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Chapter 1

Motivation

A key topic of research in experimental and theoretical nuclear physics is

the study of the structure of nuclei far from β stability, with a part́ıcular focus

on the changes to the proton-neutron interaction, the evolution of shell closures

and modifications of collective properties. An important question is whether the

shell closures which characterize the valley of stability are preserved or disappear

in nuclei with large differences in the number of neutrons and protons, up to the

limit of nuclear existence. Most of these changes can be understood in terms of the

monopole drift of the single-particle states, part́ıcularly towards the increasingly

neutron-rich nuclei. On the proton-rich side, the Coulomb interaction plays a major

role in determining the nuclear properties and in part́ıcular whether nuclei are bound

or unbound. In the vicinity of the N=Z line however the occupation of identical

orbits and the large overlap between protons and neutrons gives rise to additional

complexity. Near the N=Z line proton-neutron pairing, core-polarization and isospin

symmetry conservation are the object of many experimental studies. Doubly-magic
100Sn is the heaviest proton-bound N=Z nucleus and lies on the edge of the proton

dripline. These features make this nucleus and its neighbours an ideal test ground

to the various origins of structural modifications in exotic nuclei.

A unique feature of the Sn isotopes, is that between the shell closures of N

= 50 and N = 82, lies the longest experimentally accessible chain of semi-magic

(Z = 50) nuclei, and are part́ıcularly interesting for testing the validity of nuclear

structure models. The Sn chain of isotopes produced so far in the lab runs from
100Sn, on the proton dripline with N=Z, to the 138Sn isotope with 14 neutrons more

than the heaviest stable Sn isotope at 124Sn. There is significant focus on the study
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Figure 1.1: The location of the Sn chain in the chart of nuclides.

of excitations of the Z=50 core and neutron valence space of a full major shell.

The region surrounding the Sn chain is a good study ground for understanding

the nuclear structure of nuclei located far away from the valley of stability; from

observed quantities such as the excitation energies and the transition strengths, the

Sn isotopes have been considered a good example for the approximate validity of the

generalized seniority scheme [1],[2]. A good method for investigating core excitation,

and a sensitive probe into the structure of these nuclei are the BE2(E2;0+g.s → 2+1 )

values.

Due to the Z=50 proton shell being closed, the development of collectivity

from the N=50 and N=82 neutron shell closures towards mid-shell is driven by the

neutrons filling successively the d5/2, g7/2, d3/2, s1/2 and h11/2 orbitals. In the nuclear

shell model, a smooth and symmetric increase of collectivity is expected from 100Sn

and 132Sn towards the mid-shell nucleus 116Sn, as evidenced by the reduced transi-

tion strength B(E2;0+ → 2+) between the ground state and the first excited 2+ state.
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In recent years experiments have been conducted at REX-ISOLDE[3][4], MSU[5],

GSI[6][7], Oak Ridge[9], University of Kentucky[11], and the Inter-University Accel-

erator Centre (IUAC) in New Delhi[8], to measure the B(E2;0+ → 2+) transition

strength in the neutron deficient, and neutron-rich Sn isotopes using Coulomb exci-

tation of relativistic, intermediate and low energy radioactive ion beams. The result

of these studies is the observation of unexpectedly large transition strengths in the

light Sn isotopes in which the lower half of the N=50-82 major shell is filled. Fig.

(1.2) summarizes the known experimental B(E2;0+ → 2+) values in comparison to

shell model calculations which assume a 100Sn core and a neutron effective charge

of 1e.

For isotopes lighter than 112Sn, the transitions strengths were measured using

radioactive beams, which explains the larger uncertainties. The deviation from the

parabolic shell model prediction is also confirmed in the measurements of the stable

isotopes. One can see that for the recent stable isotope measurements the errors

are reduced, which makes the stable isotopes good tool to study deviations from

the seniority scheme. The measurements of 114Sn by P. Doornenbal [7] and 112Sn

by R. Kumar [8] were both stable-beam experiments which were normalized to the

previously measured 116Sn.

The asymmetric behaviour of the B(E2;0+ → 2+) values with respect to

the N=66 neutron midshell at A=116 is striking and is not only in disagreement

with the already shown large-scale SM calculation but also with all other available

predictions [5, 6].

One possible explanation of this trend of enhanced transition probabilities

for the 2+ states in the light Sn isotopes, is the increasing importance of small ad-

mixtures of proton excitations across the Z=50 shell gap as the neutron number

decreases[6][4]. Shell model calculations which include such proton core excitations

of up to four protons show that they indeed result in an increase in the transi-

tion strengths. However, due to the seniority truncation used, they still retain the

parabolic and symmetric shape (see figure (1.4a) in blue) [6]. These calculations

used unscreened values of eπ=1.5e and eν=0.5e for the effective proton and neutron

charges.

The most sensitive probe into the single particle structure of nuclei, and

hence the best possible way to detect small admixtures of proton excitations across

the Z=50 shell gap in the even Sn isotopes is by the measurement of the magnetic
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Figure 1.2: The experimentally measured B(E2;0+ → 2+) transition

strengths for the chain of Sn isotopes compared to a shell model cal-

culation.

moments of their first excited 2+ states.

The classical definition of a magnetic dipole moment is the vector cross prod-

uct of the current I with the area A around which the charge circulates. The mag-

netic moment provides sensitive information regarding the nature of the nucleons

which form the current, and the single particle orbitals they occupy. The magnetic

moment can be expressed as:

~µ = gµN
~I (1.1)

with I being the spin of the state, µN the nuclear magneton and the dimensionless

quantity g the gyromagnetic ratio (or g-factor).

The angular momentum of a nucleon in the nucleus includes both a spin and

an orbit contribution, and the resulting magnetic moment therefore contains two

terms:

~µ = µN(gl~l + gs~s) (1.2)

where the quantities gl and gs, respectively, are the orbit and the spin g-factors.

For the proton, the spin and orbit g factors are gπs = +5.587 and gπl = 1 and
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for the neutron gνs = −3.826 and gνl = 0. The values of the measured magnetic

moments for the neutron and the proton are µ(ν) = −1.91304272(45) and µ(π) =

+2.792847337(29) [12], respectively.

This large difference between the proton and neutron magnetic moment in

both sign and magnitude is the main attribute which permits one to deduce infor-

mation about the composition of the wavefunction of a nuclear state by measuring

its magnetic moment. This is also true for most of those cases in which nuclear

states consist of a superposition of different configurations.

If one would assume that the magnetic moments of odd nuclei arise solely

from the spin and orbital magnetic moment from the odd unpaired nucleon, the

g-factor of a state characterized by the quantum number j and l is:

gSchmidt = gl ±
gs − gl
2l + 1

(1.3)

for j ± 1/2, and it is called the Schmidt value or the Schmidt limit. The magnetic

moments found experimentally for almost pure single-particle states are in general

smaller than the Schmidt values. This is due to the nucleon being embedded in

the nuclear medium, where polarization plays a significant role and the nucleons

no longer act “free” [13]. When calculating the g-factors of single particle states

one usually uses the “effective” g-factors from experimentally determined values

instead of the free-particle gl and gs. In general, the difference between the two is

roughly: geffs (π, ν) ≈ 0.75 · gs(π, ν) and geffl ≈1.1 or -0.1, for protons and neutrons

respectively.

In the case of the Sn isotopes, an increase in proton admixtures across the

Z=50 shell gap for the 2+ state would lead to an increase in the measured g-factors

because all the relevant proton orbitals above the Z=50 shell gap and the occupied

g9/2 orbital, have large and positive effective g-factors.

Figure (1.3) shows the effects of proton excitations compared to neutron

excitations in the 114Sn nuclei across various shell gaps for the case of the shell

model, emphasizing the single particle sensitive information which the magnetic

moments provide.
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π Oribtal geff ν Oribtal geff

πg9/2 +1.22 νd5/2 -0.43

πd5/2 +1.38 νg7/2 +0.18

πg7/2 +0.73 νs1/2 -1.8

νd3/2 +0.46

νh11/2 -0.25

π Configuration geff ν Configuration geff

πg9/2d5/2 +1.09 νd5/2g7/2 +0.23

πg9/2g7/2 +1.34 νd−1
5/2s1/2 -0.20

νd3/2s1/2 -0.11

νg−1
7/2d3/2 +0.04

Table 1.1: The effective g-factors for the single particle and 2+ configurations.
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Figure 1.3: The effective g-factors in 114Sn at various excitations across

the neutron and proton shell gaps, where a) is the configuration of νg−1
7/2d3/2

b) has the configuration νd−1
5/2s1/2 c) πg9/2d5/2 d) πg9/2d7/2
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The B(E2;0+ → 2+) values obtained from current shell model calculations

with a core of 100Sn agree with the experimentally measured data for the chain

of Sn nuclei between A=130 down to the neutron mid-shell at A=116; it is after

this mid-shell point where the lighter isotopes cease to follow the shell model’s

B(E2;0+ → 2+) calculations. This is shown in figure (1.4a) in red, and all the

experimental values are shown in black. The corresponding g-factors for this model

are shown in red in figure (1.4b). An experimental measurement of the g-factors

would aid in understanding the anomalous B(E2;0+ → 2+) results, because the

sign and magnitude of the measured g-factor is so sensitive to the single particle

configuration. One can see in figure (1.4a) that the B(E2;0+ → 2+) values calculated

for the shell model with a core of 90Zr core, marked in blue, where there are proton

excitations across the Z=50 shell gap.

Figure (1.4) also exhibits additional calculations made in the framework of

the Quasi Random Phase Approximation (QRPA) model[17][18], and the Relativis-

tic Quasi Particle Phase Approximation (RQRPA) of mean field theory[15][16]. The

B(E2;0+ → 2+) values and g-factor calculations for these models are given in pink

(QRPA) and green (RQRPA). The QRPA model satisfies the experimental data for

the B(E2;0+ → 2+) values of isotopes ranging from A=130-116, but it decreases

parabolically after the neutron mid-shell at A=116 towards 100Sn, so the lighter

isotopes no longer agree with the observed enhancement of the B(E2;0+ → 2+)

transition strengths; and the RQRPA model agrees with the data in the range

of A=106-110 but beyond A=110 this model ceases to agree with the measured

B(E2;0+ → 2+) values of heavier isotopes. One can see in figure (1.4a) that there

is no agreement between the various models and the data, so from the B(E2;0+ →
2+) values alone the full picture of the nuclear structure of the even-even Sn isotope

chain cannot be deduced.

But one can see in figure (1.4b) that the g-factors differ for each model, and

a measurement of the magnetic moment could be a very useful way to understand

the B(E2;0+ → 2+) rates and the structure of Sn isotopes. The RQPRA model has

a very positive g-factor with a gradual decrease as A increases, originally from the

spin contribution of the neutrons as neutron number, N, increases, but one can still

observe that there must be a significant proton contribution in this wavefunction.

Whereas the QRPA model gives g-factors which are distinctly negative in sign until

A=128; this could be attributed to single particle configurations of the excited 2+

state where the excited neutron configurations are dominated by the orbitals of
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Figure 1.4: a) The B(E2;0+ → 2+) values from calculations of different

nuclear models compared to the experimental data. b) The g-factors

from calculations of different nuclear models when compared to previous

data.

1h11/2, 2d5/2, 3s1/2 which are all have negative g-factors. Once N=78 is reached, the

2d3/2 shell with a positive effective g-factor begins to dominate the configuration

until N=82 is reached. Then the 2f7/2 orbit, which again has a negative g-factor,
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becomes increasingly important.

The magnetic moments of even-even Sn isotopes have been experimentally

studied, first by M. Hass et al. in 1980 [19], and then later in 2008 by M.C. East

and A.E. Stuchbery et al [20].

M. Hass et al. measured the magnetic moments of the 2+ states of all stable

even Sn isotopes using transient magnetic fields and Coulomb excitations employing
35Cl beams [19]. The measured g-factors go from negative values for the heavier

isotopes to a positive value for the lightest measured isotope: 112Sn. The results for

this experiment are shown in black in figure (1.5), and exhibit large uncertainties.

While 118Sn shows a value which is small and positive, yet the neighboring isotopes

of 116Sn and 120Sn have negative g-factors. M.C. East and A.E. Stuchbery et al. [20]

remeasured these isotopes of 116,118,120Sn, since the previous work was limited by the

calibration of the transient-field strength relative to the Cd isotopes, which had an

uncertainty of about 30%.

The experiment performed in 2008 used the ANU 14UD Pelletron accelerator,

with a multilayer target with a thick iron foil and with layers of Sn and Pd evaporated

onto it. The Sn and Pd nuclei were Coulomb excited via standard kinematics, using

a beam of 58Ni of energy 190MeV. By measuring the Sn and Pd simultaneously, the

sources of systematic errors in the calibration can be virtually eliminated, especially

since Pd isotopes provide a more reliable measurement of the absolute magnitude of

g-factors than the Cd isotopes used in the 1980 experiment. The results from this

experiment are marked in figure (1.5) in yellow, and agree well with the data from

1980.

In order to understand the experimental g-factors, one has to consider the

relevant configurations in the single particle model. For the heavy isotopes 120−124Sn,

it is expected that the valence orbitals h11/2, d3/2 and s1/2 will have the lowest

energy and therefore contribute to the wavefunction of the 2+ state. These neutron

orbitals have effective g-factors of -0.25,+0.46 and -1.8, respectively. The measured

g-factors in 120−124Sn are negative indicating a dominance of the (h2
11/2) and (d3/2s1/2)

(effective g-factor=-0.11) neutron configurations in the 2+ state wavefunctions. For

the case of 116Sn the 2+ state (d3/2s1/2), with an effective g-factor of g=-0.11, appears

to dominate the configuration. In 112,114Sn, beyond neutron midshell, one expects

that the g7/2 neutron orbital decreases in energy. The effective g-factor of this

configuration is positive and it can be assumed to be responsible for the positive
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Figure 1.5: The measured g-factors from the experiment conducted by

M.Hass et al. (For 114Sn, due to the low-purity target (30%), the experi-

mental ∆φ implies only g(114Sn, 2+1 )&0 and hence an upper limit is shown

here, for more information see reference) [19] and M.C. East and A.E.

Stuchbery[20].

measured value of 112Sn, g=+0.37(13). However, considering the effective g-factors

(+0.18, -0.17 and +0.23) of the neutron configurations which contribute to the

wavefunction of the 2+ state in 112Sn ((g7/2)
2,(s1/2d5/2) and (d5/2g7/2)), the measured

value seems to indicate a need for a proton component in the wavefunction.

The above interpretation of the experimental results is of course hampered

by their large uncertainties. A more precise determination of the 2+ g-factors could

certainly contribute to a better understanding of the observed anomalous behavior

in the transition strengths in the light Sn isotopes with N≤64. We therefore decided

to re-measure g(2+) in 112,114,116,122,124Sn at the UNILAC accelerator at GSI using

an improved experimental technique, namely the transient field in combination with

Coulomb excitation in inverse kinematics, and an optimized detection setup for both

particle and gamma-ray detection.

The previous results by M. Hass et al and M. East et al. are in agreement

with each other, which establishes the reliability of the previous work. In general,

one can see these results are in general in agreement with the QRPA model (see

figure (1.4b)). The re-measurement of the lighter isotopes in addition to the heavier

ones with improved precision would shed insight into the structure of this isotopic
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Isotope g-factor (1980) g-factor (2008) adopted g-factor
112Sn +0.37(13) - -
114Sn g&0* - -
116Sn -0.16(10) -0.15(26) -0.16(9)
118Sn +0.02(10) 0.17(10) +0.10(7)
120Sn -0.14(7) -0.09(7) -0.12(5)
122Sn -0.07(11) - -
124Sn -0.15(10) - -

Table 1.2: The g-factors of the previously conducted experiments. *Result obtained

from a low purity target.

chain. Coulomb excitation in inverse kinematics permits more effective detection

of particles in coincidence due to the forward focussing of the target ions, higher

velocity through the ferromagnetic layer and hence larger transient magnetic fields -

significant improvements can be expected from these new techniques when compared

to the previous data published in 1980.

In addition to the g-factor measurement described in this thesis, another

analysis was also conducted on this data in order to perform lifetime measurements

of the 2+ states of the Sn isotopes, using the Doppler Shift Attenuation method, and

hence a re-measurement of the B(E2;0+ → 2+) values. The adopted B(E2;0+ → 2+)

values of the 112−124Sn are mostly based on B(E2) measurements from the 1970s, and

since information on these isotopes are scarce, the B(E2) values were remeasured

via these lifetimes as an independent proof for the observed disagreement in the

shell model between 114Sn and 116Sn. These measured lifetimes are discussed in the

Discussion chapter. More details on these lifetime measurement can be found in ref.

[21].



Chapter 2

The Transient Field Technique

after Coulomb Excitation in

Inverse Kinematics

2.1 Perturbed Angular Correlations

When a nucleus with a magnetic moment µ experiences a magnetic field B,

a torque is induced which causes the nucleus to precess. The frequency of this

precession can be described by the Larmor Frequency ωL [13]:

ωL = g
µN

~
B (2.1)

where µN is the nuclear magneton, g is the g-factor.

For an excited state with a lifetime τ , the torque of the precession will cause

the angular distribution of the γ-rays emitted in its decay to rotate by an angle Φ:

Φ = ωLτ = gτ
µN

~
B (2.2)

for a constant magnetic field B.

If the lifetime of the state is known, the g-factor can be calculated via the

measurement of the 2Φ shift in the measured angular correlation measured for both

field directions “up” and “down”. The magnitude of this shift is proportional to

the strength of the magnetic field B and the lifetime of the state of interest τ . The

shorter the lifetime, the larger the magnetic field has to be to observe a significant
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Figure 2.1: The shift 2φ for angular correlations measured with two field
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intensity shift between the up and down field directions for angles ± 65◦.

precession. For excited states with lifetimes of a few picoseconds, magnetic fields in

the range of kilo Tesla (kT) are needed to introduce measurable precessions of the

order of a few mrad. Such field strengths cannot be provided neither by external

magnets nor by using static hyperfine fields. To produce magnetic fields large enough

to observe the precession of very short lived excited states, transient magnetic fields

have to be employed (see section 2.2).

For a magnetic field perpendicular to the beam (quantization) axis, the

time-dependent perturbed angular correlation is given by:

W (θ, t, B) =
∑

k

AkPk(cos(θ ± ωLt)) (2.3)

where Pk(cos(θ±ωLt)) are the Legendre polynomials, and the number of expansion

terms, k, is given by the multipolarity L with kmax = 2L, i.e. for an E2 transition

kmax = 4.

For short lifetimes only, time-integral precessions can be measured with the

so-called Perturbed Angular Correlation technique. For γ-rays detected in coinci-

dence with the recoil target ions produced in the target, the generalized form of the
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angular correlation is given by [12]:

W (θγ) = 1 +
∑

k

Aexp
k Pk(cos(θγ)) (2.4)

where Aexp
k = GkQkA

th
k . The parameters Ath

k are the theoretical correlation coeffi-

cients which apply for angular correlations at maximum alignment. The parameters

Qk and Gk are attenuation coefficients, where Qk corresponds to the attenuation

experienced due to the finite angular acceptance of finite size γ-ray detectors. This

attenuation factor is determined by taking into account the solid angle of the detec-

tor and its efficiency for the detected incident γ-rays. Gk is the attenuation due to

the acceptance angle of the particle detector [12]. The theoretical coefficients Ath
k

can be calculated via [23]:

Ath
k =

2L(L+ 1)

2L(L+ 1)− k(k + 1)
Fk(IfIiLL) = bkFk(IfIiLL) (2.5)

where L is the multipole order of the γ transition and Fk(IfIiLL) are tabulated

coefficients (see for example Ref. [23]). For a cascade of two transitions (I → M →
F ), the theoretical parameters are given as:

Ath
k = bkFk(MILL)Fk(MFL′L′) (2.6)

where L is the multipolarity of the transition between the states I and M ; L′ is

the multipolarity of the transition between the states F and M . The theoretical

parameters of angular correlations at full alignment for the transitions of interest in

the present work are given in table (2.1).

Transition Ath
2 Ath

4

2+ → 0+ 0.714 -1.714

4+ → 2+ 0.510 -0.367

3− → 2+ -0.400 0.000

Table 2.1: Theoretical parameters Ak for different relevant transitions.

Due to parity conservation, only even values of k are allowed for an E2

transition. So the form of the angular correlation for an E2 transition is given by:

W (θγ) = C[1 + Aexp
2 P2(cos(θγ)) + Aexp

4 P4(cos(θγ))] (2.7)
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where C is related to the intensity of the γ transition.

If the angular correlation parameters are measured experimentally, the loga-

rithmic slope, S(θ) can also be derived. This is a useful quantity given by:

S(θγ) =
1

W (θγ)

dW (θγ)

dθγ
(2.8)

The precession, Φ, is measured by taking the intensity ratios for the magnetic

field polarities of up and down for a pair of detectors placed in a horizontal plane

perpendicular to the field direction and at symmetric angles, ±θ, relative to the

beamline. The first step for obtaining the measured precession is by taking the

double ratios, ρ, defined as [13].

ρ =

√

N(+θ ↑)N(−θ ↓)
N(+θ ↓)N(−θ ↑) (2.9)

where N(+θ ↑) is the number of counts measured in the detector at +θ for field

direction up, and N(−θ ↓) is the number of counts measured in detector at −θ for

field direction down, etc. This double ratio is independent of detector efficiencies

and the measuring time for the two field directions. The effect, ǫ, is obtained directly

from ρ as shown in equation (2.11) and when using the logarithmic slope, S(θ) the

small precessions can hence be obtained by equation (8.6).

ǫ =
ρ− 1

ρ+ 1
(2.10)

Φ =
ǫ

S(θγ)
(2.11)

After the precession, Φ, has been measured, the g-factor of the state may be ex-

tracted by equation (2.12) [12]:

Φ = −g
µN

~

∫ tout

tin

BTF (vion(t))e
−t/τdt (2.12)

The method for obtaining the precession of a nuclear state as given above

only applies for cases when the state is directly populated and does not experience

feeding from higher states. If feeding from higher states does occur, then a feeding

correction needs to be applied. This is discussed in more detail in chapter 5.
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2.2 The Transient Magnetic Field

Transient fields occur when an ion traverses a ferromagnetic material at a

velocity v. The nucleus experiences a strong internal hyperfine field with magnitudes

of kT to MT depending on the charge of the ion, Z, and the ion velocity. Transient

fields arise from a spin exchange with the magnetized electrons of the ferromagnet,

which causes a polarization of the spins of the unpaired electrons of the s shells of

the moving ion. In the case of a simple model, one can assume this to be a spin

exchange between the 1s state of an H-like ion with the polarized electrons of the

ferromagnet. The orientation of the transient field is aligned parallel to the external

magnetizing field exerted on the ferromagnet.

Figure 2.2: The spin exchange between the ferromagnet and the unpaired

electrons of the s-shell of the ion, inducing the transient field.

The Fermi contact field is associated with the mechanism which causes the

polarization of the s-electrons: an electron from the ferromagnet can be either be

captured by a vacant shell or a singly occupied s-shell in the probe ion, which

causes the alignment of spins in the s-shell electron to follow the direction of the

ferromagnetic polarization. The atomic nature of the Fermi contact field causes the

strength of the field to increase with (Z
n
)3, where Z is the atomic number and n is

the principle quantum number of the state in question. There is also an increase in

the strength of the transient field as the velocity of the ion increases until it reaches

a maximum at the Bohr velocity, v0 = e2

~
; for velocities beyond the Bohr velocity

decrease the strength of the transient field.

For the case of a single electron in the s-shell, the largest transient field

attainable is given by the relation [12]:
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BTF = p1s(v, Z, host)q1s(v, Z)B1s(Z) (2.13)

where q1s is the fraction of ions with a half-filled 1s orbital, p1s is the degree of

polarization and B1s is the hyperfine field produced by an unpaired 1s electron in

the nucleus. The hyperfine field can be expressed as [12]:

B1s = 16.7 ·R(Z) · Z3[T ] (2.14)

where R(Z) is a relativistic correction approximated by:

R(Z) ≈ 1 + (Z/84)5/2 (2.15)

The general form of the transient field for more complex cases is given by:

BTF =
∑

n

pns(vion, Z, host)qns(vion, Z)Bns(Z) (2.16)

Except for the simple case of H-like ions, the strength of the transient field

unfortunately cannot be calculated from first principles. To measure g-factors using

transient magnetic fields, one has to rely on empirical parameterizations obtained

from cases in which the magnetic moment could be measured in parallel using other

techniques. The field strength depends on the atomic number Z of the probe ion,

the ion velocity in terms of the Bohr velocity v
v0
, and the polarization of the ferro-

magnetic host in terms of the strength parameters a,a′,a′′. There are three empirical

parameterizations proposed by different groups and which have been widely used in

the past:

BLIN = a · Z · v

v0
(2.17)

BRUT = a′ · Z1.1 · v

v0

0.45

·M (2.18)

BCR = a′′ · Z v

v0
· e−βv/v0 (2.19)

These are the linear [27] , the Rutgers [28] and the Chalk-River [29] parameteriza-

tions, respectively. The main difference between the various parameterizations is the

velocity dependence component. The Rutgers parametrization also includes an ex-

plicit magnetization term, M , which is obtained from a magnetometer measurement

of the target as a function of temperature. The specific values of a,a′,a′′ coefficients
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[12] and β (v/c) refer to calibration nuclei in different mass regions, where BRUT

and BCR are applicable to medium-mass to heavy ions with moderate velocities.

For g-factor measurements, BLIN and BRUT are the most commonly used parame-

terizations. In the present work, the linear parameterization will be employed using

the established parameters a = 17 T and a =12 T for Gd and Fe hosts, respectively.

An important factor to consider when using heavy ion beams to induce a

nuclear reaction, as is the case of Coulomb excitation in inverse kinematics, is the

effect which the beam will have on the magnetization of the target and consequently

the attenuation of the transient field strength [12]. The attenuation of the transient

field is not due to the probe ion but depends on the beam energy and intensity. The

attenuation, Gbeam, is defined as the ratio of the measured transient field BTF to

the parameterization value BLIN :

Gbeam =
BTF

BLIN
(2.20)

The key parameter in the attenuation is the energy loss of the beam ions ( dE
dX

)

in the ferromagnetic layer, where heavier ions lead to increased attenuations. The

magnitude of the attenuation is also sensitive to the velocity of the probe ions, and

the higher the velocity the larger the attenuation, this suggests a dependency on the

screening of probe ions by the host electrons where the electron-polarized ions are

shielded against perturbations caused by the beam ions. Effects of ion velocity and

stopping power on the attenuation are shown in figure (2.3). The screening efficiency

depends on the velocity of the ion and is largest when the velocity is either close to

or below the Fermi velocity of the host electrons. A detailed discussion of the ion

beam induced attenuation of the transient field strength can be found in Ref. [12].
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Figure 2.3: Transient field attenuations for different probe ions in Gd

hosts vs. the stopping power of the beam ions, where the different regions

are divided into sections based on a function of Z v
v0

[12].
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2.3 Coulomb Excitation in Inverse Kinematics

The excitation of low-lying collective states is induced by an electric

quadrupole field via an electromagnetic interaction between a projectile and a

target nucleus. Coulomb excitation occurs when the energy of the projectile is

below the Coulomb barrier, so nuclear excitations can occur via a long range

electromagnetic interaction between the projectile and target nuclei.

ECB =
AP + AT

AT

ZPZT e
2

4πǫ0R
[MeV ] (2.21)

Equation (2.21) [22] defines the energy of the Coulomb barrier between the

projectile P and the target ion T where e is the elementary charge, R is the interac-

tion radius and ZP and ZT are the atomic number of the projectile and the target

nuclei, where AP and AT are the masses of the projectile and target respectively.

The interaction radius R is greater or equal to the Coulomb radius which is given

in equations (2.22,2.23)[22], where Ri is either the beam or target radius.

RC = RB +RT + (3.0± 0.5)fm (2.22)

Ri = (1.123
√

Ai −
0.94
3
√
Ai

)fm (2.23)

Nucleus RC ECB

112Sn 10.36(±0.5) fm 431 MeV
114Sn 10.39(±0.5) fm 436 MeV
116Sn 10.42(±0.5) fm 442 MeV
122Sn 10.52(±0.5) fm 456 MeV
124Sn 10.55(±0.5) fm 464 MeV

Table 2.2: The Coulomb radii RC and Coulomb barrier heights for 112,114,116,122,124Sn

beams on a 12C target.

Coulomb excitation has many advantages to be used as the mechanism for

excitation, firstly its large cross-sections which helps to maximize statistics in the

measured data. The differential cross-section for the excitation of a state via an

electric multipole transition Eλ can be expressed as:
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Figure 2.4: Trajectory of the projectile in orbit in the Coulomb field of

the target nucleus in the classical picture.

dσEλ = (
ZPe

~v
)2a−2λ+2B(Eλ)dfEλ(θ, ζ) (2.24)

a =
ZPZTe

2

m0v2
(2.25)

where ZP is the atomic number of the projectile, a is the distance of closest approach

given in equation (2.25) and the function dfEλ(θ, ζ) is a tabulated function in which

θ is the scattering angle of the projectile and ζ is the adiabacity parameter. The

scattering angle, θ, is in the centre of mass reference frame and m0 is the reduced

mass of the projectile and target nuclei. The integration of equation (2.24) over

all scattering directions gives the total excitation cross-section of order Eλ, where

B(Eλ) is the reduced matrix element which is the probability to excite the nucleus

to a part́ıcular state.

The γ decay of states populated by Coulomb excitation can give information

about the spin of the nuclear state from the angular correlations of the emitted

γ-rays. Populating the states via Coulomb excitation also introduces a large spin



2.3 Coulomb Excitation in Inverse Kinematics 23

alignment, which means that a large anisotropy is observed in the measured angular

correlations leading to large logarithmic slopes with high sensitivity to the obser-

vation of the precession. In Coulomb excitation the probe ions are focussed in the

direction of the beam axis: the angular momentum vector L = r×p is perpendicular

to the beam direction. The spin alignment for the probe nuclei is m(l) = 0 with the

spin projection on the quantization axis (beam axis) [13].

Coulomb excitation in inverse kinematics occurs when a heavy projectile

undergoes excitation after interaction with a light target. Instead of detecting the

recoiling target ions at backward angles, they are projected forward in the beam

direction (see figure (2.6)).

Figure 2.5: A schematic of the standard kinematics in Coulomb exci-

tation where the heavy target ion is excited and the light beam ion is

backscattered [22].

As the projectile is excited, both the excited probe ion and the recoiling

target ion move in the direction of the beam at high velocity. The target ion has

a small charge and mass so it traverses the thick multilayer target and reaches the

particle detector placed in forward direction. The heavy projectile ion is stopped

in the target backing and the primary beam is stopped in a foil placed between

the target and the particle detector. This kinematic focussing of the projectile and

target ions in the forward direction has the advantage of improving the number

of detected recoil particles at 0◦, so there is an improved efficiency in detecting
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coincident γ-rays.

Another advantage of using inverse kinematics is that the excited projectile

will traverse the ferromagnetic layer of the target at higher velocities. This will cause

the ion to experience stronger transient fields since the strength of the transient field

depends on the velocity of the ion as discussed in the last section.

Being able to Coulomb excite the projectile also means that the same multi-

layer excitation target can be used to measure g-factors in different isotopes. Using

different beams on the same target not only allows one to use the beamtime in a

very efficient way, but also reduces the systematic uncertainties and leads to very

precise relative g-factor values, which in many cases are even more important than

the measurement of the absolute g-factor with high precision.

Figure 2.6: A schematic of the inverse kinematics in Coulomb excitation

where the heavy beam ion is excited and the light target ion is scattered

in the forward direction [22].
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2.4 The Alpha Transfer Reaction

For projectile energies slightly below and around the energy of the Coulomb

barrier, α-transfer reactions can occur simultaneously with Coulomb excitation. The

projectile (in our case a Sn isotope) interacts with the target nucleus (12C), which

can be thought of as being a composite bound state of the core 8Be and an α-

particle [31]. During the interaction the α-particle is transferred from the target to

the projectile ion leading to a residual nucleus (in this case Te) which can be thought

of as a bound state of the projectile (Sn) and an α particle. After the α-transfer,

the 8Be then decays into 2α particles which are detected in the particle detector.

For instance, for a 114Sn beam impinging on a 12C target, the reaction could be

described by equation:

114Sn +12 C(8Be+ α) →118 Te(114Sn+ α) +8 Be →118 Te(114Sn+ α) + 2α (2.26)

The α-transfer reaction can also be used for the measurement of magnetic

moments. This method has the same advantages of inverse kinematics in that there

is also a focussing of the resulting ions in the beam direction, so the particle detector

also detects the α particle products which can be used tag the γ-rays of interest by

particle coincidences.

The use of α-transfer with a 12C target is an excellent technique to select

the state of interest. The first 2+ state is predominantly populated and the feeding

from higher states is significantly reduced.

The spin alignment for ions produced in α-transfer is reduced. The orien-

tation of the angular momentum vector is not fixed in a specific direction as in

Coulomb excitation. The angular correlations for nuclei produced in α-transfer will

therefore have reduced anisotropies.
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Chapter 3

The Experiments U234/U236

3.1 The Setup

The measurement of the g-factors of the 2+ states for the 112,114,116,122,124Sn

isotopes was performed using the transient field technique in combination with pro-

jectile Coulomb excitation in inverse kinematics. In the first experiment in 2007

(U234) pure beams of 112,114,116Sn at 4 MeV/u were provided by the UNILAC linear

accelerator at GSI and impinged on a multilayer target.

Coulomb excitation of the Sn ions occured in the first layer of 0.68 mg/cm2

natC. The excited Sn ions then traversed a 10.8 mg/cm2 thick Gd layer where they

experienced a transient field. The gadolinium layer is ferromagnetic, and was mag-

netized by an external magnetic field which switched polarity between field up and

down. The target was cooled via a dewar filled with liquid nitrogen. Gadolinium

is ferromagnetic when it is cooled below the Curie temperature of Tc=293 K, so

cooling the target with liquid nitrogen ensures the ferromagnetic layer retains full

magnetization during the experiment [33].

As the Sn ions traversed the Gd layer, they experienced a precession. The

ions were finally stopped in 4.86 mg/cm2 Cu layer where they de-excited in a hy-

perfine interaction-free environment. A thick stopper foil of 24.39 mg/cm2 Ta was

placed after the target before the Si detectors in order to prevent the beam from

hitting the Si detectors.

The follow up experiment to U234 - experiment U236 performed in 2009 -

utilized the same set up to measure the heavier stable Sn isotopes of 122,124Sn at

the UNILAC accelerator in GSI. The differences between the two runs are listed
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here, otherwise the set up was the same as described previously. In run U236 the

beam energy used was 3.8 MeV/u, with beams of stable 122Sn and 124Sn which

impinged on a multilayer target containing an excitation layer, a ferromagnetic

layer and a stopper, as before. For the run measuring 124Sn, the target consisted of

0.647 mg/cm2 natural carbon, 10.1 mg/cm2 gadolinium, 1.0 mg/cm2 tantalum and

7.24 mg/cm2 copper backing, plus a 5 µm tantalum beam stop. However, halfway

through this run modified line shapes were observed.
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Figure 3.1: The difference seen in the peak between runs.

Figure 3.2: A possible explanation as to why the line shape shows a

separate flight peak.
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The most probable explanation regarding the abnormal line shapes in this

run is that a section of the carbon target became detached from the gadolinium,

as shown in figure (3.2), and the carbon ions were excited in the detached segment

before decaying in vacuum before re-entering the target in the Gd layer. The recoil

target ions were still detected in the Si detectors making it impossible to exclude

these effects, but for the events after run 90, when the line shape resumed closer to

the standard form, one can assume that this detached part of the target “broke”

off, leaving a semi intact carbon target attached to the Gd layer, and when gated

on the carbon ions, only the valid Sn events are taken into consideration.

For the next run of 122Sn the target was changed because of the broken target

in the 124Sn run. The target used for measuring 122Sn consisted of 0.66 mg/cm2

layer of natural carbon, 10.9 mg/cm2 of Gd, 1.0 mg/cm2 Ta and 5.23 mg/cm2 Cu

stopper, the beam stop used was 20 µm of Ta.

Figure 3.3: Sketch of the multilayer target used in the experiment U234.

About 3 cm behind the multilayer target an array of silicon pin diodes was

positioned in order to track the recoil target ions. When a Sn ion of the primary

beam undergoes Coulomb excitation, a carbon target ion recoils in forward direction.

This ion traversed the multilayer target and was detected by the silicon detector

array. The particle detectors consisted of four 1cm x 1cm silicon diodes located

symmetrically above and below the beam axis. The particle detectors covered an
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angular range of 1.9-20.1◦ for the inner Si detectors and 23.4-37.5◦ for the outer

detectors. This linear geometry has the advantage of selecting the reactions with the

largest spin alignment, leading to large anisotropies of the γ-ray angular correlations

and consequently to a higher sensitivity to small precessions.

The γ-rays from the de-excitation of the Sn ions were detected by four EU-

ROBALL cluster detectors [34] in positions at ±65◦ and ±115◦ with respect to the

beam axis. The distance from the Ge detectors to the target is 22(1) cm. A single

Ge detector at 0◦ is also included in the set up.
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Figure 3.4: Top) Photo of our target chamber. Bottom) A schematic

diagram of the particle detector positioned behind the target.
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Figure 3.5: Top) Photo of our target chamber. Bottom)The schematic

diagram of the Ge detectors with respect to the target and the beam

axis.
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The EUROBALL cluster detectors each contain 7 individual crystals. Figure (3.6)

shows the configuration and labeling of the crystals with respect to the detector

setup. Tables (3.1) and (3.2) show the corresponding angles for each crystal of each

cluster.

Figure 3.6: Detail of the cluster detectors and the crystals for U234.

To obtain the detector angles θ′ (relative to the beam axis in a horizontal

plane) and φ′ (angle out of the horizontal plane), the relative angles between the

crystals were calculated using the geometry of the cluster detectors as shown in

figures (3.7) and (3.8). The total angles can be calculated by adding to the (θ′,φ′)

at the core of the cluster which is either (±65◦,0◦) or (±115◦,0◦).
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Figure 3.7: Obtaining the relative φ between the crystals

Figure 3.8: Obtaining the relative angle θ between the crystals
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Figure 3.9: The coordinate system showing the detector angles and the

polar angles relative to the beam axis [35]

.

The position of the Ge crystals can also be expressed in terms of the polar angles

(θ,φ) and the transformation between the two angle reference frames is given by:

cos (θ) = cos (θ′) cos (φ′) (3.1)

θ′ < 0 : φ = π + tan−1

(
tan (φ′)

sin (θ′)

)

(3.2)

θ′ > 0 , φ′ < 0 : φ = 2π + tan−1

(
tan (φ′)

sin (θ′)

)

(3.3)

θ′ > 0 , φ′ > 0 : φ = tan−1

(
tan (φ′)

sin (θ′)

)

(3.4)
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Table 3.1: The crystals and their angles and polar angles: θ′,φ′ are the angles of

the detectors, θ,φ are the polar angles and d is the distance from the crystal to the

target for runs U234.

Cluster Crystal θ′(◦) φ′(◦) d(cm) θ(◦) φ(◦)

1 A -100.88 +8.27 22.43 -100.77 171.58

1 B -115.00 +16.20 22.43 -113.94 162.23

1 C -129.12 +8.27 22.43 -128.64 169.39

1 D -129.12 -8.27 22.43 -128.64 190.61

1 E -115.00 -16.20 22.43 -113.94 197.78

1 F -100.88 -8.27 22.43 -100.77 188.42

1 G -115.00 0.00 22.00 -115.0 0.00

2 A -50.88 +8.27 22.43 -51.36 169.39

2 B -65.00 +16.20 22.43 -66.06 162.23

2 C -79.12 +8.27 22.43 -79.23 171.58

2 D -79.12 -8.27 22.43 -79.23 188.42

2 E -65.00 -16.20 22.43 -66.06 197.77

2 F -50.88 -8.27 22.43 -51.36 190.61

2 G -65.00 0.00 22.00 -65.00 0.00

3 A +79.12 +8.27 22.43 +79.23 8.42

3 B +65.00 +16.20 22.43 +66.06 17.77

3 C +50.88 +8.27 22.43 +51.36 10.61

3 D +50.88 -8.27 22.43 +51.36 349.39

3 E +65.00 -16.20 22.43 +66.06 342.23

3 F +79.12 -8.27 22.43 +79.23 351.58

3 G +65.00 0.00 22.00 +65.00 0.00

4 A +129.12 +8.27 22.43 +128.64 10.61

4 B +115.00 +16.20 22.43 +113.94 17.77

4 C +100.88 +8.27 22.43 +100.77 8.42

4 D +100.88 -8.27 22.43 +100.77 351.58

4 E +115.00 -16.20 22.43 +113.94 342.23

4 F +129.12 -8.27 22.43 +128.64 349.39

4 G +115.00 0.00 22.00 +115.00 0.00
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Table 3.2: The crystals and their angles and polar angles: θ′,φ′ are the angles of

the detectors, θ,φ are the polar angles and d is the distance from the crystal to the

target for runs U236.

Cluster Crystal θ′(◦) φ′(◦) d(cm) θ(◦) φ(◦)

1 A -99.95 +8.83 21.10 -99.83 171.04

1 B -115.00 +17.25 21.10 -113.80 161.09

1 C -130.05 +8.83 21.10 -129.48 168.53

1 D -130.05 -8.83 21.10 -129.48 191.47

1 E -115.00 -17.25 21.10 -113.80 198.91

1 F -99.95 -8.83 21.10 -99.83 188.96

1 G -115.00 0.00 20.60 -115.00 0.00

2 A -49.73 +8.96 20.81 -50.32 168.33

2 B -65.00 +17.50 20.81 -66.23 160.82

2 C -80.27 +8.96 20.81 -80.39 170.91

2 D -80.27 -8.96 20.81 -80.39 189.09

2 E -65.00 -17.50 20.81 -66.23 199.18

2 F -49.73 -8.96 20.81 -50.32 191.67

2 G +65.00 0.00 20.30 -65.00 0.00

3 A +79.91 +8.74 21.29 +80.03 8.87

3 B +65.00 +17.09 21.29 +66.17 18.74

3 C +50.09 +8.74 21.29 +50.64 11.33

3 D +50.09 -8.74 21.29 +50.64 348.67

3 E +65.00 -17.09 21.29 +66.17 341.26

3 F +79.91 -8.74 21.29 +80.03 351.13

3 G +65.00 0.00 20.80 +65.00 0.00

4 A +130.12 +8.87 21.00 +129.55 11.53

4 B +115.00 +17.33 21.00 +113.79 19.00

4 C +99.88 +8.87 21.00 +99.76 9.00

4 D +99.88 -8.87 21.00 +99.76 351.00

4 E +115.00 -17.33 21.00 +113.79 341.00

4 F +130.12 -8.87 21.00 +129.55 348.47

4 G +115.00 0.00 20.50 +115.00 0.00
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The electronics set up is shown figure (3.10). The Ge and Si detectors have

two channel outputs of energy and time. The energy signal is amplified and directly

read out to either an ADC or a DGF module. The time signal is used to build the p-

γ coincidence and construct the trigger for the acquisition. Once the p-γ coincidence

is made this is known as the free trigger. The free trigger makes an anti-coincidence

with the dead time and is now the accepted trigger which starts the acquisition.

The accepted trigger is put through a validation gate generator before being sent

as a stop signal to the TDCs. The TDC start signal comes from the Si and the Ge

processes.
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Figure 3.10: The schematic diagram of the electronics set up.
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3.2 Calibrations

For the energy and efficiency calibrations of the Ge detectors, a 152Eu source

was placed in the centre of the target chamber.
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Figure 3.11: An uncalibrated raw gamma spectrum of 152Eu for one crys-

tal.

The centroids of the identified lines in the raw spectra were determined and a linear

correlation with the known energies of 152Eu calculated.

An efficiency calibration had to be performed for all individual Ge crystals

in order to allow the measurement of angular correlations. The angular correlation

is given by the efficiency corrected number of counts in the line of interest in the

detectors positioned at different polar angles θ with respect to the beam axis.

The efficiency calibration can be done simultaneously with the energy cali-

bration as this also uses a 152Eu source. For the efficiency calibration the number
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Figure 3.12: The energy of known γ transitions in 152Eu in keV vs the

channel number for one Ge crystal.

Energy/keV Relative Intensity

244.7 36.6(1.1)

344.3 127.2(1.3)

411.1 10.71(0.11)

444.0 15.0(0.15)

778.9 62.6(0.6)

867.4 20.54(0.21)

964.0 70.4(0.7)

1112.1 65.0(0.7)

1408 100.0(1.0)

Table 3.3: The relative intensities of the γ-transitions in the calibration source,
152Eu [36].

of counts observed for each 152Eu transition is obtained from fitting the peaks in

the spectrum (3.11). They are then normalized to the known relative intensities of
152Eu given in table (3.3).

After this normalization an efficiency curve can be constructed. The fit of

the efficiency curve can be done using the function [37]:



3.2 Calibrations 41

f (x) = 0.1exp

[[(
A+Bx+ Cx2

)−G
+
(
D + Ey + Fy2

)−G
]− 1

G

]

(3.5)

where x = logEγ

E1
and y = logEγ

E2
, with Eγ being the energy of the γ-ray in keV, E1

and E2 are 100keV and 1MeV respectively.

Figure 3.13: The efficiency calibration for one of the Ge crystals.

Using the parameters obtained from the efficiency curve, the relative effi-

ciency of a detector for the energy of interest can be obtained, and then normalized

with respect to the other detectors. Figure (3.13) shows a reduced efficiency for γ

energies below 400keV. The reason for that is that lead absorbers were set up in

front of the Ge detectors to reduce the intensity of low energy gammas seen from the

Coulomb excitation of the Gd layer of the target. A significant amount of the pri-

mary beam will pass through the carbon layer and cause the Coulomb excitation of

gadolinium. The Gd layer of the target is very thick compared to the carbon target,

hence there will be a high rate of events from the Coulomb excitation of Gd com-

pared to the excitation of Sn in the target. The Gd target consists of many different
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stable isotopes which all have low excitation energies, so putting lead absorbers in

front of the Ge detectors helps to reduce the contamination from Gd.



3.3 Data Preparation: The Example of 114Sn/118Te 43

3.3 Data Preparation: The Example of 114Sn/118Te

In the experiment U234, data was taken using beams of 112Sn (36.5 hours),
114Sn (45 hours) and 116Sn (38.5 hours). Here the data preparation will be discussed

in detail for the 114Sn run. The isotopes 112,116Sn from run U234 were analyzed in

the same way.

The raw detector signals from the detectors are processed by a series of elec-

tronics modules, namely ADC’s (CAEN ADC V785 [38]), TDC’s (CAEN TDC V775

[39]) and DGF’s (Digital Gamma Finder - XIA DGF-4C Camac module [40]). This

raw data consists of energy and time for the germanium and silicon detectors and

the field direction of the magnet. The corresponding modules and data information

are given in the tables (3.4) and (3.5).

Module Type Channel number Raw Data Information

CAEN ADC V785 (32 ch) 0 Magnet Field up

1 Magnet Field down

2 Energy of Si 1

3 Energy of Si 2

4 Energy of Si 3

5 Energy of Si 4

CAEN TDC V775 (32 ch) 0 Time of Si 1

1 Time of Si 2

3 Time of Si 3

4 Time of Si 4

CAEN TDC V775 0-6 Time of Ge cluster 1

8-14 Time of Ge cluster 2

16-22 Time of Ge cluster 3

24-30 Time of Ge cluster 4

31 Time of Ge at zero degrees

Table 3.4: The raw data information and the corresponding electronic modules.



44 The Experiments U234/U236

Module Type Channel number Raw Data Information

DGF1 0 Cluster 1 Crystal A

1 Cluster 1 Crystal B

2 Cluster 1 Crystal C

3 Cluster 1 Crystal D

DGF2 0 Cluster 1 Crystal E

1 Cluster 1 Crystal F

2 Cluster 1 Crystal G

3 Ge zero degrees

DGF3 0 Cluster 2 Crystal A

1 Cluster 2 Crystal B

2 Cluster 2 Crystal C

3 Cluster 2 Crystal D

DGF4 0 Cluster 2 Crystal E

1 Cluster 2 Crystal F

2 Cluster 2 Crystal G

3 Empty channel

DGF5 0 Cluster 3 Crystal A

1 Cluster 3 Crystal B

2 Cluster 3 Crystal C

3 Cluster 3 Crystal D

DGF5 0 Cluster 3 Crystal E

1 Cluster 3 Crystal F

2 Cluster 3 Crystal G

3 Empty channel

DGF6 0 Cluster 4 Crystal A

1 Cluster 4 Crystal B

2 Cluster 4 Crystal C

3 Cluster 4 Crystal D

DGF7 0 Cluster 4 Crystal E

1 Cluster 4 Crystal F

2 Cluster 4 Crystal G

3 Empty channel

Table 3.5: The DGF module configuration for experiment U234.
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Figure 3.14: The gamma spectrum of ID 1 (Cluster 1 Crystal A) with

calibrated energy.

The spectrum shown in figure (3.14) is the result after the energy calibration

for one crystal. The line corresponding to the 2+→0+ transition in 114Sn can be

clearly seen. However, there is a very low peak to background ratio in the raw

spectra. Most of the contaminants in the spectra come from the de-excitation of the

Coulomb excited gadolinium isotopes from the ferromagnetic target layer.
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Figure 3.15: The time spectrum of the Ge detector ID 1 (Cluster 1

Crystal A).

Figure (3.15) shows the time spectrum obtained from the TDC module for
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one of the germanium crystals. It shows the time difference between the detected

γ-ray and the trigger. This and all other TDC spectra show a two peak structure.

This can be understood remembering that the p-γ coincidence is triggered by four

individual silicon detectors. Each of these four Si has a different time zero (see

Fig(3.16)) so the final Ge TDC spectra show structures with more than one peak.
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Figure 3.16: The time spectra of the four Si detectors.

When the Ge TDC’s are gated by the individual Si TDC’s a single peak

structure is seen as shown in figure (3.17a). The sum of all four TDC spectra gives

the double peak structure seen in the raw Ge TDC spectra. This confirms that each

TDC in the Ge triggers on different Si times. This can be corrected by making an

event by event subtraction of the Ge TDC from the Si TDC. The difference between

the Ge time spectra in coincidence with the inner Si detectors with respect to the

outer Si detectors is shown in figure (3.17). A possible explanation for the difference

between the inner and outer Si detectors is that the time of flight for the recoil to

reach the inner and outer Si detectors is different, since the outer detectors detect

recoil ions with lower energies which travel a longer flight path. Hence a different

prompt time window for the p-γ trigger will be applied for the inner and outer Si

detectors separately.
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Figure 3.17: a) The time spectra from the Ge detectors when gated on

the four different Si TDC’s separately. b)The time spectra when the

Ge time is subtracted from the time of the triggering Si. (The time is

inverted in this spectra as Si TDC - Ge TDC is applied)

For the measurement of the angular correlation and the double ratios it is

crucial that the events in the peak for the 2+ → 0+ transition in 114Sn come from

the Coulomb excitation in the carbon target and not from random events. To ensure

that events used in the analysis are valid, conditions and gates are applied to the

gamma spectra. The prompt peak of the TDC contains the information of events

which occur in the time window when there is a p-γ coincidence. Whether it is

Coulomb excitation or α-transfer one is interested in, making a gate on the prompt
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peak of the TDC gives the events which are valid when this p-γ condition is fulfilled.

Figure (3.18) shows the gate applied for the case of the inner Si detectors. The tail on

the left hand side of the peak comes from low energy γ-rays and X-rays which occur

in the beam pulse and fusion reactions. These events have poor timing properties

due to the poor charge collection times in the detector.
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Figure 3.18: Example of the gates applied to the time spectra.

When the prompt gate is used the γ-lines from Coulomb excitation and α-

transfer have an enhanced intensity relative to the Gd lines from the background.

There is still a contribution from Gd seen in the prompt gated spectra. However

when comparing the gamma spectra obtained from the background gate one can

see the intensity of the Gd lines is approximately the same as in the prompt gated

spectra, but there is a noticeable reduction in the intensity of the lines from 114Sn and
118Te. If the condition is implemented where the background gate is subtracted from

the events in the prompt gate, the spectra can be cleaned from the Gd contamination

and the γ-spectra only contains the lines from the valid events of 114Sn and 118Te.
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Figure 3.19: Gamma spectrum with the TDC prompt gate implemented

and background subtraction for the inner Si detectors for all Ge crystals.



50 The Experiments U234/U236

spec
Entries  8188

Mean    715.3

RMS     346.1

200 400 600 800 1000 1200 1400

2000

4000

6000

8000

10000

12000

14000

16000

18000

spec
Entries  8188

Mean    715.3

RMS     346.1

Sn114

Sn114

Sn114

Sn114

Te118

Te118

Te118

511keV

Ba122

Xe120

Xe120

Ba122

Sn114

Energy (keV)

C
ou

nt
s

Figure 3.20: Gamma spectrum with the TDC prompt gate implemented

and background subtraction for the outer Si detectors for all Ge crystals.

Figure (3.21) shows the energy spectra of recoil particles detected in the

silicon detectors. The two reactions of interest, Coulomb excitation and α-transfer,

correspond to carbon and α particles being detected respectively. Figure (3.21)

show a clear distinction carbon and α particles. Gating on the carbon peak yields

the γ-events corresponding to 114Sn, and gating on the α peak results in events of
118Te. Gating on the prompt times for both the Ge and the Si detectors removes

the random particle events and noise from the detector.

There is a noticeable difference between the energy spectra of the outer and

inner Si detectors. Due to the different angular range, the behavior of the particles

for each detector geometry will be different. The energy and the cross-section of

the recoiling target ion depends on the scattering angle. When an Sn projectile

undergoes Coulomb excitation it interacts with the target ion and the products are

scattered as sketched in figure (3.22).

Conservation of energy and momentum dictates how the particles behave with re-

spect to their scattered angles as shown in equations (3.6),(3.7),(3.8) where T is the

kinetic energy and Px is the momentum for each particle.
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Figure 3.21: The particle energy spectrum for one of the outer silicon de-

tectors a) raw spectrum for ADC2 and b) spectrum gated on the prompt

peaks in both Ge and Si TDC’s. The particle energy spectrum for one of

the inner silicon detectors c) raw spectrum for ADC3 and b) spectrum

gated on the prompt peaks in both Ge and Si TDC’s.

Q = Tfinal − Tinitial = −Eexcitation (3.6)

PSn = PCcos(θ) + PSn∗cos(ζ) (3.7)

0 = PCsin(θ)− PSn∗sin(ζ) (3.8)

Coulomb excitation is an inelastic collision, so the Q value is equal to minus the

excitation energy of the ion. Usually the scattering of the excited Sn ion is not

observed, so the unknown parameters from Sn∗ can be eliminated. From equations

(3.6),(3.7) and (3.8) the relationship between θ and the kinetic energy of the recoil

ion is given by equation (3.9)[41], where θ is measured in the centre of mass frame

and T is the kinetic energy of the Sn beam at the point of the target where excitation

occurs, mX are the masses of the reactants and products.
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Figure 3.22: The Sn beam interacts with the target to produce the ex-

cited Sn ion and an ejected target ion, both scattered in angles ζ and θ,

respectively.

T
1/2
C =

(mCmSnT )
1/2cos(θ)± [mSnmCTcos

2(θ) + (mSn∗ +mC)(mSn∗Q+ (mSn∗ −mSnT )]
1/2

mSn∗ +mC
(3.9)

The maximum recoil energy occurs when θ=0◦. Using the simulator TRANSI1, the

relationship between the angle of the recoil and its energy can be estimated for this

experiment. The difference between the energies of the ions detected in the outer

and inner Si detectors is shown in the graph in figure (3.23). TRANSI calculates

the Coulomb excitations in different depths of the target for different angle steps of

the detected recoil ion. Here the simulation calculates for 10 separate target depths

and 10 angle steps.

For the inner Si detector the energies are higher and gradually decrease as the

angle increases. The recoil particle energy begins to decrease at a steeper rate as the

recoil angle increases for values greater than ≈20◦. For the same range of angles, the

outer detector experiences a wider range of recoil ion energies when compared to the

inner detector. The energy spectrum for the case of the inner detector is expected

1TRANSI is a fortran program by J.Cub and G.Jakob which simulates a transient field mea-

surement. It takes into account factors such as the excitation in different points in the target, the

kinematics at different recoil angles, the excitation cross-section, the slowing down in the target

etc.
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Figure 3.23: The energy of the recoiling target ion vs the recoil angle

shown for both inner and outer Si detectors.

to show a concentrated distribution around the energies of 110-140 MeV, whereas

for the outer detector a broad peak with lower intensity ranging from 65-115 MeV

is expected.

The reaction cross section also depends on the angle of the recoiling particle. The

differential cross section for Coulomb excitation is given by [30]:

dσ = PdσR (3.10)

where P is the probability that the nucleus is excited in the collision and dσR is the

differential cross-section for Rutherford scattering defined as:

dσR =
1

4
a2sin−4(θ/2)dΩ (3.11)

a =
Z1Z2e

2

m0v2
(3.12)

The above equation would give a trend of decreasing cross-section as the

recoil angle increases, but the case for inverse kinematics is shown in figure (3.24)

calculated from the program TRANSI, which suggests otherwise. The cross-section
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increases as the angle θ increases, the solid angle for the inner detector is larger

than for the outer (dΩin ≈ 0.25 str, dΩout ≈ 0.18 str). Even with the inner detector

having a larger solid angle, the overall cross-section is expected to be larger in the

outer detector.

Because of the higher cross-sections, the outer detectors see more events, and with

a broader energy spread, as one can see in figure (3.23). For the inner detector,

the expected spectra would show a narrow, intense distribution as observed in the

figure (3.21d). The outer detectors contain slightly more events due to an increase

in the cross-section and the observed counts are spread out over a larger energy

leading to a broad distribution, as shown in figure (3.21b). The α particles and

carbon ions are separated by their different stopping power in the depletion layer

of the detector. However, the above applies to a case when all four detectors run

identically, but the number of events in each Si detector is also dependent on the

quality of the detector itself. One can see in figure (3.21) that there is a variation,

even between geometrically identical detectors. However the shape of the detected

carbon ion is consistent with the above - a broad peak for the outer detectors which

overlaps at low energies with the α-particles, and the narrow high energy peak of

the inner detector completely separate from the α-peak.
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Figure 3.24: The total reaction cross-section vs the recoil angle of the

target ions shown for both inner and outer Si detectors.

Figure 3.25: Particle energy gates applied in the cases of the outer (left)

and inner (right) Si detectors.

Applying the particle and time gates in combination with background sub-

traction, yields a clean γ-spectrum containing only valid events from reactions in

the carbon target and for 114Sn and 118Te. For the inner Si detectors the spectra
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which are free from contaminants are shown in figures (3.37) and (3.28).

When the outer Si detectors are used for particle and time gating there is a

cross contamination between 114Sn and 118Te even when the particle gate condition

is implemented. The contamination between 114Sn and 118Te is due to a significant

contribution from pile up, as well as overlapping energies in the particle spectra.

Another thing which can be seen in figures (3.29) and (3.30) is that the 118Te and
114Sn spectra include contamination from the fusion reaction products 122Ba and
120Xe. The γ energy of 420 keV which corresponds to the 4+ → 2+ transition in
122Ba is seen very strongly in the first particle energy peak. The 2+ → 0+ transition

in 122Ba at 196keV is also seen in the spectrum but its intensity is very small due

to the shielding, which reduces the intensity of low energy γ-rays. For the inner

detectors these fusion products are only seen if the particle gates include very low

energies below the α peak.
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Figure 3.26: Spectrum and applied gate for ADC channel 1 - external

magnetic field direction up, the spectra for magnet field down is identical.

For measuring the double ratios, a gate in field directions up or down needs

to be assigned, and is an additional condition required when building the γ spectra

for 114Sn. Two ADC channels read in the signals from a level adapter which is

directly connected to the magnet polarity switcher. These ADC spectra represent

the events when the direction of the magnetic field is either up or down. Figure

(3.26) shows an example of one of the ADC channels with the gate applied to it.

Using this gate as an additional condition to the already cleaned spectra, one can
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measure the events for each field direction separately.
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3.4 The Example of 122Sn/126Te

As seen in the Data Preparation section for experiment U234, a set of gating

conditions were used to clean up the spectra. For the runs of experiment U236

the same gating conditions were applied as for runs U234: a gate on the TDC for

the prompt with background subtraction to eliminate random events, gates on the

particle spectra to clean up between Sn and Te events and gates on the magnet

polarity - which is the same as for U234 so not discussed. The raw TDC spectra

show a double structure due to the effects of the Si TDCs on the Ge TDCs, the

effect of gating on each Si TDC one can see that the Ge TDC spectra show a single

peak at various locations.

Figure 3.31: The Ge TDC subtracted by Si TDC (+3000 ch). The top

set of figures show the subtraction from of the Ge TDCs by the Si TDCs

of the inner Si detectors, and the bottom is the same for the outer Si

TDCs. The colors red, blue, green and black correspond to the Si TDCs

for each Si detector individually.

With the time spectra organized to account for both the Ge and Si time, these

gates are applied to obtain a clean 122Sn spectra for inner and outer Si detectors

individually. The spectra shown in (3.32) and (3.33) are for all the Ge detectors
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summed to show the cleaned spectra. For the analysis the individual Ge detectors

were taken with these gates as well as using the ADC gates from the magnet switcher

for up and down.
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Module Type Channel number Raw Data Information

DGF1 0 Cluster 1 Crystal A

1 Cluster 1 Crystal B

2 Cluster 1 Crystal C

3 Cluster 1 Crystal D

DGF2 0 Cluster 1 Crystal E

1 Cluster 1 Crystal F

2 Cluster 1 Crystal G

3 zero degree

DGF3 0 Cluster 2 Crystal A

1 Cluster 2 Crystal B

2 Cluster 2 Crystal C

3 Cluster 2 Crystal D

DGF4 0 Cluster 2 Crystal E

1 Cluster 2 Crystal G

2 Cluster 2 Crystal F

3 Empty channel

DGF5 0 Cluster 3 Crystal A

1 Cluster 3 Crystal B

2 Cluster 3 Crystal C

3 Cluster 3 Crystal D

DGF5 0 Cluster 3 Crystal E

1 Cluster 3 Crystal F

2 Cluster 3 Crystal G

3 Empty channel

DGF6 0 Cluster 4 Crystal A

1 Cluster 4 Crystal B

2 Cluster 4 Crystal C

3 Cluster 4 Crystal D

DGF7 0 Cluster 4 Crystal E

1 Cluster 4 Crystal F

2 Cluster 4 Crystal G

3 Empty channel

Table 3.6: The DGF module configuration for experiment U236, the DGFs for

Cluster 2 G and F are in reverse order to the set up in U234.
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The experimental setup for U236 ran with the same settings, but with differ-

ent thresholds and settings on the Si detectors. The gating conditions were applied

in the similar manner to that of U234, and the example for 126Te are shown in figure

(3.36).

Figure 3.34: The two dimensional matrix between the γ-ray energy de-

tected in the Ge detectors and the energy of the charged particle detected

in one of the outer Si detectors for 122Sn.

One can see in figure (3.34) that in addition to Coulomb excitation of the

projectile and α-transfer, there are other competing reactions where there is an

emission of charged particles which are also observed. Figure (3.34) shows lines from
128Xe which come in coincidence with the α-particle, it is most probable that 128Xe

is populated by fusion-evaporation where: 122Sn +12 C →134 Ba∗ →128 Xe + α2n,

where an evaporated α particle is detected in the Si detector. In the clean spectra

for the outer Si detectors, there are products from incomplete fusion reactions such

as 124Te, which is also populated as an α2n channel.
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Chapter 4

Data Analysis

4.1 Determination of the logarithmic slopes

4.1.1 Angular Correlation Fits

Angular Correlations with Velocity Corrections

The short-lived states of semi-magic even Sn nuclei partly decay in flight

through the ferromagnet before being stopped in the copper backing. The γ-peak

from the 2+ → 0+ transition consists of a stopped and an in-flight component. When

γ-decay occurs while stopped in the Cu backing, its energy remains unchanged,

whereas for decays which occur in-flight, the energy undergoes a Doppler shift, and

this shifted component requires a transformation to the centre of mass frame.

The energy of the Doppler shifted peak is related to the velocity of the ion

and the detected γ-ray angle by the formula:

E
′

γ(θ, t) = E0
γ

√

1− β2(t)

1− β(t)cos(θ)
(4.1)

where E0
γ is the energy of the emitted γ, β = v/c, v the velocity of the ion at the

point of decay of the excited state, θ the angle of the detector in which the observed

γ is detected and E
′

γ(θ, t) is the shifted γ energy of the decay in-flight. The velocity

of the decaying ion can be obtained from the flight peak centroid and FWHM and

then used in the transformation to the centre of mass frame.
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Figure 4.1: The lineshape of the 2+ → 0+ transition in 116Sn observed in

the inner angles, with the FWHM and σ for the flight peak.
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For the cases of the 2+ → 0+ and 3− → 2+ transitions, the lifetimes of the

initial states are short, in the ps range. Most of the excited nuclei will therefore decay

before coming to rest in the Cu backing. The classical angular correlation formulas

are valid in the rest frame of the recoiling nucleus but not in the laboratory frame.

In order to correct for the Lorentz boost, the angles of observation (Ge detector

angles) have to be transformed from the laboratory to the rest frame using:

cos (θ)CM =
cos (θ)lab − β

1− βcos (θ)lab
(4.2)

where β is the velocity (v/c) of the ion traversing the target. β is obtained from the

centroid of the flight peak and its error, σ, from the FWHM.

For the 2+ → 0+ transition, the stopped component of the peak is emitted

at rest hence, one determines the intensities of the stopped and flight components

separately, using the intensities of the respective stopped and flight peaks as weights

to find the weighted mean angle for the total peak:

θweighed =

∑n
i=1wiθi
∑n

i=1wi
(4.3)

In addition a solid angle correction has to be applied when moving from the labo-

ratory to the CM frame since obviously:

WlabdΩlab = WCMdΩCM (4.4)

has to be valid. It is therefore:

WCM(θCM) = Wlab(θlab)dΩlab/dΩCM (4.5)

with

dΩlab/dΩCM(θlab) = [1− βcos(θlab)]
2/(1− β2) (4.6)



78 Data Analysis

Figure 4.2: The angular correlation for the inner Si detectors for 116Sn

2+ → 0+ transition, comparing the results without any correction for the

Doppler shift (data points and fit curve in red) and with velocity correc-

tion (data points and fit curve in blue). Top) The angular correlation of

the flight peak only Bottom) The angular correlation of the total peak.

Figure (4.2) shows the effect the corrections for the Lorentz boost make on the

angular correlation. The top figure corresponds to the flight peak only, where the

red is the uncorrected correlation, and the blue is corrected. One can see here that

for the uncorrected there were data points which lie outside the fit, even within

errors. When the correction for this Lorentz boost is applies, the correlation fits

the data within the errors. The bottom figure accounts for the total peak, where

there is a stopped (no correction needed) and a flight component. This was obtained



4.1 Determination of the logarithmic slopes 79

as described above, and the difference between the two are shown. The change in

the angular correlation for this case between the uncorrected and correct is less

prominent when compared to the flight peak only case, but this is because the

stopped component is not affected by the Lorentz boost.



80 Data Analysis

Determining the Lifetimes from the lineshapes

The lifetime of the state can also be obtained directly from the shape of the γ-

ray lineshape, as the shape of the line is directly related to the velocity distribution

of the recoils as they decay. If the slowing down process of the recoil within the

target is known, then the nuclear lifetime can be obtained from the lineshape of the

transition of interest as a function of Ge detector angle. The shape of the line is

dependent on what velocity the recoiling ion had when it emitted the γ-ray as well

as the lifetime of the state. The average velocity is given by the centroid of the

peak, and the stopped component (corresponding to the energy of the transition)

occurs at v=0.

Figure 4.3: Examples of the fitted lineshapes for the observed 2+ → 0+

transitions in 114Sn in the Ge crystals located at polar angles 53◦,65◦,115◦

and 127◦ with respect to the beam axis. These were detected in coinci-

dence with the carbon ions in the inner Si detectors. [21]
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In our setup, the lineshapes of the forward detectors were introduced previ-

ously, and one can see that even between forward detectors the shape of the flight

peak for the 2+ → 0+ transition (and also the 3− → 2+ transition) is dependent on

the angle of the Ge detector. From these Doppler broadened lineshapes the lifetimes

of these states can be extracted using the LINESHAPE program package [24]. This

program when modified to account for the kinematics used in the set up as well

as for the geometry of the particle detector used in this experimental set up and

modified to account for the multilayer target used in the experiment can be used to

extract the lifetime by fitting the lineshapes. For further details please refer to [21].

Another consideration to using the DSAM method to extract the lifetime,

is that one must be aware that if the 2+ → 0+ transition is contaminated with

significant feeding from higher states (this is discussed in detail later in the context

of the g-factors), this effect on the lineshapes also needs to be accounted for in the

analysis in the program. The intensities were obtained from the gamma spectra and

taking into account the effects from the angular correlation, this feeding comes to

15-30% from the 3− and 5-15% from the 4+. The 4+ → 2+ has a long lifetime, so

undergoes negligible Doppler shift, whereas the 3− states are all short lived. Their

lifetimes were also obtained from the observed lineshapes in this experiments.

Even though the backward and forward detectors were symmetrical in their

set up, the lineshapes vary here due to the large recoil velocity of v ≈ 0.07c, so these

relativistic effects also need to be included. By fitting the lineshape, accounting

for the above mentioned considerations, the lifetimes of the 3− and the 2+ states

were obtained from this experimental set up. The actual measured lifetime will be

discussed along with the measured g-factors in the discussion.
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Angular Correlations

The experimentally measured angular correlations were obtained from the

efficiency corrected intensities at each angle. Because of our detector set up with

a wide detector range, the angular correlation could be directly measured. A fit

was made to the data using equation (4.7) (where P2(cos(θγ)) and P4(cos(θγ)) are

Legendre polynomials) to fit for a2, a4, the experimentally measured results for these

are given in the tables (4.1) and (4.2).

W (θγ) = C[1 + a2P2(cos(θγ)) + a4P4(cos(θγ))] (4.7)

P2(cos(θγ)) =
1

2
(3cos2(θγ)− 1) (4.8)

P4(cos(θγ)) =
1

8
(35cos4(θγ)− 30cos2(θγ) + 3) (4.9)

Nuc. Transition Correlation coefficient Inner Outer
112Sn 2+ → 0+ all C 3180(90) 12311(300)

a2 0.606(40) 0.844(40)

a4 -0.882(40) -0.788(50)
114Sn 2+ → 0+ all C 10810(240) 7493(200)

a2 0.541(40) 0.760(50)

a4 -0.822(40) -0.685(60)
116Sn 2+ → 0+ all C 8924(230) 5898(160)

a2 0.568(40) 0.755(50)

a4 -0.821(50) -0.670(60)
122Sn 2+ → 0+ all C 7822(140) 3462(70)

a2 0.600(30) 0.868(30)

a4 -0.869(30) -0.733(40)
124Sn 2+ → 0+ all C 2488(60) 8886(200)

a2 0.528(50) 0.916(40)

a4 -0.971(50) -0.791(50)

Table 4.1: The angular correlation coefficients for the transition 2+ → 0+ for the

total peak (stopped and flight).
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Nuc. Transition Correlation coefficient Inner Outer

112Sn 3− → 2+ C 670(30) 2357(70)

a2 -0.611(130) -0.234(90)

a4 0(0) 0(0)
114Sn 3− → 2+ C 2953(100) 1651(70)

a2 -0.480(100) -0.475(100)

a4 0(0) 0(0)
116Sn 3− → 2+ C 2874(80) 1533(50)

a2 -0.400(80) -0.475(100)

a4 0(0) 0(0)

122Sn 3− → 2+ C 1307(10) 231(10)

a2 -0.322(30) -0.574(100)

a4 0(0) 0(0)
124Sn 3− → 2+ C 324(10) 459(20)

a2 -0.419(80) -0.938(150)

a4 0(0) 0(0)

112Sn 4+ → 2+ C 379(8) 955(18)

a2 0.480(60) 0.365(60)

a4 -0.204(60) -0.197(60)
114Sn 4+ → 2+ C 1565(15) 924(15)

a2 0.381(20) 0.328(40)

a4 -0.226(20) -0.114(40)
116Sn 4+ → 2+ C 198(3) 92(3)

a2 0.357(40) 0.347(80)

a4 -0.176(40) -0.120(70)

122Sn 4+ → 2+ C 1003(20) 273(20)

a2 0.413(50) 0.408(20)

a4 -0.025(50) -0.597(20)
124Sn 4+ → 2+ C 196(10) 228(10)

a2 0.521(20) -0.180(150)

a4 -0.092(20) -0.497(150)

Table 4.2: The angular correlation coefficients for the 3− → 2+ and 4− → 2+

transitions.
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Nuc. Si det. 2+ → 0+ 4+ → 2+ 3− → 2+

112Sn in. 100 18(1) 31(2)
112Sn out. 100 11(0) 26(1)
114Sn in. 100 25(1) 47(3)
114Sn out. 100 19(1) 34(2)
116Sn in. 100 3(0) 49(2)
116Sn out. 100 2(0) 36(2)
122Sn in. 100 18(0) 24(1)
122Sn out. 100 9(0) 8(0)
124Sn in. 100 10(1) 17(4)
124Sn out. 100 3(1) 6(0)

Table 4.3: The normalized intensities relative to the directly populated 2+ state.
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Figure 4.4: The angular correlation for the 2+ → 0+ transition as observed

from data for flight and stopped peak, the left hand side denotes the inner

Si detector geometry, the right hand side the outer Si detector geometry,

and the angular correlations are given for each isotope measured.
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Figure 4.5: The angular correlation for the 3− → 2+ transition as observed

from data, the left hand side denotes the inner Si detector geometry, the

right hand side the outer Si detector geometry, and the angular correla-

tions are given for each isotope measured.



4.1 Determination of the logarithmic slopes 87

Figure 4.6: The angular correlation for the 4+ → 2+ transition as observed

from data, the left hand side denotes the inner Si detector geometry, the

right hand side the outer Si detector geometry, and the angular correla-

tions are given for each isotope measured.
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Combining the total number of detected events for the 3− → 2+ and

4+ → 2+ transitions in cases with large yields

For the angular correlations for transitions 3− → 2+ and 4+ → 2+, the

total number of detected events is much lower than the for the observed 2+ → 0+

transition. Because the 3− and 4+ states were directly populated in this experiment,

the angular correlation for their transition to the 2+ state should be the same for

each isotope; to compensate for the poor yield and in order to obtain a better

angular correlation, the cases with the larger number of counts were used. Using

the efficiency corrected counts, each isotope with sufficient statistics were normalized

to C=1 and fitted for the coefficients for a2 and a4. This results should yield an

improved measurement of the angular correlations of the feeding states which are

not impaired by lack of counts. The error in the angular correlations of 3− → 2+

and 4+ → 2+ are also reduced as a result of combining more reliable data points.

3− → 2+ 4+ → 2+

112Sn (outer) 112Sn (outer)
114Sn (inner) 114Sn (inner)
114Sn (outer) 114Sn (outer)
116Sn (inner) -
116Sn (outer) -
122Sn (inner) 122Sn (inner)

Table 4.4: The experimentally measured correlations used for fitting the angular

correlations of 3− → 2+ and 4+ → 2+ transitions fitted to the data with the best

yield.

Transition Correlation Parameter

3− → 2+ a2 -0.365(25)

a4 0(0)

4+ → 2+ a2 0.365(10)

a4 -0.192(10)

Table 4.5: The angular correlation parameters for the 3− → 2+ and 4+ → 2+

transitions fitted to the data with the best yield (refer to table (4.4)).
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Figure 4.7: The angular correlation for the normalized counts from high

statistics cases a) 3− → 2+ b) 4+ → 2+
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4.1.2 Comparison between experimental and calculated an-

gular correlations

Using MuSTanG to obtain the angular correlation for directly populated

states

MuSTanG is a program based on the Coulex code [49], written by A. Stuch-

bery to simulate the outcome of angular correlations for specific experimental con-

ditions such as the silicon detector set up, transition type, beam energy, etc. MuS-

TanG can be used to calculate the angular correlation of a transition from a directly

populated state.

The input file in MuSTanG takes into account variables such as the projectile

and target A and Z, the projectile energy, the level number (the number in the

program assigned for each level, e.g. ground state has 1, first excited state has 2,

etc.), the level spin and parity, and level energy for the ground state and excited

states, as well as B(EL) transition strength values where L is the multipole order

of the excited state and is also a variable input. Other input variables include the

geometry of the Si detectors and the Q2 and Q4 factors.

These Q2 and Q2 values are the attenuations to the correlations due to the

finite size of the Germanium detectors. These vary depending on the size and

distance of these detectors from the target. For the detector set up employed in the

experiment the appropriate Q2 and Q4 values need to be included in this calculation.

Figure 4.8: The different regions of the Ge crystal used in calculating the

parameters, the grey area is the dead core.

Qk, is obtained by equation (4.10) [43]:
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Qk(γ) =
Jk(γ)

J0(γ)
(4.10)

where

Jk(γ) =

∫

Pk(cosβ{1− exp(−τ(γ)X(β))}sinβdβ (4.11)

and τ(γ) is the gamma absorption coefficient, β is the angle between the path of the

γ-ray and the symmetry axis of the detector andX(β) is the path-length through the

active volume of the detector [43]. Figure (4.8) shows the various regions which need

to be accounted for in calculating equation (4.11), these are given by the following:

1 : 0 ≤ β ≤ tan−1 A
D+L

→ X(β) =
d

cosβ
(4.12)

2 : tan−1 A
D+L

≤ β ≤ tan−1 A
D+d

→ X(β) =
D + L+ d

cosβ
− A

sinβ
(4.13)

3 : tan−1 A
D+d

≤ β ≤ tan−1 R
D+L

→ X(β) =
L

cosβ
(4.14)

4 : tan−1 R
D+L

≤ β ≤ tan−1 R
D
→ X(β) =

R

sinβ
− A

cosβ
(4.15)

where D is the distance between the target and the detector, L is the length of the

detector, R is the radius of the detector and d is the distance from the dead core

to the front face of the detector. In region 2 shown in figure (4.8), an additional

factor needs to be included in Jk(γ) to account for the attenuation of the γ-ray in

the inactive p-type detector: K(β) = exp(−J(γ)X ′(β)) where X ′(β) is the length

through the dead core. X ′(β) = A
sinβ

−D+d
cosβ

. Hence the Jk(γ) for region 2 is expressed

as:

Jk(γ) =

∫

Pk(cosβ){{1−exp(−τ(γ)X1(β))}+{1+exp(−τ(γ)X2(β))}exp(−τ(γ)X ′(β))}sinβdβ
(4.16)

where X1(β) is the path length in the closed end of the detector and X2(β) is the

extra path length for the gammas in the inactive part of the detector.

The function τ(γ) is a function of the energy of the γ-ray and corresponds

to:

τ(γ) = τpe(γ) + Ppe(γc)τc(γ) (4.17)
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where τpe(γ) is the attenuation coefficient for the photoelectric interaction, τc(γ) is

the attenuation coefficient for the Compton scattering, and Ppe(γc) is the probability

that a Compton scattered photon γc, will be photoelectrically absorbed. While Qk

experiences a dependence on the gamma energy, the distance from the detector to

the target is large, this energy dependence becomes negligible, as shown in figure

(4.9).

Figure 4.9: The general trend of Q2 and Q4 as a function of both distance

and gamma energy [43].
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Parameter Value

A 0.55cm

R 2.7 cm

L 6.8cm

d 1.5 cm

D 20.5/21.9cm

Table 4.6: The input parameters to calculate Q2 and Q4

In the setup used in the experiment, the distance between the Germanium

cluster detectors and the target was ≥ 20cm, and the γ-energies of interest ≥500 keV;

as can be seen in figure (4.9), for these values the Qk values lose their dependence

on the energy of the γ-ray. Using the program template given in the paper by Aung

and Rice-Evans [43], and the detector parameters for the Euroball detector set up,

the values of Qk in this set up are:

Q2 = 0.989 (4.18)

Q4 = 0.963 (4.19)

Each Ge crystal, ground into shape for the cluster detectors of the former

EUROBALL set up has the following dimensions: front diameter of 48.5mm, an

end diameter of 58.9mm and a crystal length of 68mm [44]. The parameters used

in the calculation, given in table (4.6), come from these dimensions. The diameters

are averaged over the front and end values. The inner dead core dimensions are

estimated to have a diameter of 11mm and a length of 66.5mm, varying this core

size in the program has negligible effects on the values ofQk returned by the program.
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Comparing the results

The MuSTanG calculations for Sn isotopes yield the same results for the

angular correlation for each isotope, which are shown in figure (4.10). The corre-

sponding coefficients are given in table (4.7). Figures (4.10),(4.11) and (4.12) show

how the measured angular correlations compare with the MuSTanG calculations.

There is an expected discrepancy between the angular correlation given by MuS-

TanG and the data due to effects of feeding from higher states (this is discussed in

section 5.1). Although the measured angular correlations for 4+ → 2+ and 3− → 2+

transitions for the weighted mean of the events from the isotopes measured in U234

(112,114,116Sn), treated separately for the inner and outer Si detectors have no feed-

ing contributions, the comparison between MuSTanG and the measured angular

correlations are not in agreement.

Set Up coefficients 2+ → 0+ 4+ → 2+ 3− → 2+

112,114,116Sn inner a2 0.789 0.526 -0.370

a4 -1.360 -0.308 0
122,124Sn inner a2 0.788 0.528 -0.371

a4 -1.362 -0.310 0

112,114,116Sn outer a2 1.209 0.693 -0.309

a4 -0.842 -0.249 0
122,124Sn outer a2 1.206 0.700 -0.320

a4 -0.847 -0.255 0

Table 4.7: The parameters derived from MuSTanG for 112,114,116Sn at inner detec-

tors.
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Figure 4.10: The angular correlations given in MuSTanG for the inner

and outer detectors respectively, for the flight peak only in 2+ → 0+,

the red data points and fit are for the experimentally measured data

normalized to C, the black is from MuSTanG which gives discrete data

points for W(θ) for angles from 0-180◦, the black line is the corresponding

fit.
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Figure 4.11: The angular correlations given in MuSTanG for the inner

and outer detectors respectively for the 3− → 2+ transition compared

with the summed experimental values, the red data points and fit are

for the experimentally measured data normalized to C, the black is from

MuSTanG which gives discrete data points for W(θ) for angles from 0-

180◦, the black line is the corresponding fit.
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Figure 4.12: The angular correlations given in MuSTanG for the inner

and outer detectors respectively for the 4+ → 2+ transition compared

with the summed experimental values, the red data points and fit are

for the experimentally measured data normalized to C, the black is from

MuSTanG which gives discrete data points for W(θ) for angles from 0-

180◦, the black line is the corresponding fit.
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4.1.3 The Angular Correlation of the directly populated

2+ → 0+ transition

The comparison of the MuSTanG correlations with the measured data reveals

a is significant deviation between them - even for the directly populated states. How-

ever for the comparison between the angular correlations for the directly populated

states there is a continued disagreement, whether this discrepancy is attributed to

poor yield only is something which needs to be considered before using MuSTanG

to obtain the angular correlation for the directly populated 2+ → 0+ angular corre-

lation. A possible way to determine MuSTanG’s validity to reproduce the observed

angular correlations of 2+ → 0+ is to take into account the feeding effects into the

angular correlation using the relation:

W (θγ)
obs = α1W1(θγ) + α2W2(θγ) + ...+ αnWn(θγ) =

n∑

i=1

αiWi(θγ) (4.20)

α1 + α2 + α3 + ...+ αn =
n∑

i=1

αi = 1 (4.21)

where the angular correlation parameters of the feeding states were taken from the

experimentally measured parameters and α is the ratio of intensities relative to the

observed 2+ → 0+ intensity, which should be a sum of all transitions from that state

(the directly populated 2+ → 0+, plus its feeding components). This was done as an

example in 122Sn which experiences small feeding compared to its lighter neighbours,

and the observed correlation was reproduced using the parameters from MuSTanG

as the directly populated 2+ → 0+ angular correlation in equation (4.20).
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Figure 4.13: Attempt to reproduce the observed 2+ → 0+ angular corre-

lation in 122Sn using MuSTanG angular correlation coefficients for purely

populated 2+ → 0+ transition, and the experimentally measured angular

correlation coefficients for feeding states (based on the values given in

table (4.5)) and measured intensity ratios compared with the data. The

top is for the inner Si, and the bottom for the outer Si.
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One can see that this is not a good fit to the observed data - there is a

significant difference in the slopes of the two angular correlations, which are the

essential components for measuring the precession and hence the g-factor. A method

which may be preferable to obtaining these angular correlation parameters is by

fitting equation (4.20) to the observed 2+ → 0+ angular correlation data for the

parameters a2, a4 of the purely populated state.

Using the angular correlation parameters from table (4.5) for the 3− → 2+

and 4+ → 2+ transitions, and the ratios of measured intensities given from the

individual angular correlations, the fits to the observed angular correlation for the

directly populated state parameters are calculated to be:

Nuc. Inner Outer
112Sn a2= 0.654(60) 0.933(50)

a4= -1.131(70) -0.884(60)
114Sn a2= 0.561(60) 0.869(70)

a4= -1.052(70) -0.801(90)
116Sn a2= 0.558(60) 0.837(70)

a4= -0.984(70) -0.720(80)
122Sn a2= 0.644(60) 0.938(40)

a4= -1.067(40) -0.797(40)
124Sn a2= 0.533(60) 0.952(40)

a4= -1.118(60) -0.823(50)

Weighted mean a2= 0.601(25) 0.924(22)

a4= -1.072(26) -0.812(25)

Table 4.8: The purely populated 2+ → 0+ parameters from fit.
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4.1.4 Other methods to determine the slopes

In past experiments of magnetic moment measurements, a pair of γ detectors

symmetric to the beam axis were used [12]. In these cases, one cannot simply

measure the logarithmic slope by fitting for the coefficients of the angular correlation

as done in this set-up. When there is only one pair of detectors, or even two, the

angular correlation and the logarithmic slope require a different technique to measure

them. The set up used in U234 and U236 has the advantage of a wide angular range

in our Ge detector set up, but with various possible methods available, these were

looked into for obtaining the angular correlation parameters from the experimental

data. Such methods are:

1. Fit the data points with errors for the parameters a2 and a4 by iteration with

a fit program (e.g. gnuplot or ROOT), as discussed in the last section.

2. The parameter η, relates the theoretical angular correlation coefficients, ath2

and ath4 to the experimental coefficients by equations [26]:

a2 = ath2 (1− 6η) (4.22)

a4 = ath4 (1− 20η) (4.23)

which allows one to fit by iteration for only one parameter to obtain a2 and

a4.

3. Obtain η using equation (4.24):

W (51)

W (79)
=

1 + ath2 (1− 6η)P2(51) + ath4 (1− 20η)P4(51)

1 + ath2 (1− 6η)P2(79) + ath4 (1− 20η)P4(79)
(4.24)

The intensities of the peaks at the angles of maximum anisotropy can be used

to find the angular correlation parameters by solving (4.24) for η. This is

part́ıcularly useful when using a set up limited to a detector geometry, as the

slope can be established from the ratios of detectors set at 51◦ and 79◦.

4. The ratios of W (51)
W (65)

and W (65)
W (79)

from the experimentally measured intensities

can also be used to obtain the angular correlation parameters a2, a4. Using

the form given in equation (4.24) the angular correlation parameters can be

found for each ratio which satisfy the condition:
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W (θ1)

W (θ2)
=

1 + a2P2(θ1) + a4P4(θ1)

1 + a2P2(θ2) + a4P4(θ2)
(4.25)

By using a program to solve for a2, a4 combinations which satisfy the above

condition for both ratios, the region where the a2, a4 values cross are the valid

ones for the correlation. An example is shown for the case of 114Sn inner Si

detector geometry in figure (4.14). From the experimentally calculated ratio

with errors, a program calculates an array of compatible a2, a4 values for each

ratio case, whether it be W (51)
W (65)

,W (65)
W (79)

. These two ratios are super imposed,

and where the two regions meet, their weighted mean gives the corresponding

a2, a4 pairs, and the errors are also calculated from the range.

2a
0 0.1 0.2 0.3 0.4 0.5 0.6

4a

-1.6

-1.4

-1.2

-1

-0.8

-0.6

 
W(81)
W(68)

 and 
W(68)
W(53)

 values for ratios 4 and a2a

W(53)/W(68)
W(68)/W(82)

Figure 4.14: The combinations of a2 and a4 parameters which satisfy W (51)
W (65)

and W (65)
W (79)

for 114Sn inner Si detectors 2+ → 0+

The different methods yield the angular correlation coefficients given in table (4.9).

One can see that the smallest errors come from fitting to η, and the largest

come from method 4, which is more an approximation of the coefficient’s range.

Method 4 is probably the most complicated method to obtain the parameters

of the angular correlation, it is also very time consuming to do when compared with
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parameter 1: a2, a4 fit 2: η fit 3: Ratio of W (51)
W (79)

4: Ratios of W (51)
W (65)

,W (65)
W (79)

a2 0.541(40) 0.610(4) 0.591(40) 0.339(200)

a4 -0.822(40) -0.785(30) -0.728(40) -0.975(200)

S(65◦) -1.995(80) -2.057(40) -1.946(90) -1.86(390)

Table 4.9: The angular correlation parameters compared for different methods for
114Sn inner Si.

the others; the errors it yields are also very large. The ratio of W (51)
W (65)

in method 3

gives values which are comparable to fitting the a2 and a4 to the data; the main flaw

with method 3 is that for a set up with a wide angle range, it seems redundant.

These ratio methods are useful if there is only a pair of γ-detectors available

in the set up, where a full angular correlation cannot be experimentally fitted. In the

set up in this experiment, the cluster geometry covers a wide range of angles from

±51◦, ±65◦, ±79◦, ±101◦, ±115◦, ±129◦ and 0◦, so a fit of the angular correlation

to the data is the best way to obtain the coefficients of the angular correlation, so

in this case methods 3 and 4 are redundant. Fitting to η yields small errors, but it

forces the measured a2 and a4 coefficients to conform to the theoretical values, so

the best representation of the experimentally measured a2 and a4 coefficients would

come for fitting to the parameters themselves.
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Another consideration in the feeding correction calculations are the differen-

tial angular correlations
dW

2+

dθ
, dW320

dθ
and dW420

dθ
obtained from the angular correlation

coefficients a2 and a4 via the equation:

dW

dθ
= sin(θ)cos(θ)(−3a2 − 17.5a4cos

2(θ) + 7.5a4). (4.26)

The angular correlation parameters are read in by the program for the exper-

imentally observed 2+ → 0+ transition, the directly populated 2+ → 0+ transition

(see subsection 4.1.3), for the 4+ → 2+ → 0+, where the experimentally measured

4+ → 2+ transition can be used, as their values are identical as both 4+ → 2+ and

2+ → 0+ are E2 transitions. The angular correlation for the cascade 3− → 2+ → 0+,

is obtained from the experimentally measured 3+ → 2+ and equation (4.27)[26]:

W exp
320 (θγ) =

W theory
320 (θγ)

W theory
32 (θγ)

·W exp
32 (θγ) (4.27)

where the theoretical parameters of W theory
320 are a2 = 0.571 and a4=-0.571. The

angular correlations used have been introduced already in table (4.1) for the observed

2+ → 0+, and table (4.5) (the angular correlation of all isotopes with good yield)

for 4+ → 2+. For the cascade 3+ → 2+ → 0+, the values used the correlation

parameters from table (4.5) in conjunction with equation (4.27).

Si det. 112Sn 114Sn 116Sn 122Sn 124Sn Mean

inner a2 0.406(30) 0.508(20) 0.571(20) 0.632(10) 0.435(20) 0.598(10)

a4 -0.613(20) -0.582(20) -0.571(20) -0.556(10) -0.606(20) -0.564(10)

outer a2 0.700(20) 0.512(20) 0.512(20) 0.556(20) 0.152(30) 0.598(10)

a4 -0.538(20) -0.586(20) -0.586(20) -0.575(20) -0.678(30) -0.564(10)

Table 4.10: The angular correlation coefficients for cascade 3+ → 2+ → 0+.
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4.2 Determination of the precession angles

4.2.1 Obtaining the precession experimentally

The precessions were measured by taking the double ratio at each angle and

for each magnetic polarity (see section 2.1). The field up data was used for the

gate on adc[0], and the field down was taken from the ADC gate adc[1]. Each ADC

channel registers the valid event for each magnetic polarity read in by the field

direction switcher. Gating on the peak and on the appropriate ADC channel gives

the field up or field down events.

The precession ∆Φ is determined from the ratio of the intensity of a specific γ-

ray peak between the intensity ratios between up and down field directions for a pair

of detectors placed in a plane at symmetric angles, ±θ, relative to the beam direction.

The individual intensities for each of the 28 detector crystals were measured from the

cleaned γ-spectra for both up and down magnetic polarity separately. The double

ratios are independent of efficiency, so the raw intensities are used in this case. For

the detectors located at 115◦ and 65◦, there were 3 crystals per cluster (3 in the -θ

and 3 in +θ) and for the other angles: 51◦, 79◦, 101◦, 129◦, there were 2 crystals

per cluster. For the cases when there are 2 crystals per cluster, the double ratio was

taken as follows:

ρ(θ) =

(
N1(+θ ↑)
N1(+θ ↓) ·

N2(+θ ↑)
N2(+θ ↓) ·

N3(−θ ↓)
N3(−θ ↑) ·

N4(−θ ↓)
N4(−θ ↑)

)1/4

(4.28)

where 1,2 are different crystals at +θ and 3,4 for crystals at −θ. For the case with

3 crystals per cluster at the same angle:

ρ(θ) =

(
N1(+θ ↑)
N1(+θ ↓) ·

N2(+θ ↑)
N2(+θ ↓) ·

N3(+θ ↑)
N3(+θ ↓) ·

N4(−θ ↓)
N4(−θ ↑) ·

N5(−θ ↓)
N5(−θ ↑) ·

N6(−θ ↓)
N6(−θ ↑)

)1/6

(4.29)

where 1,2,3 are for crystals at +θ, 4,5,6 for crystals at −θ and N(+θ ↑) is the

number of counts measured in the detector at +θ for field up. A program reads in

the individual intensities for field up and down, the ρ for each angle is calculated as

shown in equations (4.28,4.29). Once the double ratios are established, the effect, ǫ

is then obtained by equation (4.31) for each angle, this has already been introduced

in section 2.1. The logarithmic slope at each angle is calculated from the angular
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correlation coefficients which have been discussed before, and the ∆Φ at each angle

is hence obtained from equation (4.31). The general precession is obtained from the

weighted means of the precessions at each angle, which should agree with each other

within the errors.

ǫ =
ρ− 1

ρ+ 1
(4.30)

∆Φ =
ǫ

S(θγ)
(4.31)

After the precession and ∆Φ has been measured, in the case of no feeding, the

g-factor of the state can be determined from the equation [12]:

∆Φ = −g
µN

~

∫ tout

tin

BTF (vion(t))e
−t/τdt (4.32)

4.2.2 Precession Results

The precessions from the 2+ → 0+ transition use the slopes obtained from the

experimentally measured angular correlations for each isotope and inner and outer

Si detector geometry individually given in table (4.1). For the precessions from

3− → 2+ and 4+ → 2+ the slopes used in the calculation come from the angular

correlation coefficients from the fit of the isotopes with good yield in table (4.5).

This has already been discussed in the angular correlation chapters. These tables

show the values of ρ, the effect (ǫ), the logarithmic slope and precession at each

angle as described in section 4.2.1. These precessions were not only obtained for the

observed 2+ → 0+ transitions, but also for the transitions from the feeding states

into the 2+ state of 3− → 2+, 4+ → 2+ in order to calculate the feeding corrections

to be discussed later on. The tables currently show these measured parameters from

the data for 2+ → 0+ - inner followed by outer, then 3− → 2+ inner and outer, and

4+ → 2+ inner and outer. Their weighted means between the Si detector geometry

are given at the end of the chapter and are used for obtaining the raw g-factors.
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Table 4.11: The measured precessions for 2+ → 0+ stopped and flight peak, inner

Si detector geometry.

Nuclei θ (degs) ρ ǫ× 1000 S(θ) ∆Φ(mrad)
112Sn 53 0.978(20) -11(10) -0.985(40) 11(10)
112Sn 68 1.021(20) 10(9) -2.468(110) -4(4)
112Sn 81 0.994(30) -3(15) -2.664(220) 1(6)
112Sn 102 0.996(30) -2(14) 2.918(200) -1(5)
112Sn 116 0.948(20) -27(8) 2.083(80) -13(4)

114Sn 53 1.003(10) 1(5) -0.911(40) -1(5)
114Sn 68 0.993(10) -4(4) -2.234(100) 2(2)
114Sn 81 1.003(10) 1(7) -2.209(180) -1(3)
114Sn 102 0.982(10) -9(6) 2.500(180) -4(3)
114Sn 116 1.008(10) 4(4) 1.909(80) 2(2)

116Sn 53 1.004(10) 2(5) -0.939(40) -2(5)
116Sn 68 0.990(10) -5(5) -2.284(120) 2(2)
116Sn 81 1.017(10) 9(8) -2.311(210) -4(4)
116Sn 103 0.972(10) -14(7) 2.616(200) -5(3)
116Sn 116 1.008(10) 4(5) 1.949(90) 2(4)

122Sn 52 0.981(10) -9(5) -0.882(30) 11(6)
122Sn 67 0.994(10) -3(5) -2.343(70) 1(2)
122Sn 81 0.977(20) -11(10) -2.592(160) 4(4)
122Sn 101 1.032(20) 15(10) 2.794(150) 5(3)
122Sn 115 1.020(10) 9(5) 2.155(60) 4(2)
122Sn 131 1.012(10) 6(6) 0.601(30) 10(10)

124Sn 52 1.003(20) 1(11) -0.816(50) -1(14)
124Sn 68 0.943(20) -29(10) -2.473(130) 11(4)
124Sn 81 0.927(40) -38(18) -2.733(270) 13(6)
124Sn 102 1.032(40) 15(20) 2.977(250) 5(6)
124Sn 116 1.004(20) 2(10) 2.068(100) 1(5)
124Sn 131 1.041(20) 20(11) 0.515(50) 39(22)



108 Data Analysis

Table 4.12: The measured precessions for 2+ → 0+ stopped and flight peak, outer

Si detector geometry.

Nuclei θ (degs) ρ ǫ× 1000 S(θ) ∆Φ(mrad)
112Sn 53 1.008(10) 4(5) -1.219(40) -3(4)
112Sn 68 1.030(10) 15(5) -2.801(130) -5(2)
112Sn 81 1.050(20) 24(10) -3.263(330) -7(3)
112Sn 103 0.969(10) -16(7) 3.484(280) -5(2)
112Sn 116 0.966(10) -17(4) 2.362(90) -7(2)

114Sn 53 1.016(10) 8(6) -1.125(50) -7(5)
114Sn 68 0.971(10) -15(5) -2.416(160) 6(2)
114Sn 81 0.987(20) -17(9) -2.435(300) 3(4)
114Sn 103 0.985(20) -7(8) 2.749(280) -3(3)
114Sn 116 1.033(10) 16(6) 2.088(110) 8(3)

116Sn 53 0.990(10) -4(6) -1.119(50) 4(5)
116Sn 68 1.022(10) 10(6) -2.376(160) -4(2)
116Sn 81 1.0047(20) 2(11) -2.359(290) 0(4)
116Sn 103 0.992(20) -3(9) 2.678(270) -1(3)
116Sn 116 0.991(10) -4(5) 2.060(110) -2(2)

122Sn 52 1.047(20) 22(10) -1.151(30) -19(8)
122Sn 68 1.026(20) 12(10) -2.748(100) -4(3)
122Sn 82 0.698(20) -177(14) -2.938(250) 60(7)
122Sn 101 1.109(40) 51(19) 3.292(240) 15(6)
122Sn 116 1.014(20) 7(9) 2.335(70) 3(4)
122Sn 131 1.024(20) 11(9) 0.887(30) 13(11)

124Sn 52 0.936(10) -32(5) -1.196(40) 27(4)
124Sn 68 0.975(10) -12(6) -2.976(140) 4(2)
124Sn 82 0.928(20) -37(11) -3.688(400) 10(3)
124Sn 102 1.002(20) 0(11) 3.854(340) 0(2)
124Sn 116 1.038(10) 18(6) 2.493(90) 7(2)
124Sn 131 1.041(10) 20(6) 0.916(40) 22(6)
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Table 4.13: The measured precessions for 3− → 2+, inner Si detector geometry

Nuclei θ (degs) ρ ǫ × 1000 S(θ) ∆Φ(mrad)
112Sn 54 1.124(110) 58(52) 0.525(40) 111(100)
112Sn 69 1.015(50) 7(25) 0.329(20) 22(77)
112Sn 83 0.965(40) -17(21) 0.113(10) -159(192)
112Sn 104 1.027(50) 13(23) -0.223(10) -58(105)
112Sn 117 1.007(50) 3(26) -0.414(30) -7(63)

114Sn 53 1.000(30) 0(16) 0.535(40) 0(30)
114Sn 68 1.020(20) 9(12) 0.344(20) 29(35)
114Sn 82 1.035(30) 17(13) 0.129(10) 134(102)
114Sn 103 1.032(30) 15(12) -0.208(10) -75(60)
114Sn 116 1.000(20) 0(12) -0.400(30) 0(31)

116Sn 54 1.024(30) 11(15) 0.524(40) 22(30)
116Sn 69 0.987(20) -6(10) 0.329(20) -19(32)
116Sn 82 0.980(20) -10(9) 0.129(10) -79(75)
116Sn 104 0.999(20) 0(10) -0.223(10) 2(47)
116Sn 117 0.969(20) -15(10) -0.414(30) 38(25)

122Sn 53 0.974(40) -13(19) 0.535(40) -24(36)
122Sn 70 0.983(30) -8(15) 0.315(20) -27(48)
122Sn 84 1.027(40) 13(19) 0.097(10) 137(205)
122Sn 103 1.012(40) 5(20) -0.208(10) -28(97)
122Sn 117 0.987(30) -6(16) -0.414(30) 15(40)
122Sn 132 0.996(40) -1(22) -0.581(40) 3(38)
124Sn 53 1.291(150) 127(65) 0.535(40) 237(123)
124Sn 69 0.982(60) -9(30) 0.330(20) -28(91)
124Sn 84 0.904(60) -50(33) 0.097(10) -522(348)
124Sn 103 1.013(80) 6(39) -0.208(10) -31(190)
124Sn 117 1.074(70) 35(35) -0.414(30) -86(87)
124Sn 132 0.982(90) -8(42) -0.581(40) 15(73)
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Table 4.14: The measured precessions for 3− → 2+, outer Si detector geometry

Nuclei θ (degs) ρ ǫ × 1000 S(θ) ∆Φ(mrad)
112Sn 54 1.123(60) 57(28) 0.524(40) 110(55)
112Sn 69 1.014(30) 6(16) 0.329(20) 21(49)
112Sn 83 1.005(30) 2(13) 0.113(10) 22(122)
112Sn 104 1.017(30) 8(14) -0.223(10) -38(63)
112Sn 117 1.026(30) 12(16) -0.414(30) -31(40)

114Sn 54 0.978(60) -11(28) 0.524(40) -21(54)
114Sn 69 1.051(40) 24(21) 0.329(20) 74(65)
114Sn 82 0.977(30) -11(12) 0.129(10) -90(99)
114Sn 104 1.005(40) 2(18) -0.223(10) -10(83)
114Sn 117 0.966(40) -17(18) -0.414(30) 42(44)

116Sn 54 1.116(60) 54(29) 0.524(40) 104(56)
116Sn 69 0.974(30) -13(15) 0.329(20) -39(46)
116Sn 82 0.996(30) -2(14) 0.129(10) -16(113)
116Sn 104 0.954(30) -23(14) -0.223(10) 105(65)
116Sn 117 1.014(30) 6(16) -0.414(30) -16(40)

122Sn 54 0.923(90) -40(46) 0.524(40) -76(88)
122Sn 70 1.007(70) 3(33) 0.315(20) 10(107)
122Sn 84 0.820(60) -98(33) 0.097(10) -1021(351)
122Sn 104 0.905(70) -50(38) -0.223(10) 224(173)
122Sn 117 0.894(60) -55(31) -0.414(30) 135(76)
122Sn 132 0.823(70) -97(38) -0.581(40) 167(67)
124Sn. 53 0.949(90) -26(45) 0.535(40) -49(84)
124Sn. 69 1.218(80) 98(37) 0.329(20) 298(115)
124Sn. 84 1.190(90) 86(41) 0.097(60) 897(436)
124Sn. 103 0.992(70) -3(32) -0.208(10) 19(157)
124Sn. 117 0.908(50) -47(27) -0.414(30) 115(66)
124Sn. 132 0.905(70) -50(36) -0.581(40) 86(63)
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Table 4.15: The measured precessions for 4+ → 2+, inner Si detector geometry

Nuclei θ (degs) ρ ǫ × 1000 S(θ) ∆Φ(mrad)
112Sn 51 0.988(50) -6(25) -0.528(10) 11(49)
112Sn 66 0.956(50) -22(25) -0.789(20) 28(32)
112Sn 79 1.084(100) 40(48) -0.572(20) -70(85)
112Sn 101 1.115(90) 54(41) 0.572(20) 95(72)
112Sn 115 0.943(40) -29(19) 0.784(20) -37(25)

114Sn 51 0.988(10) -5(2) -0.528(10) 11(4)
114Sn 66 0.938(10) -31(2) -0.789(20) 40(2)
114Sn 79 1.066(10) 32(5) -0.572(20) -56(9)
114Sn 101 0.957(10) -21(3) 0.572(20) -38(7)
114Sn 115 1.073(10) 35(2) 0.784(20) 44(3)

116Sn 51 1.165(140) 76(65) -0.528(10) -144(124)
116Sn 66 1.179(120) 81(55) -0.789(20) -103(70)
116Sn 79 1.305(210) 132(88) -0.572(20) -231(155)
116Sn 101 0.705(60) -172(36) 0.572(20) -302(65)
116Sn 115 1.072(100) 34(50) 0.784(20) 44(63)

122Sn 51 0.943(10) -29(5) -0.529(10) 55(10)
122Sn 66 0.972(10) -14(6) -0.789(20) 18(7)
122Sn 80 0.939(20) -31(9) -0.532(20) 59(17)
122Sn 100 1.010(20) 4(10) 0.532(20) 9(18)
122Sn 114 1.090(10) 4(6) 0.789(20) 5(7)
122Sn 129 0.967(10) -16(6) 0.528(10) -31(11)
124Sn 51 1.104(230) 49(108) -0.528(10) -93(205)
124Sn 66 1.199(240) 90(110) -0.789(20) -114(140)
124Sn 80 0.877(280) -65(151) -0.532(20) 123(284)
124Sn 100 0.905(210) -50(109) 0.532(20) -94(205)
124Sn 114 0.986(210) -7(103) 0.789(20) -9(131)
124Sn 129 0.724(90) -160(51) 0.528(10) -303(97)
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Table 4.16: The measured precessions for 4+ → 2+, outer Si detector geometry

Nuclei θ (degs) ρ ǫ × 1000 S(θ) ∆Φ(mrad)
112Sn 51 1.026(10) 12(6) -0.528(10) -24(11)
112Sn 66 1.108(20) 51(7) -0.789(20) -64(9)
112Sn 79 1.156(40) 72(17) -0.572(20) -126(30)
112Sn 101 1.010(20) 4(9) 0.572(20) 8(16)
112Sn 115 1.076(10) 36(5) 0.784(10) 46(7)

114Sn 51 0.997(20) -1(8) -0.528(10) 2(16)
114Sn 66 1.049(20) 24(9) -0.789(20) -30(12)
114Sn 80 0.984(30) -8(15) -0.532(20) 15(29)
114Sn 100 0.952(30) -24(14) 0.532(20) -45(26)
114Sn 114 0.992(20) -4(8) 0.789(20) -5(11)

116Sn 51 0.631(70) -226(43) -0.528(10) 428(82)
116Sn 66 0.921(140) -40(71) -0.789(20) 51(90)
116Sn 79 0.875(130) -66(69) -0.572(20) 116(122)
116Sn 101 1.027(170) 13(85) 0.572(20) 23(150)
116Sn 115 1.508(350) 202(143) 0.784(20) 258(183)

122Sn 51 0.991(140) -4(70) -0.528(10) 8(132)
122Sn 66 0.865(80) -72(45) -0.789(20) 92(57)
122Sn 80 0.804(150) -108(84) -0.532(20) 204(159)
122Sn 100 1.171(250) 78(114) 0.532(20) 147(214)
122Sn 114 1.068(120) 32(60) 0.789(20) 41(76)
122Sn 129 1.476(310) 192(131) 0.528(20) 364(248)
124Sn 51 1.596(500) 229(198) -0.528(10) -434(375)
124Sn 66 0.970(190) -15(94) -0.789(20) 19(119)
124Sn 80 0.953(350) -24(178) -0.532(20) 45(335)
124Sn 100 0.587(250) -259(160) 0.532(20) -489(302)
124Sn 114 1.015(170) 7(82) 0.789(20) 9(105)
124Sn 129 1.197(250) 89(112) 0.528(10) 170(213)
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Table 4.17: The weighed mean of the precessions.

Nuclei Si 2+ → 0+ (mrad) 3− → 2+ (mrad) 4+ → 2+(mrad)
112Sn Inner -5(2/3) 5(40/30) -5(17/20)
114Sn 0(1/1) 5(18/17) 26(2/14)
116Sn 0(1/2) 12(15/15) -127(36/69)
122Sn 4(1/1) -7(20/11) 16(4/12)
124Sn 8(3/3) -3(43/57) -151(60/59)

112Sn Outer -6(1/1) 11(24/27) -4(5/25)
114Sn 4(1/2) 16(27/23) -14(7/8)
116Sn -2(2/1) 16(24/31) 209(49/86)
122Sn 7(2/9) 78(39/79) 87(41/29)
114Sn 7(1/3) 94(37/58) -10(69/67)
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Chapter 5

The feeding corrections

5.1 Introduction

For the nuclei 112,114,116,122,124Sn, there is significant feeding (as evidenced by

the intensities reported in table (4.3) ) which occurs from the higher states (3−,4+)

into the 2+ state. Figure (5.1b) shows the level scheme of 114Sn and one can see that

the 4+ and 3− states contribute to the final observed 2+ → 0+ transition. These

feeding contributions will affect the measured precession of the 2+ → 0+ transition,

as the precession, ∆Φ, given in equation (5.1) is a function of the lifetime of the

state, and since the feeding states have a different lifetimes to the lifetime of the

2+ state, the precessions observed where feeding occurs will be altered from the

precession of a purely populated 2+ → 0+ transition.

∆Φ = gφ(τi) = −g
µN

~

∫ tout

tin

BTF (vion(t))e
−t/τdt (5.1)

Figure (5.1a) shows N(t) i.e. the number of nuclei for each possible decay

route for the 2+ → 0+ transition from states with different lifetimes (either by direct

population of the 2+ state or from feeding of higher states). To obtain the g-factor of

the 2+ state, a correction is implemented to account for these feeding contributions.

The method used here to correct for the feeding into the 2+ state is given in

equation (5.2) [32]. This takes into account factors such as the lifetime, the branching

ratios and the angular correlations of each state. This is a rather comprehensive

method to calculate the feeding correction for the precession in question. However,

in the case of the measured stable Sn isotopes there are only two relevant feeding
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Figure 5.1: a)N(t) over the time in ps for each possible decay b) Level

scheme including feeding percentages.

contributions into the 2+ state, this specific case is given in (5.3) and is the feeding

correction applied to this data:
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∆Φi
obs =

dWi

dθ
|θγ ∆Φi +

∑

j,p ηj,i

[
∏

p b (Im → Im−1)
]

dW p
ji

dθ
|θγ 〈∆Φp

ji〉
dWobs

dθ
|θγ {1 +

∑

j,p ηj,i

[
∏

p b (Im → Im−1)
]

}
(5.2)

∆Φ2+

obs =

dW
2+

dθ
|θγ ∆Φ2+ + η3,2

dW320

dθ
|θγ 〈∆Φ32〉+ η4,2

dW420

dθ
|θγ 〈∆Φ42〉

dWobs

dθ
|θγ {1 + η3,2 + η4,2}

(5.3)

where dW (θ)
dθ

denotes the differential angular correlation for each transition at an

angle θγ . Wi(θ) is the angular correlation of the directly populated state. Wobs is

the angular correlation of the measured transition, and contains both the directly

populated component and the feeding contribution. W p
ji(θ) is for the angular

correlation of the total cascade of the feeding to the state of interest and then

the ground state, with cascades 4+ → 2+ → 0+ and 3− → 2+ → 0+ are taken

from experimentally measured angular correlations. ηji is the ratio of the directly

populated state at level Ij to that of the level Ii. This ratio is proportional to the

Coulomb excitation cross-section (for safe coulex) or can be experimentally mea-

sured from the gamma intensities. np
jm(t) is obtained from the Bateman equations.

The function
[
∏

p b (Im → Im−1)
]

represents the product of the branching ratios

along the cascade pathway p, but for 4+ → 2+ → 0+ and 3− → 2+ → 0+ the

branching ratio for the Sn nuclei for these transitions is 1.

When there is feeding from the transition of a directly populated higher state into

the state of interest (in this case the 2+ state), the precession affected by the feeding

component of higher states can be expressed by:

〈∆Φp
ji〉 =

∫ tout

tin

i∑

m=j

np
jm(t)dφm(t), (5.4)

where:

dφm(t) = −gm
µN

~
Btr(t)dt (5.5)

There are different possible ways to obtain the precession of the feeding

component: one by using the experimentally measured precessions of the higher

feeding states as:
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〈∆Φ320〉 = −g(3−)
µN

~

∫ tout

tin

Btf (t)e
−t/τ3dt − g(2+)

µN

~

∫ tout

tin

λ3

λ2 − λ3

(e−t/τ3 − e−t/τ2)Btf (t)dt (5.6)

= ∆Φ(3−)− g(2+)
µN

~

∫ tout

tin

λ3

λ2 − λ3

(e−t/τ3 − e−t/τ2)Btf (t)dt (5.7)

〈∆Φ420〉 = −g(4+)
µN

~

∫ tout

tin

Btf (t)e
−t/τ4dt = ∆Φ(4+) (5.8)

The 2+ component from the 4+ feeding is neglected, as its contribution is negligible.

∆Φ(3−) and ∆Φ(4+) can be used from experimentally measured precessions, or

one can calculate the precession φ(τ) for each case when g=1 (explained later in

section 5.6) and assume values for g(3−) and g(4+). The values of ηij can either be

obtained by using the measurement of experimental intensities or from the Coulomb

excitation cross-section. The methods explored in handling this feeding correction

are explained in the results section.
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5.2 The structure of the computer program

The program consisted of different sections which deal with calculating:

1. the stopping power

2. the kinematics - energies and angles after coulex

3. the coulex cross-section

4. the precession φ(τ)

5. the slope of W(θ) and
dWij

dθ

From the above sections, information such as the velocity in and out of the targets

and the time inside the ferromagnet and were obtained in order to calculate for φ(τ).

Using this φ(τ), and all the above information, the experimentally measured pre-

cessions and intensities, the feeding correction formula given later in equation(5.9)

can be solved to give the g-factor of the purely populated 2+ state.

Figure 5.2: A graphical description of the calculations made in the pro-

gram.

The program assumed a segmented target with 10 sublayers in the carbon,

and would calculate the stopping power in each segment in the excitation target.

The assumption made was that the Sn beam interacts with the excitation layer at
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various depths in the carbon target, the program assumes this will occur in either

of the 10 layers; at each layer the excitation kinematics are calculated as a function

of the detected recoil target ion angle (which are also split into 10 detected angles),

and the energy of the excited Sn ion, and its trajectory angle is established. Using

the energy of the excited Sn ion, and by calculating the slowing down portion in

the remaining part of the C target, the velocity into the ferromagnet is established.

The slowing in the Gd layer is also calculated to extract the velocity out of the

target, but accounts for various trajectories which are affected by the angle of the

excited Sn ion. The flight path through the remaining C sublayers and then the Gd

targets are established as a function of the angle, θ. The information for vin, vout, tin

and tout are calculated, and hence one can also obtain the precession φ(τ) from the

program (via numerical integration). This is explained later in section 5.5 equations

(5.44,5.45).

Either the Coulomb excitation cross-section or the measured intensities can

be used for the ηij ratio. With ηij (from intensities or cross-sections) and φ(τ)

(from the program) established, the g(2+) with feeding correction can be obtained

by rearranging equation (5.3) as:

g(2+) =
dWobs

dθ
(1 + η32 + η42)∆Φobs

2+ − η32
dW320

dθ
∆Φ32 − η42

dW420

dθ
∆Φ42

dW pure
20

dθ
φpure
20 + η32

dW320

dθ
φfeedingfrom3−

20

, (5.9)

where the following equations are calculated by the program:

φpure
20 = −µN

~

∫ tout

tin

Btf (t)e
−t/τ2dt, (5.10)

φfeeding from 3−

20 = −µN

~

∫ tout

tin

λ3

λ2 − λ3

(e−t/τ3 − e−t/τ2)Btf (t)dt. (5.11)

One can also obtain the feeding corrected g-factor by taking approximations

for the g-factors of the 3− and 4+ states and the calculated values of φ(τ) in the

program.
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5.3 Stopping power

The total stopping power, St in a material is given by equation (5.12), which is a

function of the electronic stopping, Se, and the nuclear stopping, Sn:

St = Se + Sn (5.12)

The nuclear stopping component is given by [45]:

Sn(E) =
8.462 · Z1 · Z2 · Sn(ǫ)

(M1 +M2)(Z
0.23
1 + Z0.23

2 )
(5.13)

ǫ =
32.53 ·M1 ·M2(E/M1)

Z1 · Z2(M1 +M2)(Z0.23
1 + Z0.23

2 )
(5.14)

where Z is the proton number, M is the mass number of the particle, and E is the

energy of the particle. If ǫ ≤ 30keV then:

Sn(ǫ) =
ln(1 + 1.1383ǫ)

2(ǫ+ 0.01321ǫ0.21226 + 0.19593ǫ0.5)
(5.15)

If ǫ ≥ 30keV then:

Sn(ǫ) =
ln(ǫ)

2ǫ
(5.16)

Electronic stopping is more complex as different cases are treated differently. Firstly

the case of a nucleus with one proton, i.e. 1H is examined. [45]

1

Se

=
1

Slow

+
1

Shigh

(5.17)

Slow = A1E
A2 + A3E

A4 (5.18)

Shigh =
A5ln(

A7

E
+ A8E)

EA6
(5.19)

For the case of 2He (not necessary for this part́ıcular case but included for com-

pleteness):
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Se =
Sref
e (γZ1)2

(Zref
1

)2

γ2 = 1− exp(−0.2865− 0.1266B + 0.001429B2 −
0.02402B3 + 0.01135B4 − 0.001475B5)C2

B = ln( E
M1

)

C = 1 + (0.007 + 0.00005Z2)exp(−(7.6 − ln( E
M1

))2)

For the cases of Z>2: Same as in the case for 2He except:

γ = q + 0.5(1− q)(
v0
vf

)2ln(1 + (
4Λvf
1.919

)2)C (5.20)

q = 1− exp(0.803y0.3r − 1.3167y0.6r − 0.38157yr − 0.008983y2r) (5.21)

C = 1 +
1

Z2
(0.18 + 0.0015Z2)exp(−(7.6 − ln(

E

M1
))2) (5.22)

Λ =
a0(1− q)1/3

Z
1/3
1 (1− (1− q)/7)

(5.23)

(5.24)

where vf is the Fermi velocity, v0 is the Bohr velocity and q is the degree of ionization.

Λ is the ion screening length.

The effective ion velocity yr is given in terms of the ion velocity vr =
√

(2E/M1).

For v1 > vf

yr =
v1

v0Z
2/3
1

(1 +
v2f
5v21

) (5.25)

For v1 < vf

yr =
0.75vf

v0Z
2/3
1

(1 +
2v21
3v2f

− 1

15
(
v1
vf

)4) (5.26)

For the case of a Sn nucleus Λ is given as: Λ = 0.43

Z
1/3
1

.

Using the simulation program, SRIM [46] - which calculates the stopping

powers - the results from the stopping header file written for the program calculating

the feeding corrections can be compared, and verified. SRIM gives the results for the

stopping power for 116Sn on 157Gd from the program written by J.P. Biersack and
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J.F. Ziegler, and stopping.h denotes the stopping component of the feeding program.

The table (5.1) shows the results for the electronic stopping power ( dE
dX e

), the nuclear

stopping power ( dE
dX n

) and the total stopping power ( dE
dX t

), these are expressed in the

units of MeV/µm.

Energy (MeV) SRIM: dE
dX e

dE
dX n

dE
dX t

stopping.h: dE
dX e

dE
dX n

dE
dX t

150 18.74 0.104 18.84 20.10 0.102 20.20

200 20.78 0.082 20.86 22.10 0.081 22.18

225 21.52 0.074 21.59 22.78 0.073 22.85

250 22.34 0.068 22.41 23.32 0.067 23.34

275 23.06 0.063 23.06 23.74 0.054 23.76

300 24.49 0.059 23.55 24.08 0.058 24.09

325 23.89 0.055 23.95 24.33 0.062 24.35

350 24.21 0.052 24.26 24.53 0.067 24.55

Table 5.1: The stopping powers at different energies for 116Sn on 157Gd, when com-

pared to the stopping tables calculated in SRIM in units of MeV/µm .

If the energy going into a Gd target of 10.8 mg/cm2 is 250 MeV, stopping.h

used in the feeding program gives the average energy out of the ferromagnetic layer

to be approximately 27 MeV, whereas SRIM gives the average energy out to be

28 MeV. The energy into the ferromagnetic layer was chosen as 250 MeV in this

example as this is the average energy of the excited projectile in the carbon layer

after excitation. With these values, there is a fairly good agreement between SRIM

and the stopping.h file.

5.4 Kinematics

When a Coulomb excitation reaction occurs, the target recoil and the excited

projectile are scattered at certain angles. The target recoil is detected in the Silicon

particle detector array, which due to its geometry, accepts recoil target ions at a

certain angular range. From this lab recoil angle the scattered angle of the excited

projectile in both the lab and centre of mass frames can also be extracted.

One can think of each Si detector as consisting of 10x10 pixels as shown in figure

(5.3), symmetrical about the x axis. Each pixel has an angle of dθ[i, j] and a solid
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Figure 5.3: Obtaining the angle of the recoil target particle detected in

the Si detector.

angle of dΩ[i, j], these are given given by:

dθ[i, j] = cos−1 z
√

x[i]2 + y[j]2 + z2
(5.27)

dΩ[i, j] =
zdxdy

3
√

x[i]2 + y[j]2 + z2
(5.28)

where i and j are the array numbers for each pixel on the x and y axis, y[j] represents

the height of the Si detector for each pixel in the y-direction and x[i] the width of

the detector for each pixel in the x-direction, both with respect to the beamline,

and the distance z is from the target to the detector. To obtain the angle for each

horizontal strip the angles are normalized to the solid angles, the array i runs up to

5 instead of 10 because of the symmetry about the x axis and yields the same result:

θ[j] =

5∑

i=1

dθ[i, j] · dΩ[i, j]

5∑

i=1

dΩ[i, j]

. (5.29)
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Calculating the angles given from the geometry of the particle detector gives the lab

frame angle of the detected recoil particle, this then needs to be converted into the

centre of mass frame before obtaining the angles of the scattered excited projectile:

θcmrec[i] = θlabrec[i] + sin−1(τ · sin(θlabrec[i])) (5.30)

θcmproj[i] = π − θcmrec[i] (5.31)

θlabproj [i] = tan−1(
sin(θcmproj [i])

cos(θcmproj[i]) + γ
) (5.32)

where rec represents the recoil target ion, proj represents the excited projectile and

cm,lab are the frame of reference. Also:

τ =
√

(
Ebeam

Ei

) (5.33)

Ei = Ebeam −Q(
Mproj +Mrec

Mproj
) (5.34)

γ =
Mproj

Mrec
(5.35)

(5.36)

Ebeam is the beam energy at the point of interaction in the excitation target layer

and Q is the energy of excitation.

The energy of the excited projectile and recoil target ion can be given as follows

[41]:

T 1/2
rec =

(MprojMrec)1/2cos(θlabrec(i))+{MprojMrecEbeamcos2(θlabrec(i))+(Mproj+Mrec)[MrecQ+(Mrec−Mproj)Ebeam]}1/2

Mrec+Mproj

Tproj = −Q− Trec + Ebeam

By calculating the stopping in each sublayer of the carbon target before

excitation occurs, and by using the kinematics equations one can determine the

energy of the excited particle after Coulomb excitation. With these energies the

velocity inside the ferromagnet can be obtained from calculating the stopping of the

excited ion in the remaining C layer. The velocity out of the ferromagnet can be

obtained from the energy out of the ferromagnet obtained from shopping in the Gd.

To run the program, the angular range as defined by the Si detector geometry

is split up into 10 angles for calculation. Using equation (5.30) to calculate the angle
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of the recoil target ion for a rectangular detector (the inner and outer Si detectors

are treated separately), the angles of the excited projectile, as well as the energy of

the projectile and recoil after excitation, can be obtained.

When comparing the feeding program with the Coulex code [49], the angles

and energies are in good agreement with each other. The Coulex code used the lab

angle of the projectile as the input angle for its calculations which is why in both

programs this value is identical. The energy of the recoil target ion and the excited

projectile are given in units of MeV and the angles are in degrees.
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The energies of projectile and target ions after Coulex

Excited Projectile Energy

Recoil Target Ion

The energies of the projectile and target ions post-Coulex

Figure 5.4: The energies of the recoiling target ion and the excited pro-

jectile after Coulex as a function of the recoil lab angle.
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5.5 Coulomb excitation cross sections

The differential Coulomb excitation cross section in the lab frame is given by

equation (5.37), where one can see that the differential cross-section is a function of

the particle velocity v, Z, the B(E2;0+ → 2+), and the centre of mass angle θ. From

the information obtained from kinematics and previously known values such as the

B(E2;0+ → 2+) values; the cross-section of Coulomb excitation can be calculated.

If factors such as slowing down in the target via stopping, and the kinematics at

different recoil angles, and the solid angle of the particle detector are taken into

account, then the cross-section can be obtained. Currently this can be calculated

from programs such as TRANSI, MuSTanG and the Coulex code, but it gives the

feeding correction program more control if it is incorporated directly into the code.

Also, one should note that equation (5.37) is written for a case in inverse kinematics,

for standard kinematics Z2 should be replaced by Z1 [30].

dσEλ = (
Z2e

~v
)2a−λ+2B(Eλ)dfEλ(θ, ξ) (5.37)

where a = Z1Z2e2

m0v2
.

dfEλ(θ, ξ) =
4π2

(2λ+ 1)3

∑

µ

| Yλµ(
π

2
, 0) |2| Iλµ(θ, ξ) |2 sin−4 θ

2
dΩ (5.38)

where:

Yλµ(
π

2
, 0) = (

2λ+ 1

4π
)1/2

[(λ− µ)!(λ+ µ)!]1/2

(λ− µ)!!(λ+ µ)!!
(−1)

λ+µ
2 if (λ+ µ) = even (5.39)

= 0 if (λ+ µ) = odd (5.40)

The orbital integrals are given by:

Iλµ(θ, ξ) =

∫ +inf

−inf

eiξ(ǫsinh(ω)+ω) [cosh(ω) + ǫ+ i(ǫ2 − 1)1/2sinh(ω)]µdω

[ǫcosh(ω) + 1]λ+µ
(5.41)

where θ is the deflection angle and:

ξ =
Z1Z2e

2

~v

∆E

2E
(5.42)

ǫ =
1

sin( θ
2
)

(5.43)
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The integral of equation (5.41), was solved or estimated by a numerical

method of integration. In this case the orbital integrals were solved using the trapez-

ium method, shown in equations (5.44) and (5.45).

∫ x1

x0

f(x)dx ≈ ∆x

2

n−1∑

i=0

(f(x0 + i∆x) + f(x0 + (i+ 1)∆x)) (5.44)

=
∆x

2
[f(x0 + 2f(x0 +∆x) + 2f(x0 + 2∆x)+

... +2f(x0 + (n− 1)∆x) + f(x1)] (5.45)

However, for the population of the 4+ state this occurs via a second order

excitation from 0+ → 2+ and then 2+ → 4+. In order to obtain the Coulex cross-

section for this, the double excitation needs to be treated differently [30]. Again, like

with the first order Coulomb excitation cross-section, equation (5.46) is for inverse

kinematics in this case [47].

dσE2,E2 = (
Z2

~v
)4a−6B(E2 : 0+ → 2+)B(E2 : 2+ → 4+)dfEλ(ξ1, ξ2Jθ) (5.46)

dfEλ(ξ1, ξ2Jθ) =
16π4

54

∑

κ

{α2
Jκ(22ξ1, ξ2θ) + β2

Jκ(22ξ1, ξ2θ)}sin−4 1

2
θdΩ (5.47)

where

αJκ(22ξ1, ξ2θ) =
∑

µ1µ2

(

2 2 J

µ1 µ2 κ

)

Y2µ1

(
1

2
π, 0

)

Y2µ2

(
1

2
π, 0

)

I2µ1
(θξ1) I2µ2

(θξ2)

βJκ(22ξ1, ξ2θ) =
∑

µ1µ2

(

2 2 J

µ1 µ2 κ

)

Y2µ1

(
1

2
π, 0

)

Y2µ2

(
1

2
π, 0

)

× ...

...
1

π
P

∫ ∞

−∞

dξ′

ξ′
I2µ1

(θξ1 + ξ′) I2µ2
(θξ2 − ξ′)

where P is the Cauchy Principal value of the integral, which can be expressed as

[48]:

I = P

∫ ∞

−∞

f(x)

x
dx = iπf(0) (5.48)
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To make the transformation to the lab frame the conversion is as follows:

σ(θcm) = σ(θlab)
dΩlab

dΩcm
(5.49)

dΩlab

dΩcm

= (
sin(θcm)

sin(θlab)
)2/abs(cos(θcm − θlab)) (5.50)

For Coulomb excitation in standard kinematics, one should use the centre of

mass and lab angles of the target recoil, but in the case of inverse kinematics, it is

the scattered projectile which should be used which is what the program uses.

To obtain the total excitation cross-section one needs to obtain the solid

angle of the Silicon particle detectors.

σ = dΩ · dσlab

dΩ
(5.51)

For a square Silicon pin diode the solid angle is obtained by splitting the

detector segments and summing them. So the solid angle for each segment is given

as:

dΩ =
zdxdy

√

(x2 + y2 + z2)
(5.52)

The most complex part of calculating the Coulomb excitation cross-section

are the calculations of the orbital integrals given in equation (5.41). To test the

program’s ability in calculating these values via a numerical method of integration,

the results were compared to the tables of orbital integrals given in the review paper

by Bohr and Adler [30]. The comparison between the results from the program and

the published tables are shown in table (5.2) and are shown to agree.

To check the cross-section, the Coulex code [49] was used to check the re-

sults of both the centre of mass and the lab frame differential cross-sections. The

assumption here is that a projectile with an energy of 464 MeV impinges on carbon,

with set centre of mass angles were used in the comparison with the differential

cross-section results in the feeding program with the Coulex code.
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λ · µ Iλµ program Iλµ table

2,2 0.335 0.335

2,0 0.387 0.387

2,-2 0.437 0.437

3,3 0.159 0.159

3,1 0.177 0.177

3,-1 0.195 0.195

3,-3 0.212 0.212

Table 5.2: The comparison between the orbital integrals given by the program and

from the table of orbital integrals [30] for the case of θ=160◦ and ξ=0.4 for an E2

transition.

θcmpart Prog.: dσ2+

cm Coulex:dσ2+

cm Prog.: dσ3−

cm Coulex:dσ3−

cm Prog.: dσ4+

cm Coulex:dσ4+

cm

20 6.58 6.72 0.06 0.05 0.000 5.2x10−6

40 9.73 10.15 0.44 0.42 9.0x10−4 3.1x1010−4

60 8.29 8.59 0.69 0.67 3.9x10−3 1.2x10−3

80 6.75 6.90 0.77 0.75 7.0x10−3 2.5x10−3

100 5.60 5.63 0.75 0.72 9.0x10−3 3.8x10−3

120 4.81 4.75 0.70 0.66 9.3x10−3 4.9x10−3

140 4.29 4.17 0.63 0.60 8.6x10−3 5.9x10−3

160 3.99 3.85 0.59 0.55 7.8x10−3 6.6x10−3

180 3.90 3.75 0.57 0.53 7.5x10−3 6.7x10−3

Table 5.3: The comparison in the centre of mass differential cross-section values

between the feeding program and the Coulex Code. The units of the differential

cross-section are mb/str and θcm is in degrees
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θcmpart Prog.:dσ2+

lab Coulex:dσ2+

lab Prog.:dσ3−

lab Coulex:dσ3−

lab θcmpart Prog.:dσ4+

lab Coulex:dσ4+

lab

100 3293 3263 665 513 113 2.72 1.42

110 2074 2113 404 389 125 1.55 0.93

120 1085 1099 171 165 133 1.17 0.78

130 672 676 102 99 140 0.96 0.69

140 487 486 73 70 146 0.83 0.64

150 386 383 58 55 152 0.74 0.61

160 331 327 49 46 157 0.68 0.58

170 302 297 44 42 162 0.63 0.57

180 293 288 43 41 166 0.60 0.55

- - - - - 171 0.58 0.55

- - - - - 176 0.57 0.54

- - - - - 180 0.56 0.54

Table 5.4: The comparison in the lab frame differential cross-section values between

the feeding program and the Coulex Code. The units of the differential cross-section

in mb/str.
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Figure 5.5: The differential cross-section in the centre of mass frame and

the lab frame as calculated from this program and from the Coulex code.
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There is a general agreement between the two programs. However, the Coulex

code can only give the cross-section for one energy and one angle case, it is useful

to test out for a specific case, but for an entire experimental set up one needs to

take into account the stopping in the target and the possibility for excitation in

different parts of the target. The examples shown here for the comparison between

the Coulex code and the feeding program used the excitation 116Sn at 464MeV on

a carbon target.

For calculation purposes, the carbon target is segmented into 10 layers, the

incident projectile is assumed to undergo Coulomb excitation in any of these laters;

in addition to this there are also 10 detected recoil angles in the Si detector. This

yields the differential cross-section for each layer and angle, this is then summed

and averaged over 100. The total cross-section is then obtained when this averaged

differential cross-section (lab frame) includes the solid angle.
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5.6 Calculated Precessions

The component of φ(τi) is the value ∆Φ would have when g=1. It is presented

as the equation:

φ(τi) = −µN

~

∫ tout

tin

e−t/τiBtr(t)dt (5.53)

where Btf (vion(t)) is the time dependent magnitude of the transient field that

varies with the velocity of the ion as it traverses the target. This function, equation

(5.53) , also depends on the lifetime of the excited state, as well as the time required

to traverse the ferromagnetic layer. In order to calculate φ(τi), the velocity into

the ferromagnetic layer is obtained from the stopping of the excited projectile as it

traverses the carbon layer. The velocity out of the ferromagnetic target is obtained

from the stopping inside the ferromagnetic layer, there is no excitation to consider so

only the energy loss is calculated. The header file calculates vin and vout as well as tin

and tout. tin is the time the projectile takes to traverse the carbon layer until its exit

into the Gd and also the time on exiting the carbon target marks tin as it enters the

ferromagnet; this is taken for each sub-layer in the carbon, and also for each recoil

angle. tout takes the time of tin into account, plus the time it takes for the excited ion

to traverse the ferromagnetic layer. Each velocity and time component is calculated

individually as a function of the carbon sub-layer where excitation occurs and the

detected recoil particle angle. The mean of these values is returned to the main

program for use in calculating φ(τi), which is obtained via numerical integration.

The transient field Btf (vion(t)) is also a function of time, as the velocity will change

as the excited projectile slows down in the target. At each velocity, the transient

field can be expressed as equation (5.54) which assumes the linear parametrization

[12]:

BLIN = a · Z · v

v0
(5.54)

where a is the field parameter, which in the case of a gadolinium target is 17 T.

Z is the charge of the projectile and v is the velocity in units of the Bohr velocity.

Equation (5.54) gives the transient field at each velocity, and a function of time

in the integration. The numerical methods of integration are employed as given in

equations (5.44) and (5.45). The transient field attenuation, Gbeam also should be

included when obtaining φ(τ) as:
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BTF = BLIN ·Gbeam (5.55)

Gbeam is a function of the energy loss dE
dx

of a beam of ions in a ferromagnetic layer.

Figure (5.6) shows the attenuation G against the stopping power for a Gd host. In

order to obtain the parameter Gbeam, the average stopping inside the Gd layer needs

to be known. By calculating the approximate average energy inside the Gd host,

which is approximately 135MeV, and yields a stopping power of 19 MeV/µm. Also,

to calculate Gbeam from figure (5.6) v
Zv0

needs to be known too, and for an average

velocity of approximately 7 v0 and hence yields v
Zv0

0.14. Using the figure ( (5.6)

this gives Gbeam=0.55(5).

Figure 5.6: Transient field attenuations of various probe ions in Gd hosts

vs. the stopping power of the beam ions, the different regions are char-

acterized by v
Zv0

[12].
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The values of φ(τi) for each nucleus directly populated 2+ were compared us-

ing the TRANSI program for g=1. The results in the table assume that Gbeam=1, for

comparison purposes with TRANSI, which does not include Gbeam in the program.
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Nucleus Transition Si detector Feeding Program: φ(τ) TRANSI: φ(τ)
112Sn 2+ → 0+ inner -129.4mrad -128.5mrad
112Sn 2+ → 0+ outer -133.5mrad -135.3mrad
114Sn 2+ → 0+ inner -124.3mrad -123.3mrad
114Sn 2+ → 0+ outer -128.3mrad -129.9mrad
116Sn 2+ → 0+ inner -132.7mrad -132.6mrad
116Sn 2+ → 0+ outer -136.7mrad -139.0mrad
122Sn 2+ → 0+ inner -174.9mrad -178.7mrad
122Sn 2+ → 0+ outer -178.1mrad -183.8mrad
124Sn 2+ → 0+ inner -172.9mrad -178.2mrad
124Sn 2+ → 0+ outer -175.6mrad -182.1mrad

112Sn 3− → 2+ inner -76.6mrad -72.3mrad
112Sn 3− → 2+ outer -80.2mrad -78.1mrad
114Sn 3− → 2+ inner -114.3mrad -111.6mrad
114Sn 3− → 2+ outer -118.5mrad -118.3mrad
116Sn 3− → 2+ inner -109.0mrad -106.3mrad
116Sn 3− → 2+ outer -113.0mrad -112.7mrad
122Sn 3− → 2+ inner -29.6mrad -26.7mrad
122Sn 3− → 2+ outer -31.1mrad -29.2mrad
124Sn 3− → 2+ inner -20.2mrad -18.1mrad
124Sn 3− → 2+ outer -21.3mrad -19.9mrad

112Sn 4+ → 2+ inner -219.9mrad -229.2mrad
112Sn 4+ → 2+ outer -221.8mrad -232.0mrad
114Sn 4+ → 2+ inner -228.0mrad -238.6mrad
114Sn 4+ → 2+ outer -229.6mrad -240.7mrad
116Sn 4+ → 2+ inner * -95.6mrad -92.3mrad
116Sn 4+ → 2+ outer * -99.5mrad -98.4mrad
122Sn 4+ → 2+ inner -201.4mrad -207.26mrad
122Sn 4+ → 2+ outer -204.0mrad -211.1mrad
124Sn 4+ → 2+ inner -203.5mrad -211.2mrad
124Sn 4+ → 2+ outer -205.3mrad -213.6mrad

Table 5.5: The precessions for g=1 for all Sn nuclei in the feeding program and in

TRANSI, for direct population. (* The lifetime for the state of 4+ in 116Sn used

here is the NNDC value of 0.4ps)
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Chapter 6

g-factor results including feeding

corrections

There are various methods to calculate the feeding correction in the 2+ g-

factors using the equation (5.9), these are:

1. Using the calculated cross-sections for each populated state for the ηij

component in equation (5.9) along with the experimentally measured

∆Φ(3−),∆Φ(4+)

2. Using the measured intensities for ηij with experimentally measured ∆Φ(3−),∆Φ(4+)

3. Using measured intensities for ηij , with φ(τ3−) and φ(τ4+) from calculated

values in the code, and g(3−), g(4+) are taken as a range, based on the weighted

means of the measured g-factors for cases with high statistics.

For method 1, the values ηij use the Coulex cross-section, and method 2

reads in the intensities into the program, and then obtains ηij from these. The

comparison between the two ratios are given in table (6.1). One can see that there

is a significant difference between the Coulex cross-section ratios and the intensity

ratios; the intensity ratios show a higher proportion of the higher states being pop-

ulated than given by the calculations, the intensities and the cross sections should

be proportional however one needs to consider is this experiment did not operate in

safe coulex.
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Nucleus Si I2+ I3− I4+
I
3−

Ipure
2+

I
4+

Ipure
2+

σ2+ (mb) σ3− (mb) σ4+ (mb)
σ
3−

σ
2+

(mb)
σ
4+

σ
2+
(mb)

112Sn in 3180(90) 670(30) 379(10) 0.31(2) 0.18(1) 57.9 8.6 0.04 0.15 0.0007
112Sn out 12311(300) 2357(70) 955(20) 0.26(1) 0.11(0) 153.4 23.7 0.09 0.15 0.0006
114Sn in 10810(240) 2953(100) 1565(15) 0.47(3) 0.25(1) 53.6 7.6 0.04 0.14 0.0007
114Sn out 7493(200) 1651(70) 924(20) 0.34(2) 0.19(1) 141.0 20.2 0.10 0.14 0.0007
116Sn in 8924(230) 2874(80) 198(3) 0.49(2) 0.03(0) 51.3 8.9 0.07 0.17 0.0014
116Sn out 5898(160) 1533(50) 92(3) 0.36(2) 0.02(0) 134.3 23.5 0.17 0.17 0.0013
122Sn in 7822(140) 1307(10) 1003(20) 0.24(1) 0.18(0) 58 2 0.07 0.03 0.0012
122Sn out 3462(70) 231(10) 273(20) 0.08(0) 0.09(0) 146 6 0.15 0.04 0.0010
124Sn in 2488(60) 324(10) 196(10) 0.17(4) 0.10(1) 55 5 0.03 0.09 0.0005
124Sn out 8886(200) 459(20) 228(10) 0.06(0) 0.03(1) 138 14 0.08 0.1 0.0006

Table 6.1: The comparison between the intensities and the total cross-sections for each transition. Where Ipure2+ =I2+-I3−-I4+ .
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Nucleus ECB Ebeam ∆E
112Sn 431 MeV 448MeV 17MeV
114Sn 436 MeV 456MeV 20MeV
116Sn 442 MeV 464MeV 22MeV
122Sn 456 MeV 464MeV 8MeV
124Sn 464 MeV 471MeV 7MeV

Table 6.2: The Coulomb barrier heights for 112,114,116,122,124Sn beams on a 12C target

compared to the beam energies used in the experiment.

Table (6.2) shows the beam energies and Coulomb barrier energies, so one can

see that the energies of the beams used in this set up were above the Coulomb barrier,

so the Sn nuclei were excited via unsafe Coulex, so it is likely other excitations may

have occurred in this reaction, hence the ratio of the experimental intensities are

larger than the ratio of the calculated Coulex cross-section, and therefore method

1 is an unrealistic assumption to use in the calculations. The g-factor results from

this method using the cross-section are included in Appendix B, but really serve

just as a curiosity.

The precessions, φ(τ) are calculated by the program and are given in table

(6.3). These are used for the directly populated 2+ → 0+ precessions, and the

precessions of the 2+ → 0+ affected by higher feeding states. Also for the final

feeding correction method, where g(3−) and g(4+) are approximated, these values

in table (6.3) are used in the g-factor correction. The input values of the programs

are given by tables (B.1,B.2).
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Nuc. Si det. φpure
20 (mrad) φ32 (mrad) φ42 (mrad) φfeed. 3−

20 (mrad) φfeed. 4+

20 (mrad)

112Sn in. -71.2(6.5) -42.1(3.8) -120.9(11.0) -55.8(5.1) -7.8(0.7)
112Sn out. -73.4(6.7) -44.1(4.0) -122.0(11.1) -56.4(5.1) -7.6(0.7)
114Sn in. -68.4(6.2) -62.9(5.7) -125.4(11.4) -41.2(3.9) -4.6(0.4)
114Sn out. -70.5(6.4) -65.2(5.9) -126.3(11.5) -41.3(3.9) -4.5(0.4)
116Sn in. -73.0(6.6) -59.9(5.4) *-119.2(10.8) -46.7(4.2) -9.2(0.8)
116Sn out. -75.2(6.8) -62.2(5.6) *-120.4(10.9) -46.8(4.3) -9.0(0.8)
122Sn in. -96.2(8.7) -16.3(1.5) -110.7(10.1) -88.9(8.1) -18.9(1.7)
122Sn out. -98.0(8.9) -17.1(1.6) -112.2(10.2) -90.0(8.2) -18.4(1.7)
124Sn in. -95.1(8.6) -11.1(1.0) -111.9(11.2) -89.9(8.2) -10.9(1.0)
124Sn out. -96.6(8.8) -11.7(1.1) -112.9(10.3) -90.9(8.3) -10.5(1.0)

Table 6.3: The φ values where Gbeam=0.55(5). (* The lifetime of the 4+ state of
116Sn is taken to be 4ps here)

Nucleus Si detector g(3−) g(4+)

112Sn in. -0.119(560) 0.041(165)
112Sn out. -0.249(610) 0.033(205)
114Sn in. -0.079(286) -0.207(114)
114Sn out. -0.245(415) 0.111(63)
116Sn in. -0.200(251) 1.065(587)
116Sn out. -0.257(499) -1.736(731)
122Sn in. 0.429(1227) -0.145(108)
122Sn out. 4.56(4620)* -0.775(365)
124Sn in. 0.270(5135) 1.349(536)
124Sn out. -8.034(4957)* -0.089(611)

Table 6.4: The measured g-factors of the 3− and 4+ states respectively. In the cases

marked by the asterisk, these values are unreasonable and most likely due to bad

statistics, for the g-factor feeding correction the inner Si values were used.

Method 2 takes equation (5.9) with the experimental intensities, and the

experimentally measured weighted means of the precessions of the feeding states.

The angular correlations of the feeding states are obtained, as discussed in the
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angular correlation chapter, from the normalized W (θ) for the angular correlations

with the best yields, these results are used in the feeding program, as opposed

to MuSTanG, since this is more realistic for our data. Table (6.6) shows what

parameters were used in obtaining the feeding correction. For the cases such as the
122,124Sn outer Si detectors, the measured g(3−) were unrealistic in their values due

to their small statistics so the measured precession from the inner Si detector cases

were used instead.

Parameter Inputs Used

dWobs(θ) Measured correlation (see Angular Correlation chapter)

dW2+→0+ pure(θ) Inner Outer

a2= 0.601(25) 0.924(22)

a4=-1.072(26) -0.812(25)

dW3−→2+→0+(θ)

a2= 0.598(10)

a4=-0.564(10)

dW4+→2+→0+(θ)

a2= 0.365(10)

a4=-0.192(10)

ηij Ratio of Measured intensities

∆Φ32,∆Φ42 Experimentally measured precessions (see precession chapter)

φpure
20 , φfeeding from 3−

20 Calculated in program (table (6.3))

Table 6.5: Input details for feeding correction.
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For the third method, the values φ(τ) for the feeding states used the calcu-

lated values given in table (6.3), where the g-factors of the feeding states are given a

range based on the measured g-factors for results with good yields. Some of the nu-

clei and Si detector configurations yield poor statistics for their 3− → 2+, 4+ → 2+

states and hence also have either extreme precessions and/or large statistical er-

rors. The cases taken were for those with good number events, and the values and

range determined from the weighed mean and the errors. Using these ranges for the

feeding g-factors, another way of obtaining the feeding could be obtained.

Nucleus Si detector g(3−) g(4+)
112Sn inner -0.119(950) -
112Sn outer -0.249(611) 0.033(205)
114Sn inner -0.079(286) -0.207(112)
114Sn outer -0.245(414) 0.111(63)
116Sn inner -0.200(250) -
116Sn outer -0.257(498) -
122Sn inner 0.429(1227) -0.145(117)

Weighted mean all -0.168(153) 0.004(79)

Table 6.6: Input details for method three - g-factors with sufficient statistics.

Because the weighted means of the g-factors are estimates in this method, the ap-

proximation of g(3−) was rounded up to -0.170(200) and g(4+)≈0.005(100), these

were then inputed into the program with their errors to calculate the feeding cor-

rection for the g-factors.

6.1 Results

The results presented here are for methods 2 and 3, while for method 1 are

referred to in appendix B. The results for the inner and outer detectors were initially

treated as separate, table (6.7) show the independent results for inner and outer for

a) the raw g-factor without feeding correction, b) Method 2 using the experimentally

measured precessions (the final weighted mean) of the feeding states, c) Method 3

with calculated φ(τ), g(3−)=-0.200(200) and g(4+)=0.005(100).
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g(2+)

Nuc. Si det. raw method 2 method 3

112Sn Inner 0.070(40) 0.057(60) 0.083(50)
112Sn Outer 0.082(10) 0.110(30) 0.105(20)
112Sn Mean 0.099(30) 0.102(20)
114Sn Inner 0.000(20) 0.044(40) 0.040(30)
114Sn Outer -0.060(30) 0.000(40) -0.013(40)
114Sn Mean 0.022(30) 0.021(30)

116Sn Inner 0.000(30) 0.044(30) 0.049(30)
116Sn Outer 0.027(30) 0.079(50) 0.054(30)
116Sn Mean 0.053(30) 0.051(20)

122Sn Inner -0.042(10) -0.052(20) -0.042(20)
122Sn Outer -0.071(90) -0.032(80) -0.026(70)
122Sn Mean -0.051(20) -0.041(20)

124Sn Inner -0.084(30) -0.135(30) -0.082(30)
124Sn Outer -0.072(30) -0.085(30) -0.072(30)
124Sn Mean -0.110(30) -0.077(20)

Table 6.7: The g-factors with and without feeding corrections for methods 2 and 3

- for inner and outer detectors and their weighted means.

One can see in figure (6.1) that there is a general upward shift in the g-

factors relative to the raw g-factors which do not take feeding into account. For all

the feeding results, from methods 2 and 3, there is an agreement within the errors in

general. There is also consistent agreement within the errors of the inner and outer

detectors, so the weighted mean of the g-factors were taken, this is shown in table

(6.7) and figure (6.2).
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In figure (6.2) one can see that both method 2 and 3 agree within the

errors. Because method 2 utilizes the actual precessions for each case, this is a

better representation of the experimentally measured g-factors, these g-factors from

method 2 are the results which will be discussed from now on.

The g-factors of the Sn isotopes has been studied before in previous experi-

ments, the most notable one was conducted in 1980 by M. Hass et al at the Weizmann

Institute of Science in Israel [19], which measured the g-factors of the Sn chain from

A=112-124. There was a follow up measurement by M.C. East and A. Stuchbery et

al. in 2008 at ANU[20], which looked at isotopes with A=116-120. The values from

these experiments, as well as the current measurements from GSI are listed in table

(6.8) and are also given in figure (6.3). One can see that for the heavier isotopes

there is consistent agreement between the previously measured g-factors in WIS by

Hass et al, and also between the ANU results with the WIS results. In the case of
116Sn, the results from ANU are in agreement with both the previously measured

results from WIS and the current results from GSI, however the error bars are very

large for both previous experiments. The GSI results are not in agreement with

the measured g-factor for 116Sn, however with improvements to the experimental

techniques since 1980, such as inverse kinematics and improved detector set up, the

GSI results show a reduced error in this re-measurement. The g-factors from all 3

experiments took the weighted mean to obtain new adopted values for the g-factors

for the Sn chain, which are shown in red in figure (6.3). In the discussion, these

adopted values for the g-factors which are considered.

Nucleus GSI WIS ANU adopted
112Sn 0.099(30) 0.370(130) - 0.113(60)
114Sn 0.022(30) - - 0.022(30)
116Sn 0.053(30) -0.160(100) -0.150(260) 0.033(40)
118Sn - 0.020(100) 0.170(100) 0.100(70)
120Sn - -0.140(70) -0.090(70) -0.120(50)
122Sn -0.051(20) -0.070(110) - -0.052(20)
124Sn -0.110(30) -0.150(100) - -0.113(30)

Table 6.8: The old and remeasured g-factors for the Sn isotopes from this experi-

ment, ref [19] and ref[20]
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Chapter 7

Discussion

The final adopted g-factor measurements are shown in figure (7.1) where one

can see that for the lighter isotopes, the g-factors yield positive values and decrease

with increasing neutron number. Before discussing these observed g-factors, I’d like

to draw attention back to the B(E2; 0+g.s → 2+1 ) transition strengths referred to in

the introduction, as well as to discuss the remeasured B(E2; 0+g.s → 2+1 ) values for

these isotopes with our experimental setup [21].

In ref [21], the lifetimes of the stable Sn isotopes were measured in our exper-

iments U234 and U236, by extracting the lifetime via the Doppler Shift Attenuation

method which was introduced in section 4.1. These remeasured lifetimes and tran-

sition strengths are given in table (7.1). In 2008, another experiment was conducted

in the Australian National University [20] which studied the g-factors of 116−120Sn

isotopes. Using the data from the lineshapes in the spectra from this experiment,

the lifetimes were also remeasured, and published in ref [21]. These lifetimes are

also given in table (7.1).

Figure (7.2) shows both new and old experimental results and their compar-

ison with shell model calculations made with 100Sn and 90Zr closed shell cores, as

well as the calculations following the RQRPA model [15][16] and the QRPA model

[18]. In the case of the previously measured B(E2; 0+g.s → 2+1 ) results, the general

trend was one which followed the parabolic shell model case by smoothly increasing

from 124Sn until the neutron mid-shell of 116Sn, however for the lighter isotopes there

was an unusual enhancement in the observed B(E2; 0+g.s → 2+1 ) transition strengths.

In the case of the remeasured results from GSI and ANU, one can see that they

begin to deviate from the shell model calculations before the neutron mid-shell is



152 Discussion

Nucleus τ(2+):GSI ANU previous B(E2):GSI ANU previous
112Sn 0.65(4) - 0.544(32) 0.200(12) - 0.240(14)
114Sn 0.60(4) - 0.474(16) 0.183(12) - 0.232(8)
116Sn 0.66(4) 0.68(4) 0.539(15) 0.170(10) 0.165(10) 0.209(6)
118Sn - 0.79(4) 0.695(27) - 0.183(9) 0.209(8)
120Sn - 0.97(5) 0.916(19) - 0.191(10) 0.202(4)
122Sn 1.29(8) - 1.1011(23) 0.164(10) - 0.192(4)
124Sn - 1.48(15) 1.324(32) - 0.148(15) 0.166(4)

Table 7.1: The old and remeasured lifetimes and B(E2; 0+g.s → 2+1 ) transition

strengths in 112−124Sn [21][20].

reached, with a maximum around 118−120Sn and decreases until 116Sn, after which

there is a smooth increase in the B(E2; 0+g.s → 2+1 ) transition strengths in 112Sn.

For isotopes lighter than 120Sn, the transition strengths cease to follow the parabolic

behavior expected from the seniority scheme and the shell model calculations with
100Sn core (calculations from ref [6]). Looking into the non-shell model calculations

depicted in figure (7.2), such as the RQRPA model, one can see that the maximum

occurs around 106−108Sn before steadily decreasing until it plateaus out at the neu-

tron mid-shell at N=66 until 124Sn before it decreasing again. This nicely describes

the data of the light isotopes but as one can see, beyond 116Sn this ceases to agree.

The QRPA model is shown in pink. Unfortunately the calculations for this model

have only been performed for the upper half of the shell for the heavier Sn isotopes

beyond N=66, but this is a close reproduction of the recent experimental results

of the B(E2; 0+g.s → 2+1 ) values for the heavier isotopes. Looking into these B(E2;

0+g.s → 2+1 ) transition strengths, there is no single calculation of the various the-

oretical models which can replicate the data of the chain of Sn isotopes currently

present. Because of this ongoing question about the B(E2) values, the g-factor

measurements will hopefully give some insight into understanding the nature of the

B(E2; 0+g.s → 2+1 ) transition strengths.
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Figure (7.1) shows the remeasured adopted g-factor results compared to the

shell model calculations with closed shell cores of 100Sn and 132Sn, the QRPA model

[18] and the relativisitic mean field theory/RQRPA model [15][16]. The shell model

calculations given in this work were performed by A. Ekström[50], using the software

CENS [51]. The first calculation assumed a 100Sn closed shell core considering the

neutron orbitals outside the core as particle valence space. This calculation used the

N3LO nucleon-nucleon interaction which included Coulomb interaction, breaking of

charge symmetry, and charge independence between nucleons. This shell model

calculation is shown in red in figure (7.1). The second shell model calculation used

a closed shell core of 132Sn, where the same orbitals were considered as neutron holes

with respect to the 132Sn core; a CD-Bonn potential was used in the calculation in

conjunction with the experimental single hole energies from 131Sn, the results for

this shell model calculation are shown in figure (7.1) in cyan.

The initial observation in the measured g-factors is that the lighter Sn iso-

topes show a tendency to having positive g-factors, which generally decrease and

tend towards negative g-factors as the neutron number increases. This general trend

is seen in the case of the shell model calculation with a closed 100Sn shell core. For

the lightest isotope being investigated, 112Sn, this is a positive g-factor of g(2+) is

+0.11(6); for N=62 the orbital closest to the Fermi level is g7/2 which has an effec-

tive g-factor of +0.18. The possible neutron configurations for the 2+ state are g27/2

and d5/2g7/2 (geff=+0.23), and both have g-factors ≈+0.2, in agreement with the

positive experimental g-factor given here. For 114Sn, the g-factor is small and posi-

tive; at N=64 there is a subshell closure where excitations have to cross the Fermi

surface, the configurations for such excitations in this case are g−1
7/2d3/2 (geff=+0.04)

and d−1
3/2s1/2 (geff=-0.20), the observed g-factor suggests a configuration of g−1

7/2d3/2,

since the extracted value agrees within the errors. For N=66, the Fermi level moves

to the s1/2 orbital, and the configuration of d3/2s1/2 with an effective g-factor of -0.11

would decrease the g(2+) value of 116Sn. This decrease is mirrored by the shell model

calculation when compared to its lighter neighbors, which agrees within the uncer-

tainties with the measured value of g(2+)≈+0.03(4). For the lighter Sn isotopes

between 112−116Sn, the measured g-factors agree within the errors with the shell

model calculation given in red. Around 118Sn however, there is a sudden increase

in the g-factor back up to a large and positive value. The reasons for this positive

g-factor has already been suggested in the paper by M.C East et al [20]; in this case

the s1/2 orbital is fully occupied, so the (d23/2) configuration with geff=+0.46 may be
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the most prominent, which supports the large and positive observed g-factor. There

is however also the expectation for competition between the d3/2s1/2 configuration

with geff=-0.11, which is also a likely candidate for describing the wavefunction,

but this g-factor was unfortunately not remeasured in this experiment, and both

the measured g-factors for 118Sn have large uncertainties. This may be an isotope

worth remeasuring with the techniques used in U234/U236 , to confirm whether this

g-factor has the observed configuration of (d23/2), or the expected d3/2s1/2. There is

an observed drop in the g-factors for 120−124Sn, which could be explained by the

significant role that the h11/2 orbital plays in the configurations for neutron num-

bers from N=70 and above, with its large negative effective g-factor of -0.25. It is

expected that as the neutrons begin to populate the h11/2 orbital, this exerts dom-

inance with increasing importance against the d23/2 and d3/2s1/2 configurations. As

neutron number increases, one would expect an enhancement of negative g-factors

since there is no alternative but to populate the h11/2 orbital which has a large neg-

ative g-factor. However the experimentally measured g-factors for 122,124Sn, while

these are consistent in the sense they have negative g-factors, they show reduced

g-factor values which one would not expect as the h11/2 orbital is filled. But this

current explanation holds for cases when one doesn’t take into account the effect

which pairing would have on the effective g-factor. For 122,124Sn, the h11/2 shell

becomes increasingly occupied. Breaking the neutron pairs in the h11/2 orbital to

excite to the 2+ state would cost a lot more energy than to excite its lighter neighbor

orbits. However if one considers breaking of a neutron pair from one of the other

orbitals for which it would be more cost effective, such as the d3/2, an estimated

contribution of 25-30% in the wavefunction configuration would suffice to account

for the experimentally observed g-factors in 122,124Sn.

These observed g-factors indicate that there is a general tendency to follow

the shell model of a closed shell core of 100Sn, but only the neutrons configurations

have been discussed so far. What about the key question asked in the motivation,

does one observe core proton excitations across the Z=50 shell gap? Looking again at

the recent measurements of the B(E2; 0+g.s → 2+1 ) transition strengths, there is a dip

in the results between A=112 to A=116 before the transition strengths increase after

A=116 to A=120, this current trend lies in contradiction to the previously observed

B(E2; 0+g.s → 2+1 ) transition strengths, which prompted the motivation to investigate

whether proton core excitations occur in the light Sn isotopes. The re-measured

B(E2; 0+g.s → 2+1 ) show that proton excitation is unlikely, however examining the
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measured g-factors even though they are positive in sign for 112−116Sn, do not satisfy

the expected proton configurations which have very large and positive g-factors

(g9/2d5/2 geff=+1.09, g9/2d7/2 geff=+1.34), so proton core excitations can be ruled

out for the light stable Sn isotopes. It would be important in the future to remeasure

the g-factors of the lighter Sn isotopes to explain the observed enhancements of the

B(E2; 0+g.s → 2+1 ) transition strengths observed.

There still remains the question of whether the shell model reproduces satis-

factorily the measured data. Looking at the B(E2; 0+g.s → 2+1 ) transition strengths,

there is a clear disagreement between the light isotopes up to 120Sn when compared

to the shell model calculations with a closed shell core of 100Sn, but there is a ten-

dency for the heavy isotopes to follow the QRPA model [18], where unfortunately

the calculations have only been made until 114Sn. The lighter isotopes instead ap-

pear to be better described by the mean field theory, but does not agree with the

heavier isotopes and in spite of that, one can clearly see in figure (7.1) that the

relativistic mean field theory can be ruled out from the measured g-factors. There

is however a trend for the QRPA model describing the g-factors for the isotopes of
120−124Sn, but ceases to reproduce the g-factors for the lighter isotopes with positive

values. The shell model with the 100Sn closed shell core best describes the measured

g-factors, however it may be worth investigating into further theoretical calculations

for the g-factors and the B(E2; 0+g.s → 2+1 ) transitions strengths in order to obtain a

theoretical picture capable to describe the data in all cases.
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Chapter 8

Resumen en Castellano

8.1 Motivación

La cadena de los isótopos de estaño es un interesante tema de investigación

debido a los núcleos que existen cerca de la ĺınea de N=Z, sobre los que es posi-

ble estudiar temas de f́ısica de la estructura nuclear como polarización del core,

apareamiento protón-neutrón y simetŕıa de isospin. El estaño es especialmente in-

teresante porque tiene dos isótopos que tienen números mágicos en protones y neu-

trones; el 100Sn es el núcleo doblemente mágico de mayor número de protones con

N=Z que es ligado. Los estaños son la cadena más larga de isótopos semi-mágicos

accesibles para estudios experimentales de f́ısica nuclear, y son muy útiles para la

investigación de modelos en estructura nuclear. Se presta una especial atención a las

excitaciones del core de Z=50 y al espacio de valencia de los neutrones en una capa

completa. La región próxima a la cadena de estaño es un buen campo de estudio

para comprender la estructura nuclear de los núcleos situados lejos del valle de es-

tabilidad. Medidas como la enerǵıa de excitación y los valores de B(E2) nos ayudan

a comprender conceptos fundamentales como el esquema de senioridad. Un buen

método para la investigación sobre excitaciones del core, con una buena sensibilidad

para el estudio de la estructura de estos núcleos, son los valores de B(E2).

Debido a la capa cerrada de protones con el numero mágico Z=50, el aumento

de colectividad se produce por la ocupación de los neutrones de los orbitales de d5/2,

g7/2, d3/2, s1/2 y h11/2. En el modelo de capas, con truncación de senioridad, se espera

que tengan los valores de B(E2) en una forma parabólica, con una forma simétrica

y que crezca hasta el centro de la capa de neutrones, entre los núcleos doblemente
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mágicos de 100Sn y 132Sn. Han sido realizados muchos experimentos que han medido

los valores de B(E2) para la cadena de los isótopos de estaño entre A=106-126. Los

resultados de estos experimentos presentan la peculiaridad de que los estaños ligeros

tienen los valores de B(E2) que crecen desde el centro de la capa de los neutrones

en 116Sn hasta los isótopos mas ligeros. Estos resultados no se corresponden con los

cálculos de los valores de B(E2) en el modelo de capas.

Una forma de explicar los datos es que existe la posibilidad de que haya

excitaciones de protones que crucen el espacio de capas Z=50. Los cálculos del

modelo de capas que tienen en cuenta estas excitaciones de los protones observan

un cierto aumento en los valores de B(E2), aunque siguen sin corresponderse con los

resultados medidos.

Un método para investigar la estructura del núcleo es la medida de los mo-

mentos magnéticos. Un momento magnético es el producto vectorial de una corriente

eléctrica y el área que encierra la trayectoria que sigue esta corriente, donde:

~µ = gµN
~I. (8.1)

Los momentos magnéticos proporcionan información muy sensible a la con-

figuración de los nucleones de los iones de la corriente y los orbitales de part́ıcula

independiente que ellos ocupan. Hay una gran diferencia entre los factores g de los

neutrones y protones en magnitud y signo, gπs=+5.587, gπl =1, y gνs = -3.826, gνl =0.

Dado que los factores g de los nucleones presentan esta diferencia, esta es la razón

de que los momentos magnéticos sean tan sensibles al estructura del estado pudi-

endo proporcionar información sobre la estructura de part́ıcula independiente. Si

hay excitaciones de los protones a través del espacio entre capas Z=50 y la siguiente,

esperamos que haya un aumento en el valor del factor g, ya que todos los orbitales

de protones tienen valores positivos y grandes. Asimismo, en la figura (1.4b) se

puede ver que los factores g también presentan sensibilidad a los modelos nucleares

como el la teoria del campo medio relativista y el la aproximación de particula de

fase aleatoria . Hay diferencias entre los factores g de los modelos; esta información

nos permite entender mejor qué modelo siguen los estaños, y nos lleva por tanto a

una mejor comprensión de los valores de B(E2).

Los momentos magnéticos de los estaños fueron medidos en dos experimen-

tos: uno en Israel en 1980 [19] y otro en Australia en 2008 [20]. Estos resultados

aparecen representados en la figura (??), donde se puede observar unas barras de
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error relativamente grandes. Si dispusiéramos de una medida con mejor precisión,

podŕıamos entender mejor el motivo por el cual los valores de B(E2) de los estaños

ligeros crecen desde la mitad de la capa de los neutrones. Por esta razón, hemos

vuelto a medir los factores g de 112,114,116,122,124Sn otra vez en GSI con métodos

mejorados, como la excitación coulombiana en cinemática inversa en combinación

con campos magnéticos transitorios. También podemos medir la vida media del

estado a partir de la forma del pico gracias al efecto Doppler, y por último hemos

vuelto a medir los valores de B(E2) con el método por atenuación por efecto Doppler.

8.2 La técnica de los campos magnéticos transito-

rios en combinación con la excitación coulom-

biana en cinemática inversa

8.2.1 Correlaciones Angulares perturbadas

Cuando un núcleo con un momento magnético está en un campo magnético

externo, un par de torsión induce este núcleo a precesar. Para un estado que tiene un

tiempo de vida τ , el par de torsión de la precesión provoca que la correlación angular

de los rayos gamma emitidos en decaimiento rote con un ángulo phi. Si conocemos

el tiempo de vida, podemos calcular el factor g mediante la medida de ese ángulo

de precesión con un campo magnético en direcciones arriba y abajo y si medimos

también su correlación angular. La magnitud de esta diferencia de precesión es

proporcional a la fuerza del campo magnético y al tiempo de vida. Si tenemos un

tiempo de vida corto, necesitamos un campo magnético más fuerte para observar

una precesión significativa. En nuestro caso, cuando medimos estados con tiempos

de vida en el rango de picosegundos, necesitamos campos magnéticos del orden de

kT para medir una precesión del rango de mrad. Estas fuerzas no se pueden crear

en campos magnéticos externos, sino en campos magnéticos hiperfinos estáticos.

Trataremos este tipo de campos magnéticos en la siguiente sección.

Para vidas cortas se pueden medir las precesiones con correlaciones angulares

perturbadas. Para rayos gamma detectados en coincidencia con los iones de retro-

ceso del blanco, la forma de las correlaciones angulares para el decaimiento de una

transición de tipo E2 es de tipo:
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W (θγ) = C[1 + Aexp
2 P2(cos(θγ)) + Aexp

4 P4(cos(θγ))] (8.2)

A partir de aqúı obtenemos la pendiente logaŕıtmica, mediante la ecuación:

S(θγ) =
1

W (θγ)

dW (θγ)

dθγ
(8.3)

La precesión está medida por a razón doble, ρ, por las intensidades de los gamma

en ángulos simétricos respecto a la dirección del haz y por el campo magnético en

direcciones arriba y abajo.

ρ =

√

N(+θ ↑)N(−θ ↓)
N(+θ ↓)N(−θ ↑) (8.4)

Partiendo de esto, podemos obtener la precesión del núcleo en el estado excitado a

partir de las ecuaciones (8.7), aśı como el factor g.

ǫ =
ρ− 1

ρ+ 1
(8.5)

Φ =
ǫ

S(θγ)
(8.6)

Φ = −g
µN

~

∫ tout

tin

BTF (vion(t))e
−t/τdt (8.7)

8.2.2 Campos Magnéticos Transitorios

Para medir la precesión de un estado que tiene una vida corta, precisamos de un

campo magnético muy fuerte. Cuando un ión atraviesa un material ferromagnético

con una velocidad v, aparece un campo magnético transitorio que tiene magnitudes

de kT al MT; se trata de un campo magnético hiperfino interno cuya magnitud

depende de la carga del ion, Z, y su velocidad. Cuando un ion cargado entra en un

blanco ferromagnético con una velocidad v, hay un intercambio del esṕın entre los

electrones magnetizados del ferromagnético, lo que produce una polarización de esṕın

en los electrones del ión no emparejados, y que la orientación del campo magnético

transitorio se alinée con el campo magnético externo. Los campos magnéticos tran-

sitorios tienen parametrizaciones de la forma:
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BLIN = a · Z · v

v0
(8.8)

BRUT = a′ · Z1.1 · v

v0

0.45

·M (8.9)

BCR = a′′ · Z v

v0
· e−βv/v0 (8.10)

y lo usamos el parametrización de BLIN en nuestro experimento.

8.2.3 Excitación Coloumbiana en cinemática inversa

Se induce la excitación en los estados de bajo esṕın mediante un campo

eléctrico cuadrupolar con una interacción electromagnética entre un proyectil y un

núcleo del blanco. Si la enerǵıa del haz se encuentra por debajo de la barrera coulom-

biana, pueden darse excitaciones nucleares debidas a interacciones electromagnéticas

de largo alcance entre un proyectil y un blanco.

La ventaja de la excitación coulombiana es que tiene grandes secciones efi-

caces que contribuyen a maximizar la estad́ıstica obtenida en las medidas. Asimismo,

poblar un estado mediante la excitación coulombiana introduce una gran alineación

del esṕın, lo que significa que se observa una anisotroṕıa grande en los correlaciones

angulares medidas, lo que conduce a pendientes logaŕıtmicas grandes con gran sen-

sibilidad en la observación de las precesiones.

La excitación coulombiana en cinemática inversa tiene lugar cuando un

proyectil pesado experimenta excitación tras la interacción con un blanco ligero.

La ventaja es que las part́ıculas de retroceso del blanco se ven proyectadas hacia

adelante en la dirección del haz, lo que facilita su detección, y se observan más

part́ıculas en coincidencia con los rayos gamma, de modo que este método pro-

porciona mayor estad́ıstica. Para usar la cinemática inversa también es necesario

crear campos magnéticos transitorios más fuertes, dado que el proyectil tiene una

velocidad más alta que en las excitaciones de cinemática estándar. En la cinemática

inversa, al ocurrir la excitación en el proyectil, no es necesario cambiar el blanco

para medir isótopos distintos, sino que sólo debemos cambiar el haz durante el

experimento, lo cual constituye un método mucho más eficiente.
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8.3 Montaje Experimental

La medida de los factores-g del estado 2+ para los isótopos de 112,114,116,122,124Sn

fue realizada con la técnica de campos magnéticos transitorios con excitación

coulombiana en cinemática inversa. En el primer experimento en 2007 (U234),

haces puros de 112,114,116Sn con 4 MeV/u fueron provistos por el acelerador de

UNILAC en GSI, Darmstadt, los cuales entraron en contacto con un blanco de

multicapas.

La excitación coulombiana ocurre en la primer capa de 0.68mg/cm2 de natC.

A continuación, los iones excitados atraviesan la capa ferromagnética, que consiste

en 10.8 mg/cm2 de Gd, y en este capa los iones excitados experimentan el campo

magnético transitorio. Dado que el Gd solo presenta ferromagnetismo cuando es

enfriado por debajo de su temperatura de Curie, el blanco fue enfriado mediante

un dewar con nitrógeno liquido. Los iones atraviesan la capa ferromagnética y

experimentan precesión, y después se detienen en una capa de Cu de 4.86 mg/cm2,

donde se desexcitan en un medio libre de efectos hiperfinos.

En el siguiente experimento (U236), realizado también en GSI en 2009 se

utilizaron el mismo montaje que el U234 para medir los isótopos 122,124Sn. Las

diferencias entre los dos fueron los haces de 122Sn y 124Sn con una enerǵıa de 3.8

MeV/u y el blanco, que ha cambiado en este montaje. Para medir el 124Sn se

tuvieron 0.647 mg/cm2 de natC, 10.1 mg/cm2 Gd, 1.0 mg/cm2 Ta, y 7.24 mg/cm2,

aśı como 5 micras de Ta como tapón de haz. No obstante, durante la medición, una

parte de la capa de carbono se despegó de la capa de Gd. Por esta razón observamos

formas de ĺınea modificadas.

Es muy probable que las formas de ĺınea modificadas se deban a que de los

núcleos fueron excitados en la parte de la capa despegada que pasaron al vaćıo y

decayeron antes de llegar al Gd.

Para la medida del 122Sn se sustituyó el blanco roto por uno nuevo, consis-

tente en 0.66mg/cm2 de natC, 10.9 mg/cm2 de Gd, 1.0 mg/cm2 de Ta y 5.23 mg/cm2

Cu y un tapón de haz de 20 µm de Ta.

A 3cm por detrás del blanco se colocó una matriz de detectores de diodos

de pin de Si para la detección de part́ıculas de C desde el blanco para hacer una

coincidencia con los gammas.

Los rayos gammas de desexcitación de iones de Sn fueron detectados cuatro
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detectores en “cluster” de Euroball, situados a ±65◦ y ±115◦ respecto del eje del

haz. La distancia de los detectores Ge hasta el blanco fue de 22(1)cm. El montaje

también tuvo un detector Ge a 0◦.

8.3.1 Preparación de los datos

Para limpiar los espectros gamma se implementaron condiciones en el análisis

de los datos. La primera condición fue la sustracción evento a evento de los TDCs:

sustraemos el TDC de Si del TDC de Ge, porque hay una diferencia entre las

part́ıculas del blanco que tienen tiempos de vuelo distintos dependiendo en qué

detector de Si se detectan. Entonces, una ventana temporal es iniciada cuando

recibimos una señal de detector de rayos gamma y concluida cuando recibimos una

señal del detector de Si exterior o interior siendo diferentes para ambos detectores

de Si . Con este espectro de tiempo con las sustracciones realizadas entre los dos

tiempos es nuestra ventana de tiempo de un evento válido. Dı́cha ventana esta

localizada en el pico, pero también se toma un otro ventana de igual ancho en la

parte del valle. Con la primera condición, el espectro gamma se incrementa si esta

condición es válida, y se decrementa si está de acuerdo con la segunda. Con estas

condiciones obtenemos un espectro limpio de los gammas que se han producido en

el blanco. Para limpiar más el espectro se implemente una condición de particulas

y aśı también se pone una condición en la parte de carbono que fue detectado en el

Si. Con estas condiciones obtenemos espectros limpios de estaño y de teluro (si se

pone una condición en el alfa), y una vez limpios se pone la condición de polaridad

del campo magnético por los ratios dobles.

8.4 Análisis de los datos

Para determinar las pendientes logaŕıtmicas, las correlaciones angulares

fueron medidas experimentalmente. Dado que hab́ıa detectores gamma en un gran

rango de ángulos, hemos medido las correlaciones angulares directamente de las

intensidades, corrigiendo por eficiencias. Los parámetros a2, a4 y la intensidad, C,

los he obtenido mediante un ajuste a estos parámetros.

Para los intensidades que vienen desde los picos que tiene una parte en vuelo,

es necesario hacer algunas correcciones por el efecto Doppler:
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E
′

γ(θ, t) = E0
γ

√

1− β2(t)

1− β(t)cos(θ)
(8.11)

para obtener la velocidad desde el pico. Y para obtener el angúlo en centro de

masas:

cos (θ)CM =
cos (θ)lab − β

1− βcos (θ)lab
(8.12)

Para los angúlos soĺıdos:

WlabdΩlab = WCMdΩCM (8.13)

tiene que ser valido, entonces:

WCM(θCM) = Wlab(θlab)dΩlab/dΩCM (8.14)

con

dΩlab/dΩCM(θlab) = [1− βcos(θlab)]
2/(1− β2). (8.15)

Para obtener las precesiones, (el método está explicado en el parte de Correla-

ciones Angulares Perturbadas), obtenemos los ratios dobles a partir las intensidades,

y luego la pendiente logaŕıtmica para obtener la precesión. Las precesiones medidas

se encuentran en las tablas (4.11) al (4.16) y los promedios de las precesiones en

tabla (4.17).

8.5 Correcciones por poblaciones desde estados

de alto esṕın

Para los núcleos 112,114,116Sn existen poblaciones desde estados de esṕın alto

(4+,3−) que tienen efectos significativos en el estado 2+ observado. Estas contribu-

ciones desde los estados 4+ y 3− van a afectar a la precesión observada en el caso de

la transición de 2+ a 0+. La precesión es una función del tiempo de vida del estado,

como refleja la ecuación:

∆Φ = gφ(τi) = −g
µN

~

∫ tout

tin

BTF (vion(t))e
−t/τdt (8.16)
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El método empleado para obtener estas correcciones debidas a las contami-

naciones desde los otros estados viene dado por la ecuación:

∆Φ2+

obs =

dW
2+

dθ
|θγ ∆Φ2+ + η3,2

dW320

dθ
|θγ 〈∆Φ32〉+ η4,2

dW420

dθ
|θγ 〈∆Φ42〉

dWobs

dθ
|θγ {1 + η3,2 + η4,2}

(8.17)

Se tiene en cuenta el tiempo de vida y las correlaciones angulares de todos los

estados. Donde por ecuación (8.17):

〈∆Φ320〉 = −g(3−)
µN

~

∫ tout

tin

Btf (t)e
−t/τ3dt − g(2+)

µN

~

∫ tout

tin

λ3

λ2 − λ3

(e−t/τ3 − e−t/τ2)Btf (t)dt (8.18)

= ∆Φ(3−)− g(2+)
µN

~

∫ tout

tin

λ3

λ2 − λ3

(e−t/τ3 − e−t/τ2)Btf (t)dt (8.19)

〈∆Φ420〉 = −g(4+)
µN

~

∫ tout

tin

Btf (t)e
−t/τ4dt = ∆Φ(4+) (8.20)

Las ecuaciones (8.18,8.20) son empleadas para obtener la componente de

las precesiones por los estados de alto esṕın, donde la parte de población pura está

tomada de los valores medidos, y la parte que contribuye al estado 2+ está calculada.

La estructura del programa incluye distintas partes para calcular:

1. El poder de frenado. Está hecho para obtener cuánta enerǵıa ha perdido el

núcleo dentro de los blancos. En el carbono es importante saber qué enerǵıa

tiene el núcleo cuando ocurre la excitación y que nos permitiŕıa saber con qué

enerǵıa entra y sale el ión en la capa ferromagnética.

2. Cinemática. Cuando hay una excitación coulombiana, una part́ıcula del blanco

retrocede y el proyectil es excitado siendo ambas part́ıculas dispersadas con

ángulos distintos. A partir de las ecuaciones de cinemática se puede obtener

no sólo los ángulos de las part́ıculas dispersadas sino también la enerǵıa de los

iones. Con esta información es posible saber qué enerǵıa tiene el ion que ha

sido excitado en alguna parte del blanco. Esta información, en combinación

con el poder de frenado, permite saber las enerǵıas y velocidades en el blanco.

3. Sección eficaz. En la ecuación (8.17), la componente ηij se obtiene a través del

cociente entre las secciones eficaces en los casos donde hay excitación coulom-

biana y cuando no hay excitaciones por interacciones nucleares. Pero también

se puede obtener ηij a partir de las intensidades medidas.
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4. Obtener φ(τ). Viene expresar por

φ(τi) = −µN

~

∫ tout

tin

e−t/τiBtr(t)dt (8.21)

donde B(vion(t)) es la magnitud del campo magnético transitorio que es de-

pendiente de la velocidad del ión cuando se atraviesa la capa ferromagnética.

Se conoce la velocidad con que entra y sale de la capa, y también el tiempo

que el ión está dentro de la capa. Con esta información, puede resolverse la

ecuación (8.21) mediante el método de integración numérica.

8.6 Los resultados

Hay tres posibles métodos para obtener las correcciones por la alimentación desde

estados de alto esṕın con ecuación (8.17, estos son:

1. Usar las secciones eficaces calculadas para la razón de ηij en combinación con

las precesiones medidas de 3− → 2+ y 4+ → 2+.

2. Usar las intensidades medidas para la razón de ηij en combinación con las

precesiones medidas de 3− → 2+ y 4+ → 2+.

3. Utilizando las intensidades medidas para la razón de ηij en combinación con

φ(τ) calculados para 3− → 2+y 4+ → 2+ y los factores g de 3− → 2+ y

4+ → 2+ de los resultados que tienen mejor estad́ıstica.

El método 1 no es bueno porque este experimento no es de excitación coulom-

biana segura, la enerǵıa de los haces es mayor que la barrera coulombiana. Puede

verse en la tabla (6.1) que las proporciones de las intensidades y de las secciones

eficaces son significativamente diferentes. Los resultados de la tabla (6.7) son para

los factores g sin corregir por alimentación, para el método 2 y 3 con los detectores

de Si dentro, fuera y también el promedio. Puede verse en la figura (6.1) que los

dos métodos están en acuerdo y también entre los detectores de Si.

Puede verse que los resultados anteriores tienen errores muy grandes en com-

paración con estos nuevos datos. Los factores g obtenidos en estos 3 experimentos

están en tabla (8.1) y también se incluye el promedio de los tres. Los promedios son

los factores g adoptados.
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Nuc. GSI WIS ANU adoptados
112Sn 0.099(30) 0.370(130) - 0.113(60)
114Sn 0.022(30) - - 0.022(30)
116Sn 0.053(30) -0.160(100) -0.150(260) 0.033(40)
118Sn - 0.020(100) 0.170(100) 0.100(70)
120Sn - -0.140(70) -0.090(70) -0.120(50)
122Sn -0.051(20) -0.070(110) - -0.052(20)
124Sn -0.110(30) -0.150(100) - -0.113(30)

Table 8.1: Los datos por los factores g en los isotopos de Sn medidas de este exper-

imento (U234/U236), y de referenćıa [19] y de [20]

8.7 Resumen y conclusiones

Los factores g del estado 2+ fueron medidos con buen precisión para los

isótopos de 112,114,116,122,124Sn mediante la técnica de campos magnéticos transitorios

en combinación con excitación coulombiana en cinemática inversa, con EUROBALL,

que son detectores de radiación gamma de alta eficiencia.

Los valores obtenidos para los factores g pueden ser explicados con el modelo

de capas y con los orbitales de part́ıcula independiente (tabla (1)). También se

aprecia que los factores g están en acuerdo con el modelo de capas con un core

de 100Sn (figura (7.1)). No observamos factores g con valores de gran magnitud y

signo positivo en los estaños ligeros para que sean excitaciones de protones a través

del core de Z=50. Los factores g no se reproducen tan bien con los otros modelos

RQRPA y QRPA como con el modelo de capas.
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Appendix A

Summary of literature information

concerning level schemes,

lifetimes, moments and transition

strengths for 112,114,116,122,124Sn

The values for the lifetimes and γ energies were obtained from [42]. The

B(Eλ)s were either obtained from [42] or calculated using the equation(A.2) [13].

B(Eλ : Ji → Jf) = Tfi(Eλ)(
Eγ

~c
)−(2L+1)~L((2L+ 1)!!)2

8π(L+ 1)
(A.1)

B(Eλ : Jf → Ji) =
2Jf + 1

2Ji + 1
(A.2)

where Tfi(Eλ) = I(Eλ)
Itotal

1
τ
with I being the intensity of the transition and τ the

lifetime.
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Summary of literature information concerning level schemes,

lifetimes, moments and transition strengths for 112,114,116,122,124Sn

Nucleus State τ (ps) Eγ(keV) B(Eλ:Jf → Ji) (e
2b2)

112Sn 2+ 0.65(4)[21] 1256.7(5) B(E2;0+ → 2+)=0.200(12)[21]

4+ 4.76(90) 990.7(1) B(E2;0+ → 2+)=0.032(6)[42]

3− 0.31(2)[21] 1097.7(3) B(E3)=0.087(12)[42]

114Sn 2+ 0.60(4)[21] 1299.92(7) B(E2;0+ → 2+)=0.183(12) [21]

0+2 9.4(31) 653.36(2) B(E2;0+ → 2+)=0.07(3)[42]

4+ 7.65(60) 887.690(8) B(E2;0+ → 2+)=0.035(3)

3− 0.52(3)[21] 975.076(8) B(E1)=3.88x10−6

116Sn 2+ 0.66(4)[21] 1293.558(15) B(E2;0+ → 2+)=0.170(10)[21]

2+2 2.60(+10-4) 818.718(21) B(E2;0+ → 2+)=0.013(5)[42]

3− 0.48(3)[21] 972.564(19) B(E1)=1.95x10(40)−8

3− 0.48(3)[21] 2266.1(10) B(E3)=0.127(17) [42]

4+ 0.40(8) 1097.326(22) B(E2;0+ → 2+)=0.076(14) [42]

122Sn 2+ 1.29(8)[21] 1140.52(4) B(E2;0+ → 2+)=0.164(12)[21]

4+ 2.25(30) 1001.54(2) B(E2;0+ → 2+)=0.065(9)[42]

3− 0.13(2)[21] 1352.17(3) B(E3)=0.066(10)[42]

124Sn 2+ 1.48(15)[21] 1131.69(2) B(E2;0+ → 2+)=0.148(15)[21]±0.10

4+ 5.33(68) 969.97(2) B(E2;0+ → 2+)=0.032(4)[42]

3− 0.098(9)[21] 1470.71(2) B(E3)=0.155(20)[42]

Table A.1: The lifetimes, γ-ray energies and transition strengths for the Sn isotopes.
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Figure A.1: Partial level schemes of the Sn isotopes as observed in the

present work.
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Summary of literature information concerning level schemes,

lifetimes, moments and transition strengths for 112,114,116,122,124Sn



Appendix B

Result Details

The input parameters into the program for the results are given in tables

(B.1,B.2). These parameters were used to calculate the stopping in the target, the

kinematics in Coulomb excitation and the cross-section, and later on the φ(τ) or

each populated state. These details have been discussed previously, and here the

actual parameters for each case is given. These parameters are read into the program

prior to calculations and one can obtain the velocity into and out of the targets, the

time, the field strength and hence the precession.
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Nuc. Beam: Z1 A1 Energy
112Sn 50 112 448
114Sn 50 114 456
116Sn 50 116 464

Nuc. Target1 : Z2 A2 thickness1

all 6 12 0.68

Nuc. Target2 : Z3 A3 thickness3

all 64 157 10.8

Nuc. L Excitation Energy B(EL)
112Sn 2 1.257 0.200
112Sn 3 2.355 0.195
112Sn 2 2.248 0.032

114Sn 2 1.300 0.184
114Sn 3 2.274 0.149
114Sn 2 2.188 0.035

116Sn 2 1.294 0.168
116Sn 3 2.266 0.165
116Sn 2 2.391 0.023

Nuc. Detector: Distance

all 30

Nuc. Detector: Height Width Vertical Distance

all 10 10 1/13

Nuc. No. X Y strips

all 10 10

Nuc. Field parameters: a G

all 17 0.55

Nuc. lifetime: 2+ 3− 4+

112Sn 0.65 0.31 4.76
114Sn 0.60 0.52 7.65
116Sn 0.67 0.48 4.00

Table B.1: Variables read in for U234 run.
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Nuc. Beam: Z1 A1 Energy
122Sn 50 122 464
124Sn 50 124 471

Nuc. Target1 : Z2 A2 thickness1
122Sn 6 12 0.66
124Sn 6 12 0.647

Nuc. Target2 : Z3 A3 thickness3
122Sn 64 157 10.9
124Sn 64 157 10.1

Nuc. L Excitation Energy B(EL)
122Sn 2 1.141 0.164
122Sn 3 2.493 0.066
122Sn 2 2.142 0.065

124Sn 2 1.132 0.148
124Sn 3 2.603 0.155
124Sn 2 2.103 0.032

Nuc. Detector: Distance

all 30

Nuc. Detector: Height Width Vertical Distance
122Sn 10 10 1/13
124Sn 10 10 1/13

Nuc. No. X Y strips
122Sn 10 10
124Sn 10 10

Nuc. Field parameters: a G

all 17 0.55

Nuc. lifetime: 2+ 3− 4+

122Sn 1.29 0.13 2.25
124Sn 1.48 0.098 3.7

Table B.2: Variables read in for the U236 run.
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Nuc. Si det. g-factor
112Sn inner 0.099(80)
112Sn outer 0.170(40)
112Sn all 0.156(40)

114Sn inner 0.010(30)
114Sn outer -0.026(60)
114Sn all 0.003(30)

116Sn inner 0.044(40)
116Sn outer 0.080(50)
116Sn all 0.058(30)

122Sn inner -0.070(20)
122Sn outer -0.081(130)
122Sn all -0.070(20)

124Sn inner -0.146(60)
124Sn outer -0.173(70)
124Sn all -0.157(50)

Table B.3: The feeding corrected g-factor using cross-section ratios for ηij and ex-

perimentally measured ∆Φs for feeding states.

One of the feeding corrections obtained ηij from the ratio of the calculated

Coulex cross-sections, however, when comparing these ratios to the ratios of the

measured intensities, there was a significant difference between the two, and because

the experiment ran at energies above the Coulomb barrier and with unsafe Coulex,

the cross-sections were not an accurate representation of the population of said

states. However, for curiosity’s sake, these feeding corrections were also done, and

included here in table (B.3).
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Appendix C

Error Propagation

C.1 Error Treatment of Data

There are two methods for obtaining the error in the data. The first looks

at the internal error or the standard deviation of the data. The second looks at the

external error, the actual scattering of the data relative to the mean. At each angle

there is more than one crystal which is taking the data, up to about 2-3 crystals

per angle. As there is more than one detector being accounted for, the scattering

of counts between them should also be considered. The internal error is expressed

in the equation (C.2) and the external in equation (C.3). The weighted mean, G, is

given in (C.1)[52].

G =

k∑

i=1

giGi

k∑

i=1

gi

(C.1)

Where Gi is the number of counts and gi are the weights with k being the number of

detectors. gi =
1
m2

i
where m2

i is the variance of the data. Equation (C.2) calculates

the standard deviation of the error over the combination of the detectors otherwise

known as the internal error.

Sint =

(
k∑

i=1

1

m2
i

)− 1

2

(C.2)

So equation (C.2) calculates the standard deviation of the error over the combination

of the detectors.
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Apart from the standard error of the data, one also needs to consider that

the number of counts in each detector will vary between eachother and is sometimes

outside the error range of the standard deviation. So this scattering of data points

needs to be considered when thinking about the error in the data. Equation (C.3)

gives the external error.

Sext =










k∑

i=1

gi

(

Gi −G
)2

(k − 1)

k∑

i=1

gi










1

2

(C.3)

For all of the data sorting both methods were used for the error analysis and

the largest uncertainty was selected to be used as the error for that data point.

The handling of the propagation of errors when dealing with functions is also

of interest where either one or more parameters have their own error. In most of

the cases like the calculation of the error for S(θ) where there is a complex function

with two parameters with errors standard error propagation is not used. What is

required is that a partial differential is taken for each parameter and then account

for the errors,da and db are the errors of the parameters and d2ab is the estimated

covariance between a,b measurements. If the terms a,b are independent then the

covariance can be assumed to be zero.

df (a, b) =

√
(

(
δf

δa
)2d2a + (

δf

δb
)2d2b + (

δf

δa
)(
δf

δb
)d2ab

)

(C.4)

C.2 Error propagation in the Centre of Mass ve-

locity transformations

C.2.1 Error in β

The relationship between the observed γ-energy and the velocity of the ion can be

obtained from:

E
′

γ(θ, t) = E0
γ

√

1− β2(t)

1− β(t)cos(θ)
(C.5)
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In order to obtain β from the measured E
′

γ(θ, t), equation (C.5) needs to be rear-

ranged into a quadratic equation to give β:



1 +

(

E
′

γ(θ, t)

E0
γ

)2

cos2(θ)





︸ ︷︷ ︸

a

β2+



−2

(

E
′

γ(θ, t)

E0
γ

)2

cos(θ)





︸ ︷︷ ︸

b

β+





(

E
′

γ(θ, t)

E0
γ

)2

− 1





︸ ︷︷ ︸

c

= 0

(C.6)

The quadratic in equation (C.6) can be solved by equation(C.7):

β =
−b±

√
b2 − 4ac

2a
(C.7)

Where a,b,c are defined in the underbraces in equation(C.6). The contribution to

the error comes from σ measured from the FWHM and corresponds to the error

range of E
′

γ(θ, t), hence the error given in

(

E
′

γ(θ,t)

E0
γ

)2

is given as:

∆

(

E
′

γ(θ, t)

E0
γ

)2

= 2
σ

E ′

γ(θ, t)

(

E
′

γ(θ, t)

E0
γ

)2

(C.8)

since for f = aAb where a and b are constants and A is the variable the error of the

function is: σf = bσA

A
f . To obtain the errors in a,b and c using: f = aA → σf = aσA

and are given as:

∆a = ∆

(

E
′

γ(θ, t)

E0
γ

)2

· cos2(θ) (C.9)

∆b = ∆

(

E
′

γ(θ, t)

E0
γ

)2

· 2cos(θ) (C.10)

∆c = ∆

(

E
′

γ(θ, t)

E0
γ

)2

(C.11)

(C.12)

The solution of β given in equation (C.7), the error in β can therefore be obtained

from equation (C.13):

∆f(a, b, c) =

√
(
δf

δa
∆a

)2

+

(
δf

δb
∆b

)2

+

(
δf

δc
∆c

)2

(C.13)

Using equation (C.7) as f(a, b, c), the error can be calculated from (C.13).
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C.2.2 Error in θ

The centre of mass angle θCM is given by:

cos (θ)CM =

top
︷ ︸︸ ︷

cos (θ)lab − β

1− βcos (θ)lab
︸ ︷︷ ︸

bot

(C.14)

Where

∆top = ∆β (C.15)

∆bot = ∆β · cos (θ)lab (C.16)

∆cos (θ)CM =

√
(
∆top

top

)2

+

(
∆bot

bot

)2

· cos (θ)CM (C.17)

To obtain (θ)CM the error for the function cos (θ)CM needs solving. For F = f(A) →
δF = ∆A δf

δA
hence:

∆ (θ)CM = ∆cos (θ)CM · −1
√

1− (cos (θ)CM)2
(C.18)

C.2.3 Error in Wcm(θ)

For the centre of mass transformation for the angular correlations W(θ) are obtained

by equation (C.19)

WCM(θCM) = Wlab(θlab)dΩlab/dΩCM (C.19)

with

dΩlab/dΩCM(θlab) =

top
︷ ︸︸ ︷

[1− βcos(θlab)]
2 / (1− β2)
︸ ︷︷ ︸

bot

(C.20)

Where:
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∆top =
∆βcos(θlab)

1− βcos(θlab)
· 2 · top (C.21)

∆bot =
∆β

β
· 2 · β2 (C.22)

∆
dΩlab

dΩCM (θlab)
=

√
(
∆top

top

)2

+

(
∆bot

bot

)2

· dΩlab

dΩCM(θlab)
(C.23)

There is an error ∆Wlab(θlab) which is also included accounted for in the error prop-

agation, this is just used in conjunction with ∆ dΩlab

dΩCM (θlab)
in standard error propa-

gation.
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β ±∆β obtained for all isotopes

Nuclei Si det. E0 (keV) θ Es(keV ) FWHM (keV) σ (keV) β
112Sn Inner 1257 51◦ 1286.5 53 22.6 0.038(30)
112Sn Inner 1257 65◦ 1277 34 14.5 0.040(31)
112Sn Inner 1257 79◦ 1267.5 17 7.2 0.049(41)

112Sn Outer 1257 51◦ 1288.5 55 23.4 0.040(32)
112Sn Outer 1257 65◦ 1278.5 37 15.7 0.044(34)
112Sn Outer 1257 79◦ 1268 16 6.8 0.053(39)

114Sn Inner 1300 51◦ 1331.5 55 23.4 0.039(31)
114Sn Inner 1300 65◦ 1321.5 37 13.7 0.042(29)
114Sn Inner 1300 79◦ 1310.5 15 6.4 0.048(34)

114Sn Outer 1300 51◦ 1334.5 61 26.0 0.042(34)
114Sn Outer 1300 65◦ 1322.5 39 16.6 0.044(35)
114Sn Outer 1300 79◦ 1312.5 17 7.2 0.059(42)

116Sn Inner 1294 51◦ 1327 60 25.5 0.041(33)
116Sn Inner 1294 65◦ 1316 38 16.2 0.043(34)
116Sn Inner 1294 79◦ 1306 17 7.2 0.056(40)

116Sn Outer 1294 51◦ 1327 60 25.5 0.041(33)
116Sn Outer 1294 65◦ 1316 38 16.2 0.043(34)
116Sn Outer 1294 79◦ 1305 16 6.8 0.051(38)

Table D.1: The measured β ±∆β for the forward angles in all isotopes/Si detector

configuration for the flight peak of the 2+ → 0+ transition γ peak.
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Nuclei Si det. E0 (keV) θ Es (keV) FWHM (keV) σ (keV) β
112Sn Inner 1098 51◦ 1137 32 13.6 0.057(22)
112Sn Inner 1098 65◦ 1124 24 10.2 0.061(27)
112Sn Inner 1098 79◦ 1109 20 8.5 0.062(60)

112Sn Outer 1098 51◦ 1137 32 13.6 0.057(22)
112Sn Outer 1098 65◦ 1124 24 10.2 0.061(27)
112Sn Outer 1098 79◦ 1109 20 8.5 0.062(60)

114Sn Inner 975 51◦ 1002 42 17.9 0.039(31)
114Sn Inner 975 65◦ 993.5 33 14 0.042(29)
114Sn Inner 975 79◦ 983 18 7.7 0.048(34)

114Sn Outer 975 51◦ 1003.5 43 18.3 0.047(32)
114Sn Outer 975 65◦ 994.5 31 13.2 0.051(38)
114Sn Outer 975 79◦ 984.5 15 6.4 0.060(50)

116Sn Inner 973 51◦ 1002 36 15.3 0.048(27)
116Sn Inner 973 65◦ 992.5 27 11.5 0.052(33)
116Sn Inner 973 79◦ 982 16 6.8 0.056(52)

116Sn Outer 973 51◦ 1005.5 35 14.9 0.054(27)
116Sn Outer 973 65◦ 995 24 10.2 0.058(30)
116Sn Outer 973 79◦ 983.5 15 6.4 0.068(53)

Table D.2: The measured β ±∆β for the forward angles in all isotopes/Si detector

configuration for the flight peak of the 3− → 2+ transition γ peak.
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Nuclei Si det. E0 (keV) θ Es (keV) FWHM (keV) σ (keV) β
122Sn Inner 1140.5 51◦ 1168.5 47 20.0 0.039(30)
122Sn Inner 1140.5 65◦ 1159 30 12.8 0.040(30)
122Sn Inner 1140.5 79◦ 1149.5 11 4.7 0.047(30)

122Sn Outer 1140.5 51◦ 1171 52 22.1 0.043(30)
122Sn Outer 1140.5 65◦ 1161 32 13.6 0.044(40)
122Sn Outer 1140.5 79◦ 1151.5 15 6.4 0.059(40)

124Sn Inner 1131.7 51◦ 1167.5 37 15.7 0.051(20)
124Sn Inner 1131.7 65◦ 1156.0 24 10.2 0.053(20)
124Sn Inner 1131.7 79◦ 1141 10 4.3 0.050(30)

124Sn Outer 1131.7 51◦ 1167 37 15.7 0.051(20)
124Sn Outer 1131.7 65◦ 1156 24 10.2 0.053(20)
124Sn Outer 1131.7 79◦ 1141 10 4.3 0.050(30)

Table D.3: The measured β ±∆β for the forward angles in all isotopes/Si detector

configuration for the flight peak of the 2+ → 0+ transition γ peak.
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Nuclei Si det. E0 (keV) θ Es (keV) FWHM σ β
112Sn Inner 1098 51◦ 1137 32 13.6 0.057(22)
112Sn Inner 1098 65◦ 1124 24 10.2 0.061(27)
112Sn Inner 1098 79◦ 1109 20 8.5 0.062(60)

112Sn Outer 1098 51◦ 1137 32 13.6 0.057(22)
112Sn Outer 1098 65◦ 1124 24 10.2 0.061(27)
112Sn Outer 1098 79◦ 1109 20 8.5 0.062(60)

114Sn Inner 975 51◦ 1002 42 17.9 0.039(31)
114Sn Inner 975 65◦ 993.5 33 14 0.042(29)
114Sn Inner 975 79◦ 983 18 7.7 0.048(34)

114Sn Outer 975 51◦ 1003.5 43 18.3 0.047(32)
114Sn Outer 975 65◦ 994.5 31 13.2 0.051(38)
114Sn Outer 975 79◦ 984.5 15 6.4 0.060(50)

116Sn Inner 973 51◦ 1002 36 15.3 0.048(27)
116Sn Inner 973 65◦ 992.5 27 11.5 0.052(33)
116Sn Inner 973 79◦ 982 16 6.8 0.056(52)

116Sn Outer 973 51◦ 1005.5 35 14.9 0.054(27)
116Sn Outer 973 65◦ 995 24 10.2 0.058(30)
116Sn Outer 973 79◦ 983.5 15 6.4 0.068(53)

Table D.4: The measured β ±∆β for the forward angles in all isotopes/Si detector

configuration for the flight peak of the 3− → 2+ transition γ peak.
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Nuclei Si det. E0 (keV) θ Es (keV) FWHM (keV) σ(keV) β
122Sn Inner 1352.2 51◦ 1405.5 25 10.6 0.063(10)
122Sn Inner 1352.2 65◦ 1386.5 25 10.6 0.063(20)
122Sn Inner 1352.2 79◦ 1367.5 21 8.9 0.072(60)

122Sn Outer 1352.2 51◦ 1408.5 31 13.2 0.067(20)
122Sn Outer 1352.2 65◦ 1387.5 35 14.9 0.065(30)
122Sn Outer 1352.2 79◦ 1369 28 11.9 0.082(80)

124Sn Inner 1470.7 51◦ 1531.5 33 14.0 0.066(20)
124Sn Inner 1470.7 65◦ 1509.5 33 14.0 0.066(30)
124Sn Inner 1470.7 79◦ 1480 14 6.0 0.036(30)

124Sn Outer 1470.7 51◦ 1531.5 33 14.0 0.066(20)
124Sn Outer 1470.7 65◦ 1509.5 33 14.0 0.066(30)
124Sn Outer 1470.7 79◦ 1480 14 6.0 0.036(30)

Table D.5: The measured β ±∆β for the forward angles in all isotopes/Si detector

configuration for the flight peak of the 3− → 2+ transition γ peak.

Nuclei Si det. 2+ → 0+ 3− → 2+

112Sn Inner 0.041(35) 0.059(35)
112Sn Outer 0.045(35) 0.059(35)

114Sn Inner 0.043(30) 0.046(40)
114Sn Outer 0.047(40) 0.051(40)

116Sn Inner 0.046(35) 0.050(40)
116Sn Outer 0.044(35) 0.057(40)

122Sn Inner 0.042(20) 0.063(10)
122Sn Outer 0.048(30) 0.071(20)

124Sn Inner 0.052(30) 0.059(20)
124Sn Outer 0.052(30) 0.059(20)

Table D.6: The measured β ±∆β for all isotopes/Si detector configuration for the

flight peak of the 2+ → 0+ and 3− → 2+ transition γ peak.
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