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Photon correlations are a cornerstone of quantum optics. Recent works [E. del Valle, New J. Phys. 15, 025019
(2013); A. Gonzalez-Tudela et al., ibid. 15, 033036 (2013); C. Sanchez Muñoz et al., Phys. Rev. A 90, 052111
(2014)] have shown that by keeping track of the frequency of the photons, rich landscapes of correlations are
revealed. Stronger correlations are usually found where the system emission is weak. Here, we characterize
both the strength and signal of such correlations, through the introduction of the “frequency-resolved Mandel
parameter.” We study a plethora of nonlinear quantum systems, showing how one can substantially optimize
correlations by combining parameters such as pumping, filtering windows and time delay.
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I. INTRODUCTION

The quantum theory of optical coherence developed by
Glauber in the 1960s [1,2] revolutionized the field of quantum
optics by identifying photon correlations as the fundamental
characterization of light, instead of frequency [3]. This is a
great insight since coherence had been understood for centuries
as a feature of monochromaticity, while it is now understood
in terms of factorizing correlators. This has been confirmed
experimentally with the advance of new light sources (such
as laser or single-photon sources [4]), as well as progress in
photodetection. In the quantum picture, the frequency ν of
light is linked to the energy E of its constituting particles
through Planck constant: E = hν. The standard approach
of photon correlations has consisted so far essentially in
detecting photons from a light source as a function of
time, disregarding their frequency. Experimentally, this is
achieved either with the original Hanbury Brown–Twiss [5]
configuration or by detecting individual photons with a streak
camera [6]. For stationary signals, the most popular photon
correlation function is the simplest one, correlating two pho-
tons. It is known as the second-order correlation function and
reads

g(2)(τ ) = lim
t→∞

〈a†(t)a†(t + τ )a(t + τ )a(t)〉
〈(a†a)(t)〉〈(a†a)(t + τ )〉 , (1)

with a(t) being the light-field annihilation operator of the
system under study at time t . If the corresponding spectral
shape is singled peak, the question of frequency correlations
of the emitted photons may appear a moot point. We will
see shortly that it is not. In many cases, nevertheless, the
emission is multipeaked, and it is then clear that Eq. (1), which
correlates photons regardless of which peak they originate
from, is leaving some information out. It is natural to inquire
what the correlations of each peak in isolation are or what the
cross correlations between peaks are [7,8]. Experimentally,
this is readily achieved by inserted filters in the arms of
the Hanbury Brown–Twiss configurations [9–13] or using a
monochromator in a streak-camera setup [14]. Theoretically,
the Glauber correlator must be upgraded to the so-called

time- and frequency-resolved photon correlations [8,15,16],

g
(2)
�1,�2

(ω1,ω2; τ )

= lim
t→∞

〈
A†

ω1,�1 (t)A†
ω2,�2 (t + τ )Aω2,�2 (t + τ )Aω1,�1 (t)

〉
〈(
A†

ω1,�1Aω1,�1

)
(t)

〉〈(
A†

ω2,�2Aω2,�2

)
(t + τ )

〉 ,

(2)

where Aωi,�i
(t) = ∫ t

−∞ dt1e
(iωi−�i/2)(t−t1)a(t1) is the field de-

tected at frequency ωi , within a frequency window �i , at
time t . We have recently developed a theory to compute such
correlations [17] and introduced the concept of a “two-photon
correlation spectrum” (2PS) which, beyond correlating merely
peaks, spans over all the possible combinations of photon
frequencies [18,19]. Landscapes of correlations of unsus-
pected complexity, which are averaged out in standard photon
detection or remain hidden when constraining to particular
(fixed) sets of frequencies, are revealed as a result. The 2PS
enlarges the set of tools in multidimensional spectroscopy
[20–24] and reveals a new class of correlated emission that
can be useful for quantum information processing [25,26], for
enhancing squeezing [27], or for the study of the foundations of
quantum mechanics [14,28]. When looking at the full picture
put forward by the 2PS, strong correlations turn out to originate
from photons which are not part of the spectral peaks. Indeed,
a peak results from a single-photon transition between two
real states. Various such photons have weak correlations, and
even when they do correlate, the correlations are of a classical
character. In contrast, collective transitions that require two
photons to undertake the emission are strongly and nonclassi-
cally correlated since they involve an intermediate virtual state.
Only the total energy is fixed, and the photons themselves are
emitted at all possible frequencies. When their energies match
those of the peaks, stronger single-photon events dominate
and spoil the correlations. Away from the peaks, however, the
correlated pairs are available in isolation [17–19,25].

Recently, the 2PS of a nontrivial quantum emitter has been
experimentally observed [29], with spectacular agreement
with the theory and positively identifying, in a rich landscape of
correlations, the “leapfrog emission,” i.e., an emission between
two real states separated by an intermediate virtual one. The
violation of Cauchy-Schwarz inequalities by photons emitted
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in such leapfrog processes has also been reported in this
work. The emitter was a semiconductor quantum dot, and
the physical picture was that of resonance fluorescence in
the Mollow-triplet regime [30]. Shortly before that, a 2PS
of spontaneous emission was measured from a polariton con-
densate [14], which features, however, no quantum correlated
emission and presents instead a simpler and smooth land-
scape alternating bunching and antibunching as frequencies
become similar or move far apart due to the fundamental
Boson indistinguishability. These experiments confirm that
the theory is sound and robust and that the physics of photon
correlations is ripe to take advantage of the effects uncovered
by their tagging with a frequency. For instance, the mere
Purcell enhancement of leapfrog processes results in N -photon
emitters [31].

A central theme of frequency engineering is the interplay
between the signal and correlations. Since correlated-emission
transiting by virtual states is a high-order process, it is therefore
much less frequent than direct emission; that is, the signal
is much weaker. This brings up a concern regarding the
practical measurement of a 2PS since it requires measuring
coincidences from spectral windows where the system already
emits very little. Mathematically, this difficulty is concealed
for both classes of correlations, Eqs. (1) and (2) alike, by the
normalization (denominator) which balances the intensity of
the coincidence emission (numerator), turning two vanishing
numbers into a finite ratio. In this paper, we address this
problem and revisit the 2PS to take into account the available
amount of signal. To do so, in Sec. II, we introduce a
frequency-resolved Mandel parameter Q�1,�2 (ω1,ω2; τ ) that
combines both correlations and emission intensity. In light
of this parameter, we revisit the two-photon correlation map
at τ = 0 [19] for several paradigmatic examples in nonlinear
quantum optics built around a two-level system. Namely, we
consider both its incoherent and coherent driving, the latter
bringing the system into the Mollow triplet regime, whose 2PS
has already been graced with its experimental observation [29].
We also consider its coupling to a cavity to realize the Jaynes-
Cummings (JC) physics, as well as the biexciton configuration
found in, typically, quantum-dot systems. These systems are
briefly introduced throughout, but mainly to settle notation,
and we refer to the literature for the concepts attached to them
as well as for their relevance to our problem.

Even the Mandel parameter does not fully capture the
problematic of the signal since some correlations are so
strong that they dominate over the scarcity of emission. In
Sec. III, we complement the information of the available
signal with an estimate of the measuring time this supposes,
defining a notion of valleys of accessible correlations. There
is considerable freedom added by filtering photons when
studying their correlations, and we explore diverse ways to
optimize them. Various approaches are illustrated for various
systems, focusing on the JC model in Sec. IV and the
biexciton cascade in Sec. V. In the JC case, we study the
optimization with the intrinsic system parameters, namely,
the cavity-photon lifetime and the pumping rate, while in
the biexciton case, we study the dependence on extrinsic
parameters, namely, the filter linewidth and/or time delay.
Clearly, a comprehensive analysis could be given along such
lines to any system of interest. The present paper aims at

illustrating such points in particular cases and leaves it to
future works to combine them in the cases where they will be
needed.

II. FREQUENCY-RESOLVED MANDEL PARAMETER

Mandel introduced a parameter Q, which now bears his
name, for standard photon correlations (that is, without the
frequency information) intended to correct for the previously
mentioned normalization issue [32]. The “Mandel parameter”
is defined, for a stationary signal, as

Q(τ ) = na[g(2)(τ ) − 1] , (3)

where na = limt→∞〈a†(t)a(t)〉 is the steady-state population
of the detected mode. The offset by unity makes the Man-
del parameter negative when the light is quantum (in the
sense that it is sub-Poissonian and as such has no classical
counterpart). The product by na normalizes the coincidences
to the average signal instead of, as done previously, to
uncorrelated coincidences. It conveys, therefore, meaningful
information on the magnitude of the available signal. Note that
Q(0) = 0 results either from the lack of correlated emission
[g(2)(0) = 1] or from too little emission (na → 0). In this
way, the Mandel parameter really characterizes the amount
of correlated emission.

Following the spirit of Mandel, we introduce a frequency-
resolved version:

Q�1,�2 (ω1,ω2; τ )

=
√

S
(1)
�1

(ω1)S(1)
�2

(ω2)
[
g

(2)
�1,�2

(ω1,ω2; τ ) − 1
]
, (4)

where S
(1)
�i

(ωi) = limt→∞〈(A†
ωi,�i

Aωi,�i
)(t)〉 is now the

steady-state spectrum, which represents, physically, the num-
ber of photons passing through the filter of linewidth �i

centered at ωi . Here, it must be emphasized that while Q(τ ) <

0 is a sufficient condition to establish the quantum character
of the emission, as it corresponds to a Cauchy-Schwarz
inequality (CSI) violation, there is not such a straightforward
interpretation for the frequency-resolved version, which would
read

[
g

(2)
� (ω1,ω2,0)

]2
< g

(2)
� (ω1,ω1,τ )g(2)

� (ω2,ω2,τ ) . (5)

Such violation of classical inequalities gives rise to its own
landscape of correlations [25]. In contrast, the anticorre-
lation in frequency, which we will qualify as “frequency
antibunching” in agreement with the literature [33], reflects
only anticorrelations of intensities, which can be linked or not
to a quantum character of the emission.

Our main theme in this paper is illustrated in Fig. 1, starting
with the 2PS of the JC [Fig. 1(b)] under weak incoherent
pumping in the regime of spontaneous emission [34,35], in
which case its spectral line shape is simply the Rabi doublet
[Fig. 1(a)]. The physical meaning of this correlation map is
amply discussed in Ref. [19]. It is enough for our discussion to
highlight the main phenomenology, namely, the set of horizon-
tal and vertical lines that correspond to transitions between real
states and the antidiagonal lines ω1 + ω2 = E2,± − E0 that
correspond to two-photon “leapfrog” emission from the second
manifold with levels at energies E2,± and the ground state at
energy E0. The transitions at the Rabi frequency ±R1 ≈ ±g
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FIG. 1. (Color online) (a) One-photon spectrum for the JC sys-
tem at low pumping, exhibiting the Rabi doublet of strong coupling.
(b) The corresponding 2PS obtained by spanning g(2)

γa
(ω1,ω2) over

all frequencies. (c) The corresponding frequency-resolved Mandel
parameter Qγa

(ω1,ω2), retaining only the easily observed features.
(d) Qγa

(ω1,ω2) with a black (gray) mask superimposed to show only
areas where Nc � 105 coincidences are obtained in time Texp = 12 h
(1 h) for γa = 1 ns−1. Parameters are γa = 0.1g, γσ = 0.001g, and
Pσ = 0.01γa .

are all antibunched [blue (dark gray) in Fig. 1] since they
are dominated by the decay of one polariton from the lower
manifold and one excitation cannot be split into two polaritons,
while the lines at (

√
2 ± 1)g are mainly bunched [red (light

gray) in Fig. 1] since they correspond to a cascade from the
second manifold. The presence of such cascade correlations

in a regime of low excitations, where the second manifold has
a vanishing probability to be excited, illustrates the somewhat
artificial character of the 2PS. The problem really pertains to
photon correlations in general, rather than to the inclusion of
frequency, since they similarly predict g(2)(0) = 0 regardless
of the pumping intensity. The same holds for the harmonic
oscillator at vanishing pumping, which still generates bunched
statistics g(2)(0) = 2 regardless of the probability to reach two
excitations in the system. The paradox arises from the fact
that in the limit where the probability of two-photon effects
vanishes, so does the possibility to perform a measurement
since there is no signal. Instead, if one considers the Mandel
correlations, Eq. (4), that are shown in Fig. 1(c), one sees how
the result makes more physical sense: most of the nonlinear
features have disappeared or are considerably weakened in
the regions where there is a strong signal (the correlations
tend to die more slowly than the signal), and the remaining
features are concentrated on antibunching between the peaks,
as well as a trace of the bunching cascades. The leapfrog
correlations are extremely strong, which is a general result in
all systems, while the antibunching background that dominates
the 2PS profile has now disappeared. It is also worth noting
how the autocorrelation of each peak (along the diagonal) has a
butterfly shape due to indistinguishability bunching enforced
by filtering [19], while cross correlation between the two peaks
feature a structureless, and therefore neater, antibunching. This
could be of interest for single-photon emitters [33].

Although the Mandel correlation spectrum [Fig. 1(c)]
appears more physical than the underlying 2PS [Fig. 1(b)],
the latter still presents us with a more fundamental physical
picture. Indeed, we have merely tamed the features, not
removed them, and it is useful to keep track of correlations
even though they are out of the reach of an actual experiment.
In any case, the 2PS could still be measured ideally and should
be regarded as a theoretical limiting case. The 2PS indeed
converges to a unique result in the limit of vanishing pumping,
thereby defining an unambiguous correlation map, while its
Mandel counterpart tends to zero and the relative importance
of bunching versus antibunching areas in Fig. 1(c) depends
on one’s choice of the pumping rate. Finally, it is worth
mentioning that at the time of writing, the 2PS of resonance
fluorescence has already been measured in its entirety [29],
even for a large splitting of the satellite peak in spectral
windows with little emission. It seems therefore reasonable
that with the ever-increasing technological progress, all funda-
mental quantum optical emitters, even those with much smaller
emission rates, will be likewise characterized.

III. VALLEYS OF ACCESSIBLE CORRELATIONS

While Q�(ω1,ω2) provides a physically sound picture
of which regions of the 2PS are the most favorable for
observation, it also suffers from its own shortcomings. The
arbitrary scale of Q makes it difficult to attach to it a
quantitative figure of merit. In this section, we further delineate
the valleys of accessible correlations based on a down-to-earth
estimate of the numbers of coincidences that can be extracted
from the emission.

Assuming no correlations, the possibility of detecting at
least one coincidence in a time window �t at frequencies ωi ,
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within the frequency windows �i , is given by

p = (1 − e−n1 )(1 − e−n2 ) , (6)

where ni = S�i
(ωi)γ�t represents the number of filtered

photons from a source that emits at a rate γ . For simplicity
we always consider symmetric filters in this section, �1 = �2.
Using that definition and assuming no further inefficiencies in
detection, we can estimate the experimental time required to
obtain a given number of random coincidences Nc as follows:

Texp = Nc�t/p . (7)

With this, we plot the regions that would be resolved with
increasing experimental time Texp. For example, assuming
γa = 1 ns−1 as a quantum-dot figure of merit [10], we show
in Fig. 1(d) the frequency-resolved Mandel parameter with a
mask over the regions for which the number of coincidences
is Nc < 105 for a detection time of Texp = 1 h (gray) and 12 h
(black) for �t = 1/�. This shows how the regions with a
sizable number of coincidences reduce to those involving at
least one peak, as expected. Therefore, a first experimental
confirmation of these results could be to keep one branch of
the setup on one peak and correlate its input with that of
the other branch sweeping the entire spectrum. This should
display transitions from antibunching to no correlation, strong
bunching, no correlation again, and a weaker antibunching in
the autocorrelation due to indistinguishability bunching. For
this set of parameters, the experiment would need to run stably
for a longer time in order to collect the same amount of signal
to observe also the leapfrog processes without intersecting
with the peaks. There is a nontrivial interplay of the system
parameters that helps or hinders the observation of correlations
which will be explored in Sec. IV.

Before moving on to the optimization, we review other
examples of nonlinear systems explored in Ref. [19] in light
of the frequency-resolved Mandel parameter and the estimated
time to resolve it. We start with the most basic system
that displays a nontrivial map of correlations, namely, the
incoherently pumped two-level system, which we recover by
setting g = 0 in the JC model. The one-photon spectrum
of this system is a single Lorentzian peak with broadening
�σ = γσ + Pσ , as shown in Fig. 2(c). Its two-photon Mandel
spectrum shows a butterfly shape of anticorrelation, which is
typical of two-level systems [19]. By choosing � = γσ and
γσ = 0.1 ns−1, the analysis of the measuring time shows that a
small region of frequency antibunching with Nc > 106 would
be observed within 1 h, whereas most of the butterfly would
be observed within 12 h for the same threshold of counts.
Contrary to naive expectations, if filtering far in the tail of a
two-level system, one should indeed observe bunching, though
this will be much more difficult to observe experimentally.

Next, we consider a resonant coherent driving of the two-
level system, described by the Hamiltonian Hd = 	σ (σ + σ †).
In the weak-driving regime, the system has recently been
exploited to design ultranarrow single-photon sources [36–40].
In the strong-driving regime, which is the one that we focus
on in this paper, the spectrum is the well-known Mollow
triplet [30], as shown in Fig. 2(f). Frequency-resolved correla-
tions for this system have been theoretically investigated in the
past [16,41–44] and were even measured [13,45,46] before the
concept of the 2PS was put forward. But in both theoretical and
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FIG. 2. (Color online) (a) and (b) Mandel two-photon spectra
and (c) one-photon spectrum for an incoherently pumped two-level
system with Pσ = 0.01γσ , γσ = 0.1ns−1, and � = γσ . In (b) we
introduce a black (gray) mask for the points where Nc < 106 in
time Texp = 12 h (1 h). (d) and (e) Mandel two-photon spectra and (f)
one-photon spectrum for a coherently driven two-level system with
	σ = 5γσ , γσ = 0.1 ns−1, and � = γσ . In (e) we introduce a black
(gray) mask for the points where Nc < 5 × 107 in time Texp = 12
h (1 h). (g) and (h) Mandel two-photon spectra and (i) one-photon
spectrum for an incoherently pumped biexciton system with Pσ = γσ ,
χ = 100γσ , γσ = 0.1 ns−1, and � = 5γσ . In (h) we introduce a black
(gray) mask for the points where Nc < 5 × 105 in time Texp = 12 h
(1 h).

experimental contexts, this was at the particular frequencies of
the three peaks. However, interesting correlations arise mainly
outside the peaks [19,25], at the cost of a weaker signal.
This has been confirmed experimentally [29] with the full
reconstruction of the Mollow 2PS. Resonance fluorescence is,
indeed, ideally suited to pioneer a comprehensive analysis of
frequency photon correlations since it is obtained in the strong-
driving regime of an extremely quantum emitter, which implies
a large emission of strongly correlated photons. Figure 2(e)
shows that with γσ = 0.1ns−1 and � = γσ , within only 1 h
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FIG. 3. (Color online) (a)–(d) One-photon spectra for a JC system with γa = 0.1g, γσ = 0.001g, and increasing pumping Pσ as depicted
in the legend. (e)–(h) Mandel two-photon spectra for a JC system with the same parameters as in (a)–(d). (i–l) One-photon spectra for a JC
system with Pσ = 0.01g, γσ = 0.001g, and increasing cavity decay rate γa as depicted in the legend. (m)–(p) Mandel two-photon spectra for
a JC system with the same parameters as in (i)–(l).

of experimental time, the regions with Nc > 5 × 107 unveil
the whole horizontal and vertical grid of correlations and a
large number of the leapfrogs. It takes only 12 h to reveal the
complete two-photon Mandel spectrum.

Finally, we consider a biexciton level scheme as described
in Refs. [18,47,48], which is relevant in semiconductor
quantum optics because it describes the typical level struc-
ture of quantum dots beyond the simplest two-level-system
picture [49–51]. Focusing on a single polarization, it consists
of a three-level scheme as depicted in the inset of Fig. 2(h),
with a ground state, an excitonic state (at energy ωH ), and a
biexcitonic state whose energy (ωB) differs from the sum of
its excitonic constituents by χ due to Coulomb interaction.
The one-photon spectrum is then composed of two peaks
(at energies ωH and ωBH = ωB − ωH ) which give rise to an
interesting and rich landscape of two-photon correlations. The
most prominent feature is the antidiagonal corresponding to the
leapfrog between the ground and biexciton states, ω1 + ω2 =
ωB = −χ (assuming ωH = 0 as the reference energy), with the
potential for applications in the generation of entangled photon
pairs by frequency filtering [18]. With γσ = 0.1 ns−1 and
setting the threshold at Nc = 105 random coincidences, within
1 h, the anticorrelation area and bunching of the one-photon
transition peaks will be observable, whereas in 12 h most of
its leapfrog structure will be revealed as well, especially by
filtering on the sides of the one-photon peaks. Due to both
its fundamental importance and practical applications, we will
return to the problem of optimizing the observation of the
leapfrog processes by changing both the intrinsic parameters
and the filtering ones in Sec. V.

IV. OPTIMIZATION OF CORRELATIONS IN THE
JAYNES-CUMMINGS MODEL

We now illustrate how to optimize photon correlations
thanks to frequency filtering in the particular case of the
JC model. We do a qualitative analysis to avoid focusing
the discussion on a particular set of experimental figures of
merit. We consider that system parameters are variables for
the optimization and defer to the next section (and to other
systems) the optimization through extrinsic parameters, e.g.,
the filters and detection time.

One parameter that can easily be modified is the incoherent
pump rate Pσ . The example in the previous section was chosen
to be well into the linear regime, i.e., with a very small pumping
rate, namely, Pσ = 0.01γa . Increasing pumping has two
interesting consequences for the observation of correlations:
(1) the signal increases, and (2) the system enters the nonlinear
regime.

In Figs. 3(a)–3(h), the effect of increasing pumping is
shown for both the spectral shape [Figs. 3(a)–3(d)] and the
Mandel parameter resolved in frequency [Figs. 3(e)–3(h)].
The spectra let inner peaks appear between the Rabi doublet,
corresponding to transitions from the higher manifolds. The
corresponding Mandel 2PS also develops new features at the
same time the overall intensity of the correlations increases
from ∼0.02 with Pσ = 0.01γa to ∼1 with Pσ = γa (note the
change in the color scales). In particular, the higher manifolds
become visible in antibunching only as they get populated,
while they manifest themselves in bunching more clearly
at low pumping. The Jaynes-Cummings fork provides a
well-structured set of correlations between the peaks: the inner
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GONZÁLEZ-TUDELA, DEL VALLE, AND LAUSSY PHYSICAL REVIEW A 91, 043807 (2015)

peaks emit bunched photons but are otherwise antibunched
with relation to each other and to the remotest Rabi peak
and are uncorrelated with the other, closer, Rabi peak.
When various manifolds are well populated, correlations are
dominated by real-state transitions, and virtual processes shy
away in comparison.

Another parameter that is less easily tuned but that
determines the strong-coupling property is the cavity decay
rate. In Figs. 3(i)–3(p), the effect of increasing γa is shown,
while always keeping the system in the strong-coupling regime
(γa < 4g). This results in the structure smoothing out as well
as the intensity of correlations dying (note, again, the color
scales). The absolute scale of the Mandel correlations indeed
decreases by one order of magnitude, but partly because the
cavity gets less populated, and increasing pumping could
compensate for that. For γa = 0.5g the leapfrog antidiagonal
has disappeared, and for γa = g, only the anticorrelation
between the Rabi peaks has survived, surrounding a region
of indistinguishability bunching. To track more quantitatively
how the frequency-resolved correlations evolve with the cavity
decay rate, we show in Fig. 4(a) the value of Qγa

for pairs
of frequencies corresponding to filtering the Rabi peaks. To
show that there is some difference due to indistinguishability
bunching in the case of autocorrelation, we present the filtering
both for the same Rabi peak (solid black line) and for the
two Rabi peaks (dashed red line). For γa � 4g, when the
system reaches the weak-coupling regime, frequency-filtered
correlations collapse into a single curve since there are no
longer polariton modes in the system. It is instructive in this
case to plot g(2)

γa
(R1, ± R1) together with the standard g(2)

(dotted blue line), as shown in the inset of Fig. 4(a). The
difference in this case between filtering the same peak or
cross correlating the peaks becomes significant. As already
observed, frequency filtering the Rabi peaks improves anti-
bunching relative to nonfiltered correlations, as we discard
the frequency regions with bunched photons. This is another
instance of how frequency filtering can be used to harness
correlations. Note also that worsening the cavity quality factor
betters the overall antibunching, while it spoils the peaks
antibunching.

V. OPTIMIZATION OF CORRELATIONS
IN A BIEXCITON CASCADE

We now study photon correlations in a biexciton cascade.
To link with the previous discussion on the JC, we show
in Fig. 4(b) the dependence on the pumping rate for two
configurations, letting the frequency window grow with the
pumping as � = 2(γσ + Pσ ). The two configurations are fil-
tering the leapfrog transition at the biexciton frequency (solid
black line) and the biexciton-exciton cascade (dashed red line).
Both transitions are bunched, Q� > 0, due to their two-photon
cascade character. However, the one that corresponds to the
leapfrog process exhibits a clear optimal pumping intensity at
Pσ ∼ 1.5γσ , whereas the one-photon transitions exhibit two
local maxima at around Pσ ∼ 0.2γσ and Pσ ∼ 8γσ that follow
the successive growth of the exciton and biexciton populations.
The low pumping regime leads to Q� → 0 due to the small
emission, whereas in the high-pumping case this is because
one recovers the standard photon correlations g(2)(0) ≈ 1.

(a)
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FIG. 4. (Color online) (a) Qγa
(ω1,ω2) as a function of γa for a

JC system with Pσ = 0.01γa , γσ = 0.001g for pairs of frequencies
(R1,R1) (solid black line) and (R1, − R1) (dashed red line). The inset
shows g(2)

γa
(ω1,ω2) for the same parameters, together with standard

photon correlation g(2)(0) (dotted blue line). (b) Q�(ω1,ω2) as a
function of Pσ for a biexciton cascade with the same parameters as
in Fig. 2 and � = 2(γσ + Pσ ) for pair a of frequencies as indicated in
the inset. (c) Q�(ω1,ω2) as a function of �, with the same parameters
as in Fig. 2.

A. Asymmetric filters

We now discuss in more detail how the filter linewidth
affects the correlations. In Fig. 4(c), we show the dependence
on the filter linewidth � of correlations of the leapfrog cascade
(solid black line) and the biexciton-exciton cascade (dashed
red line). The leapfrog correlations strongly depend on the
filter linewidth due to the virtual nature of such transitions,
with an optimum value at around 4γσ . The biexciton-exciton
cascade also displays a maximum � ∼ γσ , but its dependence
is much weaker. In both cases and in contrast to g

(2)
� (ω1,ω2)

where smaller linewidths optimize leapfrog correlations, the
compromise for the signal requires larger filter linewidths to
optimize the intensity of correlations.
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FIG. 5. (Color online) Mandel parameter Q�1,�2 (ωBH ,ωH ) when
filtering the two peaks of the biexciton-exciton cascade as a function
of the widths of the spectral windows. The diagonal corresponds to
the typical case of identical filters. Stronger correlations of a varying
nature are, however, obtained for asymmetric filters. Parameters are
the same as in Fig. 2.

In the analysis so far, we have considered symmetric
filters for the two frequencies: �1 = �2 = �. However, for
a cascaded emission such as biexciton to exciton to ground
state, it is worth exploring the situation where the filters are
asymmetric, �1 	= �2. This is shown in Fig. 5 by filtering the
biexciton and exciton peaks for a situation where they have
the same broadening and intensity (Pσ = γσ ). Two areas of
bunching or antibunching oppose each other depending on
the relative value of �1 vs �2, separated by a frontier of no
correlation that roughly corresponds to the case of symmetric
filters, showing the interest in lifting this limitation even when
both spectral peaks are equal. Such a structure is typical of
photon cascades. From the level structure, the natural order
of the cascade makes it indeed likely we will detect a photon
first of frequency ωBH and then of ωH . Since an ωBH (ωH )
photon, filtered with �1 (�2), is the first (second) photon
in the cascade, if �2 > �1, the time spent by the photon in
filter ω1 is larger than the one spent in ω2, which favors the
simultaneous detection of the two photons of the cascade and
therefore yields a strong bunching. In the opposite regime,
when �1 > �2, the ωBH photon spends less time in the filter,
preventing the simultaneous detection of the two photons of
the cascade and therefore yielding strong antibunching in the
Mandel parameter. There is an optimum value to observe either
antibunching or bunching (as a rule of thumb, an order of
magnitude difference) since, ultimately, the observations of
correlations quench for very broad or asymmetric filters. This
loss of correlations is due, interestingly, to the overlap of the
filtering windows.

B. Delayed correlations

We have also restricted our attention to τ = 0, i.e., coinci-
dences. However, particularly for cascaded emission, it is to be
expected that correlations are maximum at nonzero delay [17].
To condense the bulk of the information into a single figure
(Fig. 6), we consider the joint frequency- and time-resolved

2 1 0 1 2
100

50

0

50

100

0.01

0

0.03

FIG. 6. (Color online) Mandel parameter Q�(ωB/2 + ω,

ωB/2 − ω; τ ) when filtering the leapfrog processes (antidiagonal) of
the biexciton-exciton cascade and as a function of autocorrelation
time. This shows the contrast between leapfrog (virtual) processes,
in which the correlations are symmetric in τ with a fast decay,
and real processes, which, when intercepted by the filters, lead to
characteristic antibunching-bunching transitions with a slow decay.
Parameters are the same as in Fig. 2 except for � = 10γσ .

Mandel 2PS along the antidiagonal of Figs. 2(g) and 2(h),
Q�(ωB/2 + ω,ωB/2 − ω; τ ) for � = 10γσ . In this line lies
the information of both the leapfrogs and the one-photon
cascade. Leapfrog emission is maximum at ω = 0 [18] and
is symmetric in τ , which is typical of second-order processes
where the photons, being virtual, have no time order. Due
to this symmetry, the optimal delay to observe correlations
in this case is τ = 0, and correlations decay with the filter
time scale 1/�. Contrarily, the biexciton-exciton photon
cascade, appearing at ω = {ωBH ,ωH }, is strongly asymmetric,
as clearly shown in Fig. 6. It shows a transition from bunching
to antibunching, where there is a definite temporal order in
the emission. In this case, the optimal delay to observe strong
bunching or antibunching is τ ∼ 1/�, and the correlations
ultimately decay in the intrinsic time scale of the system given
by 1/γσ . The different time scales at which correlations survive
between leapfrog and normal cascaded emissions are another
consequence of their different physical origins.

C. Combining the parameters

Finally, after having explored separately both the depen-
dence on the filter linewidth � and the temporal delay of
the photons τ , one can naturally think of combining them
to optimize correlations cumulatively. In Fig. 7, we show the
joint τ and � dependence of the frequency-resolved Mandel
parameter for the two most relevant cases still in the biexciton
problem: the simultaneous leapfrog two-photon emission
in Fig. 7(a) and the consecutive one-photon transitions in
Fig. 7(b). As previously discussed, the temporal shape of the
leapfrog process is a symmetric decay of correlations within
time scale 1/�, as shown in Fig. 7. As � increases, so does
the decay rate of the correlations [the correlation time and the
filter linewidth are roughly in inverse proportion, as shown by
the dotted lines, which are 1/(�/γσ )]. The τ = 0 correlation
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FIG. 7. (Color online) (a) Mandel parameter Q�(ωB/2,ωB/2; τ )
when filtering the leapfrog processes of the biexciton-exciton cascade
and (b) Q�(ωBH ,ωH ; τ ) when filtering the two peaks as a function
of correlation time τ and filter linewidth �. This highlights again the
difference between real and virtual processes. An optimum value of
the filter linewidth can be found for the case of real-state transitions.
Parameters are the same as in Fig. 2.

also strongly decreases and is eventually surrounded by
antibunching oscillations in τ , which correspond to the fast
off-resonance one-photon transitions. For the set of parameters
chosen here, the optimal correlations are found at τ = 0 for
� ∼ 3γσ . Also, as discussed previously, in the consecutive
one-photon cascade in Fig. 7(b), the temporal shape exhibits
a typical asymmetric bunching or antibunching shape. The

pattern is fairly robust but can, indeed, be magnified by the
appropriate choice of filters (we consider here symmetric
filters for simplicity of comparison). The temporal decay
occurs this time approximately within a time scale of 1/γσ ,
while the maximum value for the correlations, both bunching
and antibunching, is obtained at τ ∼ 1/�. In this case, the
maximum is found at � ∼ 3γσ and τ ∼ 1/�. Note that
correlations are optimized for filters with a width equal to
the spectral peaks (3γσ for our choice of parameters).

VI. SUMMARY AND CONCLUSIONS

Summing up, filtering the photons emitted by a quantum
source has a dramatic impact on their correlations. Strong
correlations are often found in regions of the spectrum
where there is a weak emission, making their experimental
detection particularly difficult since this implies coincidences
of rare events. We have introduced a frequency-resolved
Mandel parameter as well as a quantitative estimate of the
time required to accumulate a given number of coincidences
to address this problem for several paradigmatic nonlinear
quantum systems. We have shown the considerable flexibility
opened by frequency filtering, either in energy or in time,
with possibilities to enhance correlations by varying filter
linewidths (possibly asymmetrically), temporal windows of
detections, and system parameters (such as pumping). De-
pending on whether the correlations originate from real-state
transitions or involve virtual processes, different strategies
should be adapted, corresponding to their intrinsically different
character. With the recent experimental demonstration [29] of
the underlying physics discussed here, the field of two-photon
spectroscopy is now ripe to power applications and optimize
resources based on applying such ideas and techniques.
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S. Lichtmannecker, M. Kaniber, C. Tejedor, J. J. Finley, and
F. P. Laussy, Emitters of N -photon bundles, Nat. Photonics 8,
550 (2014).

[32] L. Mandel and E. Wolf, Coherence properties of optical fields,
Rev. Mod. Phys. 37, 231 (1965).

[33] Z. Deutsch, O. Schwartz, R. Tenne, R. Popovitz-Biro, and
D. Oron, Two-color antibunching from band-gap engineered
colloidal semiconductor nanocrystals, Nano Lett. 12, 2948
(2012).

[34] E. del Valle, F. P. Laussy, and C. Tejedor, Luminescence spectra
of quantum dots in microcavities. II. Fermions, Phys. Rev. B 79,
235326 (2009).

[35] A. V. Poshakinskiy and A. N. Poddubny, Time-dependent photon
correlations for incoherently pumped quantum dot strongly
coupled to the cavity mode, J. Exp. Theor. Phys. 118, 205
(2014).

[36] H. S. Nguyen, G. Sallen, C. Voisin, Ph. Roussignol, C.
Diederichs, and G. Cassabois, Ultra-coherent single photon
source, Appl. Phys. Lett. 99, 261904 (2011).

[37] C. Matthiesen, A. N. Vamivakas, and M. Atatüre, Subnatural
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