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Presentación  

Los Adenovirus (AdV) se encuentran entre los más complejos de los virus icosaédricos carentes 

de membrana. Incluso después de resolverse su estructura a resolución cuasi-atómica tanto 

por crio-microscopía electrónica (crio-ME) como por cristalografía de rayos X, la localización de 

las proteínas minoritarias de la cápside es aún objeto de controversia. La compleja 

arquitectura de la cápside es producto de un complicado proceso de ensamblaje, del cual 

muchos aspectos no han sido clarificados. En particular, no se sabe si los procesos de 

encapsidación del genoma y ensamblaje ocurren de forma secuencial o concertada. Dos 

estrategias para estudiar el mecanismo de ensamblaje son: el estudio de partículas de baja 

densidad purificadas (consideradas intermediarios de ensamblaje), y el seguimiento de las 

proteínas estructurales y el genoma viral hasta su ensamblaje en células infectadas. En la 

primera parte de esta tesis, se analizan células infectadas con AdV tipo 5 (Ad5) wild type (wt) a 

diferentes tiempos de infección y se comparan con un mutante de Ad5 (Ad5/FC31), con un 

retraso en el proceso de encapsidación. Se realizaron ensayos de inmuno-fluorescencia e 

inmuno-microscopía electrónica para determinar la localización del ADN viral y las proteínas 

de encapsidación, core y cápside en células infectadas. Los resultados indican que todos los 

factores de ensamblaje se localizan en un área previamente descrita como la zona periférica 

de replicación, la cual sería la factoría de ensamblaje de AdV. Los intermediarios de ensamblaje 

observados en esta área apoyan el modelo de ensamblaje y encapsidación concertados. El 

ensamblaje podría dividirse en dos rutas: una sólo para proteínas de la cápside, y otra sólo 

para el ADN viral y proteínas del core. Solamente cuando ambas rutas están acopladas por la 

interacción correcta entre proteínas encapsidadoras y componentes del core, se producen las 

partículas virales completas. La mutación Ad5/FC31 desacopla estas rutas generando cápsides 

vacías y cuerpos moteados, que son acumulaciones de cores. En la segunda parte de la tesis, la 

caracterización molecular y estructural de las partículas ligeras de Ad5/FC31 reveló que estas 

partículas carecen de genoma viral y proteínas del core, pero habían iniciado la encapsidación 

y maduración sugiriendo que son productos abortivos de ensamblaje. La estructura de estas 

partículas ligeras analizadas por crio-ME muestra por primera vez la localización de la proteína 

L1 52/55 kDa dentro de la cápside, y cómo ésta cambia durante la maduración. Finalmente, 

estas estructuras ayudan a resolver la controversia actual acerca de la localización de las 

proteínas minoritarias de la cápside. 
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Abstract 

Adenovirus (AdV) is one of the most complex icosahedral, nonenveloped viruses. Even after its 

structure was solved at near atomic resolution by both cryo-electron microscopy (cryo-EM) 

and X-ray crystallography, the localization of minor coat proteins is still a subject of debate. 

The elaborated capsid architecture is the product of a correspondingly complex assembly 

process, of which many aspects remain unclear. In particular, it is still not settled if assembly 

and packaging occur in a sequential or concerted manner. Two strategies to investigate the 

assembly mechanism are: studying purified light viral particles, which are considered assembly 

intermediates, and following the structural proteins and viral genome fate until their assembly 

in infected cells. In the first part of this thesis, cells infected with AdV type 5 (Ad5) wild type 

(wt) were studied at different post-infection times and compared with an Ad5 mutant 

(Ad5/FC31), which has a delay in the packaging process. Immunofluorescence and 

immunoelectron microscopy assays were carried out to determine the localization of viral 

DNA, packaging, core and capsid proteins in infected cells. The results indicate that all 

assembly factors can be found in an area previously recognized as the peripheral replicative 

zone, which could therefore be the AdV assembly factory. Assembly intermediates observed in 

this region support the concerted assembly and packaging model. The assembly process could 

be divided in two pathways, one for only capsid proteins and another one for viral DNA and 

core proteins. Only when both pathways are coupled by correct interaction between 

packaging proteins and genome, the viral particle is produced. The mutation in Ad5/FC31 

decouples these pathways generating empty capsids and speckled bodies, which are 

accumulations of unpackaged cores. In the second part of this thesis, the molecular and 

structural characterization of Ad5/FC31 light particles revealed that these particles lack 

genome and core proteins, but had started packaging and maturation, suggesting that they are 

assembly dead ends. The cryo-EM structures of the Ad5/FC31 light particles provide the first 

glimpse on the organization of packaging protein L1 52/55 kDa inside the capsid shell, and how 

this organization changes during maturation. Finally, the cryo-EM structure also helps to settle 

the controversy regarding localization of the minor coat proteins. 
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1. Introduction 

 

1.1 Adenovirus 

 

Adenoviruses (AdVs) were first isolated in 1953, when searching for etiologic agents of acute 

respiratory infections (127). They were named adenoviruses because the prototype viral strain 

was isolated from human adenoids. AdVs are responsible for a small portion of acute 

respiratory morbidity in the general population and for about 5 to 10% of respiratory illnesses 

in children (11). Since their discovery a large number of AdVs have been detected, infecting a 

wide range of vertebrates. Currently they are classified into five genera (54).  

There are currently over 60 reported human Adenovirus (HAdV) types, grouped in seven 

species (HAdV A-G), with HAdV-D containing the most members (123). While HAdV generally 

infects mucosal epithelium, different serotypes differ in their tissue-specificity (gastrointestinal 

and urinary tract, lung or eyes). Pathogenicity varies according to group and type, but 

infections are generally well controlled by the host immune system in immunocompetent 

individuals. However, in the immunosuppresed individuals, AdV infections are frequent cause 

of morbidity and mortality (74). AdVs have been useful as experimental systems for 

investigating fundamental processes in the eukaryotic cell life, such as splicing and apoptosis. 

Recombinant HAdVs are widely studied as vehicles for gene transfer, oncolysis and vaccination 

(21, 34, 35, 43, 83). Most studies are based on HAdV type 5 (Ad5) and 2 (Ad2), therefore most 

of the information presented below corresponds to these highly homologous types.  

 

1.2 Adenovirus Genome 

 

The AdV genome is a linear double-stranded DNA molecule of approximately 35 kpb in the 

viruses infecting humans. It is divided into three main regions according to transcription time: 

early, delayed early, and late (Figure 1A). Each region is further subdivided into transcription 

units, with five early transcription units (E1A, E1B, E2, E3 and E4), three delayed early 

transcription units (IX, IVa2 and E2 late), and one late transcription unit that is processed to 

generate five families of late mRNAs (L1 to L5) (11). Units E1 to E4 are transcribed before the 

onset of the replication of viral DNA, producing proteins involved in the activation and 

regulation of transcription and replication, S phase induction of the cell cycle, apoptosis 

blockage, modulation of the response of the host to infection, and mRNA nuclear exportation. 

Following the onset of viral DNA synthesis, the expression of genes belonging to the 

intermediate class (IVa2 and IX proteins) is turned on. IVa2 and IX are structural proteins, but 

they are also involved in other processes during the infection. IVa2 contributes to activation of 
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the major late promoter (MLP) (147); IX is also a transcriptional activator (81) and sequesters 

host-cell promyelocytic leukemia protein (PML) (126) which could be involved in nuclear 

defense mechanisms (87). Units L1 to L5 are transcribed at a later phase, encoding the 

structural proteins.  

 

Figure 1: Transcription and replication of the AdV genome. A. Transcription (128). Early transcripts are 
outlined in green, late ones in blue. The genes for VA RNA (RNAs that do not translate, their role is 
combating cellular defence mechanisms) are denoted in brown. Viral proteins in red. Arrows indicate 
the direction of transcription. MLP, Major Late Promoter. B. Replication (image modified from 
http://cronodon.com/BioTech/Adenovirus.html). Red and blue strands are parental molecules, green 
strands are daughter molecules. ITRs (ABC and XYZ), precursor TP (pTP), replication machinery (RM), 
ssDNA binding protein (DBP). 

 
There are two inverted terminal repeat sequences (ITR) (103 to 165 bp, depending on the 

type) located at each end of the genome (139). The terminal protein  binds to these regions, 

stabilizing the double strand and serving as a primer for viral genome replication (151). The 

packaging domain (Ψ), located downstream of the left ITR, contains recognition signals for 

encapsidation of the viral genome (section 1.8.1). 

 

AdV replication takes place in two phases (Figure 1B) (77). In the first one, only one of the two 

DNA strands serves as a template, producing a dsDNA molecule which contains one daughter 

and one parental strand plus a displaced ssDNA bound to ssDNA binding protein (DBP). This 

protein is also called E2 DNA binding protein and 72 kDa protein. DBP is a nonstructural 

protein, and stimulates the initiation and elongation of DNA replication.  In the second phase, 

the leftover ssDNA circularizes through annealing of its two ITRs, producing a panhandle 

structure. This structure can be recognized by the same replication machinery that operates in 

the first phase, because the panhandle creates the same termini structure of the duplex viral 

genome.  
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1.3 Adenovirus Structure 

 

The AdV virion is a nonenveloped, icosahedral particle of approximately 95 nm in diameter, 

with fibers projecting from the vertices (76, 150). The particle has a mass of approximately 150 

MDa, with DNA accounting for 13% of the mass, protein 87%, no membrane or lipid; and trace 

amounts of carbohydrate (O—linked N-acetyl-glucosamine in fiber) (11). The icosahedral shell 

surrounds a DNA-containing core. The polypeptides present in the mature virion are 

designated by roman numbers according to their decreasing apparent molecular weight on 

denaturing electrophoresis. The AdV capsid shell has a pseudo T=25 triangulation number, and 

its main components are: 240 hexon capsomers (trimers of protein II, 3x109 kDa) forming most 

of the capsid surface; 12 penton capsomers (formed by a pentamer of protein III “penton 

base”, (5x63.3 kDa) and a trimer of IV, “fiber” (3x61.9 kDa)), one at each vertex of the 

icosahedron (Figure 2a). As indicated by their names, penton and hexon capsomers are 

surrounded by five and six neighbors, respectively. Twelve hexon trimers form each of the 20 

facets of the icosahedron. When AdV is subjected to mild dissociation conditions, stable 

substructures composed by nine hexon trimers (groups of nine, GONs) are reproducibly 

generated. GONs contain the central hexons in each facet, but not the ones surrounding the 

penton (peripentonals) (108). The five peripentonal hexon trimers, together with the penton 

base form a substructure referred to as GOS (Group of Six) (76). 

 

1.3.1 Minor Coat Proteins 

 

Apart from hexon, penton base and fiber, the AdV capsid contains at least four minor coat 

proteins in the icosahedral shell: polypeptides IIIa, VI, VIII and IX (reviewed in San Martin 

(131)).  These proteins are necessary for correct morphogenesis of the viral particle and have 

several roles during assembly. The localization of some minor coat proteins is under debate 

(76, 120). Currently there are two models for the localization of these proteins (Figure 2A). 

One of them is based on cryo-electron microscopy (EM) data and another one in X-ray (XR) 

diffraction data. Although both studies have similar resolution (3.6 Å for EM and 3.8 Å for XR), 

the assignation of some proteins in the virus is completely different.  

 

Polypeptides IIIa (in the cryo-EM model, (76)), VI and VIII are located on the inner capsid 

surface and their precursor forms are cleaved by the viral protease (AVP) during maturation 

(section 1.5). In the cryo-EM model, five monomers of polypeptide IIIa (precursor form 65.1 

kDa) form a pinwheel feature underneath each vertex (60 monomers in the capsid). The N-

terminal domain of this protein keeps each GOS together by tethering pairs of peripentonal 
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hexons, and those to penton base.  IIIa has also been shown to interact with the putative 

scaffold protein L1 52/55kDa and promote correct genome packaging (82) (section 1.8.2). 

Much of this protein (residues 300 to 585) could not be traced in the high resolution cryo-EM 

structure implying that this region does not follow icosahedral symmetry (76). In the X-ray 

model, the pinwheel is formed by protein V and VI instead of IIIa (120). 

 

Figure 2: Overall AdV structure and components (131). A. Icosahedral shell organization. The left hand 
side panel is a model built from a low resolution cryo-EM map, with penton bases highlighted in yellow, 
and fibers modeled from the crystal structure of the knob and distal shaft (153) in dark blue. The shaded 
triangle indicates one facet. The schematics in the right hand side indicates the components of the facet 
as reported in Liu, et al. (76) (electron microscopy model, EM), and in Reddy and Nemerow (120) (X-ray 
model, XR). B. Non-icosahedral components of the AdV particle. A segment has been removed from the 
cryo-EM map to show the inner capsid contents. The schematics on the right hand side indicate 
tentative positions, as little is known about the structure and organization of the genome and 
accompanying proteins. Polypeptide IVa2, which binds to the specific packaging sequence in the viral 
genome, has been reported to occupy a singular vertex in the capsid (26). 

 

Polypeptide VI (precursor form 26.9 kDa) has been shown to interact with an internal cavity in 

hexon, establishing a bridge between the icosahedral shell and the core. In vitro, the precursor 

of VI (pVI) binds to hexon with a stoichiometry of 3:3 (47). The copy number of VI is around 

360, which does not correspond with the hexon copy number (240 trimers, 720 monomers). 

The density for pVI is stronger in cryo-EM of the inmature AdV, indicating that before 

maturation the interaction with hexon is stronger (101, 140) or that pVI is more ordered than 

its product. Only weak density has been observed for VI in all structural studies of mature AdV 

(76, 119, 120), indicating that the arrangement of VI within the hexon cavity does not follow 

icosahedral symmetry. Several roles have been reported for this protein: endosome escape 
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following cell entry (section 1.4), activation of AdV gene expression, nuclear targeting of hexon 

during assembly, and finally activation of AVP during maturation (section 1.5).  

Polypeptide VIII (precursor form 24.6 kDa) is present in two independent monomers in the 

icosahedral asymmetric unit (60 copies of VIII in total). One of them is wedged between 

polypeptide IIIa (in the cryo-EM model) or VI and V (in the X-ray model) and the hexon bases at 

the periphery of the GOS. The second copy is located around the icosahedral 3-fold symmetry 

axis. 

 

Finally, polypeptide IX (14.3 kDa, 240 copies in the virion) is the only minor coat protein 

located on the outer part of the AdV capsid in the cryo-EM model and forms a sort of hairnet 

on the outer side of the virion, keeping together the hexon trimers in each GON and binding 

GONs across the icosahedral edges (76) (Figure 2A). The N-terminal domains of three IX 

monomers join via hydrophobic interactions at the icosahedral and local 3-fold axes in the 

GONs forming triskelion structures. Then the so-called “rope domain” of each monomer runs 

in a different direction towards the facet edges, where a C-terminal α-helix joins with the C-

terminal helices of another three copies of IX, different from those forming the N-terminal 

triskelion, to create a leucine zipper 4-helix bundle. In the X-ray model however, this 4-helix 

bundle has been assigned to IIIa. IX has a capsid stabilizing role. The trimeric N-terminal 

domain of IX is enough to incorporate to the capsid and confer capsid thermostability. It has 

been proposed that IX may play a role in modulating the viral tropism and/or interfering with 

the immune response. Also, IX is responsible for interaction with kinesin-1 during the final 

uncoating stage for translocation of the viral DNA to the nucleus.  

 

1.3.2 Core Components 

 

The AdV core contains four DNA binding proteins (V, VII, X and TP) and the viral genome 

(Figure 2B). Proteins VII, X and TP have precursor forms which are cleaved by AVP. 

Polypeptides V (41.6 kDa), VII (precursor form 21.9 kDa) and X (precursor form 8.7 kDa) are 

basic arginine-rich proteins that bind to the viral DNA and likely condense it within the core. V 

(~157 copies in the virion) can bind to penton base and polypeptide VI, linking the core to the 

capsid (103). VII (527-833 copies in the virion) (9, 152) is the major core protein and it remains 

associated with AdV DNA during productive infections (23). Two copies of the TP (precursor 

form 76.4 kDa) are covalently linked to the 5’ genome ends, circularizing it and acting as a 

primer for DNA replication (122). Protein X, also called µ (5), has 100-290 copies in the virion 

(9, 152). The exact localization of these proteins is unknown because they do not follow 

icosahedral symmetry. However, it is thought that they condense DNA in bead-like structures 
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similar to nucleosomes, called “adenosomes” (154). There is another protein bound to the viral 

DNA, called IVa2 (50.7 kDa), with a copy number around 5 per virion (26). This protein is part 

of the packaging machinery (section 1.8.2). 

 

1.4 Adenovirus Infectious Cycle 

 

The AdV replication cycle (11, 40) is divided in two phases, early and late, separated by the 

onset of viral DNA replication, and is completed after 24 to 36 hours for Ad5 in HeLa cells. The 

early phase includes adsorption, penetration, movement of partially uncoated virus to the 

nuclear pore complex (NPC), transport of the viral genome through the NPC into the nucleus, 

and expression of early transcription units. In HeLa cells, this phase lasts for 5 to 6 hours; 

afterwards viral DNA replication is detected. Concomitant with the onset of viral replication, 

the late phase of the cycle begins with the expression of the late transcription units and 

assembly of viral progeny.  

 

The cycle begins with the interaction of capsid proteins with diverse cellular receptors. In Ad5, 

fiber protein recognizes a receptor of 46 kDa called CAR (Coxsackie and Adenovirus Receptor) 

(10), a cell adhesion molecule (63) (Figure 3, step 1). Instead of CAR, different HAdV serotypes 

use other receptors such as: heparin sulfate glycosaminoglycans; desmoglein-2; CD46, CD80 

and CD86; vascular cell adhesion molecule-1; MHC1; sialic acid; and other protein and 

nonprotein receptors (6). Internalization depends on integrins αvβ3 and αvβ5 binding to the 

RGD-sequence motif in penton base, triggering integrin-mediated endocytosis (158). Once 

contact has been established between virus and cell, the phosphatidylinositol-3-OH kinase 

(PI3K) is activated, which in turn activates Rac and CDC42 GTPases, thus inducing actin 

polymerization and viral endocytosis into clathrin-coated vesicles (89) (Figure 3, steps 1 and 2). 

As the endosome becomes acidified, the viral particle is destabilized, leading to release of 

proteins from the capsid. Among these is protein VI, which causes disruption of the endosomal 

membrane, thereby delivering the remainder of the particle into the cytoplasm (159) (Figure 3, 

step 3). The partially disrupted viral particle attaches to microtubules via cytoplasmic dynein-

mediated binding (67) and travels along microtubules to the nucleus. When the particle arrives 

at the nuclear envelope, it docks to the NPC-filament protein CAN/Nup214. The proximity of 

the capsid to the nuclear pore allows binding of hexon to dynamic histone H1. Importin-  and 

importin-7 bind histone H1, leading to further disassembly of the capsid (148). Finally, the viral 

DNA, bound to protein VII, is delivered into the nucleus by the import protein transportin 

(Figure 3, step 4). 
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In the nucleus, the viral DNA begins its transcription (Figure 3: step: 5) at the periphery of 

ND10s (nuclear domains 10). ND10s are defined by accumulations of proteins that can be 

interferon-regulated, implicating ND10s as sites of a nuclear defense mechanism. Once the 

early proteins have been translated (especially: viral polymerase, ssDNA binding protein (DBP) 

and pTP), (Figure 3, step 11), they are imported into the nucleus and viral DNA replication 

begins (Figure 3, step 13). The replication domains are not randomly distributed; they are 

located close to or at the periphery of ND10s, expanding away from these nuclear domains 

(65) (section 1.6).  

 

Figure 3: Single-cell reproductive cycle of human adenovirus (modified from Flint, et al. (40)). Parental 
DNA in blue, RNA in green (except for VA RNA in orange), newly synthesized DNA in red. The numbers 
indicate the order of events. Transcription occurs in steps 5, 9 and 15; translation in 7, 11 and 17; 
replication in 13 and 14; assembly in 19; and maturation in 20.  

 

In the late phase of the cycle, replicated viral DNA molecules serve as templates for further 

rounds of replication or for transcription of late genes (Figure 3, steps 13, 14 and 15). 

Processed late mRNA species are selectively exported from the nucleus and translated in the 

cytoplasm. Then, the proteins are imported into the nucleus where the virions will be 

assembled and matured (Figure 3, step 19 and 20) (section 1.5). The viral particles leave the 

cell by the action of multiple virus gene products involved in several cell death pathways. The 
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AdV pro-death gene products, such as E1a and E4ORF4, induce apoptosis. On the other hand, 

E311.6kD, called Adenovirus Death Protein, produces cell lysis and shows no apoptotic 

characteristics. The exact details of the cell death induced by AdV are unknown (14).   

 

1.5 Adenovirus Assembly 

 

AdV assembly occurs in the nucleus (11); however the trimeric hexon capsomers are 

assembled from monomers in the cytoplasm. The assembly of hexon trimers requires the 100k 

protein encoded in L4. The pentameric penton base and trimeric fiber are assembled 

independently and subsequently join to form a complete penton capsomer. After their 

production, hexon and penton capsomers are imported into the nucleus. These capsomers, 

together with the minor coat proteins and the putative scaffold protein L1 52/55 kDa assemble 

into an empty capsid. The viral DNA is inserted into this structure via a so far unclear 

mechanism (section 1.8). Core proteins are encapsidated with the viral genome to yield 

noninfectious young virions. These virions contain the precursor version of several capsid 

(pIIIa, pVI, pVIII) and core proteins (pVII, pµ, pTP). Mature virions are produced upon cleavage 

of these precursors by AVP (Figure 4) (13). The L1 52/55 kDa protein, present in empty capsids 

but not in mature virions, is also a substrate for AVP (99) (section 1.8.2). 

 

Polypeptide pVI is cleaved at two sites (VI 22.1 kDa). The N-terminal fragment (pVIn) remains 

bound at the base of peripentonal hexons in mature virions (142). The C-terminal fragment 

(pVIc) is a cofactor for AVP (84, 157). Polypeptide pVIII has three cleavage sites (VIII 15.4 kDa). 

In porcine AdV, both pVIII as well as its two largest fragments (pVIIIN and pVIIIC) were observed 

to interact with the packaging protein IVa2 (141). Also the two fragments remain ordered in 

the mature virion as observed in the cryo-EM structure of Ad5 (76). 

 

Proteolytic maturation is necessary for full viral infectivity because without these cleavages, 

the AdV particles are unable to uncoat (48, 101). AVP (23 kDa) is a cysteine protease 

transcribed from the L3 unit, which is activated by the C-terminal peptide derived from protein 

pVI (pVIc, Webster, et al. (157)).  AVP recognizes (M/I/L)XGX-G and (M/I/L)XGG-X sequence 

motifs to cleave its substrates. Also, AVP cleaves the L1 52/55kDa protein at multiple sites 

(Figure 4), many not conforming to AVP consensus cleavage sites. Fragments of different sizes 

of this protein can be detected from  in vitro digestion (47, 45, 44, 40, 36, 33, 26, 20 and 

17kDa) (99). Apart from pVIc, AVP also uses viral dsDNA as a cofactor. dsDNA increases the 

enzymatic activity of AVP by 100 fold, and both cofactors increase the protease catalytic rate 

by 34000 fold, comparing with AVP alone. (88). AVP enters the capsid with the viral genome 
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(aprox. 50 molecules per virus particle (15)). AVP, partially activated by being bound to DNA, 

excises pVI. The pVIC binds to the AVP molecule through a disulfide bond forming the fully 

active AVP-peptide pVIC complex bound to DNA. Active AVP slides along DNA via one-

dimensional diffusion using pVIC as a “molecular sled”. During this movement, AVP cleaves the 

protein precursors that are found in its way (13, 46).  

 

Figure 4: Components of the AdV particle undergoing proteolytic maturation (modified from San 
Martin (131)). Each Ad5 precursor protein is represented as a bar with the polypeptide length in amino 
acids indicated in the center. Cleavage sites are denoted by arrows. The prefix “p” denotes the 
unprocessed precursors. (*) Copy number in young virions. 
 

1.6 Nuclear Compartmentalization in Adenovirus Infected Cells 

 

In an AdV infected cell, the viral DNA is first detected (8 hpi) at the so-called early replicative 

sites (ERS), close to the ND10s. In situ hybridization assays revealed that ERS contain viral 

ssDNA, dsDNA, and viral replicative activity (Figure 5, step 1). In situ hybridization (for viral 

DNA), autoradiography (for tritiated thymidine), inmunocystochemistry (for DBP) and Bromo-

deoxyuridine labeling (BrdU, for newly synthesized viral DNA) have been used to characterize 

nuclear transformations in AdV infected cells from 17 hpi until 41 hpi (12, 66, 71, 97, 107, 114-

116). ERSs (Figure 5, step 1) give rise to two new structures (Figure 5, step 2 and Figure 6D): 

the ssDNA accumulation site, where a large number of single stranded replicative 

intermediates are accumulated; and a peripheral replicative zone where viral dsDNA is 

accumulated and there is continuous replicative activity. This zone surrounds the ssDNA 

accumulation zone, which has intermittent replicative activity. Later in infection (Figure 5, step 

3), a single large viral genome storage site is developed. This is the main site of storage for 

nonreplicating dsDNA viral genomes. It contains also traces of viral ssDNA, and close to this 

area there are viral particles (12, 109, 114-116). At intermediate times post-infection (17-20 
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hpi), the ssDNA accumulation site forms a ring-like structure (66, 71, 97) with the peripheral 

replicative zone located adjacent to both the inner and outher borders of this ring (Figure 5, 

step 2 and inset) (107, 115).  

 

Figure 5: Route of viral DNA from the first steps of infection until its accumulation in the nucleus. 
Parental DNA in blue, RNA in green (modified from Flint, et al. (40), with data from (12, 65, 87, 109, 115-
117)). Early, intermediate and late times of infection (1, 2 and 3 respectively) are indicated. The 
fluorescence image inset shows the localization of DBP/ssDNA (in red) and bitotin-dUTP, newly 
synthesized viral DNA (in green) (107). White arrows show the pattern reproduced in the cartoon. The 
bar represents 5 µm. 
 

Apart from the DNA-containing structures, adenovirus infection produces several types of 

nuclear modifications starting at early times post-infection (~6 hpi) (Figure 6). By cellular 

fractionation and PAGE-autoradiograms it was discovered that several adenovirus early 

proteins interact with the cellular skeletal framework. Using electron microscopy (EM) of 

infected cells sections, it was observed that the nuclear membrane of infected cells adopts an 

irregular outline, perhaps indicating changes in nuclear-cytoplasmic interactions (75). Cellular 

chromatin is pushed towards the nuclear border (Figure 6C). Nucleolar compaction (Figure 6B) 

occurs at 17 hpi, although a few nucleoli remain seemingly unchanged, even at 24 hpi.  

 



Introduction 
 

13 

 

 

Figure 6: AdV induced alterations in the host cell nucleus during infection. A. Lobule. HeLa cell 
embedded in Epon at 41 hpi. Protein crystal (pc), nucleus (N) and cytoplasm (C). (111). Bar 2 µm. B, H-I. 
HeLa cell embedded in Lowicryl K4M at 17 hpi. B. Nucleolus (nu) and electro-dense inclusion (arrows). 
Bar 0.5 µm (80). C. Electro-opaque granules (arrows) located within the peripheral replicative zone 
(PRZ). HeLa cell embedded in Epon at 41 hpi. Chromatin (ch) and nucleus (N). Bar 0.5 µm (111). D. 
Peripherical replicative zone (PRZ) and ssDNA accumulation site (DAS). Cellular section embedded in 
Epon at 17 hpi. Bar 0.5 µm (117). E. Section of a paracrystalline array of virus in the nucleus of an 
infected cell. Bar 0.4 µm (42). F-G. Viral protein crystal (pc), cross (F) and longitudinal section (G). HEK 
293 cell embedded in Epon at 48 hpi. Bar 0.2 and 0.4 µm respectively (41). H. Electron-clear inclusions 
(arrows). Bar 0.5 µm (112). I. Compact ring (cr) and cluster of interchromatin granule (ig). Bar 0.5 µm 
(110).  

 

In situ hybridization indicated that late viral RNA accumulates in three types of nuclear 

structures: the peripheral replicative zone (Figure 6D); clusters of interchromatin granules 

(Figure 6I), which mostly participate in postsplicing events; and compact rings (Figure 6I), 

which contain unused portions of the primary transcripts resulting from differential 

polyadenylation site selection (110, 117, 118). Two types of inclusions, of yet unknown 

function, are found at late times by EM: electron-dense and clear inclusions (Figure 6B and H). 

In fiber-deleted viruses, unused hexon and penton base proteins have been detected by 

inmunogold labeling in the clear inclusions (113), while protein IVa2 has been detected in 

electron-dense inclusions and compact rings  (80). Also, protein IX has been detected in clear 
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amorphous inclusions (125). At late times (~24 hpi) protein crystals (Figure 6F-G) and virus 

particles (Figure 6E) appear.  The protein crystals contain penton capsomers (penton base and 

fiber), which could associate into dodecahedrons disposed in parallel rows (41, 61).  

 

At later infection times (41 hpi), viruses appear in the cytoplasm, some of them located next to 

nuclear pores. Abnormally large portions of the nuclear envelope (forming lobes, Figure 6A) 

devoid of underlying condensed chromatin, and proliferation of either the inner or both 

membranes of the nuclear envelope can also be seen. A new structure, called electro-opaque 

granules (Figure 6C) containing viral RNA, can be found by in situ hybridization in the clusters 

of interchromatin granule and peripheral replicative zone (111).  

In spite of the large amounts of experimental work summarized above, it is still not clear 

where and how AdV assembly occurs in the nucleus of infected cells, and if it occurs in a 

particular environment forming a viral factory. 

 

1.7 Assembly and Cellular Compartmentalization in Other Eukaryotic dsDNA 

Viruses: Viral Factories 

 

Viral factories represent subcellular scaffolds where replicated genomes and capsid proteins 

spatially intersect in an efficient and coordinated manner to assemble virions (37). Depending 

on the virus and its replication and assembly site, it is possible to group eukaryotic dsDNA 

viruses in three classes: those with replication and assembly in the cytoplasm; those with 

replication in the nucleus and final assembly in the cytoplasm; and those with replication and 

assembly in the nucleus.  Factories have been extensively studied for viruses assembling in the 

cytoplasm, but they are less well characterized in viruses with nuclear assembly due to the 

limited comprehension of the functional architecture of the nucleus (31). 

 

For the first group, which includes Poxviridae, Phycodnaviridae, Iridoviridae, Asfarviridae and 

Mimiviridae, replication and assembly occur in classical cytoplasmic  viral factories (91). These 

factories are elaborate structures whose formation involves massive rearrangement of host 

cytoskeleton and membranes. Assembly of these viruses is complex due to the need to recruit 

one or several envelopes. For example, the Mimivirus factory (90) originates from several 

fused replication centers. Cellular vesicles fuse forming multivesicular bodies next to the 

replication center, which rupture to form large open membrane sheets that act as precursors 

for the inner Mimivirus membrane. The Mimivirus factory is organized in three zones: 

replication; membrane assembly; capsid assembly and DNA packaging zone (Figure 7A). An 

icosahedral vertex is generated on the top of the open membrane sheets by recruting of 

structural Mimivirus capsid proteins (Figure 7B). During capsid assembly, the inner membrane 
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layer is shaped into icosahedral morphology. It has been proposed that membrane overhangs 

consisting of open membrane sheets prevent premature closure of the icosahedral capsids, 

thus enabling the formation of a DNA-encapsidating portal (Figure 7B). A similar mechanism 

has been described for African swine fever virus (ASFV) assembly (143). 

 

Figure 7: Examples of each eukaryotic dsDNA virus class according to the localization of its factory. A. 
Viral assembly zones of Mimivirus factory overlying the EM image. Scale bar 500 nm (90). B. Model of 
Mimivirus membrane and capsid assembly in its factory (90). C. Autographa californica 
nucleopolyhedrovirus (AcMNPV)-infected Sf9 cell. Scale bar 1 µm (18). D. Higher magnification image of 
the region boxed in panel (C). Virogenic stroma (VS), nucleus (Nu). Scale bar 500 nm (18). E. Electron 
tomography reconstruction section of Polyomavirus nuclear factory. A tubular structure appears in the 
plane (black arrowhead). Empty (white arrow) and full (white arrowhead) virions are identified in the 
virus cluster. Scale bar 200 nm (37). F. 3D model of (C) showing ~2000 full assembled virions (pink 
spheres) and 2% empty virions (red spheres) in a 300 nm thick section. The tubular structures are either 
filled with electron-dense material (yellow cylinders) or empty (red cylinders). Scale bar 200 nm (37).  

 
 

For the other two groups, the term “nuclear factories” is employed to denote the location 

where viral DNA is synthesized, late genes transcribed, capsid assembled and DNA packaged 

(91). Herpesvirus (HV) and Baculovirus are representative of the second group (replication in 

the nucleus and final assembly in the cytoplasm). In HV, the nuclear factory consists in nuclear 

globular structures, also called replication compartments. Specialized machinery for late gene 

expression has been detected in these compartments. After synthesis of the capsid proteins, 

they move into the nucleus, where capsid assembly and DNA packaging occur. The following 

steps of tegumentation and envelopment continue in the cytoplasmic factory (91).  

In Baculovirus (Figure 7C and D), the nuclear factory consists in a virogenic stroma (VS). VS is 

an electron dense, chromatin-like structure surrounding multiple translucent spaces that is 

found near the center of the nucleus in infected cells. The VS structure appears to be 

composed of RNA and protein with discrete concentrations of DNA that border intrastromal 

spaces, the sites of virion assembly (124). 
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Finally, Polyomavirus (PyV), which is included in the third group (replication and assembly in 

the nucleus), presents a new structure as center of assembly. Erickson et al (2012) used EM 

and electron tomography (ET), to identify tubular structures in close physical association with 

progeny virions in the nucleus of PyV-infected mouse fibroblasts (Figure 7E and F). These 

structures have virions apparently “shed” or “budding” from their ends. In comparison with 

virions in the same sections, the density surrounding the tubes corresponded to the density of 

the outer capsid of the virions, while the dense core was similar to the virion interior. 

Immunohistochemistry assays suggested that genome replication may be occurring adjacent 

to, but nor directly at the site of the factories. 

 

1.8 Adenovirus Genome Packaging 

 

Genome packaging is one the least understood steps in AdV assembly. Unlike in HV or 

bacteriophage, there is no in vitro assembly system for AdV. Numerous studies on the viral 

DNA, packaging proteins and the interactions between them have been reported (see below), 

and two models have been proposed relating capsid assembly and packaging: sequential and 

concerted. In the sequential model, a motor complex would transfer the DNA into a preformed 

capsid, using the energy derived from ATP hydrolysis. A difficulty that this model has to 

circumvent is how to package DNA bound to proteins. Chatterjee, et al. (23) found that VII and 

its precursor form (pVII) were associated with the viral DNA throughout infection (2-51 hpi). 

This result was obtained by analyzing the nuclear content of cells infected with 32P-labelled 

Ad2, which were irradiated with ultraviolet light (to induce cross-linking between proteins and 

DNA), at various points along the infectious cycle. However, chromatin inmunoprecipitation 

assays (ChIP) suggested that VII is removed gradually from at least certain regions of the 

genome by interaction with other proteins during the early phase (56, 70). Also, remodeling 

factors, chaperones and histones bind to viral DNA from early times of infection (~1 hpi for 

histones) (70, 130). At late times (16 hpi), the pVII levels increase on the newly synthesized 

DNA while the amount of bound histones declines (30, 33). In conclusion, the viral DNA is 

always bound to proteins (cellular and/or viral proteins) during the infectious cycle. If the DNA 

translocation is with the protein pVII, it would be a novel mechanism of motor driven protein-

DNA packaging which has not been previously described. If instead the naked DNA is 

transferred, the protein pVII would have to be first removed from the DNA, then penetrate the 

capsid freely so that it can be associated with the packaged DNA again (Figure 8A). In this case, 

an interesting question would be how the DNA packaging motor or an unknown viral factor 

strip protein pVII off to make the DNA ready for packaging. In the concerted model, pVII and 

DNA would form a chromatin-like structure first, and the viral capsid proteins would assemble 
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around it (Figure 8B). In this case, an initiator for genome condensing would be required 

instead of a motor.  In the next sections, previous studies about AdV packaging are 

summarized. 

 

Figure 8: Models for packaging the AdV DNA-pVII complex (image modified from Zhang and Arcos 
(166)). A Sequential model. B Concerted model. 
 

  1.8.1  Packaging Domain 

 

Adenovirus packaging begins from the left-end of the genome, where the specific packaging 

sequence (Ψ) is located (53, 145). This domain comprises nucleotides 200 to 397 (in Ad5) from 

the left end, between the ITR and the E1A transcription unit, and is composed by 7 repeated 

regions called “A-repeats” (Figure 9)(44, 53, 60, 136). These regions have a characteristic 

sequence motif 5’-TTTGN8CGXG-3’, which is conserved between different serotypes (44, 60, 

136). The A-repeats exhibit differences in the ability to support viral packaging, with elements 

I, II, V and VI as the most critical repeats (136). Changes in spacing between the two conserved 

parts of the consensus motif (TTTG and CGXG) compromised  DNA encapsidation, rather than 

changes in spacing between different A repeats (136). Although Ψ is at the 5’-end of the 

genome, it can be moved to the 3’-end and still be functional, as long as it is inserted within 

the first 600 nucleotides, approximately, of the genome end. If this distance is larger, the DNA 

is not packaged (60).  

 

Figure 9: Arrangement of the left end of the Ad5 genome.   The A-repeats, represented as triangles, are 
located between nucleotides 200 and 397, upstream of the transcription start site of the E1A promoter, 
shown as a right-facing arrow (image modified from Tyler, et al. (149)).  

 
 

1.8.2 Packaging Proteins  

 

Several AdV proteins are required for genome packaging to occur: IVa2, L1 52/55 kDa, L4 22 

kDa, L4 33 kDa, and IIIa. When these proteins are modified (thermo-sensitive mutants) or 
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deleted, only empty capsids are produced, demonstrating that they are not necessary for 

capsid assembly but are required for DNA packaging (27, 28, 50, 93, 163, 164). Among these 

proteins, IVa2 and L4 22 kDa bind directly to Ψ (94, 167). L4 22 kDa and L4 33 kDa are products 

of the same transcription unit. They share a common N terminus but have different C termini. 

 

Bioinformatic analyses show conserved motifs associated with binding and hydrolysis of ATP in 

the IVa2 sequence (72). This finding supported the idea of IVa2 acting as a packaging motor 

protein in AdV, similarly to the packaging motors in dsDNA bacteriophage (22). Also, it has 

been reported that IVa2 is present at a single vertex in the virion (26). All these evidences favor 

the sequential model. However, although ATP binding assays demonstrated binding to the 

nucleoside triphosphate, ATP hydrolysis by IVa2 has not been proved so far (95). In vitro, 

higher-order IVa2-containing complexes form on adjacent packaging repeats. These complexes 

are thought to be required to form the hypothetic packaging motor (96), by analogy with 

motor complexes of bacteriophage which are formed by oligomeric protein complexes.  

However, it is not clear how the DNA bound to proteins (in nucleosome-like structures) would 

be translocated by a packaging motor. This kind of mechanism has not been observed 

previously. 

 

Coimmunoprecipitation studies showed that IVa2 and L1 52/55kDa interact during the course 

of AdV infection (51). L1 52/55kDa is a phosphoprotein that migrates as a doublet on 

denaturing electrophoresis gels. This protein is present in empty capsids, assembly 

intermediates and young virions (section 1.8.3), but mostly absent in mature virions, 

suggesting a scaffolding role (58, 99). However, a mutant incapable of expressing L1 52/55 kDa 

(H5pm8001) produces empty capsids, indicating that this protein is not a classical scaffolding 

protein (50). L1 52/55 kDa is released from the viral particle by proteolytic processing, which 

leads to loss of interaction of this protein with itself, core and capsid proteins (99). The large 

size of the L1 52/55 kDa proteolytic fragments (over 15 kDa) suggests that cleavage, packaging 

and scaffold release may be happening simultaneously before the viral particle is sealed 

(supporting the concerted model). The available evidence suggests that L1 52/55 kDa is 

required to mediate the stable association between the viral DNA and the empty capsid to 

produce a full particle. In vivo, IVa2 and L1 52/55kDa proteins bind to the packaging domain 

and each protein-DNA interaction is independent of the other (102). In vitro, IVa2 protein 

binds strongly to Ψ, however no interaction has been observed for L1 52/55 kDa (102). This 

observation suggests that the L1 52/55 kDa protein-DNA interaction may be mediated by an 

intermediate protein. This result is corroborated in recent studies (164), where binding of both 

L4 22 kDa and IVa2 proteins to Ψ is required to recruit the L1 52/55 kDa protein in vivo.  
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Electrophoretic mobility shift assays showed that L4 22 kDa alone did not interact with the A-

repeats, but it did form complexes on them in the presence of the IVa2 protein (38). Also, the 

authors suggested that L4 22 kDa enhances binding of IVa2 to Ψ. It has been proposed by Yang 

and Maluf (165) that a single IVa2 loads onto a single CGXG site and a single L4-22k loads onto 

a single TTTG site of the A-repeats. By analytical sedimentation velocity and equilibrium 

methods it was demonstrated that L4 22 kDa binding promotes cooperative assembly of IVa2 

onto Ψ, and that saturating levels of L4 22 kDa diminish this cooperativity. Under no limiting 

conditions of L4 22k or IVa2 a large complex would be formed (165). ChIP assays demonstrated 

that L4 22kDa and IVa2 are dependent on each other for binding to Ψ in vivo (164). 

 

Another protein involved in packaging is L4 33kDa. The role of L4 33 kDa remains obscure.  

Even when propagated in a L4 33kDa complementing cell line, a L4 33kDa mutant (with amber 

mutation) only produced empty capsids, demonstrating the role of L4 33k in packaging 

although it neither binds to Ψ nor influences the interaction of other packaging proteins with 

Ψ in vivo (163). Studies using packaging protein mutants are complex because some of them 

have other roles at early times of infection; for example, IVa2 is a transcription factor of the 

MLP (147), L4 33k is an alternative RNA splicing factor (146), and L4 22 kDa actives the 

expression of late genes (7). It is interesting to notice that packaging proteins are found both in 

empty capsids and binding to Ψ, suggesting that there may be two separate pools of these 

proteins where capsid-associated components may be poised as a portal vertex (ready to 

receive viral DNA for encapsidation). A second pool of these proteins may be bound to 

packaging sequences and promote an interaction between the viral DNA and capsid 

components (82). 

 

Finally, polypeptide IIIa, a component of the icosahedral shell (section 1.3.1), interacts with L1 

52/55kDa in vitro and associates with the viral packaging domain in vivo, indicating how the 

viral genome may be tethered to the capsid during the encapsidation process (82). L1 52/55 

kDa and IIIa proteins are involved in serotype specificity of Ad packaging, whereas IVa2 or L4 

22k proteins are not (82, 162). These observations suggest that the specificity is due to 

protein-protein interactions rather than to protein-DNA interactions. 

 

1.8.3 Adenovirus Incomplete Particles 

 

When Ad5 is purified using standards protocols, at least 2 bands are routinely observed in CsCl 

gradients. The low density band contains light particles lacking the viral genome, while the 

high density band contains mature virions. The light particles are considered precursors of 
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mature virions (assembly intermediates) because in pulse-chase experiments they appear 

earlier (144), contain protein precursors (64, 160), and do not have DNA or only fragments (17, 

29, 145, 160). This evidence is the second pillar supporting the sequential packaging model: 

existence of a procapsid. However, assays at long periods of chase (13h) indicate that light 

particles are very stable structures (68), their quantity is constant, and they do not become 

mature virions. The light particles of ts4 and ts369 mutants (thermo-sensitive mutations in IIIa 

and L1 52/55 kDa respectively) could not be chased into mature virions when the infected cells 

were shifted to the permissive temperature (59, 68), suggesting that these particles are not 

assembly intermediates but defective assembly products.  

 

Interestingly, more than two bands appear when variations in the protocols are used for 

purification, or for other AdV types. Some extra bands correspond to light particles, but others 

are denser than the mature virion (17). Particles in the light bands contain both uncleaved 

protein precursors and their cleavage products, and proteins present in light particles but not 

in mature virions, that is, L1 52/55 kDa. The particles heavier than the mature virion represent 

particles that have not completed their maturation, and are called young virions (36, 64).  

 

For AdV type 2 and 12, up to five discrete types of particles are produced. Each contains a 

specific-sized fragment of AdV DNA, and the labeled DNA signal (radioactivity) increased with 

the band density (17). Tibbetts (1977) observed the same for light particles of AdV type 7. For 

AdV type 16, four light bands were observed, and each band carried a different size of DNA 

(160). The presence of different lengths of packaged DNA has been taken as evidence for a 

sequential packaging model, although the actual origin of these DNA fragments is not well 

understood. Daniell (29) characterized the DNA contained in light particles by restriction 

enzyme analysis and by electron microscopy and heteroduplexing techniques. He found viral 

DNA fragments heterogeneous in length, ranging in size from 15% of the viral genome to full 

length. Daniell (1976) presented an adenovirus replication model to explain the heterogeneous 

nature of incomplete genomes isolated. The model assumes that breaks may occur in the 

displaced single strands of DNA during the replication. The resulting truncated molecules are 

unable to reform panhandle structures of the regular kind, but they may undergo some sort of 

illegitimate base pairing that enables them to serve as their own primer-templates. For the 

light particles of AdV type 2 and ts4 mutant, the DNA was extracted and analyzed by agarose 

gel electrophoresis, restriction endonuclease cleavage and blot hybridization. In this case the 

DNA consisted in a heterogeneous population of subgenomic-size molecules ranging from 

about 200 to 1000 base pairs. It was proposed that the fragmentation of DNA is through 

endonuclease cleavage or mechanical shear during extraction and purification. However, it is 
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possible also that some of the fragments of DNA arise due to errors in DNA replication (69). 

Edvardsson, et al. (36) demonstrated that cores were released from a population of light 

particles when they are purified on CsCl gradient without fixation, suggesting that some light 

particles could be artifacts produced during purification.  

 

There is a correlation between punctual inhibition of DNA synthesis and reduced virus 

assembly under conditions where viral protein synthesis is virtually unaltered (156).  Mature 

virions are not produced despite the presence of viral DNA accumulated previously to the 

inhibition. Pulse-chase experiments for DNA with ts3, thermo-sensitive mutant in hexon (57), 

indicated that only DNA being synthesized is packaged into mature virions. Also, ssDNA and 

DBP have been detected, by in situ hybridization and inmunolabeling assays, close to virions in 

cellular sections (111, 114). These results suggested that DNA synthesis is coupled to virus 

assembly (156), favoring the concerted packaging model.  

 

Although many kinds of AdV light particles have been described, their structure and the 

conformational changes that happen during packaging remain a mystery. Only recently, Cheng, 

et al. (25) reported cryo-EM maps at 4.5 - 5 Å resolution of two types of bovine AdV type 3 

light particles. One of them was lacking the GOS, while the other lacked penton bases and 

contained more DNA than the first one (observations from cryo-ET, and protein composition). 

Unfortunately, these particles came from a purification where no heavy band was obtained, 

therefore raising doubts regarding whether they consisted of assembly intermediates or 

virions degraded during purification. In these maps, no density was attributed to protein L1 

52/55 kDa, a characteristic component of AdV light particles. 

 

1.9  The Delayed Packaging Mutant Ad5/FC31 

 

As described in section 1.8.2, several mutants for packaging proteins have been reported that 

produce only light particles (28, 50, 59, 93, 163, 164). An alternative mutation related to 

packaging was described by Alba, et al. (3), and denoted as Ad5/FC31. Ad5/FC31 (1) was 

generated by insertion of two exogenous sequences, attB/attP, flanking Ψ in an Ad5 E1/E4 

deleted genome. These sequences are the targets for the recombinase of bacteriophage Φ31. 

To facilitate tracing of virus amplification, Ad5/FC31 has a green fluorescent protein cassette 

(GFP) between Ψ and the attP sequence (Figure 10A). Ad5/FC31 was designed as a possible 

helper vector for gene therapy. When propagated in cells expressing the Φ31 recombinase, 

the packaging signal would be excised and only the vector genome containing transgenes 

would be packaged. However, it was observed that even in cells not expressing the 
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recombinase, this mutant produced a low amount of mature virions (<99.9%) compared to the 

control virus at 36 hpi, but it reached the same virus production yield than the control at 56 

hpi (Figure 10B). Therefore, this mutant has a delay of 20 h in its cycle. Further, it was shown 

that the attB insertion was enough to induce this delay (Figure 10B). Replication and packaging 

studies were carried out to determine the cause of this delay. The viral protein and DNA 

production levels were similar in Ad5/FC31 and in control virus (Figure 10C and D). However, 

the analysis of packaged viral genomes showed that only 1-5% of Ad5/FC31 genome was 

packaged into virus at 36 hpi (Figure 10D), suggesting that low production levels at this time of 

infection were due to packaging problems (3). Electrophoretic Mobility Shift Assays (EMSA) 

showed that one or several nuclear proteins were binding to the attB sequence (1) and not to 

attP. This interaction could be interfering with correct interaction of viral packaging proteins 

and Ψ, hindering packaging of genomes synthesized until the interfering proteins are depleted. 

In Ad5/FC31 purifications, at 36 hpi the only visible band in a first CsCl gradient is the light 

band, while at 56 hpi the light and heavy bands are visible but the light band is still the most 

abundant.  In a second gradient, the light band further separates into three bands (1, 2).  

 

In this thesis, the Ad5/FC31 mutant and its comparison with wild type (wt) Ad5 were used to 

investigate the assembly of AdV in the cell and also to characterize the structure of light viral 

particles, possible assembly intermediates. 

 

 

Figure 10: Ad5/FC31 mutant. A. Scheme of the Ad5/FC31 mutant genome showing the location of 
attB/attP insertions (1). B. Viral cycle of attB/attP-modified and control adenovirus. Infectious Units (IU) 
were determined every 4 h and compared to the IU value at the end of each viral cycle (3). C. Western 
blot against hexon produced by AdV controls and Ad5/FC31 at 24 hpi (1). D. Packaged and replicated 
DNA of Ad5/FC31 and control at 36 hpi (MOI=5) (1).   
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2. Objectives 

The general aim of this thesis is the study of AdV assembly within the cell, and the structural 

modifications produced by genome packaging in the AdV capsid.   

In particular, the following objectives were pursued: 

1. To follow the AdV assembly key players (DNA and proteins) within the cell, and 

compare their distribution in wt and the delayed packaging mutant Ad5/FC31.  

2. To characterize the molecular composition and structure of incomplete particles 

generated by the Ad5/FC31 mutant. 
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3. Materials and Methods 

3.1 Viruses and Cells 

The viruses used in this study were: 

Virus Description 

Ad5GL Nonreplicative, E1 deleted, structurally wild type (wt) Ad5. Contains GFP 

and firefly luciferase genes (designated by the suffix “GL”) (138) 

Ad5/FC311 Nonreplicative, E1 and E3 deleted Ad5 variant. Delayed packaging 

mutant. Contains an attB/attP insertion flanking Ψ and a GFP cassette 

following Ψ (3). There is a delay of 20 h in its viral cycle. 

Ad2 ts12 Replicative at 32°C and nonreplicative at 39°C.  

Contains a thermo-sensitive mutation in the AVP gene (57). At 39°C 

produces only young virions. 

1The initial seed was kindly provided by our collaborator Dr. Miguel Chillón (Centro de 
Biotecnología Animal y Terapia Génica “CBATEG”, Universidad Autónoma de Barcelona).  
2Kindly provided by Dr. Jane Flint (Department of Molecular Biology-Princeton University, New 
Jersey). 
 
The cell lines used were: 

Cell line ATCC Description 

HEK 293 CRL-1573 Human Embrionic Kidney cell line transformed with 

sheared Ad5 DNA (45). Complements for 

propagation of E1 deleted Ad5 variants. 

 

3.2 Antibodies 

 

The primary antibodies used in fluorescence, electron microscopy and western blot were: 

Antibody Type  Dilutions used  Antigen 

  Fluorescence 

microscopy 

Electron 

microscopy 

Western 

blot 

 

Rat anti-

BrdU 

(abcam Cat # 

ab6326) 

Monoclonal 1:250 1:25 --- BrdU in 

ssDNA 

Rat anti-VII1 Serum --- 1:50 1:3000 pVII (Ad5) 
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(55) 

Mouse anti-

IVa22 

Serum 

 

1:200 1:10 --- IVa2 

(Ad2) 

Mouse anti-

IVa2 

cocktail2: 

6C9, 3H7, 

9F4, 8H11, 

3F3, 2B9 (4) 

Hybridoma 

supernatants 

 

--- 

 

--- 

 

1:20 

IVa2 

(Ad2) 

Mouse anti-

DBP2 

(121) 

Monoclonal 1/20 --- --- DBP (Ad5) 

Rabbit anti-

L1 52/55 

kDa3 (96) 

Serum 1:300 1:60 1:2000 L1 52/55 

kDa  full 

length 

(Ad5) 

Mouse anti-

V2 (79) 

Monoclonal --- --- 1:500 V (Ad2) 

Rabbit anti-

VI4 (16) 

Serum --- --- 1:500 VI (Ad2) 

Rabbit anti-

fiber5 (62) 

Serum 1:300 1:100 --- Fiber 

knob 

(Ad5) 

Antibodies were kindly provided by 
1
Kyosuke Nagata (University of Tsukuba), 

2
Jane Flint (Department of 

Molecular Biology-Princeton University, New Jersey), 
3
Patrick Hearing (State University of New York), 

4
 

Urs Greber (Institut of Molecular Life Sciences-University of Zurich), and 
5
Robert Gerard (University of 

Texas). 
 

The secondary antibodies used were: 

Antibody Source Cat # Use1 Dilution 

Alexa Fluor®488 

Goat Anti-Mouse 

Invitrogen A-11029 IF 1:500 

Alexa Fluor®546 

Goat Anti-Mouse 

Invitrogen  A-11030 IF 1:500 

Alexa Fluor®555 

Goat Anti-Rat 

Invitrogen A-21434 IF 1:500 

Alexa Fluor®594 

Goat Anti-Rat 

Invitrogen A-11007 IF 1:500 

Alexa Fluor®594 Invitrogen A-11032 IF 1:500 
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Goat Anti-Mouse 

Alexa Fluor®594 

Donkey Anti-

Rabbit 

Invitrogen A-21207 IF 1:500 

Alexa Fluor®647 

Goat Anti-Rabbit 

Invitrogen A-21245 IF 1:500 

Pacific BlueTM 

Goat Anti-Rabbit 

Invitrogen P-10994 IF 1:500 

Pacific BlueTM 

Goat Anti-Mouse 

Invitrogen P-31582 IF 1:500 

Gold-conjugated 

Goat Anti-Rabbit 

(10 nm) 

BB International EM-GFAR10 

       

EM 1:40 

Gold-conjugated 

Anti-Mouse (10 

nm) 

BB International EM-GFAF10 EM 1:40 

Gold-conjugated 

Goat Anti-Rat (15 

nm) 

BB International EM-GAT15 EM 1:40 

Peroxidase-

conjugated Goat 

Anti-Rabbit 

Jackson 

ImmunoResearch 

laboratories 

111-035-003 WB 1:100000 

ECLTM 

peroxidase-

conjugated 

Sheep Anti-

Mouse 

GE Healthcare Life 

Sciences 

NA931VS WB 1:5000 

ECLTM 

peroxidase-

conjugated Goat 

Anti-Rat 

GE Healthcare Life 

Sciences 

NA935V WB 1:5000 

1
Immunofluorescence (IF), electron microscopy (EM), western blot (WB). 

 

3.3 Virus Propagation and Purification 

HEK293 cells were propagated in Dulbecco’s modified Eagle’s medium (DMEM, Sigma Cat# 

D6429) supplemented with 10% fetal bovine serum (FBS, Biological Industries Cat# 04-001-1A), 

10 units-10 µg/ml penicillin-streptomycin (Sigma Cat# P4333), 0.05 mg/ml gentamicin (Sigma 

Cat# G1397), 4 mM L-Glutamine  (MERCK Cat# 3520) and 1X non essential amino acid solution  

(Sigma Cat# M7145), and maintained at 37°C in a humidified incubator with 5% CO2. Cells were 

seeded in p100 tissue culture dishes (BD Falcon Cat# 353003) at a density of 2.8x106 cells in 10 

ml of medium. When the cell monolayers reached about 70% confluence, the purified virus 
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was thoroughly mixed with fresh medium (this had FBS 2% instead of 10%) and added to the 

cells at a multiplicity of infection (MOI) of 5 infectious particles per cell. The cells were 

collected after 36 hpi for Ad5GL and 56 hpi for Ad5/FC31.  

Infected cells from 60 p100 tissue culture plates were collected and centrifuged in a Heraeus 

1.0R megafuge for 40 min at 4000 rpm and 4°C. The cells were resuspended in 42 ml of 

medium (from the supernatant) and lysed by four freeze-thaw cycles. Cell lysates were 

clarified to remove cellular debris by centrifugation in a Heraeus 1.0R megafuge at 4000 rpm 

for 30 min at 4°C. 

For double CsCl gradient ultracentrifugation, the supernatant was distributed in 6 tubes 

containing a discontinuous gradient of 1.25 g/ml and 1.40 g/ml CsCl in TD1X buffer (137 mM 

NaCl, 5.1 mM KCl, 0.7 mM Na2HPO4.7H2O, 25 mM Tris-HCl  pH 7.4) (2,5 ml of each CsCl buffer 

and 7 ml of supernatant) and centrifuged at 35700 rpm for 90 min at 18°C in a Beckman 

Optima L-100 XP ultracentrifuge using a Beckman SW41Ti swinging bucket rotor. The low and 

high density virus bands from each tube were collected (1 ml of band by tube) and 

independently pooled. In the second gradient, the high and low density pooled material (6 ml) 

was laid onto 6 ml of a CsCl 1.31 g/ml solution in TD1X buffer and centrifuged for 18 hours at 

35700 rpm and 18°C in a Beckman SW41Ti swinging bucket rotor. Bands containing viral 

particles from each tube were collected and transferred into Econo-Pac 10DG disposable 

chromatography columns (Biorad Cat#732-2010) with molecular weight cutoff of 6000 Daltons 

for buffer exchange to HBS (20 mM HEPES, 0.15M NaCl pH7.8). Aliquots were collected, and 

those with higher concentration of viral particles (estimated by absorbance at 260 and 280 

nm) were stored at -80°C after adding glycerol to a final concentration of 10%.  The density of 

CsCl solutions was determined by weighing a known volume. The viral particle density was 

determined by the same method, weighing a known volume of each band. 

 

3.4 Quantification of Physical Viral Particles 

 

Capsid protein concentration was quantified using the hexon fluorescence emission spectra 

obtained in a Hitachi Model F-2500 FL Spectrophotometer. Sample volumes of 0.150 ml were 

examined in sealed quarz cuvettes. The sample was excited at 285 nm, and the emission was 

monitored from 310 to 375 nm using excitation and emission slit widths of 10 nm. The spectra 

were corrected by subtraction of the buffer spectrum. The maximum emission intensity for 

each spectrum was found at 333 nm and recorded. The concentration was determined from a 

calibration curve calculated from a known concentration sample. 
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3.5 Quantification of Infectious Viral Particles 

 

The end point dilution assay was used to measure virus infectious titer. Serial dilutions of a 

virus stock were prepared and inoculated onto replicate cell cultures, in 96 well plastic plates. 

The number of cells infected displaying GFP signal was determined for each virus dilution.  

Serial dilutions 1:10 were used and the initial inoculum volume was 100 µl. The cells with GFP 

signal were counted after 36 hpi. The final infectious titer was determined by calculating the 

average of the titers of the last three dilutions showing GFP signal, using the next formula: 

 

[
(Number of cells with GFP signal x dilution factor)

𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 𝑖𝑛 𝑚𝑙
] = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑝𝑒𝑟 𝑚𝑙 

 

3.6 Negative Staining Electron Microscopy  

 

A drop of 5 µl of the sample was incubated on glow discharged collodion/carbon coated grids 

for 5 min to allow sample adsorption. Excess fluid was removed by touching on the edge of the 

grid with a piece of Whatman paper, without allowing it to become completely dry (blotting 

step). Then the grid was incubated with staining agent 2% (w/v) uranyl acetate, for 30 sec. 

After staining the grids were blotted and air dried on a filter paper in a Petri dish. The grids 

were examined in a JEOL JEM 1230 transmission electron microscope at 100 kV.  

 

3.7 Denaturing Protein Electrophoresis 

 

Samples were denatured in loading buffer (1% SDS, 1% β-mercaptoethanol, 10% glycerol, 50 

mM Tris-HCl  pH 6.8, 1.6% bromophenol blue) and incubated at 95°C for 10 min. Gradient gels 

(4-20% of acrylamide, Mini-PROTEAN TGX precast gels # 456-1096 from BioRad) were run in a 

minigel Biorad electrophoresis system. Molecular weight markers used were P7708S from New 

England BioLabs. Electrophoreses were performed at 100 V for approximately 100 min in TBE 

buffer (89 mM Tris base, 89 mM boric acid and 2 mM EDTA) at room temperature. 

 

3.8 Silver Staining 

 

After electrophoresis, the gels were fixed in 20 ml ethanol, 5 ml acetic acid and milli-Q water 

up to 50 ml for at least 30 min. Gels were sensitized by soaking for 30 min in 15 ml ethanol, 2 

ml sodium thiosulfate (5% w/v), 3.4 g of sodium acetate and water up to 50 ml. Gels were 
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rinsed three times in milli-Q water, 3 min for each wash, then incubated in silver nitrate 0.25% 

(w/v) for 20 min for staining, and rinsed twice for 30 seconds per wash in milli-Q water. Gels 

were transferred into the developer solution (1.25 g Na2CO3, 20 µl of formaldehyde 37%, up to 

50 ml with milli-Q water), and  transferred to stop solution (40 mM EDTA-Na2.2H2O) for at least 

10 min, when the adequate degree of staining was achieved, then washed in milli-Q water. 

 

3.9 Western Blot 

 

Proteins were transferred from the gels to a nitrocellulose membrane (BioRad Cat# 162-0115) 

on a Bio-Rad semidry transfer apparatus (Bio-Rad Cat# 170-3940) for 25 min at 15 V, then 

blocked for 1 h at room temperature in 5% skim powdered milk in Tris buffer saline (“TBS” 

0.09% NaCl, 0.01% Tween 20, 0.1 M Tris-HCl pH 7.5). The membrane was then probed 

overnight at 4°C with the primary antibody diluted in 0.5% skim powdered milk in TBS. After 

this incubation, the membrane was washed three times in TBS and probed for 1 h at room 

temperature with the appropriate horseradish peroxidase (HRP) conjugated secondary 

antibody. The signal was detected using LiteAblot kit (Gentaur Cat# EMP10004). 

 

3.10 Extraction of DNA From Purified Viral Particles 

 

Samples (200 µl) were heated for 10 min at 70°C, then incubated for 1 hour at 37°C after 

addition of 400 µl of lysis buffer (10 mM Tris-HCl, 0.1M EDTA, 0.5% SDS pH 8.0). Then, 

proteinase K (100 µg/ml) was added and the incubation continued overnight at 50°C. After 

cooling at room temperature, 1 volume of phenol:chloroform:isoamyl alcohol 25:24:1 (Sigma 

Cat# P3803) was added, and the samples were swirled and centrifuged for 10 min at maximum 

velocity in an Eppendorf Centrifuge 5424. The aqueous phase was collected and 1 volume of 

chloroform was added, swirled and centrifuged again. Two volumes of ethanol and 0.4 

volumes of 5M NaCl were added to the aqueous phase collected, and the tube was swirled 

until the solution was thoroughly mixed. After incubating overnight at -20°C, the samples were 

centrifuged for 10 min at maximum velocity, and the precipitated DNA was washed with 70% 

ethanol, centrifuged and resuspended in 50 µl of milli-Q water. DNA concentration and purity 

were estimated by absorbance at 260 nm and 260/280 ratio respectively.  
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3.11 DNA Electrophoresis 

 

Samples were mixed with loading buffer (0.1% xylene cyanol, 0.1% bromophenol blue, 30% 

glycerol, 10 mM EDTA) and loaded into a 0.8% agarose gel. Electrophoreses were performed at 

80 V for 2 hours in TAE buffer (40 mM Tris-base, 1.14% acetic acid, 1 mM EDTA). DNA was 

visualized with 0.3 µg/ml ethidium bromide. Promega 1 kb ladder (Cat# G5711) and New 

England Biolabs lambda DNA-Hind III digest (Cat# 174N3012S) were used as molecular weight 

markers. 

 

3.12 Viral DNA Detection by Southern Blot 

 

The detection of viral DNA by Southern blot was performed according to the protocol 

recommended by GE Healthcare in its Amersham Hybond-N+ product (nylon membrane), 

specifically the protocol for capillary blotting. DraIII-digested Ad2 ts1 DNA was used as a probe 

after labeling with alkaline phosphatase following the protocol of Amersham Gene Images 

AlkPhos Direct Labelling and Detection System (GE Healthcare Life Sciences Cat# RPN3680). 

This protocol was followed by hybridization, post-hybridization, signal generation and 

detection with CDP-Star (GE Healthcare Life Sciences Cat# RPN3682). 

 

3.13 Conventional Electron Microscopy of Infected Cells 

 

HEK293 cells were grown in a p100 culture plate to 70% confluence, then infected with 

Ad5/FC31 or Ad5GL with MOI = 5. At the desired time post infection, the medium was 

removed and the cells were fixed with 2% glutaraldehyde and 1% tannic acid in 0.4 M HEPES 

pH 7.2 during 1.5 h at room temperature.  All solutions were prepared in buffer 0.4 M HEPES 

pH 7.2 and the washes were done with this solution unless otherwise indicated. The cells were 

collected and centrifuged for 5 min at 4000 rpm. The cross-linking solution was removed and 1 

ml of HEPES was added. When needed, samples were stored at 4°C until further processing. 

When all samples had been fixed, they were washed 3 times with HEPES for 15 min at 4°C and 

centrifuged at 4000 rpm during 5 min. 300 µl of 1% osmium tetroxide and 0.8% potassium 

ferricyanide were added to the samples and incubated for 1 hour at 4°C. After three washes 

with HEPES, 300 µl of 2% uranyl acetate in milli-Q water were added and the samples were 

incubated for 40 min at 4°C, then washed three times with milli-Q water. Dilutions of dry 

acetone SecSol at 50%, 70%, and 90% v/v in water were prepared. Samples were dehydrated 

by sequential incubation with increasing concentrations of acetone SecSol (50%, 70%, 90%, 
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and twice 100% in incubations of 15 min at 4°C). Epon resin was prepared by mixing 4.8 g 812-

resin, 1.9 g DDSA, 3.3 g MNA and 5 drops BDMA (812 Epon Embedding Kit, Electron 

Microscopy Sciences #14120). Samples were incubated overnight in a mix of acetone:Epon 

resin (1:1) at room temperature in an Eppendorf tube rotator. The next day the cells were 

centrifuged (10 min at 8000 rpm), the mix acetone:Epon was removed and new Epon resin was 

added for incubation during 6 hours at room temperature. Then, cells were centrifuged again 

to remove the Epon, fresh resin was added, and embedding proceeded overnight at room 

temperature. A last Epon resin change was done the next day and the cells were transferred to 

beem capsules (that were filled with Epon). Capsules were placed in an incubator during two 

days at 60°C for polymerization. Ultrathin sections (~70nm) were obtained using a Leica EM 

UC6 Ultramicrotome and collected on Formvar-coated nickel grids (200 mesh, 0.25% Formvar). 

The sections were stained with saturated uranyl acetate during 25 min, floated on 4 drops of 

milli-Q water, stained on lead citrate drops during 1 min, and washed in 4 drops of milli-Q 

water. The grids were examined in a JEOL JEM 1230 transmission electron microscope at 

100kV.  

The electron density of viral particles in sections was analyzed using the software package 

XMIPP (32). Image frames (50x50 px) containing single viral particles were extracted from 

micrographs and normalized. The average electron density was calculated within a mask of 

radius 25 px, corresponding to the size of the viral particle. 

 

3.14 Immunofluorescence Microscopy 

 

Cover glasses (diameter: 12 mm) were incubated on poly-L-lysine (Sigma-Aldrich Cat # P4707) 

for 30 min at 37°C, then placed in 24 well culture plates (Thermo Scientific NuncTM Cat# 

142475) and washed with PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4 

pH 7.4 ). HEK293 cells at 70 – 80% confluence were diluted 1:5 in DMEM medium and seeded 

on the cover glasses. After 24 hours, cells were infected with Ad5/FC31 or Ad5GL with MOI = 

50 in inoculums of 200 µl. The infection was synchronized by incubating the cells for 30 min at 

4°C and then 30 min at 37°C. The inoculums were removed and DMEM was added. For BrdU 

labeling, at 18 hpi at 37°C the medium was changed by medium containing 25 µg/ml BrdU (5-

Bromo-2’-deoxyuridine, Sigma Cat#B5002-1G), followed by another change at 25 hpi.  

Incubation with BrdU proceeded at 37°C. 

After the desired post-infection time, the medium was removed and 4% paraformaldehyde in 

PBS was added to the cells during 10 min. After 3 rinses with PBS, cover glasses were 

incubated with a mixture of 0.5% saponin and 10% FBS in PBS for 10 min. Samples were rinsed 
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twice with PBS and incubated with primary antibody (section 3.2) in 0.5% saponin and 2% FBS 

in PBS during 45 min. After three more rinses, incubation with secondary antibodies was 

carried out in darkness. The secondary antibodies (section 3.2) were diluted in 0.5% saponin 

and 2% FBS in PBS. Samples were rinsed 3 times with PBS before adding DAPI (Sigma 

Cat#32670) or Topro-3 (Invitrogen Cat# T3605) for DNA staining (15 min, dilution 1:200 in 

PBS). After a final rinse with PBS, cover glasses were mounted on glass slides using ProLong 

(Invitrogen Cat# P36930) drops (4µl). The antifade reagent was allowed to dry overnight 

before sample observation. All incubations were carried out at room temperature. Images 

were taken using a confocal multispectral Leica TCS SP5 system. 

The following modifications to the protocol described above were applied for anti-BrdU 

labeling: fixed samples were washed three times with saponin 1% in PBS (5 min 3x), then 

subjected to DNA denaturing treatment: 1N HCl during 10 min at 4°C, followed by 2N HCl 

during 10 min at room temperature, and finally 20 min at 37°C.  Borate buffer (4 g NaOH; 23.5 

g borate acid to 500 ml pH 8.2) was added to neutralize during 12 min at room temperature. 

After that, the protocol continued with the block-permeabilization described above, but with 

1% saponin instead of 0.5%. 

For double labeling assays, the primary antibodies were used together in the same incubation 

except for the antibodies against IVa2 and L1 52/55kDa, because the first one had lower 

affinity than the second antibody for its antigen. Therefore, a new modification was used for 

this assay: anti-IVa2 was incubated first, then 4% paraformaldehyde was used to fix the 

antibody during 5 min, and then anti-L1 52/55kDa was added. The secondary antibodies were 

incubated together. Immunofluorescence image analyses were carried out with Image J (137). 

 

          3.15 Immunoelectron Microscopy  

  

BrdU labeling of newly synthesized DNA was carried out as described for immunoflurescence 

(section 4.14), for HEK293 cells grown in p100 culture plates without cover glasses. Infected 

and control cells were fixed with 4% paraformaldehyde in PBS after medium removal. After 

rinsing three times with PBS, glycerol was added drop by drop up to 15% concentration. After 

15 min at 4°C, glycerol was increased to 30%. After 15 more min at 4°C, the cells were 

harvested and centrifuged for 10 min at 5000 rpm. The pellets were placed on small squares 

(0.2 x 0.2 cm) of Whatman paper and frozen by plunge freezing in liquid ethane using a Leica 

CPC plunger. Freeze substitution was carried out in a Leica EM automatic freeze-substitution 

system (AFS). Samples were transferred from liquid nitrogen into capsules precooled in the 

AFS chamber, and then the capsules were filled with 0.5% uranyl acetate in dry methanol 
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SecSol. After 6 hours of incubation at -90°C, the solution was replaced by a new one and 

incubated overnight at the same temperature. These steps were repeated for two more days. 

The last day the system was programmed to increase the temperature to -40°C; this increment 

was done in 7 hours during the night. Samples were rinsed three times (3 x 1 h) with dry 

methanol SecSol, then incubated with methanol: resin 3:1 (1 hour), methanol: resin 1:1 (1 h), 

methanol: resin 1:3 (1 h), resin 100% (15min) and finally resin 100% overnight. On the fifth 

day, the resin was changed twice, once in the morning and once in the afternoon. For 

polymerization, samples were irradiated at -40°C for 48 hours with ultraviolet light, then at 

20°C for 48 hours more. The resin used was Lowicryl HM20, prepared as follows: for 20 g of 

resin, mix 2.98 g crosslinker D, 17.02 g monomer E and 0.1 g initiator C. All solutions or 

materials were cooled in the AFS for 15 min prior to entering in contact with the samples. The 

ultrathin sections were collected in the same way as indicated in section 3.13.  

For immunolabeling, grids carrying freeze-substitution ultrathin sections were placed on TBG 

(30 mM Tris-HCl pH 8, 150 mM NaCl, 0.1% BSA and 1% gelatin) drops with the sections in 

contact with the solution for 10 min, and then incubated with the primary antibody in TBG at 

the required dilution (section 3.2) for 30 min. The grids were washed 3 times with PBS, and 

then floated on 4 TBG drops (5 min per drop).  Gold-conjugated secondary antibodies (section 

3.2) were diluted in TBG, and samples incubated for 30 min. Then, grids were washed 3 times 

with PBS and milli-Q water, and stained in the same way described in section 3.13 except that 

lead citrate was not used.  All incubations were carried out at room temperature.  

 

For anti-BrdU labeling, an additional step was required. Sections were treated with 0.2 mg/ml 

proteinase K (Roche Cat# 3115879) for 15 min at 37°C, then washed with milli-Q water and 

denatured with 2N HCl for 25 min. After several (~4) rinses in milli-Q water, the protocol 

continued with the TBG incubation. To unmask protein VII, sections were floated on three 

drops of DNase buffer (10 mM Tris-HCl pH 8.2, 10 mM NaCl, 5 mM MgCl2) (5 min per drop), 

then incubated with 50 µg/ml DNAse (Sigma Cat# D5025) for 1 hour at 37°C, rinsed in milli-Q 

water and transferred to TBG to start the immunogold labeling protocol. Incubation with the 

anti-VII primary antibody was performed overnight at 4°C. 

 

3.16 Cryo-electron Microscopy and Image Processing 

 

Purified viral particles of Ad5/FC31 (light particles L2 and L3, section 4.2) at initial 

concentration 5.18x1011 vp/ml were concentrated (9 times for L3 and 10 times for L2) by 

spinning at 4°C in an Amicon Ultra centrifugal filter of 100000 MWCO (Millipore 
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Cat#UFC510096), applied to Quantifoil R2/4 300 mesh Cu/Rh glow discharged grids and 

vitrified in liquid ethane using a Leica CPC plunger. Low dose cryo-EM images were acquired on 

a FEI Tecnai FEG200 electron microscope operated at 200 kV using a 4K x 4K Eagle CCD 

camera, at a nominal magnification of x50000 and a defocus range of 0.5-4 µm (as estimated 

using XMIPP). The camera has a pixel size of 15 µm, giving a nominal sampling rate of 2.16 

Å/px in the sample. 

 

All images were preprocessed using the software package XMIPP (32). Micrographs (889 for 

L2, 580 for L3) were screened for minimal drift and astigmatism, and corrected for the phase 

oscillations of the CTF (phase flip). Only complete particles were manually picked, extracted 

into box frames of 516 px, and normalized. Particle images (11344 for L2, 11962 for L3) were 

scaled down to 256 px frames (4.35 Å/px) for computational efficiency. All 2D and 3D 

classifications and refinements were performed using RELION (133). The 2D classification was 

used to discard low quality particles. The 2D classification was run for 25 iterations, with 100 

classes, with an angular sampling of 10°, and a regularization parameter T =2. The 3D 

classification was run for 50 iterations, with four classes, starting with an angular sampling of 

3.7° and sequentially decreasing to 0.2°, and a regularization parameter T = 4. The initial 

reference for 3D classifications and refinements was a Ad5 density map created from the cryo-

EM high resolution map (PDB: 3IYN (76)) using pdb2mrc (78), and low-pass filtered to 60 Å 

resolution. The class giving the best resolution (containing 6743 particles for L2 and 6679 

particles for L3) was individually refined and used for further analyses.  Reported resolutions 

are based on the gold-standard FSC = 0.143 criterion as implemented in RELION auto-refine 

and post-process routines (24, 134).  

 

Reference density maps for comparison with the two alternative high resolution models for 

mature Ad5 were calculated from the corresponding deposited structures (PDB IDs 3IYN for 

cryo-EM (76) and 4CWU for X-ray crystallography (120)) using pdb2mrc and low-pass filtered 

to the same resolution as the Ad5/FC31 maps. Atomic models were fitted to the experimental 

maps using UCSF Chimera (104), after refining the scale of the experimental map by cross-

correlation with each reference map. Difference maps were calculated by subtracting the Ad5 

map from those of the Ad5/FC31 light particles after filtering all to the same resolution, 

refining the scale of the experimental map as described above, and normalizing. These 

subtractions were calculated, and the corresponding figures were obtained, with UCSF 

Chimera, using the HideDust tool for clarity when required. 
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For comparison with the Ad2 ts1 map, a previously published dataset (100) at 2.8 Å/px was 

reprocessed with RELION auto-refine and post-process procedures. The final 10210 particle 

map (at 7.7 Å gold-standard resolution) was low-pass filtered at 12.3 Å.  The Ad5/FC31 L2 and 

L3 cryo-EM maps are deposited in the Electron Microscopy Data Bank (EMDB, 

http://www.ebi.ac.uk/pdbe/emdb; accession numbers EMD-3003 and EMD-3004). 
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4 Results 

 

 

4.1 Study of Adenovirus Assembly Within the Cell 

 

There is a considerable amount of inmunofluorescence and EM studies on AdV infection 

(section 1.6), but there are few specific studies about the viral particle assembly in the cell. 

Most of the structural studies focus on the replication centers and the nuclear modifications 

induced by AdV at early times post-infection (the first 24 hours). In the present study, the 

packaging factors have been followed at late times of infection. The labeling pattern of these 

factors and the nuclear modifications induced by the wt virus and the delayed packaging 

mutant Ad5/FC31 were compared in an attempt to obtain new information on the packaging 

process.  

 

4.1.1 Characterization of Cellular Modifications Induced by Adenovirus Using 

Electron Microscopy of Epon-Embedded Samples. 

 

The changes in cellular, and particularly, nuclear structure induced by Ad5 wt and Ad5/FC31 at 

late times post-infection (24, 36, 48 and 56 hpi) were analyzed and compared by EM 

observation of thin sections of infected cells embedded in Epon. In general, the same 

modifications reported in the bibliography were found for both wt and Ad5/FC31. In the first 

24 hpi (not shown), lobulations of the nuclear envelope could be observed and the cellular 

DNA was condensed at the periphery of the nucleus. At this time, the nuclei of infected cells 

presented: clear and electron dense inclusions, compact rings, protein crystals (small at this 

time of infection) and virus particles. At 36 hpi, the nucleus occupied a large part of the cell 

(Figure 11 A and H) and the cytoplasm was reduced compared to uninfected cells (Figure 

11M). Compact rings were also observed, some of them looking like typical rings, others 

looking rather like spheres with holes (Figure 11B). At 36 hpi, protein crystals (Figure 11 D, F, I 

and K) and nuclear lobes (Figure 11 G and L) increased in number and size; more viruses could 

be observed in the nucleus (Figure 11 A and H), and even some in the cytoplasm (Figure 11A); 

in the nucleus the virus particles formed close-packed arrays (Figure 11 C and J).  



Results 
 

44 

 

 
 

 

 

 

Figure 11: Cellular modifications induced 
by Ad5 wt and Ad5/FC31 at 36 hpi. 
HEK293 cells infected with a MOI of 5 
and embedded in Epon. A. wt-infected 
cell. B-G: Zoom of dotted areas in (A). H. 
Ad5/FC31-infected cell. I-L: Zoom of 
dotted areas in (H).  M. Mock infected 
cell. Nucleus (N); cytoplasm (C); arrays of 
virus (av); isolated virus (iv); electron-
dense inclusion (ei); compact ring (cr); 
lobes (lo); protein crystal (pc); 
cytoplasmic isolated virus (civ); 
mitochondria (mi). Scale bars: A, H and 
M. 1 µm. B, C, D, E, F, I, J, K and G, L. 500 
nm.  
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At 48 hpi, large protein crystals (up to ~8 µm larger dimension), inclusions, compact rings and 

viral particles could be observed, and the nucleolus appeared more compact (Figure 12B) that 

at early times post-infection. Also, phagocytic vacuoles started to appear. Finally at 56 hpi, 

phagocytic vacuoles were present in both wt and Ad5/FC31, but cellular damage was much 

more evident for wt than for Ad5/FC31 (Figure 12 F and G). Some cells infected with wt were 

completely lysed with only the cytoskeleton remaining (not shown).  In most cells infected with 

wt the nuclear envelope was broken, the cytosol was disorganized and contained abundant 

viral particles (Figure 12F). 

 

Interestingly, apart from the modifications described above, a new structure consisting of dots 

with very high electron density embedded in a high electron dense background was detected 

in infections with Ad5/FC31, and was called “speckled body” (SB) due to its appearance (Figure 

12C-E). The possibility that this structure corresponded to compact nucleolus was ruled out 

because the electron dense dots of SBs are larger (70 ± 11 nm, n=50) than the typical dots of 

nucleolus (eukaryotic ribosomes around 25-30 nm). The size of SB dots is more similar to that 

of the viral particles (Figure 12A, insets). SBs were observed in Ad5/FC31 infected cells from 36 

hpi. At this time of infection many SBs had a lobular, loose organization (Figure 12C), while at 

later times they appeared more compact and circular (~3 µm) (Figure 12 E and G). 

Occasionally, ring shaped SBs were also found (Figure 12D). Extensive search revealed that SBs 

were also present in Ad5 wt infected cells, but their appearance was extremely rare. A 

summary of the cellular modifications induced by both virus types is presented in Table 1. 

 

Table 1: Time of appearance of the main cellular alterations observed after infection of HEK 
293 cells with Ad5 wt or Ad5/FC31 (MOI = 5). 

 Feature  wt Ad5/FC31 

Protein crystals 24hpi 24hpi 

Arrays of virus 24hpi 24hpi 

Lobes 24hpi (few) 24hpi 

Cytoplasmic virus 36hpi 36hpi 

Phagocytic vacuoles 48hpi 48hpi 

Speckled bodies 36hpi 

(Very unusual) 

36hpi 
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Figure 12: Differences in cell modifications induced by Ad5 wt and Ad5/FC31 at very late 
times post-infection. Cells infected with a MOI = 5 and embedded in Epon. A. Ad5/FC31 at 48 
hpi. The insets show zooms in a speckled body (yellow area) and viral particles (purple area). B. 
Nucleolus from cell infected with Ad5 wt at 48 hpi. C. Speckled body, zoom of dotted area in 
(A). D-E. Other speckled bodies found in Ad5/FC31 infections at 36 and 56 hpi respectively. F 
and G. Cells at 56 hpi infected with Ad5 wt and Ad5/FC31 respectively. Green dotted circles 
highlight speckled bodies. Nucleus (N); cytoplasm (C); isolated virus (iv); cytoplasmic isolated 
virus (civ); electron-dense inclusion (ei); lobes (lo); protein crystal (pc); phagocytic vacuoles 
(ph). Scale bars: A. 700 nm. B-E. 500 nm. F-G. 1.5 µm. 
 

In conclusion, the most noticeable differences between wt and Ad5/FC31 regarding 

modifications induced in the cell were found starting at 36 hpi, in agreement with differences 

in the viral cycle and genome packaging previously observed (1). At 48 hpi, the presence of the 

Ad5/FC31 SBs was most noticeable. Further, at 56 hpi cell damage was extensive in wt 

infections. Therefore, subsequent experiments aiming to localize the packaging factors in the 

cells were carried out at 36 or 48 hpi. 
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4.1.2 Localization of Factors Involved in Adenovirus Genome Packaging Using 

Inmunofluorescence Microscopy. 

 

To obtain information on the nuclear region where AdV packaging happens, newly synthesized 

viral DNA and packaging factors IVa2 and L1 52/55 kDa were localized by inmunofluorescence 

microscopy in wt or Ad5/FC31 infected cells at 36 hpi. 

 

To label viral DNA, two doses of BrdU were supplied to infected cells at 18 and 25 hpi (section 

3.14). This strategy ensures that all DNA synthesized at late times post-infection is labeled, and 

that only viral DNA is labeled, since at 18 hpi cellular DNA replication no longer occurs (52). 

Viral DNA label in both Ad5/FC31 and wt showed a diffuse ring pattern (Figure 13A-F). 

Analyzing these rings in orthogonal views, it was found that they had an ellipsoidal shape with 

a maximum axis 6.8 ± 1.8 µm and minimum axis 5.0 ± 1.2 µm (n=40). These rings are similar to 

those previously reported for early replication foci (71). When the patterns of the two types of 

infection were compared, more DNA signal was detected in Ad5/FC31 than in wt infected cells 

(more cells infected with Ad5/FC31 have BrdU signal, Figure 13 B and E). This observation is 

consistent with that reported by Alba, et al. (3), where this mutant had a normal DNA 

replication but its packaging was delayed. The packaging defect would produce the DNA 

accumulations observed in fluorescence microscopy. Occasionally, in Ad5/FC31 infections a 

concentric ring pattern (maximum axis 6.8 ± 1.5 µm and minimum axis 3.7 ± 1.0 µm, n=19 for 

external ring) was also observed (Figure 13 G and H). This kind of pattern has previously been 

described by Pombo et al (1994) at early times post-infection and also corresponds to 

replication centers.  
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Figure 13: Viral DNA in cells infected with Adenovirus (MOI=50) at 36 hpi. Confocal planes 
(0.38 µm thick for wt and 0.29 µm thick for Ad5/FC31) showing representative labeling pattern 
in Ad5 wt (A-C) and Ad5/FC31 (D-F). G-H. Extreme DNA accumulation in an Ad5/FC31 infected 
cell showing a concentric ring pattern. A, D and G. GFP signal (green) indicates the expression 
of early viral genes in these cells. The signal in (D and G) is low because the acid treatment 
required for BrdU labeling affects GFP (section 3.14). In (A) anti-GFP was used to increase the 
signal. B-C, E-F and H. BrdU signal (red). C and F. Zoom in areas highlighted with white squares 
in (B) and (E), respectively. Scale bars: A-B and D-E. 20 µm. C and F. 5 µm. G-H.  10 µm. 
 

In AdV replication centers, dsDNA produced by continuous replication accumulates around 

ssDNA areas with little replication activity (section 1.6). The diffuse ring BrdU label at late 

times post-infection could correspond to a center of replication and accumulation of viral 

dsDNA. In that case the area labeled with BrdU would be the peripheral replicative zone (PRZ) 

and the unlabeled areas in the wt and Ad5/FC31 pattern (inside the ring) could correspond to 

the ssDNA accumulation site (DAS) where the replication is not continuous and the ssDNA is 

accumulated.  To test this hypothesis, the presence of AdV ssDNA binding protein (DBP) was 

investigated using double labeling against BrdU and DBP.  
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Unlike the sharp rings described for DBP at early times post-infection (20 hpi) (107) (Figure 5, 

inset), at 36 hpi the DBP labeling pattern is diffuse. However there are zones where this 

protein is accumulated (Figure 14). These accumulations are adjacent to or surrounded by 

BrdU-labeled zones, and sometimes they overlap, possibly indicating ssDNA engaged in active 

replication. The DBP regions (without BrdU signal) would correspond to ssDNA synthesized at 

early times post-infection before addition of the first BrdU dose. Therefore, these areas could 

be called early ssDNA accumulation site (EDAS), and from now on the term EDAS will be used 

instead of DAS. These results support the idea that BrdU labeling is revealing AdV replication 

centers at late times post-infection. 

 

 
Figure 14: Localization of Viral dsDNA and ssDNA in replication centers. Confocal plane (0.29 
µm thick) showing a HEK 293 cell infected with Ad5/FC31 (MOI = 50, 36 hpi) and labeled with 
anti-BrdU and anti-DBP. Scale bar for first image: 10 µm; last image: 5 µm. The dashed white 
contour indicates the periphery of the infected cell. 
 

Next, the localization of the packaging proteins IVa2 and L1 52/55 kDa was analyzed. No 

difference was observed between wt and Ad5/FC31 infections for the L1 52/55 kDa and IVa2 

inmunofluorescence labeling pattern. In all cases, these proteins showed diffuse signal around 

unlabeled areas in the nucleus. Also, both IVa2 and L1 52/55 kDa appeared in amorphous 

clusters and small rings (maximum axis 1.6 ± 0.3 µm and minimum axis 1.2 ± 0.3 µm, n=37) 

(Figure 15), although label in clusters for IVa2 was less noticeable than for L1 52/55 kDa. In 

general, label for IVa2 was weak, perhaps correlating with the low copy number of the protein 

in the virions, or with limited antibody reactivity.  
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Figure 15: Adenovirus infected cells (MOI=50, 36hpi) labeled with antibodies for L1 52/55 
kDa and IVa2. Rings are indicated with white arrows, and clusters are indicated with blue 
arrows on confocal planes 0.29 µm thick. Scale bar 4 µm. The dashed white contours indicate 
the periphery of the infected cell. 
 
In view of the similar pattern presented by IVa2 and L1 52/55 kDa, double labeling was carried 

out to determine if they colocalize. This assay revealed that both proteins were present in the 

small rings (Figure 16 D, H and L) while they occasionally appeared together in amorphous 

clusters (Figure 16 B, C, F, G, J and K). It must be noted that the size difference and lack of 

BrdU label rule out the possibility that the small rings correspond to replication centers. 
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Figure 16: Double labeling against L1 52/55 kDa and IVa2 in Ad5 wt infected cells (MOI=50, 
36hpi). A, E and I. Confocal plane (0.21 µm thick) showing a general view in a sample labeled 
with anti-L1 52/55 kDa, anti-IVa2 and simultaneous display of label for both proteins, 
respectively. Bar: 5 µm. B-D, F-H and J-L. Zoom of dotted areas in A, E and I respectively. Bar: 2 
µm. Arrows point to label in clusters. 
 

The diffuse label around nuclear unlabeled zones for L1 52/55 kDa and IVa2 was reminiscent of 

the BrdU labeling in the PRZ of replication centers (Figure 13). To test the possibility that the 

packaging proteins were located at the PRZs, double labeling assays for viral DNA and L1 

52/55kDa or IVa2 were carried out.  In these experiments, no label for IVa2 was observed, 

indicating that the reactivity of the anti-IVa2 is sensitive to the acid treatment required to label 

DNA with BrdU (section 3.14). For both viruses, L1 52/55kDa was detected in the periphery of 

replication centers labeled with BrdU (Figure 17), where both signals intermingled. There was 

no label for L1 52/55 kDa in the BrdU-unlabeled areas corresponding to the EDAS. The 

presence of L1 52/55 kDa in the PRZ could indicate that DNA packaging occurs in this area.  
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Figure 17: Double labeling against viral DNA and L1 52/55 kDa in Ad5 wt and Ad5/FC31 
infected cells (MOI 50, 36 hpi). A-F Cell infected with wt (confocal plane 0.29 µm thick). D-F. 
Zoom of the dotted areas in A, B and C. G-L. Cell infected with Ad5/FC31 (confocal plane 0.21 
µm thick) J-L.  Zoom of the dotted areas in G, H and I respectively. Scale bars 3 µm. 
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4.1.3 Possible Localization of Adenovirus PRZs in Conventional EM of Infected 

Cells 

 

To obtain more detail on the possible packaging site of AdV in infected cells, EM was used. 

First, sections from Epon embedded cells were analyzed for regions in the nucleus that could 

correspond to PRZs. Previous EM studies (12, 109, 114-116) indicated that PRZs were ring-

shaped moderately electro-dense regions, surrounding electro-clear areas corresponding to 

EDAS. Also, it had been described that PRZs contained electron-opaque grains (EOGs) and viral 

particles. Regions corresponding to these characteristics, and in a size range compatible with 

that of PRZs at late times post-infection (as observed by the IF assays presented here) were 

identified in both Ad5 wt and Ad5/FC31 infected cells (Figure 18). Interestingly, it was 

observed from 36 hpi that EOGs seemed to originate from loose electron-dense material, 

which was tentatively called DNA bundle because of its texture (Figure 18 G). 
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Figure 18: Possible AdV replication centers at late times post-infection observed in Epon 
sections. Cellular sections infected with Ad5 wt (A-C) and Ad5/FC31 (D-G) at 36 hpi (MOI = 5). 
B and E. Red and green contours indicate the possible PRZ (red) and EDAS (green) regions. The 
contour colors are chosen for comparison with the BrdU/DBP double labeling shown in Fig. 14. 
C and F.  Zoom of the dotted areas in A and D respectively. White arrows indicate EOGs. G. 
Section of a cell infected with Ad5/FC31 at 48 hpi (MOI = 5). The EOGs are in direct contact 
with loose electron-dense material which could be DNA by its texture (DNA bundles, b). 
Numerous viral particles are also present. Nucleus (N); cytoplasm (C); lobes (lo); electron-
opaque grains (eogs); cluster of interchromatin granules (ig). A-B and D-E Scale bar 1 µm. C, F 
and G. Scale bar 500 nm. 
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4.1.4 Localization of Factors Involved in Adenovirus Genome Packaging Using 

Immuno-Electron Microscopy on Freeze-Substituted Samples. 

 

To corroborate the identity of the possible PRZs, infected cells were treated with BrdU and 

processed for immuno-EM by freeze substitution (FS), to preserve both structure and 

immunoreactivity. In FS samples, the possible PRZs and EDAS regions were identified on the 

basis of their electron-density and the presence of EOGs and viral particles (Figure 19A-B and 

E-F, red and green contours indicate PRZ and EDAS regions respectively). Label for BrdU was 

specifically found in the possible PRZ area confirming its identity (Figure 19 B and F). Label in 

the PRZ was frequently associated to full particles (virions) (Figure 19 B and G, arrows), EOGs 

(Figure 19 D and H) and the loose electro-dense material (“bundles”, labeled with b in Figure 

19 B, C, F and G), confirming that they contained viral DNA. The different electron density 

levels of these structures could indicate different degrees of DNA condensation, from most 

relaxed (bundles) to most compact (virions and EOGs). The signal of BrdU in EOGs indicated 

the presence of viral DNA, and not only RNA as it had been reported by other studies (111) 

(section 1.6). The observed EOGs had various sizes but they were generally larger than the viral 

particles. No significant BrdU label was observed outside the viral replication center or in the 

cytosol. The electro clear area proposed to be the EDAS showed weak label (Figure 19 B and 

F), in agreement with the IF results and previous reports indicating low replicative activity in 

this region. Labeling with anti-DBP antibody was unsuccessful, suggesting that even under FS 

conditions the reactivity of the DBP epitopes was not preserved. 
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Figure 19: Localization of newly synthesized viral DNA in infected cells processed by freeze-
substitution. Viral DNA replication and accumulation centers labeled with anti-BrdU and 15 
nm gold particles in HEK293 cells infected with Ad5 wt (A-D) and Ad5/FC31 (E-H) (MOI=50, 48 
hpi). Cellular sections treated with proteinase K before immuno-labeling. A and E show low 
magnification views of replication centers with the EDAS area (electro-clear) highlighted in 
green and the PRZ in red. B and F. Zoom of highlighted areas in (A) and (E) respectively. C and 
G. Details of other PRZs showing BrdU signal on bundles, indicating that they contain viral 
DNA.  D and H. EOGs produced by Ad5 wt and Ad5/FC31 respectively. Scale bars: 1 µm (A and 
E); 0.4 µm (B and F); 200 nm (C and G) and 100 nm (D and H). Nucleus (N); cytoplasm (C); 
isolated virus particles (iv); DNA bundles (b); nucleoplasm (np). Arrowheads indicate viral 
particles with BrdU signal. 
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Next, the localization of packaging protein L1 52/55 kDa was analyzed. Scattered label for this 

protein was observed throughout the infected nuclei, including the PRZ (Figure 20 A and B). 

However, very few gold particles were observed in the EDAS, supporting the specificity of the 

label. It is interesting to highlight that the L1 52/55 kDa signal in the PRZ is usually associated 

to the electro-dense material present in this area (EOGs and the bundles previously described 

for BrdU labeling, Figure 20 A-B and Figure 21 F and L). Sections labeled for L1 52/55 kDa were 

also scanned for substructures outside the PRZ that could correspond to the clusters and rings 

observed by IF (Figure 15). Very abundant label was found in electron dense, smooth 

inclusions (Figure 21 A and G), which by size (diameter 1.1 µm ± 0.4 µm, n=16) and amount of 

label could correspond to the clusters observed by IF. No label was detected in ring-like 

structures, even in compact rings (Figure 21 B and H), which were the obvious candidates by 

both shape and size. As expected, L1 52/55 kDa was detected in viral particles, particularly in 

those with lower electron density which probably have not completed packaging (Figure 21 C-

D and I-J). Label in viral particles sometimes presented an arch pattern suggesting a shell of 

this protein inside the capsid. These observations support the idea of two pools of L1 52/55 

kDa protein during assembly (82), one binding to the viral DNA (signal in bundles and EOGs) 

and another binding to capsid proteins (signal in electro clear capsids). Interestingly, groups of 

gold particles also forming little arches were found near the PRZs (Figure 21 E and K), 

suggesting L1 52/55 kDa shell fragments on their way to assemble with capsid proteins. This 

interpretation would be supported by the previously reported homo-oligomerization capacity 

of L1 52/55 kDa (99). Another interesting observation is the arch pattern present in EOGs 

(Figure 21 F and L), suggesting the formation of an L1 52/55 kDa shell on the electron dense 

material they contain. Since L1 52/55 kDa has been shown to bind to the packaging signal in 

the viral DNA in vivo, this observation supports the hypothesis that EOGs could be DNA 

condensations, specifically viral genomes. 
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Figure 20: Immunolabeling against L1 52/55 kDa protein. HEK 293 cells infected with Ad5 wt 
(A) and Ad5/FC31 (B) (MOI = 50, 48 hpi). Arrows indicate the presence of L1 52/55 kDa in 
EOGs. Nucleoplasm (np); protein crystal (pc); DNA bundles (b). Green area: EDAS; red area: 
PRZ. Scale bar 200 nm.  
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Figure 21: Structures observable in Ad5 wt and Ad5/FC31 infected cells labeled for L1 52/55 
kDa. A and G. Electron dense inclusions. B and H. Compact rings. C and I. viral particles. D and 
J. Zoom on the dotted areas in C and I respectively. E and K. Arch-shaped labels in the 
nucleoplasm close to PRZs. F and L. Electro-opaque grains. Scale bars: 200 nm in A-C and G-I; 
50 nm in E-F and K-L. 
 

The label for packaging protein IVa2 was very similar to that for L1 52/55 kDa, but weaker as 

previously observed in IF. Signal was observed scattered throughout the nucleus, but was 

practically absent from EDAS (Figure 22 A and B). It was most abundant in electron dense 

inclusions (Figure 23 A and E), supporting the hypothesis that these corresponded to clusters 

labeled for IVa2 in IF. Surprisingly, IVa2 was not detected in compact rings (Figure 23 B and F), 

in contradiction with previous findings (80). Therefore, it is not possible at this point to 

correlate the small rings labeled for IVa2 and L1 52/55 kDa in IF with any structure observed by 

immune-EM. IVa2 was not easily detected in viral particles (Figure 23 C-D and G-H); only a few 

capsids had signal. This result is consistent with its low copy number (6-8) and highly localized 

position at a single vertex (26). There would be very little chance of exposing just the adequate 

vertex in a resin section. Finally, signal for IVa2 was observed in the PRZ on electro dense 

material (bundles and some EOGs) (Figure 22 A-B, Figure 23 D and H), again supporting the 

idea that these structures contain viral genomes. 
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Figure 22: Immunolabeling against IVa2 protein. Cellular sections treated with DNase before 
the immuno-labeling in an attempt to unmask IVa2 protein epitopes. A and B. HEK 293 cell 
infected with Ad5 wt and Ad5/FC31, respectively, at 48 hpi. Scale bar 300 nm. Green area: 
EDAS. Red area: PRZ. All arrows indicate the presence of gold particles; closed black arrows 
and black arrowheads specify the presence of IVa2 in DNA bundles (b) and EOG respectively. 
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Figure 23: Immunolabeling against IVa2 protein. Structures produced by Ad5 wt (A-D) and 
Ad5/FC31 (E-H) labeled for IVa2. Cellular sections treated with DNase before the immuno-
labeling in an attempt to unmask IVa2 protein epitopes. A and E. Electron dense inclusions. B 
and F. Compact rings. C and G. Virus particles surrounded by DNA bundles (b). D and H. Zoom 
of the dotted areas in E and I respectively. Arrows and arrowheads indicate the presence of 
IVa2 in viral particles and DNA bundles respectively. Scale bars: A-B and E-F. 300 nm. C and G.  
200 nm. D and H. 100nm. 
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Summarizing, immuno-EM confirmed that the PRZ contained loose bundles of viral DNA 

synthesized after 18 hpi, and both packaging factors L1 52/55 kDa and IVa2. PRZs also 

contained viral particles, and EOGs that by their electron density, texture and label for BrdU 

and packaging proteins are consistent with condensed viral genomes. Further, label for L1 

52/55 kDa protein in EOGs sometimes formed a shell. These results suggest that the PRZ could 

be the location in the nucleus where AdV packaging takes place. To test this hypothesis, 

further experiments were undertaken. 

 

4.1.5 Localization of Adenovirus Structural Proteins Using Immune-Electron 

Microscopy of Freeze-Substituted Samples 

 

To further assess the hypothesis that the PRZ is the AdV assembly zone, the presence of core 

and capsid proteins was analyzed. Protein VII was selected to study its localization as core 

protein. This protein binds to the viral DNA and helps condense it in nucleosome-like 

structures (154). Label for VII was exclusively observed in the PRZ, frequently in EOGs (Figure 

24 A-B and D-E) and also in DNA bundles but in lower amounts (Figure 24F). This result 

corroborates the idea that the bundles and EOGs are viral DNA condensed to different degrees 

by core proteins. Also, protein VII was detected in viral particles (Figure 24 C and F).  

 

An antibody against fiber was used to study the localization of capsid proteins. Analyzing 

capsid protein localization in AdV infected cells is not straightforward, since this virus produces 

a large excess of both hexon and fiber (105, 106). For fiber, this excess production is thought to 

have a role in facilitating virus spread throughout the epithelium (155).  Fiber was detected in 

protein crystals (Figure 25 A and F), as previously shown (41), and in electron-dense inclusions 

(Figure 25 B and G). It is intriguing that fiber is also detected in these inclusions as well as L1 

52/55 kDa and IVa2. This observation could indicate that these inclusions are deposits for 

excess or misfolded viral proteins. This idea is supported by the observation of a similar 

structure produced by the Vaccinia virus E6R mutant  (20). This mutant fails to properly 

package the Vaccinia viroplasm (formed by core wall, lateral body and nucleocapsid proteins) 

into viral membranes, resulting in an accumulation of empty immature virions and large 

aggregates of viroplasm “aggregated virosomes”, which look like the electron dense inclusions 

observed in AdV infections.  It is not clear if the proteins contained in these structures could be 

used later in the AdV assembly or if they are final deposits.   
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Figure 24: Presence of core proteins in the putative AdV assembly zone. DNA replication and 
accumulation center labeled against protein VII in HEK293 cells infected with Ad5 wt or 
Ad5/FC31 (MOI=50) at 48 hpi. Cells were treated with DNase before immuno-labeling to 
unmask VII epitopes. A-C Ad5 wt infected cells. B. Zoom of square area in (A). D-F. Ad5/FC31 
infected cells. E. Zoom of square area in (D). Green area: EDAS; red area: PRZ. White arrows 
indicate signal in viral particles and black arrows indicate signal in DNA bundles. Nucleoplasm 
(np); nucleus (N); cytoplasm (C); chromatin (ch); DNA bundles (b); lobes (lo). Scale bars: A and 
C. 1 µm. B, C, E and D. 0.2 µm. 
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Figure 25: Immunolabeling against fiber protein. A-E and K. HEK 293 cells infected with Ad5 
wt (MOI = 50 at 48 hpi). F-J and L. HEK 293 cells infected with Ad5/FC31 (MOI = 50 at 48 hpi). A 
and F. Protein crystal. B and G. Electron dense inclusions. C and H. Compact rings. D and I. 
Viral particles. A-D and F-I. Scale bar 200 nm. E and J. Electron-opaque grains. Scale bar 50 nm. 
K and L. DNA replication and accumulation center. Scale bar 200 nm. Green area: EDAS. Red 
area: PRZ. Cytoplasm (C); nucleoplasm (np); chromatin (ch); phagocytic vacuoles (ph) and DNA 
bundles (b).  
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Label for fiber was not significant in compact rings (Figure 25 C and H). Low signal was 

observed in viral particles (Figure 25 D and I). Finally, fiber was detected in the PRZ (Figure 25 

K and L), in particular in EOGs (Figure 25 E and J) and DNA bundles (Figure 25 K and L). Only 

weak signal was observed in the EDAS (Figure 25 K and L), supporting the specificity of the 

label. 

 
4.1.6    The Adenovirus Assembly Factory and the Actual Assembly Site. 

 

The presence of core and capsid proteins in the PRZ, together with newly synthesized viral 

DNA and packaging factors, supports the idea that this zone is the AdV assembly site, and not 

only the DNA replication and accumulation zone as previously described (12, 114-116). This 

localization of the AdV assembles site is consistent with the work of Weber, et al. (156), where 

they found that replication and assembly are coupled. Therefore, these processes have to 

happen in the same place: the PRZ. With this in mind, the term “nuclear factory” could be 

applied to this structure, making reference to the factories produced by others viruses. Within 

the AdV factory, the results presented here suggest that the EOGs could be the genome 

condensation/capsid recruitment sites where assembly occurs, because all assembly factors 

are present in this structure (viral DNA, packaging, core and capsid proteins). Also, EOGs are 

frequently observed close to viral particles (Figure 26 A-C), which would support this idea. On 

the other hand, it is important to highlight that the bundles have the same labeling than EOGs, 

therefore it is possible that it is in this structure where AdV assembly occurs. Viral particles are 

also found in the vicinity of the bundles (Figure 26 C). Detailed observation of FS samples in 

search for possible assembly intermediates revealed that half capsids could occasionally be 

observed engulfing viral DNA budding from the loose DNA bundles (Figure 26D), indicating 

that these are indeed the assembly site.  It is interesting to note that finding this kind of 

assembly intermediates or capsid fragments was extremely hard, indicating that assembly is a 

highly cooperative (all or nothing) process in AdV. 

 

Exhaustive examination of all FS samples yielded a possible sequence of events in AdV 

assembly (Figure 27 and 40). First, small condensations of viral DNA protrude from the DNA 

bundle periphery. These condensations are often more electron-dense than the bundle, 

suggesting the condensing action of core protein VII (Figure 27B). We propose that these 

protrusions are budding viral cores. These protrusions, containing one of the two L1 52/55 kDa 

pools (the one bound to the packaging sequence, see section 1.8.2) would be the recruitment 

spot for the other L1 52/55 kDa pool (the one bound to capsid fragments, Figure 40). These 
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capsid fragments would then assemble around the budding core (Figure 27C), and gradually 

grow (Figure 27D) until the complete particle is formed (Figure 27E) and finally detaches from 

the DNA bundle (Figure 27F). Presumably, maturation and L1 52/55 kDa ejection would be 

happening simultaneously with capsid growth (99). The presence of half capsids assembling 

around budding cores would support the model of concerted rather than sequential assembly 

and packaging. 

 

Figure 26: Possible assembly sites within the AdV factory. A-C. Viral particles of Ad5/FC31 
close to EOGs. A Epon section at 56 hpi. B. Zoom of dotted area in (A). C-D. Freeze-substituted 
HEK293 cell infected at 48 hpi. C. labeled for L1 52/55 kDa. EOGs arise from DNA bundles (b). 
D. A blue ring highlights a partially formed capsid bound to a bud in a DNA bundle. Scale bars: 
400 nm (A); 100 nm (C-D). 
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Figure 27: Possible sequence of events in AdV assembly. Freeze-substituted HEK 293 cells 
infected with Ad5/FC31 (MOI=50) at 48 hpi. A-B. L1 52/55 kDa label. C-E. BrdU label. F. No 
label. A. L1 52/55 kDa is accumulated on electron dense areas in the periphery of a DNA 
bundle (b). B. A small condensation arises from the surface of the DNA bundle. C. The capsid 
starts to assemble around the DNA condensation. D. Capsid growth around the budding core. 
E. When the capsid is almost ready the link with the DNA bundle is small. F. The viral particle is 
sealed and separated from the bundle. Scale bar 100 nm. More examples of these events can 
be found in Figure 40. 
 

4.1.7 Electro-Opaque Granules, Speckled Bodies and Empty Capsids as Assembly Dead 

Ends. 

 

EOGs were also observed to arise from the DNA bundles, and were labeled for structural and 

packaging factors, but they adopted variable shapes and sizes different from those expected 

for a viral particle or subassembly (Figure 26C). They can be interpreted as failed assembly 

events, budding cores where association with capsid fragments was unsuccessful.  It is 

interesting to notice that EOGs are more abundant in Ad5/FC31 than in wt factories (Figure 

28), correlating with the packaging defect of the mutant (1). The fact that Ad5/FC31 also 

generates a larger amount of light density particles than wt ((2), section 1.9) suggests that both 

EOGs and genome lacking particles are dead ends in assembly, appearing as a consequence of 

uncoupling between core budding and shell recruiting. 
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Figure 28: EOGs are produced in greater amounts in Ad5/FC31 than Ad5 wt AdV factory. A-D. 
Infected cells (MOI=5) embedded in Epon at 24 hpi. Scale bar 500 nm. A-B. wt. C-D. Ad5/FC31. 
B and D. Zoom of dotted areas in (A) and (C) respectively. White arrows indicate the presence 
of EOGS in the nuclear factory. Viral particles (v). 
 

Apart from the amount of EOGs, the most notable difference found between Ad5/FC31 and wt 

was the presence of SBs in the mutant (section 4.1.1). After having determined that AdV 

assembly occurs in the PRZ, the SBs were reexamined. These structures are often close to or 

adjacent to the PRZ (Figure 12 A and G). Because of their size and texture, the speckles of the 

SBs are reminiscent of viral cores (Figure 12A). Now, after the inmuno-labeling results in 

electron microscopy, the site where the cores are assembled is known. This process occurs in 

the PRZ. Therefore, it is possible that SBs are PRZs containing viral condensed genomes; these 

genomes would not have been packaged due to the Ad5/FC31 mutation. This idea is also 

supported by the observation of some SBs with ring shape (Figure 12D), similar to the PRZ 

shape. To corroborate this idea, the presence of two core components (viral DNA and protein 

VII) in SBs was tested. In the initial immunolabeling experiments, no signal was observed for 

BrdU (viral DNA) and the signal for VII was low (Figure 29A). The possibility that the VII 

epitopes were masked by the tight complex between the condensing protein and the DNA was 

considered. For this reason, a DNase treatment was performed before using the antibody.  This 

treatment increased the signal for VII (Figure 29B), indicating that SBs contain VII but also DNA, 

because DNase treatment was necessary to unmask the VII epitopes. Therefore the SBs 
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contain viral cores. The effect of the DNase treatment indicated DNA presence, but the SBs did 

not have BrdU signal. This result is possible if the DNA in the SBs comes from DNA produced in 

the first 18 hpi prior to incorporation of BrdU. Therefore the cores contained in SBs are early 

cores, which have lost their opportunity to be packaged due to the Ad5/FC31 mutation that 

interferes with the packaging proteins and Ψ interaction. It can then be proposed that SBs are 

early collapsed PRZs, which have suffered extreme condensation producing these compact 

structures.  

 

Figure 29: Labeling with anti-VII in SBs produced by Ad5/FC31. A. Label without DNase 
treatment. B. Label after DNase treatment. Scale bar 300 nm.  
 

Antibodies against L1 52/55 kDa and fiber sometimes labeled the SBs but this labeling was not 

significant because the signal was similar to the background (not shown). 

 

  



Results 
 

70 

 

4.2 Study of Incomplete Particles Produced by Ad5/FC31 

 

During AdV purification in CsCl gradients it is common to observe two bands, one heavy band 

(high density) which contains mature particles and another one with lower density, light band, 

which contains particles lacking viral genome. Studies on this kind of particles (section 1.8.3) 

(17, 29, 64, 144, 145, 160) suggested that light particles are assembly intermediates. However, 

other studies indicated that perhaps these particles are defective assembly products (59, 68). 

There is no structural information on wt light particles, as they are often heterogeneous and 

low amounts are produced. The only structural study was done by Cheng, et al. (25) on bovine 

AdV (BAdV3) light particles, but the results were unclear because in the BAdV3 purification no 

heavy band was obtained. Therefore the analyzed particles could be degradation products. 

Also, no density was assigned to L1 52/55 kDa, which is present in high copy number in the 

light particles.  

 

In the first part of this thesis (section 4.1.7), it was suggested that light particles were dead end 

products, produced by a decoupling in the capsid and core assembly pathways. This idea is 

supported by the higher amount of light particles present in Ad5/FC31 purifications, with 

respect to the Ad5 wt ones (2). This high amount of light particles could be exploited for 

structural studies. Light density particles of Ad5/FC31 produced at 56 hpi were purified in two 

consecutive CsCl gradients. After centrifugation in a first CsCl gradient, two bands were 

obtained (light and heavy band) (Figure 30A). For Ad5/FC31, the concentration of viral 

particles (as estimated by intrinsic fluorescence) was 2x1012 vp/ml for the light band, and 

4.8x1011 vp/ml for the heavy band. For Ad5 wt the concentration of light and heavy bands was 

1.4x1011 and 1.5x1012 vp/ml respectively. In a second gradient, the light band separated into 

three bands (L1, L2 and L3), as expected (2) (Figure 30B).  However, band L1 was found to have 

little reproducibility, as its composition varied between purifications, and was not further 

analyzed. Bands L2 and L3 have very close buoyant density, 1.26 and 1.28 g/ml respectively 

(1.33 g/ml for the heavy band). These bands contained approximately 1x1012 viral particles 

(vp)/ml (section 3.4). 
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Figure 30: Purification of Ad5/FC31 light particles by double CsCl gradient centrifugaton. (A) 
The result of the first gradient is shown for Ad5 wt and the Ad5/FC31 mutant, as indicated. 
Ad5 wt purified at 36 hpi; Ad5/FC31 purified at 56 hpi. L: light density band; H: high density 
band. (B) Result of the second CsCl gradient centrifugation for the Ad5/FC31 heavy (H) and 
light bands. The light band from the first gradient separates into three distinct bands (L1 to L3) 
in the second one. 
 

4.2.1  Ad5/FC31 Light Particles Are Not Artefacts Produced During the Purification 

 

It is widely accepted that AdV light particles are assembly intermediates because they appear 

earlier than heavy particles (144), contain protein precursors (64, 160) and do not have DNA or 

only fragments (17, 29, 145, 160). However, Edvardsson, et al. (36) demonstrated that cores 

were released from light density particles, suggesting that they could be artefacts produced by 

degradation during the purification. To examine the possibility that the particles in the 

Ad5/FC31 L2 and L3 bands were artifacts, we obtained ultrathin sections of infected cells and 

measured the average electron density of viral particles present in the nucleus (section 3.13) at 

late times post-infection. This analysis indicated that capsids with electro-clear interior exist in 

both Ad5 wt and Ad5/FC31 infected cells, but the proportion of electro-clear particles is higher 

in Ad5/FC31 (Figure 31). That is, a larger amount of viral particles lacking the genome is 

already present in the Ad5/FC31 infected cell, and therefore L2 and L3 particles are genuine 

assembly products, and not purification artifacts. 
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Figure 31: Analysis of particle electron-density in infected cells indicates that Ad5/FC31 L2 
and L3 particles are not purification artifacts. Viral particle arrays in ultrathin sections of 
Epon-embedded HEK293 cells infected with Ad5 wt (A) or Ad5/FC31 virus (B) at 36 and 56 hpi 
respectively. The proportion of DNA-containing, electron dense (dark) particles is larger in (A) 
than in (B). The bar represents 250 nm. (C) Histogram quantifying percentage of viral particles 
vs. electron density level at 48 hpi. While in Ad5 wt there is a clearly dominant electron-dense 
population, for Ad5/FC31 the histogram shows more populated electro-clear (low pixel 
density) bins corresponding to light, genome lacking particles. 
 

4.2.2   Molecular Characterization of Viral Particles in Ad5/FC31 L2 and L3. 

 

Denaturing protein electrophoresis and Western blot assays were carried out to characterize 

and compare the protein content of Ad5/FC31 L2 and L3 bands with light and heavy bands of 

wt and Ad2 ts1 (section 3.1), a thermosensitive mutant producing only young virions which 

contains the precursor version of all AVP targets (section 1.5). These assays showed that L2 

and L3 particles contain the packaging/scaffold protein L1 52/55k in two different stages of 

proteolytic maturation (Figure 32 A and B). In both cases, bands corresponding to the full 
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length protein and some proteolytic fragments were present. However, in L2 the full length 

species was clearly the most abundant, while in L3 up to three different proteolysis products 

were observed, in larger amounts than the full length protein. Similarly, L2 contained only the 

precursor version of polypeptide VI (pVI), while L3 contained both the mature version (VI) and 

the maturation intermediate iVI, generated when pVI is cleaved at only one of two possible 

sites (46). These results indicate that L2 and L3 represent two different stages of the AdV 

proteolytic maturation, with L3 being more processed than L2. Both L2 and L3 contained the 

putative packaging ATPase IVa2, but they lacked core protein V.  

 

The lack of V (a core protein) in Ad5/FC31 L2 and L3 bands would indicate that these particles 

do not have DNA. DNA extractions from 1.5x1011 (Ad5/FC31 L2 or L3) or 3.6x1010 (Ad5/FC31 

heavy) particles (section 3.10) were performed to assess this point. DNA concentration 

estimated by absorbance at 260 nm indicated a total mass of extracted DNA of 110 ng for 

Ad5/FC31 L2, 500 ng for Ad5/FC31 L3, and 985 ng for Ad5/FC31 heavy particles. However, 

260/280 absorbance ratios (0.91 for L2, 1.38 for L3 and 1.7 for heavy particles) suggested that 

the real amount of DNA extracted from the light particles was lower. This aspect was 

confirmed by electrophoresis of the purified DNA in 0.8% agarose gels (Figure 32C). Volumes 

loaded were 25 µl for L2 and L3 (the maximum well capacity), and 7.9 µl for heavy particles. 

Although these volumes contained nominal DNA amounts of 55, 250 and 150 ng for L2, L3 and 

heavy particles respectively, no detectable bands were observed for L2, and only a weak band 

in L3. The viral origin of this band was corroborated by southern blot (Figure 32C) (section 

3.12). 

 

The AdV maturation protease is inactive in the absence of DNA (13, 46, 84, 85, 88). Therefore, 

the fact that L2 and L3 particles have undergone part of the maturation cleavages but are 

devoid of genome indicates that packaging must have started, but not succeeded. It is possible 

that L2 and L3 particles have lost their partially encapsidated genomes due to inefficient 

tethering of the DNA to the packaging proteins, caused by the exogenous sequences flanking 

the packaging signal in Ad5/FC31. Since L3 particles have undergone more extensive 

proteolytic processing than L2 (Figure 32 A and B), it follows that they retained their genomes 

for a longer time (more efficiently) than the L2 particles. Therefore, Ad5/FC31 L2 and L3 

particles are not assembly intermediates but abortive assembly products where packaging and 

maturation were truncated at different stages of the process. 
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Figure 32: Molecular characterization of Ad5/FC31 light particles. (A) Silver-stained 
denaturing electrophoresis showing the proteins present in L2, L3 and heavy (H, mature 
virions) Ad5/FC31 particles purified at 56 hpi. (B) Purified viral particles analyzed by Western 
blot against selected AdV proteins. Particles from the light and heavy CsCl gradient bands of 
Ad5 wt, Ad5/FC31, and Ad2 ts1, were probed with the indicated antibodies. Similar amounts of 
viral particles (~6x109 vp, as estimated by the intensity of the hexon band in silver stained gels) 
were loaded in each well. In the Western blot for L1 52/55k, the L3 lane is shown with two 
different exposures (L3 and L3*) for better appreciation of the different bands. Signal for a 
previously described short isoform of the putative packaging ATPase IVa2 is also observed in 
some cases, most notably in the Ad5/FC31 L2 particles (98). (C) Analysis of DNA extracted from 
purified Ad5/FC31 light (L2 and L3) and heavy particles, as indicated. A non-denaturing 
electrophoresis in a 0.8% agarose gel (left) and a Southern blot probed with digested viral 
genomes of Ad2 ts1 (right) are shown. A star (*) indicates the position of the 35 kpb viral 
genome; arrows indicate a fragment between 2.5 and 2 kbp. SphI: Ad2 ts1 genome digested 
with SphI enzyme. M. 1 kb DNA ladder (section 3.11) 
 

4.2.3 Structure of Ad5/FC31 L2 and L3 Particles. 

 

L2 and L3 particles were examined by conventional negative staining electron microscopy (see 

section 3.8) (Figure 33A). L2 particles presented the typical aspect of AdV light particles, with a 

dark center indicating that the staining agent penetrates the protein shell and fills the absent 

core space (28, 93, 163). On the contrary, L3 particles were indistinguishable from heavy 

particles in spite of lacking viral genome and associated core proteins. This observation 

indicates that these capsids are sealed and the staining agent cannot penetrate. Cryo-EM 

images (Figure 33B) showed that, in agreement with the negative staining observations, some 

L2 particles seemed to lack capsid fragments, while L3 particles in general looked intact. The 

Ad5/FC31 L3 genome-less, structurally complete capsids would be the first authentic AdV 

virus-like particles (VLPs) described, and as such an ideal candidate for the development of 

epitope display-based vaccines with low biosafety hurdles. In addition, the fact that sealed 

genome-less particles can exist corroborates the idea that they are assembly dead ends, 

because no DNA translocation into the capsid could occur after sealing. Cryo-EM 3D maps for 
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the Ad5/FC31 light particles were obtained at 12.3 Å resolution for L2 and 12.5 Å for L31 

(Figure 35C) and are analyzed in the next sections. They also corroborated the structural 

integrity of the L3 particles (Figure 41) 

 

 

 

Figure 33: Structural characterization of Ad5/FC31 L2 and L3 particles. (A) Negative staining 
EM images showing the overall structure of Ad5/FC31 L2, L3 and heavy particles. The bar 
represents 100 nm. (B) Representative cryo-EM micrographs of Ad5/FC31 L2, L3 and heavy 
particles. The bar represents 100 nm. In L2, a particle with a continuous layer of internal 
density is indicated with a white arrow, and disrupted particles are indicated with black 
arrows.  
 

 

 

 

 

 

 

 

 

1Image processing was carried out by Dr. Carmen San Martín. 
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4.2.4 Comparing the Structures of Ad5/FC31 Light Particles and the Two 

Alternative Models for Mature Ad5. 

 

The structure of the icosahedral Ad5 capsid was solved at high resolution (~3.5 Å) by both X-

ray crystallography and cryo-EM (76, 119). However the location of some of the minor coat 

proteins is still a subject of debate (19, 120) (section 1.3.1). One issue is the location of 

polypeptide IIIa. In the cryo-EM study, polypeptide IIIa is assigned to a pinwheel feature 

located beneath the vertices, in association with polypeptide VIII (76) (Figure 34A). An internal 

location for IIIa is also supported by other structural studies (129, 131, 132, 135); biochemical 

evidence indicating that IIIa interacts with the genome-bound maturation protease and the 

genome itself (13, 82); and the observation that IIIa is released together with other internal 

vertex components in the early stages of virus entry (49). In the X-ray study however, 

polypeptide IIIa is assigned to a 4-helix bundle located on the outer surface of the capsid, at 

the icosahedral edges (120) (Figure 2). This feature had been assigned to the C-terminal 

domain of polypeptide IX in the cryo-EM high resolution analysis (76) and previous peptide 

mapping studies (39). In turn, according to the latest X-ray model, the pinwheel feature under 

the vertices would be composed by shell proteins VI and VIII, and core polypeptide V (120) 

(Figure 34A). 

 

Since Ad5/FC31 L2 and L3 particles lack polypeptide V (Figure 32B), comparing their cryo-EM 

maps with the X-ray and cryo-EM models could help settle the current controversy between 

them. Accordingly, both models were fitted into the L2 and L3 maps and the pinwheel region 

was analyzed.  In the X-ray model (PDB ID 4CWU) (120), 72 of the 368 residues in protein V 

were traced in two fragments (208-219 and 236-295). A short helix formed by the smaller 

fragment, together with residues 236 to 273, form a more or less compact, globular domain, 

while the rest of the traced residues adopt an extended structure. Fitting the X-ray model into 

the L2 and L3 cryo-EM maps showed that only a part of the extended arm (residues 273-285) 

protrudes from the density of L2 and L3 maps; while the globular domain is completely 

covered by it (Figure 34B). Therefore, more than 80% of the traced region of polypeptide V is 

covered by density in maps of particles lacking this protein. As a control, the pinwheel region 

of the Ad2 ts1 mutant, which contains protein V, was also analyzed. The fitting indicated the 

same results as in Ad5/FC31 L2 and L3 (Figure 34B). These results provide evidence to support 

the cryo-EM model and reject the assignation of protein V in the pinwheel proposed by the X-

ray model. Accordingly, the cryo-EM model will be used for interpretation of the L2 and L3 

maps in the rest of the sections. 
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 Figure 34: Comparison of L2 and L3 particles lacking polypeptide V with the two available 
models for the full Ad5 virion. (A) Ribbon representation of the proteins assigned to the 
pinwheel feature located beneath the vertex region in the cryo-EM (EM, PDB ID: 3IYN) and X-
ray (XR, PDB ID: 4CWU) models of full, mature Ad5. Polypeptide IIIa is depicted in yellow, V in 
green, VI in red, and VIII in orange. (B) The pinwheel proteins from the cryo-EM or X-ray Ad5 
model are shown fitted into the Ad5/FC31 L2 and L3 cryo-EM maps, as indicated. For 
comparison, atomic models were also fitted to a previously published cryo-EM map of Ad2 ts1 
mutant (100), filtered to the same resolution as the Ad5/FC31 light particle maps. This mutant, 
stalled at the immature state, contains the fully packaged genome and core proteins, including 
V. The view is from inside the capsid, along a 5-fold symmetry axis. Most of the polypeptide V 
residues modeled in the X-ray study (except those in the stretch limited by two arrowheads, 
residues 273-285) are well covered by density in the cryo-EM maps of particles lacking this 
protein. The cryo-EM maps (in semi-transparent gray) are contoured at 1.4σ above the average 
density (1.46σ for ts1). The position of the 5-fold axis is indicated by a black pentagon. The bar 
represents 50 Å. 
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4.2.5 Differences between Mature Ad5 and Ad5/FC31 Incomplete Particles 

 

Cryo-EM images showed that the Ad5/FC31 L2 and L3 particles contained some heterogeneous 

material inside the capsids, in spite of these particles lacking the genome and core proteins 

(Figure 33B). In L2, the contents tended to be close to the inner capsid surface and occasionally 

appeared as a continuous layer (Figure 33B, white arrow). In the cryo-EM reconstructions, 

these contents appeared as a weak density layer inside the capsid shell (Figure 35). The layer 

density was weak but stronger than noise, consistent with contents heterogeneous and 

disordered. Radial average profiles of the 3D maps (Figure 35B) indicated that in L2 the 

internal density was stronger directly beneath the capsid (between 220 and 320 Å radii). 

Conversely, in L3 the shell adjacent to the capsid presented a density minimum, while the 

strongest gray values for the disordered contents were found at lower radii (170 to 270 Å). 

These results indicate that, although disordered, the material present in L2 has to be 

interacting with the inner capsid surface because it is preferentially located there. This 

interaction would be lost in L3. 

 

 
Figure 35: Cryo-EM reconstructions of Ad5/FC31 L2 and L3 particles. A. Central sections of the 
Ad5/FC31- L2 and L3 maps, as indicated. The view is along a 2-fold symmetry axis. A central 
section of the Ad2 ts1 mutant map (100) is also shown for comparison, with the positions of 
one 5-fold and one 2-fold icosahedral symmetry axes indicated by a white pentagon and white 
oval, respectively. All maps are low-pass filtered at 12.3 Å resolution, and higher density is 
shown in white. The bar represents 200 Å. B. Radial average profiles of the Ad5/FC31-L2 and L3 
maps, compared to that of the full Ad2 ts1 map. C. Resolution curves for all maps used in this 
study. The FSC=0.143 threshold is indicated by a dotted line. 
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Difference maps calculated by subtracting a map created from the Ad5 cryo-EM model 

(76)(filtered at 12.3 Å) from the L2 or L3 maps revealed density present in Ad5/FC31 light 

particles but not in the EM model for mature Ad5 (Figure 36). On the external part of the 

capsid, extra density corresponded to fiber and hexon loops which are not traced in the Ad5 

high resolution model (Figure 36 A-D) because they are flexible. Also, extra densities were 

found inside of L2 and L3 capsids. These densities correspond to the weak shells directly 

observable in the maps (Figure 35). In L2, the extra densities were located on the inner capsid 

surface and they were stronger beneath the vertices (Figure 36A and B, thin arrow; and 36E 

and F). This observation indicates the presence of a disordered material in L2 particles, which 

does not follow icosahedral symmetry but binds preferentially to internal vertex components.  

Also, at the same threshold (1.5σ above the map average density) small densities were 

detectable in the inner hexon cavity and directly on the inner hexon surface (Figure 36B, thick 

arrow and arrowhead respectively). At very low threshold (0.75σ), these densities completely 

filled the hexon cavity and merged with the other described extra densities giving rise to an 80 

nm thick inner shell (Figure 36B, right hand side panel). Unlike in L2, in L3 the region beneath 

vertices lacked extra density (Figure 36C circle; and 36D-G). The other features described for 

L2 were also present in L3; densities in the inner hexon cavity and on the inner hexon surface 

(Figure 36D, thick arrow and arrow head respectively).  As in L2, at low threshold the L3 extra 

densities filled all hexon cavities and connected with each other on the inner capsid surface 

forming a network that contacts hexons at multiple points, but not the pinwheel proteins 

beneath the vertex (Fig. 36 E, F and G). A thicker layer of weak density appears at more 

internal radii, disconnected from the icosahedral shell and the difference densities on the inner 

capsid surface (Figure 36D and F, right hand side panels). 
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Figure 36: Difference maps calculated by subtracting Ad5 from Ad5/FC31-L2 (A and B); and 
Ad5 from Ad5/FC31-L3 (C and D). The Ad5 wt map (gray) is contoured at 1 standard deviation 
above the average map density (1σ), and the difference maps (blue) are contoured at the 
indicated thresholds, chosen to show similar features in L2 and L3. The highest contour levels 
reveal the strongest differences. A and C show the back half of the viral particle cut open for 
visualization of the internal difference density. In B and D only a slab is shown, for further 
clarity. The view is along a 2-fold symmetry axis. Pentagons, triangles and ovals indicate the 
positions of the 5-fold, 3-fold and 2-fold icosahedral symmetry axes. The circle in (C) indicates 
the lack of extra density beneath the vertex in L3; arrowheads indicate extra-densities on the 
inner capsid surface; thick arrows point to extra-density in the entrance of the hexon cavity; 
the thin arrow in (A) points to extra-density beneath the vertex in L2; hl: hexon loops; f: fiber.  
E, F and G show details of the L2 and L3 difference maps, with the various proteins in the Ad5 
wt cryo-EM model in different colors: IIIa in yellow, VIII in orange, penton base in pale pink, 
peripentonal hexons in pale cyan, and other hexons in pale tan. The view in (E) is from inside 
the particle along a 5-fold axis; (F) shows a section across the vertex, and (G) shows a complete 
facet (delineated with a white triangle) as seen from inside the L3 particle. Difference maps in 
(E-G) are contoured at 1.6σ except for panel L3 in (F), which is at 1.2σ. The bar represents 100 
Å for (A-D ), and 50 Å for (E-G). 
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5. Discussion 

 

This thesis addresses the problem of AdV assembly and packaging. In spite of numerous 

previous studies, these mechanisms are still not fully understood. Two models have been 

proposed for AdV assembly and packaging: concerted and sequential (section 1.8). Studying 

Ad5/FC31light particles and comparing Ad5 wt and Ad5/FC31 infected cells, new information 

on this problem has been obtained.  

 

 5.1 Adenovirus Assembly Occurs in the PRZ in a Concerted Manner 

 

In the first part of this thesis, the fate of viral components involved in assembly and packaging 

was followed during the infection.  Immuno-fluorescence and immuno-EM assays indicated 

that both packaging and assembly factors were located in the region previously defined as the 

PRZ (Figure 37A). Viral particles were observed in this area too. These observations indicate 

that the PRZ is the AdV factory. EM images of assembly intermediates in infected cells showed 

that the capsid grows around cores budding from DNA bundles. This kind of images support 

the concerted assembly and packaging model, where capsid and core are assembled 

simultaneously (Figure 37B). 

 

If we compare the Adenovirus factory with other viral factories, it is possible to find some 

similarities with the factories of large dsDNA viruses. In Baculovirus, assembly occurs at the 

edge of the intrastromal spaces (section 1.7), located in the virogenic stroma (VS). In sections 

of Baculovirus infected cells, the VS looks like the DNA bundles observed in AdV infections 

(Figure 7C and D). The Mimivirus factory originates from replication centers, as shown here for 

Adenovirus. Also, the Mimivirus capsid is assembled on the DNA which comes from of the 

replication zone, Starting from a single vertex (90) (Figure 7B).  A similar assembly mechanism 

has been described for African Swine Fever Virus (ASFV) (143). Electron tomography images of 

Mimivirus and ASFV infected cells (90, 143) suggest that viral DNA is engulfed by a partially 

assembled capsid. Here, AdV assembly intermediates have also been observed engulfing the 

DNA (Figure 26D and 27 D-E). Both ASFV and Mimivirus contain a membrane. The open 

membrane, which holds the viral DNA, is progressively coated by the viral capsid to form an 

icosahedral particle. In Adenovirus, there is no internal membrane, but the L1 52/55 kDa 

protein would serve as a base to assemble the capsid around the core, because this protein 

would connect them.   
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It is relevant that the work presented here reveals an assembly mechanism for AdV similar to 

that of Mimivirus or ASFV, since all these viruses are structurally related: they all belong to the 

AdV-PRD1 linage, according to the classification based on the double jellyroll fold of their coat 

proteins (8, 73). The structural similarity found in the viral particles raised the question of a 

common evolution ancestry for these viruses, that would be also reflected in aspects of their 

assembly mechanism. 

 

 

Figure 37: Proposed AdV assembly pathway. A. General scheme of an infected cell showing 
the localization of assembly factors in the structures produced by AdV. Only when the capsid 
and core assembly are correctly coordinate by interaction of the packaging factors L1 52/55 
kDa and IVa2 with the viral genome, the virions are assembled. When there is a defective 
interaction, the capsid and core are assembled independently giving rise to dead end products: 
empty capsids and EOGs/SBs. B. Model for Adenovirus concerted assembly and packaging 
based on the data present in this thesis. 
 
 

5.2 Adenovirus Assembly Requires the Coordination of Two Independent 

Routes 

 

Alba, et al. (2) showed that the Ad5/FC31 mutant has a packaging delay and produces large 

amounts of light particles. In this thesis, the molecular characterization of the Ad5/FC31 light 

particles indicated that they started, but failed to complete packaging. Therefore, the light 

particles produced by Ad5/FC31 are dead ends in this virus morphogenesis. The cell studies 

also revealed that EOGs and SBs are more abundant in Ad5/FC31 than in Ad5 wt infections. All 
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together, the results presented are consistent with an assembly process with two independent 

routes (Figure 37A): one for capsids, and another one for cores. Only when both pathways are 

coordinated in time and space the viral particles are produced. Otherwise, dead ends are 

generated. In the case of Ad5/FC31 there is a decoupling of these pathways. 

 

Both SBs and EOGs contain viral DNA and core proteins, and are more condensed than the 

DNA bundles; these observations suggest that they would be dead end products of the core 

assembly pathway. Inmuno-EM assays show that EOGs and SBs have a similar composition. It is 

possible that both structures share a common origin, but have a different development grade. 

EOGs could be the precursors of speckles in the SBs. This idea is supported by EM images 

where some SBs contain elongated speckles similar in shape to EOGs (Figure 29), and could 

explain the presence of some SBs in wt. In general, the incorrect coupling of the core and 

capsid assembly pathways would produce EOGs in both wt and Ad5/FC31; and these 

structures contained in PRZs would be condensing more with time to generate SBs. Some SBs 

with ring shape (Figure 12D), similar to early PRZs, support this idea. EOGs would be dead end 

products produced regularly in wt infections and only in extreme cases these structures would 

evolve into SBs, as indicated by the fact that few SBs are observed in wt. In Ad5/FC31, these 

extreme cases are more frequent by the mutation present in this virus. The dead end product 

of the capsid pathways would be the light density particles, also more abundant in Ad5/FC31. 

These were analyzed in the second part of this thesis. 

 

5.3 Structures of Incomplete Particles and Implications for Adenovirus 

Assembly 

 

The Ad5/FC31 mutant produces two kinds of light density particles: L2 and L3. They represent 

two different stages of maturation and both lack viral genome. Cryo-EM maps of L2 and L3 

showed extra densities that can be interpreted with the help of the particle molecular 

characterization and previous knowledge. The main difference between L2 and L3 is the 

processing degree of proteins VI and L1 52/55 kDa (figure 32B). L1 52/55 kDa is indispensable 

for packaging (50), can form oligomers (99), and binds to shell (IIIa) (82) and core components 

(VII, dsDNA and AVP)(99, 102, 166). Polypeptide VI binds to hexon and dsDNA (47, 86), and its 

C-terminal peptide is a cofactor for AVP (46).  Studies with the ts147 mutant, which is defective 

for hexon nuclear import, suggested that VI binds to the internal cavity of the hexon trimer 

(161). In the AdV capsid, protein VI is not icosahedrally ordered and only  weak density for 

small fragments of VI has been observed in previous structural studies (76, 120). Both L1 52/55 
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kDa and protein VI are processed by AVP, but the first one suffers a much more drastic 

processing with up to 14 potential cleavages (section 1.5) (Figure 4) which disrupt its links with 

capsid and core (99), leading to its eventual removal from the mature particle. On the other 

hand, polypeptide VI is cleaved only in two sites; removing 33 and 11 residues from its N- and 

C-termini respectively (section 1.5) (Figure 4); and it remains in the mature particle (131, 142). 

The only structural change observed for VI upon maturation is a lower degree of icosahedral 

ordering in the hexon-interacting region (100, 140). 

 

These considerations suggest that the densities in common in the L2 and L3 difference maps 

(within hexon cavities and the network of weak density on the inner hexon surface, Figure 

36A-D) would correspond to polypeptide VI (Figure 38, red symbols). This assignment is 

consistent with previous studies about the localization of short VI fragments within or close to 

the hexon cavity (76, 100, 120, 140). The network in contact with the inner hexon surface 

would correspond to rest of the polypeptide VI, which would not be easily visualized in 3D 

studies of genome-containing particles. The core would produce noise, hiding the signal of this 

network. 

 

The rest of the differences, making up the thick shell connected to the capsid in L2 but 

disconnected in L3 (Figure 36B and D), would correspond to L1 52/55 kDa (Figure 38, blue 

symbols).  The presence of extra density beneath the vertices (Figure 36A-B and E-F) is 

consistent with studies reporting  the interaction of L1 52/55 kDa with IIIa (located beneath 

the vertices) (82), and with IVa2 (reported to be at a single vertex (26, 51)). However, the L2 

images did not indicate the interaction of L1 52/55 kDa at a special single vertex. The 

formation of a thick shell starting from a preferential interaction with the vertices is consistent 

with the L1 52/55k homo-oligomerization properties (99). The results presented here suggest 

that full length L1 52/55 kDa protein is required to establish interactions with IIIa, because the 

extra densities beneath the vertices in L2 are absent in L3, where L1 52/55 kDa is partially 

processed. Also, the ability to oligomerize with itself would be lost when L1 52/55 KDa was 

processed by AVP (99) and therefore the thick shell crumbles away and falls to the center of 

the empty capsid (Figure 38). The L2 and L3 structures provide, for the first time, information 

about the localization of a packaging factor in the AdV capsid. 
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 Figure 38: Schematics depicting the interpretation of the Ad5/FC31 L2 and L3 difference 
maps. Cartoons showing a cross section of the L2 (A) and L3 (B) particles with symbols for 
pVI/VI in red and L1 52/55k in blue, using a darker shade for copies bound to the vertex region 
(IIIa, yellow). 
 

In inmuno-labeling assays on infected cells, L1 51/55 kDa was found in DNA bundles (Figure 

20), budding cores (Figure 27) and in empty and open capsids (Figure 21C-D and I-H; 27B). 

These results agree with the two pool model (section 1.8.2): one pool of packaging proteins in 

the capsid (most likely beneath the vertex) and another one in the core (bound to Ψ). The L1 

52/55 kDa located beneath the vertex could be used as an anchor point for the first interaction 

between capsid and core during assembly, because it is known that this protein can interact 

with itself (99).  In immuno-labeling assays, L1 52/55 kDa also appears as an arch pattern close 

to PRZ (Figure 20B) and inside viral particles (Figure 21D and J). Homo-oligomers of this 

protein would be responsible for this kind of pattern. These observations match with the 

assignation of L1 52/55 kDa to the thick shell located on the inner capsid surface of the L2 

particle map (Figure 38A). These results suggest that during assembly L1 52/55 kDa would 

form a thick shell, preferentially interacting with the vertex proteins, ready to act as a tether 

with the budding core. When the L3 structure, which is more processed than L2, was analyzed, 

this thick shell of L1 52/55 kDa was not found, indicating that when maturation starts L1 52/55 

kDa is cleaved and the tether disappears. The ts1 mutant, which is a maturation mutant, is not 

infectious because the genome cannot be properly uncoated during the infection (92, 100, 

101), showing that the L1 52/55 kDa conectivity is necessary during assembly but has to 

disappear to allow successful virus propagation.  

 

The existence of DNA-lacking and partially processed light particles also indicates that 

maturation and packaging occur simultaneously. DNA is a cofactor for AVP, so partial 
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maturation in these particles must have taken place because in some moment they had viral 

DNA, but lost it before completing packaging/assembly and therefore the maturation stopped. 

 

 

Figure 39: Revised AdV assembly model based on the information provides by incomplete 
particles. The two pools of L1 52/55 kDa interact and bind the nascent core and capsid 
fragment. During the capsid assembly around to core, L1 52/55 kDa hold together the core and 
capsid. Simultaneously, AVP starts the proteolytic process releasing L1 52/55 kDa before the 
capsid is sealed. 
 

The Ad5/FC31 light particle study provides new data to add to the assembly model proposed in 

section 4.1.6 (Figure 38B), where the exact localization and the assembly way (concerted) was 

revealed. With the new results, a more specific model can be proposed (Figure 39): packaging 

proteins IVa2 and L1 52/55 kDa (also possibly L4 22k), located in the DNA bundles, bind to Ψ. 

The viral DNA would start its condensation by the action of core proteins. At the same time, in 

areas close to the PRZ,  full length L1 52/55k would bind to IIIa/IVa2 at one vertex of a nascent 

capsid, growing from there a disordered shell made up by more L1 52/55k molecules.  The two 

pools of L1 52/55 kDa (in capsid and core) interact binding the two pools of IVa2 that would 

help complete the interaction between capsid and core.  The thick L1 52/55K shell would act as 

a velcro, tethering the incoming genome to the nascent capsid. As capsid assembly proceeds 

around the core, proteolytic processing starts releasing L1 52/55k from the capsid shell, the 
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genome and other L1 52/55k molecules. The L1 52/55 kDa fragments would be removed from 

the particle before capsid assembly is completed. 

 
5.4 Origin of Ad5/FC31 Light Particles 

 

With this new model, and taking into account the information obtained from the studies on 

light particles and infected cells, it is possible to propose an origin for the Ad5/FC31 light 

particles. It has been reported that in the first 36 hpi Ad5/FC31 does not produce a clear heavy 

band because a cellular protein interferes with the correct interaction between packaging 

proteins and Ψ (1).  During this time, capsids could not start assembling around DNA because 

Ψ is hidden and there is no interaction between packaging pools of the vertex and core. When 

the unknown cellular protein is depleted, Ψ becomes free and the two pools of packaging 

proteins would be able to interact correctly and bind core and capsid. The union between 

capsid and core by L1 52/55 kDa would be sufficiently stable to allow the beginning of particle 

assembly and maturation. Nevertheless, Ad5/FC31 still produces more empty particles than 

Ad5 wt: L2 and L3 which have started but failed to complete packaging. The reason for this 

behavior could be the presence of the exogenous attB sequence close to Ψ, which could 

destabilize the interactions between capsid and core through IVa2, L4 22 kDa and L1 52/55 

kDa. It is known that IVa2 and L4 22 kDa bind to a specific site of Ψ (165) forming a complex 

together with L1 52/55 kDa. It is possible that this complex requires a specific three-

dimensional structure during assembly. The presence of the attB sequence could prevent the 

formation of this structure on Ψ. The L2 and L3 particles could be produced when the 

interaction between capsid and core is not sufficiently stable throughout assembly. L2 particles 

would lose the interaction with the budding core at earlier times than L3, producing the 

differences found in proteolytic processing. At 56 hpi, both L2 and L3 particles, as well as 

mature virions are present in the infected cell. This means that the instability produced by attB 

is overcome in some cases and mature particles are produced.  

 

 5.5 Other Contributions of this Thesis 

 

The Ad5/FC31 light particle structures helped to solve the controversy regarding location of 

minor coat proteins raised by disagreements in the interpretation of wt Ad5 crystallographic 

and cryo-EM high resolution maps (76, 120). Analyzing the pinwheel feature located beneath 

the vertex region in these particles, which lack core polypeptide V, no density was missing at 

the localization proposed for V in the X-ray model. Therefore, this analysis supports the cryo-
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EM high resolution structure. Also, this work showed for the first time structurally, genome 

less AdV particles: the L3 particles. They are authentic VLPs that could be used as biosafe 

platforms for display of epitopes of biomedical interest.  

 

 5.6 Remaining questions 

 

Although this thesis provides information to support the mechanism and exact localization for 

AdV assembly, some questions remain unanswered. Is there a special vertex in the capsid 

where assembly starts? If the answer were positive: is L1 52/55 kDa bound preferentially to 

this vertex? and IVa2? Why does IVa2 bind ATP if it would not act as a packaging motor? One 

possibility is that IVa2 could be acting by translocating DNA from the bundle to the budding 

core. Why does DNA contained in some L3 particles have a specific size?  A possible answer to 

this question is that the small DNA fragments present in L3 are abortive replication products. If 

replication aborts were packaged, the maturation process would not be complete. AVP travels 

along viral DNA while processing the precursors (molecular-sled model, section 1.5), but in the 

presence of short DNA fragments AVP could not reach all the precursors present in the 

particle.  

 

New experimental work will be required to answer the remaining questions. However, the 

results obtained in the two sections of this research (infected cells and light particles), are 

consistent between them and support a concerted assembly model for Ad5. In this model, L1 

52/55 kDa plays an important role recruiting capsid fragments onto budding cores and keeping 

the interaction between them during particle assembly.   
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6 Conclusions 

 

This thesis addresses the problem of AdV assembly and packaging using two strategies, 

following assembly factors in infected cells, and studying light particles produce by the 

Ad5/FC31 mutant. The main conclusions obtained are: 

 

Concerning AdV assembly in the cell:  

 Tracking assembly factors (viral DNA, packaging, core and capsid proteins) by inmuno-

labeling in fluorescence and electron microscopy reveled that these factors meet in 

the DNA replicative area called PRZ. 

 The presence of assembly intermediates and factors in the PRZ indicates that AdV 

assembly occurs there. Therefore the PRZ is the AdV factory. 

 The AdV assembly mechanism involves two pathways, one for capsid proteins and 

another for viral DNA and core proteins. Viral particles are assembled only when these 

pathways are coupled. 

 When there is a decoupling between the two pathways, abortive structures are 

produced: empty capsids, SBs and EOGS.  The last two are dead end products of the 

core pathway. 

 AdV assembly and packaging are simultaneous, as proposed by the concerted model. 

L1 52/55 kDa binds to viral DNA and capsid proteins (two pools) while the core 

proteins begin to condense the viral genome. Protein L1 52/55 kDa recruits and binds 

capsid fragments to nascent cores, acting as a velcro to keep both joined. Capsid 

assembly proceeds around the core, which is still connected to DNA bundles.    

Concerning the structure of Ad5/FC31 light particles:  

 The structure and composition of two types of light particles (L2 and L3) has been 

characterized, finding that they represent two different stages of the AdV proteolytic 

maturation, with L3 being more processed than L2. Both types of particles lack 

genome and core proteins. 

 The light particles of Ad5/FC31 have started but not completed packaging. Therefore 

these particles would not be assembly intermediates but assembly abortions. 

 L3 particles, which lack the viral genome and are sealed, would be the first authentic 

Ad5 virus-like particles (VLPs). 

 The structures of L2 and L3 particles provide evidence to support the cryo-EM model 

and reject the assignation of protein V in the pinwheel proposed by the X-ray model. 
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 The structures of L2 and L3 particles provide the first information on the localization of 

protein L1 52/55 kDa. The full length protein forms a shell on the inner capsid surface 

with more density beneath the vertices. This shell is disrupted during maturation. Full 

length L1 52/55 kDa preferably located beneath the vertex could engage the virus 

genome during assembly. 
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 Conclusiones 

Esta tesis aborda el problema del ensamblaje y encapsidación del genoma de AdV usando dos 

estrategias para su estudio: siguiendo los componentes involucrados en el ensamblaje y 

encapsidación del genoma viral dentro de células infectadas, y estudiando las partículas ligeras 

producidas por el mutante Ad5/FC31. Las principales conclusiones obtenidas son las 

siguientes: 

 

En relación con el ensamblaje de AdV en el interior celular: 

 El rastreo de los factores de ensamblaje (ADN viral y proteínas de encapsidación, 

del core y de la cápside) por inmuno-marcaje en microscopia de fluorescencia y 

electrónica revelo que estos factores coinciden en el área de replicación del 

genome viral llamada PRZ. 

 La presencia de los factores e intermediarios de ensamblaje en la PRZ indica que es 

allí donde tiene lugar el ensamblaje de AdV. Por lo tanto, la PRZ es la factoría de 

AdV. 

 El mecanismo de ensamblaje de AdV involucra dos rutas, una para proteínas de la 

cápside y otra para el ADN viral y proteínas del core. Las partículas virales se 

ensamblan correctamente sólo si ambas rutas están acopladas. 

 Cuando hay un desacoplamiento entre estas dos rutas se producen estructuras 

abortivas: cápsides vacías, cuerpos moteados y granulos electro opacos. Las últimas 

son productos abortivos de la ruta del core. 

 El ensamblaje y encapsidación del genoma son simultáneos, como propone el 

modelo concertado. La proteína L1 52/55 kDa se une al ADN viral y a proteinas de la 

cápside, mientras que las proteínas del core empiezan a condensar el genoma viral. 

La proteína L1 52/55 kDa recluta y enlaza los fragmentos de cápside a los cores 

nacientes, actuando como un velcro que mantiene unidas ambas estructuras. El 

ensamblaje de la cápside prosigue alrededor del core que aún sigue unido a la 

madeja de ADN. 

 

En relación con la estructura de las partículas ligeras: 

 Se ha caracterizado la estructura y composición de dos partículas ligeras (L2 y L3), 

encontrando que representan dos diferentes estadíos de maduración proteolítica, 

siendo L3 más procesada que L2. Los dos tipos de partículas carecen de genoma 

viral y proteínas del core. 
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 Las partículas ligeras de Ad5/FC31 habían empezado pero no completaron la 

encapsidación del ADN. Por lo tanto estas partículas no serían intermediarios de 

ensamblaje sino abortos de ensamblaje. 

 Las partículas L3, que carecen de genoma viral y están cerradas, serían las primeras 

auténticas partículas pseudo-virales (VLPs) de AdV humano descritas.  

 La estructura de las partículas L2 y L3 proporciona evidencia para apoyar el modelo 

de crio-microscopía eléctronica y rechazar la asignación de la proteína V en el 

pinwheel (localizada debajo del vertice) propuesta por el modelo de rayos-X. 

 Las estructuras de las partículas L2 y L3 proporcionan por primera vez información 

sobre la localización de L1 52/55 kDa. La forma completa de esta proteína forma 

una capa sobre la superficie interna de la cápside con más densidad debajo de los 

vértices. Esta capa se desorganiza durante la maduración. La forma completa de L1 

52/55 kDa que preferiblemente se localiza debajo de los vértices podría capturar el 

genoma del virus durante el ensamblaje. 
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Figure 40: Examples of different events in the AdV assembly model. Cells infected with 
Ad5/FC31 (48 hpi) and labeled against L1 52/55 kDa and BrdU. In the first stage, capsid caps 
are assembled. They contain L1 52/55 kDa, which would be used like a velcro to bind to other 
L1 52/55 kDa molecules or other packaging elements in the core. While in the DNA bundle, 
small condensations appear, also containing L1 52/55 kDa. In the intermediate stage 1, the 
caps bind to these condensations through L1 52/55kDa. The capsid goes on growing around 
the budding core (intermediate stage 2). Finally, in the late stage it is possible to observe 
almost complete capsids containing the core but still connected to the DNA bundles. 
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Figure 41: Occupancy of vertex proteins in Ad5/FC31 L2 and L3. Surface rendering of the L2 
and L3 cryo-EM maps contoured at 1.4 and 3.2 standard deviations above the average map 
density, as indicated, and colored by radius. At 3.2σ only the strongest densities are conserved. 
In L3 these include the pentons, but in L2 the penton and part of the peripentonal hexon 
density are lost, indicating lower occupancy with respect to the rest of the capsomers. The 
scale bar represents 200 Å. Pentagons, ovals and a triangle indicate the positions of the 5-fold, 
2-fold and 3-fold axes in one facet. 
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