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Multistability of a two-component exciton-polariton fluid
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We study the stability of a multicomponent exciton-polariton fluid under resonant excitation within the linear-
response approximation of a generalized Gross-Pitaevskii equation. We show that two spatially homogeneous
and independently tunable pumping lasers produce, for the same values of the system parameters, up to three
stable solutions. Tristability is understood by noting that the cavity can be either lowly or highly populated and,
in this second case, the largest part of the population lies in either one of the two components. Moreover, we
discuss the different kinds of instabilities appearing at different pump intensities and compare them with the case
of one-component fluids. Finally, we show that easily tunable multistable hysteresis loops can be performed by
the system.
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I. INTRODUCTION

Condensates of resonantly pumped exciton polaritons in
semiconductor microcavities constitute a novel and exciting
system for the study of fundamental physical properties
of superfluids out of equilibrium,1 and for future device
applications.2,3 Being quantum superpositions of light and
matter they are privileged candidates for the realization of the
next generation of optical devices,2 for example, for quantum
information technologies.

From the point of view of the fundamental physical
properties, particularly interesting is the case of a coherently
pumped polariton superfluid in the presence of defects. Here,
in contrast to the corresponding equilibrium case, a weak
residual drag force is always present even at extremely high
polariton densities.4 Nevertheless, properties paradigmatic of
equilibrium superfluids, such as frictionless flow of polariton
bullets,5 quantized vortices, and metastable persistent flow6

and the appearance and disappearance of Cerenkov-like
waves7 have been recently observed in coherently driven
exciton polaritons.

In view of the potential device applications, especially
important is the unique versatility of the polaritonic system,
which, combined with its high nonlinear properties, has been
already demonstrated to produce parametric scattering8–10 and
bistability.11 Here, the implementation of logic operations
and gates comes in a natural way: by manipulating the
nonlinear properties of the system using several lasers whose
frequencies, angles of incidence, and intensities can be freely
varied externally.

In this paper we investigate a new realization of a two-
component polariton system coherently driven by two lasers
with independently tunable frequencies, angles of incidence,
and intensities. Firstly, we study the stability of the two
polariton components when the two laser intensities are
varied. Differently from the case of a single laser pump,
where the system can only be bistable, we disclose a
rich phase diagram where either one, two, or three stable
states can coexist at given pumping conditions. Then we

suggest possible easily tunable multistable hysteresis cycles
when the two pumping lasers are varied up and down in
intensities.

Alternatively, a multicomponent polariton fluid can be real-
ized by considering the polarization degrees of freedom. Mul-
tistability of different polariton spin states has been recently
proposed theoretically12 and confirmed experimentally13 by
the observation of three stable spin states for a given
excitation condition. For the case of two polarized com-
ponents, multistability in space has also been theoretically
proposed14,15 and experimentally observed.16 For the system
with two pumping lasers presented here, the same kind
of spatial multistability is expected but with much more
complex features. Additionally, superimposed to the spatial
multistability, interference fringes will appear due to the
difference in frequency and momentum of the two pumping
lasers. The analogy with the two-component polarized case
suggests that aside from the interest in investigating multi-
stability, two-component polariton condensates obtained with
independent lasers can also be used to realize switches3 and
memories.

The paper is organized as follows: in Sec. II, we present the
model used to describe the steady-state behavior of polaritons
excited by two continuous-wave lasers with different frequen-
cies, wave vectors, and intensities. The results obtained within
a linear-response framework are shown in Sec. III. In this
section, we study the number of the possible solutions, their
nature, and possible Kerr or parametric instabilities associated
with them. As a consequence of the presence of multiple
stable solutions, different cycles of hysteresis can be produced
by varying, along different paths, the intensities of the two
pumping lasers. Finally, Sec. IV contains the conclusions
drawn from our analysis.

II. MODEL

The dynamics of resonantly driven microcavity
polaritons8,17 can be described via a Gross-Pitaevskii
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equation for coupled cavity (ψC) and exciton (ψX) fields
generalized to include decay and resonant pumping
(h̄ = 1):

i∂t

(
ψX

ψC

)
=

(
0

F

)
+

[
Ĥ0 + gX|ψX|2 0

0 0

] (
ψX

ψC

)
. (1)

The repulsive (gX > 0) exciton-exciton interaction in-
duces nonlinear dynamics of the eigenmodes of the sin-
gle polariton Hamiltonian [lower and upper polariton,
ωLP,UP(k)]:

Ĥ0 =
(

ωX(−i∇) − iκX �R/2

�R/2 ωC(−i∇) − iκC

)
. (2)

Here, we assume the cavity dispersion to be quadratic,
ωC(k) = ωC(0) + k2/(2mC), with mC = 2 × 10−5m0 (here,
m0 is the bare electron mass), we will neglect the exciton
dispersion and consider the case of zero detuning at nor-
mal incidence, ωX(k) = ωX(0) = ωC(0). The Rabi frequency,
�R = 5.0 meV, and the excitonic and photonic decay rates,
κX = κC = 0.05 meV are chosen in the range of experimental
values.

Because of the continuous decay, a stationary state requires
a continuous injection of photons. Here, we consider two
continuous-wave laser fields,

F (r,t) = F1e
i(k1·r−ω1t) + F2e

i(k2·r−ω2t), (3)

with independently tunable frequencies, ω1,2, and momenta,
k1,2, which can be experimentally changed by changing
the laser angle of incidence with respect to the growth
direction.

We study the mean-field solutions of Eq. (1),

ψX,C(r,t) = ψss
1X,C

ei(k1·r−ω1t) + ψss
2X,C

ei(k2·r−ω2t), (4)

and their stability with respect to small fluctuations within a
linear-response analysis. Substituting the expression (4) into
Eq. (1) we obtain four contributions, two of which oscillate at
the main frequencies ω1 and ω2 and the additional two at the
replica (or a satellite state) frequencies: ω1 − �ω and ω2 +
�ω, where �ω = ω2 − ω1. Similarly to what is done in the
optical parametric oscillation (OPO) regime,18,19 where replica
states in addition to the pump signal and idler states are ne-
glected, here, we consider only the terms oscillating at the main
frequencies ω1 and ω2. Later, see Eq. (6), we analyze the dy-
namical stability of the two-pump-frequency solution against
the weak population of satellite states ωi ± ω via parametric
scattering processes. Through the paper, we will consider only
dynamically stable two-pump-frequency solutions. In this ap-
proximation, we obtain the following mean-field equations for

ψss
1,2X,C

:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[ωX − ω1 − iκX + G12]ψss
1X

+ �R

2 ψss
1C

= 0,

[ωC(k1) − ω1 − iκC]ψss
1C

+ �R

2 ψss
1X

+ F1 = 0,

[ωX − ω2 − iκX + G21]ψss
2X

+ �R

2 ψss
2C

= 0,

[ωC(k2) − ω2 − iκC]ψss
2C

+ �R

2 ψss
2X

+ F2 = 0 ,

(5)

where Gij = gX(|ψss
iX

|2 + 2|ψss
jX

|2) with i �= j = 1,2. Note
that the repulsive-interaction term between excitons in dif-
ferent states is two times larger the interaction term between
excitons in the same mode, resulting in a nonuniform blue
shift. The mean-field system of equations (5) can have up to
nine solutions, i.e., six solutions more than in the case of one
pumping laser, but, as discussed below, only a maximum of
three solutions are stable.

The dynamical stability of the two-pump-frequency
mean-field solution can be established by adding small
fluctuations,

ψX,C(r,t) = e−iω1t
[
eik1·rψss

1X,C
+ θ1X,C

(r,t)
]

+ e−iω2t
[
eik2·rψss

2X,C
+ θ2X,C

(r,t)
]
, (6)

where the fluctuation fields can be divided into particle-like
and hole-like excitations, θiX,C

(r,t) = ∑
k[e−iωt+ik·ruiX,Ck +

eiωt+i(2ki−k)·rv∗
iX,Ck]. Expanding Eq. (1) up to linear terms

in θ1,2X,C
, we obtain four terms oscillating at frequencies

ω1 − �ω ± ω and ω2 + �ω ± ω, which we neglect, and four
terms oscillating at ωi ± ω. In other words, we are checking
the stability of our solution, where only the two states with
frequencies ω1,2 are occupied, against the weak population of
the satellite states ωi ± ω, which can be populated by paramet-
ric scattering processes. The fact that we consider only linear
terms in uiX,Ck and v∗

iX,Ck implies that we can obtain only the
threshold conditions for such parametric processes, as well as
the nature of the instability, whether of Kerr type or parametric
type—see later. The equations for uiX,Ck and v∗

iX,Ck can be
written as an eigenvalue equation rearranging the excitations
into an 8-component vector UT = (u1X

,u1C
,v1X

,v1C
,u2X

,u2C
,

v2X
,v2C

):

[
ωI −

(
L11k L12k

L21k L22k

)]
Uk = 0. (7)

Here, matrices Lijk with i �= j are given by

2gXei(ki−kj )·r

⎛
⎜⎜⎜⎜⎝

ψss
iX

ψss	
jX

0 ψss
iX

ψss
jX

0

0 0 0 0

−ψss	
iX

ψss	
jX

0 −ψss	
iX

ψss
jX

0

0 0 0 0

⎞
⎟⎟⎟⎟⎠
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and Ljjk are given by⎛
⎜⎜⎜⎝

ωX − ωj − iκX + gX|ψss
X |2 �R

2 gXψss
jX

ψss
jX

0
�R

2 ωC(k) − ωj − iκC 0 0

−gXψss	
jX

ψss	
jX

0 −ωX(2kj − k) + ωj − iκX − gX|ψss
X |2 −�R

2

0 0 −�R

2 −ωC(2kj − k) + ωj − iκC

⎞
⎟⎟⎟⎠ ,

with |ψss
X |2 = 2(|ψss

1X
|2 + |ψss

2X
|2) being the total excitonic

density. At given values of the pumping strength F1 and F2,
the solutions of the mean-field equations (5) are stable if all the
eight eigenvalues, [LP±

j (k), UP±
j (k)], of Eq. (7) have negative

imaginary part for every value of the momentum k.

III. RESULTS

For some choices of the system parameters, we find that the
number of stable solutions can be larger than one. In the case
of one pumping laser, the typical S-like shape dependence
of the polariton-field intensity on the pump strength, also
referred to as optical bistability, can be explained in terms
of the nonlinear blue shift induced by the polariton-polariton
interaction.18,20 When the laser frequency is well above the
bare lower polariton dispersion, ωp > ωLP(kp), and the pump
intensity increases from low values, the polariton population
remains small because it is hard for the laser to inject polartions
with a different energy. However, increasing the pump power,
the blue shift pulls the polariton energy toward resonance
with the pump, causing the population to grow superlinearly
and eventually to abruptly jump to a high value when the
pump intensity reaches a critical value I1. In the opposite
situation, when the laser intensity is decreased from high
values, the polariton energy is blue detuned close to the
pumping laser frequency and, therefore, the cavity is efficiently
filled by the laser even at low pumping intensities. In this case
the polariton population jumps down back at low polariton
densities for a value I2 of the pump strength lower than I1.
The two jumps at different values of the pump intensity cause
therefore a hysteresis cycle. As explained below, in the case of
two-component fluids, the situation becomes even richer.

We fix both laser frequencies to be blue detuned with respect
to the bare polariton dispersion: ω1,2 = ωLP(k1,2) + 0.3 meV,
with k1 = 0.25 μm−1 and k2 = 0.7 μm−1. We plot in panel
I of Fig. 1 the phase diagram showing the regions with a
different number of stable solutions (either one, two, or three)
as a function of the two rescaled pumping intensities F ′

1,2 =√
gxF1,2 meV3/2. In order to understand better the structure

of this phase diagram, we show in Fig. 2 the total exciton
density, gX|ψss

X |2, when the pump intensity F ′
2 is kept constant

at different values and F ′
1 is varied. When the constant pump

F ′
2 has a small value (see Fig. 2 top left panel), the dependence

of the population on the varying pump intensity F ′
1 is similar

to the one-fluid case showing bistability with an S-like shape.
For higher values of the constant pump F ′

2 (see Fig. 2 lower left
panel), the number of possible solutions increases but just two
are found to be stable. Finally, when F ′

2 is further increased, the
set of possible solutions further goes up but only a maximum
of three are found to be stable.

The coexistence of three solutions, corresponding to the
black regions of Fig. 1, can be understood as follows: when the
two pump intensities increase from low values, the polariton
population is small because its energy is far below the laser
frequencies, resulting in one stable solution. In the opposite

FIG. 1. (Color online) 2D panels: phase diagram showing the
number of stable solutions as a function of the rescaled pump
intensities F ′

1,2 = √
gxF1,2 meV3/2. White, green, yellow, and black

regions correspond to zero, one, two, or three stable solutions,
respectively. In panels I and II, k1 = 0.25 μm−1 and k2 = 0.7 μm−1

while in panels III and IV, k1 = 0.0 μm−1 and k2 = 0.7 μm−1. In the
left panels (I and III), ω1,2 = ωLP(k1,2) + 0.3 meV, while in the right
panels (II and IV), ω1,2 = ωLP(k1,2) + 0.4 meV. The horizontal black
line lies at the three fixed values of F ′

2 corresponding to the three
panels of Fig. 2, while the blue diagonal line is the path used to plot
Fig. 5. 3D panels: plots of gX|ψss

X |2 in meV as a function of F ′
1,2 with

parameters equal to panel I. Stable solutions with higher populations
are shown in green, stable solution with the second higher population
in yellow, and third stable solution with lower population in black.
All the solutions are shown in the left panel. Since the upper green
branches hide a yellow upper branch, the right panel shows only the
yellow and black solutions.
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FIG. 2. (Color online) Stability curves of the total exciton density
gX|ψss

X |2 in meV (red dotted curves represent unstable solutions, black
lines are stable solutions) for fixed pump intensities as a function of F ′

1

for F ′
2 = 0.00001 meV3/2 (top left), F ′

2 = 0.025meV3/2 (bottom left),
and F ′

2 = 0.08 meV3/2 (right). Points Ai (Bi), i = 1,2,3 correspond to
the cases when the lower (upper) branch of the stability curve becomes
unstable (see Figs. 3 and 4). Point C does not have a counterpart in
the one-fluid case and corresponds to the cases when the second high
branch of the stability curve becomes unstable (see Fig. 4).

situation, when the intensity of one of the lasers decreases
from high values, the polariton population is high and its
dispersion is significantly blue detuned with respect to the
bare one. Such a blue shift can be sustained by any of the
two lasers, thus giving two additional stable solutions for
the same values of the pump intensities. Therefore a maximum
of three stable solutions can be expected. This is also evident
while considering the partial densities for particular values of
the pump strength at which three stable solutions are present
(black region of Fig. 1), e.g., F ′

1 ≡ √
gXF1 = 0.05 meV3/2

and F ′
2 ≡ √

gXF1 = 0.08 meV3/2. Here, the solution with
lower total polariton density corresponds to partial densities
gX|ψss

1X
|2 = 0.009 meV and gX|ψss

2X
|2 = 0.023 meV. The other

two solutions correspond to a high value of just one of the two
partial populations: gX|ψss

1X
|2 = 0.008 meV and gX|ψss

2X
|2 =

0.609 meV in one case and gX|ψss
1X

|2 = 0.646 meV and
gX|ψss

2X
|2 = 0.010 meV in the other. Note that this situation

is similar to the case of two-component condensates obtained
with two spins. However, while in the spin-dependent case
the two lasers pump the two spin populations with different
intensities but at the same angle and energy, here the two pumps
are independent also in angle and in energy. This analogy
is also visible in Eq. (5). However, the difference between
our system of equations and the spin-dependent case is that
here the interaction between different components is twice the
interaction between particles in the same component.

In panel II of Fig. 1 we plot the phase diagram for the
same parameters as in panel I but with the two pumping
lasers 0.4 meV blue detuned with respect to the bare lower
polarization (LP) branch. We see that the effect of the increased
detuning is simply to stretch the phase diagram. Since the
two pumps are further apart from the LP branch, it is more
difficult to inject polaritons into the cavity, and thus the need
for higher pump intensities. In panel IV of Fig. 1 we show that

a similar phase diagram can be obtained by changing the k
vector of pump 1 from 0.25 to 0.0 μm−1. We observe that the
multistability is quite robust with respect to the choice of the
parameters and, therefore, it should be within an experimental
reach. An interesting configuration is plotted in panel III
of the same figure. Here, a region with no stable solutions
appears in the central part of the plot (white region). The
instability of this region can be understood by noting that with
a pump at k = 0.0 and just slightly blue detuned from the
LP and a pump at k = 0.7, close to the inflection point of
the LP, it is easy to satisfy phase-matching conditions for
parametric-scattering processes. For this set of parameters
the system is in a configuration unstable to the population
of satellite states by scattering processes. For the other three
sets of parameters, shown in the remaining three panels of
Fig. 1, it is also possible to find regions of the phase diagram
where no solutions are stable. These are the regions where
the proposed solution, given by Eq. (4), where only the two
frequency states, ω1 and ω2, are populated, is not a stable
solution because satellite states start also to be populated—our
analysis is giving the threshold for this to happen.

To further discuss the stability of the system with respect
to small perturbations, we plot the dispersion of the imaginary
part of the excitation eigenfrequency ω = LP±

j for several
points of the stability curves shown in Fig. 2. We start
with the cases where the lower branch of the stability curve
became unstable at points Ai . For very small values of F ′

2
the imaginary part of the dispersion (see top panel of Fig. 3)
shows two peaks for given values of k. One peak lies at higher
value k+ = 0.83μm−1 and one peak at lower value k− =
−0.33μm−1 with k+ + k− = 2k1. This two-peak structure is
a precursor of a parametric instability due to the scattering
between two particles in the component of the condensate
with momentum k1. This situation corresponds exactly to
the case of one-component fluids. When the pump intensity
F ′

2 is slightly increased (see middle panel), we observe six
other peaks appearing in the imaginary part of the dispersion.
Two of these new peaks are such that k+ + k− = 2k1 (blue
lines) while the other four can be combined to identify
two different scattering processes with k+ + k− = 2k2 (red
curves). This more complicated structure of the imaginary
parts of the eigenvalues is consistent with the fact that with
two components richer mechanisms of scattering might occur.
When the intensity of F ′

2 is further increased (see lower panel),
still four different scatterings may occur but, in this case, it is
the scattering between two particles with k2 that induces the
instability of the system.

For the transition from stable to unstable regions of the
higher branch of the stability curve we plot the dispersion of
the imaginary part of the excitation eigenfrequency ω = LP±

j

for points Bi in Fig. 4. In analogy with the case of fluids with
one component, for low intensities of pump 2, the imaginary
part of the dispersion shows a peak at the wave vector of pump
1, a clear precursor of a Kerr instability. When the intensity
of pump 2 is increased, new peaks appear in the imaginary
part. In the case of point B2, two new peaks are precursors of
a parametric instability for the state with k = 0.25 μm−1 even
if the mechanism responsible for the instability of the solution
is still of Kerr type. It is only when the pump intensity F ′

2 is
further increased (point B3) that the two peaks at k− = 0.15
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FIG. 3. (Color online) Dispersion of the imaginary part of the
excitation eigenfrequency ω = LP±

j . The three panels correspond to
points Ai with i = 1,2, and 3 of Fig. 2, where the lower part of the
stability curves become unstable. In blue (red) the parts corresponding
to the scattering of two particles with k = k1 (k = k2).

and k+ = 0.35 μm−1 became more important and the mech-
anism of instability is of the parametric type. Finally, in the
lower right panel (corresponding to point C) of Fig. 4 a single
peak at k = k1 is the precursor of a Kerr-type instability that
ends the region with three stable solutions in the right panel of
Fig. 2.

Multistability also manifests itself in a hysteresis loop
for the populations and emission intensities obtained with

FIG. 4. Dispersion of the imaginary part of the excitation eigen-
frequency ω = LP±

j . The three panels correspond to points Bi with
i = 1,2,3 and C of Fig. 2, where the higher part of the stability curve
becomes unstable.

FIG. 5. (Color online) Hysteresis cycles of α1 = |ψss
1X

|2/
(|ψss

1X
|2 + |ψss

2X
|2) (dimensionless) as a function of F ′

1 for different
values of F ′

2—stable solutions are in black, while the hysteresis cycle
performed by the system is in brown. (a): F ′

2 = 0.14 − F ′
1 as in the

blue line of Fig. 1. (b): F ′
2 = 0.08 meV3/2 as in the horizontal black

line of Fig. 1.

a cycle of first increasing and later decreasing the pumping
intensities. Here, the presence of three stable solutions gives
more complicated loops than the ones obtained for a bistable
system in a single-component polariton fluid. In order to study
this aspect, we calculate the exciton emission intensity at a
given frequency ωi normalized to the total exciton emission
intensity, αi = |ψss

iX
|2/(|ψss

1X
|2 + |ψss

2X
|2), along a closed path

of varying pumping intensities. The panels (a) and (b) of Fig. 5
respectively show the hysteresis cycles of α1 when the two
pump intensities change along either the blue or the higher
horizontal black line of Fig. 1. In panel (a), one starts from a
low value of F ′

1 taking F ′
2 = 0.13 meV3/2 so that the population

of state 2 is much higher than the population of state 1, i.e.,
α1 � 1. Increasing F ′

1, the two populations smoothly evolve
until F ′

1 ≈ 0.05 meV3/2 and F ′
2 ≈ 0.09 meV3/2. At this point

F ′
2 is too weak to sustain high population densities in state 2

and, therefore, the system jumps to a new stable configuration,
in which the populations of both states are low, i.e., α1 ≈ 0.5. A
further increase of F ′

1 produces a smooth evolution of the two
populations until F ′

1 ≈ 0.11 meV3/2 when the system jumps to
a third configuration with a population in state 1 much higher
than in state 2, i.e., α1 ≈ 1. When we revert the variation of the
pumping intensities along the same path, the jumps to states
corresponding to intermediate and low values of α1 are shifted
to the left of the ones just described for increasing F ′

1. The
multistable hysteresis loop shown in Fig. 5(a) is related to
the fact that the two pumping lasers are at different pumping
angles, ki , and pumping frequencies, ωi . Therefore, the jumps
from low to high population for each component appear at
different values of the pumping intensities, producing the
multistable behavior of α1.

A similar situation occurs when the system evolves along a
path on which one of the pumping intensities remains constant
while the other varies (black horizontal line at F ′

2 = 0.08 of
panel 1 in Fig 1, as shown in Fig. 5(b). Starting with F1 = 0,
α1 increases smoothly from zero, following the lower branch
up to F ′

1 = 0.06 meV3/2. At this point α1 jumps from values of
the order of 0.01 to 0.3, corresponding to a population of state
1 being smaller but non-negligible compared to state 2. As F ′

1
further increases up to 0.08 meV3/2, α1 again jumps abruptly
to values of the order of 0.95. In the reverse process, F ′

1 is
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decreased completing the loop. Also in this case, the jumps
from high to low values of α1 are shifted to the left because
of the different angles and energies at which the lasers are
pumping the two components of the fluid. It is worth noting
that the length and the height of the different plateaus of the
hysteresis loops can be efficiently tuned by carefully choosing
the path followed by the intensities, angles, and frequencies of
the pumping lasers.

IV. CONCLUSIONS

To summarize, we have studied the stability of a two-
component exciton-polariton fluid under resonant excitation of
two pumping lasers with independently tunable frequencies,
angles of incidence, and intensities. We have studied the
effect of the detuning between the laser pump and the bare
LP branch, and discussed the different kinds of instability
that might occur for different values of the parameters. We
have shown that, even though the kind of instabilities is the
same as in the one-component case (Kerr or parametric),
here the interplay between different instabilities in the two

components of the fluid can produce a much richer picture.
Moreover, we have shown that since each component of the
fluid jumps between stable states of its population at different
values of the pumping intensity, the system sustains multistable
hysteresis loops that can be easily modulated by changing the
parameters of the pumping lasers. Finally, we believe that,
due to the wide range of parameters for which the system
is multistable, and due to the increased number of degrees of
freedom with respect to the spin-dependent case, multistability
and hysteresis loops should be within an experimental reach.
Therefore, the novel system of a two-component fluid is a
promising candidate for the realization of optical switches and
memories.
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