere as a function
of the relative refractive index m = mp/

√
εμ and the size

parameter y ≡ m(2πa/λ) calculated from the full Mie ex-
pansion. Since usually nonabsorbing materials present low
refractive index (m � 1.5) in the infrared and visible frequency
ranges, negative-g factors in Mie particles were not expected.
However, as it can be seen in Fig. 1(a), the g map shows
regions of negative g for relatively low refraction index
(m � 2) relevant for semiconductor particles made of silicon
(m ≈ 3.5) or germanium (m ≈ 4) in the infrared and telecom
wavelengths. This is one of the main results of the present
work. The corresponding scattering-cross-section map for
the same spheres (as calculated in Ref. [9]) is plotted in
Fig. 1(b). For m values larger than approximately 2, the
region between the magnetic [green in Fig. 1(b)] and electric
[red in Fig. 1(b)] dipolar resonances presents a well-defined
region of negative asymmetry parameter while the scattering
is perfectly described by the first two dipolar terms in the Mie
expansion [9].

The asymmetry factor g and the seemingly unrelated
problems of transport mean free path and optical forces are
now tied together by the close relation between power and
momentum transfer, i.e., by the definition of transport σ ∗ and
radiation pressure σ (pr) cross sections [6,7,24]. The transport
cross section σ ∗ of a particle is expressed in terms of σs

as [1,3]

σ ∗ =
∫

dσs

d�
(1 − cosθ )d� = σs(1 − g). (2)

For a dilute suspension of optically uncorrelated particles
with density ρ, the transport MFP l∗ = 1/ρσ ∗ is related to
the scattering MFP ls = 1/ρσs through the aforementioned
relationship �∗ = �s

1−g
. In contrast, the radiation pressure

(a)

(b)

FIG. 1. (Color) (a) Color map of the g factor for spherical
absorptionless particles as a function of their refractive index m

and size parameter y = mka. As seen in the attached scale, green
areas correspond to negative values of g. (b) Color map of the sphere
scattering cross section. Red corresponds to dominant electric dipole
contributions to the scattering cross section. Green corresponds to
dominant magnetic dipole contributions, while blue sums up all
higher-order multipole terms. Vertical dashed lines coincide with
y parameter for maximum electric dipole contribution (right vertical
line) and maximum magnetic dipole contribution (left vertical line).
The white horizontal line at m ≈ 3.5 (which corresponds to a silicon
sphere) represents the y range covered by Fig. 2.

cross section is customarily defined as [6] σ (pr) = σ (ext) −
〈cosθ〉σs = σa + σ ∗, where σ (ext) = σs + σa , with σa being
the absorption cross section. In the absence of absorption,
there is no difference between transport and radiation pressure
cross sections,

σ ∗ = σ (pr) = σs(1 − g). (3)

Hence there is a direct relation between transport quantities
and the forces from an incident plane wave on a dielectric
sphere.

In order to get deeper physical insight into the influence
of the electric-magnetic dipole force in �∗, it is interesting to
derive the explicit expressions connecting both transport and
radiation pressure with the g factor for the simplest and most
important case of dipolar particles. Let us consider such a
particle whose dipolar electric p and magnetic m moments are
related to the external polarizing fields through p = ε0εαeE
and m = (αm/μ0μ)B. The dynamic polarizabilities αe and
αm that characterize the dipole excitation can be expressed
in terms of the Mie coefficients a1 and b1 as [6,7] αe =
ia1(6π/k3) and αm = ib1(6π/k3) (k is the wave number
k = √

εμ ω/c).
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The differential scattering cross section averaged over the
incident polarizations is [10–12]

dσs(θ )

d�
= k4

16π

(
(|αe|2 + |αm|2)

1+ cos2 θ

2
+2Re(αeα

∗
m) cos θ

)
.

(4)

From Eqs. (4) and (1)

g = Re[αeα
∗
m]

|αe|2 + |αm|2 , (5)

which shows that for a dipolar particle, |g| � 1/2. Notice
also that from Eqs. (4) and (5) this asymmetry factor may
be expressed as

g = 1

2

[
dσ (s)

d�
(0◦) − dσ (s)

d�
(180◦)

dσ (s)

d�
(0◦) + dσ (s)

d�
(180◦)

]
. (6)

In the absence of absorption, the time-averaged force exerted
on the dipolar particle by a time harmonic incident plane wave
E = E0e

ik·r is all radiation pressure [10,11] and reads

〈F〉 = 〈Fe〉 + 〈Fm〉 + 〈Fe-m〉 (7)

= ε0ε

2
|E0|2

{
k Im (αe + αm) − k4

6π
Re[αeα

∗
m]

}

= ε0ε

2
|E0|2σ (pr) k

k
. (8)

The last term in Eq. (7), 〈Fe-m〉, due to the interaction between
electric and magnetic dipoles [10,11,21], was associated
in Ref. [11] with the asymmetry in the scattered intensity
distribution [cf. the last term in Eq. (4)] even though it was not
explicitly related to g. We next show that they are proportional.
Notice that the moduli of the first two terms 〈Fe〉 and 〈Fm〉,
corresponding to the forces on the induced pure electric and
magnetic dipoles, can be written as

〈Fe〉 + 〈Fm〉 = ε0ε

2
|E0|2σ (ext) = ε0ε

2
|E0|2σs, (9)

where the last equality holds for nonabsorbing particles, while
the interference term

〈Fe-m〉 = −ε0ε

2
|E0|2σsg. (10)

We then have a formal result for the total force

〈F 〉 = (〈Fe〉 + 〈Fm〉)(1 − g), (11)

which is the force analog of Eq. (3). We can summarize the
above discussion in a single expression

1 − g = σ ∗

σs

= 〈F 〉
〈Fe〉 + 〈Fm〉 = �s

�∗ . (12)

Equation (12) is another main result of this work. When
the particle is nonabsorbing, 1 − g becomes just the ratio
between the magnitudes of the total force and the sum of
the pure electric dipole forces. This quantifies in a specific
way the nature of the interaction force component in terms of
the forward-backward asymmetry of the angular distribution
of scattered intensity by the particle. It also establishes
the connection between these forces and the transport and
scattering MFP’s.

If no restrictions are imposed on αe and αm, and hence
one may consider them in Eq. (5) as independent variables,
it is straightforward to see from this equation that g takes on
extreme values when either αe = αm (with g being a maximum
g = 1/2) or αe = −αm (with g being a minimum g = −1/2).
The first condition corresponds to the so-called first Kerker
condition and has been discussed in the context of scattering
from a special case of magnetodielectric particles [11,22].
These particles lead to a zero-backward differential scattering
cross section and have g = 1/2, i.e., l∗ = 2ls (notice that
forward scattering would correspond to g = 1 and l(∗) = ∞).
The second condition (αe = −αm), which minimizes the
scattered intensity in the forward direction, can only be fulfilled
approximately since the imaginary part of the polarizabilities

FIG. 2. (Color online) (a) Forward and backward differential
scattering cross sections and asymmetry factor versus the wavelength
for a silicon spherical particle of radius a = 230 nm and ε = 12.
(b) Different contributions to the total radiation pressure versus
the wavelength for the same particle. Normalization is done by
F0 = 4πa3k|E0|2/2. The vertical lines mark, from right to left, the
first and second Kerker conditions.
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must always be positive, as required from causality [11].
In the quasistatic approximation, they produce zero-forward
scattered power [22]) with an asymmetry factor g ≈ −1/2,
which means that l∗ ≈ (2/3)ls [note that strong backscattering
would correspond to g = −1 and l∗ = (1/2)ls]. Thus, for a
dilute suspension of arbitrary nonabsorbing dipolar particles,
Eq. (5) and the Kerker conditions impose the following limits
to the MFP:

0.66�s � �∗ � 2�s. (13)

While the results above are of general application, it
is interesting to discuss two specific examples that could
be realized experimentally. As a direct consequence of
the discussion above, perfectly conducting dipolar spheres
[25], for which α(0)

e = −2α(0)
m , have an asymmetry factor

that is negative. In particular in the quasistatic limit this
factor becomes g = −0.4, which implies �∗ ≈ 0.7�s for
a random dispersion of small, perfect conducting spheres.
This result may be especially relevant in the terahertz
regime where metals can often be considered as perfect
conductors [26].

Silicon spheres with radius a = 230 nm have been proven
to behave as dipolar magnetodielectric particles with a strong
magnetic dipole response in the near infrared region. In Fig. 2
we show the forward and backward differential scattering cross
sections and the asymmetry factor g as well as the variation
of 〈Fe-m〉, 〈Fe〉, and 〈Fm〉 for a Si sphere of radius 230 nm.
Notice when the first Kerker condition is fulfilled, g = 1/2
and dσ (s)

d�
(180◦) = 0 [Fig. 2(a)] and Fe = Fm = −Fe-m = F

[Fig. 2(b)].
Nevertheless, if one imposes restrictions on αe and αm,

then other situations appear. From Eq. (6) one can see that

g is maximal and equal to 1/2 where dσs

d�
(180◦) is zero

and it has a minimum value at a wavelength where dσs

d�
(0◦)

is minimal. This minimum value of g is also negative if
dσs

d�
(0◦) < dσs

d�
(180◦). This is illustrated in the case of the

above-mentioned Si sphere of radius 230 nm. As seen in
Fig. 2(a), at λ = 1530 nm g has a minimum equal to −0.15,
which corresponds to the minimum forward DSCS, whereas
where the first Kerker condition holds, when the backscattering
cross section is zero, the g factor has a maximum equal
to 1/2.

In conclusion, we have demonstrated that, surprisingly
and without further assumptions about collective interactions,
dilute suspensions of dipolar semiconductor spheres, e.g.,
Si and Ge, have an optical frequency range in which their
scattering asymmetry parameter is negative and hence they
acquire a transport MFP smaller than their scattering MFP.
This is made possible by the magnetodielectric nature of
these particles and the consequent electric-magnetic dipole
interference, which in addition leads to a simple relation
between the electric-magnetic interaction photonic force and
the asymmetry factor. This also applies to perfectly conducting
spheres at longer wavelengths.
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