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The quantum chemical COSMO-RS method was applied to analyze the equilibrium solubility of gaseous
propane and propylene in a set of different room temperature ionic liquids in order to contribute to the
design of olefin/paraffin separation technologies based on reactive absorption onto ionic liquids with dis-
solved silver salts media. First of all, the predictive capability of COSMO-RS was evaluated through a com-
parison of estimated values with a wide range of solubility experimental data; next a further
optimization step based on the comparative analysis of predicted and experimental values of the Henry’s
law constant of each solute in different ILs was developed to improve the accuracy of the calculations.
Afterwards, the optimized COSMO-RS approach was applied to select the most suitable RTILs for C3H6/
C3H8 separation based on driving a computational screening of 696 RTILs. Results highlighted that small
and symmetric fluorinated inorganic anions such as PF�6 or BF�4 provide lower solubilities for both hydro-
carbons, but on a whole this results in higher separation selectivities. With regard to the structure of the
cation, ILs based on imidazolium, pyridinium and pyrrolidinium cations provide similar properties. How-
ever ILs based on monosubstituted butyl ammonium have much lower solubilities for both gases and at
the same time higher equilibrium selectivities for propylene. Also it was gathered that less and shorter
alkyl chains in the cation also improve the selective separation of these mixtures. Finally, as the separa-
tion process is enhanced by the presence of Ag+ cations into the ionic liquid, the solubility of 8 commer-
cially available silver salts was qualitatively related to the excess enthalpy of Ag+-IL in solution predicted
by COSMO-RS in order to select a silver salt suitable to be dissolved in the selected RTIL. Thus, this work
reports for the first time the use of a predictive tool in order to facilitate the design of innovative sepa-
ration processes by reactive absorption in a Ag+-IL media.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Light olefins such as ethylene and propylene are very important
to petrochemical industries because they are used as main building
blocks for many essential chemicals and products for industrial
and domestic applications. Conventional olefin/paraffin separation
technologies are based on cryogenic distillation process in columns
with 150–200 trays operating at temperatures between 233 and
183 K and pressures ranging from 16 to 20 bar which lead to high
capital investment, operational cost and also negative environ-
mental impact [1–3]. Therefore, it is critical to develop innovative
and cost-effective technologies able to separate these streams,
overcoming the drawbacks associated to conventional systems.
In this sense reactive absorption of olefins using ionic liquids and
silver salts has been proposed as a potential alternative to the tra-
ditional separation process. The separation process is based on the
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Nomenclature

H Henry’s constant (MPa)
HE

m excess enthalpy of the mixture (kJ/mol)
MPE mean prediction error (%)
N total number of experimental data
p gas partial pressure (MPa)
x molar fraction of a gas into the liquid phase (–)

Greek symbols
a thermodynamic selectivity (–)
c1 activity coefficient at infinite dilution (–)
r standard deviation (–)

Superscripts/subscripts
COSMO computed results using COMO-RS
EXP experimental results
i specie i
j specie j

Ionic liquids
Cations
Im imidazolium
Py pyridinium

Pyr pyrrolidinium
N ammonium
P phosphonium

Anions
BF�4 tetrafluoroborate
PF�6 hexafluorophosphate
NO�3 nitrate
Tf2N� bis-(trifluoromethylsulphonylimide)
CH3CO�2 acetate
CF3CO�2 trifluoroacetate
CH3SO�3 methanesulphonate
CF3SO�3 trifluoromethanesulphonate

Alkyl chains
M methyl
Pr propyl
B buthyl
Hx hexyl
O octyl
D decyl
Hexad hexadecyl
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ability of silver ions to reversibly react with olefins to form an
organometallic complex [4]. The advantage of this chemical com-
plexation is that the formed bonds are stronger than those formed
by Van der Waals forces alone, so it is possible to achieve high
selectivity and high capacity for the component to be bounded
but at the same time, the bonds are still weak enough to be broken
by pressure or temperature swings.

Ionic liquids (ILs) are a broad category of organic salts liquid
with melting points below 100 �C [5,6]. They usually consist on
bulky and asymmetric organic cations such as imidazolium, pyrid-
inium, pyrrolidinium, ammonium and phosphonium combined
with a wide range of anions which range from simple halides or
small inorganic anions such as tetrafluoroborate and hexafluoro-
phosphate to large organic anions like triflate or bis-trifluorometh-
ylsulphonylimide. Although the physicochemical properties of
RTILs are strongly influenced by both their cationic and their anio-
nic moieties, in general ionic liquids show some well-known and
remarkable properties which have attracted the attention of many
researchers. Some of these interesting physical properties of the io-
nic liquids that make them interesting as potential solvents are
that they present high thermal and chemical stability and remain
liquid in a wide range of temperatures, they have a negligible vapor
pressure and they are good solvents for a wide range of both inor-
ganic and organic materials [7,8]. Moreover, they have been
termed as ‘‘designer solvents’’ as their properties can be tuned by
a suitable combination of the ionic moieties.

Several authors have reported [9–16] the viability to carry out
the separation of olefin/paraffin mixtures by reactive absorption
in Ag+-RTIL medium. These works included kinetic and thermody-
namic data of the complexation reaction between propylene and
silver cations remarking the solvent potential improvement of
the ionic liquid compared to aqueous solutions. It was proved that
the total absorption of propylene was the sum of the physical sol-
ubility and the chemical complexation effects. Nevertheless, for
propane the only absorption is due to physical solubility, even
when silver cations are dissolved in the ionic liquid. Therefore in
order to enhance the separation performance it is desirable to find
an ionic liquid with low affinity for propane and at the same time,
able to dissolve a suitable silver salt. Recently, a new strategy to
synthesize novel ionic liquids whose cations consist of Ag+ com-
plexes was introduced. The neutral organic ligands complexed to
Ag+ can be olefins, amines, or amides. It has been demonstrated
that Ag-olefin and Ag-amide complex-based ionic liquids show
remarkable olefin/paraffin permselectivity [17–21].

Although in recent years a steeply growing amount of experi-
mental solubility data has been published in this field [22], the
huge amount of ionic liquids that can be synthesized suggest the
need of a tool to estimate the equilibrium solubility of a gas in dif-
ferent ionic liquids.

Several methods have been reported to predict the thermody-
namic behavior of different compounds in ionic liquids ranging
from molecular dynamics (MD) using atomistic force fields, over
quantitative structure–property relationship (QSPR) models, to
classical thermodynamic models, such as NRTL, UNIQUAC or UNI-
FAC [23,24]. The main drawback is that most of the parameters
of these models must be determined from a large amount of exper-
imental data, which is not available for the vast majority of ionic
liquids [25]. On the contrary, the quantum chemistry based of
the ‘‘conductor-like screening model for real solvents’’ (COSMO-
RS) method has a small and general parameter set that does not
need to be adjusted to specific ILs and therefore it can be applied
in a predictive way to the full range of ILs [24]. The COSMO-RS cal-
culations are based on a unique combination of a quantum chem-
ical treatment of solutes and solvents with an efficient statistical
thermodynamics procedure for the molecular surface interactions
which finally enables the efficient calculation of many properties
that other methods can barely predict. Thus, in this sense COS-
MO-RS approach is a unique a priori computational tool which
can be applied to predict the equilibrium solubility of a gas in a gi-
ven ionic liquid based on the structural information of the com-
pounds [26–30].

The main objective o this work is to develop a predictive proce-
dure that selects the optimum ionic liquid and silver salt to carry
out the separation of olefin/paraffin gas mixtures by reactive
absorption using Ag+-ILs as absorption media. For this purpose
the COSMO-RS methodology has been applied to predict the



Fig. 1. Comparison between experimental and predicted C3H8 and C3H6 Henry’s constants in different ionic liquids at temperatures between 278 and 318 K by standard
COSMO-RS using (A) [C + A] approach and (B) [CA] approach. C3H8 in BMImBF4, C3H6 in BMImBF4, C3H8 in HMImBF4, C3H6 in HMImBF4, C3H8 in OMImBF4,
C3H6 in OMImBF4, C3H8 in BMPyBF4, C3H6 in BMPyBF4, C3H8 in BMImTf2N, C3H6 in BMImTf2N. — is the linear fitting for propylene and --- is the linear fitting for
propane.
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physical solubility and thermodynamic selectivity of propane and
propylene in different ionic liquids. A computational screening of
696 ionic liquids was carried out, considering different structures
by varying the types of anions and cations and also the number
and length of radical substituents of the cation. In addition, a qual-
itative study of the solubility of 8 commercially available silver
salts into ionic liquids that contain the same anion was performed
in order to select the most suitable silver salt.
2. Computational details

In this work, the COSMO-RS calculations were carried out fol-
lowing a multistep procedure. First, the software Gaussian03 was
used for the quantum-chemical calculation [31] to generate the
COSMO files for each compound studied. For this purpose, the
molecular geometries of the gaseous solutes and the ILs were opti-
mized at the B3LYP/6-31++G�� computational level, while the



Table 1
Statistical results obtained from the comparison of experimental and predicted Henry’s law constants of C3H8 and C3H6 in ILs at different temperatures using different COSMO-RS
computational approaches.

Model Method Compound Slope y-Intercept R2 R MPE (%)

COSMO-RS [C + A] C3H8 1.01 �2.37 0.66 0.59 47.4
C3H6 1.43 �0.61 0.85 0.29 23.6

[CA] C3H8 2.31 �6.05 0.90 0.31 24.4
C3H6 2.37 �1.24 0.93 0.48 45.9

Optimized COSMO-RS [C + A] C3H8 0.76 2.07 0.66 0.37 30.9
C3H6 0.93 0.64 0.81 0.25 21.3

[CA] C3H8 0.80 1.60 0.90 0.31 22.9
C3H6 1.00 0.00 0.93 0.15 11.6
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molecular geometries of the silver salts were optimized at the
B3LYP/DGDZVP computational level. The molecular geometry opti-
mization of every compound was performed considering a gas
phase environment. In each case, vibrational frequency calcula-
tions were checked to confirm the presence of an energy minimum
state. Two different molecular models, [C + A] and [CA], were
considered to simulate IL solvents in COSMO-RS calculations, that
consider the ionic liquid as independent counterions, [C + A], and
ion-paired structures, [CA], respectively. To perform the molecular
model of independent counterions in COSMO-RS calculations, ILs
were treated as an equimolar mixture of cations and anions. The
COSMO files include the ideal screening charges on the molecular
surface of each species, calculated by the COSMO continuum solva-
tion model using theory level BVP86/TZVP/DGA1. Subsequently,
COSMO files were used as an input in the COSMOthermX [32] code
to calculate the Henry’s law constant of propane and propylene in
and excess enthalpies of silver cations in different ILs. Henry’s law
constants were estimated attending to the expression:

Hi ¼ c1 � pi ð1Þ

where c1 is the activity coefficient of the propane or propene solute
in the IL at infinite dilution and Pi is the vapor pressure of pure
propane or propene at the studied temperature. According to this
chosen quantum method, the functional, and the basis set, we used
the corresponding parametrization (BP_TZVP_C21_0111) that is
required for the calculation of physicochemical data and contains
intrinsic parameters of COSMOtherm, as well as specific
parameters.

The errors in the Henry’s constants of both hydrocarbons in the
different ionic liquids calculated using the implemented COSMO-
RS approach against experimental data previously obtained were
determined by calculating the mean prediction error (MPE) and
the standard deviation (Eqs. (2) and (3)):

MPE ¼ 1
N

XN

1

jHEXP � HCOSMOj
HEXP

� 100 ð2Þ

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

HEXP�HCOSMO
HEXP

� �2

N� 1

vuut
ð3Þ

where N is the total number of data used, HCOSMO is the Henry’s con-
stant of propane or propylene obtained by COSMO and HEXP is the
corresponding value experimentally determined.
3. Results

3.1. Optimization of COSMO-RS approach to predict the C3H8 and C3H6

solubility in ionic liquids

In previous works carried out by our research group it was
experimentally observed that the solubility of propane and
propylene in different silver-free ionic liquids exhibit an ideal
behavior. Hence the physical solubility of the individual gas com-
ponent at moderate pressures can be described by the Henry’s
law (Eq. (4)).

Hi ¼
pi

xi
ð4Þ

where Hi is the Henry’s constant, Pi is the partial pressure of the gas
and xi is the molar fraction of the gas in the ionic liquid.

Thus, assuming an ideal behavior of these mixtures the equilib-
rium selectivity (ai/j) can be determined as the ratio between the
Henry’s constant of each gas in the ionic liquid (Eq. (5)).

ai=j ¼
Hj

Hi
ð5Þ

In order to evaluate the capability of COSMO-RS to predict the
Henry’s law constants of propane and propylene in the different io-
nic liquids, the Henry’s constants predicted by COSMO-RS were
compared against a set of experimental data previously reported
[9,10]. The comparison included values of the Henry’s constants of
both propane and propylene in different ionic liquids varying the
nature of the cation, the alkyl chain length of the cation and the an-
ion at temperatures in the range of 278–318 K (Fig. 1A and B).

The linear regressions obtained between experimental and
computed H data (Eqs. (6) and (7)) suggest the capability of the
COSMO-RS approach to predict qualitatively the trend of the
Henry’s constants of propane and propylene in ionic liquids. How-
ever in order to calculate the solubility of both hydrocarbons in dif-
ferent ionic liquids more accurately the computational method
was improved by calibrating against a limited set of experimental
data (Fig. 1A and B).

Fig. 1A and B shows that although the COSMO-RS approach is
suitable to predict general trends in the solubility of propane and
propylene in ionic liquids it is not accurate enough to predict quan-
titative values of the Henry’s constants. Moreover, in the compar-
ison between experimental and calculated data the slopes of the
linear regression fittings for both methods, [CA] (Eqs. (6) and (7))
and [C + A] (Eqs. (8) and (9)) show a systematic underestimation
of the Henry’s constant of both gases.

HC3H8 ;EXPERIMENTAL ¼ 2:31 � HC3H8 ;COSMO ½CA� � 6:05 ð6Þ

HC3H6 ;EXPERIMENTAL ¼ 2:37 � HC3H6 ;COSMO ½CA� � 1:24 ð7Þ

HC3H8 ;EXPERIMENTAL ¼ 1:01 � HC3H8 ;COSMO ½CþA� � 2:37 ð8Þ

HC3H6 ;EXPERIMENTAL ¼ 1:43 � HC3H6 ;COSMO ½CþA� � 0:61 ð9Þ

The statistical analysis for the [C + A] and [CA] models before and
after the optimization are compiled in Table 1.

This difference between calculated and experimental data was
corrected using the linear fittings shown in Eqs. (6)–(9), and there-
fore an optimization of the methodology was carried out providing



Fig. 2. Comparison between experimental and predicted C3H8 and C3H6 Henry’s constants in different ionic liquids at temperatures between 278 and 318 K by optimized
COSMO-RS using (A) [C + A] approach and (B) [CA] approach. C3H8 in BMImBF4, C3H6 in BMImBF4, C3H8 in HMImBF4, C3H6 in HMImBF4, C3H8 in OMImBF4,
C3H6 in OMImBF4, C3H8 in BMPyBF4, C3H6 in BMPyBF4, C3H8 in BMImTf2N, C3H6 in BMImTf2N. — is the linear fitting for propylene and --- is the linear fitting for
propane.
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an enhanced tool for the estimation of the propane and propylene
solubility in any ionic liquid. The results plotted in Fig. 2A and B
shows that although the optimized [C + A] model is suitable to pre-
dict the trend in the solubility of propane and propylene in differ-
ent ionic liquids, the [CA] model generally provides higher
accuracy in the quantitative prediction of H coefficients in ILs
(MPE < 22.9%); thus proving the potential of the optimized COS-
MO-RS methodology developed in this work to predict accurately
the solubility of propane and propylene in different ionic liquids
with imidazolium and pyridinium cations.
It must be highlighted that the major error source in this study
corresponds to the Henry’s constant values obtained at higher tem-
peratures, near 318 K, where the solubility of both hydrocarbons is
very low. This is in agreement with the results previously obtained
by Palomar et al. [30] where they observed that although four differ-
ent COSMO-RS computational approaches were able to provide a
qualitative description of the solubility-temperature trend of CO2

in the ionic liquid HMImTf2N in the 283.1–343.1 K temperature
range, the COSMO-RS methodology was not suitable to carry out a
quantitative analysis of the CO2 solubility at different temperatures.



Table 2
Molecular structures of the cations and anions studied in this work.
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The obtained results show the [C + A] approach can predict the
trend in the solubility of both gases into ionic liquids. Moreover,
the optimized COSMO-RS methodology using the [CA] method pre-
dicts experimental results accurately allowing carrying out a quan-
titative analysis. Therefore the best way to proceed would result
Fig. 3. Screening of C3H8 solubility in the most common ionic liquid
from a first screening of a large number of ILs using the [C + A]
method in order to select those ILs having better performance for
olefin/paraffin separation, and afterwards applying the [CA] meth-
od, that involves more tedious calculations to achieve a higher
accuracy in the solubility results.

3.2. Physical solubility of C3H8 and C3H6 in RTILs

Once it has been developed the optimized COSMO-RS approach
useful to evaluate the gas solubility of propane and propylene in
different ionic liquids, the main objective of this work is to apply
this methodology as a tool to select the most suitable ionic liquid
for the selective separation of propane/propylene gas streams. In
order to minimize the preliminary experimental effort to
be performed, a computational screening using COSMO-RS and
the [C + A] model was carried out for 696 ionic liquids based on dif-
ferent cations (imidazolium, pyridinium, pyrrolodinium, ammo-
nium and phosphonium) and anions ðBF�4 ;PF�6 ;NO�3 ;Tf2N�;
CH3CO�2 ;CF3CO�2 ;CH3SO�3 ;CF3SO�3 Þ. Table 2 compiles the cation
and anion structures of the ionic liquids studied in this work.

Figs. 3 and 4 show the calculated solubility (as Henry’s con-
stant) of propane and propylene respectively in some of the most
common ionic liquids. In general the solubility of propane and pro-
pylene follow the same trend according to the changes in the
molecular structure of the ionic liquid. However, the physical
selectivity increases as the solubility of both gases decreases
(Fig. 5). These results are in good agreement with previous results
obtained by Palomar et al. [25] working with CO2 and N2.

These results point to the important role that the structure of
both, the anion and also the cation moieties of the ionic liquid play
on the physical solubility of both hydrocarbons as well as on the
separation selectivity. Generally, anions with more electron donor
character, as CH3CO�2 or CH3SO�3 , present higher solubilities for
propylene and also for propane but at the same time lower selec-
tivities. On the other hand, big anions with disperse charge like
BF�4 or PF�6 result in lower solubilities and higher physical
selectivities.

Figs. 3–5 also highlights the importance of the structure of the
cation in the physical solubility of both hydrocarbons and also in
the thermodynamic selectivity. In order to study in more depth
this influence, further studies were carried out analyzing the
influence of the nature of the cation, the alkyl chain length and
the number of substituents in the cation.
s at T = 298.15 K calculated by optimized COSMO-RS approach.



Fig. 4. Screening of C3H6 solubility in the most common ionic liquids at T = 298.15 K calculated by optimized COSMO-RS approach.

Fig. 5. Screening of C3H6/C3H8 selectivity in some of the most common ionic liquids at T = 298.15 K calculated by optimized COSMO-RS approach.
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Fig. 6 shows the influence of the alkyl chain length of the ionic
liquid in the range from 1 to 10 carbon atoms for the 1-methylimi-
dazolium tetrafluoroborate family. The highest solubility of both
gases was obtained for the cation with the longest alkyl chain
(C10) because increasing the number of carbon atoms of aliphatic
substituent provides more organic character to the ionic liquid,
showing more affinity for both hydrocarbons. Once more, the
selectivity follows the opposite trend, increasing from 0.7 to 4.5
when the radical chain length was reduced from C10 to C1.

Fig. 7 shows the influence of the number of substituents in the
cation on the gas solubility. They were analyzed both the solubility
of propane and propylene as well as the separation selectivity as a
function of the number of methyl groups introduced in the cation
structure in the 1-ethyl imidazolium tetrafluoroborate family
(EImBF4). The results show that the solubility of propane and pro-
pylene slightly decreased when the number of methyl groups was
reduced from 2 to 1; however the solubility was almost 7 times
lower for propane and 4.6 times lower for propylene when the
number of methyl substituents in the cation decreased from 1 to
0. At the same time the separation selectivity is increased from
2.6 for EMMImBF4 to 5.1 using EImBF4.

The last variable in the ionic liquid structure under study is the
type of cation. In this work 5 different types of the most common
cations (ammonium, pyridinium, pyrrolidinium, imidazolium and
phosphonium) were analyzed. Fig. 8 plots the calculated solubility
of propane and propylene and the separation selectivity as a func-
tion of the type of cation of the ionic liquid at 298.15 K with tetra-
fluoroborate anion in all cases. Fig. 8 shows a strong dependence
between the gas solubility and the nature of the cation. The highest
solubility is obtained with phosphonium-based ionic liquids. This
is because commonly phosphonium-based ionic liquids has several
and long substituents which provide high affinity for both hydro-
carbons, leading at the same time to the lowest separation selectiv-
ity (2.3). On the other hand imidazolium, pyridinium and
pyrrolidinium-based ionic liquids provide similar results, with
lower gas solubilities and separation selectivity around 3. This
comparable behavior can be attributed to the similar structure of
these 3 cations. However imidazolium-based ionic liquids gener-



Fig. 6. Effect of the length of the alkyl chain of the ionic liquid cation on the solubility of C3H8 and C3H6 and separation selectivity.

Fig. 7. Effect of the number of substituents of the ionic liquid cation in the solubility of C3H8 and C3H6 and selectivity.

Fig. 8. Effect of the nature of the cation in the solubility of C3H8 and C3H6 and selectivity.
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ally have the lowest viscosities of these three families, leading to a
better performance in the gas absorption process where the mass
transfer in the liquid side is often the controlling step. On the other
hand, ionic liquids based on monosubstituted butyl ammonium
(BN+) cation provide the lowest affinity for both gases due to the
presence of the polar acidic hydrogen groups linked to nitrogen,
which must decrease the affinity of ILs for non-polar hydrocarbons
such as C3H6 and C3H8 leading to the highest physical selectivity
between propane and propylene (5,4 for the ionic liquid buthylam-
monium tetrafluoroborate).



Fig. 9. Comparison of the lattice energy of 8 commercially available silver salts with
the excess molar enthalpies of Ag+-ILs mixtures at T = 298.15 K, calculated by the
COSMO-RS/[CA] computational approach.
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3.3. Qualitative silver salt solubility in RTILs

Since the absorption of propylene in a given ionic liquid is en-
hanced by the addition of a silver salt, it is crucial to find out the
most suitable silver salt to be dissolved in a specific ionic liquid.
Due to the huge amount of combinations between silver salts
and ionic liquids it is interesting to develop a computational ap-
proach able to predict a qualitative trend in the solubility of differ-
ent silver salts.

In previous works Palomar et al. found out that gas–liquid
[25,29,30], liquid–liquid [33] and solid–liquid [34] equilibrium
data for favorable separation processes based on IL solvents were
associated to a higher exothermicity of the mixing process. This
methodology was applied in this case to analyze the solubility of
different silver salts in a certain ionic liquid containing the same
anion. Fig. 9 shows the relationship between the lattice energy of
8 commercially available silver salts reported in literature [35]
and the calculated HE

m values for the BMIm cation family contain-
ing the same anion as the silver salt under study.

It can be seen that there exists a relationship between the lat-
tice energy and the excess enthalpy of the Ag+-ILs mixture. This
trend is in good agreement with the previous knowledge about
the behavior of silver salts solutions. It is well known that silver
halides have a negligible solubility. Also previous studies reveal
that although silver nitrate is very soluble in water, it is not easily
dissolved in ionic liquids like BMImNO3. On the other hand AgBF4,
which has the lowest lattice energy, can be dissolved in different
ionic liquids containing the BF�4 anion such as BMImBF4 or
BMPyBF4. This trend is in good agreement with the previous
knowledge about the behavior of silver salt solutions. It is well
known that silver halides have a negligible solubility in ILs. Previ-
ous studies also reveal that silver nitrate is not so easy to dissolve
in IL, such as BMImNO3, as in water. On the other hand AgBF4,
which has the lowest lattice energy, is soluble in different ionic
liquids containing the BF�4 anion such as BMImBF4 or BMPyBF4.
COSMO-RS method anticipates that silver salts with PF�6 and
ClO�4 should also present high solubility in ILs with common
anion.
4. Conclusions

This work presents for the first time the use of a predictive tool
COSMO-RS to facilitate the design of reactive absorption processes.
In this case the COSMO-RS methodology was applied to select the
most effective ionic liquid-silver salt system to carry out the sepa-
ration of olefin/paraffin gas mixtures by reactive absorption.

A general evaluation of the capability of COSMO-RS to predict
the Henry’s law constants of propane and propylene in ILs was per-
formed by the comparison of the computed results with a set of
experimental solubility data in different ionic liquids between
278–318 K. Results proved the capability of the computational ap-
proach to provide qualitative predictions of the solubility trends of
both hydrocarbons in ILs, although suggesting an overestimation of
the predicted values in comparison to the experimental ones.
Therefore, the experimental-calculated correlations obtained by
linear regression fitting of the data were applied to correct the
computed Henry’s law constants of gaseous solutes in order to ob-
tain a more accurate estimation of the propane and propylene sol-
ubility. In most cases the solubility of propane and propylene
follow the same trend according to the changes in the structure
of the ionic liquid. Therefore, since the absorption of olefins can
be greatly enhanced by the addition of silver cations the best ionic
liquid to perform the separation process is the one which shows
the lowest propane solubility and at the same time is suitable to
dissolve a silver salt. Concerning the anion selection, smaller sym-
metric anions such as BF�4 provide the lowest solubility of both
hydrocarbons and also the highest thermodynamic selectivity.
Regarding the structure of the cation, ionic liquids based on imi-
dazolium, pyridinium and pyrrolidinium presented a similar
behavior in terms of physical solubility and selectivity. However,
we recommend the use of imidazolium-based ionic liquids since
on the whole they have the lowest viscosities of these three fami-
lies, leading to a better performance in gas absorption processes
where the mass transfer in the liquid side is the controlling step.
Ammonium-based ionic liquids showed the lowest physical solu-
bility and also the highest thermodynamic selectivity, thus point-
ing this group as another cation family to be taken into
consideration for olefin/paraffin separation purposes. Additionally,
based upon the excess enthalpy calculations and the lattice energy
of 8 commercially available silver salts it was found that AgBF4

seems to be the most suitable silver salt to be dissolved in ionic liq-
uids containing the same anion. Thus, based upon computational
results it can be concluded that the most suitable system to carry
out the separation of propane/propylene gas mixtures by reactive
absorption should be based on an ionic liquid with the BF�4 anion
and an ammonium or imidazolium-based cation with the less
number of methyl groups as possible and silver tetrafluoroborate
(AgBF4) as a silver salt.
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