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ABSTRACT

Pomelo II (http://pomelo2.bioinfo.cnio.es) is an
open-source, web-based, freely available tool for
the analysis of gene (and protein) expression and
tissue array data. Pomelo II implements: permuta-
tion-based tests for class comparisons (t-test,
ANOVA) and regression; survival analysis using
Cox model; contingency table analysis with
Fisher’s exact test; linear models (of which t-test
and ANOVA are especial cases) that allow additional
covariates for complex experimental designs
and use empirical Bayes moderated statistics.
Permutation-based and Cox model analysis use
parallel computing, which permits taking advantage
of multicore CPUs and computing clusters. Access
to, and further analysis of, additional biological
information and annotations (PubMed references,
Gene Ontology terms, KEGG and Reactome path-
ways) are available either for individual genes
(from clickable links in tables and figures) or sets
of genes. The source code is available, allowing
for extending and reusing the software. A compre-
hensive test suite is also available, and covers both
the user interface and the numerical results. The
possibility of including additional covariates, paral-
lelization of computation, open-source availability of
the code and comprehensive testing suite make
Pomelo II a unique tool.

INTRODUCTION

There is a continuous demand for web-based applications
for the analysis of genomic and proteomic data. For
end-users, a key feature of web-based applications is
that they make few demands on users’ software and hard-
ware, since only a web browser is needed (1). Moreover,
and of particular relevance, when dealing with large data-
sets, computational capabilities are not limited by the
user’s hardware (only by the servers’). In this context,

web-based applications allow developers to take advan-
tage of the increased availability of multicore processors
and clusters built with off-the-shelf components. These are
probably the major opportunities for significant perfor-
mance gains in the near future (2–5). When deployed in
a computing cluster, parallelization [such as provided by
MPI (6)], harvests computational resources that are rarely
available to individual researchers and can deliver signif-
icant decreases in waiting time, while being completely
transparent to the end-user. Moreover, web-based appli-
cations can offer a user interface and experience very
similar to that of desktop applications [e.g. by usage of
Javascript (7)]. Finally, web-based tools offer the oppor-
tunity to quickly bring new methodological developments
to many potential users. Interpretation of results (8,9) can
also be easily provided by web-based tools, by linking to
additional sources of information [e.g. PubMed refer-
ences, Gene Ontology terms, etc.), which also permits
further analysis with this additional information, such
as identifying features [e.g. pathways, GO terms, etc.]
which might be characteristic of the set of differentially
expressed genes.
In addition to the above general features of ‘omics’

web-based applications, when searching for differentially
expressed genes (and similarly for protein and tissue array
analysis) it is of course imperative to incorporate the best
statistical practices in the field. Depending on the type of
response data, different tests should be applied. The most
common type of data (gene expression data for different
types of patients) are often analyzed to search for differ-
entially expressed genes using ANOVA, t-tests and related
approaches that compare two or more classes. Tissue
array data, however, are of a categorical or presence/
absence nature, and require contingency table methods.
Survival data, in contrast, require methods (such as Cox
model) that can explicitly deal with right-censored obser-
vations. Thus, a tool for the search of differentially
expressed genes (proteins) should incorporate the above
methods to cover some of the more common needs of
wet-lab researchers. In all these cases, and regardless of
the type of test, it is by now been well recognized (10,11)
that multiple testing problems should be taken into
account. In addition, and since many microarray studies
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are really observational studies with human patients, it is
often necessary to include additional clinical covariates to
minimize confounding problems (12,13). Finally, in some
cases the statistical methodology exists that will allow us
to borrow information from all genes in the array when
carrying out the test for each gene, using moderated sta-
tistics and Empirical Bayes approaches [e.g. (14)].
Finally, availability of source code, under an open-

source license, is well recognized as an important feature
of bioinformatics applications (13,15): it allows for fast
methodological development based upon previous work
by permiting other researchers to extend the methods
and provide improvements and bug fixes, it makes it pos-
sible to verify claims made by method developers, and
ensures that the international research community
remains the owner of the tools it needs to carry out its
work. The impact of code availability is further enhanced
when standard best practices in software development
[see review and references in (16)] and the usual open-
source development mode (17), are followed. Of particular
importance, especially with applications that perform
complex analysis, is to provide testing suites that allow
to verify the results of the analysis performed by the
web-based application.

POMELO II: UNIQUE FEATURES

There are several other web-based applications that can be
used to identify differentially expressed genes (18–31).
However, all of these fail one or more of the requirements
mentioned in the Introduction section. Many of them
incorporate some of the same procedures as Pomelo II,
but few offer as comprehensive a set of analysis as Pomelo
does. Most tools are limited to two-class comparisons.
Multi-class comparisons are only available from
EMAAS (18), EzArray (24), GenePublisher (26),
WebArray (27) and GEPAS (32). Survival analysis and
regression are only available in GEPAS (32), but
GEPAS is not open source. Contingency tables, however,
are not available in other tools except Pomelo II. Several
other tools make it explicit that they run in clusters
(20,33), which allows for load balancing and swapping
jobs to idle nodes. However, with the exception of
EMAAS (18), parallel computing seems not to be used
by any other tools.
More importantly in microarray data analysis, a unique

characteristic of Pomelo II is that it allows to incorporate
additional covariates, such as age or sex, a much needed
feature in many microarray studies with human subjects,
where these variables can have an effect in gene expression
(12,13). As part of our emphasis on this feature, when
using additional covariates, the user is alerted to possible
aliasing and confounding and to the available degrees of
freedom available (Input and output section).

FUNCTIONALITY, INPUT, OUTPUT

Available statistical methods

Pomelo II incorporates a range of validated, well-know,
statistical methods for identifying differentially expressed

genes (or proteins). Fisher’s exact test is available for con-
tingency tables (this test is useful specially with tissue
array data). Linear regression, with a P-value obtained
by a permutation test, is of interest when we try to
model the values of an interval-scaled variable using
gene expression data. Cox model is a widely used
method for censored data, such as when we want to find
the relationship between patient survival and gene expres-
sion. Two-class comparisons are available as a permuta-
tion-based t-test, as a parametric t-test using moderated
statistics with an empirical Bayes approach (14) as imple-
mented in Limma (34), and as a paired t-test (also using
Limma). Class comparisons for two or more classes are
available as ANOVA, using permutation for significance,
or as linear models, using Limma. If using linear models,
we can adjust for the possible effects of ‘additional covari-
ates’ (e.g. sex, age, etc.). For all the tests implemented, we
return unadjusted P-values as well as FDR-adjusted
P-values, using the approach of Benjamini and
Hochberg [see details and discussion in (10,11)].

Input and output

Input are plain text files. For all analysis (except survival
analysis), two files are needed: the expression data, and the
class labels data. In addition, for linear models, and if
additional covariates are used, a file with the additional
covariables will be required. For survival analysis, three
files are needed: expression data, survival times and cen-
sored indicators. A screenshot of the main input screens
showing the methods available is shown in Figure 1a.

When using linear models, the user can use additional
covariables. These are other subject attributes (e.g. subject
age, gender, weight, etc.), often readily available from the
clinical history. This information can allow Pomelo II to
check if gene expression differences or similarities may
be due to these factors instead of due to belonging to a
certain class.

When entering additional covariates for the linear
model, the user can choose which of the covariates to
use. In addition, we show plots of each of the covariates
at the different levels of the class variable (Figure 1b). This
allows the user to check that the program has correctly
interpreted the variables showing which are numerical and
which are categorical. In addition, it alerts the user of the
possible existence of confounding and aliasing (35).
Suppose that in a study comparing expression profiles of
breast cancer patients with non-breast cancer control sub-
jects, most breast cancer patients were females and the
non-breast cancer subjects were males. This situation
would be readily detectable with the plots provided by
Pomelo II. In addition, some studies have small numbers
of subjects but try to correct for too many covariates;
when entering additional covariates, the user is informed
about the available degrees of freedom, as well as the
degrees of freedom used by any of the covariates included;
help is available immediately, explaining the meaning of
the table (Figure 1c).

The main output from the program is a table with the
results of the analysis and a heatmap. The results table
contains a header indicating the test you have used,
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number of permutations and which covariables were
used (if any); see Figure 2a and b, for two examples,
corresponding to a permutation t-test and a Cox model.
The table shows an index corresponding to the original
ordering in the data file, gene names, P-values (unad-
justed), FDR-adjusted P-values and statistics (and the
absolute value of the statistic); in the case of Cox
models, an additional column, ‘Warnings’, might show
warnings from the fit (e.g. lack of convergence). At the
bottom of the output, there is a figure with a heatmap
(Figure 2c) where you can filter how and which genes to
plot, and allows you to choose the color scale. Both tables
and heatmap are clickable and will take you to a page
with additional information [our IDConverter Light
(36)] and will allow you to send selected genes (based on
user-specified selection criteria) to PaLS (37) to examine
PubMed references, Gene Ontology terms, KEGG path-
ways or Reactome pathways that are common to that
set of genes.

If you have run an ‘Anova, linear models (limma)’ test,
the output will also contain a Class compare section
containing a button. By clicking on the button, we will
be taken to a class compare page (Figure 3a), where we

will be able to compare specific pairs of classes. For each
comparison, a table will appear (e.g. Figure 3b), showing
a table with (moderated) t-statistics (and associated
P-values and FDR-corrected P-values), similar to the
one in Figure 2. The Class compare page is provided
because in linear models (ANOVAs) with three or more
classes, we might be interested in comparing particular
pairs of classes in addition to the overall F-test (if our
linear model had only two classes originally, this option
is not really necessary, since of course the overall F-test is
equivalent to the t-test for the two-class comparison).
Note that a particular two-class comparison in a, say,
three-class analysis is not necessarily identical to con-
ducting just a two-class comparison with a t-test: in
linear models, we use all available data to estimate the
error term and, moreover, the empirical Bayes method
implemented in Limma (14) borrows information from
gene expression data across all classes. Thus, in experi-
ments that comprise more than two classes, it is always
preferable to carry out specific contrasts after a full, global
model, is fitted to all the data, rather than conducting
many two-group analyses that discard information from
the other groups.

(a)

(b)

(c)

Figure 1. Three input screens from Pomelo II. (a) Initial input, showing available statistical methods. (b) Additional covariates check page,
with figures showing distributions at different levels of the class variable. (c) Additional covariates check page, showing degrees of freedom available
and help.
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From the Class compare page, we can also obtain dif-
ferential expression tables which, again, are particularly
useful with more than two classes. They are also useful
with two classes since the F-statistic, which is always of
positive sign, gives no indication of whether the mean of
the first group is larger or smaller than the mean of the
second group. As shown in Figure 3c, for the user-
selected group comparisons we obtain Venn diagrams
that provide a quick visual information about the
number of up- and down regulated genes in each two-
class comparison and their intersection (e.g. the number
of genes that are up regulated in both the contrast
between classes 0 and 1 and the contrast between classes

0 and 2 are 656 in the figure). We also obtain a table
showing which genes are differentially expressed in
each two-class comparison; we use color codes (green
and red) and the ‘<’ and ‘>’ signs to allow for fast dif-
ferentiation between up- and down regulated genes.
The FDR threshold below which genes are considered
differentially expressed can be changed by the user, and
the Venn diagram and table will be regenerated
automatically.

Documentation, help, tutorials

Online help, including full documentation, pre-run exam-
ples, sample files and loading of sample data sets is

(a)

(b)

(c)

Figure 2. Output. Output table from a permutation t-test (a) and a Cox model (b), and a heatmap with dendrogram, showing available options for
heatmap redrawing (c).

(a)

(b)

(c)

Figure 3. Output from linear model. (a) Class comparison page. (b) Output table from one of the two-class comparisons. (c) Details of Class
comparison, showing Venn diagram and table of up- and down regulated genes for each two-class comparison.
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available from the main page of Pomelo II. We also pro-
vide video tutorials (see http://pomelo2.bioinfo.cnio.es/
help/flash_tutorials/video_tutorials.html) of some of
the most common or most involved analysis. In most
screens, there is help available to options specific of that
step, accessible by clicking on the ‘?’ symbol (e.g. see
Figure 1c). The help files are licensed under a Creative
Commons license (http://www.creativecommons.org),
allowing for redistribution and classroom use.

IMPLEMENTATION, AVAILABILITY, MATURITY AND
TESTING

Most of the statistical functionality is written in R (38) or
in C/C++, with extensive use of parallelization using
MPI (6) and R interfaces to MPI [via the R-packages
Rmpi (39), by H. Yu, and papply (40) by D. Currie].
Parallelization is used in all permutation-based tests and
the Cox model computations. Cox model fitting uses the
survival package, by T. Therneau (41). For linear models,
we use Limma (34), by G. K. Smyth and collaborators.
The web interface is written in Python and Javascript.
Control of the application, fault-tolerance and booting
and halting the LAM/MPI universes is accomplished by
a combination of Python and shell scripts. We create a
new LAM/MPI universe for each run of each application,
and the actual nodes/CPUs that are used in a LAM/MPI
universe are determined at run time (thus excluding nodes
that are down).

Our publicly accessible installation, available at http://
pomelo2.bioinfo.cnio.es, runs on a cluster with 31 two
dual-core AMD Opteron 2.2 GHz CPUs and six GB
RAM, running Debian GNU/Linux. Shared storage
space uses RAID 50, which provides protection against
hard disk failure, as well as access to results and data
from nodes different from the one where computations
started. Redundancy and load-balancing of the web
service is achieved with Linux Virtual Server with heart-
beat and mon, which ensures balancing of the master
nodes for MPI and of the non-parallelized executions.

All of the code (including repository history) is available
under open source licenses (GNU GPL and Affero GPL)
from the Launchpad at http://launchpad.net/pomelo2.

Testing, maturity and number of accesses

Pomelo II includes a comprehensive test suite that uses
FunkLoad (http://funkload.nuxeo.org). These tests cover
the user interface, handling of error conditions and incor-
rectly formated files and the numerical output, and can be
run on demand, and wherever new changes are introduced
in the software, thus ensuring appropriate quality control
and regression testing. The complete code is also available,
under the GNU GPL and Affero GPL licenses, from
http://launchpad.net/functional-testing (go to the Pomelo
II directory in the source code). An additional test using
Selenium (http://www.openqa.org/selenium/) is available
(http://pomelo2.bioinfo.cnio.es/tests.html); these tests
verify that the AJAX component of the application runs
correctly under different operating systems and browsers.

Pomelo II is a mature application. The server has been
running for more than four years. In the last 2 years, over
6000 experimental datasets have been analyzed. Usage and
testing includes four groups at the developers institution
(CNIO), and users world wide.
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