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ical aspects of such scenarios and find that they present a clear and testable consequence

for direct DM searches. We show that such string motivated Stückelberg portals naturally

lead to isospin violating interactions of DM particles with nuclei. We find that the rela-

tions between the DM coupling to neutrons and protons for both, spin-independent (fn/fp)

and spin-dependent (an/ap) interactions, are very flexible depending on the charges of the

quarks under the extra U(1) gauge groups. We show that within this construction these

ratios are generically different from ±1 (i.e. different couplings to protons and neutrons)

leading to a potentially measurable distinction from other popular portals. Finally, we

incorporate bounds from searches for dijet and dilepton resonances at the LHC as well as

LUX bounds on the elastic scattering of DM off nucleons to determine the experimentally

allowed values of fn/fp and an/ap.
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1 Introduction

Uncovering the properties of Dark Matter (DM) and, in particular, its possible non gravi-

tational interactions with visible matter is one of the greatest challenges of modern physics,

and is accordingly the object of important experimental and theoretical efforts.

A common theoretical framework for DM studies is the hidden sector scenario. In

its minimal form, visible matter resides in a sector of the theory that hosts the Standard

Model (SM) gauge and matter content (or simple extensions thereof), while DM resides in

a hidden sector, with its own gauge and matter content, but is otherwise neutral under the

SM group.

Within such a framework, several mechanisms have been proposed to mediate non-

gravitational interactions between the different sectors, usually referred to as portals [1–16].

Among them, perhaps the most popular is the Higgs portal [1] in which the SM Higgs boson

has renormalizable couplings to scalar fields of the hidden sector. This kind of construction

leads to important phenomenological consequences such as the contribution of hidden final

states to the branching fraction of the Higgs [17, 18]. Another popular kind of portal is

the Z ′ portal. In this scenario, a hidden sector communicates with the SM via a gauge

boson, provided that the SM is enlarged with an extra abelian gauge group [19]. The

phenomenology of these constructions is very rich, and ranges from colliders to direct and

indirect searches of DM [20–27].
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Particularly important for direct detection experiments are the isospin violation prop-

erties of the interactions of DM particles with nuclei induced by different portals. For

example, the Higgs portal (at least in its simplest form) automatically predicts isospin pre-

serving interactions. A similar rigidity in the pattern of isospin interactions is present in

many other portals. Previous works have shown that a deviation from these patterns would

require the presence of several mediators whose contributions to the cross section interfere,

and hence, generate an amount of isospin violation potentially tunable [22, 28–31].

It is the purpose of this work to show that, in contrast, U(1) extensions of the SM

with Stückelberg Z ′ bosons acting as portals naturally accommodate rich patterns of isospin

violating interactions. The latter, in turn, provide a clear and testable phenomenological

consequence of such models. Extra abelian gauge factors are among the most common

extensions of the SM [19], and also among the best motivated from string theory, where

massive extra U(1) gauge bosons appear ubiquitously (for reviews see e.g. [32–37]). In fact,

when one tries to implement a visible sector with the SM gauge group in, say, intersecting

brane models, one generically obtains not SU(3)c × SU(2)L × U(1)Y , but rather U(3)c ×
U(2)L ×U(1)p which contains several extra abelian factors (including the centers of U(3)c
and U(2)L).

The models we will consider along this work are based on this type of string construc-

tions. The symmetry structure of this scenario can be represented schematically in the

following form,

SU(3)c×SU(2)L×U(1)nv × U(1)mh ×Gh (1.1)︸ ︷︷ ︸
Ψv

︸ ︷︷ ︸
Ψh

where the U(1)nv are n abelian gauge factors to which the visible matter fields Ψv couple.

All of the corresponding gauge bosons acquire a mass through the Stückelberg mechanism,

except for a particular linear combination of them that corresponds to hypercharge and

remains massless (in the phase of unbroken electroweak symmetry). U(1)mh are m abelian

gauge factors (some of which could be massless) to which only hidden matter Ψh couples,

and Gh represents the semi-simple part of the hidden gauge group.

As mentioned, these type of scenarios can fairly easily be implemented in models of

intersecting D6-brane of type IIA string theory. Intuitively, each sector consists of several

intersecting stacks of branes wrapping 3-cycles of a six-dimensional compactification space.

Each stack hosts a U(N) gauge factor and chiral matter arises at the brane intersections.

Different sectors arise from brane stacks that do not intersect each other and can hence be

separated in the internal space (see figure 1).

The extra abelian gauge bosons of eq. (1.1) can provide a portal into the hidden sector

in two different ways. The most thoroughly studied is a small kinetic mixing of a light

hidden gauge boson with the visible massless photon [38–46]. This generates an effective

coupling of DM with visible fields which is proportional to their electric charge, and hence,

the DM particles only couple to protons and do not couple to neutrons. From the point of

view of direct DM searches, this is very important, since the elastic scattering of DM off

nucleons only receives contributions from protons. This is, the ratio between the coupling

of DM to neutrons and protons vanishes, fn/fp = 0.
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Figure 1. Left: schematic representation of a hidden sector scenario (1.1) with intersecting D-

branes. Green and red branes do not intersect each other and hence host different sectors. Right:

diagram contributing to the elastic scattering of hidden sector DM, ψ, off quarks. The mediator of

this interaction is a mixing of different string axions, φ, and the vectors Av and Ah.

The second mechanism, which will be the main subject of this paper, was pointed out

in refs. [8, 9] (see also [47–50]). It results from the mixing of massive U(1)s of the visible

sector with U(1)s of the hidden one. Despite living in different sectors, the U(1) gauge

bosons Anv and Amh often have Stückelberg couplings to the same axions, e.g. RR closed

string axions in type II string models. As a consequence the resulting mass matrix can be

highly non-diagonal. The ‘physical’ Z ′ eigenstates obtained upon diagonalization of the

kinetic and mass matrices are largely mixed combinations of Anv and Amh and hence couple

simultaneously to both, visible and hidden, matter sectors. This mass mixing is a tree-

level effect that provides an effective portal into hidden sectors, provided the associated Z ′

bosons are light enough.

Despite the potentially complex gauge and matter structure of the hidden sector, it

seems reasonable to assume that it hosts a Dirac fermion ψ that plays the role of DM in

the Universe. The stability of these particles is easily guaranteed by the perturbatively

conserved U(1)mh symmetries or by non-perturbatively exact discrete subgroups thereof,

or simply because they are the lightest particles of the whole sector. In any case, their

interaction with the SM fermions will be driven by the exchange of a Z ′ boson. For DM

direct detection experiments the leading interaction of the elastic scattering of ψ with

quarks is depicted in the right panel of figure 1. Following this reasoning, it is clear that

the charges of the SM fermions under the U(1)nv groups that mix with the hidden sector

will determine the prospects for detecting ψ in these experiments.

In this work we study the phenomenology of a class of scenarios of this kind that can

be embeded into well known string theory constructions. In particular, we focus on the

isospin violation character of the DM interactions with protons and neutrons induced by

the Z ′ bosons. As we will see, isospin violation could distinguish these Stückelberg portal

models from other popular setups, such as the Higgs portal or the Z-mediation scenarios.
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This work is organized as follows. In section 2 we review the general theoretical

framework that underlies our models. We describe the mixing mechanism that generates

an off-diagonal mass matrix for the U(1) gauge bosons and study general properties the

eigenstates of such matrix, which are the physical Z ′ fields that communicate the hidden

and the visible sectors. We also discuss how the general form of the effective Lagrangian

arises from certain string compactifications with intersecting D6-branes. In section 3 we

take a well known class of such string models and determine the SM couplings to the

lightest Z ′ mediator in terms of a few mixing parameters. In section 4 we study the isospin

violation properties of the DM-nucleon interactions in these constructions in terms of these

parameters, and compare them to those arising in other popular scenarios. In section 5

we incorporate to our analysis bounds from direct detection (LUX) and collider searches

(LHC) for six benchmark points in the parameter space of the model. Finally, we give

some concluding remarks in section 6.

2 Effective Lagrangian and Z′ eigenstates

In this section we review the general constructions of refs. [8, 9] which describe the mixing

mechanism of massive U(1) gauge bosons from different sectors, the so-called Stückelberg

portal. We begin with a discussion in terms of the effective field theory, and describe later

on the string implementation of such setup.

2.1 Non-diagonal U(1) mass matrix

The abelian sector of the construction sketched in eq. (1.1) can generically be described by

the Lagrangian

L = −1

4
~F T · f · ~F − 1

2
~AT ·M2 · ~A+

∑
α

ψα

(
i∂/+ ~QT

α · ~A/
)
ψα (2.1)

where the vector ~AT = (A1 . . . An+m) encodes all the U(1) gauge bosons of the system, with

field strength ~F = d ~A. In this normalization the gauge coupling constants are absorbed in

the kinetic matrix f . In hidden sector scenarios, the charge vectors ~Qα of a given matter

field ψα will have non-zero entries only for one of the sectors (either visible or hidden),

while the kinetic and mass matrices f and M can have off-diagonal entries that mix both

sectors. We are interested in particular in the mixings induced by the mass matrix M .

The mass terms for Abelian gauge bosons ~A can be generated by either the Higgs

or the Stückelberg mechanisms. In both cases the crucial term in the Lagrangian is the

coupling of ~A to a set of pseudo-scalar periodic fields φi ∼ φi + 2π whose covariant kinetic

terms read

LM = −1

2
Gij

(
∂φi − kiaAa

) (
∂φi − kjbA

b
)
. (2.2)

Here, Gij corresponds to a positive-definite kinetic matrix (the metric in the space of φi

fields), which in our conventions has dimension of (mass)2. The factors kia encode the

non-linear gauge transformations

~A→ ~A+ d~Λ =⇒ φi → φi + kiaΛ
a . (2.3)
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The statement that the gauge symmetry group is compact (U(1) rather than R) implies

that the transformations must be periodic Λ ∼ Λ + 2π, and hence that the kia factors

(as well as the matter charges ~Qα of eq. (2.1)) must be quantized. In fact, under the

appropriate normalization they can be assumed to be integers, kia, Q
a
α ⊂ Z. In the case of

the Higgs mechanism, the axion-like fields φi are identified with the phases of Higgs fields

H i, and the kia factors are simply the charges of the latter under the U(1)a groups. It is

not surprising that these are integer quantities. What is perhaps less obvious is that even

for axions not related to a Higgs fields, one can still associate U(1) integer “charges” that

determine their gauge transformations.

The U(1) gauge bosons get a mass by absorbing the axions, φi, through the La-

grangian (2.2). After gauge fixing the U(1) symmetries, the mass term of equation (2.1) is

generated, and the corresponding mass matrix takes the form

M2 = KT ·G ·K . (2.4)

It is easy to see that this matrix can be highly non-diagonal and have off-diagonal entries

that mix hidden and visible sectors. This can happen with particular strength if the mixing

is induced by the integer matrix K of axionic charges.

The dynamical origin of the mixing is the simultaneous coupling of vector bosons from

different sectors to the same axions (see figure 1). As a toy model, consider two U(1) gauge

bosons, a visible Av and a hidden Ah, that couple to an axion with charges +1 and -1,

respectively, i.e. K =
(

+1
−1

)
, whose kinetic matrix is G = m2. The resulting mass matrix

of the U(1) bosons would read M2 = m2
(

1 −1
−1 1

)
. The resulting physical eigenstates are

obviously highly mixed combinations of Av and Ah that hence couple with similar strength

to both sectors.

In the following we generalize this simple example to the case where several gauge

bosons mix with each other by absorbing several axions with mixed charges.

2.2 Diagonalization and eigenstates

In order to study the properties of the system described by the Lagrangian of eq. (2.1), it

is convenient to move to a basis in which the gauge bosons have a canonical kinetic term

and a diagonal mass matrix. The former can be obtained by a linear transformation:

~A ≡ Λ · ~A′ (2.5)

such that ΛT · f · Λ = 1. In the case with no kinetic mixing, i.e. f = diag(g−2
1 , . . . , g−2

N ),

the transformation matrix is simply Λ = diag(g1, . . . , gN ). For the moment we need not

assume such simplification, and we work with a general kinetic matrix f .

The Lagrangian in terms of the transformed bosons ~A′ reads

L = −1

4
~F ′

2
− 1

2
~A′
T
· ΛT ·M2 · Λ · ~A′ + ψ

(
i∂/+ ~QT

ψ · Λ · ~A/ ′
)
ψ . (2.6)

Notice that with this new normalization, what appears in the matter coupling to the gauge

boson is no longer just the charges Q, but products of these and coupling constants g (and

possible kinetic mixing parameters).
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We need now an orthogonal transformation O that diagonalizes the mass matrix M̃2 ≡
ΛT ·M2 · Λ. That is, we need to find a basis of orthonormal eigenvectors

M̃2 · ~vi = m2
i ~vi =⇒ O = (~v1 ~v2 . . . ~vN ) . (2.7)

Conveniently, we define ~vi
′ ≡ Λ · ~vi. The transformation ~A′ ≡ O · ~A′′ brings the Lagrangian

to a standard form with canonical kinetic term and diagonal mass matrix:

L = −1

4
F ′′

2
i −

1

2
m2
iA
′′2
i +

∑
α

ψα

(
i∂/+ ~g′

T

α · ~A′′/
)
ψα (2.8)

The coupling of a vector A′′i to the matter field ψα is given by a linear combination of the

original charges:

g′
(i)
α = ~QT

α · ~v′(i) . (2.9)

Notice the important fact that, for massless eigenvectors, ~vi
′ are precisely the zero

eigenvectors of the original mass matrix M2, i.e. they satisfy K · ~vi′ = 0. Since the entries

of the matrix K are integer numbers, the entries of the massless eigenvectors ~vi
′ will be

also integers, up to an overall normalization factor. The corresponding gauge bosons will

be massless, have quantized charges, and if the form of the matrix K is appropriate, will

couple exclusively to one sector of the theory. They are hence perfect candidates to play

the role of the SM hypercharge.

These last remarks do not apply to massive eigenstates, for which M2 · ~vi′ 6= αi~vi
′.

Generically, given the non-diagonal character of the mass matrix M2, all of the entries of

the massive eigenvectors ~vi will be non-zero and of the same order. The physical massive

gauge bosons A′′i will be hence a linear combination of both visible and hidden bosons and

they will act as portals into hidden sectors.

Before concluding this section let us write down an important condition on the vectors

~vi. The orthogonality of the transformation matrix O of eq. (2.7) translates into the

condition

~vi
T · ~vj = δij =⇒ ~vi

′T · f · ~vj ′ = δij . (2.10)

We will have to take this condition into account in the phenomenological analysis carried

out in the following sections.

2.3 The string theory interpretation

As mentioned in the introduction, one nice feature of the Stückelberg portal is that it

finds a natural implementation in string theory, and a particularly intuitive one in models

of intersecting D-branes. A detailed study and explicit examples in the setup of toroidal

orientifolds of type IIA string theory can be found in the original references [8, 9]. Here,

we briefly describe where the different fields and couplings arise in such models (for general

reviews on these type of string compactifications, see e.g. [32–35]).

In type IIA orientifold compactifications, gauge bosons arise from open strings living

on D6-branes that span the four non-compact dimensions, and wrap three-cycles of the

six dimensional compactification space X6 (usually a Calabi-Yau manifold). A stack of

– 6 –
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N overlapping such branes usually hosts a gauge group U(N) ∼= SU(N) × U(1). Chiral

matter fields arise at the intersections of two stacks. Hence, in order to obtain hidden

sector scenarios, one has to choose carefully the cycles wrapped by the branes to make sure

that stacks from different sectors do not intersect with each other.

The abelian gauge bosons living in such stacks couple not only to open strings, but

also to closed strings which include the graviton, and also Ramond-Ramond (RR) axions

that arise from the reduction of RR three forms along three-cycles of X6. Being associated

to closed strings that propagate in the bulk of the compactification, it is natural to consider

that such RR axions couple to gauge fields from different sectors. These couplings are of

the Stückelberg type given in eq. (2.2) and generate masses for the gauge bosons. The

charge matrix K is determined by the wrapping numbers of the branes around odd cycles

of X6 (odd with respect to the orientifold projection), and can be engineered in such a way

that the mass matrix is highly non-diagonal.

The matrix G that also enters in the formula for the mass matrix M2 and is identified

with the complex structure moduli space metric of the compactification space X6, times

a string scale factor M2
s . Unfortunately, except for the simplest compactifications, this

metric is unknown. Nevertheless, as long as some RR axion has non-zero charges under

U(1) groups from different sectors, the mixing induced by the mass matrix M2 is expected

to be strong and results in physical Z ′ bosons that couple visible and hidden sectors.

The final ingredient in the Lagrangian of eq. (2.1) is the kinetic matrix f . At tree

level, this matrix is diagonal f = diag(g−2
1 , . . . , g−2

N ), with the couplings determined by the

volume of the cycles wrapped by the corresponding branes. Loop corrections can generate

off-diagonal terms that produce small kinetic mixings among different U(1)s.

The fate of the U(1) gauge bosons in this type of models is to gain a mass of the order

of the string scale, suppressed by the square of the gauge coupling factor, mZ′ ∝ g2M2
s .

This is expected to be very large in a broad class of string constructions. Nevertheless,

several mechanisms have been proposed to lower the Z ′ masses, including large volume and

anisotropic compactifications, or eigenvalue repulsion effects [8, 43, 51]. The conclusion is

that, although not generic, Z ′ masses at scales as low as the TeV, or even smaller, can be

achieved in several setups.

At energy scales much lower than the Z ′ boson masses, the corresponding U(1) sym-

metries become effectively global. They are in fact perturbatively exact symmetries of the

effective Lagrangian, and they are broken only by highly suppressed non-perturbative ef-

fects [52–54]. Therefore, the U(1) symmetries that extend the visible sector gauge group in

realistic D-brane constructions should find an interpretation in terms of known approximate

global symmetries of the SM, such as Baryon or Lepton number.

Interestingly, these extra U(1) groups are generically anomalous symmetries of the

SM. It is well known, however, that these anomalies are cancelled by a generalized Green-

Schwarz mechanism, in which the RR axions, φi, and the Stückelberg couplings of eq. (2.2)

play a crucial role. Although the gauge bosons associated to such anomalous U(1)s are not

considered too frequently in the phenomenological literature, they are a key (and in fact

most often unavoidable) ingredient of realistic constructions with open strings.

– 7 –
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In the following, we take the Stückelberg portal string constructions we have described

in this section as a motivation, and study some of their phenomenological consequences.

3 SM fermion couplings to Z′

As in refs. [8, 9], we focus on visible sectors realized as in [55], the so-called Madrid quivers,

which provide some of the simplest realistic models of intersecting D6-branes. In order to

reproduce the SM one introduces four stacks of branes yielding a U(3)A×U(2)B×U(1)C×
U(1)D visible gauge group. The intersection numbers of these branes are chosen in such

a way that the model reproduces the SM chiral spectrum and is free of anomalies (with

anomalies of extra U(1) factors cancelled by the Green-Schwarz mechanism).

In table 1 the charges of the SM particles under the four visible U(1) factors are

presented. These charges can be interpreted in terms of known global symmetries of the

SM. In particular, QA and QD are proportional to baryon and lepton number, respectively.

With these charge assignments, the hypercharge corresponds to the linear combination

QY =
1

6
(QA − 3QC + 3QD) . (3.1)

One has to make sure that such a combination remains as a massless gauge symmetry of the

system (before electroweak symmetry breaking), i.e. that it corresponds to a zero eigenstate

of the mass matrix M2. Following the discussion below eq. (2.9), one has to make sure

hence that the matrix of axionic charges K has an eigenvector ~vY
′ = (1, 0,−3, 3; 0, . . . , 0)

with zero eigenvalue. The first entries of this vector correspond to the visible sector, and the

latter to the hidden one, so that hypercharge couples exclusively to visible matter. In fact,

this condition can be implemented in type II string constructiones by simple topological

requirements on the wrapping numbers of the visible branes. Therefore, according to

eq. (2.9), the hypercharge coupling to a matter field ψα reads

gYα = eQYα =
e

6
(QαA − 3QαC + 3QαD) . (3.2)

In general, the remaining three visible U(1) gauge bosons acquire masses by the

Stückelberg mechanism, and as stressed in the previous section, they can have strong

mass mixing with hidden U(1) bosons. In this work we are interested in the phenomenol-

ogy induced by the lightest of the resulting physical Z ′ bosons whose contribution to the

DM interaction with SM particles is dominant. Since we cannot know the explicit form

of the mass matrix M2 for generic string compactifications (in particular because of the

lack of control of the G matrix that enters the Lagrangian) we will simply parametrise the

couplings of the lightest Z ′ boson to the matter fields ψα by a linear combination

gZ
′

α = aQαA + bQαB + cQαC + dQαD +
m∑
i=1

hiQ
(h)
αi (3.3)

where we have included the contributions from hidden U(1) factors. The parameters

a, b, c, d and hi are precisely the entries of the vector ~v ′Z′ = (a, b, c, d;h1, . . .) of eq. (2.9).

For massive Z ′ bosons these are continuous parameters and as already stressed, they are

– 8 –
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all generically different from zero. Furthermore, notice that, by definition, ~v ′Z′ ≡ Λ · ~vZ′ ,
where ~vZ′ is a normalized vector. Since at tree level Λ = diag(g1, . . . , gN ), one can see

that the parameters a, b, c, d and hi will be proportional to the original gauge coupling

constants, and hence perturbative.

The parameters a, b, c and d, which in turn determine the effective couplings of visible

matter to DM, are nevertheless, not completely arbitrary. On the one hand, they must be

orthogonal to the hypercharge assignment in the sense of eq. (2.10). Neglecting possible

kinetic mixing effects, i.e. taking f=diag (g−2
a . . . g−2

d . . .), the orthogonality condition reads

a

g2
a

+
3b

g2
c

− 3d

g2
d

= 0 . (3.4)

On the other hand, the vectors ~v (i) must be properly normalized, yielding

g2
Y

36

(
1

g2
a

+
9

g2
c

+
9

g2
d

)
= 1 , (3.5)

a2

g2
a

+
b2

g2
b

+
c2

g2
c

+
d2

g2
d

+
m∑
i=1

h2
i

g2
hi

= 1 , (3.6)

for the Z and Z ′ respectively. Notice that in the second expression the factor
∑m

i=1 h
2
i /g

2
hi

encodes all the possible interactions of the Z ′ with matter living in the hidden sector.

Given the potential complexity of this sector, which we will not fully specify in this work,

eq. (3.6) reduces to a bound on the visible sector couplings

a2

g2
a

+
b2

g2
b

+
c2

g2
c

+
d2

g2
d

< 1 . (3.7)

Furthermore, the couplings gi can be related to the SM gauge coupling constants by

means of the following relations [51, 55]:

g2
a =

g2
3

6
, g2

b =
g2

2

4
,

(
1

g2
a

+
9

g2
c

+
9

g2
d

)
= 36g−2

Y , (3.8)

where g3 and g2 refers to the SU(3)QCD and SU(2)L coupling constants, respectively. These

relations arise from the fact that U(1)A and U(1)B are just the center of the groups from

which the SU(3)QCD and SU(2)L gauge factors of the SM arise.1

Now we have all the necessary information to build the couplings of the Z ′ to the SM

particles. In virtue of eq. (3.3) and table 1, the left and right handed (first and second

family) of quarks have the following couplings,

gZ
′

uL
= (a+ b) , gZ

′
uR

= (−a+ c) ,

gZ
′

dL
= (a+ b) , gZ

′
dR

= (−a− c) , (3.9)

1Note that these relations should be evaluated at the compactification scale. The running of the coupling

constants from this scale to the electroweak scale, at which isospin violating properties of DM are defined,

can be simply reabsorbed into the definition of the parameters a, b, c and d.
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Matter field QA QB QC QD Y

QL 1 -1 0 0 1/6

qL 1 1 0 0 1/6

UR -1 0 1 0 -2/3

DR -1 0 -1 0 1/3

L 0 -1 0 -1 -1/2

ER 0 0 -1 1 1

NR 0 0 1 1 0

Table 1. SM spectrum and U(1)i charges in the four stack models of ref. [55]. Anomaly cancellation

requires the three quark families to be divided into two QL doublets and two antidoublets qL of

U(2)B i.e. they differ in their U(1)B charge. We assign the up and down quarks to the antidoublets.

which can be used to define the vectorial coupling as the sum of the left and right compo-

nents,

CVu = gZ
′

uL
+ gZ

′
uR

= (b+ c) ,

CVd = gZ
′

dL
+ gZ

′
dR

= (b− c) , (3.10)

and the axial coupling as the difference,

CAu = gZ
′

uL
− gZ′uR = (2a+ b− c) ,

CAd = gZ
′

dL
− gZ′dR = (2a+ b+ c) . (3.11)

Similarly, according to table 1, for the third family of quarks the vectorial couplings are

given by

CVt = (−b− c) ,
CVb = (−b+ c) , (3.12)

whereas the axial couplings are given by

CAt = (2a− b− c) ,
CAb = (2a− b+ c) . (3.13)

Finally, for the three families of leptons the vector and axial couplings can be written as

CV` = (−b− c) ,
CA` = (−b+ c− 2d) , (3.14)

respectively. Note that in all cases, the vectorial couplings are independent of a as well

as of d, as was to be expected from the aforementioned interpretation of the charges QA
and QD in terms of baryon and lepton number. The axial couplings, on the other hand

do depend on a and d. This fact will have a remarkable impact on the LHC bounds as we

will see later.
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4 Isospin violation from the Stückelberg mechanism

As we have seen previously, the different charges of the SM particles under the U(3)A ×
U(2)B×U(1)C×U(1)D visible gauge group, together with the mixing of the corresponding

abelian bosons, gave rise to very generic vector and axial couplings to the Z ′ boson. As a

consequence, a DM particle living in the hidden sector, ψ, will couple to each SM fermion

through the Z ′ in a different manner. This fact can be translated into a different coupling

strength of ψ to protons and neutrons, and thus, to a rather flexible amount of isospin

violation fn/fp (an/ap). This is very important from the point of view of DM direct

detection experiments [56].

Direct detection experiments are based on the elastic scattering of DM particles off

nucleons inside an underground detector which shields it from cosmic rays. These exper-

iments are tremendously sensitive to the recoil energy released by a nucleus of the target

material when a DM particle hits it. Since the interaction between the nucleon and the

DM particle occurs in the non relativistic limit (the relative velocity of the system in the

lab frame is of the order of hundreds of km/s), the energy deposited in the detector after

the collision is very small, of the order O(10) keV. Depending on the nature of the DM par-

ticles, and the mediator of its interaction with quarks, there exist many different operators

that contribute to this interaction. For a Dirac fermion DM with a Z ′ gauge boson medi-

ator, its interactions with quarks can be divided into the so-called spin-independent (SI)

interactions, arising from scalar and vector interactions with quarks, and spin-dependent

(SD) interactions that originate from axial-vector interactions. Let us now analyse either

cases separately.

4.1 SI interactions

The spin independent contribution to the total cross section of the DM-nucleus elastic

scattering arises from scalar and vector couplings. For an interaction mediated by a vector

boson exchange, the effective Lagrangian for the interaction of ψ with nucleons (protons

(p) and neutrons (n)) can be written as,

LVSI = fp(ψ̄γµψ)(p̄γµp) + fn(ψ̄γµψ)(n̄γµn), (4.1)

where fp and fn are the vector couplings of ψ to the protons and neutrons, respectively.

These quantities depend on the nucleon quark content. For a vector interaction the only

quarks that play a role are those of the valence (up and down), while for a scalar interaction

the sea quarks are also important for the entire process. Since the up and down quarks are

not present in the proton and neutron in the same fraction, one can express fp and fn as

follows [57],

fp = 2bu + bd, fn = bu + 2bd, (4.2)

where bu and bd are the effective vector couplings of the up and down quarks to the DM

particles.2 After integrating out the Z ′ boson, these couplings can be easily written as,

b(u,d) =
hCV(u,d)

2m2
Z′

, (4.3)

2Not to be confused with the coupling b associated with the U(1)B symmetry.
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with h being the coupling strength of the Z ′ boson to ψ, and mZ′ the mass of the lightest

Z ′ boson.

Using now the expressions for the vector couplings of the Z ′ to up and down quarks,

given in eq. (3.10), it is straightforward to deduce that,

bu =
hCVu
2m2

Z′
=

h

2m2
Z′

(b+ c) ,

bd =
hCVd
2m2

Z′
=

h

2m2
Z′

(b− c) . (4.4)

These two expressions make obvious that in this framework the ratio between the coupling

of ψ to protons and neutrons i.e. the amount of isospin violation fn/fp, according to

eq. (4.2), is given by
fn
fp

=
(3b− c)
(3b+ c)

=
(3b/c− 1)

(3b/c+ 1)
. (4.5)

Interestingly, the the total amount of isospin violation depends exclusively on the ratio

between the parameters b and c which, as mentioned before, are continuous and different

from zero, generating a ratio fn/fp different from ±1. This is a consequence of the in-

troduction of U(1) gauge groups in the visible sector to reproduce the global symmetries

of the SM. In particular, the parameter b corresponds to a chiral U(1) symmetry of the

Peccei-Quinn type, with mixed SU(3) anomalies; while c is related precisely to the weak

isospin symmetry U(1)C [55]. Isospin violation and chirality are the key properties why

these new groups generate a general isospin violation in the currents related to the Z ′

interaction.

In figure 2 (left panel) the quantity fn/fp is shown as a function of b/c according to

eq. (4.5). We have shown some noteworthy theoretical benchmark values of this ratio as

well, like Z mediation and dark photon scenarios, fn/fp = −13.3 and fn/fp = 0, respec-

tively. The value of fn/fp ≈ −0.7 is the so-called Xe-phobic dark matter scenario to which

Xe-based detectors are poorly sensitive.3 Interestingly, we notice that our construction

naturally generates isospin violating couplings fn/fp 6= 1 for any value of the parameters b

and c. These parameters are expected to be of the same order, |b/c| ∼ O(1), which defines

a region in which the value of fn/fp is subject to important changes (for values around

b/c = −1/3). This precisely highlights the flexibility in the isospin violation patterns found

in these constructions.

All this together can be taken as a clear and testable prediction of this kind of con-

structions. It also would be distinguishable from other hidden DM scenarios. For instance,

if the portal between the visible and the hidden sector occurs via a Higgs boson, the value

of fn/fp would be generally 1, since the Higgs boson can not differentiate chiralities of

the quarks.4

It is worth noting that, although the type of constructions we are considering, based

on the visible gauge group U(3)A × U(2)B × U(1)C × U(1)D, lead to a flexible amount of

3This is a consequence of the ratio between the number of protons and neutrons in xenon isotopes.
4In type II 2HDM for tan β ≈ 1 there can be deviations [58].
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Figure 2. Left: amount of isospin violation for SI interactions, fn/fp, as a function of b/c (solid

line). Some representative values of fn/fp are shown as horizontal dashed lines. Right: ratio

between the coupling of DM to neutrons and protons, an/ap, for the SD interactions as a function

of b/c. For a/c we have taken different limits, a/c → 0 (solid line), a/c → ±∞ (dot dashed line),

and a/c = 1 (dashed line).

isospin violation (generically fn/fp 6= ±1),5 there is a well known class of alternative type

II string models in which the gauge group U(2)B is replaced by USp(2)B ∼= SU(2)B [59].

In such models, the U(1)B factor, which was crucial in our discussion, is absent. One could

realise the Stückelberg portal scenario in such constructions, and follow steps similar as

the ones we have taken here. The only difference one would find is that the parameter b

would be identically zero, and hence that the DM interactions with the nucleons would

automatically satisfy fn/fp ≡ −1.

4.2 SD interactions

Let us now move to consider the case of SD interactions. As we have mentioned above,

these interactions arise from the axial-vector couplings of DM to protons and neutrons,

and thus, occur when the DM particles have a spin different from zero. In terms of the

effective Lagrangian we can write,

LSD = ap(ψ̄γµγ5ψ)(p̄γµγ5p) + an(ψ̄γµγ5ψ)(n̄γµγ5n), (4.6)

5In the models we discuss, the values fn/fp = ±1 can only be reached in the limits b/c→ 0 and b/c→∞,

which although not excluded, are not particularly preferred. This provides a remarkable and potentially

measurable distinction of these constructions from other portals.
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where the parameters ap(n) are the couplings of DM to protons (neutrons), and can be

expressed in the following way [60],

ap =
∑

q=u,d,s

αAq√
2GF

∆p
q =

h

2
√

2GFm2
Z′

[
CAu ∆p

u + CAd (∆p
d + ∆p

s)
]
, (4.7)

an =
∑

q=u,d,s

αAq√
2GF

∆n
q =

h

2
√

2GFm2
Z′

[
CAu ∆n

u + CAd (∆n
d + ∆n

s )
]
, (4.8)

where αAq is the effective axial coupling of DM to quarks and GF denotes the Fermi cou-

pling constant. Operators for axial-vector interactions in the nucleon are related to those

involving quarks through the quantities ∆
p(n)
q , which relate the spin of the nucleon to the

operator 〈p(n)|q̄γµγ5q|p(n)〉. For these we have taken the values from ref. [61].

Now, we can take the ratio between the coupling to protons and neutrons, which gives

an
ap

=
∆n
u + 2a/c+b/c+1

2a/c+b/c−1(∆n
d + ∆n

s )

∆p
u + 2a/c+b/c+1

2a/c+b/c−1(∆p
d + ∆p

s)
. (4.9)

As one can see from the previous expression, unlike for fn/fp, this ratio also depends on

a/c not only on b/c, and hence, there is one more degree of freedom respect to the SI case.

In figure 2 (right panel), the ratio an/ap is depicted as a function of b/c according

to eq. (4.9) for different values of the ratio a/c. In the limit of a/c → ∞ (dot dashed

line), we find the case of an/ap = 1, similar to the case of the SI interactions in the limit

b/c→∞. While, for the cases a/c→ 0 (solid line) and a/c = 1 (dashed line), the values of

an/ap are generally different from ±1. Notice that in this case one can also define the Xe-

phobic scenario for an/ap. However, it depends on the ratio between the zero momentum

expectation values of the spin for protons and neutrons in xenon which are of the order of

O(10−2) (using the latest calculations [62]), and for simplicity it is not included in figure 2.

Finally, in order to rearrange the results for both SI and SD interactions, in figure 3

we show the plane a/c versus b/c. As we have seen before, these two ratios determine

the amount of isospin violation in DM interactions for both the SI and SD contributions.

On the one hand, the dashed vertical lines represent some values of fn/fp, which are

independent of a/c, as in figure 2. On the other hand, the solid lines denote some values

for an/ap. Remarkably, in the region shown, where the values of a, b and c are in general

of the same order, the DM interactions are isospin violating in both types of interactions.

Furthermore, we see that very high values of the neutron component (with respect to the

proton component) can be reached, although, the variation of either fn/fp or an/ap is very

abrupt in this region (see also figure 2). This is important for direct detection experiments

that use target materials in which the ratio between the neutron and proton contribution

is significantly different than one. For instance, in Xe-based detectors such as LUX, the SD

component is dominated by the neutron scatterings due to the dominance of the neutrons

in the total spin of the 129Xe and 131Xe isotopes.
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Figure 3. Contours corresponding to the amount of isospin violation for SI interactions fn/fp
(long-dashed lines), and for SD interactions an/ap (solid lines) in the a/c - b/c plane.

5 Isospin violating DM in light of the LHC and LUX results

As we have shown previously, this kind of constructions generally predict isospin violating

DM. The relations between the proton and neutron contributions for SI and SD interactions

depend on the couplings a, b and c, and more specifically, in their relations.

According to eqs. (3.10)–(3.14), all couplings of the Z ′ to SM fermions can be written

in terms of the four parameters a , b , c , d. In light of this, it is obvious that certain combina-

tions of these parameters will affect the predicted values of some constrained experimental

observables. Furthermore, as pointed out in section 3, there are some constraints on these

parameters that come from the building of the Z and Z ′ bosons in this model. This section

is aimed at exploring the impact that these constraints have on the allowed values of a/c

and b/c, and hence, on the experimentally allowed values of fn/fp and an/ap. Needless to

say, these regions will depend on certain assumptions on the DM mass and its coupling

h, the Z ′ mass, d/c, and c, and for this reason we will concentrate on six representative

benchmark (BM) points. The values used for each of these parameters are shown in table 2.

It is legitimate to ask whether the mass scales that appear in such BMs can arise in

consistent string compactifications. As we have already mentioned at the end of section 2.3,

Z ′ masses of the order of the TeV, although not generic, can be achieved in several ways

without much difficulty. On the other hand, notice that the DM particles are charged,

often chirally, not only under U(1) hidden groups, but also under non-abelian factors, i.e.

the Gh in eq. (1.1). Therefore, the mass of the field ψ is related to possible strong coupling

dynamics and symmetry breaking patterns (e.g. a hidden Higgs mechanism) of the hidden
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c d/c h mψ (GeV) mZ′ (TeV)

BM1 0.01 1 0.1 50 1

BM1a 0.01 2 0.05 50 1

BM2 0.1 3 0.5 500 3

BM2a 0.05 5 0.25 500 3

BM3 0.1 1 0.1 2000 3

BM3a 0.25 1 0.2 2000 3

Table 2. Input parameters for each BM point.

non-abelian gauge sector. In this sense, it is quite natural to consider DM masses in the

GeV-TeV range, at least as natural as having visible sectors reproducing the masses of the

SM particles.

Given the potential complexity of the matter and gauge structure of the hidden sector,

it seems reasonable to asume that there could be some mechanisms, either thermal or non-

thermal, to account for the relic abundance of ψ other than annihilation through the Z ′

channel. This highlights the dependence of the DM abundance on the particular details of

the hidden sector dynamics, which we want to keep as generic as possible. Nevertheless,

it is worth mentioning that, in general, annihilation cross sections through the Z ′ channel

are lower than the thermal value, and thus indirect detection bounds on the annihilation

cross section are generally far from our predictions.

The only contributions to the phenomenology of the model that do not depend on any

further assumption on the hidden sector are direct DM searches and LHC searches for res-

onances.6 The former only depends on the coupling of ψ to quarks by the exchange of a Z ′

boson (see figure 1), while the latter depends on the coupling of Z ′ to SM particles (quarks

and leptons) and the coupling h. In the following, we will determine the experimentally

allowed regions of a/c and b/c in the six BM points shown in table 2 taking into account

the limits from LUX and the LHC.

5.1 LUX and LHC limits

The recent null results of the LUX collaboration [65] have placed a very stringent upper

limit on the elastic scattering of DM off protons, reducing significantly the parameter space

allowed in many theories that provide DM candidates. This limit has been extracted by

assuming a scalar DM candidate (zero SD contribution) and fn/fp = 1, which are the

typical assumptions that the collaborations use in order to compare their results within a

unified framework. However, this prevents us from using this result directly, since none

of these two assumptions hold for the DM candidate analysed in this work. Therefore,

in order to implement this bound properly we have simulated the LUX experiment, and

6Hadronic decays [22, 63] and the muon anomalous magnetic moment [57, 64] do not depend either

on any further assumption and can affect the allowed values of parameters a, b and c. However, we have

checked that these constraints are not competitive with LUX and LHC in the region of the parameter space

considered in this work.
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we have calculated for a given point of the parameter space if it is allowed at 90% C.L.

using the Yellin’s maximum gap method [66]. To such end, we calculate the predicted total

number of events in LUX considering the SI and SD components and computing the fn/fp,

an/ap ratios. To calculate the 90% C.L. exclusion using the maximum gap method, we

consider that LUX experiment has observed zero candidate events in the signal region.7

To calculate the total number of expected signal events in a Xe-based detector we

have followed the prescription of ref. [67] in the S1 range 2-30 PE for an exposure of

10065 kg days, using the acceptance shown in the bottom of figure 1 of ref. [65] plus an

extra 1/2 factor to account for the 50% of nuclear recoil acceptance. We use the S1 single

PE resolution to be σPMT = 0.37 PE [68], a 14% of photon detection efficiency, and the

absolute scintillation efficiency digitized from ref. [65]. For the DM speed distribution,

we use the standard isothermal Maxwellian velocity distribution, with v0 = 220 km/s,

vesc = 544 km/s, ρ0 = 0.3 GeV/cm3 and ve = 245 km/s, as the one used by the LUX

collaboration [65]. As pointed out in ref. [69] the effect of the form factors can also induce

important differences in the expected number of events. In this work we use the Helm

factor for the SI component and the SD structure functions given in ref. [62] for the SD

component.

To show explicitly the dependence of the SI and SD elastic scattering cross sections on

the parameters of the model, namely, on the ratios a/c and b/c, let us write them as,

σSI
p =

4

π
µ2
pf

2
p =

µ2
ph

2

πm4
Z′

(3b+ c)2 , (5.1)

σSD
p =

24G2
F

π
µ2
pa

2
p =

3µ2
ph

2

πm4
Z′

[(2a+ b− c)∆p
u + (2a+ b+ c)(∆p

d + ∆p
s)]

2. (5.2)

Notice that in order to calculate the neutron contributions one has to multiply by (fn/fp)
2

the SI component and by (an/ap)
2 the SD component, whose expressions are given in

eqs. (4.5) and (4.9). Let us mention at this point the existing relation between the SI and

the SD elastic cross sections. From the previous equations, and the corresponding neutron

counterparts, one can easily see that the contribution from the SD cross section to the

total number of expected events dominates if |a/c| � |b/c| and |a/c| � 1. However, for a

given of c the ratio a/c cannot be arbitrarily large due to the normalization eq. (3.7). In

fact, it can be shown that for the SD component to be dominant in LUX for the range of

mψ considered and when |b/c| < 5 (the region shown in the figures) then a/c & 100. Using

the values of c shown in table 2, such high values of a/c do not satisfy the eq. (3.7), and

hence, they are not considered.

The production and the subsequent decay of a Z ′ boson into SM particles might leave

distinctive signal of new physics that can be searched at colliders, and in particular at the

LHC. The ATLAS detector at the LHC searched for high mass resonances decaying into a

µ+µ− or an e+e− pair for energies above the Z pole mass, at a center of mass energy
√
s =

7Actually, LUX observed one candidate event that was marginally close to the background region in the

log10(S2/S1)−S1 plane. Thus our result of the exclusion is closer to the actual LUX limit when considering

zero observed events.
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8 TeV and luminosities of 20.5 fb−1 and 20.3 fb−1 for dimuons and dielectrons resonances,

respectively [70]. These results are consistent with the SM predictions allowing to place

an upper limit on the signal cross section times the corresponding branching fraction of

the process pp → Z ′ → µ+µ−(e+e−).8 There are also searches for dijet resonances and

monojets plus missing energy that receive additional contributions from the presence of a

Z ′ boson, both at the LHC and Tevatron colliders, and hence, they can be used to place

constraints on this kind of models as well [71–73].

In the model presented here, the coupling of the Z ′ boson to leptons and quarks

contributes to the appearance of dimuon, dielectron and dijet resonances, and thus, these

searches can constraint the parameter space. In order to include these bounds to determine

which regions are allowed in light of these searches, we have followed the approach given

in ref. [74]. In the narrow width approximation, the dilepton production in proton-proton

collisions mediated by the Z ′ can be written as,

σl+l− '

(
1

3

∑
q

dLqq̄
dm2

Z′
× σ̂(qq̄ → Z ′)

)
× BR(Z ′ → l+l−) , (5.3)

where dLqq̄/dm
2
Z′ denotes the parton luminosities, σ̂(qq̄ → Z ′) is the peak cross section

for the Z ′ boson, and BR(Z ′ → l+l−) is the branching ratio for the Z ′ decaying into a

lepton pair. A close inspection of the previous expression reveals that there is a part which

only depends on the model parameters, and the remaining part that only depends on the

kinematics of the process. Hence, it can be factorized as,

σl+l− =
π

48s
WZ′

(
s,m2

Z′
)
× BR(Z ′ → l+l−) , (5.4)

where the function WZ′ is given by:

WZ′ =
∑

q=u,d,c,s

cqωq
(
s,m2

Z′
)
. (5.5)

The coefficients cq are the sums of the squares of the vector and axial couplings, (CVq )2 +

(CAq )2, to the corresponding quarks. Notice that we do not include the contributions from

the bottom and top quarks, since they can be safely neglected in the production process. In

this limit, provided that the first and second quark families share the same charges under

the U(3)A × U(2)B × U(1)C × U(1)D gauge symmetry group (see section 3), the function

WZ′ can be written as a sum of the up and down doublet components of the quarks as

WZ′ = cupωup

(
s,m2

Z′
)

+ cdownωdown

(
s,m2

Z′
)
. (5.6)

In the previous expression we have reabsorbed a factor 2 in the definition of the ω functions.

This factor corresponds to the sum of the up and charm quarks contribution to the up

component and, in the same way, for the down and strange quarks for the down component.

8Although these results can be used to place constraints on other models of new physics, we are interested

in its application for the search of a Z′ boson.
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Using the equations (5.4) and (5.6) one can easily write the production cross section

of a dilepton pair mediated by the Z ′ in proton proton collisions at leading order (LO) as,

σLO
l+l− =

[
cupω̃up

(
s,m2

Z′
)

+ cdownω̃down

(
s,m2

Z′
)]
× BR(Z ′ → l+l−) , (5.7)

where ω̃up,down = (π/48s)ωup,down. To extract the functions ω̃ at
√
s = 8 TeV we have

benefited from CalcHEP 3.6.22 [75] using the parton distribution functions CTEQ6L to be

consistent with the LHC analysis [70]. Furthermore, in order to include Next-to-LO effects,

we have used the K-factor given in ref. [76]. Remarkably, this approach can be used to

calculate not just the bounds for dilepton but also for dijet resonances just by substituting

BR(Z ′ → l+l−) (valid for dilepton in the previous expressions) by BR(Z ′ → qq̄), where a

sum over all quarks (except for the top quark [73]) must be performed. Finally, to include

properly the dijet resonance searches, the cross section times the branching fraction must

be multiplied by a factor A = 0.6 which accounts for the efficiency of the detector [73].
Before moving to the phenomenological analysis of the BM points, let us write the

partial widths of the Z ′ boson decay into SM particles and ψ as a function of the model
parameters as,

Γll̄ =
mZ′

12π
c2

[(
1 +

b

c

)2(
1 +

2m2
l

m2
Z′

)
+

(
1− b

c
− 2

d

c

)2(
1− 4m2

l

m2
Z′

)]√
1−

4m2
l

m2
Z′
, (5.8)

Γνν̄ =
mZ′

6π
c2
(
b

c
+
d

c

)2

, (5.9)

Γuū(cc̄) =
mZ′

4π
c2

[(
1 +

b

c

)2
(

1 +
2m2

u(c)

m2
Z′

)
+

(
1 +

b

c
+ 2

a

c

)2
(

1−
4m2

u(c)

m2
Z′

)]√
1−

4m2
u(c)

m2
Z′

,

(5.10)

Γdd̄(ss̄) =
mZ′

4π
c2

[(
1− b

c

)2
(

1 +
2m2

d(s)

m2
Z′

)
+

(
1 +

b

c
+ 2

a

c

)2
(

1−
4m2

d(s)

m2
Z′

)]√
1−

4m2
d(s)

m2
Z′

,

(5.11)

Γtt̄ =
mZ′

4π
c2

[(
1− b

c

)2(
1 +

2m2
t

m2
Z′

)
+

(
1 +

b

c
− 2

a

c

)2(
1− 4m2

t

m2
Z′

)]√
1− 4m2

t

m2
Z′
, (5.12)

Γbb̄ =
mZ′

4π
c2

[(
1 +

b

c

)2(
1 +

2m2
b

m2
Z′

)
+

(
1− b

c
+ 2

a

c

)2(
1− 4m2

b

m2
Z′

)]√
1−

4m2
b

m2
Z′
, (5.13)

Γψψ̄ =
mZ′

6π
h2

(
1−

m2
ψ

m2
Z′

)√
1−

4m2
ψ

m2
Z′
, (5.14)

where l and ν refer to the three families of leptons and neutrinos, respectively. These

expressions and the SM couplings of the Z ′, given in section 3, allow us to evaluate the

LHC bounds as a function of the parameters a/c and b/c.

5.2 Results

Let us start analysing BM1 and BM1a. These BM points correspond to a low mass dark

matter candidate, with a mass of 50 GeV and a Z ′ boson of 1 TeV. In figure 4 we show

the plane a/c-b/c with some values of the ratios fn/fp and an/ap for BM1 (left panel) and
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Figure 4. a/c versus b/c for BM1 (left) and BM1a (right). As in figure 3 we show some values of

the ratios fn/fp and an/ap. The LUX bound excludes all the region depicted in red. LHC bounds

rule out different regions for e+e− (light blue) and µ+µ− resonances (darker blue). In this BM

point, dijet resonances do not constrain.

BM1a (right panel). We have superimposed the 90% C.L. LUX exclusion region (shown in

red) that rules out high values of |b/c|, while in blue we show the exclusion regions from

the LHC searches for e+e− (light blue) and µ+µ− resonances (darker blue). As we have

anticipated previously, the LUX limit does not depend on the specific value of a/c since in

this region of the parameter space the SI contribution of the elastic scattering dominates

over the SD one. For BM1, LUX excludes the regions b/c . −0.9 and b/c & 1.0, which

correspond to the regions in which the proton and neutron components of the SI elastic

cross section are similar, |fn/fp| ≈ 1. To understand this behaviour note that the proton

contribution given in eq. (5.1) decreases very fast around b/c = −1/3, faster than fn/fp
(due to f2

p ). This means that, although in the allowed region the neutron contribution to

the SI cross section dominates with values of fn/fp that can be very large (see also left

panel of figure 2), it also decreases, and thus, the LUX limit weakens. For BM1a, since the

value of h has been decreased respect to BM1, the coupling of ψ to the Z ′ also diminishes

and then the LUX limits are able to constrain much less parameter space, namely, it rules

out the region |b/c| & 1.9.

Unlike direct detection limits, LHC bounds depend on the value of a/c. First of all,

we show that for BM1 when |a/c| . 2, both e+e− and µ+µ− bounds are less stringent.

This can be understood from eqs. (5.11) and (5.12). The second term in both expressions

is minimized when b/c ≈ −2a/c which is translated into a minimization of the production

cross section of the Z ′ (see also eq. (5.6)) and thus, both limits are less stringent. Besides,

LHC limits are stronger for positive values of b/c as a consequence of the dominance of

the ω̃up function over the corresponding function of the down component and hence, the

production through the up component cancels out the first term of eq. (5.11) for b/c ≈ −1.
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Figure 5. Same as figure 4 but for BM2 (left) and BM2a (right). In this case the exclusion region

from dijet resonances at the LHC is shown in dark blue.

LHC limits are stronger for BM1a for two reasons. First, the increasing of d/c makes the Z ′

coupling to leptons higher and then the corresponding branching ratio is increased. Second,

a smaller value of h makes the Z ′ boson less invisible, which is translated into an increase

of both, its production cross section and its branching ratio into SM particles. Remarkably,

LHC limits rule out a big portion of the parameter space allowed by LUX, including the

Xe-phobic value of fn/fp, and it leaves only a small region allowed corresponding to positive

values of a/c and −2 . b/c . −1.

Interestingly, the allowed regions for both BMs represent isospin violating DM scenarios

in which the neutron contribution of the SI component might be much higher than the

corresponding proton component but both are generally small in order to evade LUX

bounds. For the SD component in BM1, the values of an/ap are not restricted while for

BM1a, the allowed region encodes an/ap generally larger than one. In conclusion, there

exists an outstanding complementarity between LHC and direct detection searches for these

BM points. While LUX is more stringent than the LHC for negative values of b/c, the

LHC is more constraining for positive ones, and for BM1a also for negative a/c, which

highlights the power of combining different experiments in the search for new physics.

Let us move now to BM2 and BM2a. These BM points entail a much heavier DM

candidate with respect to the previous ones, now mψ = 500 GeV, and a Z ′ boson of 3 TeV,

heavier than before as well. In this region of DM masses, direct detection experiments

start to lose their sensitivity very rapidly, so we have increased the DM coupling h in order

for the LUX limit to play a role. Besides, by augmenting d/c we have increased the decay

width of the Z ′ boson into leptons, which makes dilepton constraints more stringent. In

figure 5 the plane a/c-b/c is depicted for these BM points. Notice that in this case dijet

searches at the LHC are shown as dark blue regions with oval-like shapes and are specially

important in the upper left corner of the BM2 case.
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As in the previous BMs, LUX limits are very stringent in this case, specially for BM2,

and again are independent of a/c (dominated by SI interactions). LUX rules out the zone

|b/c| & 0.4 for BM2 and |b/c| & 1.7 for BM2a, since for the latter the values of both c

and h are smaller. For BM2, the reason for this behaviour is the same as before: in the

region not excluded, although the neutron contribution is much higher than the proton

contribution, both cross sections are small. LHC limits from dilepton resonances are now

very well differentiated and more stringent as a consequence of the increase of d/c (respect

to BM1 and BM1a). The difference between e+e− and µ+µ− channels is more notably

and comes from the different sensitivity of the ATLAS detector to these channels at this

Z ′ mass, since its coupling to each of these leptons is identical. Finally, dijet resonance

searches appear in these cases as more constraining than dileptons and LUX in a small

region of the parameter space (the upper left corner in the left panel of figure 5). The

shape of this constraint is due to the squares of the couplings to quarks, involved either in

the production mechanism or in the subsequent decay of the Z ′. This can be understood

as a leptophobic behaviour of the Z ′ in this region of BM2, while we have not found such

feature in BM2a due to the increase of d/c which makes the Z ′ more leptophilic.

To end with these BM points, as it is shown in figure 5, there is only a tiny region

allowed for BM2, while for BM2a the region is considerably bigger. In terms of isospin

violation in the SI interactions, it corresponds to neutron dominance as in the previous

cases. Remarkably, the Xe-phobic scenario (fn/fp = −0.7) remains allowed by both LHC

and LUX in the two BMs analysed. For the SD interactions, the ratio an/ap is found to

range between 1 and -10, approximately, and thus, it can be concluded that in general all

interactions in direct detection experiments would be dominated by neutrons. The comple-

mentarity between direct DM searches and the LHC now takes a new shape. LUX rules out

the values of b/c stronger than LHC in all cases, however, the LHC is able to constrain high

values of |a/c|. Surprisingly, this complementarity is able to delimit the allowed portions

of the parameter space so strongly that the we have obtained closed regions.

To end with the analysis, we study two BMs in which the decay of the Z ′ into DM

particles is kinematically forbidden, BM3 and BM3a, unlike for BM1(a) and BM2(a). Our

results are shown in figure 6 for BM3 (left panel) and for BM3a (right panel). The choice

of the parameters is such that for BM3, LUX limits are not very constraining, while for

BM3a the increase of c and h makes LUX very restrictive. However, for the latter a new

constraint, very strong, has appeared. The grey area denotes a forbidden region because

it does not satisfy eq. (3.7). This is a consequence of the value of c in this case, which is

the bigger of all BMs.

Since the Z ′ boson cannot decay into DM particles in BM3 and BM3a, the branching

ratios into SM particles are increased, and therefore, we expect LHC limits to constrain

very severly. Notably, for BM3 dijet bounds dominate the region −3 . b/c . −1. The

value used for d/c in these BMs makes that for b/c relatively small the Z ′ boson behaves as

leptophobic, which results in a decrease in sensitivity of the dilepton searches. As soon as

|b/c| increases this behaviour disappears and dilepton bounds are dominant over the dijet

ones. In most of the region allowed the SI elastic scattering cross section is dominated by

neutrons, except for the region close to b/c ≈ 1. The ratio an/ap allowed is very similar to

those in the previous BM points.
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Figure 6. Same as figure 5 but for BM3 (left) and BM3a (right). The grey region on the right

panel do not satisfy eq. (3.7) and thus, its is not phenomenologically viable.

For BM3a, shown in the right panel of figure 6, we find that only a very small region is

allowed. The region extending from b/c ≈ −1 up to b/c ≈ 0, and from a/c ≈ 0 to a/c ≈ 1.

From a point of view of complementarity, this region is exceptionally exemplifying since it

is delimited by all the searches. The upper and lower regions are bounded by dijet searches,

the left by LUX and the right by dilepton searches. This is a consequence of increasing

c while keeping the ratio d/c constant. In this case, the SI cross section is dominated by

neutrons and the SD proton cross section is similar to the neutron component but with

an/ap ≈ −1.

6 Conclusions

In this article, we have performed a thorough study of phenomenological features of hidden

sector scenarios with Stückelberg Z ′ portals that arise as low energy effective actions of

certain type II string compactifications with intersecting branes. For our purposes, the cru-

cial property of these constructions is the unavoidable extension of the SM gauge group by

several (‘anomalous’) abelian gauge bosons which gain a mass and can mix with analogous

bosons from hidden sectors.

Many interesting phenomenological properties of such setups are determined by the

charges of the SM spectrum under the extra U(1)s of the visible sector, together with a

handful of mixing parameters (a, b, c, d). The possible choices for the charges are rather

scarce, due to the necessary identification of these symmetries with approximate global

symmetries of the SM. We have focussed on a particular gauge structure, the Madrid models

that arises in a large class of intersecting brane constructions. Some other configurations

are possible, and they could be studied in analogy. We believe, nevertheless, that our

analysis covers a significant portion of the landscape of semi-realistic brane models.
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Once the extra visible U(1) bosons mix with those from the hidden sectors, the lightest

Z ′ mass eigenstate generates the dominant interactions between DM and SM fermions. A

particularly appealing and characteristic feature of such models, is the natural appearance

of rich patterns of isospin violating DM interactions, which contrasts with other simple

portals traditionally considered in the literature. We have explored the prospects for fn/fp
and an/ap in six different BM points of the parameter space of these constructions, incor-

porating LHC and LUX bounds showing that in general values of these ratios tend to be

dominated by the neutron contribution. Target materials with more sensitivity to neutron

interactions are thus very suitable to explore these scenarios.

Generically, this setup provides isospin violating couplings both in the SI and SD

interactions. We have confronted our prospects with LUX and LHC bounds for a set of

BM points. By using our own simulation of the LUX experiment, we have performed a

check of the exclusion regions for each point using the maximum gap method. This has

allowed us to analyse consistently a general scenario with SI and SD (proton and neutron

contributions) interactions as well as in general cases of isospin violating couplings of DM.

For the LHC we have calculated, for each point of the parameter space, the production

cross section of a Z ′ boson times the branching ratio of a specific decay. With this, we have

included ATLAS searches for dilepton (e+e− and µ+µ−) and dijet resonances. Remarkably,

all regions experimentally allowed entail much higher neutron than proton cross sections

for the SI interactions while for the SD the situation is less constrained.

The findings of this work open the door to generic scenarios in which the signals

in direct detection experiments can be dominated by neutrons. Moreover, we show that

the existing complementarity between LHC searches and direct detection experiments is

specially relevant to disentangle the couplings of the Z ′ boson to SM particles. It is

gratifying to see how, not only different experimental strategies, but also phenomenological

and fundamental theoretical input can be combined into a single framework to shed some

light into the possible properties of the so far elusive nature of dark matter.
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[33] R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane

models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 [hep-th/0502005] [INSPIRE].
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