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An approximation is proposed in Beyond mean field calculations to re-
duce the size of the grid subtended by the generator coordinates by one
order of magnitude. We show the quality of the approximation calculat-
ing the excitation energies of the titanium isotopes and the E2 transition
probabilities.
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1. Introduction

The basic approach to any many body theory is the Mean Field Ap-
proach (MFA), either by itself or as basis for more sophisticated theories.
The most general MFA is the Hartree–Fock–Bogoliubov (HFB) theory which
considers on equal footing the long and the short range correlations [1]. The
HFB combined with effective interactions is well-known to provide a good
description of bulk nuclear properties like binding energies, quadrupole mo-
ments etc. [2]. The incorporation of Beyond Mean Field (BMF) techniques
such as the angular momentum (AM) and particle number (PN) projection,
together with the consideration of fluctuations around the most probable
values by the Generator Coordinate Method (GCM) has opened the door to
the description of spectroscopic properties with effective forces such as the
Skyrme [3], the Gogny [4] or relativistic ones [5]. The complexity of the tri-
axial angular momentum projection and the necessity of considering several
generator coordinates has increased the CPU time necessary for these calcu-
lations so much that some approximations are needed to study heavy nuclei.
In this work, we propose an approach that reduces the CPU time consider-
ably and, at the same time, provides good results. In all calculations, we
use the Gogny interaction [6].

∗ Presented at the XXII Nuclear Physics Workshop “Marie and Pierre Curie”, Kazimierz
Dolny, Poland, September 22–27, 2015.

(567)



568 M. Borrajo, J.L. Egido

2. Theory and numerical applications

The HFB wave function (w.f.) is given by |φ〉 = Πkαk|−〉, with the
quasiparticle operators defined by the general Bogoliubov transformations

αµ =
∑
k

U∗iµck + V ∗iµc
†
k , (1)

with c†k, ck the particle creation and annihilation operators in the original
basis and U and V the Bogoliubov w.f. to be determined by the Ritz vari-
ational principle. Since the Bogoliubov transformation mixes creator and
annihilator operators, the HFB w.f. is not an eigenstate of the particle
number and one should keep the right number of particles at least on the
average in the minimization process, i.e.,

δE′[φ{U, V }] = 0 (2)

with
E′ = 〈φ|Ĥ|φ〉 − λN 〈φ|N̂ |φ〉 (3)

and the Lagrange multiplier λN given by the constraint 〈φ|N̂ |φ〉 = N . We
know, however, that atomic nuclei do have good quantum numbers such as
angular momentum, particle number and parity and that in order to cal-
culate some observables, these quantum numbers are needed. A convenient
approach is the so-called symmetry conserving mean field approximation
(SCMFA). In this approach, the (intrinsic) w.f. is still a product w.f. but
the quantum numbers are singled out by means of projectors, e.g., the w.f.∣∣∣ψN,I,σM

〉
=
∑
K

gσKP
I
MKP

N |φ〉 (4)

with PN and P IMK projectors on the particle number (PN) and the angular
momentum (AM), respectively, is an eigenstate of the particle number and
the angular momentum operators. The index σ labels the different states
with the same I. The w.f. (4) depends only on the matrices U and V of the
Bogoliubov transformation. The proper way to determine them is by the
variational principle, i.e., by minimization of the projected energy

δEN,I [U, V ] = δ

〈
ψN,I

∣∣ Ĥ ∣∣ψN,I〉
〈ψN,I |ψN,I〉

= 0 . (5)

This is known as the variation after projection (VAP) approach and is the
best way of finding the Bogoliubov matrices since only states with the right
quantum numbers are considered in the variation. Sometimes the w.f. |ψN,I〉
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is determined in the projection after variation (PAV) approach. In this case,
the Bogoliubov matrices are determined by minimization of the unprojected
energy, Eq. (3), and afterwards the projection takes place. Manifestly the
PAV approach is worse than the VAP one. In the case of the PN, the worst
situation occurs in the weak pairing regime where the HFB w.f. collapses to
the HF one and the superfluid phase is missed. The solution of Eq. (5) with
PN and AMP is very complicated because of the non-linear character of the
HFB equations and the large CPU time needed for the AMP. Fortunately,
the more necessary PN–VAP is feasible and thus the pairing collapse avoided.

The w.f. |ψN,I,σM 〉 behaves in many ways like a product w.f., therefore, in
order to describe the shape coexistence or configuration mixing, fluctuations
must be included. This has led to the modern beyond mean field calculations
with the GCM inspired Ansatz [2]∣∣ΨN,Iσ

〉
=
∑
~α

f Iσ(~α ) PNP IMK |φ(~α )〉 =
∑
~α

f Iσ(~α )
∣∣ΦN,I(~α )

〉
, (6)

where we have introduced |ΦN,I(~α )〉 and ~α denotes the relevant degrees of
freedom to be used as coordinates to generate a set of w.f. φ(~α ) and the
indexK, for example ~α = (β, γ,K). The weights f Iσ(~α ) are to be determined
by the variational principle which leads to the Hill–Wheeler (HW) equation.

The choice of the coordinates ~α is a very crucial issue. The simplest
approach is to consider axially symmetric calculations. In this case, there is
only one coordinate, namely the β deformation and K = 0. There have been
calculations of this type with the Skyrme [2], Gogny [8,10] and relativistic [9]
interactions. This approach provides a good qualitative description of nuclei
close to axial symmetry. The main drawbacks are obviously the absence of
triaxial effects and the prediction of very stretched spectra. A considerably
more realistic case is to consider the triaxial deformation. In this case,
~α = (β, γ,K) and again there have been calculations with the three effective
interactions mentioned above [3–5]. In these calculations, the γ bands are
properly described and the spectra are less stretched than in the axial case
but still stretched as compared with the experiment. As an example of
the mentioned approaches, we display in Fig. 1 (taken from Ref. [4]) the
spectrum of 24Mg compared with the experiment. In the axial case (left),
the experimental ground state band is well reproduced, a well developed
β-band is found though at too high excitation energy, but the γ-band is not
found. If we now include triaxial effects, i.e., the γ degree of freedom, we
obtain the triaxial spectrum shown in the middle panel of Fig. 1. Now, a
well developed γ-band is found and a considerable lowering of the β-band is
obtained.
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Fig. 1. Calculated excitation energies and reduced transition probabilities B(E2)
(in e2 fm4) in 24Mg obtained using axially symmetric (left) and triaxial (middle)
GCM–PNAMP approaches compared to the experimental values (right). The ex-
perimental values are taken from [11].

The issue of the stretched spectra is general [9, 10] and it can be easily
understood. As mentioned above, an AM–VAP solution of the symmetry
conserving HFB equation (5) is very CPU time demanding and with effec-
tive interactions and large configurations space not feasible. That means
the AMP is performed after the variation and the angular momentum is
completely ignored in the determination of the HFB w.f. by the variational
principle. To remedy this situation, we have recently proposed to incorpo-
rate the cranking frequency as a generator coordinate [12–14]. The Ansatz
of Eq. (6) now looks like∣∣ΨN,Iσ

〉
=

∑
β,γ,ω,K

f Iσ(β, γ, ω,K) PNP IMK |φ(β, γ, ω)〉 . (7)

The HFB w.f. |φ(β, γ, ω)〉 are determined by minimizing [15] the energy
functional

E[φ] =
〈φ|HPZPN |φ〉
〈φ|PZPN |φ〉

− 〈φ|ωĴx + λq0Q̂20 + λq2Q̂22|φ〉 , (8)

where Q̂2µ and Ĵx are quadrupole moment and the x-component of the angu-
lar momentum operators, respectively, λq0 and λq2 the Lagrange multipliers
determined by the constraints 〈φ|Q̂20|φ〉 = q20 and 〈φ|Q̂22|φ〉 = q22, while
ω is kept constant during the minimization process. (β, γ) are defined by
β =

√
20π(q220 + 2q222)/3r

2
0A

5/3, γ = arctan(
√
2q22/q20) with r0 = 1.2 fm

and A is the mass number. That means, the HFB w.f. are determined
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in the PN–VAP approach [16]. Interestingly, the incorporation of ω in the
GCM Ansatz of Eq. (7) is a generalization of the double projection method
of Peierls and Thouless [17, 18] for the case of rotations. This method is
known to provide the exact translational mass in the case of translations.
We, therefore, expect that the moments of inertia of our bands will be close
to the ones of the AM–VAP providing the sought-after spectrum compres-
sion. In the light of Eq. (8), one can understand the origin of the stretching.
In the spirit of the cranking model, a state with angular momentum I can be
obtained semi-classically with the constraint 〈φ|Ĵx|φ〉 =

√
I(I + 1). There-

fore, if the variation is performed without 〈Ĵx〉 constraint, as in the former
calculations, then 〈φ|Ĵx|φ〉 = 0 and the variational principle provides the
w.f. optimal for I = 0. The states with I 6= 0 are clearly disfavored as
compared with I = 0 and the larger the I, the higher the state is disfavored
thus providing a stretched spectrum.

Of course, one could argue that the constrained variational principle of
Ritz used to determine the intrinsic basis states is very effective in determin-
ing the wave function of the ground state with the given quantum numbers
and constraints. Ground states of the SCCM calculations benefit from this
fact, however, SCCM excited states with the same or different quantum num-
bers are not favored by it and depend more strongly on the basis size (number
of generator coordinates). Consequently, in restricted self-consistent calcula-
tions, a stretched spectrum is expected which will be squeezed by an appro-
priate increase of the basis size, for example by allowing pairing fluctuations.
Indeed, since the monopole (pairing) and the quadrupole (deformation) are
the most relevant degrees of freedom, it seems reasonable to consider both
of them on an equal footing. Recently in Ref. [19,20], the effect of including
fluctuations of the pairing gap in the GCM Ansatz in realistic calculations
has been investigated. In these calculations, a given compression of the
spectra is found but a comparison with the experiment shows that it is not
enough. However, if one includes the angular frequency as a generator co-
ordinate as in the calculations performed in [12–14], one obtains the needed
compression and a good agreement with the experiment. This means that
the alignments induced by the cranking frequency are independent of the
effects produced by the pairing fluctuations.

The consideration of the angular frequency as a generator coordinate
has a big impact on the CPU time of the calculations because the crank-
ing term −ωĴx added in Eq. (8) causes a time reversal symmetry breaking
(TRSB). Besides the obvious fact of adding one more coordinate to the cal-
culations, the symmetry breaking has two important consequences: First,
one cannot perform axially symmetric calculations even in nuclei where no
triaxial effects are expected and second, the usual 0◦ ≤ γ ≤ 60◦ sextant is
not equivalent anymore to all sextants in the {β, γ} plane and the half plane
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−60◦ ≤ γ ≤ 120◦ must be used. In general, the consideration of ~ω as a
generator coordinate amounts to an increase of two orders of magnitude in
the CPU time.

In the calculations of Refs. [12–14], only light nuclei were studied and
a small number of oscillator shells were considered as configuration space.
In order to study heavier nuclei, some approximations are needed. In the
SCCM Ansatz, Eq. (6), and for not too large angular momenta, it is sufficient
to consider two or three ω values. For β, in general, about 12 mesh-points
are needed and for γ on the average, about 18 points. The largest energy
dependence is with the β degree of freedom but the coordinate that most
increases the CPU time is the γ. The approximation that we investigate in
this work is to perform triaxial calculations but without constraining on γ.
That means, for fixed ω and β values, Eq. (8) is solved (obviously without
the constraint on Q̂22) and the corresponding self-consistent γ value is deter-
mined by the variational principle. For a given β and different ω, in general,
we obtain different γ values increasing thereby the diversity in the mixing.
To test the approach, we have performed calculations for the nucleus 22Ti,
which we already studied in Ref. [10] in an axially symmetric approach. The
configuration space has eight oscillator shells. Since we are only interested
in the low-spin region, we consider only two ~ω values, namely ~ω = 0.0
MeV and ~ω = 0.5 MeV. We use the interval 0 ≤ β ≤ 0.6 with a step size of
0.05, i.e., 13 points for ~ω = 0.0 MeV and 12 points for ~ω = 0.5 MeV. That
means, we have to solve a Hill–Wheeler equation with 25 points and triaxial
angular projection. In Fig. 2, we show the excitation energies of the 2+1 states
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Fig. 2. (Color on-line) Excitation energies of the 2+1 states in the titanium isotopes
in two approaches: Time reversal symmetry conserving (filled diamonds, blue) and
time reversal symmetry breaking (filled squares, red). The experimental values
[21–24] (bullets, black) are also shown.
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for the titanium isotopes in two approximations in comparison to the exper-
imental results. The simplest approach is assuming axial symmetry, i.e., in
the calculations only ~ω = 0.0 and 13 β points are considered, these are time
reversal symmetry conserving calculations (TRSC). As compared with the
experiment, these calculations provide the right behavior of the energy for
the different isotopes but with too large values. In the second calculation,
we add the 12 points corresponding to ~ω = 0.5 MeV, these are TRSB cal-
culations and a triaxial angular momentum projection must be performed.
As we can observe in Fig. 2, the energy lowering is very significant bringing
the theoretical results almost in agreement with the experimental ones.

Another aspect of the SCCM calculations, not mentioned yet, which
causes some trouble is that, in general, they provide larger collectivity than
experimentally observed. In Fig. 3, we show the B(E2; 0+1 −→ 2+1 ) values for
the titanium isotopes in the same two approximations as before. The TRSC
calculations provide B(E2) values that are too high as compared with the
experiment. The TRSB, however, decreases these values considerably so a
very good agreement is obtained.
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Fig. 3. (Color on-line) B(E2; 0+1 −→ 2+1 ) transition probabilities in the titanium
isotopes in two approaches: Time reversal symmetry conserving (filled diamonds,
blue) and time reversal symmetry breaking (filled squares, red). The experimental
values [25] (bullets, black) are also shown.

In conclusion, we have presented an approach to time reversal symmetry
breaking calculations that reduce considerably the computational burden.
This approximation will allow to extend the TRSB calculations to medium
and heavy nuclei allowing an accurate description of nuclear properties.
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