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Long transient dynamics in the Anderson-Holstein model out of equilibrium
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We calculate the time-dependent nonequilibrium current through a single-level quantum dot strongly coupled
to a vibrational mode. The nonequilibrium real-time dynamics caused by an instantaneous coupling of the leads
to the quantum dot is discussed using an approximate method. The approach, which is specially designed for the
strong polaronic regime, is based on the so-called polaron tunneling approximation. Considering different initial
dot occupations, we show that a common steady state is reached after times much larger than the typical electron
tunneling times due to a polaron blocking effect in the dot charge. A direct comparison is made with numerically
exact data, showing good agreement for the time scales accessible by the diagrammatic Monte Carlo simulation
method.
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I. INTRODUCTION

Experimental progress in the last few years has enabled
a detailed study of transport phenomena in single-molecule
junctions.1–6 Such a junction can be considered as a quantum
dot contacted to two electrodes via a tunneling coupling.
Applying a finite voltage the electrons tunnel through the
quantum dot. The charging of the molecule leads to elastic
deformations of its geometry, which causes a coupling between
electronic and vibrational degrees of freedom. This gives rise
to effects like steps in the current-voltage characteristics7–11

and the formation of sidebands in the excitation spectra.1,12–14

In general such a quantum dot setup can be described by the
Anderson-Holstein15,16 model. When one is mainly interested
in the effects caused by the vibrational mode of the molecule it
is customary to consider a linearly coupled local phonon mode
and a single-level quantum dot with spinless electrons.

Depending on the temperature T , the coupling strength of
the electrodes to the dot �, the electron-phonon interaction λ

as well as the phonon frequency ω0, different physical regimes
can be distinguished. In the classical regime, T � �, the
problem can be treated with semiclassical approaches using
master equations.17–19 On the other hand, in the quantum
regime, T � �, a great theoretical effort has been made to
develop methods to describe transport phenomena within this
model. This includes different approximate approaches (see,
for example, Refs. 8,20–29, and references therein) as well as
numerically exact methods such as the diagrammatic Monte
Carlo simulation (diagMC),14,30–32 auxiliary-field quantum
Monte Carlo33 or the multilayer multiconfiguration time-
dependent Hartree method34,35 as well as the iterative path
integral summation scheme.36

While most of these methods address the steady-state be-
havior of the system, how this steady state is built up is not yet
well understood. In the strong polaronic regime the transient is
only addressed by mean-field studies37 or numerical methods.
Recent numerical calculations38 of the transient dynamics of
the current in the Anderson-Holstein model were indicating
that in this model there exists a large time scale over which dif-
ferent initial preparations lead to different transport properties,

which might even lead to a bistable situation. A bistable behav-
ior was predicted previously for the steady-state39–42 as well
as the time-dependent37 regime within a mean-field theory.

In this paper we address the transient behavior of the
Anderson-Holstein model for the strong polaronic regime
at T = 0. Our aim is to develop an approximate method in
order to analyze the behavior at very long times, which is
inaccessible by numerically exact approaches. We are specially
interested in understanding how the steady state is built up
from different initial conditions for the dot occupation. For
this purpose we extend a recently proposed strong coupling
approximation, namely the polaron tunneling approximation
(PTA),24 to nonstationary situations. The results obtained
from this approximation are in very good agreement with the
numerical ones obtained by diagMC for the times accessible
to the exact method. On the other hand, our approximation
shows how the system converges into a steady-state solution
for much larger time scales, regardless of the initial condition.

The structure of the paper is as follows. In Sec. II we briefly
introduce the Anderson-Holstein model and then discuss
our approach to the time-dependent problem in the strongly
polaronic regime in Sec. III. The results are discussed in
Sec. IV, where we first address time scales accessible by
numerical methods so that a comparison can be made. Finally
the long time regime is discussed, and we give a simple
interpretation of the polaron blocking mechanism. The paper
is closed by some concluding remarks.

II. MODEL

The setup consists of two electrodes, left (L) and right (R),
which are contacted by a tunneling coupling to an atom or
molecule (hereafter called quantum dot), which is modeled
by a single electronic level. This level is coupled to a single
phonon mode, which can be considered as the most relevant
vibrational mode of the atom or molecule.

Such a system can be described by the spinless Anderson-
Holstein model given by25,43

H = HD + HLR + Hph + HT + HI, (1)
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where HD = εDd†d describes the quantum dot energy level
εD, where d† and d are the electron creation and annihilation
operators on the dot. HLR = ∑

α,k εαka
†
αkaαk corresponds to the

noninteracting leads, with α = L,R denoting the left and right
electrode respectively. The electronic creation and annihilation
operators on electrode α at energy level εαk are denoted by
a
†
αk and aαk . The two electrodes are kept at different chemical

potentials via a constant bias voltage eV = μL − μR, inducing
a nonequilibrium current through the dot. The tunneling
coupling to the dot is described by

HT =
∑
α,k

γα(a†
αkd + H.c.), (2)

where γα are the tunneling amplitudes. We additionally intro-
duce the tunneling rates �α = πγ 2

α ρα , where ρα is the density
of states of electrode α which is assumed to be independent of
the energy. We further assume �L = �R = �/2.

The phonon mode is described by Hph = ω0b
†b, which

models a vibrational degree of freedom of the molecule with
a normal mode of frequency ω0. The coupling of this mode to
the dot level is described by

HI = λd†d(b + b†), (3)

with the coupling constant λ. Throughout this paper we set
h̄ = e = me = 1.

III. GREEN’S FUNCTION APPROACH FOR THE
POLARONIC REGIME

Despite its simple structure, no exact analytical solution
of the Anderson-Holstein model is known for arbitrary
parameters. Only in the limits of either a vanishing dot-lead
coupling,44 often called the atomic limit, or in the absence
of phonons45 an exact solution can be obtained. For the
stationary case an exact solution can also be found in the
limits εD/� → ±∞.46

A common procedure to address the steady state is to
assume a decoupled situation in the infinite past, that is,
at t = −∞. Therefore, for any time of interest, the system
is in its steady state and transient effects do not need to
be treated explicitly, which often simplifies the calculations.
Despite the success of this procedure the information about
how the steady state is established cannot be gathered. Such
transients can be studied assuming an initially vanishing
tunneling coupling between the dot and the electrodes. Then
the tunneling coupling of the dot to the leads is switched on at
a certain initial time t = 0 and the subsequent time evolution
to the steady state can be analyzed. In the present work
we develop an analytical approach based on nonequilibrium
Green’s function techniques to study this transient behavior of
the Anderson-Holstein model.

In order to access the nonequilibrium properties of the dot,
the Keldysh Green’s functions have to be determined

D(t,t ′) = −i〈TCd(t)d†(t ′)X(t)X†(t ′)〉, (4)

where TC denotes the time ordering operator on the Keldysh
contour C. The averaging is performed with respect to the
complete quantum mechanical state of the system. X =
e
√

g(b†−b) is the phonon cloud operator, which is obtained from
a unitary Firsov-Lang transformation,47 where g = (λ/ω0)2.

This parameter is a measure of the number of phonons forming
the phonon cloud.

Due to the internal symmetries in Keldysh space48 it is
sufficient to consider only the advanced Da(t,t ′), retarded
Dr(t,t ′), and lesser D<(t,t ′) dot’s Green’s function to describe
the transient current and dot occupation.

A closed form solution of the complete Green’s function in
Eq. (4) is hard to achieve since all diagrams containing multi-
phonon correlations have to be evaluated explicitly. Therefore,
a simple approximation is desirable in order to describe strong
electron-phonon couplings in a generic nonstationary regime.

In this manuscript the time dependence is addressed by
a diagrammatic expansion in terms of the dot-lead coupling.
The average of the Green’s function in Eq. (4) is then defined
with respect to some given initial preparation. For the initial
preparation two possible dot occupations are considered:
Either the dot is empty, so that nD(t = 0) = 0, or occupied,
nD(t = 0) = 1.

A. Atomic limit

A good reference for analyzing the strong coupling regime
is provided by the atomic limit, defined as the limit in which
the tunneling rate � tends to zero. Following Ref. 44 the model
can be solved exactly so that, e.g., the atomic retarded dot’s
Green’s function at zero temperature is given by

Dr
at (t,t

′) = −iθ (t − t ′)e−ge−iε̃D(t−t ′){[1 − nD(t)]ege−iω0(t−t ′)

+ nD(t)egeiω0(t−t ′)}
, (5)

where the polaron shifted energy level of the dot is ε̃D =
εD − λ2/ω0 and the dot occupation is denoted by nD(t) =
〈d†(t)d(t)〉. Notice that for a strictly isolated dot the charge
is constant and can only take the values 0 or 1. But when
considered as the limiting case of � → 0, nD(t) corresponds
to the mean dot occupation of the coupled system.23 This
consideration is useful in the following discussion about the
self-consistent determination of the dot charge.

In frequency domain the retarded atomic Green’s function
has the form

Dr
at(ω) = e−g

∞∑
l=0

gl

l!

[
1 − nD

ω − ε̃D − lω0 + iϑ

+ nD

ω − ε̃D + lω0 + iϑ

]
. (6)

where ϑ is an infinitesimal.

B. Approximated PTA

A first step for going beyond the atomic limit is provided by
the PTA,24 which is based on the assumption that the phonons
are instantaneously excited once the electron tunnels to the dot
and deexcited right after the electron leaves it. Basically, the
time scale of an electron on the dot is given by τel ∝ �−1. The
inverse of the energy due to the polaron formation determines
the time scale for a (de)excitation of the polaron, that is, τph ∝
(λ2/ω0)−1. In the polaronic regime, for λ � � and λ/ω0 � 1,
the lifetime of the electron on the dot is much larger than the
(de)excitation time of the polaron τel � τph, so that the PTA
becomes a reasonable approximation.
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DPTA(t, t ) =

Λ2

t t
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Λ2 Λ2
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+

Λ2 Λ2 Λ2

t s1 s2 s3 s4 t
+ · · ·

FIG. 1. First three Feynman diagrams of the Dyson series for the
PTA. The decoupled dot’s Green’s function Ddot(t,t ′) is represented
with a solid line, the decoupled leads’ Green’s function gα(t,t ′) with
dashed lines. The two-point phonon correlator connecting two time
integration variables t,t ′ is denoted by 2 = 〈TCX(t)X†(t ′)〉.

The corresponding Feynman diagrams of the PTA Dyson
equation are plotted in Fig. 1. Essentially, the PTA replaces
multipolaron correlations by a series of two-point correlators
2 = 〈TCX(t)X†(t ′)〉, that is, all phonon processes with more
than one polaron are neglected.

In the steady-state situation the Dyson equation in the
Keldysh matrix representation can be solved in frequency
space

DPTA = Dat + Dat�DPTA, (7)

by inserting the atomic limit Green’s function and the leads’
self-energy

� = γ 2σz[gL + gR]σz, (8)

where σz is a Pauli matrix in Keldysh space and gα denotes the
Green’s functions of the decoupled leads. In this way, e.g., the
retarded Green’s function can be calculated as

Dr
PTA(ω) = Dr

at(ω)

1 + i�Dr
at(ω)

. (9)

From this expression it is straightforward to calculate the self-
consistent dot charge using

nD = 1

2π

∑
α

∫
dωfα(ω)ImDr(ω) , (10)

where fα(ω) denotes the Fermi distribution on the lead α. The
corresponding mean current is then obtained from

I = π�

2

∫
dω[fL(ω) − fR(ω)]ImDr(ω) . (11)

It is important to notice that the value of the steady-state
current in general depends on the value of the mean charge nD.
In a non-self-consistent approach in which the dot charge is
assumed to be either 0 or 1 for calculating the retarded Green’s
function in Eq. (9) one would obtain two different values for
the stationary current, as illustrated in Fig. 2. However, the self-
consistent calculation yields a current-voltage characteristic,
which lies in between these two results, thus implying the
absence of bistability within this approach. A very special
situation is that of an electron-hole symmetric case ε̃D = 0,
with a symmetric voltage drop. Integrating over this symmetric
voltage window in Eq. (11) gives an I -V characteristic, which
does not depend actually on the mean charge (shown as an
inset in Fig. 2). In the nonsymmetric case not only the actual
value of the current is different, but also such main features

 0
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FIG. 2. (Color online) Steady-state current vs applied bias voltage
calculated within the PTA with nD = 0 (brown dashed lines), nD = 1
(black dotted lines), and with the self-consistent charge (blue lines)
determined by Eq. (10). The dot is off resonant with ε̃D = −10�,
λ = 16�, ω0 = 8�. Inset: The same plot but for ε̃D = 0.

such as the height of the steps at multiples of the phonon
frequency and the length of the plateaus between two phonon
steps.

In spite of the simplicity of the expression for the PTA
Green’s function [Eq. (9)], its generalization to a time-
dependent situation is rather involved. A further simplification
of the approximation in the limit g � 1 and ω0 � � can be
achieved by noticing that the polaronic (multiphonon) side
bands essentially do not overlap (see Fig. 3). This allows us to
approximate the poles in the retarded PTA Green’s function as
independent Lorentzian functions

Dr
APTA(ω) ≈ e−g

∞∑
l=0

gl

l!

(
1 − nD

ω − ε̃D − lω0 + i�̃−
l

+ nD

ω − ε̃D + lω0 + i�̃+
l

)
, (12)
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FIG. 3. (Color online) Spectral density AD(ω) of the PTA with
fully treating the dot occupation (blue lines) vs APTA (red lines)
for ε̃D = −10�, λ = 16�, ω0 = 8�, and V = 10�. Inset: Zoom of
the figure showing the difference between APTA and PTA spectral
densities.
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where, in order to fit the correct broadening around each
resonance, the parameters �±

l have to have the form

�̃−
l ≡ �̃l[(1 − nD) + nDδl=0], (13)

�̃+
l ≡ �̃l[nD + (1 − nD)δl=0], (14)

with

�̃l ≡ �e−g gl

l!
. (15)

This approximated PTA (APTA) gives a much simpler form
for the retarded Green’s function while all its main features
are still preserved. See Fig. 3 for a comparison of the
spectral densities from APTA and PTA in the strong coupling
regime.

We further notice that in general the APTA fulfills the PTA
Dyson equation [Eq. (7)] approximately, ignoring the cross
terms arising from mixing different multiphonon resonances.

C. Time-dependent APTA

In this subsection, we provide an ansatz for describing
the time-dependent nonequilibrium transient current for two
different initial occupations within the spirit of the PTA
approach. In principle, one has to solve the time-dependent
Dyson equation

DAPTA(t,t ′) = Dat(t,t
′) +

∫
ds1

∫
ds2

× Dat(t,s1) �(s1,s2) DAPTA(s2,t
′), (16)

where the coupling of the dot to the leads is switched on
abruptly at t = 0 via γ (t) = θ (t)γ . The corresponding self
energies then are given by

�(t,t ′) = θ (t)θ (t ′)γ 2σz[gL(t,t ′) + gR(t,t ′)]σz. (17)

A full self-consistent solution of these integral equations is a
formidable task. The main idea of our ansatz is to perform
a quasi-adiabatic approach in which the charge of the dot is
assumed to evolve slowly in time while the spectral density
adapts to the instantaneous value of this charge. This is
consistent with the general PTA picture, since the average
occupation of the quantum dot changes on a time scale given by
�−1 whereas the phononic degrees of freedom adapt to the dot
occupation on a time scale given by (λ2/ω0)−1. This permits
a reasonable closed or compact solution of the dynamical
problem. Technically, we shall neglect the transient effects in
the retarded Green’s functions while focusing on the transient
properties of the lesser Green’s function, which allows us to
determine the time-dependent charge self-consistently. More
explicitly, for the retarded Green’s function our ansatz for
t,t ′ > 0 is

Dr
APTA(t,t ′) = −iθ (t − t ′)e−ge−iε̃D(t−t ′)

×
∞∑
l=0

gl

l!
{[1 − nD(t)]e−�̃−

l (t)(t−t ′)e−iω0l(t−t ′)

+ nD(t)e−�̃+
l (t)(t−t ′)eiω0l(t−t ′)}, (18)

where, similarly to the steady state, the side-band broadenings
have the form

�̃−
l (t) ≡ �̃l[(1 − nD(t)) + nD(t)δl=0], (19)

�̃+
l (t) ≡ �̃l[nD(t) + (1 − nD(t))δl=0], (20)

with nD(t) being the instantaneous mean charge, which has
to be determined self-consistently from the lesser Green’s
function

nD(t) = −iD<
APTA(t,t). (21)

This Green’s function satisfies the corresponding Dyson
equation

D<
APTA = (

1 + Dr
APTA�r

)
D<

0

(
1 + �aDa

APTA

)
+Dr

APTA�<Da
APTA, (22)

where integration over internal time arguments is implicitly
assumed. The advanced dot’s Green’s function needed for this
Dyson equation can be obtained from the retarded one by the
general relation Da(t,t ′) = [Dr(t ′,t)]∗. In Eq. (22) the initial
condition is provided by D<

0 , which is determined by the initial
dot occupation

D<
0 (t − t ′) = ie−ge−iε̃D(t−t ′)nD(0)egeiω0(t−t ′)

. (23)

Finally, the self-energies in Eq. (22) are given by

�r(t,t ′) = −iθ (t)�δ(t − t ′), (24)

�<(t,t ′) = iθ (t)θ (t ′)
�

2π

∑
α

∫
dωe−iω(t−t ′)fα(ω). (25)

Next, the two possible initial occupations nD(0) = 0 and
nD(0) = 1 are discussed separately. In the first case only the
second term on the right-hand side of Eq. (22) contributes and
the resulting time-dependent dot occupation is

nD(t) = �

2π

∑
α=L,R

∫ ∞

−∞
dωfα(ω)|[1 − nD(t)]S−(ω,t)

+ nD(t)S+(ω,t)|2, (26)

where

S±(ω,t) = e−g

∞∑
l=0

(
gl

l!

)
e−i(ω−ε̃D)t − e−�̃±

l (t)t e±iω0lt

ω − ε̃D ± ω0l + i�̃±
l (t)

.

(27)

On the other hand, for the case when nD(0) = 1, there is an
extra contribution δnD(t) arising from the first term on the
right-hand side of Eq. (22) given by

δnD(t) = nD(0)e−g

∞∑
l=0

gl

l!

× |1 + (1 − nD(t))A+
l (t) + nD(t)A−

l (t)|2,
(28)

where

A±
l (t) = i

∞∑
m=0

�̃m

1 − e−�̃±
l (t)t e−iω0(l∓m)t

(l ∓ m)ω0 − i�̃±
l (t)

. (29)
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Reaching a unique stationary state would require that
δnD(t) → 0 for t → ∞. Although this would be warranted
in an exact time-dependent self-consistent PTA, the approx-
imations done within APTA yield a small finite correction,
which vanishes as �̃/ω0 tends to zero. In order to numerically
evaluate the dot occupation, a finite time step is chosen
and the equations for the dot occupations [Eqs. (26) and
(28)] are solved iteratively starting from the initial condition
nD(t = 0) = {0,1}.

The average current is calculated using the relation

Iav(t) = 1
2 [IL(t) − IR(t)]

= γ 2Re
∫ ∞

0
dsDr(t,s)

[
gK

L (s,t) − gK
R (s,t)

]
, (30)

where gK
α (t,t ′) denotes the Keldysh Green’s function of

the decoupled lead α. Inserting the Green’s functions and
performing the time integration one obtains

Iav(t) = θ (t)〈I 〉 + θ (t)
1

2π

∞∑
l=0

�̃l

∫ V/2−ε̃D

−V/2−ε̃D

dω

{
(1 − nD(t))

e−�̃−
l (t)t ((ω0l − ω) sin((ω0l − ω)t) − �̃−

l (t) cos((ω0l − ω)t))
(ω0l − ω)2 + (�̃−

l (t))2

+ nD(t)
e−�̃+

l (t)t ((ω0l + ω) sin((ω0l + ω)t) − �̃+
l (t) cos((ω0l + ω)t))

(ω0l + ω)2 + (�̃+
l (t))2

}
. (31)

Note, that the case of a noninteracting electronic quantum dot
can be obtained by setting g → 0, with the same result for the
current and the dot occupation as in Ref. 45.

IV. RESULTS

In this section the time-dependent APTA results are
discussed and compared with the numerically exact data from
the diagrammatic Monte Carlo (diagMC) simulation method.
This method uses a diagrammatic expansion in the dot-lead
tunneling coupling. The occurring time integrals are evaluated
stochastically using a Monte Carlo algorithm. Time-dependent
observables such as current or dot occupation can be calculated
for arbitrary system parameters such as coupling strength,
voltage, and temperature. Details of the diagMC method can
be found, for example, in Refs. 14 and 31.

Despite being numerically exact the diagMC has a draw-
back since it suffers from the so-called sign problem: The
stochastic Monte Carlo sum has to be performed over terms
with alternating signs. This leads to large statistical errors in
the observables causing the CPU time to scale exponentially
with the system time. Therefore, for any realistic setup it is
only possible to simulate the time-dependent observables up
to system times of the order of 10�−1.

In order to check the reliability of our approach in Sec. IV A
a comparison is made between the APTA and diagMC for times
which are accessible by the latter method. The long time scales
are discussed in Sec. IV B. In all cases we show results for both
the initially empty and occupied dot.

A. Short time scales

The APTA is expected to be valid in the strong polaronic
regime with not too large applied voltages where many-polaron
correlations should be small. Therefore, we perform the
comparison between APTA and diagMC in the polaronic
regime with λ = 16�, ω0 = 8�, and ε̃D = −10�. The choice
of these parameters is also guided by the observations of
Ref. 38 suggesting a strong bistablelike behavior of the system

for this case. The voltages are increased from small values to
large ones where inelastic processes, not included in the PTA
picture, become important.

The transient currents with V = 2� for the two different
initial occupations of the dot, empty or occupied, are plotted
in Fig. 4, where a remarkable agreement between the APTA
and the diagMC is observed. The APTA describes the main
transient behavior: The current from APTA is forming plateaus
with a constant current, which are followed by short time
intervals with a rapid change. These two situations exchange
each other with a period only depending on the frequency
of the phonon. These large oscillations of the current can
be interpreted as a shakeup process due to the sudden
connection of the leads to the dot. For larger times the
phonon cloud relaxes and the oscillations become gradually
smaller.

The transient dynamics in Fig. 4 are quite different for
the two possible initial configurations, empty or occupied.

-0.5

 0

 0.5

 1

 1.5

 0  2.5  5  7.5  10

I [
10

-2
 Γ

]

t [Γ-1]

 0
 0.5

 1

 0  50  100

FIG. 4. (Color online) Comparison between the current from
diagMC (symbols) and APTA (straight lines) for ε̃D = −10�,
λ = 16�, ω0 = 8�, V = 2�. The current from the initially empty
(occupied) dot are highlighted in red (green) color for the APTA and
represented by dots (diamonds) for the diagMC. Inset: Same plot but
for larger times.
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FIG. 5. (Color online) The currents from diagMC and APTA are
compared with the same color code and parameters as in Fig. 4 but
with different voltages V = 5� (figure on the top) and V = 26�

(bottom). The steady-state current cannot be reached even for times
of the order of 10�−1.

Depending on the initial configuration one observes a peak or
a dip at t = 2πn/ω0, where n is an integer. For times t � 6�−1

both transient currents oscillate around their joint steady-state
value (see inset of Fig. 5). Therefore, the time scale for reaching
a unique steady state is of the order of several �−1.

Increasing the voltage to V = 5� the time-dependent
behavior changes: The transient current of the initially empty
dot is much larger than the current for the initially occupied
one even for the largest times accessed by diagMC (see
upper plot in Fig. 5). Clearly, no joint steady state will be
reached within times of the order of 10�−1, which is different
to the observations for other quantum dot systems such as
the Anderson impurity model.45 Therefore, this effect can be
identified as a pure phononic one. The phonons in this regime
seem to block the current depending on the initial configuration
as it was shown previously in Ref. 38.

The bottom panel of Fig. 5 shows a situation, where the
voltage is set to V = 26�. Here, the blocking effect is clearly
visible since the current is only slightly changing in time
but has completely different values depending on the initial
preparation even for times of the order of 10�−1. The influence
of the phonon shakeup process is becoming smaller since more
phonon modes contribute due to the increased voltage window.

The polaron blocking effect observed in the current should
also be present in the dot occupancy. In fact, within the APTA
the two quantities are intimately connected. In Fig. 6 the dot
population for V = 26� is shown for diagMC and APTA.
For the time accessed here, the dot occupation obtained from
APTA is only changing slightly so that the initial configuration
is preserved even for times of the order of t > 10�−1.

The numerical data for the time-dependent dot occupation
of the initially occupied dot are matching with a high accuracy
the APTA results. On the other hand, clear deviations can
be seen for the initially empty dot. The APTA seems to
overestimate in this case the time scale for the evolution of
the charge.
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FIG. 6. (Color online) The dot occupation for the diagMC and
APTA are compared for V = 26�. While for the dot occupation of
the initially occupied dot a good agreement is observed, the APTA dot
occupation of the initially empty dot is overestimating the blocking
effect with respect to the exact diagMC results.

One reason for this deficiency is that PTA underestimates
the width of the resonances in the spectral density far from
the Fermi energy.22 This deficiency is less important for the
evaluation of the current as it is determined by the resonances
within the energy window imposed by the electrodes’ chemical
potentials. An additional source for the discrepancy can be
related to the finite bandwidth, which was used for the
numerical simulation. In contrast to the analytical approach,
for a numerical evaluation it is necessary to truncate the density
of states in the leads at some finite energy. Since electron
transport far away from the Fermi level is important for the
time-dependent dot occupation it can be strongly influenced
by such a finite energy cutoff. This explanation is consistent
with the findings of Ref. 45 where a strong dependence of the
time-dependent dot occupation on the size of the bandwidth
was seen in the Anderson impurity model.

Further increasing the voltage to V = 40� multipolaron
processes become more important. This leads to small devi-
ation between the APTA results and the diagMC data as it
can be seen in Fig. 7. Still, the APTA provides a qualitative
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V = 80 Γ

FIG. 7. (Color online) The current from diagMC and APTA are
compared with the same color code and parameters as in Fig. 4 but
with different voltages, V = 40� (top panel) and V = 80� (bottom
panel).
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description showing that the transient currents neither reach a
joint steady state, nor a plateau value within the time of several
10�−1.

Finally at V = 80� the deviation between the two calcula-
tions becomes more pronounced. While the diagMC results for
this bias voltage suggest a convergence towards a steady state
on shorter time scales, the APTA for the initially empty dot
exhibits a slower convergence. On the other hand, the APTA
current for the initially occupied dot still reproduces fairly well
the numerically exact result.

In any case it should be remarked that the APTA predicts
in general a slower convergence to the steady state than the
diagMC results, as it can be seen in Figs. 6 and 7. This
deficiency, which is more pronounced at larger voltages, can be
traced to the already mentioned limitation of the PTA spectral
density.

B. Long time scales

For the short time scales analyzed in the previous section
it was shown that the phonons induce a blocking effect,
which leads to a different time evolution depending on the
initial preparation. Further, we have shown that for small
to intermediate voltages the APTA describes correctly the
transient behavior of the current for the times accessible
by the numerically exact diagMC. In this section we use APTA
to analyze the long time behavior inaccessible to numerically
exact simulations.

We first focus on the current for the case V = 5�, which
is plotted in Fig. 8. Here, the transient currents from different
initial preparations are separated at times much larger than
several �−1. The polaron blocking effect is clearly visible lead-
ing to a slowly varying and almost constant current for each
initial occupation up to times t ≈ 100�−1. For larger times, the
polaron blocking is no longer the dominant effect, which leads
to a charging of the dot and the two currents start to converge.
Finally a joint steady state is reached for much larger times (see
inset in Fig. 8). The evolution of the dot occupations for the
same values of the parameters as in Fig. 8 is shown in Fig. 9.
The charge of the initially occupied dot is close to its steady
state value so that the transient behavior is not pronounced. In
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FIG. 8. (Color online) Time-dependent current for long times
with the same parameters as in Fig. 4 and with V = 5�. A plateau
value of the current for the initially empty dot is observed between
t ≈ 20−100�−1. Inset: The same plot but for much longer times.
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FIG. 9. (Color online) Time-dependent dot occupation for the
same parameters as in Fig. 8. The charge is blocked for the initially
empty dot, leading to a small change in the dot occupation up to
t ≈ 100�−1. Inset: The same plot for a larger time scale.

contrast, for the initially empty dot the occupation is slowly
changing until t � 100�−1. Then a rapid increase is observed
and the dot occupation tends towards its stationary-state
value.

This behavior can be understood from Eqs. (26) and (27),
giving the evolution of the charge with time. In fact, since
�̃l � �, nD(t) can be approximated by

nD(t) � 1

2�
�̃−

1 (t)(1 − e−�̃−
1 (t)t )2

+ 1

�

∞∑
l=0

�̃+
l (t)(1 − e−�̃+

l (t)t )2, (32)

which explicitly exhibits the fact that only one phonon reso-
nance (corresponding to the term in �̃−

1 ) lies within the voltage
window in this small voltage range (V ∼ 5�). On the other
hand, the terms proportional to �̃+

l (t) arise from the occupied
resonances below this window. In the case of an initially empty
dot, the charge starts to increase with time dominated by the
term in �̃−

1 (t) which behaves as �̃3
1[1 − nD(t)]3t2 at short

times. The other terms in the above equation give contributions
proportional to nD(t)3t2 and are therefore negligible at initial
times. When time increases an exponential regime is reached
when the terms in �̃+

l (t) become important. This change is
rather abrupt and happens at times of the order of �̃+

l (t)t ∼ 1,
which roughly corresponds to t � 100�−1 for the dominant
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FIG. 10. (Color online) Time-dependent current with the same
parameters as in Fig. 8 but with V = 26�. The length of the plateau
is getting smaller, but still it is clearly visible between t ≈ 10−50�−1.
Inset: The same plot for larger times.
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FIG. 11. (Color online) Time-dependent current with the same
parameters as in Fig. 10 but with V = 40�. The current does not
show a plateau for small times but the times until a joint steady state
is reached is still large.

term l = 4. As the voltage increases and more resonances enter
in the voltage window, the charge of the dot increases more
quickly and therefore the transition to the exponential behavior
occurs at shorter times. This leads to a highly nonlinear
behavior of the charge both as a function of time and voltage.

The currents for V = 26� are showing a similar long time
behavior (see Fig. 10). After the current oscillations from the
phonon shakeup process die out, the current remains almost
constant, it only changes slightly in time until t ≈ 50�−1 is
reached. For larger times a relatively rapid charging of the dot
causes the currents to finally reach their joint steady state in a
similar way as in the case with V = 5�.

Increasing the voltage to V = 40� the convergence to the
steady state becomes rather monotonous. Still, the time scales
involved are much larger than expected for a pure electronic
system.45 For even larger voltages this time scale is further
reduced, however, as commented in the previous section, the
PTA would not be able to describe this large bias regime
accurately.

Finally, we like to make contact between our theoretical
findings and experiments of single molecular junctions by
providing a coarse estimate of the set of parameters were we
expect that such long transients can be found. Typical values of
� vary between a few μeVs and several meVs. As an example
if we set � = meV, the parameters would have the values
λ = 16 meV, ω0 = 8 meV, and ε̃D = −10 meV. The applied

bias voltages for which the long time scales are found would
then vary between V = 5 meV and V = 40 meV. Accordingly,
we would obtain transient times of around 50 picoseconds.

V. CONCLUDING REMARKS

We have demonstrated the accuracy of the time-dependent
APTA method in the strong polaronic regime by means of a
comparison with the numerically exact diagMC method. A
blocking of the current depending on the initial occupation for
times of the order of several �−1 was found in agreement to
the results of Ref. 38. Furthermore, a remarkable agreement
with these time-dependent results was found up to moderate
voltages.

We also used this method to explore the long time scales,
which are inaccessible for the exact numerical calculations.
The polaron blocking effect was shown to be connected to the
narrowing of the side bands in the spectral density, determined
by �̃l = �e−g gl

l! instead of the unrenormalized width �. In this
way the time scales of the system can increase by more than
one order of magnitude in the polaronic regime. Increasing
the voltage, additional side bands contribute to the electronic
transport which leads to a faster convergence to the steady
state.

Finally, some limitations of the method developed in this
work should be mentioned. Already in the equilibrium case
the PTA spectral density underestimates the width of the side
bands far from the Fermi level. In a similar way, when a
large bias is applied inelastic processes not included in the
approximation would become important leading to a faster
convergence to the steady state. Further work along this line
would be desirable.
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