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Abstract

String Theory is nowadays the best candidate to describe gravity at the quantum
level together with the other interactions and matter fields. Therefore, it should be able
to describe physics at the most fundamental level.

In order to describe many phenomena consistently it is often necessary to provide
some mechanism creating hierarchies between the different scales in the physical system.
These kind of hierarchies admit a natural explanation in terms of warping on the internal
space, which leads to suppression factors on the 4 dimensional field theories. In String
Theory these warp suppressions can be obtained by the use of the so-called warped throats.
In this thesis I will use toric Calabi-Yau singularities in order to build up warped throats
where different physical phenomena happen. Most phenomena I focus on are related to
dark energy, the source of accelerate expansion of the Universe on its very early stages
and nowadays. I also present some new techniques in order to guess which throats admit
orientifold actions, and use them to describe UV completions of stringy instantons in terms
of gauge instantons in such geometries.

Resumen

Teoria de Cuerdas es a dia de hoy la mejor candidata para describir la gravedad a
nivel cudntico junto con el resto de interacciones y particulas elementales. Por lo tanto,
deberia ser capaz de describir cualquier proceso fisico al nivel més funamental posible.

En muchos procesos fisicos resulta muchas veces necesario hacer uso de algin meca-
nismo que de lugar a jerarquias entre las diferentes escalas presentes en el sistema fisico.
Este tipo de jerarquias admiten una explicacién natural en términos de un factor de de-
formacién del espacio interno, que da lugar a factores de supresién en la teoria de campos
efectiva describiendo la fisica 4 dimensional. En Teoria de Cuerdas esta supresion median-
te factores de deformacién en el espacio interno puede obtenerse mediante el uso de las
denominadas gargantas deformadas. En esta tesis haré uso de singularidades cénicas 6
dimensionales que sean téricas y Calabi-Yau para construir gargantas de este tipo donde
se puedan describir diferentes fenémenos fisicos. La mayoria de fenémenos en los que me
centro estan relacionados con energia oscura, la fuente de crecimiento acelerado del Uni-
verso tanto en sus primeros instantes como a dia de hoy. También presento una serie de
técnicas que permiten decir qué gargantas son compatibles con acciones de orientifold, y
hago uso de estas ideas para describir compleciones al ultravioleta de configuraciones con
instantones exéticos, que admiten una descripcién en términos de instantones gauge.
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Introduction

Since ancient times the curiosity of human beings to understand the world around
us has led to questions whose answers always led to new and more fundamental questions.
This evolution of knowledge has taken us to understand nature at a level that could not
even be thought of some centuries (or even decades) ago. The current borders of knowledge
lie on “objects” whose sizes are far from the ones we are used to: these are elementary
particles and the Universe as a whole; the smallest and the largest “objects” one may think
of. And as happened in other times, the open questions related to both of them are not a
few. Nowadays, high energy theoretical physicist try to find an answer to these questions,
providing models with new ideas that may give an answer to these question. These models
lie on two pillars that sustain the fundamental physics of the 20" and the 21 centuries:
quantum mechanics, describing the behaviour of matter at atomic or subatomic scales,
and General Relativity (GR), describing the structure of spacetime and its answer to the
inclusion of matter and other types of energy in the long distance range.

The current knowledge on elementary particles can be well described by the Standard
Model (SM) of particle physics and some of its extensions. This model describes the
different matter particles, quarks and leptons, as well as the electromagnetic, strong and
weak interactions. Moreover, it also includes the recently discovered Higgs boson, which
is necessary in order to explain electro-weak symmetry breaking and the origin of mass.
The theory is compatible with quantum mechanics, since it provides a description of both
the matter particles and the interactions in terms of a field theory which is quantized.
The model was developed together with experimental results from colliders, and thus it
fits experimental data with an enormous degree of accuracy.

Nonetheless, the SM is not without problems. It is certain that it needs to be
extended to explain phenomena such as neutrino oscillations, which are nowadays well
understood in terms of neutrino masses, but it has deeper open questions which do not
have well known and accepted answers yet. One of them is explaining the smallness of
the Higgs boson mass, that gets quantum corrections that are quadratic on the cutoff
scale of the model. This can be explained by a huge bare mass of the boson with a fine
tuned value such that the physical mass is way smaller than the bare mass and the cutoff
scale. Another possibility is to make quantum corrections small due to an extension or
ultraviolet completion of the SM. The fine tuning required for the first option led many
people to believe in the second option in the past years, which is a priori more natural,
but the recent lack of experimental results in this direction is weakening the naturalness
argument. Still, many other facts push in favour of the existence of a completion, such as
dark matter or right handed neutrinos (if they exist), which may eventually result in an
explanation for the smallness of the mass of the boson.
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Going to the other border of knowledge on fundamental physics, the standard model
describing the Universe is known as ACDM, where A stands for dark energy, and CDM
stands for cold dark matter. According to this model, the Universe is approximately
homogeneous and isotropic, and it evolves according to its matter and energy content
following the field equations of GR. Nowadays, approximately 70% of this content is the
so-called dark energy, which is responsible for the current accelerated expansion of the
Universe and whose origin constitutes one of the biggest questions in physics. Then, out
of the other 30% left, almost one sixth goes to matter we know, and the rest is the so-
called dark matter, which nowadays remains a mystery. Moreover, the model needs of an
almost exponential growth of the Universe on its very early stages lasting for around a
second in order to solve e.g. the horizon problem. This period is known as the Cosmic
Inflationary period or just Inflation. Its existence was predicted years ago and it is widely
accepted by the community. Recently the experimental results by the BICEP2 and Planck
observations, as well as their combined analysis confirmed the existence of polarization B-
modes on the Cosmic Microwave Background (CMB). Part of these B-modes could be
sourced by the interaction of the CMB with Primordial Gravitational Waves, which would
provide observational evidence of the existence of an inflationary epoch.

Since Inflation lasts for a finite amount of time, the mechanism triggering this almost
exponential growth of the Universe was suggested to be described by a scalar field that
slowly rolls down its potential effectively giving rise to a positive cosmological constant
until it reaches its minimum. The effective field theory description of this phenomenon
contains several Planck suppressed operators, which need to be under control for the slow
roll conditions to be fulfilled if inflation requires transplanckian field excursion. In order to
obtain such a controlled situation it is necessary to find a UV completion of this effective
field theory, by embedding inflation in a theory of Quantum Gravity.

Finding a theory of Quantum Gravity has proven not to be an easy task. Applying
standard field theoretical approaches to quantize GR one finds that a straight forwardly
quantized version of GR has many divergences, so new ideas are necessary in order to find
a well behaved theory of quantum gravity.

Nowadays, String Theory (ST) is the most promising candidate for a quantum de-
scription of gravity as well as the other interactions and matter particles. The underlying
idea of the theory is a rather simple one: fundamental particles are not point-like objects
but rather have an extension, such that they are really one dimensional (actually 1+1
dimensional) objects. The size of strings, also known as the string scale l5 is very small,
which explains why we effectively observe that particles are point-like and thus can be well
described in terms of quantum field theory. Starting from this simple principle, one finds
that the different particles correspond to different vibrating modes of strings. There is a
particularly interesting vibrating mode for the closed string that corresponds to a massless
spin 2 particle, whose effective field theory is described by GR. This is why strings describe
gravity at the quantum level. Moreover, ST can provide the UV completion of the SM
and its possible extensions, since it contains all the ingredients to describe gauge groups
and matter fields.

It is important to mention at this point the existence of five different Super String
Theories depending on their matter content on the worldsheet. These are the SO(32) and
FEg x Eg heterotic, type I, type IIB and type IIA. These five theories share some common
features such as the requirement of spacetime having 10 dimensions, but also have quite a
lot of differences. Still, there exists a series of relations between them, known as dualities,
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which relate certain ST in a limit to another ST in another limit. This series of dualities led
to the conclusion that all these ST’s are actually different manifestations at certain limits
of a underlying more fundamental theory which is known as M-Theory. M-theory (and
thus ST) is expected to be the theory that can describe every physical process at the most
fundamental level, and is thus thought to be a theory of everything. Currently a complete
non-perturbative formulation of neither M-theory nor ST is known, and therefore most
of the developments in ST are limited to its perturbative region. The duality web and
other types of progress (such as F-Theory) are slowly providing a better comprehension
of the non-perturbative aspects of ST’s but there is still a long way to go in this direction.
Let me mention here that in this thesis I will focus mostly on perturbative type IIB ST
configurations, with some comments on certain type IIA configurations.

The dualities found due to ST not only relate different ST’s between themselves but
also relate ST configurations to Quantum Field Theories. This point will be of special
relevance in this thesis, where the Gauge/Gravity correspondence will be an invaluable
tool. This duality has proven to be very useful not only for high energy physicists but also
for e.g. condensed matter physicists.

Despite of the enormous amount of work on ST, we are still far from being able to
provide a description of the fundamental laws of nature in this framework. The reason is
precisely that as quantum field theory, ST is nothing else but a framework, and thus there
exist a huge amount of ST configurations or vacua which lead to different effective field
theories at low energies. The set of all possible configurations get the name of the String
Landscape. The existence of the landscape makes it complicated to formulate generic
statements about ST, and usually it is convenient to focus on the properties of some set
of vacua in order to look for the concrete ST configuration (if any) describes the laws of
nature in our Universe. This strategy allows to improve our knowledge on new aspects of
the theory that may eventually result in the discovery of our vacuum.

Nonetheless, the existence of the Landscape is not the only problem we have to test
the theory. Another restriction comes from the current technological developments, that
do not allow us to create experiments achieving the required energies to study matter
at small enough scales. The required energy scales are of the order of the string scale I,
whose value still remains an open question and could in principle get values from a few TeV
to being close to the Planck scale. The option of having a string scale on the TeV range
looks very interesting from a phenomenological point of view since it would imply that
collider experiments on the near future would allow us to test the theory. Unfortunately,
these type of models often have problems such as risky operators that are not suppressed
enough due to the low UV cutoff scale and lead to phenomena such as proton decay. These
kind of problems make it quite conventional to set the string scale at energies much higher
than the ones we will be able to explore on the short term. Fortunately, there might
exist a source of information about processes at energy scales way higher than the ones
currently available at colliders. The process sourcing this type of information is nothing
else but Inflation, whose imprints on the current Universe can be used in order to extract
information about high energy processes and may provide the only test of ST on the short
term.

Luckily for us, the first accurate measures in this direction started short ago, which
opens up an epoch of excitement for high energy physicists. These started with the original
claim by BICEP2 of the detection of B-mode polarization on the CMB and consequent
tensor to scalar ratio. These news resulted in a lot of researchers focusing on this direc-
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tion, including string phenomenologists, which found the best chance so far of testing the
theory. The eventual realization that the B-modes are consistent with cosmic dust led
the combined analysis by BICEP2 and Planck, which resulted in a bound of the tensor to
scalar ratio of r < 0.12, which is still compatible with large field inflation and thus can be
one of the main sources of information about quantum gravity and thus ST.

This thesis addresses some of the issues arising when describing large field Inflation
and also the origin of the current accelerated expansion of the Universe from a ST per-
spective. In particular, one finds that in order to provide a microscopic origin of these
phenomena by embedding them on ST it is usually necessary to create hierarchies for a
satisfactory description. An example of this type can be found when embedding inflation
in ST, since in order to have single field inflation one needs to separate the moduli stabil-
ization scale form the scale of inflation. In order to create these hierarchies I will exploit a
ingredient that is well known in ST embeddings of particle physics models: warped throats.
In particular, the focus will go on warped throats from deformed toric CY singularities,
which provide a specially tractable scenario to engineer manifolds with certain desired
properties. Throughout the thesis I will also address other topics that are non-related to
Cosmology but are related to these kind of warped throats.

1.1. Plan of the thesis

This thesis contains several chapters that are slightly independent from each other.
The binding line between all of them is the use of warped throats from toric CY singular-
ities in type IIB ST, which I review in chapter 2. These type of manifolds have some prop-
erties that allow to easily engineer singularities with some desired properties. Moreover,
ST configurations of probe D3-branes on such singularities provide a holographic gauge
theory description which can be encoded in terms of the so-called dimer diagrams. Many
of the properties of these diagrams will be given in this chapter since they will be one of
the key tools in the following analysis.

The next two chapters are devoted to embedding inflation in ST. As I will explain,
large field models of string inflation require a monodromic structure for the inflaton po-
tential, and this monodromy can be achieved either by 5-branes or by fluxes. In chapter
3 I will provide a geometry where to embed models of the first type and study the back-
reaction of the necessary 5-brane-antibrane pair, which was argued to be dangerous, to
conclude that the configuration is indeed under control. Then, in chapter 4 I will describe
a mechanism to separate the moduli stabilization scale from the scale of inflation. This
time the analysis is carried out on the fluxed axion monodromy scenario. Among other
things, in this chapter I will provide a holographic description of monodromy, as well as
an analysis of the possibility of inflation being spoiled via bubble nucleation.

The purpose of chapter 5 is different from the previous ones: this chapter studies
orientifolds of warped throats, providing a series of new tools that will be used on the
following chapters. Concretely, it contains criteria to tell which toric singularities are
compatible with orientifolds, and for those accepting them, which type(s) of orientifolds
they admit. Finally, these ideas are mixed with the criterion to have a warped throat from
a complex deformation of the singularity. It is a chapter devoted to the development of
new techniques and thus has no further phenomenology-oriented analysis.

4
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Then, in chapter 6 I embed in ST a sector with Dynamical Supersymmetry Breaking
(DSB) which uplifts the Cosmological constant. This sector with DSB lies on a D3-brane
on an orientifold of a warped throat, and thus makes use of the previous technology.

Chapter 7 changes the direction again: here I study D-brane instantons on the
bottom orientifolds of warped throats giving rise to superpotential terms for quiral quiver
theories. The embedding of the instantons into a throat provides a UV completion of the
effects of the exotic instanton in terms of a gauge instanton. Moreover, the considered
setups include for the first time non-perturbative contributions involving flavours.

Finally, chapter 8 contains the conclusions and summary of the main results found
in the thesis.
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Warped throats from toric Calabi-Yau singularities
and dimer technology

One of the most characteristic properties of superstring theories is that they require
spacetime to be ten dimensional as compared to the four dimensional one we are used to.
Therefore, if string theory is the theory that completes on the UV our current theories to
describe nature at the most fundamental level, the six extra dimensions need to be com-
pact. This leads to a generalization of the Kaluza-Klein idea where the four dimensional
physics is completely related to the geometry and topology of the extra dimensions, also
known as the internal space.

Among many other things, the ingredients on the internal manifold can lead to many
phenomena on the 4 dimensional effective field theory, such as generating hierarchies. The
idea of creating hierarchies in four dimensions using extra dimensions was first introduced
by Randall and Sundrum [1]. The key to create such hierarchies was warping the extra
directions, such that modes located at different points of the internal manifold are af-
fected by this warping in a different amount. This idea was first brought to string theory
in [2], where the warping of the internal manifold came from space-filling D3-branes. This
setup was still not appropriate for realistic compactifications due to the existence of sev-
eral massless moduli, which made the warping moduli dependent and thus required the
introduction of fluxes for an stable warp factor. It turns out that compactifications with
fluxes leading to warping of the internal space and 4 dimensional supersymmetry were
already available in the market [3], but had not been used for these purposes. The first
applications of these type of flux compactifications were presented in [4]. Moreover, the
authors of [4] analysed the local structure required in a region with large warping. They
noticed that by turning on fluxes it was possible to have stable and warped solutions,
following the ideas in the Klebanov and Strassler (KS) solution [5]. The KS solution is a
smooth solution of type IIB supergravity based on the deformed conifold with fluxes and
it is the first example of a warped throat. Warped throats in general are non-compact
conical manifolds with a warp factor depending on the radial direction of the cone leading
to hierarchies on the four dimensional effective field theory.

In this thesis I will focus on warped throats arising from toric CY singularities.
These singularities are particularly interesting: the CY condition leads to 4 dimensional
supersymmetric field theories and the toric condition provides an extra structure that
enables a holographic description of the warped throat in terms of the so-called dimer
diagrams [6]. Moreover, the toric diagram characterizing these type of singularities turns
out to be extremely useful in order to engineer geometries where to describe e.g. some
cosmology-related phenomena from the string theory perspective.
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In this chapter I provide some general background on warped throats. I will begin
with the KS solution and some of its properties in section 2.1, then I will give some insights
on more general throats in section 2.2 and then move to the more tractable scenario of
warped throats from toric CY singularities in section 2.3 . Once these singularities are
introduced, I will review some of their properties, with special focus on the holographic
dual description in terms of dimer diagrams and the general properties of these diagrams.

2.1. Review of the Klebanov-Strassler throat

Since the discovery of the gauge/gravity duality by Maldacena [7], there has been
an enormous amount of work on finding other pairs of dual theories and using them for
different purposes: from AdS/CMT to dualities motivated by high energy physics. This
thesis focuses on the latter, in particular, in the ideas proposed by Klebanov and Witten
in [8] and subsequent work on that direction. Their proposal was to generalize the duality
by considering type IIB ST in a setup with a stack of N D3-branes on a singularity
instead of flat space. More concretely, they focused on putting them on the tip of a
conifold [9], which is a six dimensional cone over a 5 dimensional compact manifold with
S3 x S? topology, and found out that the dual gauge theory in this particular case is a
4 dimensional N/ = 1 superconformal gauge theory with gauge group SU(N) x SU(N)
and chiral superfields A; in the representation ( O, O ) of the gauge group and B; in the
(O, O) with a superpotential of the form

W = A1B1A2B2 — A1B2A2B1 . (2.1)

This research line was further developed by Klebanov and collaborators in the following
years [10-12], where they found out that placing M < N fractional branes it is possible
to slightly break conformal invariance. On the gauge theory picture fractional branes
correspond to an increase of the rank of one of the gauge factors to SU(N) x SU(N + M).
The gauge theory then is no longer conformal, so RG equations are non-trivial and lead to
strong coupling of the gauge factor of higher rank. At certain point this theory is better
understood in terms of the Seiberg dual of this gauge factor [13]. Seiberg duality is a
strong-weak duality between two different UV gauge theories that flow to the same IR
theory. The Seiberg dual IR theory for this case is similar to the UV one but with gauge
group SU(N) x SU(N — M). As the energy scale decreases, the other gauge factor goes
to strong coupling and once again it is convenient to describe its dynamics in terms of
its Seiberg dual. This series of dualities is periodically repeated throughout the RG flow,
effectively reducing the rank of both gauge factors logarithmically with the energy scale,
and it is known as the RG cascade, duality cascade or the Klebanov-Tseytlin throat [12].
On the gravitational side fractional branes are D5-branes wrapped on the collapsed 2-cycle
of the internal manifold. They carry D3-brane charge, and so the fluxes induced by M
fractional branes are

/ Fy =4r%d'M / H3 = —4m%d/K(r) , (2.2)
A B
A being the 3-cycle surrounding the D5-brane, so transverse to the 2-cycle where it is

wrapped and the radial direction on the conifold, and B the dual 3-cycle precisely com-
posed by the product of this 2-cycle and the radial direction. K (r) depends on the radial
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value where the throat is cut, and its profile was shown to scale with 1/r, so the NSNS
2-form Bj depends logarithmically on the radius [12]. The D3-brane charge then increases
as one moves away from the tip of the cone because of these fluxes

1 - 1 3
(r) (4m2a/)? /X5 5 (4720/)? /X5 2 N\ I3 27rg og(r/e), (2.3)

in agreement with the decrease of the ranks on the gauge theory. ¢ is a length scale that
I will shortly explain. This non-trivial profile of F5 was shown to give rise to a non-trivial
warp factor on the internal space [12]

1574
ds® = eQA(T)anx”dx”%—e*QA(r) (dr2 + T2ds§(5) . e M) = 0T %92 M

o4log(r/e) +1
32 )

4
(2.4)
The culminating work in this direction resulted in the Klebanov-Strassler (KS)
throat [5]. In this paper they addressed the problems arising close to the tip of the
conifold, or equivalently the deep IR of the gauge theory, where the previous analysis was
found to have divergences [12]. The claim of the paper was that once the fractional branes
are included, the conifold is no longer singular but is rather on a deformed phase, i.e. the
S3 on the base of the cone is kept at finite size on the tip because the fluxes stabilize the
modulus (via the flux superpotential in [14]) and redshift scales by a warp factor as follows

2rK )

o (2.5)

€ ~ exp ( —
The radial direction of a throat is holographically interpreted as the energy scale in the
dual gauge theory. For this reason, I will often use the common terminology of UV and
IR to refer to the large and small radius regions, respectively. The main lesson is that the
dynamics down the throat is exponentially suppressed with respect to the UV scale in the
bulk of the compactification.

This growth of the S? on the bottom of the throat has a nice description on the
holographic dual, where the deformation corresponds to a quantum deformation of the
moduli space. Being more concrete, at certain point on the IR the ranks of gauge factors
are of order M and the one with the higher rank has equal number of colors and flavors
N. = Ny, which leads it to confine. The field theory is thus described in terms of its
mesons M;; = A;B; and baryons. Due to the strong dynamics of the factor the moduli
space of the gauge theory is modified, as can be seen by probing the geometry with a stack
of D3-branes, or equivalently by exploring the mesonic branch of the moduli space defined
by

M1 Moy — Mya My = A*M (2.6)

which is precisely the equation of the deformed conifold [9].} In this equation A is the
dynamically generated SQCD scale and it is related to the deformation parameter on the
gravitational side, which is precisely the length scale € where the previous work [12] broke
down. The IR theory after the deformation can be seen to be N' =4 SU(M) SYM theory
dual to placing D3-branes on flat space.

'More general cases are also possible, where N, > N;. In these cases the gauge factor also confines and
develops a non-perturbative Affleck-Dine-Seiberg superpotential [15]. The outcome is also a deformation
of the moduli space of the same type, but its realization in terms of the F-terms is not as straight forward
as that with N. = Ny.
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The KS throat is the prototypical example of a warped throat. The deformed
conifold is a local CY manifold that can describe the physics on the surrounding of a
conifold point where the warping is large in a global compactification. This warping
allows to effectively cut the region from the rest of the compact CY manifold and describe
the physics locally. In the holographic dual, this means that one can decouple the IR
physics, happening deep on the throat, from the UV physics, happening on the bulk of
the CY. This matches nicely with the Randall-Sundrum (RS) idea [1], where the warping
on the extra dimensions was used to create hierarchies in the 4 dimensional effective field
theory. In fact, when the string theory generalization of RS was studied by Giddings,
Kachru and Polchinski [4], they found that the KS solution fulfilles the requisites to be
part of a global embedding with warping and Lorentz invariance in 4 dimensions. These
requisites are a non-trivial profile for the D3-brane charge sourcing the warp factor, an
imaginary self dual 3-form flux *Gs = iG3, where G = F3+ig;H3s and some constrains on
the local sources, which allow for example objects with D3-brane charge but no anti D3-
brane charge. In fact, there is a stronger constrain than the 3-form flux being imaginary
self dual, since this allows it to have a (2,1) component as well as a (0,3) one. In order
to preserve supersymmetry, it is necessary that the latter vanishes and the former is a
primitive harmonic form [16]. This is indeed the case for the KS throat.

A final remark on the KS solution goes on a particularly visual description in terms
of a T-dual type ITA Hanany-Witten (HW) [17] brane configuration [18,19]. The T-dual
of a stack of D3-branes on the tip of the conifold along the circle parametrized by « in

zy—zw=0 ; x—e% y—e %y (2.7)
looks as follows. The singular loci z = 0 and w = 0 are T-dual [20] to two NS5 branes
spanning the Minkowski directions (throughout the thesis I will refer to directions 0123 as
the Minkowski directions) as well as the complex w and z planes respectively (so one spans
e.g. the 012345 directions, and the other one 012389, I will call them NS and NS’ brane
in what follows). The stack of N D3-branes becomes a stack of N D4-branes spanning
the compact dualized direction, say xz°. The outcome is a setup with a NS brane and a
NS’ brane which cut the D4-branes in the 2® direction. The relative position of the NS
and NS’ brane depend on the Bj field on the type IIB setup. The effective field theory
arising from the D4-branes that wrap a S' is precisely the gauge theory described above, as
expected from T-duality. When studying the non-conformal case with fractional branes,
these are mapped to D4-branes spanning the compact 2% direction, but unlike the regular
D3-branes, fractional branes only span one interval between the NS branes, not the whole
S!. This is illustrated in figure 2.1(a). The logarithmic profile of By in this picture then
translates to the relative motion of the NS and NS’ branes as the energy scale of the 4-
dimensional effective field theory changes. This relative motion changes the gauge coupling
of both gauge factors, which scales as 1/d, d being the distance between the NS branes.
When the two NS-branes get very close to each other, the gauge group on the D4-branes
between them becomes very large, so the gauge theory is better understood in terms of
the weakly coupled Seiberg dual theory which arises from crossing both branes [21]. The
amount of D4-branes on the interval decreases after the crossing of NS branes due to the
Hanany-Witten effect [17], in agreement with the decrease of the ranks in the holographic
theory, see figure 2.1(b). The relative motion of these branes follows describing the RG
cascade in this picture, until one reaches the point where the amount of regular D4-branes
N is of the same order as that of fractional branes M, figure 2.1(c). At this point, the
deformation recombines the NS and NS’ branes, as in figure 2.1(d).

10
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(a) N (b) N
N+M ‘ NS NS N-M NS’
(c) (d) Ns
M

.,

2M NS

Figure 2.1: (a) HW brane configuration T-dual to the conifold with N regular branes and M
fractional branes. Fractional branes increase the amount of D4-branes along one segment in the
compact direction, which is bound by a NS and a NS’ brane. (b) When the gauge group of higher
rank goes to strong coupling, its description is better understood in terms of the Seiberg dual
gauge theory. On the HW picture, this corresponds to crossing the NS and NS’ branes, which
due to Hanany-Witten effect decreases the number of D4-branes in the corresponding interval. (c)
After many Seiberg dualities, the amount of regular branes N gets as small as that of fractional
branes N = M leaving this HW setup. At this point, the gauge group with rank 2M confines.
(d) The confinement process on the HW-brane picture implies the recombination of the NS and
NS’-branes. As shown in the picture, one is left with M D4-branes wrapped on a circle, whose
worldvolume theory is precisely N' =4 SU(N) SYM.

2.2. More general warped throats

The above analysis can be extended to more general type IIB setups describing local
warped regions close to singularities which share some of the properties of the deformed
conifold. In this section I review what the requisites to construct such scenarios are.

The first constrains arise because the throats of interest have 4d supersymmetry.
This imposes that the singularity is CY and the G35 flux is a primitive harmonic (2,1)-
form [16]. For the throat to be stable it is necessary to include fluxes. These must lead to a
non-trivial profile of the D3-brane charge in order to have warping on the internal manifold.
It was argued above that warping required Gg to be imaginary self-dual [4], but this is
already fulfilled if it is a harmonic (2,1)-form. The non-trivial profile of D3-brane charge
of interest comes from fractional branes. In a general setup these are D5-branes wrapping
collapsed 2-cycles of the internal space and also spanning the Minkowski directions. After
collapsing the 2-cycle they lead to non-trivial fluxes. For singularities more involved than
the KS throat one finds that fractional branes not always lead to complex deformations,
but can also lead to other phenomena. A classification of fractional branes depending
on their consequences was presented in [22]. The so-called deformation fractional branes,
that behave as the ones in the KS solution, lead to the non-trivial fluxes holding one or
more 3-cycles at finite size in the conifold case. The possibility of having deformation
fractional branes then is constrained by the possibility of performing geometric transitions
that change the Hodge numbers of the internal space while preserving the CY condition.?

?Recent developments in [23] show that throats transverse to O3-planes can give rise to throats with
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When these kind of fractional branes leading to one or more finite size 3-cycles A; are
possible the fluxes induced by them generalize (2.2) to

/ Fy =4n’d'M; H3 = —4n%d' K;(r) , (2.8)
Al B!

where I is the amount of complex deformations that can be performed on the conical
singularity. These fluxes lead to a D3-brane charge

N(r) = (47T216V’)2/)<5 j (W/ Bun B o MPlogtr/en) (29

and warp factor
41

It is worth pointing out at this point that a Complex deformation due to fractional branes
can be located at finite radius along the radial direction of the conical manifold. In fact,
this happens e.g. on the setup in chapter 3. When this happens, the complex deformation
changes the base of the cone for radii much larger or much smaller than the one where the
deformation happens. This process can happen more than once in the same throat when
there are different sets of deformation fractional branes.

On the holographic dual picture, a stack of D3-branes on a generic CY singularity
is a superconformal quiver gauge theory. In general it consists of several gauge factors
and chiral superfields transforming in bifundamental and adjoint representations of these
gauge factors depending on the isometry group of the singularity. For certain singularities,
it is possible to also find a superpotential, a requisite to completely define the theory if
it has N' = 1 supersymmetry (for those with A/ = 2 it is enough to have the gauge
group an matter content for the theory to be completely defined). As in the conifold case,
adding fractional branes corresponds to increasing the rank of some gauge factors.® These
break conformal invariance and trigger a duality cascade, generalizing the KS cascade, that
effectively reduces the rank of all gauge factors periodically while preserving the amount
of fractional branes as the theory flows to the IR. This cascade dualizes to the non-trivial
D3-brane charge profile. For deformation fractional branes (from here on I will refer
to deformation fractional branes simply as fractional branes, unless otherwise stated),
at certain point the gauge factors with fractional branes of type M; confine and their
dynamics is better described in terms of their mesons (and sometimes baryons). These are
subject to quantum constrains of the kind (2.6), forcing the mesons to acquire non-trivial
vevs that higgs the gauge factors under which the mesons transform to their diagonal
combinations, reducing the amount of gauge groups and matter fields in the resulting
gauge theory. The confinement process corresponds to reaching the radial value where
one set of fractional branes is holding the 3-cycle A; at finite size, such that for smaller
radii the base of the cone X5 has changed in agreement with the fact of having a different
quiver theory on the IR. In agreement with the supergravity description, it is possible that
after a complex deformation the quiver gauge theory goes through another duality cascade

fluxes holding 3-cycles at finite size similar to the KS ones, but do not accept resolutions and thus geometric
transitions. This behaviour was found to be a consequence of the O3-planes.

3The RR tadpole cancellation condition on the gravitational picture translates to the cancellation
condition of non-abelian gauge anomalies [24].
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triggered by another set of fractional branes M ; until another group confines. These ideas
will be further developed in section 2.3.4.

For a complete supergravity analysis of the above setups knowing the metric of
the deformed manifold is necessary. Finding a metric for a singularity is not always
possible, but if one knows the holographic theory completely, this provides a way out of
this problem: it is enough with finding the ranks of gauge groups triggering a duality
cascade that decreases the ranks of all gauge groups while preserving the fractional branes
and lead to confinement of one or more gauge groups. Since this process dualizes to the
complex deformation on the gravitational side, being able to describe it on the gauge
theory side is enough to prove the existence of the deformation and non-trivial fluxes.
This idea will be used several times along the thesis.

One of the main difficulties to carry out the previous analysis for a generic singu-
larity is to find the quiver gauge theory and superpotential corresponding to a given CY
singularity. This is why from here on I will focus on the more tractable set of CY singu-
larities that are also toric, which allow to easily read out the dual gauge theory and whose
geometric transitions can be described in a diagramatic way.

2.3. Toric Calabi-Yau singularities

The discovery of the AdS/CFT [7] correspondence quickly motivated people to look
for generalizations. The first gauge theory duals other than the conifold case were obtained
by quotients of C3 [25,26]. These included abelian ones C3/Z,, as well as non-abelian ones
C3/Zy, x L, which gave superconformal theories with ' = 2 and A/ = 1 respectively in 4
dimensions. Soon afterwards it was noted that partially resolving the latter it was possible
to obtain many more singularities with A/ = 1 supersymmetry in 4 dimensions [27]. On
the holographic picture the resolution was described as a Higgs mechanism which broke
certain gauge factors of the quiver theory to their diagonals. These ideas easily allowed
to build up many singularities by performing a large enough orbifold and then blowing up
2-cycles to end up with precisely the desired singularity [28] . Finding the holographic dual
of these singularities is thus a mechanical task, which requires to follow the same series of
steps on the quiver theory instead of the geometry. The conifold theory was found to be an
example of the singularities one could build up this way. Moreover, it was already noted
that these type of CY singularities could be described in terms of Gauged Linear Sigma
Models (GLSMs), and thus were toric singularities . These ideas were exploited in [29-31]
to develop an algorithm, known as the inverse algorithm, which completely defined the
N = 1 supersymmetric gauge theory (its gauge group, matter content and superpotential)
from the toric data. It is important to mention at this point that for certain singularities,
it was found that a unique singularity can give rise to different gauge theories. These
gauge theories are known as different phases and their meaning will be cleared shortly.

Toric CY singularities can be characterized in many ways, one of them being the
toric diagram (for a general review of toric geometry see e.g. [32]). This is a convex
integer sublattice QQ C Z? that will be used below, see figure 2.2(a) for an example. The
graph-dual diagram to the toric diagram is known as the web diagram, this graph-duality
is explained with an example in figures 2.2(a) and (b). The web diagram is a series of
lines which represent the complex space where the singularity is embedded together with
a series of D-terms which describe the toric action that leave the singularity after taking
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the quotient of the embedding space by the toric action. The equation(s) defining the
singularity are described in terms of relations between gauge invariant operators of the
GLSM.

(@) (b) () (d)

Figure 2.2: (a) Toric diagram for the conifold singularity. (b) Web diagram for the conifold on
the singular limit. This diagram is graph-dual to the toric diagram since there is a one to one
correspondence between lines on the web and intervals between points on the toric diagram. (c)
Web diagram for the conifold on the resolved phase. The growth of the 2-sphere is depicted as
the growth of the internal line, corresponding to a non-zero Fayet-Iliopoulos term on the D-term
defining the CY. (d) The deformation of the conifold described in terms of the web diagram. It
corresponds to taking the geometry to the singular limit and substracting a subweb in equilibrium
form the web diagram. The separation between webs represents the growth of the 3-cycle.

Web diagrams are useful not only to define the toric singularity but also because
they allow to describe the possible resolutions and complex deformations of the singularity.
Partial resolutions of the singularity correspond to turning on Fayet-Iliopoulos terms,
which in the diagram are represented by growing internal lines, as done in figure 2.2(c)
for the conifold. In order to describe complex deformations, it is necessary to define the
(p,q) web of the singularity. This is the set of external legs of the web diagram, and it
will be very important for many purposes throughout the thesis. The name (p,q) web
comes from the fact that each external leg has an associated vector (p,q) that tells to
which direction the external leg is pointing at. An important property of these webs
is that the sum of all (p,q)’s of a given singularity sum up to zero. Using this web,
complex deformations were shown in [33] to be described as a separation of the (p,q)
web into into subwebs in equilibrium, i.e. the total (p,q) of the removed subweb must
be zero, as shown in figure 2.2(d) for the conifold case. The simplicity in the description
of these two operations makes web diagrams the perfect tool to find out the possible
geometric transitions a singularity can go through. This gives the first reason why toric
CY singularities are specially interesting to build up warped throats: using web diagrams
one can easily engineer a throat allowing geometric transitions and thus fractional branes,
together with other desired topologic properties.

2.3.1. Dimer diagrams

Another interesting feature of toric singularities is that they are closely related to
dimer diagrams. These were introduced in the mathematics literature in [34], and first
used for other string theory related purposes in [35,36], but it was not until [6] that they
got related to the gauge/gravity community and until [37] that the community realized
about their actual usefulness.

Dimer diagrams are two dimensional graphs describing tilings of T2. The ver-
tices/nodes on the tiling are colored in black and white and each edge is bound by one
black and one white vertex, so all tiles/faces are bound by an even number of edges and
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vertices. The usefulness of dimers relies on the fact that they provide with a diagramatic
description of the whole N’ = 1 gauge theories as follows: faces of the dimer represent
gauge factors of the holographic theory, edges have an orientation (e.g. one can put an
arrow on top of them such that they leave a black node on their right and a white one on
the left) and represent chiral fields transforming on the fundamental representation of the
face on the back of the arrow and the antifundamental representation of the other face
they bound, and finally, vertices are superpotential terms involving the ordered product
of matter fields they bound with an opposite sign for white and black nodes, such that
every field in the theory shows up twice in the superpotential, once in a term with plus
sign and once in another one with minus sign. This interpretation of dimers was first given
in [37]. Their relation to toric singularities was known since [34], but the developments
in [38] made the relation between them more simple. This relation is shortly explored in
section 2.3.2. In figure 2.3 I show the the dimer of the conifold.

W= + A1 B1 A2 B1 - A1 B2AzB1

Figure 2.3: Dimer describing the conifold theory. Faces with labels 1 and 2 represent the two
gauge factors SU(n1) and SU(ny), edges A; are chiral fields transforming in the (nj, ns) repres-
entation of the gauge group whereas edges B; transform in the (n1,n3). Finally, vertices/nodes
are superpotential terms involving the fields touching the node. I will take the convention that
black nodes have plus sign in the superpotential and involve a product of the fields ordered in a
clockwise direction, and white nodes have negative sign and involve a product of the fields ordered
in a counter-clockwise direction.

The usefulness of dimers relies on their powerful encoding of field theory phenomena
into diagram combinatorics. One of the most interesting of them is Seiberg Duality [13].
This duality can be easily described in terms of dimer diagrams [37] and is the reason why
a unique singularity accepts different dimers, or equivalently different toric phases: all
the phases are related by a series of Seiberg dualities [31,39]. Moreover, these phases are
important because the RG flow of dimer theories in the presence of deformation fractional
branes is described by a periodic series of Seiberg dualities, that make the dimer of a given
singularity go through its different toric phases.

Another important phenomenon that can be easily described in terms of dimers are
complex deformations generalizing the KS [5] smoothing of the conifold. Since this changes
the gauge theory by reducing the amount of gauge factors due to confinement of certain
group(s) and the following higgsings, the amount of faces on the dimer gets reduced when
a complex deformation happens. These ideas were developed in [40] in the gauge theory
language and translated to the dimer language in [41]. The key point is that the complex
deformation corresponds to a removal of a subweb in equilibrium from the web diagram,
or equivalently certain zig-zag paths from the dimer. These paths bound some faces on
the dimer, corresponding to the gauge groups with fractional branes that confine. Several
examples of this kind will be provided throughout the thesis.

The last useful property of dimers that is interesting to mention at this point is that
they allow a diagramatic representation of the effect of orientifolds on the supergravity
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side. The orientifold action translates to an orientifold action on the dimer diagram as
described in [42]. Further details about this will be provided in section 2.3.5.

2.3.2. Zig-zag paths

The objects relating the dimer with the toric data were dubbed zig-zag paths (in
what follows I will also refer to them as simply zig-zags). These are oriented paths on the
dimer that cross the edges on the middle and turn e.g. maximally to the left when they
encounter a black node and to the right with a white node, see figure 2.4(a) for an example.
The paths cross each other, but the bipartite nature of the dimer prevents any zig-zag to
cross itself. A crucial fact of zig-zags is that each path defines a homologically non-trivial
1-cycle on the dimer torus; once the unit cell of the dimer is fixed, each zig-zag has some
associated winding numbers (p, ). As the notation suggest, these (p, q)’s are precisely the
ones showing up on the (p,q) web, i.e. they are in one to one correspondence with the
external legs of the web diagram [38], these are shown for the conifold case in figures 2.4(b)
and (c). Retaking the possibility of having multiple gauge theories for a given singularity,
on the dimer language this fact translates to different dimers being compatible with the
same singularity. Zig-zag paths encode the information about the singularity and thus
do not depend on the particular dimer or toric phase describing the gauge theory, the
resulting (p, ¢) web is the same for all toric phases of a given singularity. A final comment
on this direction goes to modular invariance of the unit cell where the dimer is defined,
since winding numbers of zig-zag paths do depend on the unit-cell choice. This implies
that the (p,q) web, and thus the web and toric diagrams are defined modulo SL(2,7)
transformations from the different possibilities for the unit cell.

Figure 2.4: (a) The unit cell of the conifold together with its zig-zag paths. (b) The (p,q)’s of
the zig-zag paths of the conifold as the external legs of its web diagram. (c) Web diagram of the
conifold.

If one is interested in building up the dimer diagram from the toric data, zig-zag
paths also provide a nice recipe to do so, which was dubbed the fast inverse algorith
in [38]. This algorithm consists of undoing the process carried out in figure 2.4, where
zig-zag paths translated information of the dimer to the toric data. Note that black nodes
on the dimer are surrounded by zig-zags pointing on the clockwise direction, whereas they
point counter-clockwise for white nodes. This requires of some structure on the possible
ordering of zig-zag paths on the unit cell of the dimer. Based on this ideas, it is possible
to use the information the other way around: one can take the set of zig-zag paths of a
given singularity to build up the dimer. In figure 2.5 I provide an example describing how
to obtain the conifold dimer from its (p, q¢) web, and refer to [38] for further examples and
details. The (p, q) web of the conifold was given in figure 2.4(b).
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Figure 2.5: Use of the fast forward algorithm to derive the dimer diagram of the conifold from the
(p,q) web. The (p,q) web for the conifold is shown in figure2.4(b). (a) The zig-zag paths placed
on the unit cell. They bound faces of two types: the ones shaded in grey are bound by zig-zag
paths whose orientation always goes on the clockwise direction (black arrow) or counter-clockwise
direction (white arrow); and the ones in light blue, bound by zig-zags that have opposite directions
at the points where they cross each other. (b) From the previous setup, one obtains the dimer by
replacing faces in black by black and white nodes depending on the orientation of the zig-zags on
the face, and zig-zag crossings map to edges bounding by a white and a black node. This dimer is
the same as the one in figure 2.3 but with a different choice of unit cell.

2.3.3. The mirror perspective

The mirror dual of a toric CY singularity was shown in [43] to live in a threefold
given by a double fibration over the complex plane

z = w
z = P(z,y) = Z Cmn " Y" (2.11)

where u,v,z € C and z,y € C* are the coordinates defining the threefold and P(z,y)
is the Newton polynomial of the toric diagram of the singularity. In this picture?, the
gauge groups of the dimer translate to D6-branes wrapping 3-cycles on the geometry,
bifundamental fields arise from open strings on the intersections between these branes and
superpotential terms come from worldsheet instantons in discs bound by three or more
branes. All intersections between branes, and thus all worldsheet instantons, were shown
to meet at the Riemann surface ¥ given by P(z,y) = 0, that I will focus on in this section.
For other aspects of the mirror dual see [43].

The surface ¥, defined by P(x,y) = 0, is a Riemann surface with handles and
punctures. This surface was shown in [43] to be a thickening of the web diagram [46-48],
such that the amount of punctures of Y is the same as the external legs of the web diagram,
and its genus g is the same as the amount of internal points of the toric diagram, which
as said before is graph dual to the web diagram. In figures 2.6(a) and (b) I show the
web diagram and the curve ¥ corresponding to the conifold. The D6-branes giving rise
to gauge groups wrap l-cycles in ¥ surrounding some of its punctures and intersecting
each other. Open strings on these intersections give the bifundamental chiral fields and
worldsheet instantons on the discs bound by several D6-branes and their intersections
are responsible for superpotential terms. The way D6-branes are wrapping 1-cycles in

Tt actually corresponds to an intersecting brane configuration, in the sense of [44,45].
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Y so that they give rise to the same chiral fields and superpotential terms as those in
the dimer was described in [43]. The outcome is that D6-branes are wrapped such that
each puncture in ¥ is surrounded by a series of D6-brane intersections and worldsheet
instantons, or equivalently fields and superpotential terms.

It is thus possible to define a bipartite graph tiling >, where each face represents a
puncture of ¥, or equivalently an external leg of a web diagram or zig-zag of the dimer.
Edges of this tiling are the fields in the intersection(s) between zig-zag paths in the dimer,
and their vertices correspond to the worldsheet instantons (superpotential terms), which
can be coloured as in the dimer, since each edge must have a white and a black node on
each side. Finally, the 1-cycles wrapped by D6-branes are zig-zag paths of this tiling of X,
i.e. turning maximally when they are next to a black node and maximally to the left when
the node is white. Therefore, the toric theory can be described by two tilings, the original
dimer and the one just described, which are strongly related via the so called untwisting
procedure in [43] and with two main differences: on the one hand, the dimer is defined on
a torus, whereas the tiling in the mirror has genus g. On the other hand, in the original
dimer faces represented gauge groups while zig-zag paths corresponded to external legs
of the web diagram, whereas in the mirror, faces are the external legs and zig-zags are
D6-branes corresponding to gauge groups. In order to avoid possible confusions, from here
on I will use the term dimer only describe the tiling of the torus where faces represent
gauge groups, and zig-zag paths will be the paths defined on the dimer, I will not use
these terms for the tiling of the mirror curve X.

Figure 2.6: (a) Web diagram of the conifold on the resolved phase. Labels correspond to external
legs of the diagram. (b) The curve P(x,y) = 0 of the conifold is a thickening of its web diagram.
(c) The tiling of ¥ for the conifold. The dotted line corresponds to a unique point, since X is a
sphere with punctures as shown in (b), corresponding to faces in (c). Also, comparing with figure
2.4(a) it can be see that it has four edges and one vertex of each color. The paths in green and
blue are the D6-branes giving rise to the two gauge groups.

2.3.4. Complex deformations

One of the main motivations to be interested on toric CY singularities is that they
provide the perfect scenario to create hierarchies by complex deformations of the singular-
ities hold by fluxes. These have been widely studied and applied for several applications
on the literature, see e.g. [40,49-51].

Among the different descriptions of this phenomenon, here I will focus on the web
diagram, gauge theory and the mirror geometry descriptions.
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As already mentioned, the gauge theory description of complex deformations can
be easily carried out using dimer diagrams [22]. By placing fractional branes on some
gauge groups (I will shortly give a criterion to determine which) their ranks increase and
break conformal invariance. This triggers a duality cascade that periodically reduces the
rank of all gauge groups by a unique amount that depends on how many fractional branes
were put [5,40]. At certain point on the RG flow the theory reaches a point where the
groups with fractional branes number of colors and flavours satisfying Ny < N, so their
strong dynamics leads to a modification of the moduli space and thus modification of the
dimer. The resulting gauge theory and dimer have less gauge factors and correspond to
the left-over (possibly singular) geometry after the complex deformation. Therefore, the
singularity and thus the gauge theory are different before the complex deformation (UV
of the gauge theory) and after it (IR of the gauge theory). The confinement/deformation
process can be diagrammatically carried out in term of the dimer. An example of this
process is shown in figure 2.7.

Figure 2.7: (a) Dimer diagram of the Zs orbifold of the conifold describing the UV physics. Gauge
group with label 3 is taken to have Ny < N, and thus confines. (b) An intermediate step in the
confinement/deformation process following the recipe in [40]. (c) The resulting dimer after the
deformation process, that describes the IR physics of the gauge theory. This dimer corresponds to
the conifold.

The difference between the UV and the IR theories is also reflected on the web
diagram, where the deformation process corresponds to the removal of a sub-web in equi-
librium. By this removal one is left with a new web diagram also in equilibrium and a
smaller toric diagram of smaller area. This is illustrated in figure 2.8.

(@)

Figure 2.8: (a) Web diagram for the Z, orbifold of the conifold on the resolved phase. (b) Web
diagram representation of the complex deformation from the Zo orbifold of the conifold to the
conifold. The dashed green line represents the separation between the conifold web diagram and
the removed subweb in equilibrium. The dashed line also represents pictorially the 3-cycle grown
in the deformation process.

Finally, since the surface ¥ is a thickening of the web diagram, the deformation
process must necessarily change this surface as explained in [41]. In the mirror surface ¥
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the D6-branes corresponding to the confining gauge groups wrap certain punctures, which
correspond to the external legs of the web diagram to be removed. The removal of the
external legs corresponds to cutting out these faces from ¥ and then gluing together the
boundaries of the surface left after cutting them. This process involves a recombination of
the remaining D6-branes on the mirror, corresponding to the higgsing in the gauge theory
due to mesons that get a vev. The new surface one is left with is the one describing the
IR physics. Figure 2.9 shows an example of this kind.

(b) .

Figure 2.9: (a) Tiling of the mirror surface ¥ of the Zs orbifold of the conifold. The paths in
colours represent the four D6-branes giving rise to the gauge groups in the gauge theory. The
confining group is represented by the D6-brane in orange. (b) Tiling of ¥ after cutting out the
tiles corresponding to external legs E & F. (c) Tiling of ¥ after gluing together the boundaries left
after cutting out the tiles. The black node touching only two edges represents a mass term for the
two fields. (d) The tiling of ¥ after integrating out the massive fields together with the D6-branes
left after the deformation. See that the D6-branes in blue and purple in (a) now recombined to
the one drawn in blue. This ¥ corresponds to the conifold.

2.3.5. Orientifolds of dimer models

The last object to be discussed in this chapter are orientifolds of dimers. These were
widely studied in [42] and here I will summarize the relevant features for the thesis.

Orientifolds are the key ingredient to eliminate some degrees of freedom of certain
theory such that the outcome is a theory with different gauge factors and matter rep-
resentations. Regular dimers only have gauge groups of the SU(N) type and matter in
bifundamental and adjoint representations. When an orientifold action is implemented
on a toric CY singularity, the theory can also have SO(N) and USp(N) types of gauge
groups depending on the orientifold charges, and also matter in the two index symmetric
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and antisymmetric representations. The way to obtain these new degrees of freedom in
dimers was described in [42].

Since dimer theories live on tori, they can accept two different types of orientifolds:
the ones leaving fixed lines, also known as orientifold lines, and the ones leaving fixed
points, known as orientifold points. The geometric action of the two types of orientifolds
is different, and thus they act in a different manner on the mesonic operators (gauge
invariant operators from field products of the theory). In particular, they act in a different
way on superpotential terms, which will be specially relevant in chapter 5, so I will discuss
them separately.

I will start with orientifold lines. These can be of two types as shown in figures
2.10(a) and (b) depending on their geometric action: they can either invert one coordinate
or exchange the two coordinates. In what follows I will refer to these orientifold lines
as parallel and diagonal orientifold lines respectively, for reasons obvious in the figure.
Nevertheless, recall that the fixed line crossing e.g. the diagonal on the second case
depends on the choice of unit cell, so these labels must not be taken seriously and are
just a simple way of referring to both cases. These kinds of orientifolds were shown to
relate superpotential terms corresponding to vertices with same color, as can be seen in
the examples of figures 2.10(a) and (b).

Figure 2.10: (a) Dimer of the conifold with orientifold lines inverting one of the coordinates. (b)
Dimer of the conifold with an orientifold line exchanging the coordinates. (c¢) Dimer of the conifold
with orientifold points.

In the case of orientifold points the geometric action inverts both coordinates of the
T2, with four fixed points, as shown in figure 2.10(c). This time the orientifold relates
vertices with different color. This sets some restrictions, since this is only possible if
orientifold points fall on top of edges of the dimer or in the middle of hexagonal faces.

2.4. Applications of warped throats

The review in this chapter shows the enormous amount of work in previous years
in order to develop the warped throat technology from toric CY singularities. The use of
these singularities so far mostly focused on particle physics model building to e.g. embed
(MS)SM-like field theories in ST provinding an explanation for the hierarchy problem
[52-55] or to slightly break supersymmetry [22,56-60].

Nonetheless, there are also some well known cosmology related topics where these
throats were proven to be useful, probably the most famous one being the KKLT uplift of
the cosmological constant by placing anti D3-branes on a fluxed warped throat [61]. This
time, the effect of warping was to explain the tunability of the cosmological constant A.
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Another approach to obtain a positive cosmological constant will be presented in chapter
6, this time using a sector where supersmmetry is dynamically broken on a D3-brane
worldvolume. Following the KKLT approach, by placing this D3-brane on the bottom of
a warped throat, the breaking of supersymmetry can be parametrically small and thus A
is parametrically tunable.

This suppression mechanism can be useful in many more scenarios in physics, and in
particular in their ST embeddings. In the next two chapters I will use this technology to
address several issues about Inflation and its ST description. This embedding is specially
interesting if the measurements to come tell that Inflation requires transplanckian field
excursions for the inflaton, demanding a UV completion in a theory of quantum gravity
such as ST. The ST constructions to describe inflation will be shown to require of warping
effects on the internal manifold for consistency, which will be achieved by using warped
throats.
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Bifid throats for axion monodromy inflation

As mentioned in chapter 1, we are starting an era of precision B-mode observations
in cosmology, especially since the recent results from BICEP2 and Planck (see [62] for their
combined analysis). Future observations [63] will either detect or put stringent constraints
on primordial B-modes from gravitational waves during inflation, therefore sharpening
our picture of the very early universe, and providing new tools to discriminate among the
plethora of present inflationary models/scenarios (see [64] for a recent string-motivated
review). Indeed, in single field inflation models, the Lyth bound [65] correlates the tensor
to scalar ratio r with the inflaton field range. Interestingly, the present observational
bound r < 0.12 [62] is still compatible with large field inflation models, in which the
field range is trans-Planckian and the inflation scale is very high. Large-field inflation
models are sensitive to an infinite number of corrections to the inflaton potential which
are suppressed by the Planck mass scale. The construction of viable models in a concrete
framework of quantum gravity, such as string theory, is proving an interesting adventure.

A natural way to suppress the couplings of the inflaton to the heavy degrees of
freedom is through axions, i.e. periodic scalars with an approximate continuous shift
symmetry. In ST, there are two broad proposals to realize large-field inflation with axions
[64]. The first involves multiple axions [66—71]. These models seem to be in trouble due to
recent developments on the Weak Gravity Conjecture [72-85]. The second utilizes a single
axion with a non-trivial monodromy in field space (either arising via brane couplings [86,87]
or via potentials from flux backgrounds [88-91]) and so far seem to be free from the
constrains coming from the weak gravity conjecture. The monodromy idea was proposed
in [92-94] for a 4 dimensional phenomenological approach. Both the multiple axion and
the axion monodromy scenario were developed to achieve a trans-Planckian inflaton range
for an axion with a sub-Planckian decay constant, the later being what is expected from
ST [95].

The axion monodromy idea is particularly interesting in that the ingredients involved
(shift symmetries, branes, maybe antibranes, and fluxes) are rather common in ST. How-
ever, the construction of concrete string theoretical models is non-trivial. The original
models, based on supersymmetry breaking brane configurations [86,87] (see also [96]),
require complicated geometries with multiple warped throats [97], which have not been
amenable to detailed study until recent developments [49] presented in this chapter.

In more detail, the configurations in [87,97] take the inflaton to be an axion coming
from the type IIB RR 2-form integrated over a 2-cycle. Actually, the geometry must
contain two 2-cycles in the same homology class but located at the bottom of two different
warped throats. Wrapping an NS5-brane and an NS-antibrane on these two 2-cycles,
their charges cancel but their couplings to the RR axion add up, endowing it with a
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monodromic potential suitable to host large field inflation. The energy increase in these
systems is associated to the appearance of induced D3 brane-antibrane charge due to the
axion shift. Finally, in order to suppress the backreaction of the NS brane-antibrane pair
on modes localized on a complex dimension one region [98], the configuration must be
located at the bottom of a common throat [97]. Such a geometry, which is nowadays
known as bifid throat, is illustrated in figure 3.1.

Figure 3.1: Sketch of the bifid throat. The dashed line denotes the 3-chain showing that the two
2-cycles are homologous.

The potential appeal of these models is concealed by the naive complexity of the
underlying geometry. Actually, relatively simple geometries can enjoy the right topological
properties to host such systems. In this chapter I provide the simplest such explicit
example, based on a orbifold of the conifold. Similar more involved examples could be
worked out with the same techniques. The main motivation of this chapter is to moreover
provide a new handle on the bifid throat geometries required for brane-antibrane axion
monodromy inflation. This is done by providing a holographic dual field theory for the
throat geometry (and to some extent, of the brane-antibrane system), generalizing the KS
throat [5]. This holographic description allows to study the backreaction of the brane-
antibrane system, and its suppression due to the warping.

The chapter is organized as follows. In section 3.1 I provide the holographic field
theory description of a simplified bifid throat, which contains all ingredients except the
homologous 2-cycles at the infrared ends of the geometry. Once the necessary ideas are
presented with the simple example, in section 3.2 a similar analysis is performed for a
bifid throat with the required homologous 2-cycles. Finally, in section 3.3 the holographic
view of introducing D5 brane-antibrane pairs is described, and their backreaction in field
theory language, assessing it is localized at the energies of the neck connecting the IR
throats. A similar result is plausible for the S-dual configuration with NS branes.

3.1. A simple bifid throat

In this section I describe a simple geometry with the right ingredients to support two
small throats (denoted the IR throats) at the bottom of a common one (the UV throat),
and provide its holographic dual gauge theory. It arises as the worldvolume theory on
a stack of D3-branes at the tip of a toric CY singularity, in the presence of fractional
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branes. As in [5], the throats are dual to energy regimes in which the theory experiences
cascades of Seiberg dualities, whereas the end of the throat is mapped to confining gauge
dynamics and quantum deformations of the moduli space. In addition, the separation
between the two IR throats is dual to a Higgs mechanism induced by classical mesonic
vevs (i.e. not arising from strong dynamics). The ordering (or relative geometry) of the
throats is associated to the scales of confining dynamics and of the Higgsing.

The simple model in this section has all ingredients, except for the requirement of
having a homologous 2-cycle on the two IR throats, recall figure 3.1. This latter property
will be achieved in section 3.2, by simply adding an extra Z, orbifold to the model in this
section, which is therefore an optimal warmup exercise.

3.1.1. The geometry and dual gauge theory

As just mentioned, in this section I skip the requirement of having the 2-cycle at
the end of the throat. The local geometry required to build a bifid throat requires of the
possibility to perform three independent complex deformations, so that it contains three
independent 3-cycles which support the fluxes producing the UV and the two IR throats.
Finding a geometry with these properties is in general not a simple task, but can be more
easily carried out for toric CY singularities, as explained in section 2.3. The criterion for
a toric singularity to admit a complex deformation was discussed in [40]: the web diagram
must admit a split into subwebs in equilibrium. Therefore, the singularity must admit the
removal of three independent subwebs to account for the three throats. The question of
why two are inside a common one is a question of scales, as will be clear later on.

The explicit model I provide here is based on the simplest toric singularity with
the desired properties; it is straightforward to construct other toric examples. The web
diagram of the singularity is shown in figure 3.2(a), its dual toric diagram in (b) and
the result of complex deformation is shown in (c). Each complex deformation is locally
identical to a conifold transition, hence the 3-cycles are non-intersecting 3-spheres, which
I denote by Auv, Air,1, Air,2. Their (non-compact) dual 3-cycles are denoted by B’s.

c)

0) b)
v
s3|,g3 [S°

Figure 3.2: (a) Web diagram of the singularity of interest; for the sake of clarity I depicted
the collapsed 2-cycles of finite size. (b) Toric diagram, where the initiated easily recognizes
an orbifold of the conifold. (c) Splitting of the web diagram displaying the three complex
deformations of the geometry, and the three corresponding 3-cycles.

The physics of the throat can be very explicitly discussed in terms of the holographic
dual gauge theory (with fractional branes). The gauge theory is that corresponding to
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D3-branes at the singularity of figure 3.2(a), in the limit of collapsed 2-cycles. Since the
singularity is toric, dimer diagrams can be used to construct the gauge theory.

In fact, this geometry is easily recognized as a Zs orbifold of the conifold. For
completeness I provide its description. Describing the conifold by zy — zw = 0, the Z3
orbifold is given by the action

v By .y o 2By 1y invariant. (3.1)

Defining the invariant coordinates ’ = x2, v/ = y?, the resulting space can be described
by

2y — 2w = 0. (3.2)

It is easy to describe the three complex deformations. To do so, rewrite (3.2) as zy—t> = 0,
zw = t, and deform with three complex parameteres ¢;, i = 1,2,3 to

Ty = (t — 61)<t — 62)(t — 63)
zw = t. (3.3)

The dimer describing the field theory on a probe D3-brane on this throat is just
that of the conifold with an order-3 enlargement of the unit cell, as shown in figure 3.3(a).
The dimer is shown together with its zig-zag paths, which can be seen to reproduce the
external legs of the web diagram for the geometry, shown in figure 3.3(b).

b) A C E
A A A
H <— - —_—G
v v L 4
B D F

Figure 3.3: (a) Dimer describing the gauge theory for the underlying system of D3-branes at the
singular geometry in figure 3.2. It corresponds to enlarging the unit cell in the infinite periodic
array corresponding to the conifold dimer. The dimer is shown together with the zig-zag paths.
(b) (p,q) homology charge of the zig-zags as external legs of the web diagram after a SL(2,Z)
transformation. The diagram can be seen to agree with that of figure 3.2(a).

3.1.2. The holographic flow

On the geometry side, RR 3-form fluxes are introduced in the 3-cycles obtained
upon complex deformation of the geometry, and NSNS 3-form fluxes on their dual (non-
compact) 3-cycles. The RR 3-form flux quanta over Ayv, Ar,1, Amr,2 are denoted M,
Pp, P; in addition, N is the D3-brane charge at some radial position. In the dual gauge
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theory, they correspond to the introduction of fractional D-branes in the above singular
CY. They just correspond to anomaly-free rank assignments in the dimer gauge theory in
figure 3.3. The theory is non-chiral, so any assignment is allowed. As will be clear from
the analysis below, the following rank assignment for the different gauge groups matches
the holographic dual.

n=N+P , ngq=N+M , ng=N+FP, , ni=ng=ns=N (34)

(clearly, due to the cyclic symmetry of the gauge theory, any cyclic permutation of the
above rank assignment leads to the same results, up to relabeling). Assume that N >
M > Py, P, > 1, in order to produce long throats in the dual, describable in the geometric
regime, and such that M corresponds to the UV throat and Py, P> to the IR throats.

In addition to the above rank assignments, it is necessary to specify some vevs to
trigger the symmetry breaking effects, to split the bottom of the UV throat into two IR
throats, which are easier to specify later on.

The UV cascade

The dynamics starts at some UV scale with the above rank assignment. The RG
flow takes the theory through a duality cascade, which reduces the effective value of NV
as one runs to lower energies. The discussion of the Seiberg dualities involved in this
cascade is easily carried out in terms of a T-dual HW configuration [99], which for the
present singularity was discussed in [18]. Concretely, the T-duality (3.2) is done along the
S! parametrized by « in the orbit of

T — e y— ey (3.5)

The degeneration locus of the S! (namely, when x = y = 0) corresponds to z3w? = 0, and
describes 3 NS branes at z = 0 and 3 NS-branes at w = 0. Changing to more standard
HW brane configuration conventions, the outcome is a set of three NS-branes and three
NS’-branes, and D4-branes suspended between them. The presence of the M fractional
branes triggers a set of dualities detailed in figure 3.4, which essentially corresponds to a
triple unfolding of the KS duality cascade. It is however modulated by the presence of the
Py, P, fractional branes in the gauge factors 2, 6, such that the reduction in the number
of regular D3-branes upon three steps in the duality cascade is AN = —(M + P + P»).

First complex deformation

Starting with a configuration such that N = k(M + P, + P») + M, after k periods of
the duality cascade the gauge theory runs out of D3-branes and reaches the confinement
regime dual to the complex deformation supporting the UV throat. Taking the last step,
the ranks are as in (3.4) with an effective value N = M, i.e.

n=M+P, , ng=2M , ng=M-+ P,
ny =ng =ng = M. (3.6)

For the gauge factor 4, at this point Ny = 2N, and there is a complex deformation
of the moduli space, as in KS [5]. Accounting for the full non-perturbative dynamics
of the gauge factors is easily done in terms of the dimer diagram [40]. Following this
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N+P, N-P, N-P,
N N N N N-M-P, N-P-P,
s i
4 4
N+M N+P, N-M N-P, N-M N-P,
N N N-M-P,
N-M-P-P, N’
N-M-P, N-P-P, N'+P N'+M
— / —
N-M-P-P, N-M-B-P, N’ N’
N-M-P, N'+R,

Figure 3.4: Basic period of the UV cascade, in terms of a HW T-dual configuration of branes. Dots and
crosses denote NS and NS’-branes localized on a periodic direction (denoted as the circle), with D4-branes
suspended among them. The red labels denote the gauge factors experiencing Seiberg duality in going
to the next step. Upon three such steps, one recovers a configuration identical to the original with the
number of regular branes effectively decreased by M + P; + P> (and a shift of the circle by 3 intervals).

reference, the fractional brane corresponding to node 4 is a deformation brane associated
to the removal of the legs C, D from the web diagram. The dimer diagram corresponding
(or holographically dual) to the left-over geometry after the deformation is obtained by
removing the zig-zag paths C, D from the picture, and zipping together the unpaired
remaining paths. This has the effect of recombining some of the faces, concretely 3 & 5,
that from now I will refer to as 3 (3 & 5 — 3). Physically, this is because the mesons of
the confined groups get vevs and this breaks part of the flavor symmetry. The result of
this operation is shown in figure 3.5.

a) b) A E

Figure 3.5: (a) Dimer resulting from the complex deformation of the initial geometry. it corres-
ponds to a Zs orbifold of the conifold. Zig-zags of the dimer are drawn as well. (b) Zig-zag paths
as external legs of the web diagram. It can be seen that they correspond to the leftover geometry
after removing the first subweb in equilibrium from figure 3.2(c).

The deformation is also easy to follow in the HW picture. It corresponds to the
simultaneous removal of the NS and NS’-brane bounding interval 4, together with M of
the suspended D4-branes, hence recombining the intervals 3 and 5.
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In either picture, one is left with a Zs quotient of the conifold, with nodes 1,2,3,6
and rank assignments

n=M+P , nm=n3=M , ng=M-++ Ps. (37)

It is possible to achieve a more general rank assignment, with the number of regular
branes differing from M (the fractional branes of the UV throat), by starting with N =
k(M + P, + P,) + M + Q. The strong dynamics is trickier, and I simply quote that
it leads to the same quantum deformation and () additional regular branes, in analogy
with the appendix in [5] for the conifold. In these cases, the strong dynamics typically
corresponds to the appearance of a non-perturbative Affleck-Dine-Seiberg superpotential,
whose F-term conditions enforce the quantum deformation of the moduli space of the
left-over regular D-branes.

Splitting the throat

Once the first cascade has taken place, the geometry reaches a lower energy scale at
which the gauge theory must split into two, corresponding to the two theories to become
the duals of the two IR throats. Geometrically, the process is a splitting of the singularity
into two remaining singularities, by a small resolution in which the web diagram is elong-
ated (keeping it in the same plane) by separating the legs AB,H from E,F,G. The result is
a factorization of the diagram into two, one per left-over singularity, see figure 3.6. At the
level of the gauge theory, blowing up the singularity corresponds to turning on FI terms,
whose contribution to the D-term potential must be cancelled by turning on suitable vevs,
triggering a Higgs mechanism. Geometrically, fractional branes of the original singularity
combine together to form fractional branes of the left-over singularities.

A E
 \ F 3
H — » —G
L v
B F

Figure 3.6: Elongation of the web diagram into two subwebs.

This can be easily reproduced using the HW brane configurations, as shown in figure

3.7.

The same result can be recovered using the techniques in [41]. Basically, the gauge
theory splits into two, associated to the subsets (A,B,H) and (E,F,G). To get the first
gauge theory sector, first draw the dimer diagram with only the zig-zag paths A,B,H and
complete the unpaired paths by introducing a new one, labeled X. The edges not touched
by A,B, H are precisely those bifundamentals getting a vev in the Higgssing. This breaks
some of the gauge factors to their diagonal, specifically, 1,3,6 are combined together (and
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M+P, M+P, M,
M Moo oM, M, + M, M,

M+P, M, M,+P,

Figure 3.7: Higgs mechanism in the gauge theory in terms of a T-dual HW brane configuration.
The partial blowup of the geometry, equivalent to the field theory FI terms, corresponds to the
motion of one NS-NS’ brane pair with respect to the other in the transverse direction 7, which
enforces partitioning the stacks of D4-branes and recombining them across some intervals. The
resulting two diagrams on the right-hand side are separated in the direction 7, and describe two
decoupled conifold theories.

subsequently denoted by 1). The result of the operation is shown in figure 3.8(a), and
simplified in (b), by a contraction of the diagram that corresponds to integrating out some
massive fields. The resulting theory is simply a conifold theory.

Figure 3.8: Dimer of the first gauge theory resulting from the elongation of the web diagram.

In the same way, to get the second gauge theory, I draw the dimer diagram with
only the zig-zag paths E, F & G, and complete them with a new path denoted X’. The
process is a Higgs mechanism in which the gauge factors 1, 2, 3 are broken to the diagonal,
subsequently denoted by 3. The resulting theory is shown in figure 3.9 and corresponds
to a second conifold theory.

In purely field theoretical terms, the above operations in either brane picture cor-
respond to turning on vevs of the form

_ T 0(M1+P1)><M1
¢)23 N ¢12 N < UQ 1M2><M2
Dy = Py = (“11MlxM1 > . (3.8)
0(M2+P2)><M2

In words, the first matrix takes the SU(M + Py) theory at node 2, and breaks it with
vevs for My of its flavours Q = ®93, Q = P12, breaking also the SU(M)? flavour symmetry.
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R3]
el

Figure 3.9: Dimer of the second gauge theory resulting from the elongation of the web diagram.

The surviving group is SU (M + P;)a x SU(Ms)123 x SU(My)1 x SU(Mjy)s3 . The second
matrix corresponds to taking the SU(M + P,) theory at node 6, and giving mesonic vevs
to M; of its flavours Q = ®g1, Q = P3¢, breaking the SU(M)? symmetry. The surviving
group is SU(Mi)is¢ X SU(My + P)g x SU(Msy)1 x SU(Mz)s. The actual symmetry
surviving both Higgsings is SU(Ml + Pl)g X SU(Ml)lgﬁ and SU(MQ +P2)6 X SU(M2)123,
that is denoted SU(M1 +P1)2 X SU(Ml)l and SU(MQ +P2)6 X SU(M2)3 in the dimers of
figure 3.8 and figure 3.9. It is simple but tedious to check that the field theory Higgsing
leads to two decoupled conifold gauge theory sectors, in agreement with the geometric
splitting of the D3-branes on the two left over conifold singularities.

Smaller throats

Below the scale of the symmetry breaking, the massive fields can be integrated
out to recover two decoupled conifold theories. Each independent conifold theory has
fractional branes which can trigger standard Klebanov-Strassler throats [5], providing the
holographic dual of the two smaller throats. This part of the discussion is standard and
requires no further comment.

One last remark concerns the ordering of scales. The geometry of the throats corres-
ponds to a precise ordering of the scales of strong dynamics for the UV gauge theory, A,
the scale of symmetry breaking vevs v, and the strong dynamics scales of the final conifold
theories A1, As. Concretely, one needs

A>v> A1, Ao (3.9)

It is possible, but uninteresting for the purposes of this thesis to consider other orderings,
which would lead to different throat geometries.

1SU(Mz)123 stands for the SU(Ms) diagonal subgroup coming from gauge groups 1, 2 & 3 after the
Higgsing by (3.8).
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3.2. Bifid throat with homologous 2-cycles

In this section, I construct a bifid throat similar to that in the previous section, but
including homologous 2-cycles at the tip of the IR throats. The simplest way to achieve
this is to consider a Zy orbifold of the geometry in the previous section (hence a Zgz x Zs
orbifold of the conifold). To be concrete, quotient (3.2) by the action z = —z, w — —w;
defining the invariants 2’ = 22, W’ = w?, t’ = zw so that

oy =t ' =t (3.10)

This produces a (complex) curve of C2/Zy singularities (manifest in the second equation
above), which T will show to fall inside both IR throats, and whose blown-up 2-cycle
provides the (common) homology class where the brane-antibrane pair will ultimately
wrap. In this section I focus on the construction of the geometry, and postpone the
introduction of the branes to section 3.3.

The construction, even after the inclusion of fractional branes dual triggering the
complex deformations supporting the fluxes in the dual geometry, is simply a Zs quotient
of that in the last section. Although it does not admit a simple T-dual HW brane config-
uration, it remains toric and can be easily described using dimer diagrams, which are just
given by a two-fold extension of the dimers in the previous section. Therefore, I will keep
the discussion sketchy, as most ideas already appeared on the previous case.

The web diagram for the geometry is shown in figure 3.10 (a), its toric diagram in
(b) and the result of the complex deformations is shown in (c). The existence of a curve
of C?/Zs singularities, even after the complex deformations, is manifest in the presence of
two sets of parallel horizontal legs in the web diagram.

A
CI.) A b) C)
— 3
— = s2
7 'o 7 3
— 53 Bt S
A 4
A J

Figure 3.10: (a) Web diagram of the singularity of interest. (b) Its toric diagram. (c) Complex
deformations of the geometry, showing the 3-cycles and the left-over curve of collapsed 2-spheres.

3.2.1. The dimer

As previously done for the Zs orbifold of the conifold, the dynamics of a D3-brane
probing the geometry can be nicely encoded by using dimer diagrams. The dimer is shown
in figure 3.11(a). To show that it corresponds to the geometry of interest, the zig-zag paths
are also shown together with their (p,q) homology class in the T? unit cell of the dimer,
corresponding to the geometry, see figure 3.11(b).
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Figure 3.11: (a) Dimer corresponding to the Zs X Zg orbifold of the conifold together with its
zig-zag paths. (b) External legs in the web diagram as obtained from their (p, ¢)-classes.

According to the structure of the system, which is a Zs orbifold of the construction
in the previous section, the choice of fractional branes is n;;¢ = n; with n; as in (3.4),
namely

na=ng=N+P, , ng=np=N+M , ng=np=N+5P

ny=mng=ns="n7; ="ng =niy =N. (3.11)

The UV cascade proceeds as in section 3.1.2, by simply operating on nodes ¢ and ¢ 4+ 6
simultaneously. This preserves the Zs symmetry throughout the process, so the dimer
remains the two-fold extension of the dimers in the previous section, with the n; 6 = n;
rank assignment rule.

3.2.2. First complex deformation: the common throat

As in section 3.1.2, the throat eventually runs out of regular D3-branes and encoun-
ters the first complex deformation. This corresponds to the removal of the legs C, D from
the web diagram, and is triggered by the M fractional branes on faces 4, 10 in the dimer
(precisely those bounded by the paths C, D), see figure 3.11. The gauge theory dynamics
is (a two-fold extension) of that in the previous section, and the remaining field theory
after the complex deformation is obtained by similar diagrammatics. Namely, remove the
paths C, D, and zip up unpaired paths. The gauge groups 5 and 9 are combined together
(I label the result by 5), and so are 3 and 11 (labeled 3 henceforth). The result of this
operation is shown in figure 3.12. It corresponds to a Zgy X Zso orbifold of the conifold. The
remaining rank assignment is

n=ng=M+P, , ng=np=M+DP,
n1:n3:n5:n7:M. (3.12)
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Figure 3.12: (a) Dimer resulting of the complex deformation of the initial geometry, together with
its zig-zag paths. It corresponds to a Zg x Zs orbifold of the conifold. (b) External legs in the web
diagram as obtained from their (p, q)-classes.

3.2.3. Separating the stacks

After the deformation/strong dynamics at the IR of the first throat/cascade, this
reaches a lower energy scale at which the gauge theory must split into two. Geometrically,
this is a resolution of the singularity in which the web diagram is elongated (keeping it
in the same plane) by separating the legs A,B,G,I from E, F, H, J. The end result is a
factorization of the diagram into two, see figure 3.13.

X X’
G «— - - » H
I < i > < I > J
Y!

Figure 3.13: Elongating the web diagram into two effective sub-singularities.

At the level of the gauge theory, this corresponds to the introduction of FI terms,
whose D-terms are cancelled by suitable bifundamental vevs, which Higgs down the gauge
theory and split it in two sectors. The field theory analysis is enormously simplified in
terms of the dimer diagrams [41], as follows. To get the first gauge theory sector, draw the
dimer diagram with only the zig-zag paths A ,B,G,I, and complete the unpaired paths with
new ones, in this case two, labeled X,Y. The edges not touched by A B, G.,I are precisely
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those bifundamentals getting a vev in the Higgsing.

The diagrammatic process breaks some of the gauge factors to their diagonal, spe-
cifically, 3,7,12 are combined together (and subsequently denoted by 3), and so are 1,5,6
(herefrom denoted by 1). The result of the operation is shown in figure 3.14 (a), and sim-
plified in (b), by a contraction of the diagram that corresponds to integrating out some
massive fields. It corresponds to the dimer of a Zs orbifold of the conifold (in agreement
with the fact that its zig-zag paths reproduce, by construction, those of the web for such
geometry). For concreteness, the orbifold action on zy — zw =0is z — —z, w — —w, as
inherited from the Zy action at the beginning of section 3.2. The rank assignments in this
gauge theory sector are

ng=ny1 =M, , ng=ng=DM + P;. (313)

Figure 3.14: Dimer of the first gauge theory resulting from the elongation of the web diagram.

The second gauge theory sector is obtained by drawing the dimer diagram with only
the zig-zag paths E, F, H, J, and then completing the unpaired paths by two new ones,
labeled X, Y’. The factors 2,3,7 are broken to the diagonal (denoted by 2), and so are 1,5,8
(denoted by 1 from now on). The operation is shown in figure 3.15. The rank assignments
in this gauge theory sector are

no=n1 =My , ng=mniy=My+ Ps. (3.14)

The resulting geometries are two copies of a Zs orbifold of the conifold. It is import-
ant to point out that both small throats pass through the same curve of C2?/Zy singular-
ities, so both singularities share a common homology class for one of their 2-cycles. This
is manifest from the web diagram, where the two parallel legs responsible for the C?/Zs
are common to both sub-diagrams.

At the field theory level, the explicit expression for the vevs can be simply obtained
from the above dimer analysis, following [41], or by taking a two-fold extension of the
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b)

Figure 3.15: Dimer of the second gauge theory resulting from the elongation of the web diagram.

result for the simpler construction in section 3.1. For completeness I quote the result:

Pg1 = ‘I’5T8 = Py7 = <I>3TQ = <O(M1+P1)XM1 >
V2 Ly % My
_aT a1 (vilagxan
Qo7 = P3 19 = P1 = P56 = 0 : (3.15)
(M2+P2)><M2

3.2.4. Last complex deformations: the small throats

The rank assignments (3.13), (3.13) show that the two gauge theories are the holo-
graphic duals of configurations with P; and P, fractional branes, and hence define the UV
of the subsequent duality cascades. Since the two sectors are very similar, I just discuss
one of them. The cascade for this orbifold of the conifold has already been discussed
in [40], and merely corresponds to a two-fold extension of the KS conifold cascade. The
IR physics is also similar, and leads to a quantum deformation of the moduli scape, dual
to a complex deformation of the geometry, see below.

The geometry is simple enough to be described explicitly. As advanced in the pre-
vious section, the Zo orbifold action on the conifold
xy —zw =0 (3.16)
is defined by x — —z, y — —y. Introducing 2’ = 22, 3y = 32, the orbifold of the conifold
is
2y — 22w? =0. (3.17)

There are two curves of C2/Zy singularities at 2’ =3 =z =0and 2’ =9 = w = 0; in
other words, at ' =3’ = 0 and zw = 0. The complex deformation is explicitly described
by considering the same quotient but for the deformed conifold xy — zw = €, namely

)

2"y = (2w — €)?, (3.18)
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which clearly contains C2/Zy singularities (of the form 2y’ = ¢?) along the curve 2’/ =
Y =0andt=zw—e=0.

In the theory shown in figure 3.14 (b), the effect of the complex deformation corres-
ponding to removing the legs A, B. Following [41], this is done by removing the paths A,
B from the dimer, and zipping together the unpaired paths. The gauge factors 2 and 8,
corresponding to the fractional branes, disappear (due to confinement), and in this case
nodes 1 and 3 remain independent. The remaining picture is shown in figure 3.16(a),
and corresponds to a dimer associated to C?/Zs, as expected. A similar operation in the
second gauge theory produces the picture in figure 3.16(b).

a) b)

Figure 3.16: Dimer of the gauge theories after the complex deformation at the bottom of the
small throats.

Notice that even though the two gauge theories are C?/Zy, by construction they
belong to the same curve of singularities. Therefore, the 2-cycle in the blowup of this
singularity falls inside both throats. This can be seen in the gauge theory language,
because the fractional branes of the C2/Zs in the first gauge theory are the same as those
in the second (modulo gauge factors which have confined, i.e. whose homology 2-class
has become trivial in the geometry). More explicitly, in the first C?/Zy gauge theory,
the final fractional branes correspond to labels 1, and 3. Now each of these came from
the recombination of the original faces, specifically 1 comes from the set (1,5,6,9) and 3
comes from (3,7,11,12). Similarly, in the second gauge theory, the fractional branes carry
labels 1 and 2, and actually correspond to the faces (1,5,8,9) and (2,3,7,11) of the original
gauge theory. Since the faces 2,8,6,12 of the original theory have actually disappeared by
confinement, they do not define non-trivial homologly classes in the dual throat. Hence,
the two fractional branes carry charges corresponding to the sets (1,5,9) and (3,7,11) in
either of the two theories, consistently with the fact that they belong to the same curve
of singularities.
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3.3. Inclusion of fivebrane-antibrane pair and axion mono-
dromy

In this section the above holographic picture is used as a framework to study the
brane-antibrane system wrapped on the homologous 2-cycle at the tip of the two final
throats. As explained, these systems provide a realization of axion monodromy inflation
[87,97].

In this discussion, I consider the simpler setup of D5 brane-antibrane pairs wrapped
on the 2-cycle. In applications to inflation, an NS5 brane-antibrane pair was proposed; this
is because such branes couple to an axion coming from integrating the RR 2-form over the
2-cycle, and such axion scalar was argued not to appear in the Kahler potential in type IIB
compactifications with O3/O7-planes. However, many local features of the system can be
analyzed by considering the realization in terms of D5-branes (and performing S-duality
if necessary). Moreover, D5-brane realizations may be interesting in their own right in
global setups beyond 03/07 CY compactifications. Hence, I stick to the D5-brane picture
in what follows.

The description of D5 branes (antibranes) wrapped on the 2-cycle corresponds to
the inclusion of suitable fractional branes (antibranes) with respect to the C2/Zy, and is
hence very simple. The 2-cycle is visible in the web diagram in figure 3.13 as the segment
stretching between the legs X, Y. Then, adding () extra wrapped branes corresponds to
increasing the ranks on the faces of the dimer enclosed by the corresponding zig-zag paths,
for instance 1, 8, see figure 3.14(b). The rank assignments change from (3.13) to

m=M+ , ng=M+P+Q
ng=M, , ng=DM + P. (319)

The addition of the extra ) branes has a small backreaction on the RG cascade, which
will be described in some more detail in section 3.3.2.

It is convenient to trace this rank change up in the UV to the theory before the
Higgsing. The addition of the ) fractional branes corresponds to a modification of the
ranks on faces bound by paths X, Y, see figure 3.14(a), namely 1,5,6,8. The rank assign-
ments change from (3.12) by

Anl = An5 = Ang = Ang = Q (320)

Clearly, there is a second choice of fractional brane bounded by X, Y, which corresponds
to 2, 3, 7, 12 in figure 3.14(a), corresponding to 2, 3 in figure 3.14(b). This corresponds
to a fractional D3-branes with opposite 2-cycle homology charge. To keep track of this
charge, take into account the orientation of the paths, so the fractional branes used in
(3.20) correspond to increasing the ranks of the faces in the strip bounded by X —Y (i.e.
by X and the orientation-reversed Y').

Consider now the addition of () fractional antibranes on the second throat. At the
level of the charges, this is equivalent to decreasing some of the ranks of suitable faces,
especifically those bounded by Y’ — X’ (keeping track of orientation, as explained above)
in figure 3.15. Namely, the rank assignments in the gauge theory corresponding to the
second IR throat are

m=M-0Q , ng=M+P—-Q
no=»My , nig=DMy+ P>. (321)
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Moving up in the UV to the level of the theory before the Higgsing, the rank assignments
change from (3.12) by

Any = Ang = Ang = Ang = —Q. (3.22)

The fact that this variation is precisely opposite to that in (3.20) means that the combined
set of two objects carries no charge.

At the level of the charges, the above description amounts to imposing a different
split of ranks in the Higgs mechanism, changing the vevs (3.15) to

By = Bl = <0(M1+P1+Q)X(M1+Q) >
V2 L (01, - Q) x (M2—Q)

0
— T — (M1+P1)><M1
(p27 ®32 < (%) 1M2><M2>

Doy = BT, — <7)11(M1+Q)><(M1+Q) )
O(Ma+Po-Q)x (M>-Q)

Dro7=0F 1, = <011M1XM1 (3.23)

0(M2+P2)><M2> .

The Higgsing by these vevs reproduces two decoupled gauge sectors corresponding to the
UV of the two throats, with ranks modified by Zs fractional brane charge. This reproduces
the first throat with K extra fractional branes, and the second throat with reduced rank
groups

SU(M2 — Q)l X SU(M2)2 X SU(MQ + P — Q)G X SU(M2 + P2)12 . (3.24)

Actually, in analogy with [100] (see also [59,60]), this gauge sector should be regarded
as providing a supersymmetric groundstate in a field theory in which the antibrane con-
figuration should correspond to a metastable state (especifically, @ fractional antibranes
in the throat defined by the SU(M3)? x SU (M + P2)? theory, so that the total charges
match). The energy associated to the susy breaking is suppressed by the RG cascade,
compared with the energies at which the splitting of the throat occurs, so this justifies the
approximation of describing the splitting as a mere Higgs mechanism at those scales.

3.3.1. Hanany-Witten T-dual of axion monodromy

The appearance of axion monodromy upon the introduction of the D5-brane admits
a simple intuitive description in terms of a T-dual HW brane configuration [99], which
directly connects with a picture developed in [87].

Recall the description of the singularity (3.10), namely (removing the primes)

TY = t3
2w =t (3.25)
This equations describe the geometry as the superimposition of a Zs and a Zy orbifolds.

A T-duality along the S' in (x, ), defined by the orbit (3.5) would lead to a configuration
given by a Zs orbifold of figure 3.4, i.e. with the Zs orbifold T-dualized into three NS
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and NS’ branes, but with an explicit Zg orbifold geometry (the Zs acting as a sign flip in
the directions 4589), similar to those considered in [101]. Hence this T-duality does not
geometrize the B-field on the 2-cycle collapsed at the Zs. So I instead T-dualize along the
S! parametrized by 3 in the orbit

z—=ePz |, w— e Pu. (3.26)

In this picture, the Zs orbifold is geometrized in the T-dual into two NS- and two NS’-
branes, in a Zs orbifold geometry. The structure of NS5-branes is manifest in the fact
that the locus of degeneration of the S! in (z,w) is t = 0 (with multiplicity 2), which
corresponds by the first equation to xy = 0 (with multiplicity 2). This describes two kinds
of objects, i.e. along x = 0 or along y = 0.

The B-field of the 2-cycle collapsed at the Zy orbifold singularity is geometrized
as the relative distance between the two (NS, NS’) pairs. The other relative brane sep-
arations correspond to B-fields on 2-cycles which actually disappear due to the complex
deformations of the singularity. This can be seen explicitly, by following the action of the
deformations in the HW T-dual deforming the singularity (3.25) to (c.f. (3.3))

xy = (t —€1)(t — €2)(t — €3)
w = t2. (3.27)

Performing the T-duality in this deformed geometry, the degeneration locus of the S' is
t = 0 (with multiplicity 2), which now corresponds to xy = const (with multiplicity 2);
describes two copies of a unique kind of object, which is a recombination of the NS and
NS’-brane. In other words, the complex deformation corresponds to shrinking the intervals
within each (NS,NS’) pair and combining the branes in the pair into a bound state. In
the following I refer to this combined object as an NS5-brane (along the ¢ = 0).

The B-field of the 2-cycle collapsed at the Zs orbifold singularity corresponds to the
surviving distance between the two NS5-branes. Also, the fractional D5-brane wrapping
the collapsed 2-cycle corresponds to a D4-brane suspended along the interval between
the NS5-branes. In this picture, the axion monodromy is manifest, and corresponds to
the additional winding of the D4-branes when dragged by the relative motion of the two
NS5-branes, see figure 3.17, as described in [87].

' D4-brane

NS5

Figure 3.17: T-dual configuration of the fractional D5-brane at the deformed singularity. The
picture is precisely as in [87].

Actually, because the singularity contains a D5/anti-D5 pair located at different
points of the curve of C2/Zsy singularities, the HW T-dual contains one anti-D4-brane
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stretched between the NS5-branes, in addition to the above mentioned D4-branes. The
D4- and anti-D4-branes are located at different positions along the NS5-branes.

3.3.2. Brane-antibrane backreaction

The holographic dual description can be used to address questions like the backre-
action of the brane-antibrane system in the throat geometry.

There are two kinds of backreaction that can be considered in this setup. The first
is due to the presence of anti-D3-brane charge in the second throat. This bulk antibrane
charge, in an otherwise supersymmetric throat, is completely similar to the anti-D3-branes
in KS throats. These have been used in several applications [61], and are the subject of
heated controversy concerning its backreacted solution in supergravity (see e.g. [102-111]).
I will not add anything this debate in this thesis.

The novel feature about fivebrane-antibrane pairs in bifid throats is the existence of
a backreaction on closed string fields associated to the homologous 2-cycle [98]. In the just
presented geometry these fields correspond to closed string twisted states at the C?/Zs
curve of singularities. On the geometrical side, one stack of fractional branes sources this
field and lead to a log profile for it (see e.g. [112]), so it does not decrease as one moves
away from the stack (the analysis in [98] dealt with flat space or weakly curved geometries,
the logs are still present in warp geometries [113]).

This behaviour is easily reproduced in the holographic field theory describing the
two IR throats. In fact, what follows is a simple generalization of what happens for
fractional D3-branes at a C?/Zy singularity (see e.g. [112]): the closed string twisted fields
couple to the fractional brane by contributing to their gauge coupling constant, and the
log dependence on the 2-plane transverse to the D3-branes is just the log dependence of
the gauge coupling with the Coulomb branch parameter, controlled (at long distance /
vev large compared with the strong dynamics scale) by the perturbative beta function of
the corresponding N/ = 2 gauge theory.

The same analysis for the backreaction of the fractional branes can be reproduced in
e.g. the first IR throat. Consider the theory with ranks (3.19) at the scale corresponding
to the next-to-last step in the cascade. It has gauge group

SU(Pl + Q)l X SU(2P1)2 X SU(P1)3 X SU(2P1 + Q)g (328)

and chiral bifundamentals X195, Xo1, Xo3, X392, X3g, Xg3, Xg1, X1 and a superpotential
clear from the dimer, that can be ignored at the moment. The non-perturbative dynamics
of this theory can be analyzed directly, and reproduces (a number of fractional branes
in) the deformed geometry. The result of interest can be obtained more easily as follows.
There is a flat direction corresponding to giving vevs to Xgi, X1g, which corresponds to
moving the Q Zs fractional branes away from the singular point, along the curve of C?/Zs
singularities, while the left-over SU(Py)? x SU(2P;)? theory generates the deformation of
the throat as usual. The flat direction is actually the Coulomb branch of the Zy fractional
branes. Denoting by A; the dynamical scales of the gauge factors before taking the flat
direction, and A the scales after integrating out the modes made massive by the vev z,
the matching of scales gives

Allfpl — A1—P1+2Q272Q 7 A/24P1 — A;lpl—QzQ

Ag—Pl _ A?:PrQZQ Aé4P1 _ A§P1+2QZ—2Q'

)
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Relating the dynamical scales and the gauge couplings at some scale p

1
3N.—Ny _ ,3N.—N
A F=u fexp (27
gym (1)

one has the following parametric dependence of the different gauge couplings (for gauge
factors labelled by i)

+ w), (3.29)

Q\Q(M,i(ﬂ) +1i6; ~ Qlogz. (3.30)
This is the field theory description of the log dependence in the backreaction of fractional
branes. The effect of these modifications in the RG flow that describes the throat is
amenable to quantitative study, but on general grounds it does not spoil the geometric
picture: the log is comparable to that generated by the fractional branes associated to the
fluxes, but its coefficient is suppressed by the factor Q/P; < 1.

Moreover, the backreactions due to the brane-antibrane pair disappear as soon as
both throats are combined into a single one, namely at the scale corresponding to the
Higgsing separating the two IR throats. This is manifest in the field theory description of
the introduction of the Zs fractional branes in terms of a specific choice of vevs. Above
such scale, the vevs are negligible and fractional branes can be ignored.

Moreover, extending the discussion above it is possible to estimate the backreaction
effect in the holographic gauge theory description. For simplicity, I set the daughter
throats symmetrical, and hence work with a hierarchy of scales A > v > A’ = A; = As.
In the singular limit of the original Zg singularity, this corresponds to a hierarchy N >
M > P, = P, = P», where N denotes effective D3-brane at the UV end of the parent
throat, and I put M and P; units of RR 3-form flux on the deformation A-cycles at the IR
end of the parent throat which forms the UV of the daughter throats, and at the IR end
of the daughter throats, respectively. Furthermore, I put K units of NSNS 3-form flux
at the dual B-cycle of the parent throat and K’ units of NSNS 3-form flux on the dual
B-cycles of the daughter throats. this gives the warp factors A/M,, = e and A/ /My = e
at the bottom of the parent throat (and thus top of the daughter throats) and the bottom
of the daughter throats, respectively, expressions reading [4]

2r K _2n K/

A~e 3Mgs | AN ~e 3 Pos, (3.31)

In order to estimate for the scales A, A’, I use the results of the original geometric descrip-
tion of 5-brane axion monodromy [87]. Axion monodromy inflation arises now from the
tension and the action of an NS5-brane wrapping a small resolution 2-cycle 3 at the end
of the curves of C?/Zs singularities at the bottom (IR) of the daughter throats. Consider
first the DBI action of a D5-brane

1
SD5 = W / d6£\/ — det(G + BQ) . (332)
—_————

M4 XX
Tps

By S-duality the corresponding part the NS5-brane action reads

1
-2

M4 X
TNss
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Chapter 3. Bifid throats for axion monodromy inflation

If the volume of the 2-cyle ¥ is denoted r? = vol(X), then in terms of the RR-axion
Cc = fZ CQ

/dzy\/— det(G + g2Cy) = /14 + g2¢2 . (3.34)
x

Hence, for large fields the inflationary axion potential is linear. The overall warping of the
NS5-brane energy density at the bottom of the daughter throat is included here

daughter ]_ A/ 4 g C
V — 4AIR — / C ~ M4 R . Js=
¢ (2m)°g2a”3 9s 5 2 P\ M, 4(277)3951/%

(3.35)
~ M4 1 A/4 ¢c = M4 ch
P8 gsvol%/3 AMS M, M,
After using that o/ M2 = (272071//93 = Vg/(n\/9s) and Vg = 9;3/2/(277)61/, V= L°

denotes the 4D Einstein frame Calabi-Yau volume (in a suitably global version of the
construction).

Moreover, the curves of C?/Zsy singularities on which the Cp-axion is supported
only reach up to the IR scale A of the parent throat, which affects the definition of the
canonically normalized inflaton field as in

A
% R Ap——— T (3.36)
p P \/9s(2m)2 VY
Altogether, this produces the A, A’ dependence above. Imposing COBE normalization of
the curvature perturbation power spectrum at the value ¢. = 11M,, corresponding to 60
e-folds of slow-roll inflation yields the condition

4

B~ 99 x10710, (3.37)

1=
M,
The resulting condition on the throat scales reads

2 38x 1078, /L (VB . .
A~ o <1oo> (3:38)

Requiring the desired hierarchy A > A’ implies a lower bound on A given by

gs \Y¢ (Vg 5/9
> 0.016 [ = — . .
AZ00 6(0.1) <100> (3 39)

For equality the daughter throats would vanish into the parent throat as then A = A’.

It is useful to give an example to get a feeling of the typical hierarchies achievable.
By taking typical values g; ~ 0.1 and Vg ~ 100 then this condition can be satisfied e.g.
by choosing A ~ 0.3 and A’ ~ 0.03. This can be realized taking (3.31) and turning on
(non-compact) B-cycle NSNS flux quanta K = K’ and A-cycle RR flux quanta M = 17K,
P, = 6 K which satisfies the above constraint M > P;.
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Chapter 3. Bifid throats for axion monodromy inflation

If the axion inflaton potential above arises from () NS5-branes and anti-NS5-branes
wrapped on the small 2-cycles at the bottom of the daughter throats, then the backreaction
estimate expressed as ratio over the P; background fractional branes becomes

Mg Q. 2z Q. A Q
LT L X log = < Llog = 23 %~ <1 3.40
2 B BN T 6K BN “oK S (3.40)

Here I used that the top-to-bottom radial distance in the daughter throats z is bounded
by throat splitting VEV v which in turn must sit below the IR scale of the parent throat
z < v < A. In conclusion, the fractional size of the backreaction can be almost arbitrarily
small, given that one can choose the NSNS flux K large subject only to tadpole bounds.

The above results also clearly tell that for regimes with realistic scales the 5-brane-
anti-brane backreaction is clearly subdominant to the backreaction driven by the 3-brane
charge induced on the 5-branes by the wound-up axion [86,97]. The induced 3-brane
charge is proportional to the axion winding number corresponding to a given canonical
inflaton field displacement. This number of axion windings in turn scales inversely with the
axion decay constant f,. The decay constant arises from an integral over the homologous
2-cycle family reaching from one daughter throat into the other. This will suppress f, by
the warp factor at the top of the daughter throats, that is, the scale A at the bottom of
the parent throat [86]. For a parametric estimate of this effect, see section 4.4, where the
increased winding number is also shown to have a negligible impact on the tunnelling rate
despite the enhanced number of monodromy branches [114]. Hence, warping the whole
2-cycle family setup as in the present bifid throat does increase the amount of 3-brane
charge build-up and its backreaction compared to the unwarped ‘snake’ of [86]. However,
imposing realistic scale constrains A = 0.02, while for the presented bifid throat one finds
A ~ 0.3. This serves to demonstrate that in phenomenologically viable setups the warping
reduction of f, usually constitutes a rather mild effect.
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Fluxed axion monodromy inflation on warped
throats

As explained in the previous chapter, the underlying shift symmetry of axions makes
these fields good candidates for the inflaton, once a controllable potential is introduced.
Axions are ubiquitous in string theory, as they arise in the KK compactification of higher
dimensional p-form gauge potentials. The continuous shift symmetry is inherited from
the higher dimensional gauge invariance, and although it is broken by non-perturbative
effects from euclidean string or brane instantons, charge quantization of the latter allows
a discrete periodicity to survive.

In order for axions with sub-Planckian periods to achieve super-Planckian field
ranges, it is natural consider a monodromic potential. The first type of axion mono-
dromy inflation models in string theory [86,87] were presented on the previous chapter.
On these type of models, the axion arises from e.g. the RR 2-form on 2-cycles, and the
monodromy is achieved by introducing NS5 brane-antibrane pairs, such that the shift of
the axion produces an energy increase due to the induced D3-brane charge. In order to
suppress brane-antibrane annihilation, and to keep backreaction under control [97,98], the
brane anti-brane pair is proposed to be on the bottom of a bifid throat [49], as described
in the previous chapter. One of the problems of these systems is that they are inherently
strongly coupled, and are actually constructed as the S-duals of models with an axion
from the NSNS 2-form and monodromy from D5-branes.

A new and better monodromy inflation framework was proposed in [88] (see also
[89-91,115,116] for subsequent work), in particular in flux compactifications, based on a
topological effect of fluxes anticipated in [117]. For the purposes of this chapter, the key
ingredient in fluxed axion monodromy arises from the 4d couplings in the KK reduction
of the Chern-Simons (CS) terms in the 10d action, in the presence of fluxes. For instance,
consider the 10d coupling in type II strings (IIA/B for p even/odd)

/ Bg/\Fp/\Fg_p (41)
10d

and compactify to 4d on a (not necessarily Calabi-Yau) space Xg, with a 2-cycle 39 and
a p-cycle II,,. Defining the flux and 4d fields

/Fp:M , ¢= By , Fy= Fs_p (4.2)
Hp

o m_,

where Hilfp is transverse to Xy and II, in Xg (concretely, the dual of ¥o x II,). As
explained in [88], the 4d axion ¢ has a monodromy induced by the flux F,,. Due to the
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10d CS term, the physical RR (p + 2)-form field strength is

Fp+2 = Fp+2 + Fp A Bo (43)

with Fj, 9 = dCpy1. Hence, a change in ¢ away from its minimum increases the physical
(p + 2)-form flux on X9 x II,,. This leads to an inflaton potential, arising from the kinetic
term for Z*:'p+2, and is hence quadratic at lowest order. Despite the monodromy, the system
has an underlying periodic structure because the theory contains 4d domain walls, given
by D(6 — p)-branes wrapped on Hﬁl_p, which can change the Fj, 42 background (and thus

F,42) by an integer amount, thereby interpolating among the different branches.

In the 4d theory, by doing dimensional reduction of the CS term (4.1) one gets a
coupling

M ¢ Fy. (4.4)
4d
This 4d description is the one proposed in [92-94] as an effective action for axion mono-
dromy. As emphasized there, and in [88], the axion shift symmetry is related to gauge
invariance of a dual 3-form, in a generalization of the Stiickelberg mechanism for 3-forms
(see [118] for related discussions).

In this framework, the appearance of the monodromy is related to the fluxes stabil-
izing moduli in the model. The intricate relation between the inflationary potential and
the moduli stabilization potential is an interesting feature of these models, as emphasized
in [88,91]. However, realistic large field inflation models demand a hierarchy between the
moduli stabilization scale and the inflation scale in in order to have a unique light scalar
at the scale of inflation. Although this point has been recognized in the literature, it has
not been properly addressed hitherto. In this chapter I consider the explanation of this
hierarchy by using warped throats.

The local warped throats I present can be used to describe fluxed axion monodromy
inflation in type IIB ST and come from toric CY singularities, so they can be built using
the tools in section 2.3. The IR region of these throats supports an axion (arising from
a 2-cycle at the tip of the throat) with a monodromy from the dimensional reduction
of a 10d CS term of the type (4.1). As usual, the geometry of the throats is based on
performing a geometric transition in a system of fractional branes at a toric singularity, in
which some 2- and 4-cycles shrink and are replaced by 3-cycles which support RR 3-form
flux.

In this chapter I will first give the requirements that a warped throat must fulfill in
order to describe fluxed axion monodromy in section 4.1, including techniques to construct
fairly general classes of such throats in type IIB in section 4.1.1. Then, I provide an
explicit example based on the cone over the del Pezzo 3 (dP3) surface in section 4.1.2.
Afterwards I present an analogous construction for type IIA throats in section 4.2. Then,
the implications of the warping for the hierarchy between the moduli stabilization and the
inflation scale are discussed in section 4.3. Finally, in section 4.4 I provide an analysis
of the risk of tunneling through different branches of the multi-valued potential of the
inflaton, which could spoil inflation via bubble nucleation, and check how the warping
affects these transitions. T

The warped throats in this chapter are amenable to embedding in global compac-
tifications (fairly easily in the case of type ITA models, and in type IIB if one allows for
global non-trivial 1-cycles), although such global embedding are not explicitly discussed.
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4.1. Warped fluxed axion monodromy

The warped throats of interest where axion monodromy inflation can happen in type
IIB string theory are based on a complex deformation of a CY singularity given by real
cones over a Sasaki-Einstein 5-manifold X5. The geometry of the throat must contain a
unique non-trivial 2-cycle Yo, for simplicity an S?, at its bottom, which gives rise to the
inflaton. The throats are supported by a 3-cycle II3, with M units of RR 3-form flux.
Application of (4.1) and (4.2) to this case leads to

/ FsABsANFs — M ¢ Fy (45)
10d 4d

with ¢ the integral of the NSNS 2-form over ¥y, and Fy the integral of F5 along the radial
direction. This is a bit ill-defined in the non-compact setup, and should be more properly
regarded by cutting off the throat at some scale (or including a compactification). For the
above KK reduction to produce the 4d topological term, a non-trivial wedge product of F3
and By is necessary. Equivalently, there must be a non-trivial intersection ¢ = [II3] - [¥s]
in X5.

This system has an axion monodromy for ¢, which increases the flux F5 ~ F3 A By
along X5 (by ¢M units). The associated domain wall is given by a D3-brane stretching
in the radial direction. As in [117], the domain wall is Zjs valued, as M such domain
walls can decay (by ending on a string, given by a NS5-brane on the S* times the radial
direction, which has a Freed-Witten anomaly and therefore must spit off D3-brane domain
walls). Note that these domains walls are different from those in the literature e.g. [10].

Clearly, there are many other similar systems that can be constructed. For instance,
the S-dual configurations of the above systems provide a realization of axion monodromy
in which the axion arises from the RR 2-form, rather than the NSNS 2-form. This may be
useful for applications to inflation in compactifications in which the NSNS axion suffers
from 7 problems. In fact, these throats can be regarded as holographic duals of NS5-brane
models similar to those considered in [86, 87]; namely, the NS5-branes on 2-cycles are
replaced by NSNS Hj fluxes on the 3-cycle after the geometric transition. This repres-
entation has the advantage of admitting a description in string perturbation theory. For
concreteness I stick to the original realization in terms of an NSNS axion and RR fluxes
(and the RR axion models can be obtained by a mere S-duality).

4.1.1. The geometry of general throats

Geometrizing monodromy inflation in terms of warped throats provides an efficient
framework for generating a wide class of generalizations of the simplest models. While
exhibiting the same basic behavior at the bottom of the throat, it is natural to expect that
the distinctive features of such generalizations might be relevant in concrete applications.
For example, they might be important when compl