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1 Introduction

The discovery of the Higgs boson has confirmed the simplest possible picture of electroweak
symmetry breaking and mass generation. As predicted long ago by the Standard Model of
particle physics (SM), the Higgs mechanism splits an elementary doublet of scalar particles
into an unphysical sector, providing the longitudinal polarization to the vector bosons W
and Z, and a single physical spin zero particle. For a long time this picture has been
questioned, specially in connection to the naturalness problem, also called “electroweak
hierarchy problem”, that is the stability of the electroweak scale against quantum correc-
tions and its smallness compared to other higher scales to which the Higgs field may be
sensitive, if such new scales of physics do exist in nature. The tension would be manifest
in the Higgs mass being lower than those putative scales.

The challenge raised by the lightness of the Higgs mass becomes increasingly pressing
as long as no firm signal of beyond the Standard Model (BSM) physics appears in new
data. The resistance to accept extreme fine-tunings has been historically most fruitful,
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prompting the identification of new symmetries to justify dynamically scales smaller than
the characteristic overall scale of a given theory; a magnificent example is for instance the
prediction of the charm particle [1] and its mass [2]. The observed light Higgs mass poses
a similar conundrum.

Moreover the Higgs boson of the SM would represent the unique example of elementary
spin zero particle in nature, while in other known phenomena of spontaneous symmetry
breaking its role is played by composite excitations. Supersymmetry would justify elemen-
tary scalars, actually one copy for each known fermion, but no direct or indirect hints of
them has been found so far. In fact, the only degrees of freedom found in nature prior
to the Higgs discovery which may originate from scalar fields were Goldstone bosons: the
longitudinal components of the electroweak gauge bosons. This suggested decades [3–7] ago
a dynamical nature for the Higgs particle as a pseudo-Nambu-Goldstone boson (PNGB)
which would justify a light Higgs. All components of the Higgs multiplet would then share a
common Goldstone origin, providing a beautifully homogeneous picture. In the initial pro-
posal the Higgs originated from one of the Goldstone bosons produced in the spontaneous
breaking of a high-energy SU(5) invariant strong dynamics. Recent attempts tend to start
instead from a SO(5) symmetry [8, 9] spontaneously broken to SO(4) at some high scale Λ,
producing at this stage an ancestor of the Higgs particle in the form of one of the resulting
Goldstone bosons, with characteristic scale f and Λ ≤ 4πf [10]. The coset SO(5)/SO(4)
represents the minimal possibility to interpret the Higgs as a pseudo-Goldstone boson in
the presence of a custodial symmetry.

The fermionic couplings of the SO(5) invariant sector to the SM fermions and gauge
bosons give an additional — generally soft — breaking of SO(5) resulting in a potential
for the Goldstone Higgs. Its minimum breaks spontaneously the electroweak symmetry at
a scale v, which phenomenologically needs to differ from f , and gives a mass to the Higgs
particle. Moreover, this type of theories [11] proposes naturally a seesaw-like mechanism
for quarks and leptons, whose masses would be inversely proportional to the heavy fermion
mass scale. It is most suggestive that the seesaw mechanism would not then be reduced to
the realm of neutrino masses — for which it is the best candidate theory — but it would
be instead the universal pattern behind all fermion masses.

A Goldstone-boson parenthood for the Higgs is not exclusive of those models, often
called “composite Higgs” models, but is also embedded in other constructions such as “little
Higgs” models, extra-dimensional scenarios and others. In concrete models the spectra of
exotic fermions are directly related to the light fermion masses — in particular the top
mass — and the Higgs mass. The values of these masses generally require a spectrum with
some exotic fermion masses below the TeV scale, a fact often in tension with experimental
searches [12, 13]. It is interesting to clarify the degree of fine-tuning that the models
require, in view of the electroweak hierarchy problem.

Most of the literature on composite Higgs models based on SO(5) assumes from
the start a strong dynamics and uses an effective non-linear formulation of the
model(s) [9, 14–20]. This approach has the advantage of being completely general, of-
fering a parametrization of all possible ultraviolet completions for the symmetry group
chosen. At the same time one of its limitations is that it is applicable only in a finite
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domain of energies. Here instead we construct a complete renormalizable model which in
its scalar part is a linear sigma model including a new scalar particle σ, singlet under the
gauge group. This will allow to gain intuition on the dependence on the ultraviolet (UV)
completion scale of the model, by varying the σ mass: a light σ particle corresponds to a
weakly coupled regime, while in the high mass limit the theory should fall back onto an
usual effective non-linear construction. Our complete renormalizable model can thus be
considered either as an ultimate model made out of elementary fields, or as a renormaliz-
able version of a deeper dynamics, much as the linear σ model [21] is to QCD. One former
attempt in this direction [22] did not fully take into account and computed the impact of
the fermionic sector on the main phenomenological observables, see also refs. [23, 24].

While the choice of the minimal bosonic sector is clear, there is a number of possible
choices for the fermionic sector. The option explored in this paper assumes heavy fermions
in vectorial representations of SO(5), in contrast to models where the SM left doublets
are embedded in SO(5) multiplets [22]. Direct couplings between SM fermions and the
heavy fermions will be the source of the soft SO(5) breaking, while the Higgs particle
has tree-level couplings only with the exotic fermionic sector, via SO(5)-invariant Yukawa
couplings. It will be discussed how the induced Coleman-Weinberg potential requires soft
breaking terms to be included in the scalar potential.

The usual SM Higgs sector is now substituted by a Higgs-σ sector, correcting the
strength of the SM Higgs-gauge boson couplings and opening new interaction channels.
The phenomenology of the σ production and decay will be also studied, including fermionic
and bosonic tree-level and one loop decays (e.g. gluon-gluon and photon-photon). Analysis
of present Higgs data will be used to set a constraint on the fine-tuning ratio v/f . The
contribution of the Higgs, σ and the exotic fermions to the oblique S and T parameters
will be computed. One aim of the phenomenological study is to clarify the impact of the
size of the ultraviolet scale - here represented by the σ mass - on the tensions of this type of
theories. Particular emphasis will be dedicated to the impact of the σ particle on present
and future LHC data, produced either via gluon fusion or vector-boson fusion and decaying
into a plethora of channels including diphoton final state.

Furthermore, as this paper focuses on the impact of a dynamical σ particle, we identify
below some of the leading low-energy bosonic operators stemming from the new physics
when the exotic heavy fermion sector is integrated out: we determine the dominant effective
operators made out of the σ field and/or SM fields, as a first step towards the identification
of a “benchmark” electroweak effective Lagrangian including a light dynamical Higgs. A
non-linear effective Lagrangian should result in the limit of very heavy σ. An interesting
characteristic of the non-linear scenario is that the low-energy physical Higgs field turns
out not to be an exact electroweak doublet, and may appear in the effective Lagrangian as
a generic SM scalar singlet with arbitrary couplings. The most general effective Lagrangian
of this type [25, 26] turns out to depend on a plethora of couplings, though. It would be
useful to identify the reduced pattern of dominant couplings characteristic of models in
which the Higgs is a pseudo-Goldstone boson in that regime [27].

The structure of the paper can be easily inferred from the table of contents.
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2 The SO(5)/SO(4) scalar sector

The complete Lagrangian can be written as the sum of three terms describing respectively
the pure gauge, scalar and fermionic sectors,

L = Lgauge + Lscalar + Lfermion, (2.1)

where Lgauge reduces to the SM gauge kinetic terms. This section discusses in detail the
scalar sector and its interactions, while the study of the fermionic sector is deferred to the
next section.

In order to define the linear σ model corresponding to an SO(5) symmetry sponta-
neously broken to SO(4), let us consider a real scalar field φ in the fundamental repre-
sentation of SO(5). Three among its five components will be ultimately associated with
the longitudinal components of the SM gauge bosons - denoted below by πi, i = 1, 2, 3,
while the other two will correspond to the Higgs particle h and to an additional scalar σ,
respectively. For simplicity the results will be often presented in the unitary gauge (u.g.),
in which πi = 0:

φ = (π1, π2, π3, h, σ)T u.g.→ (0, 0, 0, h, σ)T . (2.2)
The scalar Lagrangian describing the scalar-gauge and the scalar-scalar interactions reads

Ls = 1
2(Dµφ)T (Dµφ)− V (φ) , (2.3)

where the SU(2)L ×U(1)Y covariant derivative is given by

Dµφ =
(
∂µ + igΣi

LW
i
µ + ig′Σ3

RBµ
)
φ (2.4)

and Σi
L and Σi

R denote respectively the generators of the SU(2)L and SU(2)R subgroups
of the custodial SO(4) group contained in SO(5). The embedding of the gauge group
SU(2)L×U(1)Y inside SO(5), implicitly assumed in eqs. (2.2)–(2.4), is purely conventional.
As we will see in section 2.1, both h and σ acquire a vacuum expectation value (vev),
leaving unbroken an SO(4)′ subgroup which is rotated with respect to the group SO(4) ≈
SU(2)L × SU(2)R containing SU(2)L ×U(1)Y .

For later convenience it is pertinent to introduce the complex notation for the scalar
field φ. Denoting by H (H̃) the SM Higgs doublet transforming as (2, 1/2) ((2,−1/2)) under
the SU(2)L×U(1)Y gauge group, a complex scalar field in the fundamental representation
of SO(5) can be defined as

φ̂ =
(
HT , H̃T , σ

)T
, (2.5)

with the convention that the first two entries of this SO(5) multiplet are SU(2)L doublets
with +1/2 and −1/2 eigenvalue of the diagonal SU(2)R generator, namely

H =
(
Hu

Hd

)
u.g.→ 1√

2

(
0
h

)
, H̃ ≡ iσ2H

∗ =
(
H̃u

H̃d

)
u.g.→ 1√

2

(
h

0

)
, (2.6)

while the last component, σ, is an SU(2)L and SU(2)R singlet. The relation between the
real and the complex notation is given by

φ = 1√
2

(
−i(Hu + H̃d) , Hu − H̃d , i(Hd − H̃u) , Hd + H̃u ,

√
2σ
)T

. (2.7)
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2.1 The scalar potential

The most general SO(4) preserving while SO(5) breaking renormalizable potential depends
a priori on ten parameters. Two of them can be reabsorbed via a redefinition of parameters,1

resulting on a Lagrangian dependent on one SO(5) preserving coupling, λ, one scale f

heralding spontaneous SO(5)/SO(4) breaking, and six SO(5) soft-breaking terms (denoted
below α, β, a1,2,3,4). The Lagrangian in the unitary gauge reads:

V (h, σ) = λ
(
σ2 + h2 − f2

)2
+αf3 σ−f2β h2 +a1 f σh

2 +a2 σ
2h2 +a3 f σ

3 +a4 h
4 . (2.8)

In order to retrieve the formulae in a general gauge it suffices to replace h2 by the SO(4)
invariant combination h2 + ~π2.

The only strictly necessary soft breaking terms are α and β as they need to be present
to absorb divergences generated by one-loop Coleman-Weinberg contributions to the La-
grangian, as shown in appendix A; only those terms will be considered in what follows,2 a
procedure already previously adopted in ref. [22]. The potential then reads

V (h, σ) = λ
(
h2 + σ2 − f2

)2
+ αf3 σ − βf2 h2 , (2.9)

resulting on a system depending on four parameters. The scalar quartic coupling λ can
be conventionally traded by the σ mass, given by m2

σ ' 8λf2 for negligible α and β; the
non-linear model would be recovered in the limit mσ � f , that is λ� 1.

A consistent electroweak (EW) symmetry breaking requires both scalars h, σ to acquire
a non-vanishing vev, respectively dubbed as v and vσ below, as for v 6= 0 the SO(4) global
group and the EW group are spontaneously broken. Note that the vev of h is identified
with the electroweak scale since it can be related to the Fermi constant precisely as in the
SM, see section 2.2 below. For α, β 6= 0 and assuming v 6= 0, it results

v2
σ = f2 α

2

4β2 , v2 = f2
(

1− α2

4β2 + β

2λ

)
, (2.10)

satisfying the condition
v2 + v2

σ = f2 (1 + β/2λ) , (2.11)

which indicates that the SO(5) vev is “renormalized” by the β term in the potential. From
eqs. (2.10) and (2.11) it follows that both f2 > 0 and f2 < 0 are in principle allowed,3 in
appropriate regions of the parameters (α, β, λ). However, in the SO(5)-invariant limit, for
negative f2 the minimum of the potential is at the origin and in consequence the symmetry
is unbroken and there are no Goldstone bosons. The focus of this paper is instead set on the

1Here we choose to get rid of the σ2 and σ4 terms.
2Full renormalizability of the theory requires, in general, the presence of all gauge invariant operators

of dimension equal to or smaller than four. At two or more loops, the renormalization procedure may thus
require to include further symmetry breaking terms beyond those considered; we will assume that their
finite contributions will be weighted by comparatively negligible coefficients and can be safely omitted in
our analysys.

3For f2 < 0, α would have to be purely imaginary because of hermiticity.
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interpretation of the Higgs particle as a PNGB, which requires f2 > 0 as well as |v| < |vσ|,
the latter condition defining the region in parameter space continuously connected with
the limiting case v = 0 in which the Higgs particle becomes a true Goldstone boson. For
f2 > 0, the positivity of v2 in eq. (2.10) and the |v| < |vσ| constraint lead respectively to
the conditions4

α2 < 4β2
(

1 + β

2λ

)
, (2.12)

2β2
(

1 + β

2λ

)
< α2 , (2.13)

which for |β| � λ would indicate 2β2 . α2 . 4β2. Moreover, in order to get v2 � f2,
eq. (2.10) requires a fine-tuning such that α/2β is very close to unity.

Expanding the σ and h fields around their minima, h ≡ ĥ + v and σ ≡ σ̂ + vσ, and
diagonalizing the scalar mass matrix, the mass eigenstates are given by

hphys = ĥ cos γ − σ̂ sin γ , σphys = σ̂ cos γ + ĥ sin γ . (2.14)

For simplicity, from now on the notation hphys and σphys will be traded by h and σ,
respectively. The mixing angle in eq. (2.14) is given by

tan 2γ = 4vvσ
3v2
σ − v2 − f2 (2.15)

and should remain in the interval γ ∈ [−π/4, π/4] in order not to interchange the roles of
the heavy and light mass eigenstates. The mass eigenvalues are given by

m2
heavy, light = 4λf2


(

1 + 3
4
β

λ

)
±
[
1 + β

2λ

(
1 + α2

2β2 + β

8λ

)]1/2
 , (2.16)

where the plus sign refers to the heavier eigenstate. For f2 > 0, the squared masses are
positive if the following two conditions are satisfied5

3β + 4λ > 0 , 2β2 + 4βλ− α2λ/β > 0 , (2.17)

with the second constraint coinciding with that in eq. (2.12) multiplying it by 1/(4βλ); it
follows that β > 0. If the soft mass term proportional to β in the scalar potential eq. (2.9)
would be overall positive (as for instance for f2¡0 and β > 0), the minimum would always
correspond to an undesired symmetric EW vacuum v = 0. Assuming the SO(5) explicit
breaking to be small, |β|/4λ� 1 which may only happen for positive f2, the masses of the
heavy and light eigenstates read

m2
heavy = 8λf2 + 2β(3f2 − v2) +O

(
β

4λ

)
,

m2
light = 2βv2 +O

(
β

4λ

)
.

(2.18)

4For f2 < 0, the inequality eq. (2.12) is reverted.
5For f2 < 0, both inequalities in eq. (2.17) are reverted and as a consequence β < 0.
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The physical scalars thus correspond to a “light” state with mass O(
√
βv) and a

“heavy” state with mass O(
√
λf). It will be later shown that, for a PNGB Higgs par-

ticle (that is v < vσ and f2 > 0), the less fine-tuned regions in parameter space correspond
to the case mlight = mh and mheavy = mσ in the equations above. In fact, would the σ
particle be lighter than the Higgs, the roles of the lighter and heavier eigenstates would be
flipped and the mixing angle γ will be necessarily outside the region quoted above. The
lighter σ scenario is quite different from the typical Higgs PNGB scenarios considered in
the literature.

Notice that for mh < mσ and at variance with the SM case, in the regime of small
soft SO(5) breaking the mass of the Higgs and its quartic self-coupling are controlled by
two different parameters, β and λ, respectively. This is consistent with the PNGB nature
of the Higgs boson whose mass should now appear protected from growing in the strong
interacting regime of the theory — corresponding to large λ — in which instead the σ

mass would increase. In other words, we have replaced the hierarchy problem for the Higgs
particle mass by a sensitivity of the σ particle to heavier scales: the σ mass represents
generically the heavy UV completion. The expression for mh shows that the value of the
β parameter for small β/4λ is expected to be β ∼ m2

h/2v2 ∼ 0.13.

2.2 Scalar-gauge boson couplings

In the unitary gauge, the kinetic scalar Lagrangian written in terms or the unrotated
fields reads

Ls,kin = 1
2(∂µσ̂)2 + 1

2(∂µĥ)2 + g2

4
(
ĥ+ v

)2
W+
µ W

µ− +
(
g2 + g′2

)
8

(
ĥ+ v

)2
ZµZ

µ ,

and justifies the previous identification of the Higgs vev v with the electroweak scale defined
from the W mass

v = 246 GeV . (2.19)

The rotation to the physical h, σ fields results in the following Lagrangian for the scalar
and scalar-gauge interactions, for mh < mσ,

Ls = 1
2(∂µσ)2 + 1

2(∂µh)2 − 1
2m

2
σσ

2 − 1
2m

2
hh

2 − λ
(
h2 + 2hσ + σ2

)2

−4λ(v cos γ − vσ sin γ)
(
h3 + hσ2

)
− 4λ(v sin γ + vσ cos γ)

(
σ3 + h2 σ

)
+
(

1 + h

v
cos γ + σ

v
sin γ

)2 (
M2
WW

+
µ W

µ− + 1
2M

2
ZZµZ

µ
)
. (2.20)

The physical Higgs couplings are thus seen to be weighted down by a cos γ factor with
respect to the SM Higgs ones, while the σ field acquires the same interactions than h albeit
weighted down by sin γ, a fact rich in phenomenological consequences to be discussed
further below. The SM limit is recovered when the σ field is decoupled from the spectrum
and cos γ = 1 follows from eqs. (2.10) and (2.15). Conversely, for mh > mσ the mixing
dependence would correspond to the interchange cos γ ↔ sin γ in eq. (2.20).
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2.3 Renormalization and scalar tree-level decays

The four independent parameters of the scalar Lagrangian can be expressed in terms of
four observables, which we choose to be:

GF ≡ (
√

2v2)−1, mh, mσ, sin γ , (2.21)

with the Fermi constant GF as measured from muon decay and mh from the Higgs pole
mass, while mσ could be determined from future measurements of the σ mass, and sin γ
from either deviations of the Higgs couplings or from the σ line shape obtained from its
decay into four leptons for mσ ≥ 300 GeV, analogous to the case of a heavy SM Higgs
boson.6

Using eqs. (2.10), (2.15), (2.16) and (2.19), the exact expressions for the h and σ vevs
in terms of those physical parameters can be obtained

v =
(√

2GF
)−1/2

,

vσ = v sin(2γ)(m2
σ −m2

h)
m2
σ +m2

h − (m2
σ −m2

h) cos(2γ)
.

(2.22)

These expressions in turn allow to express in terms of measured quantities the four
independent parameters of the scalar potential eq. (2.9), which can be written as

λ = sin2 γm2
σ

8v2

(
1 + cot2 γ

m2
h

m2
σ

)
,

β

4λ = m2
hm

2
σ

sin2 γm4
σ + cos2 γm4

h − 2m2
hm

2
σ

,

α2

4β2 = sin2(2γ)(m2
σ −m2

h)2

4(sin2 γm4
σ + cos2 γm4

h − 2m2
hm

2
σ)
,

f2 = v2(sin2 γm4
σ + cos2 γm4

h − 2m2
hm

2
σ)(

sin2 γm2
σ + cos2 γm2

h

)2 .

(2.23)

The above exact formulae show that the mixing angle γ does not coincide with the param-
eter v/f ≡

√
ξ commonly used in the literature about composite Higgs models, except in

the limit mσ � mh (or more precisely β/4λ � 1 and v2 � f2), where for sizeable sin γ
the last equation above leads to

sin2 γ −→
mσ/mh�1

v2

f2 − 4m
2
h

m2
σ

. (2.24)

A few comments regarding the parameter space and the scalar spectrum are in order,
as arbitrary values of mσ and sin2 γ are not allowed if we insist on interpreting the Higgs

6For a lighter σ, the decay width becomes too narrow — possibly even below the experimental resolution
— and more ingenious procedures would be required to determine the scalar mixing strength, such as for
instance on-shell to off-shell cross section measurements [28].
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Figure 1. mσ versus sin2 γ parameter space of the scalar sector. The Higgs mass mh and the
Higgs vev v have been fixed to their physical values. The red region corresponds to f2 < 0, for
which the SO(5)-invariant part of the potential is unbroken and there are no Goldstone bosons in
the symmetric limit. The region where |v| > |vσ| is shown in brown (these regions are excluded
by Higgs data, see text). The Higgs is a pseudo-Goldstone boson within the white regions at the
bottom-right and the top-left part of the plane.

boson as the pseudogoldstone boson of a spontaneous SO(5) breaking. Figure 1 displays
the (mσ, sin2 γ) plane: at each point the scalar sector is completely defined as mh and v

are fixed to their physical values. The differently colored regions correspond to

• No SO(5) breaking in the light red region, where f2 < 0; its red borders depict the
f2 = 0 frontier;

• The σ particle being the PNGB of the spontaneous breaking of SO(5) in the light
brown region, where vσ < v;

• The Higgs as the PNGB of the SO(5) → SO(4) breaking in the white areas, where
v < vσ and the Higgs would became a true goldstone boson in the absence of EW
breaking (v → 0).

A complementary divide is provided by the value of the Higgs mass:

• On the mh < mσ region to the right of the figure, the physical Higgs couplings to
SM particles are weighted down by cos γ with respect to SM values, see for instance
eq. (2.20). It will be shown in the next sections that present LHC Higgs data only
allow for values sin2 γ < 0.18 at 2σ CL, though, leaving as allowed parameter space
a fraction of the lower white (Higgs PNGB) section of the figure. The analysis in
the next sections will thus focus in this regime, for which figure 1 already suggests a
lower bound on mσ of a few hundreds of GeV. The relative importance of the soft
breaking terms is also illustrated through the curves depicted for fixed α/β and β/λ;
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• On the mσ < mh area to the right of the figure, the physical Higgs couplings to
SM particles are instead weighted down by sin γ, whose value will thus be bounded
by sin2 γ > 0.82 at 2σ CL. It thus remains as available zone the upper part of the
upper white (Higgs PNGB) region. Nevertheless, the quartic coupling λ is there
very small, typically λ < 10−3, making the SO(5) invariant potential very flat and
potentially unstable against radiative corrections; furthermore, if the soft breaking
parameters are required to be small compared to the symmetric term, α, β < λ, their
values may require extra fine-tuning with respect to radiative corrections from the
fermionic sector to be discussed further below. For these reasons we will not dwell
further below on the case mσ < mh even if phenomenologically of some interest.

Extending the renormalization scheme to the gauge sector, we choose the two extra
observables needed to be the mass of the Z boson and the fine structure constant,

MZ , αem = e2

4π , (2.25)

with MZ and αem as determined from Z-pole mass measurements and from Thompson
scattering, respectively [29]. In our model, the relation between the gauge boson masses is
the same than that for the SM,

MW = cos θWMZ , (2.26)

where the weak angle is given at tree-level by

sin2 θW = 1
2

(
1−

√
1− 4παem√

2GFM2
Z

)
. (2.27)

Using all the above, it is straightforward to compute the relevant tree-level branching
ratios for the heavy and light scalar boson decays into SM bosons:

Γ(h→WW ∗) = ΓSM(h→WW ∗) cos2 γ ,

Γ(h→ ZZ∗) = ΓSM(h→ ZZ∗) cos2 γ ,

Γ(σ →W+W−) =
√

2GF
16π m3

σ sin2γ

[
1 +O

(
M2
W

m2
σ

)]
,

Γ(σ → ZZ) =
√

2GF
32π m3

σ sin2γ

[
1 +O

(
M2
Z

m2
σ

)]
,

Γ(σ → hh) =
√

2GF
32π m3

σ sin2γ

[
1 +O

(
m2
h

m2
σ

)]
, (2.28)

where the SM widths can be found for instance in ref. [30]. The σ partial widths above will
dominate the total σ width unless the mixing is unnaturally tiny, and thus measuring the
branching ratios is not enough to infer the value of the scalar mixing. It is easy to see that

Γσ
mσ
' m2

σ sin2 γ

8v2 , (2.29)
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Figure 2. Schematics of the SO(5)→ SO(4) model.

and thus the measurement of the line shape of the σ seems feasible only for mσ above the
EW breaking scale (assuming non-negligible mixing). In that regime, the value of sin γ can
be inferred from the line shape and all other observables in eq. (2.28) can then be predicted
in terms of the physical parameters defining our renormalization scheme. Other bosonic
decay channels requiring one-loop amplitudes will be discussed later on.

3 Fermionic sector

The fermionic sector is unavoidably an important source of model dependency as diverse
choices of SO(5) fermionic multiplets are possible. Moreover the achievement of the desired
symmetry breaking pattern in “composite Higgs” models relies on the fermionic sector. A
schematic picture is given in figure 2 considering a high energy global symmetry group —
SO(5) in the case under discussion:

• Heavy scalar and fermion representations of the high-energy global symmetry are
considered. SO(5) breaks spontaneously to SO(4) at a scale f , resulting in four
massless Goldstone bosons: the three longitudinal components of the electroweak
gauge bosons and a “Higgs Goldstone boson”. The fifth component σ remains massive.

• Furthermore, SO(5) is explicitly broken by the coupling of the exotic heavy represen-
tations to the SM fermions (soft breaking) and to the gauge bosons (hard breaking).
This induces at one-loop a potential for the h field with a non-trivial minimum,
providing a mass for h and breaking the SM electroweak symmetry at a scale v 6= f .

Several “minimal” possibilities have been explored in the literature for the exotic fermionic
representations (see for instance refs. [15, 22]). The setup considered in this paper contains:

1. Heavy (exotic) vector-like fermions in complete representations of SO(5), either in
the fundamental representation, denoted below by ψ — or singlets denoted by χ.

– 11 –
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Figure 3. Schematics of light fermion mass generation. The light SM fermions — here the top
quark — couple to the heavy partners breaking explicitly SO(5). The middle image depicts the
SO(5) invariant Yukawa interactions between the Higgs and the heavy partners. The combination
of both couplings induces and effective top Yukawa coupling and thus a massive top quark.

2. A scalar field φ in the fundamental representation of SO(5), which contains the h

and σ particles. Its vev breaks SO(5) spontaneously to SO(4)′. By construction only
the heavy exotic fermions couple directly to the scalar φ.

3. The Higgs field couples to the exotic fermions only via SO(5) invariant Yukawa cou-
plings. The sources of SO(5) breaking lie instead in the electroweak gauge interactions
and in mixing terms between the heavy exotic fermions and the SM fermions. Such
a breaking is fed via loop corrections to the scalar potential, where it is modeled by
two SO(5) soft breaking terms which are custodial preserving.

This choice of fermionic representation respects an approximate custodial symmetry which
protects the Zbb coupling [31]. Figure 3 illustrates an intriguing characteristic of the
fermionic sector in this class of models — which are often denominated by the generic
name of “partial compositeness” [11]: a seesaw-like mechanism is at work in the generation
of all low-energy fermion masses. The heavier the exotic fermions the lighter the light
fermions.

To ensure correct hypercharge assignments for the SM fermions coupled directly to
heavy exotic fields, the global symmetry is customarily enlarged by (at least) an extra
U(1)X sector, leading finally to a pattern of spontaneous global symmetry breaking given by

SO(5)×U(1)X → SO(4)×U(1)X ≈ SU(2)L × SU(2)R ×U(1)X , (3.1)

with the hypercharge corresponding now to a combination of the new generator and that
of SU(2)R generator, see eq. (2.4),

Y = Σ(3)
R +X . (3.2)

As the global U(1)X symmetry remains unbroken, no additional Goldstone bosons are
generated. Two different U(1)X charges are compatible with SM hypercharge assignments:
2/3 and −1/3. We will indeed consider two different copies of heavy fermions for each
representation, differentiated by the U(1)X , as they are necessary to induce mass terms for
both the SM up and the down quark sectors. Schematically, the fundamental and singlet
representations can be decomposed under SU(2)L quantum numbers as follows,

ψ(2/3) ∼ (X,Q, T (5)) , ψ(−1/3) ∼ (Q′, X ′, B(5)) ,

χ(2/3) ∼ T (1) , χ(−1/3) ∼ B(1) ,
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Charge/Field X Q T(1,5) Q′ X ′ B(1,5)

Σ(3)
R +1/2 −1/2 0 +1/2 −1/2 0

SU(2)L ×U(1)Y (2,+7/6) (2,+1/6) (1,+2/3) (2,+1/6) (2,−5/6) (1,−1/3)

x +2/3 +2/3 +2/3 −1/3 −1/3 −1/3

qEM
Xu = +5/3

Xd = +2/3

Qu = +2/3

Qd = −1/3
+2/3

Q′u = +2/3

Q′d = −1/3

X ′u = −1/3

X ′d = −4/3
−1/3

Table 1. Heavy fermion charges assignments.

where X(′), Q(′) denote the two different SU(2)L doublets contained in the fundamental
representation of SO(5). In each multiplet, the first doublet has Σ(3)

R = 1/2 while the second
one has Σ(3)

R = −1/2. T(1,5), B(1,5) denote instead SU(2)L×SU(2)R singlets, respectively in
the 5 and 1 representation of SO(5). Table 1 summarizes the relevant quantum numbers
for all heavy fermions.

The fermionic Lagrangian. For the SM fermions, the analysis below will be restricted
to the third generation of SM quarks for simplicity, denoting by qL and tR and bR the
doublet and singlets, respectively. It would be straightforward to extend the results to the
other two generations, for instance introducing heavier replica of the exotic sector, leading
to very minor additional phenomenological impact.

Assuming the “minimal” content specified in the previous sections, the fermionic La-
grangian is given by

LF = q̄Li /DqL + t̄Ri /DtR + b̄Ri /DbR

+ ψ̄(2/3) (i /D −M5
)
ψ(2/3) + ψ̄(−1/3) (i /D −M ′5)ψ(−1/3)

+ χ̄(2/3) (i /D −M1
)
χ(2/3) + χ̄(−1/3) (i /D −M ′1)χ(−1/3)

−
[
y1 ψ̄

(2/3)
L φχ

(2/3)
R + y2 ψ̄

(2/3)
R φχ

(2/3)
L + y′1 ψ̄

(−1/3)
L φχ

(−1/3)
R + y′2 ψ̄

(−1/3)
R φχ

(−1/3)
L

+ Λ1
(
q̄L∆(2/3)

2×5

)
ψ

(2/3)
R + Λ2 ψ̄

(2/3)
L

(
∆(2/3)

5×1 tR
)

+ Λ3 χ̄
(2/3)
L tR

+ Λ′1
(
q̄L∆(−1/3)

2×5

)
ψ

(−1/3)
R + Λ′2 ψ̄

(−1/3)
L

(
∆(−1/3)

5×1 bR
)

+ Λ′3 χ̄
(−1/3)
L bR + h.c.

]
.

(3.3)

The first lines contain the kinetic terms for the SM fermions. The second and third lines
include the kinetic and mass terms for the exotic fermions. The kinetic terms become
SO(5)-invariant in the gaugeless limit. The fourth line contains the SO(5) invariant Yukawa
couplings of the exotic sector to the Higgs field. Finally, the last two lines of the Lagrangian
contain the SO(5) soft-breaking interactions of SM fermions with exotic fermions. ∆2×5
and ∆5×1 denote suitable spurions connecting SO(5) and SU(2)×U(1) representations. If
the primed parameters were set to zero no bottom mass would be generated through this
mechanism. All parameters in eq. (3.3) are assumed real for simplicity, that is, we will
assume CP invariance in what follows.
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It is useful to rewrite the Lagrangian in eq. (3.3) in terms of SU(2)L components. For
this purpose, from this point and until eq. (3.12) below, h and σ will denote again the
unshifted and unrotated original scalar fields in eq. (2.9):

LF = q̄Li /DqL + t̄Ri /DtR + b̄Ri /DbR + Q̄
(
i /D −M5

)
Q+ X̄

(
i /D −M5

)
X

+ T̄ (5) (i /D −M5
)
T (5) + T̄ (1) (i /D −M1

)
T (1) + Q̄′

(
i /D −M ′5

)
Q′ + X̄ ′

(
i /D −M ′5

)
X ′

+ B̄(5) (i /D −M ′5)B(5) + B̄(1) (i /D −M ′1)B(1)

−
[
y1
(
X̄LHT

(1)
R +Q̄LH̃T (1)

R +T̄ (5)
L σT

(1)
R

)
+y2

(
T̄

(1)
L H†XR+T̄ (1)

L H̃†QR+T̄ (1)
L σT

(5)
R

)
+y′1

(
X̄ ′LH̃B

(1)
R +Q̄′LHB

(1)
R +B̄(5)

L σB
(1)
R

)
+y′2

(
B̄

(1)
L H̃†X ′R+B̄(1)

L H†Q′R+B̄(1)
L σB

(5)
R

)
+ Λ1q̄LQR + Λ′1q̄LQ′R + Λ2T̄

(5)
L tR + Λ3T̄

(1)
L tR + Λ′2B̄

(5)
L bR + Λ′3B̄

(1)
L bR + h.c.

]
.

(3.4)

Eq. (3.4) shows that the light fermion masses must be proportional to the SO(5) invari-
ant Yukawa couplings of heavy fermions and to the explicitly SO(5) breaking light-heavy
fermionic interactions. The generation of light quark masses requires a vev for the scalar
doublet H. For instance, a t̄LtR mass term is seen to result from the following chain of
couplings,

ql −→
Λ1

QR −→
M5

QL −→
y1〈H̃〉

T
(1)
R −→

M1
T

(1)
L −→

Λ3
tR , (3.5)

suggesting

mt ∝ y1
Λ1 Λ3
M1M5

v , (3.6)

see also figure 3 and section 6. Furthermore, both the +2/3 and −1/3 electrically charged
sectors acquire off-diagonal mixing terms.

The expression for the fermionic Lagrangian eq. (3.4) can be rewritten in a compact
form defining a fermionic vector whose components are ordered by their electrical charges
qEM = (+5/3,+2/3,−1/3,−4/3),

Ψ =
(
Xu, T , B, X ′d

)
, (3.7)

where T and B include the top and bottom quarks together with their heavy fermionic
partners

T =
(
t, Qu, Xd, T (5), T (1), Q′u

)
, B =

(
b,Q′d, X ′u, B(5), B(1), Qd

)
. (3.8)

The fermion mass terms in the weak basis can then be written as

LM = −Ψ̄L M(h, σ) ΨR, (3.9)
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where here and in what follows the sum over all components of the fermionic vector is left
implicit and the block diagonal 14 × 14 fermion mass matrix M reads

M(h, σ) = diag
(
M5,MT (h, σ),MB(h, σ),M ′5

)
, (3.10)

MT (h, σ) =





0 Λ1 0 0 0 Λ′1
0 M5 0 0 y1

h√
2 0

0 0 M5 0 y1
h√
2 0

Λ2 0 0 M5 y1σ 0
Λ3 y2

h√
2 y2

h√
2 y2σ M1 0

0 0 0 0 0 M ′5

, (3.11)

MB(h, σ) = MT (h, σ) with {yi,Λi,Mi} ↔ {y′i,Λ′i,M ′i} . (3.12)

The mass matrices can be diagonalised by bi-unitary (or for the case of the real parameters
bi-orthogonal) transformations,

Ψphys
L = LΨL , Ψphys

R = RΨR , Mdiag = L†MR . (3.13)

These matrices can be diagonalized analytically in some interesting limits; in general they
will be diagonalized numerically.

The physical light eigenstates are admixtures of the light and heavy fermion fields
appearing in the Lagrangian. The scalar fields vevs induce in addition heavy fermion mass
splittings. Notice however that, even in the limit of vanishing Yukava couplings, the exotic
fermions get mixed via the SO(5) breaking couplings. Moreover, although the various
dimensional couplings Λi and Λ′i in eqs. (3.3) and (3.4) may be of the same order, the
top and bottom components of the heavy doublets are splitted by SO(4) breaking terms,
generically of O(yiv).

4 Phenomenology

In this section, bounds are derived first on the model parameters resulting from present
LHC Higgs data and from electroweak precision tests — namely S, T and gbL. Future
signals are discussed next, focusing in particular on σ physics.

4.1 Bounds from Higgs measurements

The tree-level mixing of the scalar singlet σ with the Higgs resonance h can be strongly
bounded from present data and in particular from h to ZZ and W+W− decays, and
from h-gluon-gluon transitions: the Higgs coupling strength to SM fields is weighted down
simply by a cos γ factor with respect the SM value, as previously explained and shown in
eq. (2.20). We use the latest ATLAS and CMS combined results for the gluon-gluon and
vector boson mediated Higgs production processes [32].

A χ2 fit taking into account the correlation between the corresponding coupling mod-
ifiers in the combined fit of the 7 and 8 TeV LHC data — given by figure 23.B of ref. [32]
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— constrains directly cos γ, translating into the following bound

sin2 γ . 0.18 (at 2σ) , (4.1)

which in the mσ � mh limit would point to a value for the non-linearity parameter of
composite Higgs models, ξ ≡ v2/f2 ∼ sin2 γ, consistent with the limits found in the
literature [33], see eqs. (2.23) and (2.24) and the discussion below.

Comparison with literature on non-linear realizations. Ref. [33] shows that in
non-linear realizations of the composite Higgs scenario the behaviour of the Higgs couplings
modifications varies depending on the SO(5) fermionic representations chosen. In particular
they compare the so called MCHM4 and MCHM5 scenarios:

• In MCHM4, the fermions (both the embedded light ones and the heavy partners)
are in the 4 (spinorial) representation of SO(5); the coupling modifiers then obey
k

(4)
V = k

(4)
F = (1 − ξ)1/2, leading to a bound from Higgs data ξ(4) < 0.18 at 2σ CL.

MCHM4 is actually ruled out by its impact on the Zbb coupling and thus for instance
disregarded in ref. [15].

• In MCHM5, the fermions are instead in the 5 (fundamental) of SO(5), and in this
case k(5)

V = (1− ξ)1/2 differs from k
(5)
F = (1− 2ξ)(1− ξ)−1/2, that is, k(5)

F /k
(5)
V ≈ 1− ξ

for small ξ values. LHC Higgs data set then a bound ξ(5) < 0.12 at 2σ CL.

Now, the heavy fermion configuration of our model is different from both scenarios, due
to the role of T (1), a 1 (singlet) of SO(5), which mixes with tR. According to the notation
in ref. [15], the fermion representation in our model would be given by MCHM5−5,1−5,1.
Indeed, the effective top Yukawa requires only one Higgs insertion, which in the non-linear
regime reads ytf t̄LtR sin(h/f), leading to kF =

√
1− ξ. This is the same modification to

the Higgs couplings as in MCHM4.

4.2 Precision electroweak constraints

Analyses available on precision tests for composite Higgs models, such as that in ref. [35],
tend to consider non-linear versions of the theory where the only scalar present is the Higgs
particle, but for ref. [22], which discusses qualitatively the interplay of scalar and exotic
fermion contributions. see also ref. [24]. We present here an explicit computation of the
scalar (h and σ) and exotic fermion contributions, discussing the impact of varying the σ
mass. S, T and U parameters are considered together with gbL and parameter correlations.

4.2.1 S, T and gbL
Consider the parameter definitions in ref. [36],

αS = 4sW cW
dΠ30(q2)
dq2 |q2=0 = 4sW cW F30 ,

α T = 1
M2
W

[Π11(0)−Π33(0)] = 1
M2
W

[A11 −A33] ,

αU = −4s2
W

d

dq2 [Π33(q2)−Π11(q2)]|q2=0 = 4s2
W (F11 − F33) , (4.2)
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where cW (sW ) denotes the cosinus (sinus) of the Weinberg angle cW = MW /MZ , and the
electroweak vacuum polarization functions are given by

Πµν
ij (q) = −i[Πij(q2)gµν + (qµqν − terms)] ; Πij(q2) ≡ Aij(0) + q2Fij + . . . (4.3)

with i, j = W,Z or i, j = 0, 3 for the B or the W3 bosons, respectively, and the dots
indicating an expansion in powers of q2. We will not consider further U as it typically
corresponds to higher order (mass dimension eight) couplings while only low-energy data
(e.g. LEP) will be used here.7 On the contrary, relevant constraints could stem from
deviations induced in the Zb̄LbL coupling, parametrized by gbL in the decay amplitude

MZ→b̄LbL = − e gbL
sW cW

b̄(p2) /ε(q)
1− γ5

2 b(p1), (4.4)

where ε(q) denotes the Z boson polarization and pi the b quark and antiquark momenta.
The values of S, T and gbL are allowed to deviate from the SM prediction within the

constraints [35, 38]

∆S ≡ S − SSM = 0.0079± 0.095 ,

∆T ≡ T − TSM = 0.084± 0.062 ,

∆gbL ≡ gbL − gbLSM = (−0.13± 0.61)× 10−3 , (4.5)

with the (S, T, gbL) correlation matrix given by

 1 0.864 0.06
0.864 1 0.123
0.06 0.123 1

 . (4.6)

Scalar contributions in the linear SO(5) model: h and σ. Given the scalar cou-
plings in eq. (2.20), their contributions to S and T can be formulated as

∆T (h andσ) = −∆T hSM(mh) + c2
γ∆T hSM(mh) + ∆T (σ) = s2

γ

[
−∆T hSM(mh) + ∆T hSM(mσ)

]
,

(4.7)

∆S(h andσ) = −∆ShSM(mh) + c2
γ∆ShSM(mh) + ∆S(σ) = s2

γ

[
−∆ShSM(mh) + ∆ShSM(mσ)

]
,

(4.8)

where the σ contributions ∆T (σ) and ∆S(σ) have been simply written in terms of the usual
SM formulae for the Higgs contribution ∆T hSM and ∆ShSM with the replacement mh → mσ

and using the formulae valid for masses much above the electroweak scale. The scalar

7Some other handful parameter definitions are: ε1 ≡ αT ; ε3 = αS /(4s2
W ), see ref. [37].
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contribution to ∆T is then given by

∆T (h andσ) =3GFM2
W

8π2
√

2
s2
γ

(
−m2

h

log(m2
h/M

2
W )

M2
W −m2

h

+m2
σ

log(m2
σ/M

2
W )

M2
W −m2

σ

+ M2
Z

M2
W

{
m2
h

log(m2
h/M

2
Z)

M2
Z −m2

h

−m2
σ

log(m2
σ/M

2
Z)

M2
Z −m2

σ

})
,

(4.9)

which in the limit mσ � mh,MW ,MZ reduces to

∆T (h andσ) ∼ s2
γ

3GFM2
W

8π2
√

2
s2
W

c2
W

log(m2
σ/M

2
W ) . (4.10)

For the ∆S corrections, the formulation in refs. [39, 40] is used, leading to

α∆ShSM(m)=s2
W

2GF√
2π2M

2
W

(
x

12(x− 1) log(x)+
(
−x6 + x2

12

)
F (x)−

(
1− x

3 + x2

12

)
F ′(x)

)
,

(4.11)
where x ≡ m2/M2

Z and for x < 4:

F (x) = 1 +
(

x

x− 1 −
1
2x
)

log x− x
√

4
x
− 1 arctan

√
4
x
− 1 ,

F ′(x) = −1 + x− 1
2 log x+ (3− x)

√
x

4− x arctan
√

4
x
− 1 ,

(4.12)

while for x > 4:

F (x) = 1 +
(

x

x− 1 −
1
2x
)

log x− x
√

1− 4
x

log
(√

x

4 − 1 +
√
x

4

)
,

F ′(x) = −1 + x− 1
2 log x+ (3− x)

√
x

x− 4 log
(√

x

4 − 1 +
√
x

4

)
.

(4.13)

In the limit of very large mσ, the σ contribution to S can be approximated by:

α∆S(σ) −→
σ→∞

s2
γs

2
W

2GF√
2π2M

2
W

[
1
12 log

(
m2
σ

M2
W

)]
, (4.14)

consistent with the statements in the literature for a very heavy Higgs particle [36].
The black curve in figure 4 displays examples of the ∆S and ∆T corrections induced

by the σ scalar as it follows from the formulae shown above. As earlier explained, the set
of parameters in the scalar potential (f , λ , α , β) has been traded by four observables: GF ,
mh, mσ and the scalar mixing γ (with the latter two yet to be experimentally measured).
It is nevertheless theoretically illuminating to indicate the corresponding values for f and
the scalar quartic self-coupling λ for each example analyzed, and their values are shown in
all figures to follow. We present numerical results for two typical parameter regimes:

• mσ = 2 TeV, s2
γ = 0.04, which corresponds to f = 1 TeV and to scalar potential

couplings λ = 0.38, α = 0.35 and β = 0.16, which clearly lie within the perturbative
regime of the linear SO(5) sigma model.
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Figure 4. Uncombined contributions of the scalar sector (black curve) and the exotic fermionic
sector to the parameters S and T .

• mσ = 6 TeV, s2
γ = 0.06, which also correspond to f = 1 TeV, while λ = 4.3 -closer

to the limit of validity of the perturbative expansion- and α = 0.25, β = 0.13;
this pattern corresponds then to a mainly SO(5) symmetric scenario with small soft
symmetry breaking.

Figure 4 shows a sizeable negative contribution of the σ particle to ∆T which increases with
mσ, and positive contribution to ∆S; the result is consistent with the pattern expected
in ref. [22], and similar to that for the heavy Higgs case (see e.g. ref. [41]). In the limit
mσ → mh the total scalar contribution matches that in the SM due to the Higgs particle.
It is easy to extrapolate the S and T scalar contributions to other mixing regimes as they
scale with s2

γ : for instance the effect would be amplified by a factor of ∼ 3 when raising
the mixing towards the maximal value allowed, see eq. (4.1).

For gbL instead we will not analyze the one-loop σ contributions, as they would be
proportional to the bottom Yukawa couplings and thus negligible compared to the top and
top-partner contributions to be discussed next.

Fermionic contributions. The heavy fermion sector may have an impact on the oblique
parameters and on gbL. This sector adds additional parameter dependence on top of the
four renormalization parameters already discussed for the scalar sector of the linear SO(5)
sigma model. The fermionic parameter space is quite large and adjustable, and thus in
practice mσ and γ will be treated here as independent from them. It will also be assumed
that the inclusion of quarks and leptons from the first two generations does not alter
significantly the analysis of electroweak precision tests, as lighter fermions tend to have
very small mixing with their heavy partners.

The gauge boson couplings to neutral (NC) and charged (CC) fermionic currents in the
weak basis can be read from table 1. After rotation to the mass basis, the corresponding
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Lagrangians can be written as [34]:

LNC = Ψ̄physγµ
[
g

2 (CLPL + CRPR)W 3
µ − g′(YLPL + YRPR)Bµ

]
Ψphys

= Ψ̄physγµ
[
g

2cW

(
CLPL + CRPR − 2s2

WQ
)
Zµ − eQAµ

]
Ψphys ,

LCC = Ψ̄physγµ
[
g√
2

(VLPL + VRPR)W+
µ

]
Ψphys + h.c. , (4.15)

where PL and PR are chirality projectors, Ψphys denotes the generic fermionic vector in the
physical mass basis and e is the absolute value of the electric charge unit. In the model
under discussion, the matrices C and Y are related via the electric charge matrix — see
also eq. (3.2):

Yα = Q− 1
2Cα α = L or R , (4.16)

with

Q =
(

+5
3 ,+

2
3 16×6,−

1
3 16×6,−

4
3

)
. (4.17)

The relation between the NC coupling matrices in the mass basis, CL,R and YL,R, and their
counterparts in the interaction basis (same symbols in curly characters below) is given by

CL = LCLL†, CR = R CRR† , CL;R = diag(+1, CTL;R, CBL;R,−1) , (4.18)

CTL;R = −CBL;R = diag(+1; 0,+1,−1, 0, 0,+1) ; (4.19)

YL = LYLL†, YR = RYRR† , YL;R = diag
(

+7
6 ,Y

T
L;R ,YBL;R,−

5
6

)
, (4.20)

YTL;R = diag
(1

6 ; 2
3 ,

1
6 ,

7
6 ,

2
3 ,

2
3 ,

1
6

)
, YBL;R = diag

(1
6 ;− 1

3 ,
1
6 ,−

5
6 ,−

1
3 ,−

1
3 ,

1
6

)
. (4.21)

Analogously, for the CC coupling matrices VL,R:

VL = LVL† , VR = RVR† ;VL;R =


0 VXuT 01×6 0

06×1 06×6 VT BL;R 06×1

06×1 06×6 06×6 VBX
′d

0 01×6 01×6 0

 , (4.22)

VXuT =
(
VBX′d

)†
= (0, 0, 1, 0, 0, 0) , (4.23)

while VT BL is a 6 × 6 matrix whose elements are null but for its (1, 1), (2, 6) and (6, 2)
entries with value 1, and VT BR is a 6 × 6 matrix with null elements but for its (2, 6) and
(6, 2) entries with value 1.
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T parameter. The contribution of the fermionic sector to the T parameter, ∆T f , is
given by [42]

∆T f = 3
16πs2

W c
2
W

{∑
ij

[(
(V ij
L )2 + (V ij

R )2
)
θ+(ηi, ηj) + 2V ij

L V
ij
R θ−(ηi, ηj)

]

− 1
2
∑
ij

[(
(CijL )2 + (CijR )2

)
θ+(ηi, ηj) + 2CijLC

ij
R θ−(ηi, ηj)

]}

− 3
16πs2

W c
2
WM

2
Z

(
m2
t +m2

b − 2 m2
tm

2
b

m2
t −m2

b

ln m
2
t

m2
b

)
, (4.24)

where mi denotes the fermion masses, mi ≡Mdiag
ii , and ηi ≡ m2

i /M
2
Z . The last line in this

equation corresponds to the substraction of the SM contribution from the light fermions
(top and bottom). The θ± functions are defined as [42]:

θ+(η1, η2) = η1 + η2 −
2η1η2
η1 − η2

ln η1
η2
− 2(η1 ln η1 + η2 ln η2) + div η1 + η2

2 , (4.25)

θ−(η1, η2) = 2√η1η2

(
η1 + η2
η1 − η2

ln η1
η2
− 2 + ln(η1η2)− div

2

)
. (4.26)

S parameter. The fermionic contribution to S, ∆Sf , can be computed following ref. [42],

∆Sf = − 1
π

∑
ij

{
(CijL Y

ij
L + CijRY

ij
R )
[
− div

12 −
5
9 + ηi + ηj

3 + ln(ηiηj)
6

+ ηi − 1
12 f(ηi, ηi) + ηj − 1

12 f(ηj , ηj)−
χ+(ηi, ηj)

2

]

− (CijL Y
ij
R +CijRY

ij
L )
[
2√ηiηj +√ηiηj

f(ηi, ηi) + f(ηj , ηj)
4 + χ−(ηi, ηj)

2

]}
−∆SfSM ,

(4.27)

with the functions f(η1, η2) and χ±(ηi, ηj) as defined in ref. [42], “div” standing for the
divergent contributions typically appearing in dimensional regularisation, and the last
term corresponding to the substraction of the SM light (top and bottom) fermionic
contributions.8

Anomalous Zbb coupling. We follow ref. [34] for the computation of the corrections to
the gbL parameter defined in eq. (4.4), δgbL. Only the top and bottom sectors will be taken
into account as the mass generation mechanism for the lighter fermions are expected to have
a lesser impact on EW precision tests since either the exotic fermions involved are much
heavier or the Yukawa couplings connecting them to the SM fermions are much smaller.
Moreover, the bottom quark mass will be neglected (y′1 = y′2 = 0).9 The fermion-gauge

8The SM fermionic contributions to S and T with only one generation of quarks follow from eq. (4.15)
considering a two-component fermion field ΨSM = (t, b), with MSM = diag(mt,mb) and coupling matrices
QSM = Y SM

R = diag (+2/3,−1/3), CSM
L = diag (+1,−1), Y SM

L = + 1
6 12×2 , V SM

L = antidiag (0, 1), CSM
R =

V SM
R = 02×2.

9The cancellation of divergences in the computation of δgbL has been verified in this approximation.
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couplings relevant to this case are the Z couplings for the charge 2/3 and −1/3 sectors which
can be read from eqs. (4.17) and (4.19), and the couplings to the W± boson between the
(2/3, R) and the (−1/3, L) sectors (see the matrix VT BL defined after eq. (4.23)). In addition
to the NC and CC couplings in eq. (4.15), the interactions of the charged longitudinal gauge
boson components “πi” are needed,

Lπ± = Ψ̄phys g√
2

(WLPL +WRPR) Ψphysπ+ + h.c. (4.28)

where
WL = RWLL

†, WR = LWRR
† , (4.29)

with WL and WR being the mixing matrices in the interaction basis, given in the present
model by

WL;R =


0 WXuT

L;R 01×6 0
06×1 06×6 WT BL;R 06×1

06×1 06×6 06×6 WBX
′d

L;R
0 01×6 01×6 0

 , (4.30)

WXuT
L;R =

√
2
g

(0, 0, 0, 0,−y2;− y1, 0) ,
(
WBX′dL;R

)†
=
√

2
g

(0, 0, 0, 0, y′1; y′2, 0) .

The 6 × 6 matrix WT BL in this equation has all elements null but for its (5, 6) and (6, 5)
entries which take values y1 and −y′2, respectively, while WT BR is a 6 × 6 matrix of null
elements but for its (5, 6) and (6, 5) entries which take values y2 and −y′1, respectively. In
practice, only the entries connecting — after rotation — the charge 2/3 fermions to bL
enter the computation.

In the numerical analysis, the two sets of values considered earlier on for the numerical
analysis of the pure scalar contributions will be retained: (mσ = 2 TeV, sin2

γ = 0.04)
and (mσ = 6 TeV, sin2

γ = 0.06), both corresponding to f = 1 TeV and within the soft
breaking regime α, β < λ, with the latter being kept within its perturbative range.10 Note
that, for a σ particle much heavier than the Higgs, values of f below 700 GeV would
be difficult to accommodate experimentally as sin γ2 ' v2/f2, see eq. (4.1). The exotic
fermionic masses will be allowed to vary randomly between 800 GeV and O(10 TeV), as
the heavy top partners with electric charges +5/3 and +2/3 are bounded to be above 800–
1000 GeV [12, 13], depending on the dominant decay mode. In the light fermion sector, the
top and bottom masses will be allowed to vary within the intervals mt = 173± 5 GeV and
mb = 4.6± 2 GeV, respectively, for illustrative purposes.

Figures 4 to 6 depict the points that satisfy a χ2 global fit to the precision pseudo-
observables S, T and δgbL, where the blue, green, and red points are the allowed 1σ, 2σ
and 3σ regions, respectively, while gray points lie above the 3σ limit. The central values,
uncertainties and correlation matrix are taken from ref. [35]. The ellipses drawn in the
∆S − ∆T plane in figures 4 and 5 are the projection for ∆gLb = 0, while those in the

10mσ = 4πf is roughly where perturbativity is lost in chiral perturbation theory [10].
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Figure 5. Combined contributions to S and T from the scalar sector and the exotic fermionic
sector. The blue, green and red points are allowed at 1, 2, 3σ by the combined (S, T, gbL) fit, while
gray points are outside the 3σ region.
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Figure 6. Scalar and fermionic impact on the T parameter and on the Z-bL-bL coupling gLb .

∆T − ∆gLb plane in figure 6 use the ∆S value coming from the scalar sector. The latter
is a good approximation since S gets in practice a very small correction from the heavy
fermions, as seen in figure 5.

S versus T. The fermion sector can lead to large deviations in the value of the T pa-
rameter. In figure 4 and in the first panel of figure 5 only the fermionic contributions are
depicted. The last two panels in figure 5 show the fermion plus scalar combined results:
the lighter the σ particle, the less tension follows with respect to electroweak precision
data, in particular due to the impact on ∆T , although it is to be noted that even for large
mσ fermionic contributions can bring (S, T ) within the experimentally allowed region.

The sign of the fermionic contributions to S and T can be largely understood in terms
of the light-heavy fermion mixings and the mass hierarchy between the heavy eigenstates.
For instance, large mixing values with a heavy singlet are known to induce large positive
contributions to ∆T , as pointed out in ref. [34], as a result from the custodial symmetry
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Figure 7. Examples of correlations between the fermion mixing strength and electroweak precision
measurements. The label “tL,R mixing with Ψ1, Ψ2, . . . ” indicates

(
|UL,R1 |2 + |UL,R2 |2 + . . .

)1/2
,

where UL,R indicates the left or right rotation that diagonalizes the mass matrix.

being broken by the singlet-doublet mixing. It is possible to illustrate the analysis more
in detail following ref. [43], which uses a different fermionic but nonetheless illuminating
embedding. They consider heavy vector fermions which couple directly to both the light
doublet q and the light singlet qR. When only a heavy singlet is present, the expected
contributions to ∆T and ∆S are both significant (though the first are more important)
and positive for the regime we consider, see their eq. (32). Instead, when only a heavy
vector doublet was taken into account, the sign of the correction to the oblique parameters
was proportional to the sign of the mass splitting between the heavy eigenstates with charge
2/3 and −1/3, resulting in sizeable contributions to ∆T and very small to ∆S.

It is not possible to apply those conclusions in ref. [43] directly here, though, as in
our setup the light fermion mass generation involves necessarily and simultaneously both a
heavy doublet and a heavy singlet, see eq. (3.6): the light doublet q mixes directly only with
the heavy doublet Q, while qR mixes with T1. Nevertheless, the mainly positive fermionic
corrections to ∆S found are consistent with being dominated by the participation of a
heavy singlet. The results, in figure 7 show indeed that a large mixing between tL and
the singlet T (1) leads to a positive ∆T (left panel) while the negative corrections to ∆T
obtained are consistent instead with a large mixing between tR and the doublet component
Xd (middle panel).

T versus gbL. The deviations induced in the Zbb coupling provide additional bounds:
even if the model parameters do not impact on ∆gLb at tree level, the top partners may
induce at loop level deviations from the SM value. Figure 6 depicts the purely fermionic
and the scalar plus fermion combined contributions in the T −gbL parameter space. Finally,
the right panel of figure 7 shows a sizeable and positive impact on gbL of the mixing between
tL and the charge 2/3 heavy singlets T (1) and T (5).

As a final remark, there are considerable mixings in the fermion sector for which the
dominant effects go schematically as tan θij ∼ Λi/Mj . It could be thus suspected that large
deviations in the Wtb coupling should occur. However, these rotations are mainly driven
by the SO(5) breaking couplings Λi and Λ′i, which are custodial symmetry preserving.
Therefore, a large rotation in the top sector is mostly compensated by a corresponding one
in the bottom sector, leading to practically no deviation in Vtb.
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4.3 Higgs and σ coupling to gluons

This section and the next one deal with the scalar to photons and to gluons effective
couplings, arising at one-loop level. Define the scalar-gluon-gluon amplitudes hgg (σgg) as

Ah(σ) ≡ Ah(σ)↔gg(m2
h(σ)) = −iαs

π
gh(σ) (p · k gµν − pµkν)δab , (4.31)

where gh and gσ are scale dependent functions that parametrize the amplitude strength,
αs = g2

s/4π with gs denoting the QCD coupling constant, p and k stand for the gluon four-
momenta, and a, b are color indices. In the case of the SM, the hgg coupling is induced
only at one loop level and the amplitude is dominated by the top quark,

gSM
h =

(
yt√

2

) 1
mt

I

(
m2
h

m2
t

)
, (4.32)

where yt is the top Yukawa coupling (mt ≡ yt v/
√

2) and I(m2
h/m

2
t )/mt is the loop fac-

tor with

I

(
q2

m2

)
=
∫ 1

0
dx

∫ 1−x

0
dz

1− 4xz
1− xz q2

m2

≈


1/3 for m2 � q2

0 for m2 � q2

 .

The SM bottom contribution corresponds to I(m2
h/m

2
b) ≈ 10−2 and is thus usually ne-

glected.11

There are no direct hgg or σgg couplings in the Lagrangian discussed here, but effective
hgg and σgg interactions arise via fermion loops. Expanding the global field-dependent
mass matrixM(h, σ) in eqs. (3.9)–(3.12) around the scalar field vevs, v and vσ, and defining
the following constant matrices

M≡M(v, vσ) ,
∂M
∂h
≡ ∂M(h, σ)

∂h

∣∣∣∣ h = v
σ = vσ

,
∂M
∂σ
≡ ∂M(h, σ)

∂σ

∣∣∣∣ h = v
σ = vσ

,

the fermionic mass Lagrangian eq. (3.9) can be written as

−LY = Ψ̄LMΨR + ĥ Ψ̄L
∂M
∂h

ΨR + σ̂ Ψ̄L
∂M
∂σ

ΨR + h.c. (4.33)

where ĥ and σ̂ are the unrotated scalar fluctuations, see eq. (2.14). Performing the rotation
to the fermionic mass eigenstate basis {Ψi → Ψphys

i },(
M
)
ij
→ mi δij ,

(
∂M
∂h

)
ij
→ (Yh)ij ,

(
∂M
∂σ

)
ij
→ (Yσ)ij , (4.34)

where mi, Yh and Yσ are respectively the masses and the couplings to the unrotated scalars
fields ĥ, σ̂ of the physical fermionic states.12 For simplicity, CP invariance will be assumed
in what follows.

11The large mass limit in the integral is customarily applied for mh < 2mi, which includes the top case.
12For instance, in this notation (Yh)tt = yt/

√
2.
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It is straightforward to obtain the physical h↔ gg and σ ↔ gg amplitudes combining
those involving the unrotated ĥ and σ̂ fields. The latter will require the substitution of the
SM loop factor in eq. (4.3) as follows,

yt√
2

1
mt

I

(
m2
h

m2
t

)
→



∑
i

(Yh)ii
1
mi

I

(
q2

m2
i

)
for ĥ↔ gg

∑
i

(Yσ)ii
1
mi

I

(
q2

m2
i

)
for σ̂ ↔ gg


, (4.35)

where q2 = m2
h for h ↔ gg on-shell transitions, while q2 = m2

σ for σ ↔ gg on-shell
transitions, and where the sum runs over all colored fermion species present in the model.

h↔ gg transitions. If all fermion masses were much larger than mh, it would be pos-
sible to simply factorize the constant integral outside the sum as follows:

∑
i

(Yh)ii
mi

I

(
m2
h

m2
i

)
≈ 1

3
∑
i

(Yh)ii
mi

= 1
6
d

dh
log det(MM†) , (4.36)

where the last term is written in the original unrotated fermionic basis since trace and
determinant are invariant under a change of basis. All fermions in the model under con-
sideration are indeed much heavier than the Higgs particle but for the bottom, whose loop
contribution I(m2

h/m
2
b) is negligible. Therefore the false “heavy” bottom contribution in-

cluded in eq. (4.36) should be removed at energies q2 ≈ m2
h, resulting in the following

effective couplings at the scale mh:

gĥ(m2
h) ≈ 1

6
d

dh

(
log det(MM†)− log(mb(h, σ)m∗b(h, σ))

)∣∣∣ h = v
σ = vσ

= 1
3v +O

(
v

M ′1M
′
5

)
, (4.37)

gσ̂(m2
h) ≈ 1

6
d

dσ

(
log det(MM†)− log(mb(h, σ)m∗b(h, σ))

)∣∣∣ h = v
σ = vσ

= − y2
3M5

Λ2
Λ3

+O

(
vσ

M ′1M
′
5
,
vσ
M2

5

)
, (4.38)

where the eigenvalue of the field dependent mass matrix corresponding to the bottom
quark reads:

mb(h, σ) = y′1Λ′1Λ′3 − y′1y′2Λ′1Λ′2 σ/M ′5
M ′1M

′
5 − y′1y′2 (h2 + σ2)

h√
2
. (4.39)

The h↔ gg amplitude is then given by eq. (4.31), with

gh ≡ gĥ(m2
h) cos γ − gσ̂(m2

h) sin γ .

In the limit mt � mh, the hgg effective coupling is exactly as in the SM. The contri-
bution from the heavy vector-like quarks tends to cancel out for bare vector-like masses
substantially larger than v, a result well-known in the literature.
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σ ↔ gg transitions. With analogous procedure, the σgg amplitude can be obtained
using eq. (4.35) for q2 = m2

σ. The difference with the previous case is that now the top
quark is lighter or comparable in mass to σ and it cannot be integrated out, that is mb �
mt,mσ � mi, where here mi denotes the heavy fermion masses, and in consequence it is
necessary to subtract the bottom contribution and to take into account the q2 dependence
in the top loop. In the approximation I(m2

σ/m
2
b) ≈ 0, it results

gĥ(m2
σ) ≈ 1

6
d

dh

(
log det(MM†)− log(mt(h, σ)m∗t (h, σ))− log(mb(h, σ)m∗b(h, σ))

)∣∣∣ h = v
σ = vσ

+ 1
v
I

(
m2
σ

m2
t

)

= 1
v
I

(
m2
σ

m2
t

)
− 2

3v
(
y1y2
M1M5

+ y′1y
′
2

M ′1M
′
5

)
+O

(
vv2
σ

M2
1M

2
5
,

vv2
σ

M ′21M
′2
5

)
, (4.40)

gσ̂(m2
σ) ≈ 1

6
d

dσ

(
log det(MM†)− log(mt(h, σ)m∗t (h, σ))− log(mb(h, σ)m∗b(h, σ))

)∣∣∣ h = v
σ = vσ

− y2
M5

Λ2
Λ3
I

(
m2
σ

m2
t

)

= − y2
M5

Λ2
Λ3
I

(
m2
σ

m2
t

)
− 2

3vσ
(
y1y2
M1M5

+ y′1y
′
2

M ′1M
′
5

)
+O

(
v3
σ

M2
1M

2
5
,

v3
σ

M ′21M
′2
5

)
,

(4.41)

where the eigenvalue of the field dependent mass matrix corresponding to the top
quark reads

mt(h, σ) = y1Λ1Λ3 − y1y2Λ1Λ2 σ/M5
M1M5 − y1y2 (h2 + σ2)

h√
2
. (4.42)

Note that the dominant contribution to the σgg effective coupling requires both y1 and
y2 to be non-vanishing. In contrast, the dominant contribution to the top quark mass is
proportional to y1 but independent of y2.

The σ ↔ gg amplitude is finally given by eqs. (4.31), (4.40) and (4.41), with

gσ ≡ gĥ(m2
σ) sin γ + gσ̂(m2

σ) cos γ .

The matrix elements modulus square for gg → h and gg → σ, averaged over the polarisa-
tions of the initial state, are then given by

|Ah|2 = α2
Sm

4
h

64π2 g2
h ,

|Aσ|2 = α2
Sm

4
σ

64π2 g2
σ . (4.43)

In terms of those amplitudes, the cross section at the parton level can be expressed as

σpart(gg → h) = |Ah|2
π

spart
δ(spart −m2

h)

= |Ah|2
π

τs2 δ(τ − m2
h

s
) , (4.44)
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where as usual spart denotes the center-of-mass energy at the parton level spart = τs. A
similar expression holds for σpart(gg → σ). By convoluting the cross-section with the gluon
densities G(x) we finally obtain

σ(pp→ h) = |Ah|2
π

m2
hs
×
∫ 1

m2
h
/s

dx

x
G(x) G

(
m2
h

sx

)
,

σ(pp→ σ) = |Aσ|2
π

m2
σs
×
∫ 1

m2
σ/s

dx

x
G(x) G

(
m2
σ

sx

)
. (4.45)

In resume, for very heavy fermion partners the h-gluon-gluon transitions are dominated
by the top quark contribution, while they have a more significant impact on σ-gluon-gluon
transitions.

4.4 Higgs and σ decay into γγ

There are no direct hγγ or σγγ couplings in our Lagrangian. They arise instead as effective
interactions from loops of fermions and, in the case of hγγ, also of massive vector bosons.
As in the case of h and σ production via gg fusion, we distinguish between mass eigenstates
h, σ and the unrotated (interaction ) eigenstates ĥ, σ̂.

Let the scalar-photon-photon amplitudes hγγ and σγγ be defined as

Ah(σ)↔γγ(m2
h(σ)) = i

α

π
Ωh(σ) (p · k gµν − pµkν)δab , (4.46)

where again Ωh and Ωσ are scale dependent functions. The decay amplitudes are then
given by

Γ(h→ γγ) = α2m3
h

64π3 |Ωh|2 , Γ(σ → γγ) = α2m3
σ

64π3 |Ωσ|2 . (4.47)

In the model under study, the contributions can again be decomposed as

Ωh = cos γ Ωĥ(m2
h)− sin γ Ωσ̂(m2

h) ,
Ωσ = sin γ Ωĥ(m2

σ) + cos γ Ωσ̂(m2
σ) .

While both unrotated scalar fields ĥ and σ̂ couple to fermions, only ĥ couples to the W
boson,

Ωĥ(q2) = ΩF
ĥ

(q2) + ΩW
ĥ

(q2) , Ωσ̂(q2) = ΩF
σ̂ (q2) ,

where the superscripts F and W stand for fermionic and gauge contributions, respectively.
The latter is akin to the SM one, that is,

ΩW
ĥ

(q2) = g2v

8m2
W

IW

(
4m2

W

q2

)
, (4.48)

where the factor g2v results from the Higgs−WW vertex, and the remaining part IW /8m2
W

results from the kinematics of the loop integral

IW (x) = 2 + 3x+ 3x(2− x)f(x) , f(x) =

 arcsin2(1/
√
x) x ≥ 1

−1
4

[
log 1+

√
1−x

1−
√

1−x − iπ
]2
x < 1

. (4.49)
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h ↔ γγ transitions. At the Higgs mass scale, the SM ĥWW coupling in eq. (4.48) is
given by

ΩW
ĥ

(m2
h) ≈ 4.2

v
. (4.50)

The SM quark contributions are in turn given by

ΩSM,F
h = −6

∑
f

Q2
f

(
yf√

2

) 1
mf

I

(
m2
h

m2
f

)
≈ −8

9
1
v
, (4.51)

where yf is the fermion Yukawa coupling, mf = yf v/
√

2, and the remaining factor I/mf

results from the loop integral. The last expression in eq. (4.51) corresponds to the top
contribution, which dominates the SM fermionic contribution. The SM decay h → γγ

decay rate is as given in eq. (4.46) with Ωh = ΩSM,W
h + ΩSM,F

h . In the model under
consideration these expressions for the quark contributions to the h → γγ transitions are
generalized as follows, in analogy with the gg fusion analysis above,

ΩF
ĥ

(m2
h) = −2

∑
f

Nf
CQ

2
f ω

h
f (m2

h) = −2
[
3
(2

3

)2
ωh2/3(m2

h) + 3
(
−1

3

)2
ωh−1/3(m2

h)
]
,

ΩF
σ̂ (m2

h) = −2
∑
f

Nf
CQ

2
f ω

σ
f (m2

h) = −2
[
3
(2

3

)2
ωσ2/3(m2

h) + 3
(
−1

3

)2
ωσ−1/3(m2

h)
]
,

(4.52)

where Nf
C is the number of colors of a given quark species f , and ωhf are scale-dependent

functions, which for charge 2/3 and −1/3 fermions read

ωh2/3(m2
h) ≡ 1

6
d

dh

(
log det(MT M†T )

)∣∣∣∣ h = v
σ = vσ

= 1
3v ,

ωh−1/3(m2
h) ≡ 1

6
d

dh

(
log det(MBM†B)− log(mb(h, σ)m∗b(h, σ))

)∣∣∣∣ h = v
σ = vσ

(4.53)

= −2
3v

y′1y
′
2

M ′1M
′
5

+O
(

v v2
σ

M ′21M
′2
5

)
.

For the ωσ functions, it holds instead

ωσ2/3(m2
h) ≡ 1

6
d

dσ

(
log det(MT M†T )

)∣∣∣∣ h = v
σ = vσ

= − y2
3M5

Λ2
Λ3

+O
(
vσ
M2

5

)
,

ωσ−1/3(m2
h) ≡ 1

6
d

dσ

(
log det(MBM†B)− log(mb(h, σ)m∗b(h, σ))

)∣∣∣∣ h = v
σ = vσ

(4.54)

= −2
3
vσy
′
1y
′
2

M ′1M
′
5

+O
(

v3
σ

M ′21M
′2
5

)
.

In these expressions the bottom contribution was neglected, while it has been assumed
mh � mi for the top mass and all other exotic fermion masses mi.
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σ ↔ γγ transitions. Similarly, for σ decaying into two photons the contributions for
the unrotated field σ̂ are given by

ΩF
σ̂ (m2

σ) = −2
∑
f

Nf
CQ

2
f ω

σ
f (m2

σ) = −2
[
3
(2

3

)2
ωσ2/3(m2

σ) + 3
(
−1

3

)2
ωσ−1/3(m2

σ)
]
,

ΩF
ĥ

(m2
σ) = −2

∑
f

Nf
CQ

2
f ω

h
f (m2

σ) = −2
[
3
(2

3

)2
ωh2/3(m2

σ) + 3
(
−1

3

)2
ωh−1/3(m2

σ)
]
,

where

ωσ2/3(m2
σ) ≡ 1

6
d

dσ

(
log det(MT M†T )− log(mt(h, σ)m∗t (h, σ))

)∣∣∣∣ h = v
σ = vσ

− y2
M5

Λ2
Λ3
I

(
m2
σ

m2
t

)

= − y2
M5

Λ2
Λ3
I

(
m2
σ

m2
t

)
− 2

3vσ
y1y2
M1M5

+O
(

v3
σ

M2
1M

2
5

)
,

ωσ−1/3(m2
σ) ≡ 1

6
d

dσ

(
log det(MBM†B)− log(mb(h, σ)m∗b(h, σ))

)∣∣∣∣ h = v
σ = vσ

= −2
3vσ

y′1y
′
2

M ′1M
′
5

+O
(

v3
σ

M ′21M
′2
5

)
, (4.55)

while for ωh(m2
σ) it results

ωh2/3(m2
σ) ≡ 1

6
d

dh

(
log det(MT M†T )− log(mt(h, σ)m∗t (h, σ))

)∣∣∣∣ h = v
σ = vσ

+ 1
v
I

(
m2
σ

m2
t

)

= 1
v
I

(
m2
σ

m2
t

)
− 2

3v
y1y2
M1M5

+O
(

vv2
σ

M2
1M

2
5

)
,

ωh−1/3(m2
σ) ≡ 1

6
d

dh

(
log det(MBM†B)− log(mb(h, σ)m∗b(h, σ))

)∣∣∣∣ h = v
σ = vσ

= −2
3v

y′1y
′
2

M ′1M
′
5

+O
(

vv2
σ

M ′21M
′2
5

)
, (4.56)

where it has been assumed that mb � mt,mσ while mσ � mi for all the other heavy
quarks.

Finally, the physical h and σ decay widths into two photons are given by

Γ(h→ γγ) = α2m3
h

64π3

∣∣∣cos γ
[
ΩW
ĥ

(m2
h) + ΩF

ĥ
(m2

h)
]
− sin γ ΩF

σ̂ (m2
h)
∣∣∣2 ,

Γ(σ → γγ) = α2m3
σ

64π3

∣∣∣sin γ [
ΩW
ĥ

(m2
σ) + ΩF

ĥ
(m2

σ)
]

+ cos γ ΩF
σ̂ (m2

σ)
∣∣∣2 . (4.57)

Quantitatively, σ → γγ transitions are dominated by the W± loop contributions unless
the scalar mixing is small enough for the heavy partner loop contribution to be significant.
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5 The σ resonance at the LHC

May a light σ resonance be lurking in LHC data? In that case, what distinguishes the
phenomenology expected for an approximate SO(5) invariant scenario and that for a generic
singlet scalar freely added to the SM Lagrangian? What is the parameter space allowed
at present and the discovery reach of the next LHC run? In this section we address these
questions.

The constraints from electroweak precision tests explored in section 4.2 showed that a
scenario with a light σ particle tends to diminish the tension with data. On the other side,
from the theoretical viewpoint the assumption of a PNGB nature for the Higgs boson within
an approximate global SO(5) symmetry mildly broken by soft terms prefers a sizeable mass
for the σ particle, see figure 1. The PNGB interpretation implies the existence of a non-
zero mixing between σ and h, specially when considering naturalness as a guideline since
sin2 γ ∼ ξ � 1 would require a strong fine-tuning of the theory -see the discussion after
eq. (2.13) and eqs. (2.23), (2.24) and (4.1).

As argued in section 2.3, the scalar potential is completely determined by the masses
mh and mσ, the constant GF , and the scalar mixing sin γ. The conclusions obtained for the
linear σ model together with generic soft breaking terms are of general validity. The extra
ingredients needed to determine the phenomenology of the σ particle are its couplings to the
vector-like fermions of the theory, which introduce instead significant model-dependence
and may have important consequences particularly in the production of this scalar.

In order to estimate the LHC constraints on the model, we recast many LHC searches
for scalar resonances into the σ parameter space, calculating the production cross section
and decays of the σ particle. The production of the σ particle at the LHC may proceed
mainly via two processes, gluon fusion and vector boson fusion (VBF). Gluon fusion usually
dominates the production due to the large gluon pdfs. Nevertheless, this conclusion is
somewhat model-dependent as the heavy fermion couplings to σ may a priori enhance or
diminish the cross section. VBF depends essentially on the mixing angle γ, but it typically
yields a lower production cross section than gluon fusion for mσ < O(1 TeV), for which it
will have unnoticeable impact in what follows.

Consider then the cross section for σ production via gluon fusion σ(gg → σ). To
account for higher order corrections to Γ(σ → gg), we will profit from the results in the
literature for a heavy SM-like Higgs boson H ′, using the following approximation

σ(gg → σ) ' |A(σ → gg)|2

|ASM(H ′ → gg)|2 σSM(gg → H ′) , (5.1)

where A(σ,H ′ → gg) refers to leading order (one loop) amplitudes and σSM(gg → H ′)
is the NNLO standard gluon fusion production cross section given in ref. [44]. For il-
lustrative purposes we discuss next the LHC impact of the σ particle in two steps: first
an “only scalars” analysis will be considered, to add next to it the effect of the rather
model-dependent fermionic sector.

In the only scalars scenario, that is, a case in which the impact of the heavy fermions
on gluon fusion is negligible compared to the top contribution, the production amplitude
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Figure 8. Present LHC (left panel) and future LHC run-2 (right panel) constraints on sin2 γ versus
σ mass parameter space in the case where gluon fusion is dominated by the top loop. For the latter,
a total luminosity of 3ab−1 was assumed.

can be approximated by the top loop contribution for a heavy SM Higgs weighted down
by sin γ. Under this assumption, we have recasted the LHC searches for a heavy Higgs-
like particle into constraints in the {mσ, sin2 γ} plane, and the results are shown on the
left panel of figure 8. The searches taken into account here include diphoton [45, 46],
diboson [47–50] and dihiggs [51, 52] decays. The figure shows that present LHC data
are sensitive to sin2 γ ' 0.1 for mσ < 600 GeV, otherwise Higgs measurements put a
bound on sin2 γ < 0.18 independently of mσ. It is worth noting that these bounds apply
well beyond the model discussed in this paper: they are valid for any physics scenario in
which the role of the Higgs particle is substituted by a Higgs-scalar system with a generic
mixing angle γ, independently of the details of the theory. In addition, by combining the
LHC data with theoretically motivated constraints as those mentioned above, interesting
bounds can be derived: a PNGB nature for the Higgs boson corresponds to the area
to the right of the red curve depicted, see also figure 1, corresponding to the minimal
theoretical requirement f2 > 0 for SO(5) to be spontaneously broken, resulting in the
bound mσ > 500 GeV in particular from the impact of ATLAS Hheavy → ZZ searches. If
f2 values above the electroweak scale are instead required (black curve) mσ > 550 GeV
follows. The future prospects for this “only scalars” scenario are depicted on the right
panel of figure 8. It shows the future LHC sensitivity in the ZZ decay channel of the
14 TeV LHC run with an integrated luminosity of 3 ab−1, for both ATLAS and CMS [53],
as well as the mixing disfavoured by Higgs data assuming a 5% precision on the Higgs
couplings to SM particles. In the absence of any beyond the SM signal, future LHC data
together with the aforementioned theory constraints could push the limit on the σ mass
above 900 GeV–1.4 TeV.

The difference between the LHC predictions of the model discussed in this paper and
those stemming from extending the SM by a generic scalar singlet (see e.g. ref. [54]) is the
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Figure 9. Same as figure 8, but considering a sizeable contribution of the heavy fermion sector to
gluon fusion. See text for details.

underlying SO(5) structure of the former, which prescribes a specific relation between the
quartic terms in the potential as well as specific soft breaking terms. In the generic extra
singlet scenarios, the allowed parameter space is given by the entire white area in figure 8,
while a PNGB nature for the Higgs restricts the allowed region to the area to the right of
the curves depicted in the figure.

Finally, the impact of the heavy fermions of the model on the gluon fusion cross
section may be significant. Using the approximate expressions in eqs. (4.43) and (4.45),
assuming that the factor y1y2/M1M5 in eqs. (4.40) and (4.41) is the largest contribution
between 1/(4πf)2 and 1 TeV−2 (the latter will also be assumed when f2 < 0), the results
obtained are depicted in figure 9. It shows that the present LHC bounds on sin2 γ can be
weakened by O(30–50%) with respect to the “only scalars” bounds in figure 8. This is due
to a destructive interference between the heavy fermions and the top loops, for the set of
parameters considered. Moreover, future searches will be much more sensitive to the heavy
fermion sector as they probe smaller mixing angles, and therefore they enter regions in
parameter space where the top quark is relatively less important to the σ phenomenology.

The 750 GeV di-photon excess. It is a natural question whether the mild 750 GeV
di-photon excess observed by ATLAS [55] and CMS [56] could be explained by the σ

resonance under discussion. This is highly unlikely because of the constraints imposed on
the scalar couplings by the approximate SO(5) symmetry of the scalar potential, as well
as the uniqueness of the signal, as explained next.

Since the decay σ → γγ is loop induced, the corresponding branching ratio tends to be
very small. In order to be able to account for the excess observed, the h− σ mixing needs
to be tiny, so that for instance the WW and ZZ channels are suppressed and the loop-
induced processes may dominate the decay. This requires sin2 γ � (mh/mσ)2 ' 0.03, which
eq. (2.23) shows to require on one side f2 < 0 — for which the Higgs cannot be interpreted
as a PNGB, and on the other a very small and fine-tuned α value as α2 ∝ β2 sin2(2γ);
overall a very unnatural scenario.
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Furthermore, since the mixing is so small, the top loop essentially does not contribute
to the production and decay anymore. Hence, to obtain a large enough Γ(σ → γγ) and
Γ(σ → gg) the fermion content needs a higher multiplicity than what is assumed in this
paper, as well as large Yukawa couplings, since σ mainly couples to T1 and T5 with electric
charges 2/3. Even assuming such an extreme and extended configuration, the stability
of the potential could become a very serious issue as the fermion contribution to the
beta function of the quartic couplings is negative. Additional field content would then
be possibly required to compensate for this effect, making the model extremely ad hoc.
Therefore, we find no compelling argument to interpret the 750 GeV excess as corresponding
to the σ scalar studied here.

6 d ≤ 6 fermionic effective Lagrangian

The linear model described is renormalizable and valid for any mass range of the fermionic
and/or scalar exotic fields. Two simplifying limits are specially interesting: i) the heavy
fermion regime, M � mσ � v, where M generically represents the exotic fermionic scales
Mi in eq. (3.3); ii) the heavy singlet regime, mσ �M � v. We have concentrated in this
paper on the first scenario, considering a not-so-heavy extra singlet in the spectrum and
its phenomenological consequences. The second limit is instead interesting to elucidate the
connection between the linear (weak) and non-linear (strong) BSM physics scenarios: the
mσ →∞ regime should lead to the non-linear scenarios usually explored in the literature
about composite Higgs; it will be discussed in detail in a subsequent publication [27].

When condition i) is satisfied, some important low-energy effects (and model depen-
dencies) induced by the exotic fermions are easily inferred by integrating them out. The
procedure is quite lengthy; here only the resulting mass-dimension (d) 4, 5 and 6 effective
operators and their coefficients are summarized. For energies E < M , the effective La-
grangian describing the d ≤ 6 interactions of fermions with gauge and scalar fields can be
written as

Leff = q̄Li /D qL + t̄Ri /D tR + b̄Ri /D bR +
∑
i

ciOi , (6.1)

where the set {Oi} includes operators of dimension four (for which the induced coefficients
are the leading contributions to the top and bottom Yukawa couplings), five and six. We
will use the “Warsaw basis” [57] below.

In most models (for instance in composite Higgs ones) it is reasonable to assume
that the goldstone boson scale f and the scalar vevs all satisfy f , v , vσ � M . In what
follows we will thus assume f/M � 1 for simplicity, while Λ ≈M will be considered with Λ
denoting generically the composite Λi scales in eq. (3.3). The light field kinetic energies get
contributions which require wave function renormalization in order to recover canonically
normalized kinetic energies,

qL → Z−1/2
qL

qL , (6.2)

qR →
(
Z−1/2
tR

0
0 Z−1/2

bR

)(
tR
bR

)
, (6.3)
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Coefficient Leading Order in f/M

ZqL
(

1 + Λ2
1

M2
5

+ Λ′21
M ′25

)
ZtR

(
1 + Λ2

2
M2

5
+ Λ2

3
M2

1

)
ZbR

(
1 + Λ′22

M ′25
+ Λ′23

M ′21

)
Table 2. Table with the definitions for the renormalization factors.

where Z−1/2
tR

and Z−1/2
bR

are given in table 2. The operators obtained and their coefficients
resulting after those redefinitions, at leading order in f/M , are shown in table 3, where
the following definitions have been used,

(H†i←→D µH) ≡ i
(
H†(−→DµH)− (H†←−Dµ)H

)
,

(H†i←→D i
µH) ≡ i

(
H†τ i(−→DµH)− (H†←−Dµ)τ iH

)
.

In writing eq. (6.1) and table 3 the unshifted scalar fields have been assumed. This
fact introduces a potential subtlety that we discuss next. Consider for instance the top and
bottom quark masses corresponding to the first two operators in the table, which are their
respective Yukawa couplings: when the Higgs gets a vev, mass terms for the light quarks
are generated. Additional contributions to the light quark masses stem however from the
next six operators in the list, for σ = 〈σ〉 and H = 〈H〉. The corrections induced in the
top and bottom mass are of higher order in f/M , though, and do not need to be retained
when working at leading order. Finally,

mt = v√
2

(
y1Λ1Λ3
M1M5

) 1√(
1 + Λ2

1
M2

5
+ Λ′21

M ′25

) (
1 + Λ2

2
M2

5
+ Λ2

3
M2

1

) (1 +O
(
f

M

))
,

mb = v√
2

(
y′1Λ′1Λ′3
M ′1M

′
5

) 1√(
1 + Λ2

1
M2

5
+ Λ′21

M ′25

) (
1 + Λ′22

M ′25
+ Λ′23

M ′21

) (1 +O
(
f

M

))
.

The same reasoning applies to other couplings. For example the fermion-σ coupling via
the Otσ1 operator [57] would get corrections proportional to ctσ2〈σ〉 — see table 3 — which
are of higher order in the f/M expansion, and can thus be disregarded when restraining
to the leading contributions.

7 Conclusions

A composite Higgs would manifest with deviations of the Higgs couplings to fermions and
gauge vector bosons from the SM predictions. Current data about the Higgs properties
are in good agreement with the SM, but the present experimental precision still allow for
deviations at the level of 20% or more, while many channels predicted by the SM have not
yet been tested.
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Operator ci Leading Order in f/M

dim 4
q̄L H̃ tR −yt −

(
y1Λ1Λ3
M1M5

)
Z−1/2
qL Z−1/2

tR

q̄L H bR −yb −
(
y′

1Λ′
1Λ′

3
M ′

1M
′
5

)
Z−1/2
qL Z−1/2

bR

dim 5
σ (q̄LH̃tR) ctσ1

yt

M5

(
y2

Λ2
Λ3
−
(
y1

Λ2Λ3
M1M5

+ y2
Λ2Λ3
M2

1

)
Z−1
tR

)

σ (q̄LHbR) cbσ1
yb

M ′
5

(
y′2

Λ′
2

Λ′
3
−
(
y′1

Λ′
2Λ′

3
M ′

1M
′
5

+ y′2
Λ′

2Λ′
3

M ′2
1

)
Z−1
bR

)

dim 6

σ2 (q̄LH̃tR) ctσ2
− yt

M1M5

(
y1y2 −

(
y1y2

(
2 Λ2

2
M2

5
+ Λ2

3
M2

1

)
+ 3y2

2Λ2
2+y2

1Λ2
3

2M1M5

)
Z−1
tR

+2 Λ2
2Λ2

3
M1M5

(
y2

1
M2

5
+ 2y1y2

M5M1
+ y2

2
M2

1

)
Z−2
tR

)

σ2 (q̄LHbR) cbσ2
− yb

M ′
1M

′
5

(
y′1y
′
2 −

(
y′1y
′
2

(
2 Λ′2

2
M ′2

5
+ Λ′2

3
M ′2

1

)
+ 3y′2

2Λ′2
2+y′2

1Λ′2
3

2M ′
1M

′
5

)
Z−1
bR

+2Λ′2
2Λ′2

3
M ′

1M
′
5

(
y′2

1
M ′2

5
+ 2y′

1y
′
2

M ′
5M

′
1

+ y′2
2

M ′2
1

)
Z−2
bR

)

|H|2 (q̄LH̃tR) ctH2
− yt

M1M5

(
2y1y2 −

(
2y1y2

Λ2
3

M2
1

+ y2
1

Λ2
3

M1M5

)
Z−1
tR

−
(
y1y2

Λ2
1

M2
5

+ y2
1
2

Λ2
1

M1M5

)
Z−1
qL

)

|H|2 (q̄LHbR) cbH2
− yb

M ′
1M

′
5

(
2y′1y′2 −

(
2y′1y′2

Λ′2
3

M ′2
1

+ y′21
Λ′2

3
M ′

1M
′
5

)
Z−1
bR

−
(
y′1y
′
2

Λ′2
1

M ′2
5

+ y′2
1

2
Λ′2

1
M ′

1M
′
5

)
Z−1
qL

)

(H†i←→D µH)(q̄LγµqL) c
(1)
L

1
4

(
y2

1Λ2
1

M2
1M

2
5
− y′2

1Λ′2
1

M ′2
1M

′2
5

)
Z−1
qL

(H†i←→D i
µH)(q̄Lτ iγµqL) c

(3)
L − 1

4

(
y2

1Λ2
1

M2
1M

2
5

+ y′2
1Λ′2

1
M ′2

1M
′2
5

)
Z−1
qL

(H†i←→D µH)(t̄RγµtR) ctR 0

(H†i←→D µH)(b̄RγµbR) cbR 0

i(H̃†DµH)(t̄RγµbR) ctbR 0

Table 3. Leading order low-energy effective operators induced and their coefficients. Note that the
Yukawa couplings defined in the two first rows appear as well in coefficients of some higher order
operators. The renormalization factors present have been defined in table 2. Those operators made
out exclusively of SM fields have been written in the Warsaw basis [57].
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Completely clarifying the mechanism of electroweak breaking is one of the main goals
of particle physics today and an important role, on the theory side, is played by simple
and motivated extensions of the SM which could provide guidance in the experimental
search. To this purpose we have formulated a model where the scalar sector of the SM is
minimally extended to include an additional scalar particle σ. We are motivated by the
attractive possibility that the Higgs itself can be interpreted as a pseudo-Goldstone boson
associated to the breaking of an approximate symmetry. The most economic custodial
preserving possibility is offered by a global SO(5) spontaneously broken down to SO(4),
thus generating the four components of the Higgs doublet as Goldstone bosons. Indeed this
case has already been vastly analyzed in the literature in the strongly interacting regime,
either in the context of four-dimensional models where SO(5) is nonlinearly realized or
in five-dimensional models with a warped space-time metric. The latter, weakly coupled
duals to strongly coupled four-dimensional conformal theories, are believed to provide a
calculable framework for composite Higgs models.

In our model, where a scalar fiveplet of SO(5) comprises both an electroweak doublet
and an extra singlet σ, the SO(5) symmetry is linearly realized and the theory is renor-
malizable. It could be viewed as the simplest UV completion in the class of models based
on the coset SO(5)/SO(4). In this way we lose generality, but we gain in calculability and
predictability. We can study accurately the regime where the symmetry breaking sector
is in the perturbative regime and provide a useful interpolation between the weakly and
the strongly interacting cases. The SO(5) invariant part of the symmetry breaking sector
contains just two parameters, the symmetry breaking scale and the mass of the σ particle.
In the SO(5) invariant limit the Higgs particle is a true massless Goldston boson. Other
two parameters, arising from the one-loop effective potential when gauge and Yukawa
interactions are turned on, break the SO(5) symmetry softly, fix the relative orientation
between the residual SO(4) invariance and the SU(2)×U(1) electroweak group and provide
the Higgs boson a mass. A mixing angle γ defines the two physical mass eigenstates as
mixtures of the electroweak doublet and the singlet.

As the Higgs mass and the value of the electroweak scale are known, the scalar param-
eter space is thus completely defined in terms of the σ mass and sin γ. We have identified
in it the areas in which the Higgs can be considered a pseudo-Goldstone boson, resulting in
two well-differentiated regions corresponding respectively to a σ particle lighter and heavier
than the Higgs particle. The former case has phenomenological interest, but it turns out
to require fine-tuned parameters in the scalar potential and indeed it would call for an
explanation of the stability of such a light σ; in consequence, we have focused most of the
analysis on the region in which the σ is heavier than the Higgs, to which the remarks that
follow apply.

The UV completion of the theory would require further explanation as far as the σ
particle is light enough for the theory to remain in the perturbative realm, as the model
would have then replaced the hierarchy problem for the Higgs mass for that of the σ mass.
It is nevertheless a most useful tool to explore a dynamical origin for the Higgs and the
possibility of new degrees of freedom appearing in foreseen experiments. For heavy σ the
symmetry breaking sector becomes strongly interacting and in the limit of infinite mσ we
fall into a nonlinear realization of SO(5). The couplings of the physical Higgs h to W and

– 37 –



J
H
E
P
0
6
(
2
0
1
6
)
0
3
8

Z are suppressed by cos γ, while the heavier σ state couples to W and Z with a strength
proportional to sin γ. Present data on the Higgs decay into WW require a relatively
small mixing between the Higgs field and the new scalar, leaving however a considerable
room to a departure from the SM picture. We have also identified the differences in
experimental impact of the case of a generic singlet scalar added to the SM and the case
of the approximately SO(5) invariant scalar sector under discussion.

The scalar sector of the non-linear SO(5) σ model developed is minimal, simple and
of general validity. A significant model dependence comes in when considering the fermion
sector. We chose to describe fermion masses within a simple realization of the partial
compositeness idea. We introduced a set of new vector-like heavy fermions, which couple
to the full SO(5) scalar fiveplets. Ordinary fermions do not directly interact with scalars but
mix with the heavy fermions. At low energies such a mixing gives rise to the usual Yukawa
couplings and fermion masses. To keep our model as minimal as possible, we assign the
heavy fermions to singlets and fiveplets. By focusing on the third generation of quarks, we
introduce one singlet and one fiveplet per each charge sector. Even in this minimal setup,
the fermion sector of the model brings in 14 parameters: four heavy fermion masses, four
independent Yukawa couplings and six mixing parameters. For completeness and as first
step towards a low-energy benchmark effective Lagrangian, we have separately integrated
out the heavy fermions and obtained the ensuing dimension four, five and six effective
operators made out of only SM fields or σ plus SM fields, which include Yukawa and other
couplings for the lighter particles. Nevertheless, all the phenomenological analyses have
been performed with dynamical heavy fermions.

We have analyzed precision electroweak observables, globally parametrized in terms of
the S, T and Rb parameters. Concerning the scalar contribution, from an explicit one-loop
computation we recover a well-known result: a positive contribution to the S parameter
and a negative contribution to the T parameter. At variance with generic models where
SO(5) is nonlinearly realized, we do not have any cut-off ambiguity. In our model the extra
contributions ∆S and ∆T are finite. They vanish when sin γ goes to zero, since the scalar
σ does not couple any more to W and Z in this limit. They also vanish when h and σ have
the same mass, since in this case the angle γ loses any physical meaning. If h and σ are close
in mass, the contribution to ∆S and ∆T is reduced, compared to nonlinear realizations.
The main impact of the heavy fermion contribution is on the T parameter. Letting the
heavy fermions to be as light as 800 GeV, the lower limit from direct searches, contributions
to T of both signs as large as 0.2 in magnitude are generated by scanning the parameter
space. Positive (negative) ∆T are correlated to a sizable mixing between tL (tR) and an
electroweak singlet (doublet) heavy fermion component. Fermionic contributions to S are
typically positive and smaller, while those to Rb are mainly negative and of order few per
mil. Even the largest scalar contributions to ∆S and ∆T , obtained when sin2 γ saturates
its experimental bound and the scalar σ is very heavy, can always be compensated by the
fermionic ones for an appropriate choice of the parameters, thus keeping S and T within
the experimentally allowed region.

The Higgs production at LHC proceeds mainly via gluon fusion as in the SM. The
amplitude comprises the usual SM contribution weighted by cos γ and an extra contribution
proportional to sin γ which decouples in the heavy fermion limit. The interference between
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the two can be both constructive or destructive. The effective coupling of the Higgs to a
diphoton pair is modified in a similar way. In the large mass limit for the heavy fermions
— taking the limit in such a way that the Higgs and light masses remain finite and at their
physical values — their impact can be neglected and deviations from the SM only depend
on sin γ. In particular the Higgs decay to WW allows to put the bound sin2 γ < 0.18, at 2σ.

The production of σ at the LHC can mainly proceed via vector boson fusion or gluon
fusion, the latter typically dominating for a σ mass not exceeding few TeV. There are
no direct couplings of σ to gluons but, as for the Higgs, an effective coupling arises from
fermion loops. In the regime where the heavy fermions decouple the effective σ coupling to
gluons is controlled by the top loop weighted by a sin γ factor. Present direct LHC searches
for a scalar particle are already sensitive to sin2 γ of order 0.1–0.2, for mσ < 600 GeV. If we
combine this result with the theoretical requirement that the Higgs behaves as a pseudo-
Goldstone boson, we can already exclude σ masses below about 500 GeV. This limit can
be pushed to 900–1400 GeV by future LHC data from run 2, in the absence of any signal
of new physics.

While in principle our model contains the ingredients to explain the recently observed
750 GeV diphoton excess in terms of σ production and decay into a photon pair, such an
interpretation is rather unnatural since it would involve a tuning of the parameters in the
scalar sector and, to boost both production and decay, a heavy fermion multiplicity much
larger that the one adopted in the present version. Clearly, together with the modifications
of the SM Higgs couplings, the prediction of an additional scalar, potentially observable at
the next LHC run, is the distinctive feature of our model. However, due to the mixing with
an electroweak doublet, the new particle is not expected to decay exclusively into photons
but rather into a variety of channels, much as the SM Higgs does.
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A Coleman-Weinberg potential

In section 2.1 it was assumed a specific form for the SO(5) scalar potential broken to
SO(4), introducing two additional SO(5) breaking parameters α and β. In this section we
will further motivate this assumption. Even assuming that the tree level scalar potential
would preserve the global SO(5) symmetry, the presence of a SO(5) breaking couplings
in the fermionic sector will generate at one-loop level SO(5) breaking terms through the
Coleman-Weinberg mechanism [58]. The one-loop fermionic contribution can be obtained
from the field dependent mass matrix M as

Vloop = − i2

∫
d4k

(2π)4

∞∑
n=1

1
n

Tr
(
MM†

k2

)n
= i

2

∫
d4k

(2π)4 Tr log
(

1− MM
†

k2

)

= − 1
64π2

(
Λ2Tr

[
MM†

]
− Tr

[
(MM†)2

]
log

(
Λ2

µ2

)

+Tr
[
(MM†)2 log

(
MM†

µ2

)]
− 1

2Tr
[
(MM†)2

])
, (A.1)

where Λ is the UV cutoff scale while µ is a generic renormalization scale. The first two
terms on the right-hand side of this equation are divergent, respectively quadratically and
logarithmically, while the last two terms are finite. For the model under discussion it
results:

Tr[MM†] = c1 + c2 (φTφ) , (A.2)
Tr[(MM†)2] = d1 + d2 σ + d3 σ

2 + d4 (φTφ) + d5 (φTφ)2 , (A.3)

where

c1 = 2Λ2
1 + Λ2

2 + Λ2
3 +M2

1 + 5M2
5 + ({} ↔ {}′) ,

c2 = y2
1 + y2

2 + ({} ↔ {}′) ,

and

d1 = M4
1 + 5M4

5 + 2M2
5

(
2Λ2

1 + Λ2
2

)
+ 2M2

1 Λ2
3 + 2Λ4

1 +
(
Λ2

2 + Λ2
3

)2
+ ({} ↔ {}′) ,

d2 = 4 (y1M1 + y2M5) Λ2Λ3 + ({} ↔ {}′) ,
d3 = 2 y2

1Λ2
2 − y2

2Λ2
1 + ({} ↔ {}′) ,

d4 = 4 y1y2M1M5 + 2
(
y2

1 + y2
2

) (
M2

1 +M2
5

)
+ y2

2

(
Λ2

1 + 2Λ2
3

)
+ ({} ↔ {}′) ,

d5 = y4
1 + y4

2 + ({} ↔ {}′) .

In consequence, only the quadratically divergent piece is seen to remain SO(5) invariant,
while the rest of the potential introduces an explicit breaking of the SO(5) symmetry to
SO(4), see eq. (A.3). The quadratic divergence can be thus absorbed in the parameters
of the tree-level Lagrangian, and the same holds for the SO(5) invariant component of
the logarithmically divergent terms (d1, d4 and d5). However, the presence of the d2 and
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d3 divergent SO(5)-breaking terms require to add the two corresponding counterterms in
the potential, so as to obtain a renormalizable theory. These two necessary terms are
those defined with coefficients α and β in the potential definition eq. (2.9). The gauge
couplings appearing in the covariant derivatives also break explicitly the SO(5) symmetry,
but they do not induce extra one-loop divergent contributions to the effective potential,
and in consequence only α and β are required for consistency.

The computation of the finite part of Vloop should provide the dependence of the
parameters on the renormalization scale13 and should thus be equivalent to the computation
of their renormalization group equations; this task is beyond the scope of the present paper.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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