
Universidad Autónoma de Madrid

Escuela Politécnica Superior

Máster Universitario en Investigación e Innovación en
Tecnologías de la Información y las Comunicaciones

TRABAJO DE FIN DE MÁSTER

LOG FILE REGULAR EXPRESSION PATTERN MATCHING AND
CAPTURE WITH GPUS

António Luís Pinto Silva
Advisor: Dr. Jorge E. López de Vergara Méndez

September 2016

Universidad Autónoma de Madrid

Escuela Politécnica Superior

Máster Universitario en Investigación e Innovación en
Tecnologías de la Información y las Comunicaciones

TRABAJO DE FIN DE MÁSTER

CAPTURA DE PATRONES EN ARCHIVOS DE LOGS MEDIANTE EL
USO DE EXPRESIONES REGULARES EN GPUS

António Luís Pinto Silva
Tutor: Dr. Jorge E. López de Vergara Méndez

Septiembre de 2016

LOG FILE REGULAR EXPRESSION PATTERN MATCHING AND
CAPTURE WITH GPUS

Author: António Luís Pinto Silva
Advisor: Dr. Jorge E. López de Vergara Méndez

High Performance Computing and Networking Research Group
Departamento de Tecnología Electrónica y de las Comunicaciones

Escuela Politécnica Superior
Universidad Autónoma de Madrid

September 2016

Abstract

Abstract — The information contained in a system is normally stored into log files. Most of
the time, these files store the information in plain text with many not formatted information.
It is then necessary to extract parts of this information to be able to understand what is going
on such system. Currently, such information can be extracted using programs that make use
of extended regular expressions. The use of regular expressions allows the search of patterns
but it can be also used to extract data from the searched pattern. Most of the programs that
implement regular expressions are based on finite automatas, such as non-deterministic (NFA)
or deterministic (DFA). We aim to explore the use of finite automatas to extract data from log
files using a Graphic Processor Unit (GPU) device to speedup the process. Moreover, we will
also explore data parallelism over the lines present on the log file. Currently, the work done in
GPU with regular expressions is limited to matching tasks only, without any capture feature.
We present a solution that solves this lack of pattern capture in current implementations. Our
development uses as base the implementation of TNFA and converts it to a TDFA before running
the GPU task. We explore the new CUDA feature named unified memory, supported since CUDA
6, together with streams to achieve the best possible performance in our GPU implementation.
Using real log files and regular expressions made to extract specific data, our evaluation shows
that it can be up to 9× faster than the sequential implementation.

Key words — GPU, CUDA, regular expressions, pattern matching, submatching, pattern
capture, tagged-NFA, tagged-DFA

Log file regular expression pattern matching and capture with GPUs I

Resumen

Resumen — La información contenida en un sistema normalmente se almacena en archivos
de registros, conocidos comúnmente como logs. La mayor parte de las veces, estos archivos
almacenan la información en texto plano, con mucha información sin formatear. Por ello es
necesario extraer partes de esta información, de forma que se pueda saber qué está ocurriendo en
dicho sistema. Actualmente, esta información se puede extraer usando programas que aprovechan
las expresiones regulares extendidas. Su uso permite la búsqueda de patrones, pero también
se pueden emplear para extraer datos del patrón buscado. La mayoría de los programas que
implementan expresiones regulares se basan en autómatas finitos, tales como los no deterministas
(NFA) y los deterministas (DFA). El objetivo de este Trabajo Fin de Máster es explorar el uso de
autómatas finitos para extraer datos de archivos de log usando una GPU para acelerar el proceso.
Es más, también exploramos el paralelismo que se puede aplicar sobre las líneas de un archivo
de log. En la actualidad, el trabajo realizado con GPUs y expresiones regulares se limita a tareas
de búsqueda de patrones, sin ninguna funcionalidad de captura. Presentamos una solución que
resuelve esta falta de funcionalidad en las implementaciones actuales. Nuestro desarrollo usa
como base una implementación de TNFA y la convierte a TDFA antes de ejecutar la tarea
en la GPU. Exploramos la nueva funcionalidad de CUDA denominada memoria unificada, que
se soporta desde la versión 6 de CUDA, así como el uso de flujos o streams para alcanzar
el mejor rendimiento posible en nuestra implementación en GPU. Al usar archivos de log
reales y expresiones regulares para extraer datos específicos, nuestra evaluación muestra que
la implementación paralela es hasta 9 veces más rápida que la implementación secuencial.

Palabras clave — GPU, CUDA, expresiones regulares, búsqueda de patrones, captura de
patrones, tagged-NFA, tagged-DFA

Log file regular expression pattern matching and capture with GPUs III

Acronyms

CPU Central Processing Unit. 2, 22, 27–30, 32

CSV Comma Separated Values. 17

CUDA Compute Unified Device Architecture. 12

DFA Determinist Finite Automata. 7, 11, 27

GPU Graphic Processor Unit. I, III, 1–3, 5, 11, 12, 15, 21, 22, 27, 28, 30–32

JSON JavaScript Object Notation. 17

NFA Non-determinist Finite Automata. 7, 11, 12, 27

TDFA Tagged Determinist Finite Automata. 10, 22, 27, 30

TNFA Tagged Non-determinist Finite Automata. 9, 22

Log file regular expression pattern matching and capture with GPUs V

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 2
1.3 Used Methodology . 2
1.4 Thesis Organization . 3

2 State of the Art 5
2.1 Introduction . 5
2.2 Regular Expression . 5

2.2.1 Capture groups . 7
2.3 Finite automata . 7

2.3.1 Non deterministic finite-state automata 7
2.3.2 Deterministic finite-state automata . 8
2.3.3 Tagged state automata . 9

2.4 GPU implementations . 11
2.4.1 CUDA Unified Memory . 12

2.5 Conclusions . 12

3 Proposed solution 13
3.1 Introduction . 13
3.2 Algorithm . 13
3.3 Implementation . 17

3.3.1 Test setup . 20
3.4 Performance analysis . 21
3.5 Conclusions . 22

4 Results 25
4.1 Introduction . 25
4.2 Preliminary results . 25
4.3 Experimental evaluation . 27
4.4 Performance comparison with current tools . 28
4.5 Discussion . 30
4.6 Conclusions . 30

5 Conclusion 31
5.1 Summary . 31
5.2 Contributions . 31
5.3 Future work . 32

Log file regular expression pattern matching and capture with GPUs VII

CONTENTS

Appendices 39

A Appendix 41
A.1 Program help . 41

VIII Trabajo de Fin de Máster

List of Tables

2.1 Regular expression example of meta-characters 6

3.1 TDFA transition table for regular expression (a*)def 20

4.1 Results of performance regular expression engines 26
4.2 Results when running CPU only version versus GPU. Time in seconds. The value

for re1 see listing 4.1. The value for r2 see listing 4.2 29

Log file regular expression pattern matching and capture with GPUs IX

Listings

4.1 Regular expression 1 . 27
4.2 Regular expression 2 . 27
4.3 Few lines of freeswitch log . 27
4.4 Few lines of syslog log . 28

Log file regular expression pattern matching and capture with GPUs XI

List of Figures

2.1 Equivalence between regular expressions and Finite automatas 7
2.2 Thompson-McNaughton-Yamada NFA for regular expression: a ∗ def 8
2.3 Subset Construction DFA corresponding to the NFA in figure 2.2 for the regular

expression a ∗ def . 9
2.4 TNFA for the regular expression (a∗)def . 10
2.5 TDFA for the regular expression (a∗)def . 10

3.1 GM107 Full-Chip Block Diagramm, adapted from [1] 17
3.2 Maxwell SM Block Diagram, adapted from [1] . 18
3.3 CUDA Streams: a) default stream (sequential); b) multiple streams (concurrent),

adapted from [2] . 19
3.4 CUDA transpose data to avoid no-coalesced access to global memory , adapted

from [3] . 19
3.5 CUDA device query on GeForce GTX 850M . 19
3.6 Memory spaces on a CUDA device, adapted from [2] 20
3.7 Sequential execution of our program when performing a tnfa match 21
3.8 NVIDIA visual profiler analysis when executing GPU kernel responsible for match

and search . 22
3.9 nvidia-smi generic and temperature query . 23

4.1 Results when parsing real log files using current tools sed, gawk and our
implementation . 29

Log file regular expression pattern matching and capture with GPUs XIII

1
Introduction

It is important to analyze the information contained in the system logs to understand what is
going on such system. These logs can be generated by local applications or received from external
systems. From this analysis it is possible to detect problems, usage patterns and/or planning
system optimization’s. Reading log files manually line by line is unpractical, a much smarter
solution is to tackle the problem programmatically.

Extracting information from the logs is not an easy task due to the variety of information
and multiple formats that can be found in these files, and especially because sometimes it is
necessary to process a huge volume of data. The fields that can be found in the log files are
normally the timestamp, program name, level, message. The most used formats are the common
logfile format or NCSA Common log format [4] and syslog [5]. The information stored in log
files can be used for multiple analysis [6], such as forensics [7], organizational security [8], user
behaviour [9].

Normally, given that logs are stored in text files, regular expressions are the key for powerful,
flexible, and efficient text processing. Regular expressions can add, remove, isolate, and generally
fold, spindle, and mutilate all kinds of text and data [10]. They are already used in application
domains such as bibliographic search, this reason makes the regular expressions suitable and
recommended for log manipulation.

This thesis will be focus on the usage of regular expressions to extract information from the
log files with help of GPU to accelerate the process. Current tools, such as [11,12], allow the use
of regular expressions in log files to search and extract data, but none of them can take advantage
of the parallel execution on a GPU co-processor to improve the search and matching process.

Log file regular expression pattern matching and capture with GPUs 1

CHAPTER 1. INTRODUCTION

1.1 Motivation

In general, current implementations where regular expressions are used in the GPU context only
explore the match capability of the regular expression. Central Processing Unit (CPU)-based
tools allow matching and extracting data using regular expressions using capture groups. We
intended to explore the match capability and focus our work to extract data in GPU, using the
capture group feature.

1.2 Objectives

The main objectives to reach in this thesis are the following ones:

• Implement a solution capable of reading log files, match and search content using regular
expressions in GPU. To meet this goal, the solution must be able to extract information
from the capture groups used in regular expression.

• Support for multiple pattern search and capture the corresponding match.

• Export the data contained in the capture groups into common formats to integrate with
other tools, such as CSV, XML and JSON.

• Evaluate our implementation comparing parallel GPU versus sequential CPU implementa-
tion.

• Evaluate our implementation comparing it with current tools available for CPUs (sed,
awk).

1.3 Used Methodology

During the elaboration of this work we followed the steps below:

• The first phase consisted on finding how the regular expressions were implemented in the
GPU context to extract data from log files. During this phase it was important to identify
the current State of the Art, and current implementations for regular expressions in the
GPU context, listing the most common methods, their improvements and their limitations.

• Secondly, the implementation phase. From the previous phase, the implementation
attempted to solve the limitations found or lack of implementations in the literature in
order to achieve the main goals of this work.

• As complementary to the previous phase, the micro-benchmarks step was necessary to
evaluate the proposed solutions on key points in the implementation algorithm, like the
time needed when converting between automatas, or measure the time need to copy data
between the GPU and CPU,

• Next, the experimental setup phase. This final phase consisted on the validation of the
entire solution by comparing the results against CPU implementations.

• Finally, the documentation of all the previous work, as provided in this document.

2 Trabajo de Fin de Máster

CHAPTER 1. INTRODUCTION

1.4 Thesis Organization

This thesis is organized as follows: in Chapter 2, we show the background and related work in the
context of regular expression matching on GPU implementation. Then, in Chapter 3, we present
our proposed program for regular expression matching and capture engine for GPU based on
tagged deterministic finite automata (TDFA). Later, in Chapter 4, we provide an experimental
evaluation of the proposed solution and compare the results against current tools. Finally, in
Chapter 5, we conclude our discussion.

Log file regular expression pattern matching and capture with GPUs 3

2
State of the Art

2.1 Introduction

As commented before, it makes the most sense to use regular expression to find and extract
data from the log files. So, it is important to understand what regular expressions are and
how they are implemented at the present. This chapter provides the background about regular
expression and their equivalence with finite automatas, as well as common algorithms used to
implement them. It also provides a background on current works in GPUs that make use of
regular expressions in the pattern matching task.

2.2 Regular Expression

Regular expressions can be defined as a pattern that describes a set of strings. In a regular
expression we can find two types of characters, the literal (also called normal characters) —this
type of characters match themselves; and special characters, called meta-characters, that have
a special mean (check table 2.1 for a list of some meta-characters 1 that can be used inside a
regular expression).

A formal definition of regular expression can be found in [13], where a regular expression over
an alphabet Σ can be defined as:

1. α for some symbol in the alphabet Σ,

2. ε is a regular expression for the “empty” string,

3. ∅, represents a empty language,

4. for any regular expression r1 and r2 over Σ, in languages Lr1 and Lr2 respectively, the
regular expressions can apply:

1check http://www.regular-expressions.info/characters.html for a full list of meta-characters

Log file regular expression pattern matching and capture with GPUs 5

http://www.regular-expressions.info/characters.html

CHAPTER 2. STATE OF THE ART

Table 2.1: Regular expression example of meta-characters
Meta-character Name Matches

. dot any single character
∗ star zero or more characters
? question mark 0 or 1 character
^ caret the string start with character after the symbol caret
$ dollar the string ends with character before the symbol dollar
[...] character class any character listed
[^...] negate character class any character not listed

(a) r1 ∪ r2, alternation, corresponding to the language Lr1∪Lr2,
(b) r1r2, concatenation, corresponding to the language Lr1Lr2,
(c) r1*, kleene star, corresponding to the language Lr1*,

5. if expressions follow the rules above, we can say that they are regular expressions over Σ.

In the alphabet used to build regular expressions, meta-characters are not part of the
alphabet, and to be able to use this characters in the match process is common to use an
escape character, backslash, \, like for example, \?, to match the character ?, and avoid it to be
interpreted as meta-character.

The elements that can be present in a regular expression are:

• Literal matches a single character, example, /a/

• Character ranges matches more than a single character, denoted inside brackets. For
example, the expression /[ab]/ will match any of the letters a or b, the expression /[a− z]/
will match any lowercase letter from a to z.

• Negated character ranges, as previous element, it allows matching more than a single
character but negate the value inside brackets. For example, /[̂ ab]/, matches everything
except any of the words a or b.

• Alternation allows joining two different expressions into just one expression using the
meta-character, |, meaning or. For example, /ab/ and /cd/ can be put together in a single
expression /ab|cd/, it will match ab or cd, but will not match acbd.

• Concatenation allows matching the string in order. For example /a[bc]/, this will match
a followed by b or c.

• Star operator allows the repetition of the preceding element zero or more times. For
example, /a ∗ /, can match the string a, aa, aaa and so on. It also matches the null or
empty string.

• Plus operator, it is similar to the star operator, but instead it expects to have one or
more repetitions of the preceding element. For example, /a + /, can match the string a,
aa and so on.

• Optional operator it means that the element that precedes the meta-character ? can be
present or not in the string for a successful match. For example, /colou?r/, can match the
string color and also the string colour

6 Trabajo de Fin de Máster

CHAPTER 2. STATE OF THE ART

2.2.1 Capture groups

One of the important features that we can find in regular expressions is the capturing group, also
known as submatch, it allows extracting data from the matching results after a positive match.
For a regular expression like number=(\d+) with and input string calling the number=1234., can
extract the string 1234 specified by the capturing group (the expression wrapped by the pair of
parenthesis). In this work we will focus on this way of extracting data with regular expressions.

2.3 Finite automata

Regular expressions and finite automata are equivalent in their descriptive power [14]. There
are two main automatas suitable for regular expression task, such as Non-determinist Finite
Automata (NFA) and Determinist Finite Automata (DFA). In figure 2.1 its the equivalence
between regular expression and Finite automatas, where from a regular expression we can obtain
a NFA, convert it to a DFA, and from the DFA convert it back to a regular expression. We
can find NFA and DFA-based approaches in GNU sed [11], GNU grep [15], GNU awk [12] and
RE2 [16].

There have been many studies, such as [17–25] that improve the the use of NFA and DFA
automatas to execute the task of regular expression matching. Cox in [26–28] exposes the use of
finite automatas to implement regular expression using NFA with virtual machines and a DFA
approach with cached states, that is the DFA states are expanded as necessary when matching
the string. In [29], Becchi distributes a regular expression engine that can be used to build NFA
and DFA-based solutions.

Figure 2.1: Equivalence between regular expressions and Finite automatas

2.3.1 Non deterministic finite-state automata

To convert a regular expression to an NFA, the well known Thompson’s construction
algorithm [30] can be used. Figure 2.2 represents the NFA for the regular expression a ∗ def .

An NFA can be defined as a 5-tuple (S, Σ, δ, s0 , F) where

• S - finite set of states

Log file regular expression pattern matching and capture with GPUs 7

CHAPTER 2. STATE OF THE ART

Figure 2.2: Thompson-McNaughton-Yamada NFA for regular expression: a ∗ def

• Σ - the input alphabet

• δ - the transition function that takes a state in S and an input symbol in Σ as arguments
and returns a subset of S

• s0 ∈ S - the start sate

• F ⊆ S - the set of final, or accepting, states

It is called non-deterministic because of the choice to move that may lead from one state
to another. When trying to match a string, in the worst case, it requires up to n NFA states
traversals per input character processed. The complexity, when converting a regular expression,
r, to an NFA, and simulate the NFA on string x is:

• O(|r|) time and O(|r|) space for reduction to NFA.

• O(|r| × |x|) time for simulation of NFA (it depends on the special characteristics of the
NFA obtained by reduction).

2.3.2 Deterministic finite-state automata

From any NFA we can obtain a DFA using the subset construction algorithm [14], which has
the time complexity O(2m). The DFA that results from this conversion will recognize the same
language as the source NFA.

In the conversion to a DFA state, each set of NFA states reached in parallel is associated
upon processing a given character, and because of this, when converting an NFA to an equivalent
DFA it may result in a state explosion [31]; that is, the number of resultant DFA states increase
exponentially, a theoretical worst case study shows that a single regular expression of length n
can be expressed as a DFA of up to O(mn) states, where m is the size of the alphabet, 128 for
the extended ASCII character set.

A DFA can be defined as a 5-tuple (S,Σ, δ, s0, F) where:

• S - finite set of states

• Σ - the input alphabet

• δ - the transition function that takes a state in S and an input symbol in Σ as arguments
and returns a singe state of S, opposite to the NFA transition function that can return
more than a single state.

8 Trabajo de Fin de Máster

CHAPTER 2. STATE OF THE ART

• s0 ∈ S - the start sate

• F ⊆ S - the set of final, or accepting, state

The DFA, opposite to the NFA, has a single state at any time when executing the matching
process and this make it possible to search a text at of length n in O(n) time.

Figure 2.3: Subset Construction DFA corresponding to the NFA in figure 2.2 for the regular
expression a ∗ def

The complexity when using DFA is that we must convert a regular expression, r, to an NFA;
then convert the NFA to a DFA, and simulate the DFA on string x is:

• O(|r|) time and O(|r|) space for reduction to NFA

• O(2|r|) time and space for reduction from NFA to DFA

• O(|x|) time for simulation of DFA on x. Due to this a backtracking algorithm cannot used.

2.3.3 Tagged state automata

The previous algorithms are only focused on answering the input string matches the language
and do not allow extracting data from the matching results, which is one of the most import
features that one can found when working with regular expressions for log processing.

To solve this problem, Lauraki in [32,33] proposed Tagged Non-determinist Finite Automata
(TNFA), an NFA-based approach for submatch extraction, where an NFA is augmented with
tags to represent capturing groups. The tags are of the form tx, where x is an integer and each
tag has a corresponding variable that can be set and read. When a tagged transition is used,
the current position in the input string is assigned to the corresponding variable. On a positive
match, is possible access the information in the tags to extract the content of the match. His
implementation can be tested using the library TRE2.

The used of tagged automatas was also explored by Karper, in [34], where the resulting work
is a regular expression engine that produces parse trees. The program code of this work can be
found in GitHub3.

2http://laurikari.net/tre/
3https://github.com/nes1983/tree-regex

Log file regular expression pattern matching and capture with GPUs 9

CHAPTER 2. STATE OF THE ART

Figure 2.4: TNFA for the regular expression (a∗)def

In figure 2.4 we can find the the TNFA obtained from the regular expression (a∗)def , as the
figure shows no ε states are present. This is because the TNFA generated is ε-free. Also notice
the parenthesis before the char a and before the char d, this delimits the capture group, in this
case the tag number 0. For example, when running the TNFA with input string aaadef we will
have a possible match and its possible to obtain the value aaa as the value for tag 0.

The TNFA is defined by a 5-tuple (K,T,Σ,∆, s, F) [32], where:

• K is a finite set of states,

• T is a finite set of tags, w ∈ T ,

• Σ is an alphabet,

• ∆ is the prioritized tagged transition relation, a finite subset of K×Σ∗×T × r×K, where
r ∈ N is unique for all items of the relation.

• s ∈ K is a initial state,

• F ⊆ K is the set of final states.

Lauraki [32,33] also proposes the algorithm to build a Tagged Determinist Finite Automata
(TDFA) version from a TNFA. As for the previous automatas shown, the conversion from a
TNFA to a TDFA could take some time but it needs to be done only once. Then, the matching
of characters is faster. Figure 2.5 shows the converted TNFA from the regular expression (a∗)def .
A TDFA-based implementation can be found in regex-tdfa [35] which is a pure Haskell4 regular
expression library.

The used algorithm has the same basic principles to convert a TNFA to a TDFA as the
subset construction algorithm used to convert traditional NFAs to traditional DFAs with the
particularity of the need to keep track where the tag values were stored.

Figure 2.5: TDFA for the regular expression (a∗)def

The TDFA can be defined as a 7-tuple (K,Σ, δ, s, F, c, e) [32], where
4more info in https://www.haskell.org/

10 Trabajo de Fin de Máster

CHAPTER 2. STATE OF THE ART

• K is a finite set of states,

• Σ is an alphabet,

• δ is the transition function, a function from K × Σ to K × C

• s ∈ K is a initial state,

• F ⊆ K is the set of final states.

• c ∈ C is the initializer, a list of commands to be executed before the first symbol is read,

• e ∈ F × C is the set of finishers, a list of commands to be executed after the last symbol
is read. Each final state has its own finisher list.

2.4 GPU implementations

The GPU implementations have the advantage of increasing the performance of the regular
expression task. Most of this implementation has been conducted using the GPU hardware from
NVIDIA, which supported the program languages OpenCL [36] and CUDA [37], being this last
one the most used.

Regular expressions with finite automatas such as NFAs and/or DFAs have already been
implemented in the GPU context essential for matching task, like in the network field to identify
the type of traffic [38–51], exploring the parallelism of the data. However, as we will see, none
of them is focused on data extraction, which is crucial for log processing.

The use of the NFA-based implementation was initial purposed in [41], the iNFAnt proposal,
but later optimized by Gómez Nieto in [46], who detected some limitations in the initial
implementation of iNFAnt and proposed the use of Virtual NFA, which creates a group of states
from the NFA.

Gómez Nieto in [46] and Leira Osuna in [47] also proposed a DFA-based solution and
compared it to the NFA implementation, concluding that it is better to use a DFA-based solution
in the GPU context when applied to network traffic inspection. In [44], Wang also claims that
the use of a DFA implementation has better performance compared to NFA-based solutions.
Even if it takes time to convert the NFA to a DFA, when using GPU to perform DFA matching,
massively threads execution concurrently could hide this time efficiently.

Yu and Becchi [48] present two different approaches to use regular expression with GPUs:
an NFA-based solution and a DFA-based solution. The NFA solution is also an improvement
from iNFAnt [41] where three optimizations are provided: changing the loop when executing
the NFA states inside the GPU making it more efficient for larger NFA; group states according
to their incoming transitions; and last optimization overlapping groups from the two previous
observations. In this study it is also possible to find a DFA solution, in the case two approaches
where suggest an uncompressed DFA-based solution and a compressed DFA-based solution that
can be used in larger datasets.

A DFA-based solutions is also implemented by Ponnemkunnath and Joshi in [52] and pointed
out the problem of state exploding that could occur when converting the NFA to a DFA. To
prevent greedy memory consumption caused by some regular expressions, the conversion to NFA

Log file regular expression pattern matching and capture with GPUs 11

CHAPTER 2. STATE OF THE ART

cannot exceed 5000 states, which, at the time that paper was written, it covered a 97% of the
Snort default rule set.

For text processing, Bellekens et al. [53] proposed generic log processing library, which can
also be used for deep packet inspection, but instead of using regular expression and by consequent
finite automatas, it used the single pattern algorithm Knuth-Morris-Pratt [54]. Although this
implementation lacks the possibility to extract sub-matches, it will be used to compare our results
in the search phase.

In [55] we can find the code where the authors had implement a NFA-base solution porting
the implementation from Ross [26] to GPU.

Based on the research done, at the present the literature does not have any implementation
using GPU and regular expressions with finite automatas to extract capture groups on a positive
match. One of the solutions expected to achieve in this work is the use of tagged automatas for
this task.

2.4.1 CUDA Unified Memory

The Compute Unified Device Architecture (CUDA) programming language used to program the
NVIDIA GPU cards has been improved version after version, introducing features that make
easier to program and other ones that improve performance.

In this subsection we focus on a feature introduced since version 6.0, called Unified
Memory [56, 57]. It can simplify the memory management in GPU-accelerated applications
and it also provides performance gains through data locality.

The study conducted by Landaverde et al. in [58] investigated CUDA unified memory access,
and it concluded that there are cases where using this feature can improve the performance of
the program. However, it is still not yet the unique solution, because in some scenarios using
another type of memory management is faster than unified memory access. The performance of
CUDA unified memory access varies significantly based on the memory access patterns.

2.5 Conclusions

The regular expression can be implemented using finite automatas such as NFA and/or DFA.
We can find NFA and DFA-based approaches in GNU sed [11], GNU grep [15], GNU awk [12],
and RE2 [16]. The capture group or submatch extraction from a regular expression with finite
automatas use tagged automatas like TNFA and/or TDFA.

In the GPU context there have been multiple works for pattern matching but none of them
has addressed the possibility to extract data from the matching results. Most proposals have
targeted at NVIDIA GPUs and selected the programming language CUDA. Although NVIDIA
had introduced since CUDA 6.0 the so-called unified memory access feature, it is necessary to
pay special attention to memory access patterns to achieve the best performance.

At the present there are not implementations of TNFA and/or TDFA with GPUs, which is
a limitation when exploring the usage of regular expression in the GPU context.

12 Trabajo de Fin de Máster

3
Proposed solution

3.1 Introduction

This chapter is devoted to explain the proposed solution, where regular expressions and GPU
can be used together to extract information from text files. The main goal of this section is to
detail the methods used in the implementation of the proposed solution, the environment setup
and later a performance analysis to understand well the results that can be obtained.

3.2 Algorithm

Like the previous implementations found in chapter 2.4, in this work the parallelism is also done
at the data level and not in the automata lookup. The proposed algorithm consist in three core
functions tnfa2tdfa, data2gpu and kernel gpuMatchGet.

The algorithm 1 is responsible of converting the TNFA to TDFA, the conversion from regular
expression to TDFA uses the proposed solution by Laurikari in [32]. Line 3 is the result of that
conversion. The decision to use TDFA instead of TNFA is because the TDFA are far more
efficient and faster to use with the GPU. But it is necessary to consider the problem of state
space explosion when converting from a TFNA to a TDFA, as in when converting from a NFA
to a DFA, and also the TDFA automata can increase in memory consumption. To solve this
issues the algorithm will only accept converting a regular expression with less that 5000 states
(see 2.4).

The resulting TDFA automata (line 3) is then converted (lines 4 - 15) to a transition table
where the key is the current TDFA state plus the current symbol, and the value containing the
next state, the information about the presence of a tagged state and if is a final state. This
format will allow a faster matching and search task inside the GPU avoiding any extra loop
needed to search for the input symbol and state on every thread, in this way this is computed

Log file regular expression pattern matching and capture with GPUs 13

CHAPTER 3. PROPOSED SOLUTION

Algorithm 1 Converting TNFA to TDFA
1: procedure tnfa2tdfa(tnfa)
2: tdfaTransitionTable← ∅
3: tdfa← tnfa_to_tdfa(tnfa)
4: state← 0
5: while state < |dtfa.numberOfStates| do
6: for each input symbol a do
7: nextstate← tdfa_next_transition(state, a)
8: tagid← tdfa_tag_id(nextstate)
9: final← tdfa_is_final(nextstate)

10: nextstate← ShiftLeft(nextstate, 16)
11: tagid← ShiftLeft(tagid, 15)
12: tdfaTransitions[state× |Σ|+ a]← nextstate OR tagid OR final
13: end for
14: set state to state + 1
15: end while
16: return tdfaTransitions
17: end procedure

only once. It is important to notice that the single state cannot have multiple tag Ids, and when
it start a new tag id the previous one is closed, they cannot overlap over different TDFA states.

The size of the transition table will be m × n, where m is the number of states and n the
is the alphabet size. The time complexity to convert will take O(nm) where n is the number of
TDFA states and m is the alphabet size.

Another approach to this solution is to execute the TDFA directly in the GPU kernel, so that
each thread could search the input symbol from the input text in the TDFA, but that would
required extra memory operations to copy the TDFA to the device, as well the mapped tagged
arrays, and each thread inside the GPU kernel would had to loop over the TDFA states. Using
this format, it is only necessary to loop over the input text.

The value used in the transition table is composed by a 32 bits value where the first 16 bits
are to store the TDFA state, giving us the possibility to store 65536 states, then the next 15 bits
are to store the tag id and it can store 32768 different tags ids, and the last bit is used to store
the information about if the state is final or not. When the automata reaches a final state the
input text is accepted and we have a positive match.

When programming for the GPU, it is necessary to consider the architecture of the target
device in order to adjust the algorithm to fit in the device hardware specifications. In this case,
the GPU belongs to the first generation Maxwell architecture (figure 3.2) with the chip GM107
(figure 3.1). This architecture, as explained in 2.4.1, supports the unified memory feature and
it can be explored to speed up the data transfer between host and device. In Algorithm 2 it is
explained how this task is accomplished in a efficient manner. In lines 4, 5 and 6 we used the
pool memory shared between the host and device, later in order to have concurrency between
data transfer and computation we used streams [2], lines 10 to 16 split the data into multiple
streams (figure 3.3).

In line 7 the TDFA transition table is transferred only once in the default stream to the GPU
global memory and it is available to all streams. When reading the content from the file and

14 Trabajo de Fin de Máster

CHAPTER 3. PROPOSED SOLUTION

Algorithm 2 Transfer data to/from GPU
1: procedure data2gpu(file, tdfaTransitions, streamSize)
2: number_of_lines← file_number_of_lines(file)
3: length← file_length(file)
4: lines← pointer to allocated unified memory in device
5: positionlines← pointer to allocated unified memory in device
6: result← pointer to allocated unified memory in device
7: Copy tdfaTransitions to device on default stream
8: set streamstonumber_of_lines/streamSize
9: set N to 0

10: for N < streams do
11: offset← N × streamSize
12: Create stream N
13: lines, positionlines← file_read_lines(file, offset)
14: gpuMatchGet(lines, positionlines, tdfaTransitions, result, offset) in stream N
15: set N to N + 1
16: end for
17: synchronize device
18: N ← 0
19: for N < streams do
20: destroy stream N
21: set N to N + 1
22: end for
23: end procedure

have it split into multiple lines it is important to fix a maximum length on a single line, and if
the end line character is not detected force the data to split into a different line.

It’s very important to avoid no-coalesced access to global memory which can cause affect
directly the speed of the our program. To avoid this type o access its possible to use some
techniques like transpose lines and columns (see figure 3.4) so the data is locally available to the
threads. This is because a wrap transition on the GPU can read a 128 byte word and this data
is cached in the unified L1 / texture cache, so when another thread in the same block request
the data it’s already cached. Another technique is to store the data to be process by the group
threads in the wrap in shared memory. It can be done by a single thread at the start of the wrap
execution. The memory access by threads to shared memory are all no-coalescing.

The final function is the task executed on the GPU, the gpuMatchGet (algorithm 3) is
responsible of executing the transition table on each input symbol per line in the GPU, on a
successful match fill the result array indicating the presence of successful match on the respective
line, and in the presence of tagged states it copies the content of the line of the respective sub-
match data.

All the process of matching and search algorithm is parallel over the data, typical of a simple
instruction multiple data architecture (SIMD), where the same instructions matching the TDFA
automata is executed over multiple data, the lines by many threads.

The GM107 card provides 64 KB of shared memory per SMM but there is a limit of 48 KB

Log file regular expression pattern matching and capture with GPUs 15

CHAPTER 3. PROPOSED SOLUTION

Algorithm 3 kernel gpu match and get
1: procedure gpuMatchGet(hostlines, positionlines, hosttdfaTransitions, result, offset)
2: tid← ThreadID
3: __shared__ localtransitions[]
4: if thread id equals 0 then
5: transitions[]← tdfaTransitions
6: end if
7: syncronize threads
8: line← hostlines+ positionlines[tid]
9: set curstate to 0

10: set taggedcontent to ∅
11: while pos < |line| do
12: fetch the next input symbol c from line
13: if c+ |Σ| × curstate in tdfaTransitions then
14: value← tdfaTransitions[c+ |Σ| × curstate]
15: nextstate← ShiftRight(value, 16)
16: tagid← ShiftRight(value, 15) AND 0xFF
17: finalstate← value AND 0xFF
18: if nextstate is inferior to currentstate then
19: set taggedcontent to ∅
20: end if
21: if tagid different from 0 then
22: taggedcontent[tagid] append c
23: end if
24: if finalstate is active then break
25: end if
26: end if
27: set pos to pos + 1
28: end while
29: if finalstate is active then
30: set result[tid] to taggedcontent
31: else
32: set result[tid] to −1
33: end if
34: end procedure

16 Trabajo de Fin de Máster

CHAPTER 3. PROPOSED SOLUTION

Figure 3.1: GM107 Full-Chip Block Diagramm, adapted from [1]

per-thread-block usage1. Figure 3.5 shows the information on the supported card used in this
work. Storing the data into the shared memory, which is accessible for all the threads of a single
block, will accelerate the access to the data for each thread when executing the matching and
search process over the TDFA transition table, instead of reading from the global memory which
is slower, also by using the shared memory to store the transitions to be processed we will avoid
no-coalesced access to global memory. The different memories that can be used in the GPU
devices is shown in figure 3.6.

3.3 Implementation

The library libtre2 that creates epsilon-free automata is used o build the TNFA. Basically, it is like
Thompson’s construction [14], but the ε closures are precomputed. This is to avoid computing
the ε closures over and over again when executing the TNFA.

From the TNFA, a TDFA is constructed using the algorithm proposed by Laurikari in [32].

Once we get the TDFA, it is converted to a format that makes it faster to run on the GPU
kernel. The transition table obtained for the TDFA from figure 2.5 is shown in table 3.1. Using
this approach, it is necessary to build the entire TDFA only once, so that later we can take
advantage in the GPU matching process where the multiple threads only need to lookup the
input string in the transition table.

It is possible to choose the format of the output results. The available formats are Comma
Separated Values (CSV) or JavaScript Object Notation (JSON) (see Annex A). These two

1http://docs.nvidia.com/cuda/maxwell-tuning-guide/index.html#shared-memory-capacity
2http://laurikari.net/tre/

Log file regular expression pattern matching and capture with GPUs 17

http://docs.nvidia.com/cuda/maxwell-tuning-guide/index.html#shared-memory-capacity

CHAPTER 3. PROPOSED SOLUTION

Figure 3.2: Maxwell SM Block Diagram, adapted from [1]

18 Trabajo de Fin de Máster

CHAPTER 3. PROPOSED SOLUTION

Figure 3.3: CUDA Streams: a) default stream (sequential); b) multiple streams (concurrent),
adapted from [2]

Figure 3.4: CUDA transpose data to avoid no-coalesced access to global memory , adapted
from [3]

Figure 3.5: CUDA device query on GeForce GTX 850M

Log file regular expression pattern matching and capture with GPUs 19

CHAPTER 3. PROPOSED SOLUTION

Figure 3.6: Memory spaces on a CUDA device, adapted from [2]

formats were chosen to allow an easier integration with current log analysis tools like elastic
search3, logstash4 and others.

Key Value
TDFA state input symbol nextstate tagid finalstate

0 a 1 1 0
1 a 1 1 0
1 d 2 0 0
2 e 3 0 0
3 f 3 0 f

Table 3.1: TDFA transition table for regular expression (a*)def

3.3.1 Test setup

The implementation has evaluated on a system consisting of an Intel Core I7-4710HQ CPU @
2.50GHz and NVIDA GTX 850M GPU running Linux 4.4.16. The GPU device contains 640
CUDA cores at 876 MHz, and is equipped with 2 GB of global memory.

In the experimental setup we have used real log files obtained from a running server on the
cloud, that had running email, web server and VoIP services. The patterns used to search for
information were the common ones used in most daily task, like for example, obtain an IP address
that accesses the web server service. The generated logs on the server were obtained in different
dates and so we have different file sizes to work with.

3https://www.elastic.co/
4https://www.elastic.co/products/logstash

20 Trabajo de Fin de Máster

https://www.elastic.co/
https://www.elastic.co/products/logstash

CHAPTER 3. PROPOSED SOLUTION

3.4 Performance analysis

Before converting a serial task to a parallel task it is necessary to understand if the serial task
can be parallelized and if it can scale to a better speedup. The Amdahl’s law can gives us the
theoretical speedup when using multiple processors [59], in our case the GPU.

In figure 3.7 we can see the sequential match and search when running a TNFA match on
some log file. The function we want to parallelize is nfa_match_string and from the profiling,
this function takes 93% of the total execution time. The expected speedup improvement would
not exceed 14× according to Amdahl’s law.

Figure 3.7: Sequential execution of our program when performing a tnfa match

Log file regular expression pattern matching and capture with GPUs 21

CHAPTER 3. PROPOSED SOLUTION

With the help of the tool NVIDIA visual profiler5 it is possible to analyse how the kernel is
executed on the GPU device. In figure 3.8 we can see that the data and the kernel are executed
on different streams. It is possible to see that the kernels are executing concurrently with data
transfer: the data used in kernel 2 is transferred during the execution of kernel 1, demonstrated
by the yellow colour on the figure. The log file used in this example is 1MB long.

Another important metric is the time it takes to convert a regular expression to a TNFA.
Taking the regular expression (a*)def it takes 28 µs to convert to TNFA (figure 2.4). Then,
the conversion to TDFA (figure 2.5) and the respective transition table to use in the GPU is
computed in 48 µs. The total time spend to convert the regular expression in question to the
format selected to use in the GPU is 72 µs.

Figure 3.8: NVIDIA visual profiler analysis when executing GPU kernel responsible for match
and search

It is very important to take in consideration the hardware environment where the GPU device
is installed. On higher temperatures we can get unexpected behaviour from the device. It is
possible to obtain this information from the system by running nvidia-smi6. This tool can give
us more relevant information such as the memory usage. The output of our setup can be found
in figure 3.9.

3.5 Conclusions

In this chapter we have presented the algorithm to implement regular matching with capture
group support with the help of a GPU device. We have described techniques to improve data
transfer to the GPU as transposing the data and used shared memory to avoid no-coalesced
access.

We have also presented the use of unified memory and streams together to improve data
transfer between CPU and GPU. The use of different streams has allowed us overlapping data
transfers and kernel executions. It has been identified that the original sequential task can
achieve a maximum speedup improvement of 14×, supported by Amdahl’s law.

In next chapter 4 we present a comparison with common tools used to search and extract
capture groups from log files using regular expressions.

5see https://developer.nvidia.com/nvidia-visual-profiler
6https://developer.nvidia.com/nvidia-system-management-interface

22 Trabajo de Fin de Máster

https://developer.nvidia.com/nvidia-visual-profiler

CHAPTER 3. PROPOSED SOLUTION

Figure 3.9: nvidia-smi generic and temperature query

Log file regular expression pattern matching and capture with GPUs 23

4
Results

4.1 Introduction

In this chapter we present the results of running our implementation on real log files, obtained
from a server running VoIP and email services on the cloud. We compare the results obtained
from the regular expressions with current tools used by most of the system administrators, like
GNU sed [11] or GNU awk [12]. We choose these two tools because of the feature of extracting
group matches from the regular expressions, for example, we did not compare against GNU
grep [15] because of the lack of this feature on that tool. Finally we discuss the obtained results.

4.2 Preliminary results

During the search phase we found a performance comparison for regular expression engines1

from where it is possible to download the testing environment and reproduce the results with
our setup. Basically, the test consist on running a set of regular expressions against the same
text file. We decided to run our implementation with the same regular expressions and source
file, the results are presented in table 4.1.

1Performance comparison of regular expression engines http://sljit.sourceforge.net/regex_perf.html

Log file regular expression pattern matching and capture with GPUs 25

http://sljit.sourceforge.net/regex_perf.html

C
H
A
P
T
E
R

4.
R
E
SU

LT
S

Table 4.1: Results of performance regular expression engines
Regular expression PCRE PCRE-DFA TRE Oniguruma RE2 PCRE-JIT MyGPU
Twain 2 ms 7 ms 234 ms 13 ms 1 ms 12 ms 640 ms
(?i)Twain 43 ms 63 ms 289 ms 78 ms 63 ms 13 ms 840 ms
[a-z]shing 322 ms 498 ms 379 ms 12 ms 90 ms 12 ms 846 ms
Huck[a-zA-Z]+|Saw[a-zA-Z]+ 14 ms 15 ms 375 ms 30 ms 56 ms 2 ms 745 ms
\b\w+nn\b 480 ms 689 ms 662 ms 519 ms 46 ms 71 ms 744 ms
[a-q][^u-z]{13}x 379 ms 1373 ms 985 ms 29 ms 2015 ms 1 ms 941 ms
Tom|Sawyer|Huckleberry|Finn 20 ms 21 ms 645 ms 33 ms 57 ms 20 ms 841 ms
(?i)Tom|Sawyer|Huckleberry|Finn 242 ms 268 ms 965 ms 274 ms 77 ms 59 ms 1342 ms
.{0,2}(Tom|Sawyer|Huckleberry|Finn) 3354 ms 2498 ms 1710 ms 60 ms 50 ms 216 ms 1348 ms
.{2,4}(Tom|Sawyer|Huckleberry|Finn) 3332 ms 2887 ms 2480 ms 56 ms 49 ms 251 ms 1740 ms
Tom.{10,25}river|river.{10,25}Tom 45 ms 59 ms 379 ms 56 ms 60 ms 10 ms 750 ms
[a-zA-Z]+ing 745 ms 1095 ms 499 ms 544 ms 89 ms 52 ms 741 ms
\s[a-zA-Z]{0,12}ing\s 319 ms 469 ms 717 ms 49 ms 65 ms 70 ms 739 ms
([A-Za-z]awyer|[A-Za-z]inn)\s 725 ms 735 ms 687 ms 125 ms 76 ms 27 ms 742 ms
["’][^"’]{0,30}[?!\.]["’] 40 ms 58 ms 445 ms 56 ms 57 ms 8 ms 641 ms

26
T
rabajo

de
F
in

de
M

áster

CHAPTER 4. RESULTS

We can see that our implementation shows in general a slower behaviour than the regular
expression engines presented in this test suite. The regular expression engines used in the test
can be classified in two types according to [60], performance oriented engines and balanced
engines. Our implementation is based on TRE so it is considered to be a balanced engine and
by definition it is slower than the oriented regular expression engine, excepted when using non
pathological patterns. Other possibility is that the file size is too small for us to notice the
improvement presented in this study. The file size used in this test was of 16MB. When using
our implementation we have to add extra time to compute the entire TDFA as seen in chapter 2
and the time that takes to copy data between CPU and GPU. We will see later that we can get
better results for files with larger size, especially with files with size above 100MB, which are
common in logs.

4.3 Experimental evaluation

To make our tests as realistic as possible to the real world we have used logs obtained from a
server running VoIP and email services. Two regular expressions were used to search and match
patterns from the log files, in listing 4.3 we can find data that correspond to the content data
in log files with prefix "freeswitch.log" (related to VoIP records) and in listing 4.4 correspond
to the content data of files with prefix "syslog" (related to general system logs, including e-mail
logs).

The first regular expression (listing 4.1), on a positive match will extract the information
about the username, request client IP address and server bind address from the VoIP software
running on the server where the logs were fetched. It should be noticed that this regular
expression will only produce results on the log file with prefix named "freeswitch.log". The
regular expression contains 92 states when converted to a NFA, and finally, when converted to
DFA, it contains 66 states. This expression contains 4 group matches and will extract 4 variables
on a positive match.

The second regular expression (listing 4.1), on a positive match with all rejected email
messages, will extract email id, the hostname that sent the email, the field from and the reject
message. As the previous regular expression, this expression will only produce results when
matched against files with prefix "syslog". The regular expression contains 89 states when
converted to a NFA, and finally, when converted to DFA, it contains 58 states. This expression
contains 5 group matches and will extract 5 variables on a positive match.

Listing 4.1: Regular expression 1
^([0−9]+\−[0−9]+\−[0−9]+ [0−9]+:[0−9]+:[0−9]+\.[0−9]+) .∗ so f i a_reg .∗

↪→ REGISTER.∗ p r o f i l e ’ ’ (. ∗) ’ ’ f o r \ [(. ∗) \] from ip (. ∗) $

Listing 4.2: Regular expression 2
^.∗ exim \[[0 −9]+\] :\ s ∗([0−9]+\−[0−9]+\−[0−9]+ [0−9]+:[0−9]+:[0−9]+)\ s

↪→ ∗ (. ∗) H=(.∗) F=<(.∗)> r e j e c t e d a f t e r DATA: (. ∗) .∗ $

Listing 4.3: Few lines of freeswitch log
2015−04−13 10 : 08 : 56 . 388280 [INFO] mod_commands . c :6371 endpoint . lua :

↪→ SIP (REGISTER) on s o f i a p r o f i l e ’ dinamico_udp ’ f o r [513
↪→ @midominio . e s] from ip 10 . 131 . 100 . 10

Log file regular expression pattern matching and capture with GPUs 27

CHAPTER 4. RESULTS

2015−04−13 10 : 08 : 56 . 868284 [WARNING] so f i a_reg . c :1744 SIP auth
↪→ cha l l eng e (REGISTER) on s o f i a p r o f i l e ’ dinamico_udp ’ f o r [112
↪→ @midominio . e s] from ip 10 . 100 . 140 . 14

741b05d0−d22c−4df8−b1e0−26a09d88c fce 2015−04−13 10 : 08 : 56 . 868284 [
↪→ NOTICE] switch_channel . c :1075 New Channel s o f i a /dinamico_udp
↪→ /337@midominio . es [741 b05d0−d22c−4df8−b1e0−26a09d88c fce]

Listing 4.4: Few lines of syslog log

Apr 11 00 : 17 : 03 s e rv e r 1 named [1 9 7 1] : e r r o r (network unreachable)
↪→ r e s o l v i n g ’ mail . com . tw/MX/IN ’ : 2 0 0 1 : 5 0 0 : 1 : : 8 0 3 f :235#53

Apr 11 00 : 17 : 02 s e rv e r 1 exim [1 1 1 7 6] : 2015−04−11 00 : 17 : 02 1YghEU−0002
↪→ uG−BY <= root@dominio . es U=root P=l o c a l S=777

Apr 11 00 : 17 : 02 s e rv e r 1 exim [1 1 1 7 9] : 2015−04−11 00 : 17 : 02 1YghEU−0002
↪→ uG−BY remote host aaaaddress i s the l o c a l host : s e rv e r 1 . dominio
↪→ . e s a

Apr 11 00 : 17 : 02 s e rv e r 1 exim [1 1 1 7 9] : 2015−04−11 00 : 17 : 02 1YghEU−0002
↪→ uG−BY Completed

Apr 11 00 : 18 : 47 s e rv e r 1 exim [1 8 6 6 3] : 2015−04−11 00 : 18 : 47 1YghGA−0004
↪→ r1−HT H=(mta52 . net) [1 0 . 1 0 0 . 1 7 5 . 2 0] F=<noreply@median . net>
↪→ r e j e c t e d a f t e r DATA: This message has been c l a s s i f i e d as SPAM
↪→ and as such has been r e j e c t e d . Spam de t e c t i on software , running
↪→ on the system " s e rv e r 1 " , has

4.4 Performance comparison with current tools

To compare our implementation we have chosen current tools that also make use of regular
expressions and, more important, support group match capture like GNU sed [11] or GNU
awk [12]. Other tool that is used very often by system administrator, GNU grep [15], has been
discarded from our tests because of the lack of group capture.

In table 4.2 and figure 4.1 we can see the different results obtained when parsing the log files
of different sizes. The results presented in table 4.2 show us the time and linear speedup when
running version implemented in the CPU and the GPU version. The version implemented in the
CPU corresponds to the function execution found in figure ??, this way we can check that the
maximum speedup obtained respects the Amdahl’s law. We can see that for smaller log files the
CPU version is faster than the GPU version. When the files are larger, the results when running
the GPU version tend to be better and we can gain up to a speedup of 9.4× when comparing to
the CPU version. The speedup gain was compared with our sequential implementation because
of the control over the all program and understand of the sequential code execution. Also in
figure 4.1 we can see that our sequential implementation presents results very similar to GNU
sed [11] and GNU awk [12].

We have better results when running on files with larger size because of the type of parallelism
used in our program, the parallelism is done over the data, that is, the lines are processed in
parallel by multiple threads in the GPU. For smaller files the results are better in the CPU, this
is mainly because we have to take in account the time needed to copy data to the GPU, like the
transition table. For larger files, the time to copy data between host and CPU is hidden by the

28 Trabajo de Fin de Máster

CHAPTER 4. RESULTS

huge number of threads working together in multiple lines of the file. In our setup the kernel
can process up to 1024 lines at a time.

Table 4.2: Results when running CPU only version versus GPU. Time in seconds. The value for
re1 see listing 4.1. The value for r2 see listing 4.2

filename regex CPU time GPU time Speedup
freeswitch.log_5MB re1 201 453 0.4
freeswitch.log_5MB re2 171 303 0.6
freeswitch.log_100MB re1 1747 712 2.5
freeswitch.log_100MB re2 3119 612 5.1
freeswitch.log_500MB re1 7628 1989 3.8
freeswitch.log_500MB re2 15315 1873 8.2
freeswitch.log_1GB re1 15856 3810 4.2
freeswitch.log_1GB re2 32371 3632 8.9
syslog_5MB re1 117 365 0.3
syslog_5MB re2 192 308 0.6
syslog_100MB re1 1077 713 1.5
syslog_100MB re2 3410 611 5.6
syslog_500MB re1 4952 2219 2.2
syslog_500MB re2 16274 1874 8.7
syslog_1GB re1 10044 3711 2.7
syslog_1GB re2 33397 3534 9.4

 0.01

 0.1

 1

 10

 100

freesw
itch.log_5M

B

freesw
itch.log_100M

B

freesw
itch.log_500M

B

freesw
itch.log_1G

B

syslog_5M
B

syslog_100M
B

syslog_500M
B

syslog_1G
B

s
e

c
o

n
d

s

Parsing logs

sed_re1
sed_re2

gawk_re1
gawk_re2

tnfa_re1
tnfa_re2

MyGPU_re1
MyGPU_re2

Figure 4.1: Results when parsing real log files using current tools sed, gawk and our
implementation

From the figure 4.1 we can see that our implementation is faster than the current tools
GNU sed [11] or GNU awk [12], especially when the file size is greater than or equal to 100MB.
Another important analysis from the graph is that when the match does not produce any results,
the running time is faster in the CPU only implementations.

Log file regular expression pattern matching and capture with GPUs 29

CHAPTER 4. RESULTS

4.5 Discussion

From the previous results we notice that our implementation is faster than the current tools
GNU sed [11] or GNU awk [12] when the file size that is processed is greater than or equal to
100MB. This behaviour is expected because of the time needed to compute the entire TDFA and
copy data between CPU and GPU is more evident when the file size is smaller. With larger log
files the time that this process takes is hidden in the global time to process the entire file.

We observe that the complexity of the regular expressions can affect the performance of
searching and extracting data from the log files: simpler expressions tend to be faster, with large
difference in CPU implementations.

4.6 Conclusions

In this chapter we have shown that our implementation has a performance degradation when
searching in small files, but it can outperform the CPU tools when the log files are larger. We
have obtained a maximum speedup improvement of 9.4× when compared with our sequential
implementation.

Finally, we can conclude that the use of GPU and regular expressions with capture group
support can be used together and the obtained results show that the GPU version is faster when
comparing to current CPU programs.

30 Trabajo de Fin de Máster

5
Conclusion

5.1 Summary

We have conducted a study on how to use regular expression with GPU devices. The regular
expression engine does not only have support for matching task, but is also capable of extracting
information from the capture groups that are present on the regular expression. This solves
a limitation in current state of the art, where the use of GPU devices is mainly for matching
purpose tasks. For the first time it is now possible to use regular expressions with capture group
support with the help of GPU devices.

During the execution of this study multiple tests were run and we have presented an
implementation where this task can be performed with success. The results from the execution
of the regular expression on the GPU device are better for larger log files. In the best case
we can obtain a speedup of 9× faster than a serial implementation. Better results could be
obtained using a higher performance GPU card like, for example, the second-generation Maxwell
architecture codenamed GM204. Instead, we used the first-generation Maxwell architecture
codenamed GM107, which is the one that was available for this research.

The results of this work have been used in the real world in a technology company, where
the study of regular expression permitted us to design an efficient log file module processor. The
implementation is also freely available on GitHub1.

5.2 Contributions

In the present work we have provided the following contributions:

• We have conducted a full study on regular expression implemented mechanism and engines.

1https://github.com/apsilva/tre-gpu-log

Log file regular expression pattern matching and capture with GPUs 31

https://github.com/apsilva/tre-gpu-log

CHAPTER 5. CONCLUSION

• We have demonstrated that regular expressions with capture group support can be use
with GPU devices.

• It is important to notice that this work is suitable for processing log files which size is greater
than or equal to 100MB. With smaller files the CPU-based current tools outperform our
implementation.

5.3 Future work

As future work, it could be interesting to implement a similar solution using another co-
processor like the Intel PHI and compare the results against the GPU implementation. There
have been works where the regular expression matching task is compared between these two
architectures [61].

The implementation was done using the CUDA programming language. Another approach
is to implement the solution recurring to OpenCL in order to support a major number of GPU
cards and not only NVIDIA cards. Or conduct a study to implement a similar solution using
distributed systems.

Another feature that could be implemented to improve the support of regular expression
matching and extract data using GPUs is the implementation of regular expression backtracking,
which will allow not only to capture the pattern that is been searched but use it to execute more
complex searches.

32 Trabajo de Fin de Máster

Bibliography

[1] Nvidia, “Whitepaper: NVIDIA GeForce GTX 750 Ti,” pp. 1–11, 2014.

[2] “CUDA C Best Practices Guide,” http://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/. [Online]. Available: http://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/

[3] “CUDA library trove,” https://github.com/bryancatanzaro/trove. [Online]. Available:
https://github.com/bryancatanzaro/trove

[4] “Common Log Format,” https://en.wikipedia.org/wiki/Common_Log_Format. [Online].
Available: https://en.wikipedia.org/wiki/Common_Log_Format

[5] “Syslog,” https://en.wikipedia.org/wiki/Syslog. [Online]. Available: https://en.wikipedia.
org/wiki/Syslog

[6] B. J. Jansen, “Search log analysis: What it is, what’s been done, how to do it,” Libr. Inf.
Sci. Res., vol. 28, no. 3, pp. 407–432, 2006.

[7] R. Marty, “Cloud application logging for forensics,” Proc. 2011 ACM
Symp. Appl. Comput. - SAC ’11, p. 178, 2011. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1982185.1982226

[8] X. Shu, J. Smiy, D. Daphne Yao, and H. Lin, “Massive distributed and parallel log
analysis for organizational security,” 2013 IEEE Globecom Work. (GC Wkshps), pp.
194–199, 2013. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=6824985

[9] N. Goel, “Analyzing Users Behavior from Web Access Logs using Automated Log Analyzer
Tool,” Int. J. Comput. Appl., vol. 62, no. 2, pp. 29–33, 2013.

[10] J. E. F. Friedl, Mastering Regular Expressions, 3rd ed. O’Reilly Media, 2006. [Online].
Available: http://www.ncbi.nlm.nih.gov/pubmed/5993855

[11] “GNU sed,” http://www.gnu.org/software/sed. [Online]. Available: http://www.gnu.org/
software/sed/

[12] “GNU awk,” http://www.gnu.org/software/gawk. [Online]. Available: http:
//www.gnu.org/software/gawk

[13] M. Sipser, Introduction to the Theory of Computation, internatio ed. Thomson South-
Western, 2013.

[14] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Automata Theory , Languages , and
Languages , and Computation. Pearson, 2006.

Log file regular expression pattern matching and capture with GPUs 33

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
https://github.com/bryancatanzaro/trove
https://github.com/bryancatanzaro/trove
https://en.wikipedia.org/wiki/Common_Log_Format
https://en.wikipedia.org/wiki/Common_Log_Format
https://en.wikipedia.org/wiki/Syslog
https://en.wikipedia.org/wiki/Syslog
https://en.wikipedia.org/wiki/Syslog
http://portal.acm.org/citation.cfm?doid=1982185.1982226
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6824985
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6824985
http://www.ncbi.nlm.nih.gov/pubmed/5993855
http://www.gnu.org/software/sed
http://www.gnu.org/software/sed/
http://www.gnu.org/software/sed/
http://www.gnu.org/software/gawk
http://www.gnu.org/software/gawk
http://www.gnu.org/software/gawk

BIBLIOGRAPHY

[15] “GNU grep,” https://www.gnu.org/software/grep/. [Online]. Available: https:
//www.gnu.org/software/grep/

[16] “Google RE2,” https://github.com/google/re2. [Online]. Available: https://github.com/
google/re2

[17] G. Xing, “A simple way to construct NFA with fewer states and transitions,” in ACM-SE
42 Proc. 42nd Annu. Southeast Reg. Conf., 2004, pp. 214–218.

[18] ——, “Minimized Thompson NFA,” Int. J. Comput. Math., vol. 81, no. 9, pp.
1097–1106, 2004. [Online]. Available: http://www.tandfonline.com/doi/abs/10.1080/
03057920412331272153

[19] M. Becchi and P. Crowley, “Extending finite automata to efficiently match Perl-compatible
regular expressions,” Proc. 2008 ACM Conex. Conf. - Conex. ’08, pp. 1–12, 2008. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1544012.1544037

[20] D. Ficara, S. Giordano, and G. Procissi, “An improved DFA for fast regular expression
matching,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 5, p. 29, 2008.

[21] H. Hyyrö, “Improving the bit-parallel NFA of Baeza-Yates and Navarro for
approximate string matching,” Inf. Process. Lett., vol. 108, no. 5, pp. 313–
319, nov 2008. [Online]. Available: http://dx.doi.org/10.1016/j.ipl.2008.05.026http:
//linkinghub.elsevier.com/retrieve/pii/S0020019008001853

[22] L. Yang, P. Manadhata, W. Horne, P. Rao, and V. Ganapathy, “Fast submatch extraction
using OBDDs,” in Proc. eighth ACM/IEEE Symp. Archit. Netw. Commun. Syst. - ANCS
’12, no. October. New York, New York, USA: ACM Press, 2012, p. 163.

[23] S. Memeti and S. Pllana, “PaREM: A Novel Approach for Parallel Regular Expression
Matching,” in 2014 IEEE 17th Int. Conf. Comput. Sci. Eng. IEEE, dec 2014,
pp. 690–697. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=7023656

[24] R. Sin’ya, K. Matsuzaki, and M. Sassa, “Simultaneous Finite Automata: An Efficient
Data-Parallel Model for Regular Expression Matching,” 2013 42nd Int. Conf. Parallel
Process., pp. 220–229, may 2014. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6687355http://arxiv.org/abs/1405.0562

[25] R. Antonello, S. Fernandes, D. Sadok, J. Kelner, and G. Szabó,
“Design and optimizations for efficient regular expression matching in DPI
systems,” Comput. Commun., vol. 61, pp. 103–120, 2015. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S014036641500002X

[26] R. Cox, “Regular Expression Matching Can Be Simple And Fast,” https:
//swtch.com/%7Ersc/regexp/regexp1.html. [Online]. Available: https://swtch.com/$\
sim$rsc/regexp/regexp1.html

[27] ——, “Regular Expression Matching: the Virtual Machine Approach,”
https://swtch.com/%7Ersc/regexp/regexp2.html. [Online]. Available: https://swtch.com/
\simrsc/regexp/regexp2.html

[28] ——, “Regular Expression Matching in the Wild,” https://swtch.com/%7Ersc/regexp/
regexp3.html. [Online]. Available: https://swtch.com/\simrsc/regexp/regexp3.html

34 Trabajo de Fin de Máster

https://www.gnu.org/software/grep/
https://www.gnu.org/software/grep/
https://www.gnu.org/software/grep/
https://github.com/google/re2
https://github.com/google/re2
https://github.com/google/re2
http://www.tandfonline.com/doi/abs/10.1080/03057920412331272153
http://www.tandfonline.com/doi/abs/10.1080/03057920412331272153
http://portal.acm.org/citation.cfm?doid=1544012.1544037
http://dx.doi.org/10.1016/j.ipl.2008.05.026 http://linkinghub.elsevier.com/retrieve/pii/S0020019008001853
http://dx.doi.org/10.1016/j.ipl.2008.05.026 http://linkinghub.elsevier.com/retrieve/pii/S0020019008001853
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7023656
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7023656
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6687355 http://arxiv.org/abs/1405.0562
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6687355 http://arxiv.org/abs/1405.0562
http://linkinghub.elsevier.com/retrieve/pii/S014036641500002X
https://swtch.com/%7Ersc/regexp/regexp1.html
https://swtch.com/%7Ersc/regexp/regexp1.html
https://swtch.com/$\sim $rsc/regexp/regexp1.html
https://swtch.com/$\sim $rsc/regexp/regexp1.html
https://swtch.com/%7Ersc/regexp/regexp2.html
https://swtch.com/$\sim $rsc/regexp/regexp2.html
https://swtch.com/$\sim $rsc/regexp/regexp2.html
https://swtch.com/%7Ersc/regexp/regexp3.html
https://swtch.com/%7Ersc/regexp/regexp3.html
https://swtch.com/$\sim $rsc/regexp/regexp3.html

BIBLIOGRAPHY

[29] M. Becchi, “Regular Expression Processor,” http://regex.wustl.edu/index.php/Main_Page.
[Online]. Available: http://regex.wustl.edu/index.php/Main_Page

[30] K. Thompson, “Programming Techniques: Regular expression search algorithm,”
Commun. ACM, vol. 11, no. 6, pp. 419–422, jun 1968. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=363347.363387

[31] F. Moore, “On the Bounds for State-Set Size in the Proofs of Equivalence
Between Deterministic, Nondeterministic, and Two-Way Finite Automata,” IEEE
Trans. Comput., vol. C-20, no. 10, pp. 1211–1214, oct 1971. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1671701

[32] V. Laurikari, “NFAs with tagged transitions, their conversion to deterministic
automata and application to regular expressions,” in Proc. Seventh Int. Symp.
String Process. Inf. Retrieval. SPIRE 2000. IEEE Comput. Soc, 2000, pp. 181–
187. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.
4395http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=878194

[33] ——, “Efficient submatch addressing for regular expressions,” Master, Helsinki University
of Technology, 2001.

[34] A. Karper, “Efficient regular expressions that produce parse trees,” Master of Science,
University of Bern, 2014.

[35] “Haskell: regex-tdfa,” http://hackage.haskell.org/package/regex-tdfa. [Online]. Available:
http://hackage.haskell.org/package/regex-tdfa

[36] “OpenCL,” https://developer.nvidia.com/opencl. [Online]. Available: https://developer.
nvidia.com/opencl

[37] “CUDA,” http://www.nvidia.com/object/cuda_home_new.html. [Online]. Available:
http://www.nvidia.com/object/cuda_home_new.html

[38] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. Markatos, and S. Ioannidis,
“Gnort: High performance network intrusion detection using graphics processors,”
Recent Adv. Intrusion Detect., pp. 116–134, 2008. [Online]. Available:
http://www.springerlink.com/index/g2w54q11130r7126.pdf

[39] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. P. Markatos, and S. Ioannidis, “Regular
expression matching on graphics hardware for intrusion detection,” Proc. 12th Int. Symp.
Recent Adv. Intrusion Detect., pp. 265–283, 2009.

[40] M. Onsjö and Y. Aono, “Online Approximate String Matching with CUDA,”
Technology, pp. 1–4, 2009. [Online]. Available: http://pds13.egloos.com/pds/200907/26/
57/pattmatch-report.pdf

[41] N. Cascarano, P. Rolando, F. Risso, and R. Sisto, “iNFAnt: NFA Pattern Matching on
GPGPU Devices,” SIGCOMM Comput. Commun. Rev., vol. 40, no. 5, pp. 20–26, 2010.
[Online]. Available: http://doi.acm.org/10.1145/1880153.1880157

[42] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: a GPU-
Accelerated Software Router,” in Proc. ACM SIGCOMM 2010 Conf. SIGCOMM
- SIGCOMM ’10, vol. 40, no. 4. New York, New York, USA: ACM Press,
2010, p. 195. [Online]. Available: http://portal.acm.org/citation.cfm?id=1851207http:
//portal.acm.org/citation.cfm?doid=1851182.1851207

Log file regular expression pattern matching and capture with GPUs 35

http://regex.wustl.edu/index.php/Main_Page
http://regex.wustl.edu/index.php/Main_Page
http://portal.acm.org/citation.cfm?doid=363347.363387
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1671701
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.4395 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=878194
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.4395 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=878194
http://hackage.haskell.org/package/regex-tdfa
http://hackage.haskell.org/package/regex-tdfa
https://developer.nvidia.com/opencl
https://developer.nvidia.com/opencl
https://developer.nvidia.com/opencl
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.springerlink.com/index/g2w54q11130r7126.pdf
http://pds13.egloos.com/pds/200907/26/57/pattmatch-report.pdf
http://pds13.egloos.com/pds/200907/26/57/pattmatch-report.pdf
http://doi.acm.org/10.1145/1880153.1880157
http://portal.acm.org/citation.cfm?id=1851207 http://portal.acm.org/citation.cfm?doid=1851182.1851207
http://portal.acm.org/citation.cfm?id=1851207 http://portal.acm.org/citation.cfm?doid=1851182.1851207

BIBLIOGRAPHY

[43] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, “Parallelization and characterization of
pattern matching using GPUs,” 2011 IEEE Int. Symp. Workload Charact., pp. 216–225,
2011.

[44] L. Wang, S. Chen, Y. Tang, and J. Su, “Gregex: GPU based high speed regular expression
matching engine,” Proc. - 2011 5th Int. Conf. Innov. Mob. Internet Serv. Ubiquitous Comput.
IMIS 2011, pp. 366–370, 2011.

[45] Y. Zu, M. Yang, Z. Xu, L. Wang, X. Tian, K. Peng, and Q. Dong, “GPU-based
NFA implementation for memory efficient high speed regular expression matching,” Proc.
ACM SIGPLAN Symp. Princ. Pract. Parallel Program. PPOPP, pp. 129–139, 2012.
[Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0-84863362945&
partnerID=40&md5=781c686004f691a5a1cc55a66f129263

[46] P. Gómez Nieto, “Clasificación de tráfico TCP / IP mediante dispositivos GPU,” Master,
Universidad Autónoma de Madrid, 2012.

[47] R. Leira Osuna, “Clasificación de flujos en 10 Gbps Ethernet mediante Intel DPDK y GPUS,”
Trabajo fin de Grado, Universidad Autónoma de Madrid, 2013.

[48] X. Yu and M. Becchi, “GPU acceleration of regular expression matching for large
datasets: : Exploring the Implementation Space,” in Proc. ACM Int. Conf.
Comput. Front. - CF ’13. New York, New York, USA: ACM Press, 2013,
p. 1. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2482767.2482791http:
//dl.acm.org/citation.cfm?id=2482767.2482791

[49] C.-h. Lin, C.-h. Liu, L.-S. Chien, and S.-C. Chang, “Accelerating Pattern
Matching Using a Novel Parallel Algorithm on GPUs,” IEEE Trans.
Comput., vol. 62, no. 10, pp. 1906–1916, oct 2013. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6338923

[50] H. Sasakawa, Hirohito and Arimura, “Faster Multiple Pattern Matching System on GPU
based on Bit-Parallelism,” in 18th Work. Synth. Syst. Integr. Mix. Inf. Technol., 2013.

[51] Mr.Gaurav K. Bhamare and P. S. Banait, “Parallelization of Multipattern Matching on
GPU,” Int. J. Electron. Commun. Soft Comput. Sci. Eng., vol. 3, no. 3, 2014.

[52] S. Ponnemkunnath and R. C. Joshi, “Efficient Regular Expression Pattern
Matching on Graphics Processing Units,” 2011, vol. 168, pp. 92–101. [Online].
Available: http://www.springerlink.com/content/m811165163585182/abstract/http://link.
springer.com/10.1007/978-3-642-22606-9_13

[53] X. J. A. Bellekens, C. Tachtatzis, R. C. Atkinson, C. Renfrew, and T. Kirkham, “GLoP:
Enabling Massively Parallel Incident Response Through GPU Log Processing,” in Proc. 7th
Int. Conf. Secur. Inf. Networks - SIN ’14. New York, New York, USA: ACM Press, 2014,
pp. 295–301. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2659651.2659700

[54] X. Bellekens, R. C. Atkinson, C. Renfrew, and T. Kirkham, “Investigation
of GPU-based Pattern Matching,” 14th Annu. Post Grad. Symp. Converg.
Telecommun. Netw. Broadcast., p. 5, 2013. [Online]. Available: http:
//www.cms.livjm.ac.uk/pgnet2013/Proceedings/papers/1569777259.pdf

36 Trabajo de Fin de Máster

http://www.scopus.com/inward/record.url?eid=2-s2.0-84863362945&partnerID=40&md5=781c686004f691a5a1cc55a66f129263
http://www.scopus.com/inward/record.url?eid=2-s2.0-84863362945&partnerID=40&md5=781c686004f691a5a1cc55a66f129263
http://dl.acm.org/citation.cfm?doid=2482767.2482791 http://dl.acm.org/citation.cfm?id=2482767.2482791
http://dl.acm.org/citation.cfm?doid=2482767.2482791 http://dl.acm.org/citation.cfm?id=2482767.2482791
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6338923
http://www.springerlink.com/content/m811165163585182/abstract/ http://link.springer.com/10.1007/978-3-642-22606-9_13
http://www.springerlink.com/content/m811165163585182/abstract/ http://link.springer.com/10.1007/978-3-642-22606-9_13
http://dl.acm.org/citation.cfm?doid=2659651.2659700
http://www.cms.livjm.ac.uk/pgnet2013/Proceedings/papers/1569777259.pdf
http://www.cms.livjm.ac.uk/pgnet2013/Proceedings/papers/1569777259.pdf

BIBLIOGRAPHY

[55] “CUDA grep,” http://www.cs.cmu.edu/afs/cs/academic/class/15418-s12/www/
competition/bkase.github.com/CUDA-grep/finalreport.html. [Online]. Available:
http://www.cs.cmu.edu/afs/cs/academic/class/15418-s12/www/competition/bkase.github.
com/CUDA-grep/finalreport.html

[56] “Unified Memory in CUDA 6,” https://devblogs.nvidia.com/parallelforall/
unified-memory-in-cuda-6/. [Online]. Available: https://devblogs.nvidia.com/parallelforall/
unified-memory-in-cuda-6/

[57] “Unified Memory Programming in CUDA,” http://docs.nvidia.com/
cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd. [On-
line]. Available: http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#
um-unified-memory-programming-hd

[58] R. Landaverde, T. Zhang, A. K. Coskun, M. Herbordt, Tiansheng Zhang, A. K. Coskun,
and M. Herbordt, “An investigation of Unified Memory Access performance in CUDA,” in
2014 IEEE High Perform. Extrem. Comput. Conf. IEEE, sep 2014, pp. 1–6. [Online].
Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7040988

[59] “amdhl’s law,” https://en.wikipedia.org/wiki/Amdahl%27s_law. [Online]. Available:
https://en.wikipedia.org/wiki/Amdahl%27s_law

[60] “regex compare,” http://sljit.sourceforge.net/regex_compare.html. [Online]. Available:
http://sljit.sourceforge.net/regex_compare.html

[61] T. T. Tran, Y. Liu, and B. Schmidt, “Bit-parallel approximate pattern matching: Kepler
GPU versus Xeon Phi,” Parallel Comput., vol. 54, pp. 128–138, may 2016. [Online].
Available: http://linkinghub.elsevier.com/retrieve/pii/S0167819115001477

Log file regular expression pattern matching and capture with GPUs 37

http://www.cs.cmu.edu/afs/cs/academic/class/15418-s12/www/competition/bkase.github.com/CUDA-grep/finalreport.html
http://www.cs.cmu.edu/afs/cs/academic/class/15418-s12/www/competition/bkase.github.com/CUDA-grep/finalreport.html
http://www.cs.cmu.edu/afs/cs/academic/class/15418-s12/www/competition/bkase.github.com/CUDA-grep/finalreport.html
http://www.cs.cmu.edu/afs/cs/academic/class/15418-s12/www/competition/bkase.github.com/CUDA-grep/finalreport.html
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7040988
https://en.wikipedia.org/wiki/Amdahl%27s_law
https://en.wikipedia.org/wiki/Amdahl%27s_law
http://sljit.sourceforge.net/regex_compare.html
http://sljit.sourceforge.net/regex_compare.html
http://linkinghub.elsevier.com/retrieve/pii/S0167819115001477

Appendices

Log file regular expression pattern matching and capture with GPUs 39

A
Appendix

A.1 Program help

Usage : . / t r e l o g −f <f i l ename> −r <r egu l a r expres ion> [− rndgo]
−f path to the f i l e
−r r e gu l a r exp r e s s i on
−n enable tn fa (d e f au l t : d i s ab l ed)
−d enable td fa cpu (d e f au l t : d i s ab l ed)
−g d i s ab l e td fa gpu (d e f au l t : enabled)
−o output . j son − f o r format json , csv (d e f au l t) − f o r

↪→ csv format , none − match only

Log file regular expression pattern matching and capture with GPUs 41

	Introduction
	Motivation
	Objectives
	Used Methodology
	Thesis Organization

	State of the Art
	Introduction
	Regular Expression
	Capture groups

	Finite automata
	Non deterministic finite-state automata
	Deterministic finite-state automata
	Tagged state automata

	GPU implementations
	CUDA Unified Memory

	Conclusions

	Proposed solution
	Introduction
	Algorithm
	Implementation
	Test setup

	Performance analysis
	Conclusions

	Results
	Introduction
	Preliminary results
	Experimental evaluation
	Performance comparison with current tools
	Discussion
	Conclusions

	Conclusion
	Summary
	Contributions
	Future work

	Appendices
	Appendix
	Program help

