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We obtain the bound on the Higgs and top masses to have Higgs inflation (where the Higgs field is non-
minimally coupled to gravity) at full next-to-next-to-leading order (NNLO). Comparing the result obtained
with the experimental values of the relevant parameters we find some tension, which we quantify. Higgs
inflation, however, is not excluded at the moment as the measured values of the Higgs and top masses
are close enough to the bound once experimental and theoretical uncertainties are taken into account.
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1. Introduction

The discovery of the Higgs boson [1,2] has allowed to fix the
last Standard Model (SM) parameter, the Higgs mass. Making the
strong but certainly economical assumption that the SM (appropri-
ately extended to accommodate neutrino masses and dark matter)
remains valid up to the Planck scale, it is now possible to obtain
precise predictions in this vast energy range.

Ref. [3] argued that even the inflationary period of the Universe
can be explained within the SM and the Higgs field and the infla-
ton can be identified if the term
√−gξ H† H R, (1)

with ξ � 1, is added to the Einstein–Hilbert plus SM Lagrangian
LE–H +LSM , so that the total Lagrangian is

Ltotal = LE–H +LSM + √−gξ H† H R. (2)

Here R is the Ricci scalar, H is the Higgs doublet and g is the
determinant of the metric gμν .

An inflaton with a non-minimal coupling of the form given
in (1), and in particular Higgs inflation, is perfectly consistent with
recent Planck results [4], which favor a simple single field inflation.

All this reinforces the interest in the possibility of Higgs infla-
tion.

The non-minimal coupling in (1) can be eliminated by a redef-
inition of gμν (going to the so called Einstein frame), which leads
to a non-polynomial Lagrangian for H . This redefinition shows that
two regimes are present in the theory [5]: the small field one
|H | � M P /ξ , where the canonical SM is a good description, and
the large field limit |H | � M P /ξ , in which the physical Higgs mode
0370-2693/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physletb.2013.10.042
decouples. Therefore, the latter limit corresponds to the chiral elec-
troweak (EW) theory [6].

As we will review in Section 2, at the classical level this is a
viable model of inflation if the non-minimal coupling ξ is cho-
sen to match cosmic microwave background (CMB) observations.
Quantum corrections may, however, render inflation impossible de-
pending on the input parameters at the EW scale, in particular the
Higgs and top pole masses Mh and Mt : if Mh is too small (or Mt

is too large) the slope of the Higgs effective potential at large field
values becomes negative preventing the field configuration to roll
towards the EW vacuum.

In this Letter we improve on previous determinations [5] of the
lower bound on the Higgs mass (or equivalently the upper bound
on the top mass) to have Higgs inflation by using the follow-
ing ingredients: (1) two loop effective potential in the inflationary
regime including the effect of ξ and the leading SM couplings: the
top Yukawa yt , the strong gauge coupling g3, the EW gauge cou-
plings g2 and g1 and the quartic Higgs coupling λ; (2) three loop
SM renormalization group equations (RGE) from the EW scale up
to M P /ξ for yt , g3, g2, g1 and λ including the effects of all these
couplings; (3) two loop RGE for the same SM couplings and one
loop RGE for ξ in the chiral EW theory; (4) recent precise deter-
minations of these SM couplings at the top mass provided in [7],
which are used as initial conditions for the RGE.1

A detailed description of these ingredients is provided in Sec-
tion 3. In Section 4 we present our numerical results, including the

1 See, however, Ref. [8] for a related possible issue if conformal invariance is re-
quired.
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determination of ξ and the lower bound on Mh (or Mt ). Finally in
Section 5 we conclude.

2. Classical analysis

Let us briefly review the model of [3] at the classical level. The
part of the action in (2) that depends on the metric and the Higgs
field only is

S g H =
∫

d4x
√−g

[(
M2

P

2
+ ξ H† H

)
R + |∂ H|2 − V

]
,

where M P � 2.435 × 1018 GeV is the reduced Planck mass, V =
λ(H† H − v2/2)2 is the classical Higgs potential, and v is the EW
Higgs vacuum expectation value.

The non-minimal coupling (1) can be eliminated through the
conformal transformation

gμν → ĝμν ≡ Ω2 gμν, Ω2 = 1 + 2ξ H† H

M2
P

. (3)

The original frame, where the Lagrangian has the form in (2), is
called the Jordan frame, while the one where gravity is canonically
normalized (obtained with the transformation above) is called the
Einstein frame. In the unitary gauge, where the only scalar field is
the radial mode φ ≡ √

2H† H , we have (after the conformal trans-
formation)

S g H =
∫

d4x
√

−ĝ

[
M2

P

2
R̂ + K

(∂φ)2

2
− V

Ω4

]
, (4)

where K ≡ (Ω2 + 6ξ2φ2/M2
P )/Ω4. The non-canonical Higgs ki-

netic term can be made canonical through the field redefinition
φ = φ(χ) defined by

dχ

dφ
=

√
Ω2 + 6ξ2φ2/M2

P

Ω4
. (5)

Thus, χ feels a potential

U ≡ V

Ω4
= λ(φ(χ)2 − v2)2

4(1 + ξφ(χ)2/M2
P )2

. (6)

From (5) and (6) it follows [3] that U is exponentially flat when
χ � M P , which is a key property to have inflation. Indeed, for
such high field values the parameters

ε ≡ M2
P

2

(
1

U

dU

dχ

)2

, η ≡ M2
P

U

d2U

dχ2
,

ζ 2 ≡ M4
P

U 2

d3U

dχ3

dU

dχ
(7)

are guaranteed to be small. Therefore, the region in field configu-
rations χ > M P (or equivalently [3] φ > M P /

√
ξ ) corresponds to

inflation.
All the parameters of the model can be fixed through experi-

ments and observations, including ξ [3,9], so that Higgs inflation
is highly predictive and as such falsifiable. ξ can be fixed by re-
quiring that the WMAP normalization of [10],

U

ε
= 24π2
2

R M4
P � (0.02746M P )4, (8)

is reproduced for a field value φ = φWMAP corresponding to an ap-
propriate number of e-foldings [9]:
N =
φWMAP∫
φend

U

M2
P

(
dU

dφ

)−1(dχ

dφ

)2

dφ � 59, (9)

where φend is the field value at the end of inflation,

ε(φend) � 1. (10)

This procedure leads to ξ � 4.7 × 104
√

λ, which is why ξ has to
be much larger than one.

We can also extract the spectral index ns , the tensor-to-scalar
ratio r and the running spectral index dns/d ln k:

ns = 1 − 6ε + 2η,

r = 16ε,

dns

d ln k
= 16εη − 24ε2 − 2ζ 2. (11)

These parameters are of interest as they are constrained by obser-
vations [4].

3. Quantum corrections

We now turn to the quantum corrections. We will use perturba-
tion theory to compute them. It is important to keep in mind that
perturbative unitarity2 is violated above some high energy scale
[11,12]. Once the background fields are taken into account, how-
ever, one can show [13] that such energy is parametrically higher
than all relevant scales during the history of the Universe. Never-
theless some additional assumptions on the underlying ultraviolet
complete theory are necessary (see [12–14]).

There are two options for the quantization of the classical the-
ory defined before: one can either first perform the transformation
in (3) and then quantize [3] (prescription I) or first quantize and
then perform the conformal transformation (prescription II) [16].
The two options lead to different theories as they have different
predictions [5]. We choose the first possibility because Ref. [5]
found it to be the one leading to the weaker bound on Mt and
such bound, as we will see, is already giving some tension with
the experiments. We will make some more comments on prescrip-
tion II at the end of Section 4, where we will check that it is
indeed leading to a stronger bound even at full NNLO.

The procedure to compute quantum corrections has been intro-
duced in [5]: we briefly summarize it in the following subsections
giving both the order of approximation reached in [5] and our im-
provements.

3.1. Effective potential

The first element that we need is the (quantum) effective po-
tential for χ , which is expanded in loops as

Ueff = U + U1 + U2 + · · · .
Here U is the classical contribution in Eq. (6) and U1, U2, . . . are
the one loop, two loop, . . . contributions respectively. An obser-
vation that leads to useful simplifications is that we only need
Ueff in the inflationary regime. Also, further simplifications can
be achieved with a judicious gauge choice; we choose the Landau
gauge.

2 This unitarity problem can be solved by adding an extra real scalar field [15].
The extension of the present analysis to include such scalar is beyond the scope of
this Letter.
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Ueff depends mainly on the top, W, Z, physical Higgs and
(would-be) Goldstone squared masses in the classical background
φ [17], which we call t , w , z, h and g respectively. We have3

t ≡ y2
t φ2

2Ω2
, w ≡ g2

2φ2

4Ω2
, z ≡ (g2

2 + 3g2
1/5)φ2

4Ω2
,

h ≡ 3λφ2(1 − ξφ2/M2
P )

Ω4(Ω2 + 6ξ2φ2/M2
P )

, g ≡ λφ2

Ω4
,

where we neglected v , whose contribution is amply negligible in
the inflationary regime. Note that h becomes negative for φ >

M P /
√

ξ , which also follows from the fact that U is asymptotically
flat; this problem can be ignored because h is negligible: it is sup-
pressed (compared to t , w and z) by an extra power of ξφ2/M2

P in
the inflationary regime and by an extra power of ξ ; also, g has Ω4

rather Ω2 in the denominator, which implies that it is suppressed
in the deep inflationary regime. Thus, in practice, we obtain (as
in [5]) that the most relevant squared masses are t , w and z.

So the one loop part is well approximated by4 (in the modified
minimal subtraction (MS) scheme)

U1 = 1

(4π)2

[
3

2
w2

(
ln

w

μ̄2
− 5

6

)
+ 3

4
z2

(
ln

z

μ̄2
− 5

6

)

− 3t2
(

ln
t

μ̄2
− 3

2

)
+ 3

4
g2

(
ln

g

μ̄2
− 3

2

)]
,

where μ̄ is the MS renormalization scale. Ref. [5] obtained the two
loop effective potential in the inflationary regime by taking the
MS SM two loop effective potential in the Landau gauge, presented
in [19], dropping all diagrams involving the physical Higgs field
(which decouples during inflation) and setting g = 0. We do the
same here. Therefore, our expression for Ueff in practice is the one
considered in [5].

3.2. Renormalization group equations

We RG-improve Ueff by using the running MS couplings λ(μ̄),
yt(μ̄), g3(μ̄), g2(μ̄), g1(μ̄) and ξ(μ̄). In order to keep the loga-
rithms in the effective potential small we choose

μ̄ = φ

Ωt
≡ φ√

1 + ξtφ2/M2
P

, (12)

where ξt is ξ evaluated at some reference energy (see below for
its actual value in the numerical studies).

We compute the running of the MS SM couplings from Mt up
to M P /ξ by using the three loop beta functions available in the lit-
erature [20], and reproduced in a convenient form in the appendix
of [7]. For energies larger than M P /ξ the physical Higgs field de-
couples and in this (relatively small) energy range we use the two
loop RGE for λ(μ̄), yt(μ̄), g3(μ̄), g2(μ̄) and g1(μ̄) and the one
loop RGE for ξ(μ̄) in the chiral EW theory; these equations can be
found for example by setting s = 0 in the RGE given in [18]. The
use of the one loop RGE for ξ (as opposed to the two loop ones
for the SM parameters) will be justified in Section 4.

The RG-improvement used in this Letter reaches a higher level
of precision than the one in [5], where the running from the EW
until the M P /ξ scale was computed at two loop level and then
one loop RGE were used at higher energies for all couplings.

3 Note that we find some differences in the expressions of h and g with respect
to those in [18].

4 In the one loop part U1 we kept the contribution of g because it may modify
the effective potential at the end of inflation if λ is not too small. The input param-
eters at the EW scale, however, correspond to small values of λ during the whole
period of inflation, such that this contribution will be negligible.
3.3. Threshold corrections

We take the initial conditions at μ̄ = Mt for the MS SM cou-
plings from [7], which gives the most precise determination of the
threshold corrections for λ, g3 and yt available at the moment5:

λ(Mt) = 0.12710 + 0.00206

(
Mh

GeV
− 125.66

)

− 0.00004

(
Mt

GeV
− 173.35

)
± 0.00030th,

g3(Mt) = 1.1666 + 0.00314
α3(M Z ) − 0.1184

0.0007

− 0.00046

(
Mt

GeV
− 173.35

)
,

yt(Mt) = 0.93697 + 0.00550

(
Mt

GeV
− 173.35

)

− 0.00042
α3(M Z ) − 0.1184

0.0007
± 0.00050th. (13)

We make use of these precise threshold corrections in our calcu-
lations. The theoretical uncertainties on the quantities in (13) are
much lower than those [22] used in previous determinations of
the bound on Mh from Higgs inflation (see a discussion on theo-
retical uncertainties in [5]). For the other couplings α2 = g2

2/(4π)

and αY = 3g2
1/(20π) we simply use the best fit value from [23],

which is precise enough for our purposes:

α−1
Y (M Z ) = 98.35 ± 0.013,

α−1
2 (M Z ) = 29.587 ± 0.008, (14)

and extrapolate it to Mt through the two loop SM RGE [7] to obtain
g1(Mt) � 0.4631 and g2(Mt) � 0.6483.

4. Numerical studies

In the numerical studies we use the following input parameters
with corresponding uncertainties [7,24]:

Mh = (125.66 ± 0.34) GeV,

Mt = (173.36 ± 0.65 ± 0.3) GeV,

α3(M Z ) = 0.1184 ± 0.0007. (15)

Regarding the RGE, we connect the canonical SM with the
chiral EW theory regime by means of a smooth function of the
background field φ, which is rapidly changing in the interval
[M P /ξ, M P /

√
ξ ]. The exact form of this function has a negligible

impact on the numerics and it can be taken to be the s function
first introduced in [16].

As a first step in the numerical studies we determine ξ taking
into account quantum corrections. To do so we repeat the pro-
cedure summarized around Eqs. (8)–(10), but with the classical
potential replaced by the effective one: we substitute U → Ueff
in Eqs. (8)–(10) as well as in the definition of ε in Eq. (7). For
numerical convenience we choose ξt = ξ(Mt) and compute ξinf ≡
ξ(M P /

√
ξt ) through the RGE. However, strictly speaking the run-

ning of ξ from the EW up to the inflationary scale is not needed:
the above mentioned procedure already gives this parameter for
μ̄ ∼ M P /

√
ξt . The running during the inflationary epoch spans a

relatively small energy range and ξ changes slowly as compared to

5 Ref. [7] has improved on previous calculations (see Refs. [21] for the most recent
ones).
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Fig. 1. ξ at the inflationary scale (defined in the text) versus the pole top mass Mt

setting to zero the theoretical uncertainties in Eqs. (13).

Fig. 2. The effective Higgs potential setting to zero the theoretical uncertainties in
Eqs. (13) and taking the central values in Eqs. (15) except for the top pole mass Mt :
we set Mt = 171.43 GeV in the solid line and Mt = 171.437 GeV in the dashed line.
In the former case ξ is fixed as described in the text, while in the latter case we
set ξt = 300.

the relevant SM parameters; this justifies the use of the one loop
RGE for ξ .

We give ξinf as a function of Mt in Fig. 1 for some values of the
input parameters. However, one should keep in mind that varying
yt(Mt) and λ(Mt) within their theoretical uncertainties as well as
Mh and α3(M Z ) within their errors (see Eq. (15)) visibly changes
this plot. The changes produced by varying the WMAP normaliza-
tion in (8) by the 1σ uncertainty reported in [10] are instead much
smaller.

Once ξ is fixed, we can obtain our desired bound on Mh

(or Mt ). As we mentioned in the introduction this bound can be
obtained by requiring the slope of the Higgs potential to remain
positive at energies around the inflationary scale. We illustrate this
point in Fig. 2, where we take Mt to be the maximum value to
have inflation (fixing the other relevant parameters) or a bit larger;
in the latter case the slope of the effective potential becomes neg-
ative because a bump develops at χ ∼ M P . The effective potential
in Fig. 2 is the NNLO one including the RG-improvement as de-
scribed in Section 3.

We find the following bound:

Mh

GeV
> 129.46 + Mt − 173.36 GeV

0.50746 GeV

− 0.542
α3(M Z ) − 0.1184

0.0007
± 0.23th. (16)

Notice that this is a bit weaker than the one found in the second
paper of [5] (for prescription I): setting Mt = 171.2 and α3(M Z ) =
0.1176 we obtain Mh/GeV > 125.83 ± 0.23th that is lower than
126.1 GeV. Here the main improvement with respect to the result
in [5] is the small theoretical uncertainty 0.23th; this has to be
compared with the value found in the previous paper, 2.2th, which
is above the error,6 1.5, due to the current uncertainties on Mt and
α3(M Z ).

Combining in quadrature the experimental and theoretical un-
certainties we obtain

Mh

GeV
> 129.46 ± 1.53. (17)

Since the uncertainty on Mh is already smaller than the one on
Mt , it is useful to translate this bound into an upper bound on Mt :

Mt

GeV
< 171.43 + 0.5075

(
Mh

GeV
− 125.66

)

+ 0.275
α3(M Z ) − 0.1184

0.0007
± 0.117th (18)

and combining in quadrature the experimental and theoretical un-
certainties

Mt

GeV
< 171.43 ± 0.35, (19)

which is slightly weaker than the bound to have absolute stability
of the EW vacuum in the pure SM [7], although the difference is
well within the 1σ uncertainty. The fact that this bound is weaker
was expected because the prescription in (12) tells us that only the
running up to M P /

√
ξt is relevant and there are cases in which

the effective potential of the SM becomes smaller than its value
at the EW vacuum only above M P /

√
ξt . Regarding the proximity

of (19) to the above-mentioned bound in [7], we do not find any
clear way to tell a priori that it should be so pronounced (within
the 1σ uncertainty) and therefore we regard it as the result of
explicit calculations. Therefore, with the present Letter, we have
shown that even at the level of precision considered, the bound to
have successful Higgs inflation is essentially the same as the one
to have stability of the EW vacuum in the pure SM.

In Fig. 3 we provide this bound as a function of Mh . One can
see a tension with the experimental values of Mh and Mt but the
overlap between the uncertainties on these masses and that of the
bound itself is too big to exclude Higgs inflation. Using the pre-
cise threshold corrections in (13) we find that the uncertainty on
the bound (the width of the blue line in Fig. 3) is mainly due to
the uncertainty on α3(M Z ). This should be viewed as an improve-
ment with respect to previous determinations [5], because there
the theoretical uncertainties on λ(Mt) and yt(Mt) had an impact
larger than the one we have here on α3(M Z ). Indeed, if we were to
use the theoretical uncertainty found in [5] (see discussion below
Eq. (16)) we would have a theoretical uncertainty about ten times
bigger than the one in Eq. (18), which would result in a blue stripe

6 The value 1.5 is obtained combining in quadrature the error on Mt and α3(M Z ).



238 A. Salvio / Physics Letters B 727 (2013) 234–239
Fig. 3. The upper bound on the top pole mass Mt as a function of the top Higgs
mass Mh . The width of the dark blue stripe is the 1σ uncertainty, which is mainly
due to the uncertainty on α3(M Z ). Such width is basically the result of combining
in quadrature the uncertainties in Eq. (18), except the one on Mh , which here is
an independent variable. We also provide the experimental values of Mh and Mt

with the ellipsis corresponding to the 1, 2 and 3σ uncertainties. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this Letter.)

about four times thicker than the one in Fig. 3 and we would not
see any tension.

Also, we find that the uncertainty (see [10]) on the WMAP nor-
malization in (8) has a negligible impact on these bounds.

We also computed the parameters ns , dns/d ln k and r making
use of the full NNLO effective potential, that is by replacing U →
Ueff in Eqs. (7). We find values very close to previous (less precise)
determinations [18], that were already perfectly compatible with
recent Planck constraints [4]; for this reasons we do not display
them here.

Using prescription II for the quantization one just substitutes
the value of μ̄ in (12) with μ̄ = φ [5]. As expected, this leads to
a stronger bound: using the central values in (15) and setting the
theoretical uncertainties in (13) to zero we get Mh > 130.4 GeV
and Mt < 171.2 GeV: if this bound is not fulfilled we find that ns
goes out of the allowed region provided by recent Planck results
[4], ns � 0.94.

5. Conclusions

In this Letter we have derived the bound on Mh (or equiva-
lently Mt ) in order for the Higgs field to be a viable inflaton, by
including NNLO corrections (as discussed in the introduction). The
bound on the Higgs mass is given in Eqs. (16) and (17), while
the reformulation in terms of Mt can be found in Eqs. (18) and
(19). We found a bound a bit weaker than previous determina-
tions, Ref. [5]. However, the main improvement is not the central
value of the bound, but its theoretical uncertainty, which has been
reduced of one order of magnitude, and moved below the current
uncertainties on Mt (or Mh) and α3(M Z ). Moreover, the bound we
found is slightly weaker than the bound (obtained with the same
level of precision [7]) coming from the requirement of absolute
stability of the EW vacuum in the SM, although the difference is
well within the 1σ uncertainty. For this reason, it turned out that
they can be essentially identified.

We also provided a plot with such bound in the Mh–Mt phase
diagram (see Fig. 3), where the width of the blue stripe represents
the 1σ uncertainty due to theoretical and experimental errors;
since we made use of the currently most precise threshold cor-
rections at the EW scale, Eqs. (13), this width is mainly due to
the uncertainty on α3(M Z ). The stripe is roughly 2–3σ away from
the present experimental values of Mh and Mt . Therefore, while
the Higgs inflation proposal is not yet excluded, this reveals some
tension with the experiments. It would have not been possible to
observe such tension if we had the same theoretical uncertainty as
in the previous determination of [5], which we regard as the main
reason why our computation is useful.

In passing we have also computed parameters of cosmological
interest, such as ξ (which is given as a function of Mt in Fig. 1),
ns , dns/d ln k and r. We found that Higgs inflation fulfills the ob-
servational constraints of the recent Planck release [4], even after
full NNLO corrections are taken into account.

In order to make progress in understanding the viability of this
proposal it is therefore crucial to reduce the uncertainties on the
relevant parameters, in particular Mt and α3(M Z ).
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