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Local density of states on a vibrational quantum dot out of equilibrium
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2Departamento de Fı́sica Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain

3JILA, NIST, University of Colorado, 440 UCB, Boulder, Colorado 80309, USA
(Received 21 September 2014; revised manuscript received 13 February 2015; published 27 February 2015)

We calculate the nonequilibrium local density of states on a vibrational quantum dot coupled to two electrodes
at T = 0 using a numerically exact diagrammatic Monte Carlo method. Our focus is on the interplay between
the electron-phonon interaction strength and the bias voltage. We find that the spectral density exhibits a
significant voltage dependence if the voltage window includes one or more phonon sidebands. A comparison
with well-established approximate approaches indicates that this effect could be attributed to the nonequilibrium
distribution of the phonons. Moreover, we discuss the long transient dynamics caused by the electron-phonon
coupling.
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Recent experiments in the field of molecular electronics
have pointed out the importance of electron-phonon interac-
tions for the charge transport on the nanoscale [1–10]. In these
experiments, a nanostructure—such as a single molecule or
a carbon nanotube—is in contact with two electronic leads.
Due to the tiny size of the structure, single-electron tunneling
processes can cause a transient change of its electronic
geometry. This change in combination with intermolecular
interactions can couple the electronic to the vibrational degrees
of freedom. An important consequence is the appearance of
nonlinearities in the current-voltage characteristics and the
conductance [2,3,7,11–14]. These effects can be associated
with the possibility of inelastic processes due to the bias and to
the formation of phonon sidebands in the excitation spectrum
[15–18].

From a theoretical perspective, such a quantum dot setup
can be described by the Anderson-Holstein model [19,20]. To
its full extent, this model accounts for a tunneling coupling
between the quantum dot and electronic reservoirs, a linear
coupling of the electrons occupying the quantum dot to
phonons, as well as an on-site Coulomb interaction. In this
paper, we are mainly interested in the effects of the molecule’s
vibration on the charge transport through the quantum dot so
that it is expedient to consider a single vibrational mode and
spinless electrons. Therefore, the model can be simplified to
account for a single electronic level which is linearly coupled
to a local phonon, whereas the electron-electron coupling
is disregarded. In the framework of this spinless Anderson-
Holstein model, a lot of progress has been made, offering deep
insight into the physics caused by the coupling of the electron
and the phonon (see, e.g., Refs. [15–18,21–23]). Besides
approximative approaches, numerically exact methods have
(recently) become possible for a nonequilibrium situation of a
vibrational quantum dot (see, e.g., Refs. [24–28]).

A central quantity to describe the nonequilibrium transport
through the quantum dot is its local density of states (LDOS).
Single-particle observables such as the current or the dot
occupation can be directly derived from it [29]. In equilibrium,
the spectral density is well understood (see Refs. [20,30,31]
and references therein). Moreover, the close connection
between nanomechanical vibrations of the quantum dot and

the sidebands has been confirmed. The interplay between
nanomechanical vibrations and a finite bias voltage, however,
still remains a challenging task outside certain limiting cases
[27,32,33].

In this paper, we address this problem in a numerically
exact way by using the diagrammatic Monte Carlo method
[24,34,35] (diagMC). For this purpose, we use a two-terminal
setup with an auxiliary electrode. This allows for an exact study
of the LDOS on a quantum dot coupled to two electrodes in
the limit of a vanishing coupling to the auxiliary lead [36–38].
Throughout this paper we consider the deep quantum limit at
T = 0.

For a thorough discussion of the numerical results, we use
an interpolative self-energy approximation (ISA), in which it is
possible to include electron-phonon interactions [18,22], and
the well-established single-particle approximation [15,16,39–
41] (SPA). Although these approximations rely on completely
different approximation schemes, one uses the underlying
common assumption that the phonons are described via
an equilibrium distribution. Consequently, effects due to a
nonequilibrium distribution of phonons can be clearly iden-
tified by comparing these approximations to the numerically
exact results.

The structure of the paper is as follows: In Sec. I we
introduce the Anderson-Holstein model. In Sec. II we show
how the diagMC can be used to calculate the LDOS for a
quantum dot with an electron-phonon interaction by adapting
the approach of Ref. [38]. Moreover, the ISA, SPA, and
certain limiting cases are briefly summarized. The results for
weak electron-phonon couplings are presented in Sec. III. The
moderate polaronic regime is addressed in Sec. IV.

I. THE MODEL

In our discussion, we consider a molecular quantum dot
connected by a tunneling coupling to a left (L) and right
(R) electrode. For such a system, a single-electron charging
of the quantum dot can cause a nanomechanical vibration
of the molecule [1]. A reasonable model Hamiltonian for
this situation is provided by the spinless Anderson-Holstein
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model [42,43] (throughout this paper we use units with
� = e = kB = 1):

H =
∑
k∈α

(εαk − μα)a†
αkaαk +

∑
k∈α

γα(a†
αkd + d†aαk)

+ εDd†d + λd†d(b + b†) + ω0b
†b. (1)

The quantum dot is modeled by a single electronic energy
level at εD. d† (d) is the electron creation (annihilation)
operator on the dot. α = L denotes the left and α = R the
right electrode. The electronic creation (annihilation) operator
on electrode α at energy level εαk is denoted by a

†
αk (aαk).

The bias voltage, V = μL − μR, is defined as the difference
between the two chemical potentials μα of the respective
electrode. This quantity is assumed to be constant for all times.
γα are the tunneling amplitudes. The tunneling rates in the
absence of many-body effects are given by �α = 2πρα|γα|2,
where ρα is the density of states of lead α, which is assumed
to be a flat band. The linear coupling of the vibrational
mode to the electronic degrees of freedom is described by
a single-phonon mode with frequency ω0. b† and b are the
phonon creation and annihilation operators, respectively. λ

denotes the electron-phonon coupling constant.
In the subsequent discussion, we study the deep quantum

limit at T = 0. Moreover, a symmetric setup is assumed
where �L = �R = �/2, μL = −μR = V/2, and we consider
the particle-hole symmetric case, ε̃D = 0. ε̃D = εD − λ2/ω0

is the polaron-shifted energy level of the quantum dot. This
parameter regime is very interesting since the steady-state dot
occupation is always 〈n〉 = 0.5 due to the symmetry of the
setup. Consequently, any bias dependence of the LDOS can
only be caused by the electron-phonon interaction and not the
electronic occupation of the quantum dot itself.

II. APPROACHES FOR THE SPECTRAL DENSITY
OF A VIBRATIONAL QUANTUM DOT

A. Diagrammatic Monte Carlo simulation method

Despite recent progress in developing analytical approaches
for the Anderson-Holstein model, e.g., by means of diagram-
matic resummation schemes [44–46], a complete solution
outside certain limiting cases is currently unknown. In order
to calculate the spectral density without having to rely on
methods which involve intrinsic approximations, numerical
methods are needed (see, e.g., Refs. [24–28]). A suitable
approach to access regimes of arbitrary voltage, electron-
phonon interaction, and dot-lead coupling strength is the
numerically exact diagMC method [24,34,35,47], which is
able to simulate finite temperatures as well as T = 0.

In the subsequent discussion we use a similar approach to
that of Ref. [38], where the diagMC has been used to calculate
the LDOS for the Anderson impurity model. Here, we briefly
summarize this approach and show how it can be adapted for
the case of a local electron-phonon interaction on the quantum
dot.

Following the lines of Refs. [36,37], the spectral density
of a two-lead quantum dot can be calculated exactly using
an auxiliary lead at chemical potential μM with a vanishing
dot-lead coupling (see Fig. 1 for a sketch of the setup). Their

FIG. 1. (Color online) Sketch of the three-terminal setup with a
weak coupling of the auxiliary lead to the quantum dot �M � �L,�R.
The bias voltage VM can be tuned in order to access the desired
energy in the spectral density of the quantum dot. μM is the respective
chemical potential of the auxiliary electrode.

basic idea is to generalize the Meir-Wingreen formula for the
current [29] to a three-terminal setup to obtain

IM = �M

� + �M

∫
dωρD(ω)

× [�fM(ω) − �LfL(ω) − �RfR(ω)], (2)

where the subscript M denotes the auxiliary lead and ρD(ω)
is the LDOS of the quantum dot. fα(ω) = 1/(eβ(ω−μα ) + 1)
denotes the Fermi function of lead α, where β is the inverse
temperature.

In the limit of a vanishing tunneling coupling of the
auxiliary electrode, i.e., �M → 0, one obtains the thermally
broadened LDOS of the two-electrodes setup by deriving
Eq. (2) with respect to the chemical potential of the auxiliary
lead [37]:

lim
�M→0

�−1
M

∂IM

∂μM
=

∫
dωρD(ω)

∂fM(ω)

∂μM
. (3)

In the deep quantum limit, i.e., at T = 0, the derivative of the
Fermi function in Eq. (3) becomes a delta distribution so that
the exact LDOS of the two-electrodes setup is obtained and
the thermal broadening vanishes [38]:

ρD(μM) = lim
�M→0

�−1
M

∂IM

∂μM
. (4)

A convenient way to evaluate Eq. (4) for the Anderson-
Holstein model is to use the diagrammatic expansion in
the tunnel coupling [24,35,47]. This expansion allows for a
complete decoupling of the influence of the leads to the dot,
denoted by LM(�sn), from the phononic one including the dot’s
energy level, denoted by G(�sn). Therefore, with the use of
Eq. (4) one obtains the transient which establishes the LDOS
starting from an initially decoupled preparation:

ρD(μM) = 2 lim
t→∞ lim

�M→0
�−1

M

∞∑
n=1

(−1)n
∫ t

0
d�sn

× ∂

∂μM
Re{LM(�sn)G(�sn)}. (5)
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We used the abbreviation∫ t

0
d�sn ≡

∫ t

0
ds2n

∫ s2n

0
ds2n−1 · · ·

∫ s2

0
ds1, (6)

where �sn = {s1,s2, . . . ,s2n} is the time-ordered sequence of 2n

tunneling times sj .
While in Ref. [38] G accounts for a Coulomb on-site

interaction, in Eq. (5) it provides the influence of the electron-
phonon interaction given by [24]

G(�sn) = F[�sn] eiε̃D(s1−s2+s3−··· ), (7)

where an initially empty quantum dot is considered. F[�sn]
denotes the Feynman-Vernon influence functional [48]:

F[�sn] = exp

{
−

∫
C
ds1

∫
C:s2<s1

ds2q(s1)L(s1 − s2)q(s2)

}
.

(8)

The integrations are performed on the Keldysh contour C :
0 → t → 0. q(s) denotes the occupation of the quantum dot
at time s which is fully determined by the initial condition of
the quantum dot and the position as well as the number of the
tunneling events given by �sn. For the considered single-phonon
mode, the bath autocorrelation function is given by

L(s) = λ2

ω0
[cos(ω0s) − i sin(ω0s)]. (9)

We would like to emphasize that the only assumption for
this approach is that the quantum dot is initially decoupled
from the leads. In detail, right before the coupling, the leads
and the quantum dot are considered to be in their respective
thermal equilibrium. The nonequilibrium aspect of the system
enters via the coupling of the leads to the quantum dot at t = 0.
This causes some transient dynamics until a nonequilibrium
steady state is reached.

Since G(�sN ) is independent of the leads, the derivative
with respect to the chemical potential of the auxiliary lead
in Eq. (5) only acts on LM(�sN ), which is a determinant of
a matrix consisting of lesser and greater self-energies of the
decoupled leads. Calculating this derivative, one obtains at
T = 0 [38]

lim
�M→0

1

�M

∂

∂μM
LM(�sn) = in det[SM(�sn)], (10)

where

SM
j,k(�sn) =

⎧⎪⎨
⎪⎩

�<(s2k−1,s2j ), for j � k,

�>(s2k−1,s2j ), for j > k,

i
2π

e−iμM(s2k−1−s2j ), if (s2k−1 ∨ s2j ) = t.

(11)

We would like to emphasize that the limit �M → 0 has
been performed analytically so that the auxiliary lead is not
influencing the two-terminal quantum dot. Consequently, the
stationary limit of Eq. (5) is the exact LDOS of the two-
terminal setup. We would like to note that the steady state is
defined with respect to the reduced dynamics of the quantum
dot. Therefore, the complete system is in nonequilibrium even
though a time-independent steady state for observables on the
quantum dot is reached.

Therefore, for a given sequence of tunneling events, �sn, it is
straightforward to calculate the influence of the leads on the dot

as well as the phononic influence without any approximation.
The summation and integration over all possible tunneling
events in Eq. (5) can be done conveniently in a numerical exact
manner by using Monte Carlo sampling [24,34,35]. Using this
method, the only occurring error is a controllable statistical
one. We would like to note that whenever no error bar is
visible in the subsequent figures, the error is smaller than the
symbol size.

In the following we will consider two different coupling
procedures of the leads to the dot at t = 0: A sudden, and a
smooth switch-on (for details of the coupling procedure see,
e.g., Ref. [38]). In addition, we truncate the leads’ density of
states at a value ±εc. The reason for this sharp cutoff is that
an instantaneous coupling of the electrodes to the quantum dot
can lead to excitations in the leads, which are arbitrarily high
in energy at t = 0 [49]. These short-living excitations are not
only unphysical but also make a numerical evaluation using
diagMC unfeasible. For our results, the cutoff is chosen to be
the largest energy scale in the system so that a further increase
of εc does not change our results for times t � ε−1

c [49].

B. Limiting cases

In this section, we briefly discuss two limiting cases, which
can be solved analytically. The first one is the absence of
electron-phonon interactions, λ/� → 0. Here, it is straight-
forward to see that the LDOS is independent of the applied
bias voltage [50]:

ρD(ω) = 1

2π

�

(ω − εD)2 + (�/2)2
. (12)

Considering a weakly coupled phonon mode, the electron-
phonon coupling can be treated perturbatively [16,21,51–54].
Consequently, Eq. (12) indicates that in the perturbative regime
no, or only a weak, voltage dependence in the spectral density
is expected.

Similar arguments hold for the atomic limit, where the
electron-phonon coupling becomes very large, �/λ → 0. In
this case, the LDOS is given by sharp delta peaks at multiples
of the phonon frequency [55]:

ρD(ω) = e−g

∞∑
k=0

gk

k!
{[1 − 〈nD〉]δ(ω − ε̃D − kω0)

+ 〈nD〉δ(ω − ε̃D + kω0)}, (13)

where 〈nD〉 is the charge on the quantum dot, and g = (λ/ω0)2

is the dimensionless electron-phonon coupling strength. Since
in this limit the leads are decoupled from the quantum dot, the
LDOS cannot depend on the bias voltage.

To summarize these considerations, it is clear that in the
weak as well as in the strong coupling limit, a possible voltage
dependence of the LDOS can only be weak. Therefore, the
nonequilibrium LDOS outside these limiting cases is expected
to be the most interesting one.

C. Approximative approaches

Finally, we discuss two important and often used approx-
imative approaches. A very popular approximate scheme is
the SPA [15,16,31,39–41], where the electrons are decoupled
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from the phonons. For this approach the LDOS at temperature
T can be written as

ρD(ω) = �

2π
e−g(2nB+1)

∞∑
k=−∞

Ik[2g
√

(nB + 1)nB]ekβω0/2

×
[

1 − 〈nD〉
(ω − ε̃D − kω0)2 + (�/2)2

+ 〈nD〉
(ω − ε̃D + kω0)2 + (�/2)2

]
, (14)

where the charge on the quantum dot, 〈nD〉, has to be calculated
self-consistently. Ik is the modified Bessel function, β = 1/T ,
and nB = 1/(eβω0 − 1). The simple structure of the SPA allows
for a straightforward evaluation. Moreover, it provides good
results if the correlations between electrons and phonons are
weak, or if the quantum dot is either empty or occupied.
Furthermore, the atomic limit as well as the case of absent
phonons is recovered. Outside these limiting cases, methods
are needed which go beyond the simple SPA decoupling
scheme. A well-established method which is known to provide
reasonable results for a broad range of parameters is the
ISA [22]. The basic idea is to perform a functional interpolation
of the self-energies from the weak to the strong coupling
regime. This scheme was originally derived for the Anderson
impurity model [56,57] and has been extended and widely
used in different systems: multilevel quantum dots [58],
out-of-equilibrium transport through a single level [59,60], and
in dynamical mean field theory [61,62] to analyze the Mott
transition in Hubbard-like models. For the nonequilibrium
Anderson-Holstein model this approach provides accurate
results beyond perturbation theory or SPA [18].

Using the ISA and the SPA, the effects of the electron-
phonon interaction on the charge transport can be discussed
qualitatively as long as their basic underlying assumption is
fulfilled: an equilibrium distribution of the phonons. Since
both methods cover a broad range of parameters this in turn
implies that if the physics is qualitatively not covered by either
of these methods, there is a strong indication that the phonons
no longer obey an equilibrium distribution.

III. WEAKLY COUPLED PHONON MODE

We start the discussion of our results by considering the
weak-coupling regime with λ = �, and a rather large phonon
frequency ω0 = 4�. The corresponding polaronic self-energy
can be determined to be �pol = λ2/ω0 = �/4. Since �pol < �

the formation of a polaron is a relatively rare event and the
electrons are thus weakly coupled to the phonons.

In Fig. 2 the transients which establish the spectral density
for V = 2� at ω = ±0.5� are shown. An instantaneous
coupling to the electrodes leads in this case to an overshooting,
with the steady state being approached monotonically. The
relevant time scales for the dynamics can be estimated to
be O(�−1). A smooth coupling of the quantum dot to the
electrodes [38] establishes the steady state adiabatically.

Since the particle-hole symmetric case is considered, the
spectral density in the stationary limit must be symmetric with
respect to ω = 0. In Fig. 2 it can be seen that in the weak-

 0

 0.15

 0.3

 0  3.5  7  10.5  14

ρ D
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Γ-1
]

t [Γ-1]

FIG. 2. (Color online) Time-dependent diagMC results for
ρD(ω,t) with λ = �, ω0 = 4� for V = 2� and ω = 0.5� (red circles)
as well as ω = −0.5� (blue diamonds). Empty symbols denote results
for a switch-on time of τsw = 10�−1. The bandwidth is 2εc = 8�.

coupling case this property is well fulfilled even in the transient
regime.

The resulting LDOS in the frequency domain is shown
in Fig. 3 for two different voltages: V = 2� and V = 10�.
Comparing results from ISA to the results extracted from
the time-dependent diagMC calculations, we find excellent
agreement.

The overall shape of the spectral density is very similar for
both voltages. A comparison with the results in the absence
of phonons (λ = 0) reveals that the height of the central peak
remains almost unchanged in the low-voltage regime. The ISA
reveals a slight decrease of the central peak when increasing the
bias voltage. Since this decrease is small, the Friedel-Langreth
sum rule [63,64], which pins the height of the central peak to
ρD(0) = 2/(π�) [18], provides a good approximation also for
the nonequilibrium situation.

Small sidebands at multiples of the phonon frequency
are observed, which are independent of the voltage within
the accuracy of the results extracted from diagMC. The
ISA reveals features at |ω| = kω0 ± V/2, with k being an
integer, where the LDOS is changing rapidly (see inset of
Fig. 3). These features can be attributed to inelastic electron
tunneling processes as predicted by different theoretical
approaches [18,44] to appear both in the spectral density
and conductance. For the considered nonequilibrium spectral
density with a particle-hole symmetric setup they appear at the

 0

 0.2

 0.4

 0.6

-6 -4 -2  0  2  4  6

ρ D
 [

Γ-1
]

ω [Γ]
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 0.02

 0.04

 3  4  5

FIG. 3. (Color online) LDOS at zero temperature for a weakly
coupled phonon mode with λ = �, ω0 = 4�. Red indicates V = 2�

and green V = 10�. The straight lines are the ISA, and circles and
diamonds denote the diagMC results. The LDOS in the absence of
phonons (λ = 0), given by Eq. (12), is shown as a black dashed line.
The inset shows a zoom into the region of the first phonon sideband
at ω = ω0 = 4�.
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condition |ω| = kω0 ± V/2. For large k the effect can be tiny
due to the large amount of phonons involved.

We conclude that the voltage dependence of the spectral
density for a weakly coupled phonon mode is very small. This
observation is in excellent agreement with our discussion of the
limiting cases given in Sec. II B. An important consequence
for future theoretical approaches is that in this regime it is
sufficient to solve the nonequilibrium problem by calculating
the LDOS using equilibrium theory. The nonequilibrium
aspect of the system enters only via the integration limits for
single-particle observables such as the dot occupation or the
current.

IV. SPECTRAL DENSITY IN THE MODERATE
POLARONIC REGIME

In the polaronic regime, the formation time of a polaron
is shorter than the average occupation time of the electron
on the quantum dot. Consequently, the formation of a po-
laron becomes likely so that pronounced phonon sidebands
are expected. The corresponding parameter regime can be
determined to be �pol > �.

The focus of the subsequent discussion is on the voltage
dependence of the spectral density. Our approach to distinguish
different voltage regimes is by considering the number of
phonon sidebands, which are included in the voltage window:
If only the central transport channel is between the two chem-
ical potentials, that is V � ω0, the low-voltage regime is real-
ized. For voltage windows including one or more sidebands,
we expect that nonequilibrium aspects are most pronounced.

A. Low-voltage regime

Important references in the low-voltage regime are equilib-
rium results such as the Friedel-Langreth sum rule, which is
fulfilled at V = 0 independent of the electron-phonon interac-
tion strength [31]. Since phonon sidebands form when increas-
ing the electron-phonon coupling [16,20,30,31], and the norm
of the spectral density needs to be preserved, the central peak
must be phonon-narrowed. This narrowing can be determined
to be �̃ � �e−g [30]. Such a narrowing of the central peak
for strong electron-phonon couplings is the origin of the
Franck-Condon blockade effect discussed in detail in Ref. [65].

Regarding the nonequilibrium problem, in Ref. [46] it was
shown via an approximative study that such a narrowing of the
resonances can increase the time scales relevant for the charge
transport up to

τpol = exp[(λ/ω0)2]�−1 = �̃−1. (15)

Correspondingly, e.g., the transients for establishing the central
peak of the spectral density at ω = 0 can be estimated to be

ρD(ω = 0,t) = 2

π�
(1 − e−t�̃/2). (16)

Our diagMC results confirm this behavior as shown in
Fig. 4 for various electron-phonon couplings in the moderate
polaronic regime. We would like to emphasize the broad range
of phonon parameters, for which Eq. (16) provides accurate
results. Besides confirming the existence of phonon-induced
long time scales [46] determined by �̃−1, an important
consequence of this behavior is that in the low-bias regime

 0

 0.3

 0.6

 0  2  4  6  8

ρ D
 [

Γ-1
]

t [Γ-1]

FIG. 4. (Color online) Time-dependent diagMC results for the
central resonance at ω = 0 with V = 2� for various phonon pa-
rameters: λ = 3�, ω0 = 4� (yellow triangles), λ = 2�, ω0 = 2�

(red circles), λ = 4�, ω0 = 3� (green diamonds), and λ = 8�,
ω0 = 4� (blue pentagons). The bandwidth is set to 2εc = 8�. The
corresponding transients in the spirit of Ref. [46], given by Eq. (16),
are lines with the same color code as the respective numerical data.
The analytical result of the transient in the absence of phonons is
shown as a black line.

the Friedel-Langreth sum rule is fulfilled. That is, the central
peak is pinned to ρD(ω = 0) = 2/(π�) independent of the
electron-phonon coupling strength.

In the subsequent discussion, we will study a parameter
regime where nonequilibrium effects are most pronounced.
According to our preceding discussion, it must therefore be
neither close to the limiting cases of a very weak phonon
coupling nor in the strong polaronic regime. Another require-
ment is that we are able to extract the complete LDOS from the
time-dependent diagMC results. Therefore, the steady state has
to be reached within times which are accessible by diagMC. A
reasonable choice of parameters fulfilling these requirements
is λ = ω0 = 2�: the moderate polaronic regime is accessed
and the longest time scales of the transients are roughly
�̃−1 ≈ 2.7�−1. The current implementation of the diagMC
is able to simulate up to t ≈ O(10�−1) within reasonable
computational effort. Consequently, we can not only discuss
the transient dynamics, but it is also reasonable to extract the
steady state of the system from the time-dependent results.

In Fig. 5 the transients which establish the spectral density at
ω = 0.5� and ω = � are shown. Similar to the weak-coupling
regime, an instantaneous coupling of the electrodes to the

 0

 0.1

 0.2

ω = 0.5 Γ

-0.1

 0

 0.1

 0.2

 0  5  10  15

ρ D
 [

Γ
-1

]

t [Γ -1]

ω = Γ

FIG. 5. (Color online) diagMC results for ρD(ω,t) for λ = ω0 =
V = 2�. The upper panel shows ω = 0.5�, the lower one ω = �.
Empty circles denote a smooth switching within τsw = 12�−1, and
filled ones correspond to an instantaneous coupling at t = 0. The
bandwidth is 2εc = 8�.
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FIG. 6. (Color online) Same plot as in Fig. 5, however, for the first
phonon sideband with ω = ω0 = 2� (red circles) and ω = −ω0 =
−2� (blue diamonds). The green triangles denote the diagMC results
of the average ρD,av(ω,t), as in Eq. (17). A smooth switching within
τsw = 6�−1 is employed.

quantum dot leads to an overshooting for small times. The
steady state, however, is approached nonmonotonically in
an oscillating manner. The characteristic time scale for the
convergence towards the steady state can be estimated to
be given by �̃−1; pronounced features in the oscillations
occur with a periodicity given by t ≈ 2π/ω0. These tran-
sients can be reduced by a smooth switch-on procedure of
the leads to the quantum dot. If a rather long switch-on
time is used, the steady state can be extracted with good
accuracy.

It is worth noticing an interesting effect that is clearly
observed in the transient regime for the strong-coupling case:
while the particle-hole symmetry requires that the stationary
spectral density is symmetric, ρD(ω) = ρD(−ω), this relation
does not have to be fulfilled necessarily in the transients. In
Fig. 6 an overshooting for a positive frequency, ω = ω0, can
be observed, whereas the transients for a negative frequency,
ω = −ω0, show a monotonic increase in time. This effect
can be explained by the asymmetry in the initial preparation:
right before the coupling of the quantum dot to the leads, the
quantum dot is empty. Therefore, only resonances positive
in energy exist, since no deexcitation of phonons is possible
at t = 0. On the finite time scale necessary to establish
the spectral density [38] this asymmetry in the initial prepara-
tion leads to an asymmetry in the transients. Combined with the
phonon-induced long time scales, this fact provides a deeper
understanding of the splitting of the current depending on the
initial preparation on a time scale given by O(�−1), which
was observed, e.g., in Ref. [66]. This is further corroborated
by the fact that for the considered particle-hole symmetric
case one obtains ρ

empty
D (ω,t) = ρ

occupied
D (−ω,t), where the

superscript denotes the initial occupation of the quantum
dot.

Since neither ρD(ω = ω0,t) nor ρD(ω = −ω0,t) exhibit a
clear steady state in Fig. 6, we use the particle-hole symmetry
of the considered setup, and define the average of the transients
by

ρD,av(ω,t) = 1
2 [ρD(ω,t) + ρD(−ω,t)]. (17)

The particle-hole symmetry ensures that this function has the
same steady-state value as ρD(ω,t) and ρD(−ω,t), separately.
The transient dynamics, however, show a quicker convergence
towards the plateau value due to the averaging between
excitations and deexciations in Eq. (17). Therefore, the steady

 0

 0.2

 0.4

 0.6

-6 -4 -2  0  2  4  6

ρ D
 [

Γ
-1

]

ω [Γ]

FIG. 7. (Color online) Zero-temperature spectral density for λ =
ω0 = 2� and V = 2�. The results extracted from diagMC are
shown with red filled circles, the ISA is a blue line, and SPA is
green.

state of ρD,av(ω,t) can be extracted with reasonable accuracy.
We would like to note that similar convergences of the
observables can also be found for the currents: While the
average current reaches a plateau for t � 8�−1, the left and
the right current converge to a joint steady state for times
t � 11�−1.

In Fig. 7, we plot the extracted spectral density of the
quantum dot, and we make a comparison between diagMC,
ISA, as well as SPA. It should be stressed that the error bar
of the extracted steady state from the time-dependent diagMC
results is twice the total change of ρD,av(ω,t) from t = 8�−1

to t = 12�−1.
A very sharp central peak at ω = 0 is observed with a

height given by the Friedel-Langreth sum rule. Compared to
the case of absent phonons, the width of the central peak is
reduced to �̃ ≈ �e−g , as was also observed in Ref. [30] for
the equilibrium situation. This observation eventually proves
the close connection between the long transients and phonon
narrowing of the resonances, which was discussed in Ref. [46]
by means of an approximative method.

Phonon sidebands can be found at multiples of the phonon
frequency, with an exponentially decreasing height. This
behavior reflects the fact that transport outside the voltage
window is strongly suppressed. Moreover, clear dips in the
spectral density appear between two phonon sidebands.

The ISA describes the results obtained from diagMC with
remarkably good accuracy. Small differences are only visible
at the first phonon sidebands, where the ISA predicts a slightly
larger value. Since one basic assumption of the ISA is an
equilibrium phonon distribution, we conclude that effects
due to a (possible) nonequilibrium phonon distribution only
play a minor role in the moderate polaronic regime at low
biases.

Regarding the low-frequency domain calculations using the
SPA a clear deviation from the diagMC is observed. This
means that the charge on the quantum dot is strongly correlated
with the excitation of phonons for frequencies that are not
too large. In the large frequency domain, however, a good
agreement between the diagMC and the SPA is observed.
Therefore, the electrons are decoupled from the phonons for
transport with energies much larger than the voltage window,
which confirms the results of Ref. [31].
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FIG. 8. (Color online) Time-dependent diagMC results for the
transients, which establish the central peak ρD(ω = 0) for λ = ω0 =
2� and various voltages: V = 2� (red circles, bandwidth 2εc = 8�),
V = 6� (green triangles, 2εc = 8�), V = 10� (blue diamonds,
2εc = 12�), V = 14� (yellow reverted triangles, 2εc = 16�). The
approximative description in the spirit of Ref. [46], given by Eq. (16),
is shown as a red line.

B. Far-from-equilibrium spectral density

In the subsequent discussion, we will analyze nonequilib-
rium effects in the moderate polaronic regime. For this purpose
we consider voltage windows that contain one or more phonon
sidebands. While nonequilibrium effects are not important in
the weak-coupling regime, as discussed in Sec. III, the effect of
a large bias voltage is strong in the moderate polaronic regime:
The transients, which establish the central transport channel at
ω = 0, are shown in Fig. 8, where the same phonon parameters
are used as in the previous section: λ = ω0 = 2�. For a voltage
window, which includes one or more phonon sidebands, the
transients no longer follow the exponential convergence, given
by Eq. (16). Moreover, the relevant time scales for the transient
dynamics are significantly smaller so that the steady state
is reached faster than in the low-bias regime. Furthermore,
the steady-state value drops to a much smaller value, which
reflects the fact that the transport through the quantum dot
outside the low-voltage regime is dominated by the excitation
of one or more phonons. This behavior clearly violates the
Friedel-Langreth sum rule.

The strongest voltage dependence of the height of the
spectral density at ω = 0 is observed when increasing the
voltage from V = 2� to V = 6�. The reason for this behavior
is that for λ = ω0 = 2� the central transport channel as well
as the first phonon sideband are most pronounced for V = 2�

as can be seen in Fig. 7. Including the first sideband into
the voltage window by setting V = 6�, charge transport
involving single-phonon processes becomes likely and thus
this important transport channel opens. This reduces the
probability for charge transport without exciting a phonon
and, consequently, the height of the central resonance at ω = 0
decreases. A further increase of the voltage does not exhibit this
pronounced behavior since the transport channels involving
two or more phonons are much smaller for the considered
parameters.

An important consequence of the decreasing central trans-
port channel is that the weight of the LDOS is shifted towards
larger frequencies. A similar shift has been reported recently in
the differential conductance [27]. This shift causes an increase
of the phonon sidebands outside the voltage window as can be
seen in the lower panel of Fig. 9. Including a phonon sideband

FIG. 9. (Color online) Time-dependent diagMC results for
ρD,av(ω,t) with |ω| = ω0 (upper panel) and |ω| = 3ω0 (lower panel)
with λ = ω0 = 2�. V = 2� is highlighted with red circles (band-
width 2εc = 8� in the upper panel, and 2εc = 14� in the lower one),
and V = 10� with blue diamonds (bandwidth 2εc = 14� for both
panels). A smooth switching within τsw = 6�−1 is employed.

into the voltage window causes a drop of the phonon resonance
as can be seen in the upper panel of Fig. 9.

The resulting spectral density extracted from the time-
dependent diagMC for V = 10� is shown in Fig. 10. A
comparison with the low-bias LDOS in Fig. 7 reveals that
inside the voltage window all peaks seem to align to a
similar height, whereas peaks outside the voltage window are
increased. Moreover, the narrowing of the central transport
channel to �̃ ≈ e−g� is no longer observed in the large voltage
regime. Rather, a width of approximately �, which is the value
for the interaction-free case, is recovered. We would like to
note, however, that this is not an indication that the charge
transport through the quantum dot is uncorrelated from the
phonons: a comparison with the SPA reveals that the central
transport channel is strongly suppressed.

In addition, Fig. 10 reveals a clear deviation of the ISA
from the diagMC results. For such a large voltage the ISA
spectral density has (almost) converged to the SPA case. It
is interesting to remark that a recent diagrammatic resum-
mation scheme valid in the polaronic regime [44] predicts a
similar convergence towards the SPA for large voltages. As
these approximate theories do not include the effect of the
nonequilibrium distribution of phonons in a self-consistent
way, the numerically exact diagMC results strongly indicate
that this effect is important in the moderate polaronic regime
in the large bias limit.
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FIG. 10. (Color online) Same color code as Fig. 7 but with
V = 10�.
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FIG. 11. (Color online) Same diagMC results as in Fig. 10. The
SPA has been calculated with effective temperatures of the phonons
T = � (blue), T = 3� (black), and T = 10� (green).

A straightforward way to confirm that the deviations
observed in Fig. 10 are indeed produced by a nonequilibrium
phonon distribution is to try to simulate the results by an
equilibrium distribution at some effective temperature. For this
purpose, we use the SPA since the ISA as well as the approach
of Ref. [44] converge to the SPA for sufficiently large bias
voltages.

In Fig. 11 the SPA results given by Eq. (14) for various
effective phonon temperatures T → Teff are compared to
the diagMC results, which are calculated for V = 10� and
T = 0. Strikingly, the central peak of the SPA spectral density
decreases by increasing the phonon temperature, whereas
phonon resonances well away from the central peak increase—
a behavior similar to the diagMC results for increasing voltage.
For an effective phonon temperature of roughly Teff ≈ 3�, the
results from SPA match the diagMC results for T = 0 and
V = 10� with good accuracy. We would like to note that
despite the good overall agreement, small differences can be
observed for the second phonon resonance, which means that
not all effects can be completely described in detail by this
effective theory.

V. CONCLUSIONS

In this paper we calculated the nonequilibrium spectral
density of a vibrational quantum dot using the numerical exact

diagMC technique and compared its predictions with those of
approximate methods such as ISA and SPA.

We showed that for a weak electron-phonon interaction the
spectral density of the quantum dot resembles the equilibrium
one independently of the bias voltage. For intermediate
electron-phonon coupling strengths in the moderate polaronic
regime, we determined a significant voltage dependence of the
spectral density. An increasing bias voltage shifts the weight
of the spectral density towards larger energies: The central
resonance decreases, whereas phonon resonances outside the
voltage window are increased with respect to the equilibrium
results. Inside the voltage window our results indicate that the
phonon peaks align to a similar height. We were able to link
the voltage dependence of the spectral density to an effective
“heating” of the phonons caused by inelastic excitations.

The explicit voltage dependence of the spectral density
points out the importance of accessing the spectral density
directly, e.g., by means of a three-terminal setup [36,37,67].
An indirect measurement, e.g., of the differential conductance
might lead to a discrepancy between the result and the actual
spectral density due to its voltage dependence.

Another consequence of our findings is that for future
descriptions by means of approximative approaches it is
desirable to also account for nonequilibrium effects of the
phonon distribution, which could be preformed, e.g., as
proposed in Ref. [32].

Finally, we would like to emphasize that for small voltages,
we confirmed the existence of phonon-induced long transients
previously proposed in Ref. [46]. Moreover, we pointed out
that the inverse of the width of the resonances in the spectral
density determines the relevant time scale in the system.
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Thoss, and H. B. Weber, Phys. Rev. Lett. 106, 136807
(2011).

[12] J. C. Cuevas and E. Scheer, Molecular Electronics: An Intro-
duction to Theory and Experiment (World Scientific, Singapore,
2010).

064305-8

http://dx.doi.org/10.1038/35024031
http://dx.doi.org/10.1038/35024031
http://dx.doi.org/10.1038/35024031
http://dx.doi.org/10.1038/35024031
http://dx.doi.org/10.1038/nature01103
http://dx.doi.org/10.1038/nature01103
http://dx.doi.org/10.1038/nature01103
http://dx.doi.org/10.1038/nature01103
http://dx.doi.org/10.1103/PhysRevLett.88.226801
http://dx.doi.org/10.1103/PhysRevLett.88.226801
http://dx.doi.org/10.1103/PhysRevLett.88.226801
http://dx.doi.org/10.1103/PhysRevLett.88.226801
http://dx.doi.org/10.1103/PhysRevLett.92.206102
http://dx.doi.org/10.1103/PhysRevLett.92.206102
http://dx.doi.org/10.1103/PhysRevLett.92.206102
http://dx.doi.org/10.1103/PhysRevLett.92.206102
http://dx.doi.org/10.1021/nl049871n
http://dx.doi.org/10.1021/nl049871n
http://dx.doi.org/10.1021/nl049871n
http://dx.doi.org/10.1021/nl049871n
http://dx.doi.org/10.1063/1.1765095
http://dx.doi.org/10.1063/1.1765095
http://dx.doi.org/10.1063/1.1765095
http://dx.doi.org/10.1063/1.1765095
http://dx.doi.org/10.1103/PhysRevLett.93.266802
http://dx.doi.org/10.1103/PhysRevLett.93.266802
http://dx.doi.org/10.1103/PhysRevLett.93.266802
http://dx.doi.org/10.1103/PhysRevLett.93.266802
http://dx.doi.org/10.1021/nl048619c
http://dx.doi.org/10.1021/nl048619c
http://dx.doi.org/10.1021/nl048619c
http://dx.doi.org/10.1021/nl048619c
http://dx.doi.org/10.1103/PhysRevLett.96.026801
http://dx.doi.org/10.1103/PhysRevLett.96.026801
http://dx.doi.org/10.1103/PhysRevLett.96.026801
http://dx.doi.org/10.1103/PhysRevLett.96.026801
http://dx.doi.org/10.1038/nphys1234
http://dx.doi.org/10.1038/nphys1234
http://dx.doi.org/10.1038/nphys1234
http://dx.doi.org/10.1038/nphys1234
http://dx.doi.org/10.1103/PhysRevLett.106.136807
http://dx.doi.org/10.1103/PhysRevLett.106.136807
http://dx.doi.org/10.1103/PhysRevLett.106.136807
http://dx.doi.org/10.1103/PhysRevLett.106.136807


LOCAL DENSITY OF STATES ON A VIBRATIONAL . . . PHYSICAL REVIEW B 91, 064305 (2015)

[13] S. Ballmann, W. Hieringer, D. Secker, Q. Zheng, J. A. Gladysz,
A. Görling, and H. B. Weber, Chem. Phys. Chem. 11, 2256
(2010).

[14] J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish,
J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruña, P. L.
McEuen, and D. C. Ralph, Nature (London) 417, 722 (2002).

[15] A.-P. Jauho, N. S. Wingreen, and Y. Meir, Phys. Rev. B 50, 5528
(1994).

[16] K. Flensberg, Phys. Rev. B 68, 205323 (2003).
[17] A. Mitra, I. Aleiner, and A. J. Millis, Phys. Rev. B 69, 245302

(2004).
[18] R. C. Monreal, F. Flores, and A. Martı́n-Rodero, Phys. Rev. B

82, 235412 (2010).
[19] T. Holstein, Ann. Phys. 8, 343 (1959).
[20] A. C. Hewson and D. Meyer, J. Phys. Condens. Matter 14, 427

(2002).
[21] M. Galperin, A. Nitzan, and M. A. Ratner, Phys. Rev. B 74,

075326 (2006).
[22] A. Martı́n-Rodero, A. Levy Yeyati, F. Flores, and R. C. Monreal,

Phys. Rev. B 78, 235112 (2008).
[23] T. Koch, J. Loos, A. Alvermann, and H. Fehske, Phys. Rev. B

84, 125131 (2011).
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