

UNIVERSIDAD AUTÓNOMA DE MADRID Departamento de Bioquímica

Doctoral Thesis

Identification of diagnostic, prognostic and new major and minor susceptibility genes to pheochromocytoma and paragangliomas (PCC/PGL)

Maria Currás Freixes

Madrid, 2017

Departamento de Bioquímica Facultad de Medicina Universidad Autónoma de Madrid

Identification of diagnostic, prognostic and new major and minor susceptibility genes to pheochromocytoma and paragangliomas (PCC/PGL)

Tesis doctoral presentada por:

Maria Currás Freixes

Licenciada en Medicina y Cirugía por la Universidad Autónoma de Barcelona Especialista en Endocrinología y Nutrición en el Hospital Clínico San Carlos de Madrid

Directora de la Tesis:

Dr. Mercedes Robledo Batanero

Jefa del Grupo de Cáncer Endocrino Hereditario (CNIO)

Grupo de Cáncer Endocrino Hereditario Programa de Genética del Cáncer Humano Centro Nacional de Investigaciones Oncológicas (CNIO) This Doctoral Thesis has been elaborated in the Hereditary Endocrine Cancer Group at the Spanish National Cancer Research Centre (CNIO) in Madrid between 2012 and 2017 under the supervision of Dra. Mercedes Robledo Batanero.

This work has been supported by the following grants and fellowships:

- Severo Ochoa Excellence Programme (Project SEV-2011-191) PhD fellowship, 2014-2017
- Project PI14/00240 from Fondo de Investigaciones Sanitarias (FIS), Instituto de Salud Carlos III, co-financed by FEDER 2014–2020.
- Grupo Español de Tumores Neuroendocrinos (GETNE).
- European Network for the Study of Adrenal Tumors (ENS@T).

AGRADECIMIENTOS

A todos los que habéis hecho que esta tesis sea posible.

A mi familia: Moltes gràcies per tot el vostre suport aquest anys mare, pare, Agnès, Olga, Ricardo, Pol, Kolya, Nara, Bru i Moix.

Al Grupo de Cáncer Endocrino Hereditario: especialmente a Meme, Rocío, Alberto, Cristina Montero y Cristina Rodríguez.

Al Programa de Genética del Cáncer Humano: Especialmente a Ana Osorio y María García.

ABSTRACT

BACKGROUND: Genetic diagnosis is recommended for all pheochromocytoma (PCC) and paraganglioma (PGL) cases (PPGL), as 65-80% are explained by a driver mutation in one of the 34 genes described so far. Several genetic testing algorithms have been proposed, but they usually exclude sporadic-PPGLs (S-PPGLs) and none include somatic testing. Moreover, as the list of PPGL related genes expands yearly, genetic diagnosis becomes a time-consuming task, and targeted gene panels using next generation sequencing (Targeted-NGS) have emerged as cost-effective tools.

AIMS: We aimed to elucidate the genetic heterogeneity of PPGL development through a systematic genetic study. This study was carried out in two consecutive parts.

MATERIAL AND METHODS: Part I included 329 probands and was focused on the genetic characterization of S-PPGL using Sanger sequencing (SS), and gross deletions of PPGL genes in which the mutational mechanism is relevant. Ninety-nine tumors from patients negative for germline mutations (GM) were available and tested for somatic mutations (SM) in *RET, VHL, HRAS, EPAS1, MAX* and *SDHB*. Part II addressed a blind genetic screening of PPGL based on 2 customized targeted-NGS assays. One of these panels allowed the study in germline and frozen tumor DNA, and the second one was specifically designed for DNA extracted from FFPE tissue. This second study included 453 PPGL patients (30 of them controls with known pathogenic mutations, and 275 had been partially screened by SS (WT^{PS})).

RESULTS: Part I: GM were found in 46 (14%) patients, being more prevalent in PGLs (28.7%) than in PCCs (4.5%) (p= 6.62×10^{-10}). Head and neck PGLs (HN-PGLs) and thoracic-PGLs (T-PGLs), more commonly had GMs (p= 2.0×10^{-4} and p=0.027, respectively), but not abdominal-PGLs (A-PGLs). SM were found in 43% of those tested, being more prevalent in PCCs (48.5%) than in PGLs (32.3%) (p=0.13). Five metastatic cases and a quarter of S-PPGLs had a SM, regardless of age at onset. Part II: NGS assay sensitivity was $\geq 99.4\%$, regardless of DNA source. We identified 45 variants of unknown significance and 89 mutations, GMs in 29 (7.2%), and SMs in 58 (31.7%) of the 183 tumors studied (being 37 mutations found in WT^{PS}).

CONCLUSIONS: We recommend prioritizing testing of GM in patients with single HN-PGLs and T-PGLs, and for SM in those with single PCC. Catecholamine phenotype and SDHB-IHC should guide genetic screening, mainly in A-PGLs. Pediatric and metastatic cases should not be excluded from somatic screening. Both targeted-NGS assays are an efficient and accurate alternative to SS, facilitating the study of "minor" PPGL genes, and enabling genetic diagnoses in patients with incongruent or missing clinical data, that would otherwise be missed.

RESUMEN

ANTECEDENTES: El diagnóstico genético se recomienda en todos los pacientes con feocromocitoma (FEO) y paraganglioma (PGL), (FPGL), ya que el 65-80% se explican por una mutación en uno de los 34 genes descritos. Se han propuesto distintos algoritmos de diagnóstico genético, pero suelen excluir los FPGL esporádicos (FPGL-E) y ninguno incluye el estudio de mutaciones somáticas (MS). Además, como la lista de genes relacionados con FPGL no para de crecer cada año, el diagnóstico genético implica cada vez más tiempo, y los paneles de genes mediante secuenciación masiva (PG-NGS) emergen como una herramienta rentable y efectiva.

OBJETIVOS: Nuestro objetivo fue aclarar la heterogeneidad genética en el desarrollo de los FPGL mediante el estudio genético sistemático. El estudio se realizó en dos partes sucesivas.

MATERIAL Y MÉTODOS: La parte I incluyó 329 propósitus y se centró en la caracterización genética de pacientes con FPGL-E mediante la secuenciación por Sanger (SS) y las grandes deleciones de los principales genes relacionados con FPGL. Noventa y nueve tumores de los pacientes sin mutación germinal (MG) se incluyeron en el estudio de MS en *RET, VHL, HRAS, EPAS1, MAX* y *SDHB*. En la parte II el estudio genético se realizó de forma "ciega" utilizando 2 PG-NGS. Uno permitía el estudio en ADN germinal y de tumor congelado y el segundo fue específicamente diseñado para DNA extraído de tumor parafinado. En el segundo estudio se incluyeron 453 pacientes con FPGL (30 de ellos controles con mutaciones patogénicas conocidas y 275 habían sido parcialmente estudiados mediante SS (WT^{PS})).

RESULTADOS: Parte I: se encontraron MGs en 46 pacientes (14%), siendo más frecuentes en PGLs (28.7%) que en FEOs (4,5%) (p= 6.62×10^{-10}). Los PGLs de cabeza y cuello (CC-PGLs) y los torácicos (T-PGLs), más comúnmente presentaban MGs (p= 2.0×10^{-4} y p=0.027, respectivamente), pero no los abdominales (A-PGLs). Se encontraron MSs en el 43% de los tumores estudiados, y fueron más frecuentes en FEOs (48,5%) que en PGLs (32.3%) (p=0.13). Cinco casos metastásicos y un cuarto de los FPGL-E presentaban una MS, independientemente de la edad. Parte II: el abordaje con NGS mostró una sensibilidad \geq 99.4%, independientemente del tipo de ADN. Se identificaron 45 variantes de significado desconocido y 89 mutaciones, siendo MGs 29 (7,2%) y MSs 58 (31,7%) en los 183 tumores estudiados (37 se encontraron en los casos WT^{PS}).

CONCLUSIONES: Recomendamos priorizar el estudio de MG en los pacientes con un único CC-PGL y T PGL, y de MS en FEO. El fenotipo catecolaminérgico y la IHC-SDHB deberían guiar el estudio genético, principalmente en A-PGLs únicos. Los casos pediátricos y metastásicos no deberían excluirse del estudio somático. Ambos PG-NGS son una alternativa eficiente y precisa a la SS, que facilita el estudio de genes "minoritarios" de FPGL y el diagnóstico genético en pacientes con datos clínicos incongruentes o ausentes, que de otra manera no serían diagnosticados.

TABLE OF CONTENTS

ABSTRACT	13
RESUMEN	17
ABBREVIATIONS	29
I-INTRODUCTION	33
1.1 DISEASE DEFINITION AND ANATOMY	35
1.2 EPIDEMIOLOGY	35
1.3 PROGNOSIS	36
1.4 PPGL-ASSOCIATED SYNDROMES	37
1.5 ELUCIDATING THE GENETIC SCENARIO OF PPGL	40
1.5.1 CLUSTER 1: Pseudo-hypoxia cluster	42
1.5.2 CLUSTER 2: Kinase signaling cluster	44
1.5.3 OTHER GENES	45
1.6 GENETIC DIAGNOSIS	45
1.7 CLINICAL PRESENTATION	46
1.8 DIAGNOSIS	46
1.8.1 BIOCHEMICAL STUDIES	46
1.8.2 IMAGING STUDIES	48
1.8.2.1 ANATOMICAL IMAGING STUDIES	48
1.8.2.2 FUNCTIONAL IMAGING STUDIES	49
1.8.2.3 OTHER TECHNIQUES	51
1.8.3 IMMUNOHISTOCHEMICAL TUMOR CHARACTERIZATION	51
1.9 TREATMENT	51
1.9.1 SYMPTOMATIC TREATMENT	51
1.9.2 SURGERY	52
1.9.3 INTERNAL TARGETED RADIOTHERAPY	53
1.9.4 CHEMOTHERAPY	53
1.9.5 FOCUSED TREATMENT OF ORGAN METASTATIC LESIONS	53
1.9.6 MOLECULAR TARGETED THERAPIES	53
II- OBJECTIVES	55
2.1 PART I: Genetic characterization of apparently sporadic PPGL (S-PPGL) using Sanger	
sequencing	57
2.2 PART II: Genetic characterization of PPGL patients using targeted gene panels – Next	
generation sequencing (TGPs)	57

III- MATERIAL AND METHODS)	59
3.1 PART I: Genetic characterization of apparently S-PPGL using Sanger sequencing	g 61
3.1.1 PATIENTS	61
3.1.2 CLINICAL DATA	61
3.1.3 SAMPLES	62
3.1.4 DNA EXTRACTION	62
3.1.5 MUTATION TESTING: SANGER SEQUENCING	62
3.1.6 VARIANT INTERPRETATION	64
3.1.7 STATISTICAL ANALYSIS	64
3.2 PART II: Genetic characterization using TGPs specifically designed for the stud	y of PPGL
patients	65
3.2.1 PATIENTS	65
3.2.2 CLINICAL DATA	67
3.2.3 SAMPLES	67
3.2.4 DNA EXTRACTION	67
3.2.5 MUTATION TESTING: TGPs	67
3.2.5.1 TGPs DESIGN	67
3.2.5.2 TGPs DATA ANALYSIS	68
3.2.6 VARIANT INTERPRETATION	69
IV- RESULTS	71
4.1 PART I: Genetic characterization of apparently S-PPGL using Sanger sequencing	g 73
4.1.1 CLINICAL CHARACTERIZATION	73
4.1.2 GENETIC CHARACTERIZATION	74
4.1.3 RELATION TO TUMOR LOCATION	74
4.1.4 UTILITY OF PREDOMINANT SECRETION OF PPGLs TO GUIDE GENETIC	
SCREENING	76
4.1.5 PEDIATRIC CASES	77
4.1.6 METASTATIC CASES	79
4.2 PART II: Genetic characterization of PPGL using TGPs	80
4.2.1 TECHNICAL ASSESMENT AND VALIDATION OF TGPs	80
4.2.2 GENETIC CHARACTERIZATION	80
4.2.2.1 DETECTION OF VARIANTS IN WT PATIENTS	80

4.2.2.2 DETECTION OF VARIANTS ACCORDING TO PREVIOUS SANGER	
SEQUENCING	84
4.2.3 VARIANTS FOUND IN CASES WITH SINGULAR FEATURES	85
4.2.4 MULTIPLE CASES	85
4.2.5 PEDIATRIC CASES	85
4.2.6 METASTATIC CASES	85
V- DISCUSSION	89
5.1 DRIVER GERMLINE AND SOMATIC MUTATIONS	91
5.1.1 GERMLINE MUTATIONS	91
5.1.2 SOMATIC MUTATIONS	92
5.2 VARIANTS OF UNKNOWN SIGNIFICANCE	93
5.3 GENETIC STUDY AND CLINICAL DATA	94
5.3.1 GUIDED GENETIC STUDY USING CLINICAL DATA (PART I)	94
5.3.2 "BLINDED" GENETIC STUDY USING TGPs (PART II)	95
5.4 AGE AT ONSET	96
5.5 METASTATIC BEHAVIOUR	97
5.6 SINGULAR FEATURES IN CLINICAL DATA	97
5.7 SEQUENCING APPROACHES	98
5.8 DNA SAMPLES	99
5.8.1 FFPE TUMOR SAMPLES	99
5.8.2 SOURCE AND QUALITY OF DNA SAMPLES	
5.9 FUTURE OUTCOMES	
5.10 REASONS TO CONSIDER GENETIC SCREENING IN ALL PPGL CASES	101
VI- CONCLUSIONS	105
VI- CONCLUSIONES	109
VII- REFERENCES	113
VIII- APPENDIX I: SUPPLEMENTAL MATERIAL	139
IX- APPENDIX II: ARTICLES: RELATED TO THE THESIS	229
OTHER ARTICLES	235

FIGURES

- Figure 1. Location of PPGL. Page 35
- Figure 2. Molecular signatures of PPGL subtypes. Page 42
- Figure 3. Cathecolamine synthesis and O-methylation. Page 47
- Figure 4. Details summarizing the steps of the genetic workflow study. Page 63
- Figure 5. Age at diagnosis by tumor location and genetic mutation status. Page 78
- Figure 6. Workflow for next-generation sequencing-based diagnostic testing. Page 70
- Figure 7. Results for each step of the genetic workflow. Page 75
- Figure 8. Cluster 1 mutations. Page 82
- Figure 9. Cluster 2 mutations. Page 83
- Figure 10. Sanger sequencing chromatograms of pathogenic variants found in low percentage of reads. Page 81
- **Figure 11.** Comparison of the distribution of mutations depending on if the samples had been previously studied (partially) using Sanger sequencing or not. Page 86
- Figure 12. Comparison of the distribution of VUS depending on if the samples had been previously studied (partially) using Sanger sequencing or not. Page 87
- **Figure 13.** Proposed genetic testing algorithm for patients with sporadic-pheochromocytoma and paraganglioma (S-PPGL) based on SDHB-immunohistochemistry (IHC) in formalin-fixed paraffin-embedded tissue (if available) and biochemical phenotype. Page 103

TABLES

- **Table 1.** Summary of phenotypic and genetic features associated with the described PPGL related genes. Page 38
- **Table 2.** Clinical characteristics of the 423 PPGL patients without a known mutation included in the study. Page 66
- Table 3. Characteristics of the TGPs designed. Page 68
- Table 4. Clinical characteristics by tumor location. Page 73
- **Table 5.** Summary of genotype profile by tumor location for cases with germline and tumor DNA available. Page 75
- Table 6. Mutations by gene, tumor location and clinical characteristics. Page 76
- Table 7. Comparison between gene mutated and tumor location. Page 77

SUPPLEMENTARY DATA

- Clinical questionnaire. Page 141
- Supplementary table S1. Clinical and genetic data from the 329 patients included in the study.
 Page 150
- Supplementary table S2. Variant interpretation. Page 177
- **Supplementary table S3.** Clinical characteristics of the 21 patients with no amplification of the sample analyzed. Page 183
- Supplementary tables S4. Characteristics of the TGPs designed.Page 184
- Supplementary table S5. Control variants previously found by Sanger sequencing used in panel I and II. Page 185
- Supplementary table S6. Variants (mutations and VUS) found by TGPs and validated by Sanger sequencing. Page 216
- Supplementary table S7. Variants reported by TGPs and not validated by Sanger sequencing.
 Page 228

ABBREVIATIONS

2SC - S-(2-Succinyl)cysteine 3-MT - 3-methoxytyramine 5-hmC - 5-hydroxymethylcytosine 11C-HED - 11C-hydroxyephedrine 18F-FDA - 18F-fluorodopamine 18F-FDG - [18F]-fluoro-2-deoxy-D-glucose A-PGL - Abdominal paraganglioma ATRX - Alpha thalassemia mental retardation X-linked **BAP1** - BRCA1 associated protein-1 **BRAF** - B-Raf proto-oncogene CgA - Chromogranin A CI - Confidence interval **CIMP** -CpG island methylator phenotype **CNA** - Copy number alteration **COSMIC** - Catalogue of Somatic Mutations in Cancer CSS - Carney-Stratakis syndrome **CT** - Computed tomography CTd - Carney triad CVD - Cyclophosphamide, vincristine and dacarbazine dbSNP - The Single Nucleotide Polymorphism database **DOPA** - Dihydroxyphenylalanine EGLN1 - egl-9 family hypoxia-inducible factor 1 EGLN2 - egl-9 family hypoxia-inducible factor 2 EPAS1 - Endothelial PAS domain-containing protein 1 **ExAC** - Exome Aggregation Consortium EZH2 - Enhancer of zeste homolog 2 FFPE - Formalin-fixed paraffin embedded FGFR1 - Fibroblast growth factor receptor 1 FH - Fumarate hydratase **GIST** - Gastrointestinal stromal tumor H3F3A - H3 histone, family 3A HD - Hirschsprung's disease HIF - Hypoxia-inducible factor HN-PGL - Head and neck paraganglioma

ID - Identification **IDH1** - Isocitrate dehydrogenase type 1 IHC - Immunohistochemistry **INDELs** - Small insertions and deletions IQR - Interquartile range JMJD1C - Jumonji domain containing 1C KDM2B - Lysine (K)-specific demethylase 2B KIF1B - Kinesin family member 1B KMT2D - Lysine (K)-specific methyltransferase 2D LOH - Loss of heterozygosity LOVD - Leiden Open source Variation Database MAX - MYC associated factor X MDH2 - Malate dehydrogenase type 2 MEN - Multiple endocrine neoplasia MERTK - Mer proto-oncogene tyrosine kinase MET - Met proto-oncogene **MIBG** - Metaiodobenzylguanidine miRNA - MicroRNA MITF - Microphthalmia-associated transcription factor **MRI** - Magnetic resonance imaging MTC - Medullary thyroid carcinoma mTOR - Mechanistic target of rapamycin **NET** - Neuroendocrine tumor NF1 - Neurofibromatosis type 1 NGS - Next Generation Sequencing PASS - Pheochromocytoma of the Adrenal gland Scales Score PCC - Pheochromocytoma **PET** - Positron emission tomography **PGL** - Paraganglioma PHD - Prolyl hydroxylase domain **PHP** - Primary hyperparathyroidism **PNMT** - Phenylethanolamine N-methyltransferase PolyPhen-2 - Polymorphism Phenotyping v2

PPGL - Pheochromocytomas and paragangliomas

- HRAS Harvey rat sarcoma viral oncogene homolog
- **RET** Ret proto-oncogene
- RTK Tyrosine kinase receptor
- S Sensitivity
- SDH Succinate dehydrogenase
- SETD2 SET domain containing 2
- **SIFT** Sorting Intolerant From Tolerant
- SNP Single nucleotide polymorphism
- SPECT Single-photon emission computed tomography
- S-PPGL Sporadic PPGL
- SSTR Somatostatin receptor
- TA-PGL Thoracic-abdominal paraganglioma
- TCA Tricarboxylic acid
- TCGA The Cancer Genome Atlas
- TERT Telomerase reverse transcriptase
- TGP Targeted gene panel
- TMEM127 Transmembrane protein 127
- TP53 Tumor protein p53
- T-PGL Thoracic paraganglioma
- UMD-VHL The Universal Mutations Database for VHL

mutations

- VHL von Hippel-Lindau
- VUS Variant of unknown significance
- WES Whole-exome sequencing
- **WT** Wild type, no known genetic mutation

I. INTRODUCTION

1.1 DISEASE DEFINITION AND ANATOMY

Pheochromocytomas (PCCs) and paragangliomas (PGLs), together referred as PPGL, are neuroendocrine tumors (NETs) derived from the chromaffin cells of the embryonic neural crest that develops into sympathetic and parasympathetic paraganglia. Neoplasias derived from sympathetic paraganglia tend to be catecholamine-secreting tumors and can be located either in the adrenal medulla (PCC) or at the thoracic (T-PGL) and/or abdominal (A-PGL) region, whereas tumors derived from parasympathetic paraganglia are mainly non-secreting tumors mostly located in the head and neck area (HN-PGLs), and in minor percentage in the thorax¹. Thoracic-abdominal PGLs (TA-PGLs) most commonly arise around the inferior mesenteric artery (the organ of ZuckerkandI), the aortic bifurcation, and less frequently in chest and pelvis. HN-PGLs arise preferentially from vascular regions (the jugular bulb, and the carotid body) or along the glossopharyngeal and/or the vagus nerves^{2–5} (**Figure 1**).

1.2 EPIDEMIOLOGY

The prevalence of PPGL has been estimated to be between 1:4500 and 1:1700³, being the prevalence in patients with arterial hypertension 0.2-0.6% (1.7% in children). Up to 20% of PPGL are diagnosed during childhood⁶, being PCC the most frequently diagnosed endocrine tumor in children⁷. Diagnosis of PPGL may be missed during life, as PCC are diagnosed as incidentally discovered adrenal masses during imaging studies for other reasons in 5% of patients, and autopsy studies have demonstrated undiagnosed tumors in 0.05-0.1%⁸. Annual incidences of PPGL (cases per million) in the general population³ and in children⁶ are 3–8 and 0.3, respectively. The only statistics in Spanish population dates from 1994 and reported an incidence of 2.06 in the South of Galicia⁹.

PPGL can occur at any age, but the peak incidence occurs in the third to fifth decades of life. The average age at first PPGL diagnosis is 24 years in hereditary cases and 43 years in sporadic cases¹, with an equal incidence between males and females, except under the age of 10 in which there is a slight predominance in males^{3,6}. The only environmental risk factor described is chronic hypoxia, which, in populations living at high altitude, leads to an increased incidence of HN-PGLs^{1,6}. Combining two large series of 693 unselected PPGL patients the type of tumor was PCC in 69%, TA-PGL in 15%, and HN-PGLs in 22% (some patients having combinations of tumors)^{5,10,11}.

1.3 PROGNOSIS

The metastases rate of PPGL ranges from less than 1 % to more than 60 %, depending on tumor location, size and genetic background². Although features such as size (larger than 5 cm), extraadrenal location of primary tumors^{5,12}, a high "Pheochromocytoma of the Adrenal gland Scales Score" (PASS), or increases in plasma 3-methoxytyramine (3-MT, a dopamine-DOPA metabolite)^{13,14} provide useful information to assess the likelihood of metastatic disease, the finding of mutations in *SDHB* is the only criterion strongly associated with an increased risk of metastases at diagnosis or during follow-up: 30% (range 20-70)^{4,15–17}. However, for patients with apparently benign primary tumors, the mean incidence of metastatic recurrences and new tumors during follow-up is 11.3 % and 6.2%, respectively, being those patients harboring a germline mutation the ones with a higher probability of both¹⁸. Prognosis of metastatic PPGL is poor, with a 5-year mortality rate greater than 50%^{19,20}.

Nowadays metastatic PPGL remain a diagnostic challenge, as currently there are no reliable cytological, histological, immunohistochemical, or molecular criteria for malignancy²¹, and the diagnosis remains strictly based on the finding of metastases where chromaffin cells are not usually present²². Metastases have been reported to be located in lymph nodes in around 80%, bones in 71%, and lungs and liver in 50% of metastatic cases^{4,22–24}. The diagnosis is usually obtained from imaging studies, as histological confirmation is rarely available²⁵. Consequently, metastases in PPGL can only be defined in advanced stages, and the inability to predict tumor behavior does not allow an optimal therapeutic planning²⁴.

Recently, different studies have attempted to predict metastatic potential through different measurements such as the presence of tumor necrosis, high Ki-67 index (>4%)/mitotic count, or pS100 absence²⁶ in pathological study, overexpression of HIF- α and its target genes^{27,28}, extremely high mRNA copy numbers of a variant of carboxypeptidase E²⁹, overexpression of the microRNA (miRNA) 183 (miR-183) in tumors^{30,31}, or the hypermethylation of the negative

elongation factor complex member E gene³² among others, but further studies are needed to confirm the predictive value of these markers, especially during diagnosis procedures.

1.4 PPGL-ASSOCIATED SYNDROMES

PPGL can develop in an apparently sporadic presentation, or as part of several tumor syndromes associated with alterations in distinct genes. While initially it was thought that only 10% of cases were caused by germline mutations, after discovering an increasing list of PPGL-related genes, nowadays PPGL show the highest degree of heritability of all human tumors³³. Thus, currently it is recognized that a genetic germline mutation explain at least 40% of patients, including cases with features suggesting inheritability (such as early age at onset, multiple and/or metastatic tumors and/or family history of PPGL or other syndrome-associated tumors), and 8-12% of apparently sporadic PPGL^{11,33–40}. In pediatric cases up to 70-80% harbor a germline mutation, regardless of their family history^{41,42}.

Approximately 40% of PPGL develop primarily in the context of three familial tumor syndromes: von Hippel-Lindau disease (VHL) caused by VHL mutations, multiple endocrine neoplasia type 2 (MEN2) caused by RET mutations, and familial PPGL: 1) hereditary PGLs, caused by mutations in succinate dehydrogenase (SDH), fumarate hydratase (FH) and malate dehydrogenase type 2 (MDH2) genes; and 2) familial PCCs, caused by mutations in the transmembrane protein 127 (TMEM127) or the MYC associated factor X (MAX) genes. A small fraction of PPGL are associated with other syndromes: the Carney triad (CTd) defined by the coexistence of PGL, gastrointestinal stromal tumor (GIST), plus pulmonary chondroma, and the Carney-Stratakis syndrome (CSS) characterized by PGL and GIST⁴³. Both CTd and CSS have been related to SDH genes mutations, but whereas CSS is almost always caused by mutations in SDH genes, they appear rarely in CTd. However, epigenetic SDHC promoter mutations have been recently linked to CTd⁴³⁻⁴⁵. The presence of PPGL in two syndromes classically related with PPGL, multiple endocrine neoplasia type 1 (MEN1) and neurofibromatosis type 1 (NF1), has been finally found to be rare: $<1\%^5$ and 0.1-5.7%⁴⁶, respectively. Latterly, two additional syndromes have been linked to PPGL: the Pacak-Zhuang syndrome and syndromes associated with leiomyomatosis, being related to mutations in the endothelial PAS domain-containing protein 1 EPAS1/HIF2A (EPAS1) gene⁴⁷ and FH⁴⁸, respectively. To note, each syndrome presents a set of signs and tumors with overlap between them, and they are detailed in **Table 1**.

Hereditary cases mainly follow an autosomal dominant mode of transmission. Exceptions to this rule are the inheritance linked to *SDHD*⁴⁹, *SDHAF2/SDH5 (SDHAF2)*⁵⁰ and *MAX*⁵¹mutations. In these cases, only those carriers that inherit the mutation from their fathers will develop the

Table 1. Summary of phenotypic and genetic features associated with the described PPGL related genes.

Gene	Driver or 2nd hit	Chr. Location	Type of gene	Cluster	Inheritance	Mean age	Germ.	Som.	Mos.	GD	Risk of malignancy	Predominant tumor location	Number of tumors	вс	Related syndrome Associated tumors/features
FH	Driver	1q42.1	TSG	C1A	(AD)	NR	<1-5 (0.8%)	<1 (1)	NR	Yes ⁵²	High (60%) ⁵³	PCC+TA>HN	Multiple	(NA)	PGL8; Reed syndrome or Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC); multiple cutaneous and uterine leiomyomatosis (MCUL); cutaneous and uterine leiomyomas; type 2 papillary renal carcinoma ⁵⁴
IDH1	Driver	2q34	TSG	C1A	?	NR	NR	<1 (1)	NR	NR	?	HN	Single	(NA)	None reported 55
MDH2	Driver	7q11.23	TSG	C1A	(AD)	NR	<1% (1)	NR	NR	NR	?	ТА	Multiple	(NA)	Early-Onset Severe Encephalopathy56
SDHA	Driver	5p15.33	TSG	C1A	(AD)	40	<1-5	<1 (1)	NR	NR	Mod. (<10%)	TA>>PCC	Single	(NA)	PGL6; Leigh syndrome (homozygous patients, but no PPGL described); CCRC; GIST; pituitary adenoma.
SDHAF2 /SDH5	Driver	11q12.2	TSG	C1A	AD, paternal	30-40	<0.1-1	0	NR	NR	Low	HN>>PCC	Multiple (87%)⁵	(NA)	PGL2
SDHB	Driver	1p36.13	TSG	C1A	AD	30	10	<1	NR	Yes	High (30-70%)	TA>HN>PCC	Multiple (21%)⁵	NA, DA	Carney-Stratakis syndrome; PGL4; CCRC; GIST; pituitary adenoma; thyroid carcinoma.
SDHC	Driver	1q23.3	TSG	C1A	AD	40-50	<1-5	0	Yes	NR	Low	HN>TA>PCC	Multiple (17%) ⁵	(NA)	Carney-Stratakis syndrome; PGL3; CCRC; GIST; pituitary adenoma.
SDHD	Driver	11q23.1	TSG	C1A	AD, paternal	35	9-10	<1	NR	NR	Low (<5%)	HN>TA>PCC	Multiple (56%)⁵	NA, DA	Carney-Stratakis syndrome; PGL1; renal cell carcinoma; GIST; pituitary adenoma; thyroid carcinoma; NET (?) ⁵⁷
EGLN1/ PHD2	Driver	1q42.1	TSG	C1B	?	NR	<1 (2)	NR	NR	NR	?	TA>PCC	Multiple	(NA)	Hereditary polycythemia; polycythemia ⁵⁸ .
EGLN2/ PHD1	Driver	19q13.2	TSG	C1B	?	NR	<1 (1)	NR	NR	NR	?	TA>PCC	Multiple	(NA)	Hereditary polycythemia; polycythemia ⁵⁸ .
EPAS1/ HIF2A	Driver	2p21	0	C1B	?	NR	<1-5 (1)	5-7	Yes	NR	?	TA>PCC	Multiple	NA	Familial erythrocytosis type 4; Pacak-Zhuang; polycythemia; somatostatinoma.
VHL	Driver	3p25.3	TSG	C1B	AD	30	7-10	10	Yes	Yes	Low (<5%)	PCC (Bil PCC 50%)>>>TA, HN 30-55% PPGL as the first manifestation of VHL	Multiple	NA> DA	von Hippel Lindau (I 1/36 000): 10-25% present PPGL CCRC, hemangioblastomas of CNS/retina/kidney and pancreas, pancreatic NET and cysts, endolymphatic sac tumors of the middle ear, papillary cystadenomas of the epididymis and/or broad ligament. Autosomal recessive congenital polycythemia (also known as familial erythrocytosis type 2.
ATRX	Driver and 2nd hit	Xq21.1	TSG	C2A	?	NR	NR	12.6	NR	NR	?	PCC, PGL	(Single)	?	X-linked alpha thalassemia mental retardation syndrome (germline mutation); gliomas, neuroblastomas, medulloblastomas and NET (?).
HRAS	Driver	11p15.5	0	C2A	?	NR	NR	10	NR	NR	Low	PCC>PGL	Single	(A)	Costello syndrome (germline).
НЗГЗА	?	1q42.12	0	C2A	?	NR	NR	NR	Yes (7%)	NR	?	PCC, A-PGL	?	(A)	Giant cell carcinoma of bone (?); Glioma (?).
KIF1B	Driver	1p36.22	TSG	C2A	(AD)	NR	<1 (2)	<1 (2)	NR	NR	?	PCC (Bil?)	?	(A)	Neuroblastoma (?), ganglioneuroma (?), leiomyosarcoma (?); Lung adenocarcinoma (?); Colorectal carcinoma (?) ⁵⁹ .
ΜΑΧ	Driver	14q23.3	TSG	C2A	AD, paternal	32	<1-5 (1.1%)	<5	NR	Yes ⁶⁰	Mod. (10%)	PCC (Bil PCC 68%)>PGL	Single	A> NA	PGL7/FPCC2; renal oncocytoma (?) ⁶⁰ .

Gene	Driver or 2nd hit	Chr. Location	Type of gene	Cluster	Inheritance	Mean age	Germ.	Som.	Mos.	GD	Risk of malignancy	Predominant tumor location	Number of tumors	вс	Related syndrome Associated tumors/features
NF1	Driver	17q11.2	TSG	C2A	AD	42	<3-5	20-40	Yes	Yes	Mod. (12%)	PCC 95% (Bil PCC 16%)>TA	Single	A +NA	von Recklinghausen's disease (I 1 : 2500–3000): 0.1-5.7% present PPGL, 3.3-13% based on autopsy studies ³⁵ . Café-au-lait spots, neurofibromas, axillary and inguinal freckling, Lisch nodules (iris hamartomas), bony abnormalities, optic/CNS gliomas, malignant peripheral nerve sheath tumors, macrocephaly, and cognitive defects.
RET	Driver	10q11.21	0	C2A	AD	30-40	5-10	10	NR	NR	Low (<5%)	PCC (Bil PCC 50- 80%)>>>TA, HN 12-25% PPGL as the first manifestation of MEN2 ⁵	Multiple	A +NA	 MEN2 (I 1/30000-40000): 50% present PPGL Medullary thyroid carcinoma (95% MEN2A, 100% MEN2B). Parathyroid adenomas (15-30%), notalgia or cutaneous lichen amyloidosis, Hirschsprung disease (MEN2A or Sipple syndrome) Marfanoid habitus, mucocutaneous neuromas, myelinated corneal nerves, gastrointestinal ganglioneuromatosis (MEN2B, MEN3 or Gorlin syndrome).
TMEM127	Driver	2q11.2	TSG	C2A	AD	43	<1-5 (0.9%)	0	NR	NR	Low (<5%)	PCC (Bil PCC 33-	Single	Α +ΝΔ	PGL5/FPCC1; renal cell carcinoma (?).
MET	Driver and 2nd hit	7q31	ο	C2B	?	NR	<1 (1)	2.5 (5)	NR	NR	?	PCC	?	(A)	Papillary renal cancer ^{30,61} .
BAP1	?	3p21.1	TSG	?	(AD)	NR	<1 (1)	NR	NR	NR	?	PGL	?	?	Uveal/cutaneous melanoma; mesothelioma; CCRC (?) ⁶² .
BRAF	?	7q34	0	? (C2?)	?	NR	NR	1,2 (1)	NR	NR	?	PCC	(Single)	?	Melanoma (?); colorectal cancer (?).
EZH2	?	7q36.1	TSG	?	?	NR	2 (1)	NR	NR	NR	?	(PCC)	?	?	Lymphoma; myeloid malignancies.
FGFR1	?	8p11.23	0	? (C2?)	NR	NR	2 (1)	NR	NR	NR	?	PCC	(Single)	?	Glioblastoma.
JMJD1C	?	10q21.3	TSG	?	?	NR	?		NR	NR	?	(PCC)	?	?	
KDM2B	?	12q24.31	?	?	NR	NR	NR	2 (1)	NR	NR	?	(PGL)	?	?	
KMT2B/ MLL4	?	19q13.12	?	?	?	NR	2 (1)	NR	NR	NR	?	PGL	(Multiple)	?	
KMT2D/ MLL2	?	12q13.12	0	?	?	NR	(2)	(12)	NR	NR	?	PCC	(Single)	?	Kabuki syndrome; gliomas, neuroblastomas, medulloblastomas and NET ^{30,63} .
MEN1	Driver	11q13	TSG	?	AD	NR	<1	NR	NR	Yes ⁶⁴	?	PCC	Single	?	MEN1 syndrome (I 1/30000) : <1% present PPGL. Primary hyperparathyroidism; pituitary adenoma; gastroenteropancreatic NET; adrenal cortical tumors, carcinoid tumors, facial angiofibromas, collagenomas, and lipomas.
MERTK	?	2q13	0	?	?	NR	2 (2)	NR	NR	NR	?	PCC, PGL	?	?	Medullary thyroid carcinoma (?).
MITF	?	3p13	0	?	AD	NR	NR	NR	NR	NR	?	PCC>> TA, HN	Single	?	Melanoma; renal cell carcinoma; pancreatic carcinoma ^{63,65} .
SETD2	?	3p21.31	TSG	?	?	NR	2 (1)	NR	NR	NR	?	(PCC)	?	?	Renal cancer; leukemia.
TERT promoter	?	5p15.33	0	?	?	NR	NR	11.1 (2)	NR	NR	?	A>PCC	Single	?	
ТР53	?	17p13.1	TSG	?	?	NR	NR	2.35 (2)	NR	NR	?	PCC	(Single)	?	Li Fraumeni-like syndrome; adrenal cortical carcinoma, breast cancer, choroid plexus carcinoma, and osteosarcoma.

Chr: chromosome; ?: unknown; TSG: tumor suppressor gene; O: oncogene; (): it is not clear; AD: autosomal dominant; NR: not reported; Germ.: germline mutations - percentage (number of cases described); Som.: somatic mutations - percentage (number of cases described); Mos.: mosaicism; GD: gross deletions; Mod.: moderate; PGL: paraganglioma; PCC: pheochromocytoma; A: abdominal PGL; TA: thoracic-abdominal PGL; HN: head and neck PGL; Bil: Bilateral; BC: Biochemical predominant secretion; NA: noradrenergic (predominant secretion of noradrenaline/normetanephrine); A: adrenergic (predominant secretion of adrenaline/metanephrine); DA: dopaminergic (secretion of dopamine/3-methoxytyramine); I: incidence⁶⁶; GIST: gastrointestinal stromal tumor; CNS: central nervous system; CCRC: clear cell renal carcinoma; NET: neuroendocrine tumor.

disease, although the underlying mechanism is not totally clear. Despite initially it was though that *SDHD* and *SDHAF2* presented maternal imprinting, exceptions of maternal transmission have been reported^{67,68}, and further research is needed to elucidate the real mechanism. In addition, an incomplete penetrance has been shown for *SDHA*, *SDHC*⁶⁹, *SDHB*⁷⁰, *TMEM127*⁷¹, *FH*⁵³, and *MDH2*⁷². However, only data for *SDHB* have been reported, being 30% (95% confidence interval (CI) 17–41%) the average of the penetrance of tumors at age 80 of all *SDHB* carriers⁷⁰.

The genetic scenario of sporadic PPGL changed in 2011 when it was reported that 14% of PPGL could be explained by somatic mutations in *RET* and *VHL*⁷³. One year later *NF1* was found to be somatically involved in an additional 24-41% of PPGL^{74,75}. Other genes explaining heritable susceptibility have been also found to be somatically mutated (*SDHB*⁷⁶, *SDHD*⁷⁷, *SDHA* (TCGA data), *MAX*⁷⁸); however their somatic involvement is scarce. In addition, new key players were discovered in the sporadic presentation, such as *HRAS*⁷⁹ and *EPAS1*⁸⁰. Interestingly, *EPAS1* was firstly described to cause PPGL through somatic mosaicism^{47,81}, a mechanism that had been previously described at least for *NF1*⁸² and *VHL*⁸³ mutations. Consequently, nowadays it is clear that somatic mutations play an important role in PPGL as they have been described in up to 40% of tumors^{1,84}.

1.5 ELUCIDATING THE GENETIC SCENARIO OF PPGL

The first genes with mutations described as cause of PPGL were those responsible of specific syndromes, such as NF1 (*NF1*), MEN2A (*RET*), VHL (*VHL*), and MEN1 (*MEN1*), as some patients affected by these diseases developed PPGL (especially PCCs). In 2000, targeted mutational analysis in families affected by HN-PGLs lead to the discovery of *SDHD*⁴⁹, a component of the succinate dehydrogenase mitochondrial complex II (SDH), being the first human tumor model found to carry an inherited mutation in a gene encoding a metabolic enzyme³³. Later, the other members of the complex were found to be involved in PPGL pathogenesis as well: *SDHC*⁸⁵, *SDHB*⁸⁶, *SDHAF2*⁵⁰, and finally *SDHA*⁸⁷.

Combining data from gene expression profiles performed in 2004 by Eisenhofer et al.⁸⁸ and in 2005 by Dahia et al.⁸⁹ it was possible to know that tumors with mutation in *VHL*, *SDHB* and *SDHD* presented an overexpression of angiogenesis/hypoxia pathways related-genes (cluster 1), in comparison with *RET*- and *NF1*-tumors, which showed overexpression of genes related to the RAS/RAF/MAPK and PI3K/AKT/mTOR kinase signaling pathway (cluster 2). In addition, it was already established that cluster 1 tumors shared a noradrenergic secretion, while cluster 2 was enriched with tumors producing both adrenaline and noradrenaline. Further methylation studies showed that the noradrenergic secretory phenotype of cluster 1 tumors was caused by

low expression of phenylethanolamine N-methyltransferase (PNMT), the enzyme that converts norepinephrine to epinephrine, through the hypermethylation of the *PNMT* promoter. Posterior studies performed by Favier et al.⁹⁰ and our group⁹¹ distinguished two subclusters in cluster 1 based on the activation of distinct pseudo-hypoxic pathways, and finally, a DNA methylation profiling uncovered that one of these subtypes in cluster 1 showed an hypermethylator phenotype (cluster 1A)⁴⁸.

The use of Next Generation Sequencing (NGS) tools has been a key point to elucidate new players in the genetic scenario of PPGL. Due to the relatively high cost and the ethical concerns regarding incidental findings, whole-exome sequencing (WES) has been mainly used in research settings^{48,51,72,79,92,93}, while targeted gene panels (TGPs) have shown a greater applicability as a diagnostic tool, being faster, cheaper and more sensitive, even in cases with mosaicism^{47,81–83}, than the classically used Sanger sequencing^{94–99}. In addition, TGPs enable the screening of genes systematically excluded in Sanger sequencing study due to their large size or rarity of their mutations, and facilitate patient selection for the screening of new genes, large rearrangements or the use of 'omic platforms (e.g. to detect mutations beyond coding regions)³⁰.

Using Sanger sequencing of a candidate region, and combining 'omic data with NGS and/or copy number alteration (CNA) data for tumors without known mutations attributed to cluster 1 or 2, new genes were discovered. *TMEM127*¹⁰⁰, *MAX*⁵¹, and *HRAS*⁷⁹ were described as driver genes for cluster 2 tumors, and *FH*⁴⁸, *EPAS1*¹⁰¹, and *MDH2*⁷² for cluster 1. In addition, other genes have been described in the last years, but they seem to play a minor role in PPGL ("minor" genes) since the mutations have been described in isolated families (*KIF1B*, *BAP1*, *EGLN1/PHD2* (*EGLN1*)³³, and *EGLN2/PHD1* (*EGLN2*)⁵⁸); in few sporadic cases (isocitrate dehydrogenase type 1 (*IDH1*)⁵⁵, *MERTK*, *H3F3A*, *SETD2*, *EZH2*, *FGFR1*⁹³ and *BRAF*⁹⁵); or mainly reported in patients with mutations in recognized PPGL driver genes, suggesting a secondary role (*ATRX*¹⁰², *TP53*⁹⁵, *JMJD1C*, *KDM2B*⁹³, *KMT2D/MLL2*, and *MET*³⁰). Finally, germline *MITF* mutations⁶⁵ and mutations outside the exonic region have been recently described, such as promoter alterations in *TERT*¹⁰³ or epi-mutations in *SDHC*¹⁰⁴. Some clinical features have been related to mutations in these genes, but the limited number of cases described needs further studies before establishing a real association (**Table 1**).

Despite this heterogenic genetic background, integrative genomic studies have provided evidence for strong concordance between genetic status and multi-omics data (transcriptomic gene expression, CNA, metabolomics signature, miRNA profiles and DNA methylation), allowing

to classify PPGL tumors into two main clusters and five molecular subgroups, each one displaying a specific set of genomic alterations and related clinical characteristics^{30,31,35,51,84,105} (Figure 2).

Figure 2. Molecular signatures of PPGL subtypes.

PNMT: phenylethanolamine N-methyltransferase; EMT: epithelial-to-mesenchymal transition; LOH: loss of heterozygosity. *Related to metastatic cases³¹. Adapted from^{30,31,35,51,84,105}.

1.5.1 CLUSTER 1: Pseudo-hypoxia cluster

Altered genes related to this cluster cause the so called pseudo-hypoxic response by stabilizing hypoxia-inducible factors (HIFs) under normoxic conditions⁸⁴.

Under normal oxygen tension, the degradation of α subunits of HIF (HIF1 α , 2 α , and 3 α) is initiated through its hydroxylation by prolyl hydroxylase domain (PHD) proteins: PHD1, PHD2, and PHD3 (encoded by *EGLN2*, *EGLN1*, and *EGLN3* genes, respectively). Under normoxia conditions, PHDs use oxygen and α -ketoglutarate to hydroxylate HIF prolyl residues. The hydroxylated HIF α is then targeted by the von Hippel-Lindau protein (pVHL), a component of the E3 ubiquitin ligase complex, which modifies HIFs for their degradation in proteasomes. On the other hand, under hypoxia conditions, HIF α is stabilized and binds to the HIF β subunit to form an active transcription factor that regulates expression of a large repertory of genes involved in angiogenesis, cell survival, polycythemia, and tumor progression.

CLUSTER 1A: Krebs cycle cluster and familial PGLs

This subcluster is characterized by the Krebs cycle reprogramming and with oncometabolite accumulation or depletion. It contains tumors with mutations in *SDH* genes, *FH*, *MDH2*, and *IDH1*.

I. Introduction

SDH genes encode SDH, a mitochondrial enzyme responsible for reactions in the tricarboxylic acid (TCA) cycle, where it catalyzes the oxidation of succinate to fumarate, and in the respiratory electron transfer chain (complex II of the mitochondrial respiratory chain), where it transfers electrons to coenzyme Q. SDH is a heterotetramer composed of four proteins: two catalytic (SDHA and SDHB), and two structural (SDHC and SDHD) that anchor the complex to the mitochondrial inner membrane. An associated protein, SDHAF2, is a highly conserved cofactor of flavin adenine dinucleotide which is implicated in the flavination of SDHA and is essential for SDH function¹⁰⁶. Otherwise, *FH*, *MDH2*, and *IDH1* encode other TCA cycle enzymes involved in the reversible hydration/dehydration of fumarate to malate, the reversible conversion of malate to oxaloacetate with the concurrent reduction of NAD to NADH, and the oxidative decarboxylation of isocitrate to α -ketoglutarate, respectively.

Mutations in *SDH*, *FH*, and *MDH2* TCA-cycle-related genes lead to the accumulation of its substrates which act as oncometabolites: succinate, fumarate, and malate, respectively. In addition, mutated *IDH1* adquire a neomorphic enzyme activity that converts alpha-ketoglutarate to 2-hydroxyglutarate, another oncometabolite. These metabolites cause hypermethylation by inhibiting 2-oxoglutarate-dependent dioxygenases, such as PHD and histone and DNA demethylases. Thus, on the one hand they act as a competitive inhibitor in the process to hydroxylate HIF prolyl residues, stabilizing HIFα and, mediated by the pVHL, activating genes that facilitate angiogenesis, anaerobic metabolism, and a pseudo-hypoxic state^{84,106–108}. On the other hand, due to histone and DNA demethylases inhibition, tumors with mutations in these genes show a similar CpG island methylator phenotype (CIMP) characterized by DNA hypermethylation^{32,48,72}.

· CLUSTER 1B: von Hippel–Lindau and PGL–polycythemia syndromes

Cluster 1B is characterized, similarly to cluster 1A tumors, by the activation of the pseudohypoxia signaling pathway through the stabilization of HIF transcription factor proteins with increased angiogenesis as well as cell proliferation, invasiveness, and migration. However, they do not present the hypermethylation seen in cluster 1A tumors. This cluster contains tumors with mutations in *VHL*, *EGLN1*, *EGLN2*, and *EPAS1*. Mosaic (at least in *VHL* and *EPAS1*) and germline mutations in these genes can be associated to the presence of polycythemia.

Mutations in VHL, as well as in EGLN1/EGLN2, disrupt the process of HIF α degradation, leading to its stabilization, whereas gain of function mutations at EPAS1 hydroxylation sites disrupt the recognition of EPAS1 by members of the PHD family, as well as its hydroxylation and the consequent degradation by pVHL. To note, PPGL became the first tumors known to carry

activating mutations of *EPAS1*, which had long been implicated in multiple human cancers, but had never been genetically proved to function as a bona fide oncogene³³.

1.5.2 CLUSTER 2: Kinase signaling cluster

As mentioned before, cluster 2 is characterized by the activation of RAS/RAF/MAPK and PI3K/AKT/mTOR signaling pathways and protein translocation, causing a pro-mitogenic and antiapoptotic state. This cluster contains tumors with mutations at least in *NF1*, *RET*^{88,89}, *TMEM127*¹⁰⁰, *MAX*⁵¹, *HRAS*⁷⁹, and two genes with a rare involvement: *KIF1B*⁵⁹ and *MET*³⁰.

-. Neurofibromin (NF1) suppresses cell proliferation by promoting the conversion of RAS into its inactive form, thereby inhibiting the oncogenic RAS/RAF/MAPK signaling cascade, and also inhibits the PI3K/AKT/mTOR pathway via suppression of RAS. Thus, *NF1* mutations lead to the activation of both pathways. To note, *NF1* has one of the highest rates of spontaneous mutation of any gene in the human genome⁵. This in part explains why between 30 and 50% of patients have *de novo* mutations⁵, and is the gene with the highest rate of somatic mutations^{73,96}.

-. *RET* encodes a transmembrane tyrosine kinase receptor (RTK) for members of the glial cell line-derived neutropic factor. It activates multiple intracellular pathways involved in cell growth and differentiation. Oncogenic activation of *RET* activates both RAS/RAF/MAPK and PI3K/AKT/mTOR -dependent cell signaling genome⁵. Interestingly, gain of function mutations are related with PCC and medullary thyroid carcinoma (MTC), and inactivating mutations are related to Hirschsprung's disease (HD), but some overlap has been described between MEN2 and HD.

-. *TMEM127* encodes a transmembrane protein which acts as a negative regulator of mTOR. Thus, mutations in *TMEM127* results in reduced inhibition of the mTOR pathway in a RAS/RAF/MAPK and PI3K/AKT independent manner⁵.

-. *MAX* encodes a transcription factor, MAX, that belongs to the basic helix–loop–helix leucine zipper family and plays an important role in regulation of cell proliferation, cell differentiation and apoptosis, as a part of the MYC/MAX/MXD1 network. Heterodimerization of MAX with MYC family members results in sequence-specific DNA-binding complexes that act as transcriptional activators. In contrast, heterodimers of MAX with MXD1 family members repress transcription of the same target genes by binding to the same consensus sequence, and thus antagonize MYC–MAX function. Mutated *MAX* causes deregulation of the MYC–MAX–MXD1 pathway that leads to altered transcription and signaling in the NRAS–PIK3CA–AKT1–mTOR pathway. *MAX*-mutated tumors have a unique transcriptomic signature, supported by their intermediate expression of PNMT, and consequently a subsequent lower production of epinephrine^{51,84}.

-. HRAS gene encodes a small GTP-binding protein that affects multiple downstream pathways related to cell growth and homeostasis.

-. *KIF1B* and *MET* are kinesin related genes. While one of the splice variants of *KIF1B*, KIF1Bb, functions as a tumor suppressor that is necessary for neuronal apoptosis, *MET* is a member of the RTK family, but their specific role need further studies.

1.5.3 OTHER GENES

Other genes encoding kinases (*FGFR1*)⁹³, chromatin remodeling proteins (*ATRX*^{102,109}, *H3F3A*, *KMT2D*, *SETD2*, *JMJD1C*, *KMT2B*, or *EZH2*⁹³), and related with multiple type of human neoplasia (promoter region of *TERT*, or somatic mutations in *TP53* and *BRAF*) have been also involved in PPGL pathogenesis, but their specific roles have also to be clarified in larger series.

1.6 GENETIC DIAGNOSIS

On the whole, hereditary and somatic mutations explain at least 60-80% of PPGL cases and are found in a mutually exclusive manner³³. Exceptions to this rule are mutations described in the "new" PPGL-related genes (e.g. *ATRX*), as they have been mainly described in cases with mutations in classical PPGL driver genes, and double somatic mutations described at least in *NF1*⁷⁴ and *EPAS1*^{98,110}, or somatic mutations in *NF1* in tumors carrying a somatic mutation in *RET* or *VHL*⁷⁴. However, these second variants seem to act as modifiers and their role should be resolved by large-scale sequencing analyses³³.

Therefore, current guidelines indicate consideration of genetic testing in all patients with PPGLs, but for cases with indicators of low heritability (unilateral PCC without syndromic features, metastatic presentation, or family history of PPGL), the decision to perform germline genetic testing should be balanced between the cost of testing and the psychological impact on the patient and their family of not having a test that might explain why they have the disease⁸.

However, as the genetic spectrum increases with newly described genes having low prevalence (<1% of cases) and no distinctive clinical features, systematic genetic screening of all PPGLrelated genes has become a time- and resource-consuming process. The decision of which gene to test is made on the basis of clinical presentation (age at onset, location and number of tumors, syndromic features, family history, and metastases), biochemical secretory phenotype, and immunohistochemical tumor characterization^{1,111}. In this regard, many different algorithms have been proposed^{35,38,111–116}. In addition, some specific algorithms focused on sporadic PPGL^{10,11,36,38–40} have been also proposed, as these cases tend to be excluded from comprehensive genetic screening beyond *SDHB* mutations, and even *SDHB* study is not always performed, being genetic data about sporadic cases still scarce. Importantly, none of the

algorithms proposed contemplate testing for somatic mutations, despite they have been also related to metastatic^{73,74,96}, and pediatric cases⁷³, as well as PPGL cases diagnosed before 40 years old^{73,78,79,97,117}.

1.7 CLINICAL PRESENTATION

In the case of sympathetic tumors (PCCs, TA-PGLs) the clinical presentation is related to the hypersecretion of one or more catecholamines: epinephrine and/or norepinephrine. Later, the enlargement of the tumor can cause mass-effect symptoms in adjacent tissues and organs (e.g. hydroureteronephrosis or renal hypertension)⁵. On the other hand, parasympathetic tumors (HN-PGLs) rarely produce significant amounts of catecholamine (<5%), and commonly present as slow-growing painless cellular masses, being the initial clinical presentations symptoms of cervical mass and/or compression or infiltration of adjacent structures (e.g. hearing loss, tinnitus, cervical mass, dysphagia, cranial nerve palsies)^{2,4,5,8}.

The classic triad of PPGL symptoms described is headache, sweating, and palpitations, but it only occurs in 40% of the patients. Many patients present arterial hypertension (85-90%), which may be sustained (50-60%) or paroxystic (50%). Peculiarly, hypertensive crises could come up due to incidental tumor manipulation during diagnostic procedures, after using certain drugs, ingestion of foods or beverages containing tyramine, and especially common in children are exercise-induced crises⁷. Other symptoms include pallor (30-60%), feelings of anxiety or panic (20%), fever (66%), or nausea and vomiting (26-43%).

PPGL symptoms and signs are non-specific and can mimic many other conditions, and can vary greatly from one patient to another, even within the same family. PPGL diagnosis is challenging and critical, as un- or miss-diagnosed patients can suffer severe consequences of hypertensive crises, including heart attacks, strokes, and even death^{3,66}.

1.8 DIAGNOSIS

1.8.1 BIOCHEMICAL STUDIES

Diagnosis of PPGL relies on biochemical evidence of catecholamine tumor secretion. Biochemical testing should be performed in symptomatic patients, patients with an adrenal mass incidentally found during imaging studies or surgery for other reasons, and those who have hereditary predisposition or syndromic features suggesting hereditary PPGL.

Catecholamines are metabolized within chromaffin cells to metanephrines (norepinephrine to normetanephrine, and epinephrine to metanephrine, respectively) and this intra-tumor process occurs continuously and independently of the exocytotic catecholamine release, providing and advantage for measurement of metanephrines during diagnosis of tumors that only release

catecholamines episodically or in low amounts. Measurement of metanephrines in urine and/or plasma has a superior diagnostic sensitivity (97% and 99%, respectively) over measurement of the parent catecholamines. Consequently, metanephrines' measurement remains recommended as the initial screening test (**Figure 3**).

Secretion is so rare in HN-PGLs (<5%), that if а HN-PGL presents hypersecretion it is recommended to discard a concurrent PCC and/or TA-PGL. However, 3-MT, previously mentioned as related with metastatic PPGL, has been shown to be elevated in almost one third of patients with HN-PGLs, and its determination is a useful diagnostic test^{4,118}.

Therefore, current recommendations are that initial screening test for PPGL must include measurements of fractionated metanephrines (metanephrine, normetanephrine, and 3-MT) measured separately in plasma, urine, or both, as available, using liquid chromatography with tandem mass spectrometric or electrochemical/fluorometric detection methods, being immunoassays methods a secondary measurement option. To minimize false-positive results, blood sampling should be performed at a supine position (collected after 30 min of supine rest), and overnight fast only when measurements include plasma free 3-MT^{118,119}. Despite the plasma test offers sensitivity advantages over the urine test, it is rarely implemented correctly, rendering the urine test preferable for mainstream use¹¹⁸.

The clonidine suppression test can be useful to distinguish true-from false-positive borderline elevations of plasma normetanephrine, but it has not been validated in any prospective study. In the case of mild elevations, wait-and-retest or proceed directly to imaging studies to localize PPGL could be considered⁸.

Test results within reference intervals for plasma free metanephrines exclude almost all cases of PPGL. Exceptions include microscopic recurrences or small tumors (<1 cm) found incidentally or during screening because of a hereditary predisposition to PPGLs or history of the disease, HN-PGLs and rare phenotypically immature A-PGLs that despite having large size are nonsecreting tumors (silent A-PGLs). According to this latter one, despite not having defects in the mechanisms of storage or secretion of catecholamines, show absence of the tyrosine

hydroxylase and do not synthesize catecholamines¹²⁰. However, plasma concentrations of chromogranin A (CgA, a biomarker of NETs) are consistently elevated, indicating that CgA can be used as an alternative biochemical parameter in the setting of silent PGLs¹²⁰.

Metanephrines measurement provides high accuracy for diagnosis of PPGL, but can also be useful for clinical decision-making about imaging studies during the primary diagnosis and the follow-up. Metanephrine alone, or in combination with normetanephrine, almost always indicate an adrenal location or reflect recurrence of a previous adrenal tumor¹²¹. Solitary increases of normetanephrine cannot be used to predict tumor location, however the elevation of 3-MT points extraadrenal location¹²² and the possibility of metastases^{13,14}. Although not offering sufficient power to identify all metastatic patients, plasma 3-MT shows a diagnostic sensitivity of 86% and specificity of 96%, but its measurement is not yet widely available^{14,23,36,118}.

In addition, as mentioned before, biochemical phenotype can be used to guide genetic testing. For instance, *SDHB* mutation testing has no utility among patients with adrenaline-producing metastatic PPGLs¹²³, but should be considered in the case of 3-MT secreting tumors¹¹⁸ or in silent PGLs¹²⁰.

1.8.2 IMAGING STUDIES

After confirming a PPGL biochemically, anatomical and functional imaging studies are critical for a) primary tumor localization; b) the detection of multiple primary tumors; and c) the detection of metastases. The knowledge of these three points are important to make the optimal treatment decision between curative surgery and palliative treatment options^{124,125}. In the case of HN-PGLs, imaging studies are essential to perform the diagnosis in the majority of the cases.

There is not 'gold-standard' imaging technique for all patients with (suspected) PPGL. A tailormade approach is clearly warranted to assess disease extension at the time of the discovery of the primary tumor and during the follow-up²³, relying on the decision on many factors: 1) clinical parameters, including age, known hereditary syndrome, renal function (to avoid contrast nephropathy), and the anticipated radiation burden; 2) results of previous imaging (tumor size and location, suspicion of metastases); 3) biochemical findings; 4) preference of the patient; 5) the knowledge of the genetic status; and finally 5) the local availability of scanning systems and insurance issues¹²⁵.

1.8.2.1 ANATOMICAL IMAGING STUDIES

First line anatomical imaging modalities include computed tomography (CT) and/or magnetic resonance imaging (MRI), as provide a high sensitivity and allow precise tumor delineation, which is critical for pre-surgical evaluation¹²⁵.

CT is the first-choice imaging modality, as it shows an excellent spatial resolution for thorax, abdomen, and pelvis, with a sensitivity between 88 and 100%, being able to detect tumors 5 mm or larger. However, MRI should be considered in the case of HN-PGLs, paracardiac PGLs, and metastatic/residual/recurrent PPGL, as some studies showed that CT-sensitivity was lower than MRI. In addition, MRI is recommended in patients with surgical clips, allergy to CT contrast, and in whom radiation exposure should be limited (children, pregnant/lactating women, and asymptomatic carriers of a germline mutation)^{4,8,125}. Despite having high sensitivity, these techniques show a low specificity, making appropriated to complete localization diagnostic procedures with functional imaging studies^{2,125}. The combination of anatomical and functional imaging in one time shows the highest sensitivity for the staging of PPGL, but are expensive and not yet widely available techniques.

1.8.2.2 FUNCTIONAL IMAGING STUDIES

The use of functional imaging techniques is recommended in all PPGL, except in the case of PCCs smaller than 5 cm, PPGL associated with adrenergic phenotype and non-*SDHB*^{2,25,125}. Different approaches have been described consecutively: planar scintigraphy, single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Each one represents an improvement of the sensitivity and spatial resolution, implying higher price and consequently, a lower availability. To note, PET is also a quantitative imaging technique, as the "Standardized Uptake Value" of the radiotracer can be used to estimate the degree of tracer concentration in a defined region allowing the detection of subcentimetric lesions¹²⁵.

The radiotracers used in these techniques are taken up by the tumor cells through different mechanisms that should be known by the physician to decide which type of imaging study should be the more appropriated based on the clinical PPGL scenario.

• NOREPINEPHRINE TRANSPORTER VIA THE CELL MEMBRANE: Metaiodobenzylguanidine (MIBG) is structurally similar to norepinephrine. MIBG is commercially available labeled with 123I or 131I. 123I-MIBG in comparison with 131I-MIBG scintigraphy provides images of higher quality, higher sensitivity, and lower radiation exposure. In addition SPECT can be more feasibly performed with 123I-MIBG, and there is less time between injection and imaging (24h versus 48–72h)^{25,125}. Thus, 131I is preferable used for targeted radionuclide therapy and 123I for diagnosis and when planning targeted radionuclide 131I-MIBG therapy²⁵, as besides confirming uptake, it helps achieve personalized dosimetric^{25,125}. In the case of PCC, as a diagnostic tool, 123I-MIBG shows a sensitivity (S) and specificity of 85-88% and 70-100%, respectively. However, the sensitivity has been shown to be decreased in PGLs (56-75%), especially in HN-PGLs (18-

50%)²⁵, and necrotic, metastatic (56-83%), recurrent (<75%), and/or *SDHB*-related PPGLs (<50%)^{111,125}. Regarding PET radiotracers, 18F-fluorodopamine (18F-FDA)-PET/CT has the highest sensitivity and specificity across genetically different PGLs (tumors with unknown genotype, *SDHB*, and non-*SDHB*), and it is the preferred technique for the localization of the primary PGL (S 77–100%) and to rule out metastases (S 77-90%), except in HN-PGLs. 11C-epinephrine¹²⁶ and 11C-hydroxyephedrine (11C-HED)¹²⁷ are, as FDA, very sensitive and specific radiotracers, but all of them suffer from their limited availability^{25,111,125}.

• **SOMATOSTATIN RECEPTORS (SSTR):** Overexpression of SSTR-2A and SSTR-3 was recently shown in PPGL with SDH deficiency¹²⁸, and different radiolabelled peptides for SSTR have been used not only for the diagnosis, but also when targeted radionuclide therapy with somatostatin analogues (177Lu-DOTATATE) is planned^{4,25,125}. 111In-DTPA-Pentetreotide (111In-DTPA-P)/Octreotide (Octreoscan, Covidien) are mainly used in planar scintigraphy, showing lower sensitivity than 123I-MIBG, except in HN-PGLs (S 89-100%)^{8,25,125}. 68Ga-labeled somatostatin analogues (68Ga-DOTA-SSTa): 68Ga-DOTA-Tyr3-octreotide (68Ga-DOTA-TOC), -Nal3-octreotide (68Ga-DOTA-NOC), and (Tyr3)-octreotate (68Ga-DOTA-TATE) are used with PET/CT and show sensitivities approaching 100%¹²⁹. They have shown excellent preliminary results in localizing HNPGLs⁴, and aggressive and dedifferentiated PPGL²⁵. To note, [68Ga]-DOTATATE PET/CT has shown a significantly superior detection rate to all other functional and anatomical imaging modalities in the evaluation of *SDHB* metastatic PPGL¹³⁰.

• **GLUCOSE MEMBRANE TRANSPORTER:** [18F]-fluoro-2-deoxy-D-glucose (18F-FDG) accumulates in proportion to the glycolytic cellular rate, providing an index of intracellular glucose metabolism^{25,125}. In comparison with other NET that usually exhibit high 18F-FDG uptake in the later stages of the disease, 18F-FDG-PET positivity is almost a constant feature in PPGL (S 74-100%)¹²⁵. It shows a higher performance for metastatic PPGL, and is mainly influenced by the genetic status (e.g. S 83% in *SDHB* versus 62% in non-*SDHB* mutation carriers, being as low as 40% in MEN2-related PCCs)^{2,8,22,25,131-133}.

• AMINO ACID TRANSPORTER SYSTEM: Dihydroxyphenylalanine (DOPA) is the precursor of all endogenous catecholamines, and PPGL cells can take it up through the amino acid transporter system. 18F-FDOPA-PET/CT is an excellent first-line imaging tool, and has a high sensitivity for the localization of non-metastatic PPGL (81-100%), especially in HN-PGLs (100%)^{8,25,125,131,134}. In metastatic disease, 18F-FDOPA PET presented higher sensitivity in *SDHB*-negative patients (93%) than in *SDHB*-positive patients (20%)^{25,131}. A special advantage in the screening of hereditary

cases is that 18F-FDOPA PET shows lack of significant uptake in normal adrenal glands, very useful for instance in the screening of MEN2 cases²⁵.

1.8.2.3 OTHER TECHNIQUES

In vivo detection of succinate using pulsed proton magnetic resonance spectroscopy has been reported recently as a highly specific and sensitive hallmark of *SDHx* mutations, being this technique useful to stratify patients or classifying variants of unknown significance (VUS) with no need of tissue sampling. Thus, it may help for the characterization of inoperable tumors and suspicious lesions and serve as a surrogate biomarker in the assessment of tumor response to specific treatments^{135,136}.

1.8.3 IMMUNOHISTOCHEMICAL TUMOR CHARACTERIZATION

PPGL are positive for CgA, the most reliable marker for discriminating them from adrenal cortical tumors and metastatic tumors that are not NET. PCC may be discriminated from other metastatic NET to the adrenal by staining for tyrosine hydroxylase. Other neural markers such as synaptophysin and neuron specific enolase are typically positive.

Immunohistochemistry (IHC) study could help not only to guide the genetic study, but also to classify VUS identified in the genetic screening. However, they have been only optimized to be used in formalin-fixed paraffin embedded (FFPE) tissue. SDHB-IHC and SDHA-IHC are the most widely used and available techniques, and detect *SDHx* mutations with a high sensitivity and specificity. *SDHB, SDHC, SDHD* and *SDHAF2*-mutated tumors are negative at SDHB-IHC and positive at SDHA-IHC, while *SDHA*-mutated tumors are negative at IHC for both^{137,138}. Other used IHC have been optimized for identifying truncating *MAX* mutations (MAX-IHC), and S-(2-Succinyl)cysteine (2SC) staining for *FH* mutated tumors. On the other hand, tumors with mutations in TCA genes show almost undetectable nuclear staining of 5-hydroxymethylcytosine (5-hmC), as the accumulation of intermediates associated with their mutations lead to impaired 5-mC hydroxylation^{48,55,72}.

1.9 TREATMENT

1.9.1 SYMPTOMATIC TREATMENT

An adequate α - and β -adrenergic blockade is needed in PPGL patients at least 2 weeks prior to the surgery, and to control blood pressure and alleviate symptoms related with the catecholamine hypersecretion in those inoperable cases, although they have no effect on tumor size.

Regarding α -adrenergic blockade, phenoxybenzamine is the most commonly used agent, as is a long-acting, nonselective (α 1 and α 2), and noncompetitive blocker. Doxazosin, prazosin, and
terazosin are specific, cheap, competitive and therefore short-acting α 1-adrenergic blockers, but have the potential for severe postural hypotension immediately after the first dose. β adrenergic blockade using agents such as propranolol, atenolol or metoprolol can be used if the patient present clinical manifestations caused by β -adrenoreceptor stimulations (e.g. tachycardia, arrhythmia, angina, or nervousness). They should be instituted after the α adrenergic blockade has been optimized (e.g. once the patient develops reflex tachycardia or orthostatic hypotension) as due to the loss of β -adrenoceptor-mediated vasodilatation, an exacerbation of epinephrine-induced vasoconstriction and a resultant serious and lifethreatening elevation of blood pressure could occur³. Alternative treatments include calcium channel antagonists (e.g. nifedipine and amlodipine), angiotensin receptor blockers, and angiotensin-converting enzyme inhibitors.

On the other hand, α -methyl-para-tyrosine inhibits catecholamine synthesis, but is frequently associated with overwhelming side effects (e.g. anxiety, depression, fatigue, and diarrhea), it is expensive and difficult to obtain. Thus, this medication may be only recommended for selected adults with metastatic PPGL in whom other medications are not able to normalize blood pressure and other symptoms of catecholamine excess^{8,23}.

1.9.2 SURGERY

The only curative treatment for PPGL is surgery. A minimally invasive procedure using laparoscopic resection is recommended for most PCCs and TA-PGLs if the tumor is small, non-invasive and surgically favorable located. In the remaining cases, open approach should be carried out to ensure complete tumor resection, prevent tumor rupture, and avoid local recurrence. Partial adrenalectomy sparing adrenal cortex could be considered in patients with bilateral PCC or PCC associated with hereditary disease, and those patients with small tumors who have already undergone a contralateral complete adrenalectomy to prevent permanent hypocortisolism^{2,111}.

Even in cases with advanced disease surgery should be considered, as palliative surgery could release tumor pressure on surrounding tissues or decrease tumor mass (surgical debulking). Despite a survival advantage is not proven, it could also lead to a significant decrease in biochemical secretion, and therefore to decrease α - and β blockade doses to prevent catecholamine release, which can also facilitate subsequent radiotherapy or chemotherapy^{2,111}.

In the case of HN-PGLs, wait and see may be considered in asymptomatic cases with a low risk of metastases, while active treatment (surgery, radiosurgery or conventionally fractionated

external radiotherapy) is considered in symptomatic cases, in progressive disease, and in cases at higher risk of metastases⁴.

Despite there is a vast interest and effort to develop new therapeutic approaches to treat metastatic PPGL, data are either limited or still at an experimental level, as PPGL are tumors characterized by their rarity and heterogeneity¹³⁹. So far, the treatments are basically palliative, and metastatic PPGL is an orphan disease for which therapeutic options are very limited.

1.9.3 INTERNAL TARGETED RADIOTHERAPY

Treatment with 131I-MIBG has been employed to treat metastatic PPGL since 1984 in patients showing positive 123I-MIBG scintigraphy¹⁴⁰. Although reported therapy effects varied considerably, stable disease could be achieved in 52% and a partial hormonal response in 40%. Reported 5-year survival rate was 45-64% and mean time of progression-free survival 23.1-28.5 months, being hematologic toxicity the most frequent side effect^{2,23,141,142}. The use of histone deacetylase inhibitors (e.g. romidepsin and trichostatin A) in vitro and in vivo showed an upregulation of the norepinephrine transporter system, increasing the uptake of 123I-MIBG, that could enhance the therapeutic efficacy of 131I-MIBG treatment¹⁴³. 90Y-DOTATOC, 177Lu-DOTATOC, and 177Lu-DOTATATE treatments have been only used in limited number of patients with positive SSTR-imaging tumors, and more studies should be carried out^{23,114,141,144-148}.

1.9.4 CHEMOTHERAPY

Combination chemotherapy with cyclophosphamide, vincristine and dacarbazine (CVD) for the treatment of metastatic PPGL was introduced in 1985¹⁴⁹. CVD is preferred in patients with negative 123I-MIBG scintigraphy and in patients with rapidly growing tumors, even if lesions show positive 123I-MIBG scintigraphy, or extensive organ tumor burden (especially in the liver)^{2,23,150}. Partial response could be achieved on tumor volume and hormonal response in 37% and 40%, respectively, but complete response on tumor volume could be achieved in only 4% of patients^{2,23,150}. Anecdotally, cyclophosphamide alone achieved a long-term clinical benefit after progression or toxicity with Sunitinib in two frail and symptomatic patients¹⁵¹.

1.9.5 FOCUSED TREATMENT OF ORGAN METASTATIC LESIONS

External-beam irradiation of bone metastases, especially those that are rapidly growing, or embolization, radiofrequency ablation and cryoablation may provide additional treatment alternatives, not possible if metastases are numerous or very small².

1.9.6 MOLECULAR TARGETED THERAPIES

Molecular targeted therapies are promising strategies, but favorable results are still lacking:

-. Everolimus, an inhibitor of mTOR pathway, showed relatively disappointing results in series with few patients¹⁵². Later, a phase II study reported a modest efficacy, as five of seven patients achieved stable disease¹⁵³.

-. Temozolamide and thalidomide, both acting as antiangiogenic agents, in a phase 2 study including only three patients showed an objective biochemical (CgA) and radiological response rate of 40% and 33%, respectively¹⁵⁴. In a series of 15 cases using temozolamide partial responses were observed in four of 10 patients with *SDHB* mutations and in none of the five patients with sporadic PPGL¹⁵⁵.

-. Imatinib, a selective inhibitor of the ABL, platelet derived growth factor receptor and stem cell ligand RTK exhibited no response in two cases¹⁵⁶.

-. Sunitinib, a RTK inhibitor targeting antiangiogenic factors, has been used in few cases with objective responses and manageable toxicity^{157–159}. In a retrospective review of a series of 17 patients, eight experienced benefit according to the "Response Evaluation Criteria In Solid Tumors" (RECIST 1.1) criteria, being the response partial in three and stable in five. In addition, of the 14 patients with hypertension, six became normotensive and two could discontinue antihypertensive treatment. The median overall survival from the time sunitinib was initiated was 26.7 months with a progression-free survival of 4.1 months (95% CI 1.4-11.0). To note, most patients who experienced a clinical benefit were carriers of *SDHB* mutations¹⁶⁰. Several phase II trials are currently ongoing using RTK inhibitors which endpoints are objective response rate (sunitinib, pazopanib, axitinib, and dovitinib) and progression-free survival (FIRSTMAPP-Sunitinib Trial, www.ClinicalTrials.Gov)²¹.

- Somatostatin analogues: octreotide and lanreotide bind with high affinity to SSTR2 and SSTR5 subtypes, and individual reports of octreotide treatment in patients with HN-PGLs have been published¹³⁰. Pasireotide (SOM230), which is active on SSTR 1-3 and 5, showed a more significant inhibition of cell growth, as well as a significantly higher induction of apoptosis in primary PCC cell cultures than octreotide¹⁶¹. As SOM230, other treatments have achieved promising results in cellular and animal models, but have no still been used in vivo in humans.

In recognition of the distinct genotype-phenotype presentations of hereditary PPGLs, and the relevance of knowing the gene underlying the PPGL development, a personalized approach to patient management, regarding biochemical testing, imaging, surgery, and follow-up has been recommended⁸. Thus, nowadays it is increasingly evident that successful PPGL management requires a multidisciplinary team approach, and an exquisite genetic characterization of every patient.

II. OBJECTIVES

The main objective of this thesis was to elucidate the genetic heterogeneity of PPGL development in PPGL patients through a systematic genetic screening study. Genetic data were analyzed taking into account clinical parameters, such as number of tumors, age at presentation, and location of the primary tumor, or the presence of metastases among others, to be able to translate this information to useful recommendations for the management of these patients in the clinical setting.

To accomplish this, the study was carried out in two consecutive phases with three objectives each one, respectively:

2.1 PART I:

Genetic characterization of apparently sporadic PPGL (S-PPGL) using Sanger sequencing

- 2.1.1 To assess the prevalence of somatic and germline mutations in the PPGL "major" genes in patients with S-PPGL using Sanger sequencing in DNA samples from blood, FFPE and frozen tumors.
- **2.1.2** To evaluate features classically used to guide the genetic diagnosis in S-PPGL: location of the primary tumor, age at presentation, biochemical secretion phenotype, and presence of metastases.
- **2.1.3** To propose a genetic testing algorithm specifically designed for patients with S-PPGL.

2.2 PART II:

Genetic characterization of PPGL patients using targeted gene panels – Next generation sequencing (TGPs).

- 2.2.1 To perform the genetic screening of "major" and "minor" PPGL genes using two customized TGPs in different types of DNA samples (obtained from blood, saliva, FFPE and frozen tumor) from PPGL index patients.
- **2.2.2** To evaluate genetic results with singular clinical features.
- **2.2.3** To optimize and validate the two TGPs results to be used in the clinical setting.

III. MATERIAL AND METHODS

3.1 PART I: Genetic characterization of apparently S-PPGL using Sanger sequencing

3.1.1 PATIENTS

The inclusion criteria for patients with S-PPGL included the coexistence of four points: (1) the presence of a single PPGL (focal and unilateral); (2) the absence of syndromic features of NF1, MEN1, MEN2, and VHL syndrome in the patient and their relatives; (3) the absence of family history of PPGL, and (4) no known genetic mutation (WT). The diagnosis was based on pathological study and plasma or urine catecholamines and/or metanephrines assessment, as well as imaging tests.

A total of 329 unrelated Spanish index cases with S-PPGLs were recruited between 1997 and 2014 at Spanish public hospitals. All patients provided informed consent for genetic diagnosis.

3.1.2 CLINICAL DATA

A complete clinical questionnaire was requested from each patient, and included the following information: gender, age at diagnosis, clinical presentation (referring to the context in which the first suspicion of PPGL arose, classified as incidentaloma if after an imaging study or from a surgical procedure, and symptomatic if adrenergic or due to local mass symptoms), personal or familial history of signs or tumors of PPGL-related genetic diseases (MTC, primary hyperparathyroidism (PHP), gastro-entero-pancreatic tumors, cutaneous or uterine leiomyomas, renal cancer), findings from physical examination (weight, height, arterial tension, Marfanoid habitus, café-au-lait spots, neurofibromas, freckling), biochemistry studies (hemoglobin, hematocrit, calcium, phosphorus, urine calcium, 25-OH-D vitamin, thyrocalcitonin, CgA, predominant biochemical secretion measured either by liquid chromatography with electrochemical detection or tandem mass spectrometry, depending on the center), results from imaging studies performed (including if optic fundus had been performed, and other signs found in image studies like hemangioblastomas, or visceral cysts), tumor location, number of tumors, and metastatic behavior. The time from the initial diagnosis or resection of the primary tumor used to classify metastases was six months, being \leq six months for synchronous and > six months for metachronous metastases²⁴. Distant metastases were documented by imaging tests and pathological examination when possible²⁴. The questionnaire also collected data about surgical and nonsurgical treatments, follow-up visits with the results of the monitoring of biochemical and imaging tests. The family pedigree was also drawn. Spanish version of the clinical questionnaire sent to the corresponding physicians is available in **Supplementary data**.

Among the 329 S-PPGL index patients included: 60.8% were PCCs and 39.2% were PGLs. Among PGLS, 47.3% were HN-PGLs, 10.1% were T-PGLs, 41.9% were A-PGLs, and the location of one

PGL was not specified. The median age at onset was 46 (Interquartile range (IQR): 35–59) years and 58% were women.

3.1.3 SAMPLES

Blood sample to perform germline genetic study was obtained from each patient. Physicians were re-contacted to request tumor sample (frozen and/or FFPE) from patients with negative germline genetic screening. Of 99 tumor samples collected, 75 were FFPE and were studied for SDHB-IHC, and SDHA-IHC on tumors testing negative on SDHB-IHC, as previously described^{45,138}.

3.1.4 DNA EXTRACTION

DNA was extracted from blood following a standard method and from frozen/FFPE tissue using the DNeasy kit (Qiagen Inc.), following the manufacturer's instructions¹⁶².

3.1.5 MUTATION TESTING: SANGER SEQUENCING

Germline DNA from each patient was tested by Sanger sequencing for mutations in *RET* (exons 10, 11, 13–16), *VHL* (all exons, plus the promoter region), *SDHA*, *SDHB*, *SDHC*, *SDHD*, *SDHAF2*, *TMEM127*, *MAX* and *FH* (all exons). Testing for gross deletions in *VHL*, *SDH genes*, *TMEM127*, *MAX* and *FH* was done by MLPA (MRC-Holland) or multiplex PCR, as previously described^{51,163,164}.

The study of somatic mutations in *RET* (exons 10, 11, and 16), *VHL* (promoter region plus exons 1–3), *EPAS1* (exon 12), *HRAS* (exons 2–3), *MAX*, *SDHB*, *SDHC* and *SDHD* (all exons) was carried out based on biochemical secretion and SDHB-IHC result. Hence, tumors with positive SDHB-IHC were studied for *RET* in adrenergic-secreting tumors, and *VHL* in noradrenergic secreting tumors. As the predominant secretion pattern was not been clearly established for *EPAS1* and *HRAS*, and because *MAX*-mutated cases present both types of secretion, all tumors (except one with negative SDHB-IHC) were studied for somatic mutations in these three genes. *SDHB* was studied if SDHB-IHC showed negative, and *SDHC* and *SDHD* were only tested if SDHB-IHC was negative and SDHA-IHC was positive. Finally, we studied somatic mutations in *NF1* (using the primers previously described¹⁶⁵) in adrenergic PPGL in which frozen tumor sample was available (five tumors).

NF1 was not tested in FFPE samples, as this gene spans 58 exons, and DNA from FFPE tumor samples suffers from low quality and presence of artifacts, such as C>T base substitutions caused by deamination, and strand-breaks. *NF1* was analyzed in one of the tumors by NGS as part of another study (data not shown). Somatic nature of the mutations was confirmed ruling out their presence in germline DNA. Details summarizing the steps of the study are shown in **Figure 4**.

Figure 4. Details summarizing the steps of the genetic workflow study. S-PPGL: sporadic pheochromocytoma/paraganglioma; IHC: immunohistochemistry; FFPE: formalin fixed paraffined embedded.

3.1.6 VARIANT INTERPRETATION

Genetic variants found were classified as mutations or VUS according to information available in public databases. Their presence was checked in the Exome Aggregation Consortium (ExAC; http://exac.broadinstitute.org/); Catalogue of Somatic Mutations in Cancer (COSMIC; http://cancer.sanger.ac.uk/cosmic), the Single Nucleotide Polymorphism database (dbSNP; http://www.ncbi.nlm.nih.gov/SNP/), Leiden Open source Variation Database (LOVD; http://chromium.lovd.nl/LOVD2/), and the Universal Mutations Database for VHL mutations (UMD-VHL mutations; http://umd.be/VHL/). In silico analysis was performed using Sorting Intolerant From Tolerant (SIFT), Mutation Taster, Polymorphism Phenotyping v2 (Polyphen2), as well as tools able to predict splicing changes. Whether or not the variants had been previously reported was also taken into account.

3.1.7 STATISTICAL ANALYSIS

We used Pearson's χ^2 test, or Fisher's exact test when necessary, to compare proportions. Twosided p values<0.05 were considered statistically significant. Statistical analyses were performed using IBM SPSS statistics V.17.0 (IBM, Armonk, New York, USA) and R software V.2.7.2 (http://www.r-project.org/) was used to generate **Figure 5.**

3.2 PART II: Genetic characterization using TGPs specifically designed for the study of PPGL patients

3.2.1 PATIENTS

The inclusion criteria were patients affected by PPGL. The diagnosis of PPGL, as Part I, was based on pathological study and biochemical secretion of cathecolamines and/or metanephrines, plus imaging tests.

A total of 453 unrelated index patients affected by PPGL were recruited between 1997 and 2016 from 11 PPGL referral centers from Bethesda (USA-Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health) and the European Network for the Study of Adrenal Tumors-ENS@T. Participating ENS@T referral centers were located in Madrid (Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre), Florence (Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence and Istituto Toscano Tumori), Padova (Endocrinology Unit, Department of Medical and Surgical Sciences University of Padova), Rotterdam (Department of Pathology, Erasmus University Medical Center), Delft (Department of Pathology, Reinier de Graaf Hospital), Liège (Department of Endocrinology, Centre Hospitalier Universitaire de Liège), Dresden (Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universitat Dresden), Lübeck (1st Department of Medicine, University Medical Center Schleswig-Holstein, Campus Lübeck), Munich (Department of Internal Medicine IV Campus Innenstadt, University-Hospital, Ludwig-Maximilians-University of Munich), and Würzburg (Department of Internal Medicine I, University Hospital Würzburg).

Amongst included patients, 30 carried pathogenic mutations previously detected by Sanger sequencing (being 13 found in part I), and were used as controls to validate the NGS assay. The remaining cases consisted of 423 unrelated index patients without a known mutation, wild type (WT). In 305 (72%) WT patients, genetic screening by Sanger sequencing had already been partially performed following different algorithms proposed^{35,38,111–116} and the genetic workflow study detailed in part I in S-PPGLs (**Figure 4**). The remaining 118 (28%) patients had no previous genetic studies. Clinical characteristics of the 423 WT PPGL patients are summarized in **Table 2**.

All patients provided informed consent for genetic testing. In addition, tumor tissues from the Erasmus MC, Rotterdam, the Netherlands, were used according the code of conduct: "Proper Secondary Use of Human Tissue" established by the Dutch Federation of Medical Scientific Societies.

Table 2. Clinical characteristics of the 423 PPGL patients without a known mutation included in the study.
--

Tune of comple available	Only germline DNA Ger		line and tumor DNA	Only tumor DNA.					
Type of sample available	N = 229 (54%)	N = 27	7 (6%)	N = 167 (40%)					
	Yes, N = 305 (72%):		No, N = 118 (28%):						
Classification of the	Only germline DNA, N = 215		Only germline DNA, N	= 14					
patients based on prior	Germline and tumor DNA, N =	10	Tumor DNA available n	ot previously studied, N = 104					
using Sanger sequencing	Only tumor DNA, N = 80		Only tumor DNA, N=	-87					
			Germline and tumor DNA, N=17						
	N = 13: 4 Medullary thyroid car	cinoma	s or C cell hyperplasia: ID2	2, D234, ID309 and ID412;					
Patients with syndromic	3 Gastrointestinal stromal tumors: ID79, ID95 and ID450;								
related tumors	3 Patients with NF1 clinical diagnosis: ID325, ID332 and ID357;								
	3 Pituitary adenomas: Il	D23, ID	295 and ID440.						
	N = 5: 1 Patient belonging to a I	MEN2A	family: ID 381;						
Family history	2 Patients with first degree relatives diagnosed with NF1: ID5 and ID91;								
	2 Patients with first degree relatives diagnosed with PPGL: ID30 and ID106.								
Cov.	Female N = 243 (59%)		Male N = 168 (41%)						
Sex	*No data, N = 12								
Age at onset	Median 48 (IQR = 38-59) years		Pediatric cases (<18 years), N = 13						
	Single. N = 362 (88%)		Multiple. N = 49 (12%)						
	PCC, N = 240		PCC (bilateral and/or multiple), N = 17						
Number and location of	HN-PGL, N = 71		PCC and PGL, N = 10						
tumor	TA-PGL, N = 49		PGL. N = 22						
	Unknown-PGL. N = 2								
	*No data N = 12								
	- Adrenergic. N = 66 (34%):								
	- Noradrenergic. N = 126 (65%);	:							
	- Dopaminergic. N = 1 (0.5%): IE	0401;							
Predominant biochemical	- Co-secretion of dopamine and noradrenaline/adrenaline. N = 10: ID24. ID107. ID109. ID192.								
secretion	ID284, ID285, ID327, ID402, ID405 and ID 446; Co-secretion of ACTH. N = 2: ID108 and ID304.								
	- Secretion high, but unspecified. N = 21; No secretion. N = 56; Not done. N = 6.								
	*No data. N = 147								
SDHB	- Positive. N = 117		- Not evaluable. N = 2						
immunohistochemistry	- Negative. N = 17		*No data. N =287						
Metastasis	N = 31 (7.3%)								
	- Black PCC. N = 2: ID164 and ID	429;							
Singular pathological	- Composite tumor with ganglic	neuror	na. N = 7: ID65, ID100, ID2	209, ID232, ID294,					
features	ID306 and ID435; Composite	tumor	with lymphoma, N = 1: ID	248;					
	- Presence of ACTH in the immu	inohisto	ochemical study. N = 3: ID	108, ID304 and ID451.					

Composite tumor: tumor with presence of neuroendocrine and other type of tumor cells. NF1, Neurofibromatosis type 1; MEN2A, multiple endocrine neoplasia type 2; IQR, interquartile range; PCC, pheochromocytoma; PGL, paraganglioma; HN-PGL, head and neck paraganglioma; TA-PGL, thoracic-abdominal paraganglioma; ACTH, adrenocorticotropic hormone.

3.2.2 CLINICAL DATA

Clinical data in Spanish hospitals were recruited as mentioned in part I with the clinical questionnaire **(Supplementary data)**. Data collected for the other participating centers included at least: number and tumor location, biochemical phenotype, presence of metastases, pathological findings, personal and family history of PPGL or PPGL-related tumors.

3.2.3 SAMPLES

Tumor and germline DNA was requested from each patient. A total of 491 DNA samples from the 453 index patients were studied. DNA obtained exclusively from tumor was available for 182 (40%) cases, matched tumor-germline DNA for 36 (8%) patients, and only germline DNA for 235 (52%) cases. In the latter group, two patients had germline DNAs from two resources: blood and saliva, and blood and GenomiPhi. In only 2 cases germline DNA source was saliva. Of 218 tumor samples, 114 (52%) were frozen and 104 (48%) FFPE. FFPE tumor slides were evaluated for SDHB-IHC, if available.

3.2.4 DNA EXTRACTION

DNA was extracted from peripheral blood samples following a standard method (FlexiGene DNA Kit, Qiagen). For 7 patients, sample material amplified by the Illustra GenomiPhi HY DNA Amplification Kit (GE Healthcare Life Sciences) was used. DNA samples were obtained from saliva using the Oragene DNA kit (DNA genotek). In tumor samples, the selection of representative tumor areas was performed on a FFPE slide stained with hematoxylin-eosin, if available. DNA from frozen tumor tissue was extracted with the DNeasy Blood & Tissue Kit (Qiagen), and from FFPE tumor tissue with Covaris S2 System (Covaris), according to the instructions provided by the manufacturer. DNA quality was assessed using the NanoDrop spectrophometer, considering an absorbance ratio >1.7 to be acceptable for both 260/280 and 230/260 nm measurements. DNA was quantified with the Quant-iT[™] PicoGreen[®] dsDNA Assay Kit (ThermoFisher Scientific). The Agilent 2100 Bioanalyzer System (Agilent) was used to assess the size and quantity of DNA fragments in FFPE DNA samples.

3.2.5 MUTATION TESTING: TGPs

3.2.5.1 TGPs DESIGN

Two TGPs were designed using the TruSeq Custom Amplicon 1.5 kit system (Illumina), one (P-I) to work with germline and frozen tumor DNA, and the other (P-II) was a double strand design specifically addressed to study DNA from FFPE tumor tissues, as lead to avoid deamination artefacts. Probes were designed using the online DesignStudio software (Illumina) to capture the coding plus 50 bp intronic flanking regions, excluding non-coding exons. Both designs

contained *RET* (exon 8 to 16), *VHL* (promotor to exon 3), *NF1* (all exons), *MAX* (exon 1, and 3 to 5), *TMEM127* (exon 2 to 4), *SDHA*, *SDHB*, *SDHD*, *SDHC*, *SDHAF2*, *MDH2*, *FH* (all exons), *EPAS1* (exon 9 and 12), and *HRAS* (exon 2 and 3). P-I additionally included *KIF1B*, *MEN1*, *EGLN1* (all exons), and *EGLN2* (exon 2 to 6). As the involvement of exon 7 in *RET*¹⁶⁶ was not known when TGPs were designed, and it was analyzed by Sanger sequencing.

Table 3. Characteristics of the TGPs designed.

	Panel I	Panel II
Type of DNA sample	Germline and frozen	FFPE
DNA input	150 ng	250 ng
Number of genes included	18	14
Type of design	One strand	Double strand
Read Length	2x250 bp	2x150 bp
Amplicon Length	250 bp	150 bp
Number of amplicons designed	344	399 (x2)
Number samples/flow cell	96	48

bp: base pairs; FFPE: formalin fixed paraffined embedded tumor sample.

DNA libraries were prepared according to the manufacturer's protocol and samples were sequenced using the MiSeq platform (Illumina) with a paired-end mode using MiSeq Reagent Kit V3 (Illumina, Spain), 500 cycles in P-I and 300 cycles in P-II. The genetic study of tumor DNA (if available) was prioritized to constitutional DNA.

3.2.5.2 TGPs DATA ANALYSIS

Sequencing reads were de-multiplexed using MiSeq Reporter (Illumina). For raw variant calling, we used Genome Analysis Toolkit v2 (GATK) in P-I and Somatic Variant Caller in P-II. Variant calling format (VCF) was annotated using the version 83 of Ensembl Variant Effect Predictor and assembly GRCh37/hg19 of the human reference genome.

In P-II we doubled checked variants annotated as having a biased prevalence in one of the pools (pool bias), and recovered those previously filtered out due to low coverage in one of the pools if they were detected in at least 20 reads and in 10% of reads. In addition, short indels were detected considering a variation cutoff of 15% in the number of reads in consecutive nucleotides, as problems with these type of variants and MiSeq Reporter had been previously described⁹⁸. We analyzed sequence data using an in-house pipeline. All filtered variants were validated by Sanger sequencing, and the somatic nature was confirmed using constitutional DNA.

In addition, to avoid false negatives results, exons with less than 50-fold coverage were analyzed by Sanger sequencing in samples without mutations found. Additionally, as gross deletions cannot be accurately detected by this platform⁹⁴, MLPA and/or multiplex PCR were applied to germline DNA if no mutation was found for *VHL*, *SDH* genes, *FH*, *MAX*, *TMEM127* and *MDH2*, as previously described^{51,52,72,94,163,164}.

3.2.6 VARIANT INTERPRETATION

The workflow used in the filtering process of sequence data analysis, the study of low coverage regions and gross deletions, and the variant interpretation is depicted in **Figure 6**.

Figure 6. Workflow for next-generation sequencing-based diagnostic testing.

*Artefactual variants are those located in GC rich regions and/or homopolymeric tracts. IHC, immunohistochemistry; EVS, Exome Variant Server; bp, base pairs; CONDEL, CONsensus DELeteriousness score; ExAC, Exome Aggregation Consortium; COSMIC, Catalogue of Somatic Mutations in Cancer; LOVD, Leiden Open (source) Variation Database; UMD, Universal Mutation Database; ARUP, ARUP Scientific Resource for Research and Education (MEN2) RET database; ATA, American Thyroid association- Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma (MTC); UMD, The Universal mutation Database; VUS, Variant Unknown Significance; SS, Sanger sequencing; MLPA, Multiplex Ligation-dependent Probe Amplification assay (MRC-Holland); qPCR, quantitative PCR.

IV. RESULTS

4.1 PART I: Genetic characterization of apparently S-PPGL using Sanger sequencing

4.1.1 CLINICAL CHARACTERIZATION

Clinical characteristics of cases included by tumor location are detailed in **Table 4.** Clinical and genetic data from the 329 patients included in the study are shown **in supplementary table S1.**

		Gender		Age at onset in years	Clinical Pro	esentation	Bioch secre	emical etion	
Location	N	Male	Female	Median (IQR)	Incidentaloma (image/ surgery)	Incidentaloma Symptomatic (image/ (adrenergic/ surgery) local mass)		Yes	Metastatic cases
РСС	200	88	112	45 (36-57)	41 (36/5)	100 (96/4)	5	124	11
P-value PCC vs PGL				NS			2.3x	10 ⁻¹²	0.0083
PGL	129	50	79	48 (33-60)	24 (13/11)	62 (26/36)	35	47	18
· HN-PGL	61	21	40	52 (39-61)	5 (2/3)	29 (2/27)	28	7	5
P-value HN-PGL vs T-PGL				NS			NS		0.012
P-value HN-PGL vs A-PGL				0.0057			3.6x	10 ⁻¹¹	NS
· T-PGL	13	3	10	50 (32-62)	4 (2/2)	4 (3/1)	5	5	5
P-value T-PGL vs A-PGL				NS			0.0	028	0.046
· A-PGL	54	26	28	44 (24-59)	15 (9/6)	29 (21/8)	2	35	7
· Un-located PGL	1		1	62	unknown		unkr	nown	1
Total cases	329	138	191	46 (35-59)	65 (49/16)	162 (122/40)	40	171	29

Table 4. Clinical characteristics by tumor location.

NS: no statistically significant differences.

The clinical presentation of S-PPGLs was mainly symptomatic (71.4%). Adrenergic symptoms were the predominant clinical presentation in PCCs (68.1%), T-PGLs (37.5%) and A-PGLs (47.7%), while local mass symptoms were more common in HN-PGLs (79.4%). PCCs and A-PGLs were predominantly secreting tumors (96.1% and 94.6%, respectively), HN-PGLs were more often non-secreting tumors (80%) and T-PGLs were a more even mix of both. Although the proportion of the secreting HN-PGL seems to be higher than previously described¹⁶⁷, it is important to note that we did not have this information for all patients. In these patients with secreting HN-PGL, additional PPGLs were ruled out using images techniques. Fifteen pediatric cases (diagnosed at or under the age of 18 years) were recruited, all derived from sympathetic lineage: seven PCCs, one T-PGL and seven A-PGLs, and most (83.3%) presenting with adrenergic symptoms. Twenty-

nine cases had developed metastases, which were more common in PGLs (14.0%) than in PCCs (5.5%; p=0.008), and in T-PGLs (38.5%) than in HN-PGLs (8.2%) or A-PGLs (13.0%) (p=0.012 and p=0.046, respectively).

4.1.2 GENETIC CHARACTERIZATION

Genetic analysis revealed mutations in 89 (27.1%) of 329 S-PPGLs; 46 were germline (14%) and 43 were somatic (43.4% of the 99 tumors tested). A summary of the assessment of each variant found (mutation vs VUS) is shown in **supplementary table S2.** Germline mutations were more prevalent in PGLs (37/129, 28.7%) than in PCCs (9/200, 4.5%) (p= 6.62×10^{-10}). The most frequently germline mutated gene in S-PPGLs was *SDHB* (29/46, 63.0%). This result was expected due to the existence of founder effects affecting this gene in the Spanish population¹⁰. The number of mutations in other genes was six for *SDHD*, two for *SDHC*, two for *RET* and one for *VHL*. Moreover, as previously published, the contribution of mutations in "new" PPGL-genes was minor: three in *SDHA* (0.9%), one in *SDHAF2* (0.3%), two in *TMEM127* (0.6%), and no *FH* and *MAX* mutations were found^{35,53,78,94,96–98,168–170}.

Among the 99 tumor samples, 68 were PCCs and 31 PGLs. Among the 75 FFPE samples, all except one showed positive SDHB-IHC. Somatic mutations were more prevalent in PCCs (48.5%) than in PGLs (32.3%; p=0.13). *HRAS* was the gene most often somatically mutated (15.3% of the 98 tumors tested), followed by *VHL* (11/80, 13.8%), *RET* (8/59, 13.6%), *EPAS1* (6/98, 6.1%), *SDHB* (1/23, 4.3%), *NF1*, and *SDHD* (one case each, but only 5 and 1 tumor were studied, respectively). **Figure 7** summarizes results of genetic testing.

4.1.3 RELATION TO TUMOR LOCATION

To make a recommendation about which type of sample (germline versus tumor DNA) should be prioritized for genetic screening of the known PPGL-related genes, and to avoid an overestimation of the frequency of patients with somatic mutations, not only the 99 germline negative cases with tumor material available were included in the analysis, but also the 46 germline-positive patients, together referred as bona fide patients. The remaining 184 germlinenegative cases were excluded from this study since tumor material was not available and thus, a somatic mutation could not been discarded. Statistically significant differences were found between PCCs and PGLs regarding the proportion of somatic mutation carriers versus germline mutation carriers ($p=6.67\times10^{-8}$). In this subset of patients, somatic mutations were found in 4.2% of HN-PGLs, 0% of T-PGLs, 24.3% of A-PGLs and 42.9% of PCCs. Among all locations, HN-PGLs and T-PGLs were mainly associated with germline mutations ($p=2.0\times10^{-4}$ and p=0.027, respectively) **(Table 5).**

Figure 7. Results for each step of the genetic workflow.

S-PPGL: sporadic PPGL; mut.:mutation; wt: wild type; G-DNA: germline DNA; T-DNA: tumor DNA.

Tahlo 5	Summary o	of genetyne	nrofile hv tun	or location for	cases with germ	line and tumor DI	NA availahla
i able 5.	Summary	Ji genotype	prome by tun		cases with germ	inne and turnor Di	vA avaliable.

Location	Total N = 145	Germline mutation N = 46	P-value Germline vs Somatic mutation	Somatic mutation N = 43	Mutated N = 89	P-value Mutated vs non- mutated	Non- mutated N = 56
PCC	77	9	6 67-10-8	33	42	NC	35
PGL	68	37	0.07X10-	10	47	NS NS	21
· HN-PGL	24	15	2.0x10 ⁻⁴	1	16	NS	8
· T-PGL	7	6	0.027	0	6	NS	1
· A-PGL	37	16	NS	9	25	NS	12
· TA-PGL	44	22	0.0078	9	31	NS	13

The most frequently mutated gene in PCCs was *HRAS*, while *SDHB* was the major contributor in PGLs regardless of their location, followed by *SDHD* in HN-PGLs, even though the involvement of this gene has been mainly related to multiple PPGLs³³. In A-PGLs, *SDHA*, *EPAS1* and *HRAS* were

mutated with similar frequency (three cases each). Genetic results by tumor location, and clinical characteristics by gene mutated, are detailed in **Table 6**.

	Number of cases (Number of malignant cases)														
		RET			V	'HL	SD	ΗΒ	SD	DHD					NF1
Location	HRAS	N=1	.0 (1)	EPAS1	N=1	.2 (1)	N=30	N=30 (10)		N=7 (3)		SDHA	SDHAF2	TMEM127	N=1 (0)
	N=15 (1)	Ger. N=2 (0)	Som. N=8 (1)	N=6 (1)	Ger. N=1 (0)	Som. N=11 (1)	Ger. N=29 (10)	Som. N=1 (0)	Ger. N=6 (2)	Som. N=1 (1)	N=2 (1)	N=3 (1)	N=1 (0)	N=2 (0)	Som. N=1 (0)
· PCC	12 (1)	2 (0)	8 (1)	3 (1)	1 (0)	9 (0)	4 (2)	0	0	0	0	0	0	2 (0)	1 (0)
· HN-PGL	0	0	0	0	0	1 (1)	8 (2)	0	5 (1)	0	1 (0)	0	1 (0)	0	0
· TA-PGL	3 (0)	0	0	3 (0)	0	1 (0)	17 (6)	1 (0)	1 (1)	1 (1)	1 (1)	3 (1)	0	0	0
T-PGL	0	0	0	0	0	0	5 (4)	0	0	0	1 (1)	0	0	0	0
A-PGL	3 (0)	0	0	3 (0)	0	1 (0)	12 (2)	1 (0)	1 (1)	1 (1)	0	3 (1)	0	0	0
Gender: Male/Female	5/10	2/0	5/3	0/6	0/1	7/4	18/11	1/0	4/2	0/1	1/1	1/2	0/1	1/1	0/1
Age: Median (IQR)	53 (44-66)	51 (42- 61)	48 (43- 58)	57 (48-72)	18	27 (17- 36)	30 (20- 42)	56	34 (28- 40)	45	55 (52- 57)	26 (21-49)	40	31 (28-33)	51
Secretion: no/yes	3/7	0	/5	0/3	0,	/11	7/:	14	2	/0	1/0	0/3	0/1	0/2	0/1
Type of secretion* N (%)	A 6 (100%)	Д (10	4)0%)	NAd 3 (100%)	N/ (10	Ad 9)0%)	NAd (100	13)%)		-	-	NAd 3 (100%)	A 1 (100%)	NAd 1 (50%) A 1 (50%)	A 1 (100%)

Table 6. Mutations by gene, tumor location and clinical characteristics.

PCC: pheochromocytoma; PGL: paraganglioma; HN: head and neck; T: thoracic; A: abdominal; IQR: interquartile range; Ger.: germline; Som.: somatic; A: predominantly adrenergic secretion; NAd. : predominantly noradrenergic secretion.

4.1.4 UTILITY OF PREDOMINANT SECRETION OF PPGLs TO GUIDE GENETIC SCREENING

HRAS-mutated, *RET*-mutated and *NF1*-mutated S-PPGLs presented predominantly adrenergic secretion. *EPAS1*-mutated, *VHL*-mutated, *SDHB*-mutated and *SDHA*-mutated S-PPGLs had, as expected, noradrenergic secretion. Only two *TMEM127*-mutated cases were found, one with adrenergic and the other with noradrenergic secretion. The case in our series with a mutation in *SDHAF2* showed mainly adrenergic secretion.

The result from an assessment of genes mutated by location, for adrenergic and noradrenergic secreting tumors, suggested that in case of noradrenergic secreting tumors, *VHL* should be tested before *SDHB* ($p=3.51\times10-5$) and *SDHD* ($p=7.1\times10-4$) in PCCs, *SDHD* before *VHL* (p=0.0095) in HN-PGLs and *SDHB* before *VHL* (p=0.0024) in TA-PGLs. However, no statistically

significant differences were found in adrenergic tumors between the proportions of *HRAS*mutated and *RET*-mutated cases for each location (**Table 7**).

		Number of cases														
Location	<i>HRAS</i> N=15	p- value HRAS VS RET	<i>RET</i> N=10	EPAS1 N=6	p- value EPAS1 VS VHL	p- value EPAS1 VS SDHB	p- value EPAS1 VS SDHD	<i>VHL</i> N=12	p- value VHL VS SDHB	p- value VHL VS SDHD	<i>SDHB</i> N=30	p- value SDHB VS SDHD	SDHD N=7			
РСС	12	NS	10	3	NS	NS	NS	10	3.51x 10 ⁻⁵	7.14x 10⁻⁴	4	NS	0			
HN-PGL	0		0	0	NS	NS	0.021	1	NS	0.0095	8	NS	5			
TA-PGL	3	NS	0	3	NS	NS	NS	1	0.0024	NS	18	NS	2			
T-PGL	0		0	0		NS		0	NS		5	NS	0			
A-PGL	3	NS	0	3	NS	NS	NS	1	0.036	NS	13	NS	2			

Table 7. Comparison between gene mutated and tumor location.

PCC: pheochromocytoma; PGL: paraganglioma; HN: head and neck; TA: thoracic-abdominal; NS: differences statistically not significant (p>0.5).

4.1.5 PEDIATRIC CASES

Data on age at presentation by tumor location and genetic mutational status are summarized in **Figure 5**. The median age at onset for germline mutation carriers was lower than that for somatic mutation carriers and cases without a mutation.

Driver mutations were more frequently found in pediatric than in adult cases (73.3% vs 25.2%, p=0.00020). Germline mutations were found in 53.3% of children, involving *SDHB* in six cases (75%) and *SDHA* and *VHL* in one case each. In addition, three somatic mutations were found in the five tumors available from the pediatric cases with negative germline screening (60%), all of them in *VHL*. Proportionally less adult cases (12.5%) presented germline mutations (p=0.00030), while somatic mutations were found in a similar percentage (41.9%) to that for pediatric patients (p=0.65).

Considering only those cases with bona fide diagnosis (patients with germline mutation and those with negative germline screening and tumor available), 3 (23.1%) pediatric S-PPGL presented a somatic mutation, similar to the 39 (29.8%) somatic mutations found in adult S-PPGL (p=0.15). Similarly, if only pediatric and adult cases with a bona fide diagnosis were taken into account, no statistically significant differences in the proportion of cases with a driver mutation were identified, 11 (84.6%) and 77 (58.7%), respectively (p=0.068).

Figure 5. Age at diagnosis by tumor location and genetic mutation status.

WT: wild type; G-DNA: germline DNA; T-DNA: tumor DNA; PCC: pheochromocytoma; HN-PGL: head and neck paraganglioma; T-PGL: thoracic-paraganglioma; A-PGL: Abdominal paraganglioma.

	WT with G-DNA		ø	SDHD
٠	WT with G- and T-DNA			SDHC
0	HRAS		Ω	SDHAF2
\diamond	EPAS1		v	JUTAI 2
Å	RET	78	XX	SDHA
	VHL	70	Х	TMEM127
∗	SDHB		\oplus	NF1

4.1.6 METASTATIC CASES

Of the 29 metastatic cases, 19 (65.5%) harbored a driver mutation. Germline mutations were found in 14 (48.3%), most commonly in *SDHB* (71.4%), followed by *SDHD* (14.3%). No mutations were found in other genes associated with a higher rate of metastases, such as *MAX*⁷⁸ and *FH*⁵³. However, in one metastatic S-PPGL we found a somatic mutation in *HRAS*, a gene that has not previously been reported to be involved in metastatic PCCs. In addition, as previously described, there were metastatic cases with germline mutations in *SDHA*, *SDHC* or with somatic mutations in *EPAS1*¹⁷¹, *RET*, *VHL*⁷³, and *SDHD*⁷⁷.

4.2 PART II: Genetic characterization of PPGL using TGPs

4.2.1 TECHNICAL ASSESMENT AND VALIDATION OF TGPs

Good amplification quality was obtained for 466 (95%) DNA samples corresponding to 428 (95%) patients (WT and controls). The NGS assay failed for the remaining 25 samples, despite libraries being generated twice. Since germline DNA was also available for 4 of the tumor samples that failed, they were still included in the study (ID47, ID71, ID101 and ID123). **Supplementary table S3** details clinical characteristics of the 21 remaining patients.

The sensitivity of NGS P-I and P-II was assessed based on polymorphic and pathogenic variants previously found by Sanger sequencing: 534 (73 unique) and 337 (56 unique) for each panel respectively, and reached 99.6% (P-I) and 99.4% (P-II). The only 4 variants not detected by TGPs were located in amplicons showing low coverage (\leq 50 reads): 1 VUS in *TMEM127* (exon 2) and 1 Single nucleotide polymorphism (SNP) in *MDH2* (exon 1) in P-I, and 2 SNPs in exon 1 of *MDH2* in P-II. The assay was still informative in low coverage regions, as 17 SNPs located there were validated (Supplementary tables S4 and S5).

Considering both panels, 7% of exons included in the design (16/224 of P-I and 11/157 in P-II) showed low coverage, 38% affecting exon 1 of different genes, and the remaining were located in regions with high GC content, as previously reported^{98,172}. Sanger sequencing of low-coverage regions did not detect any variant.

In addition, cross-amplification of *SDHA* and *NF1* pseudogenes was ruled out in both panels since 29 *SDHA* and 3 *NF1* previously known variants were validated by P-I, and 25 *SDHA* variants by P-II. Similarly, 19 *NF1* variants were found using P-II and validated by Sanger sequencing.

The longest duplication detected was 6bp in length (*SDHB*: c.424-19_424-14dupTTCTTC) in both panels. The largest deletions identified by P-I and P-II spanned 6bp (*SDHB*: c.424-19_424-14delTTCTTC) and 22 bp (*NF1*: c.2364_2385delAAAGCTAATCCTTAACTATCCA) in length, respectively. *SDHB* gross deletions were not detected by the NGS assay in a positive control and a new positive case (ID 152).

4.2.2 GENETIC CHARACTERIZATION

4.2.2.1 DETECTION OF VARIANTS IN WT PATIENTS

NGS analysis of the properly amplified 403 WT patients revealed 89 pathogenic mutations (71 unique), 29 germline mutations, 58 somatic mutations, and 2 mutations in tumor DNA of patients without germline DNA available. **Figure 8 and figure 9** detail mutated cases.

The most frequently germline mutated genes were *SDHB* (2.2%, 9/403) and *SDHD* (1.2%, 5/403), followed by *SDHC, FH, NF1* (0.7%; 3 mutations in each gene), *SDHA* (0.5%, 2/403), and finally *SDHAF2*, *VHL*, *RET* and *MAX* (0.25%; 1 mutation in each gene).

Among the 183 tumor samples of WT patients with properly amplified, *NF1* was the gene most frequently mutated (14%). Somatic mutations in *VHL*, *HRAS* and *RET* were found in a similar percentage (6.6%, 5.5% and 4.4% respectively), and EPAS1 was involved in 3 (1.6%) cases. Of note, one germline DNA and 5 tumors apparently negative by Sanger sequencing showed mutations with low percentage of reads (<15%) by NGS. A review of the chromatograms and/or second tumor selection confirmed the NGS findings by Sanger sequencing (**Figure 10**).

ID 100: Somatic mutation VHL: c.494T>G; p.Val165Gly: 58/1240 reads (4.68%) FFPE tumor DNA **FFPE tumor DNA** Germline DNA (2nd tumor selection) (blood) G C C T C C A G GT T G T C C G G A G C C T C CA G G TGT C C A G G CCGGAGCC 50 ID 274: Somatic mutation VHL: c.464T>G; p.Val155Gly: ID 376: Somatic mutation HRAS: c.182A>G; p.Gln61Arg: Frozen tumor DNA: 25/179 reads (14%) Frozen tumor DNA: 25/210 reads (11.9%) C C A G T G T A T A C T C C A G T G T A T A C T C C A G T G T A T A C T C 60 GGAGGAG AGGAGGAG ID 296: Germline mosaicism: SDHD: c.443G>A; p.Gly148Asp: Blood DNA: 198/1055 reads (18.8%) Saliva DNA: 201/1042 reads (19.3%) G T G G G C A T

Figure 10. Sanger sequencing chromatograms of pathogenic variants found in low percentage of reads.

Germline mutations were more prevalent in cluster 1 genes (83%), while somatic mutations predominantly affected cluster 2 genes (74%).

In addition, 45 VUS (42 unique) were found, 35 germline and 10 in tumor DNA (2 of them somatic

Figure 8. Cluster 1 mutations.

PPGL, pheochromocytoma and/or paraganglioma; IHC, immunohistochemistry; VUS, variant of unknown significance; HN-PGL, Head and neck paraganglioma; TA-PGL, thoracic-abdominal paraganglioma; PCC, pheochromocytoma; Neg., Negative; Pos., Positive; Adrenergic sec., predominantly adrenergic predominant secretion; Noradrenergic sec., predominantly noradrenergic secretion; mut., mutation; Cases categorized as probably germline or somatic, are represented as germline and somatic mutations, respectively.

Figure 9. Cluster 2 mutations.

PPGL, pheochromocytoma and/or paraganglioma; IHC, immunohistochemistry; VUS, variant of unknown significance; HN-PGL, head and neck paraganglioma; TA-PGL, thoracic-abdominal paraganglioma; PCC, pheochromocytoma; Neg., negative; Pos., positive; Adrenergic sec., predominantly adrenergic secretion; Noradrenergic sec., predominantly noradrenergic secretion; Mut., mutation; *This VUS in *MAX* had been previously reported and functional assays found that it was not pathogenic.

mutations). Three VUS were found in patients carrying pathogenic mutations. Twelve VUS involved *SDH* genes, but SDHB-IHC could only be performed in two, strongly arguing against pathogenicity, as SDHB-immunostaining was positive. Other VUS involved *NF1* (7), *FH* (5), *MEN1* (2) and *RET* (1); but none of these patients presented with syndromic features. VUS were also found in *EPAS1* (4), *MDH2* (6), *KIF1B* (3) and *TMEM127* (2). A summary of mutations and VUS is shown in **Supplementary table S6.**

To note, among VUS validated by Sanger, five might be pathogenic: a *SDHB* missense variant predicted by in-silico tools to be deleterious and possibly damaging, not previously described and, in which we did not have available FFPE tumor sample to perform SDHB-IHC; a *FH* missense variant associated with positive SDHB-IHC and negative 5-hmC IHC, in which we requested more FFPE slides to perform 2SC-IHC study; a RET synonymous variant described to affect splicing¹⁷³; two candidate second hit *EPAS1* variants, located close to the hydroxylation site in patients carrying known pathogenic *EPAS1* mutations. Thus, further functional assays are required to determine their pathogenicity.

Twenty-four variants reported by NGS were not validated by Sanger sequencing; two were located in homopolymeric tracts in *KIF1B*, and 22 showed low coverage of the variant (<12% and <13 reads of the altered variant), suggesting they were artefacts **(Supplementary table S7)**. For 272 patients no variants were found; tumor DNA was available for 90 (33%) of these.

4.2.2.2 DETECTION OF VARIANTS ACCORDING TO PREVIOUS SANGER SEQUENCING

The sample set (properly amplified) was divided in two groups: 1) cases previously partially studied by Sanger sequencing according to genetic testing algorithms (WT^{ps}; N=289); and 2) patients not previously studied (WT^{notps}; N=114). The distribution of the variants in each group is represented in **figure 11** (mutations) and **figure 12** (VUS).

As expected, driver mutations were more frequently found in WT^{notps} (52/114, 46%) than in WT^{ps} (37/289, 13%). While WT^{notps} had more germline mutations (14%, 16/114) than WT^{ps} (4.5%, 13/289), the percentage of somatic mutations was similar: 34 (34%) of the 100 tumors available in WT^{notps} and 24 (29%) of the 83 WT^{ps} tumors.

Three *FH* mutations (3/289, 1%), two mutations in each of *SDHB*, *SDHD* and *SDHC* (2/289, 0.7%), and one mutation in each of *SDHA*, *RET* and *VHL* (1/289, 0.35%) were found among the WT^{ps}. Among WT^{notps} *SDH* genes were the major players.

All *NF1* germline mutations were found in NF1 syndromic patients, and somatic *NF1* mutations were found in a similar percentage in WT^{ps} (15 %) and WT^{notps} (13%), as *NF1* was not previously studied by Sanger sequencing.

4.2.3 VARIANTS FOUND IN CASES WITH SINGULAR FEATURES

Among the 4 non-*RET* cases with MTC or C cell hyperplasia, only one had a *SDHB* germline mutation (ID2). No mutations were found in patients with GIST nor pituitary adenomas.

A *SDHC*-germline mutation was identified in one (ID30) of the 2 PPGL familial cases. In the 2 patients with NF1-affected relatives, no *NF1* germline mutations were found, suggesting they might be phenocopies. We could not assess this hypothesis, because tumor DNA was not available. Patient ID381, from a MEN2A family, appeared to be a phenocopy due to a *NF1* somatic mutation.

One somatic mutation in *VHL* (ID327) was found among the eleven dopamine-secreting cases, and in one out of the 8 composite tumors (ID100). The two black PCCs harbored *RET* mutations, one (ID164) a *RET* p.Met918Thr somatic mutation and the other (ID429) a germline VUS. No mutations were found in the 3 ACTH-immunostaining positive cases.

4.2.4 MULTIPLE CASES

In the 47 cases with multiple tumors and properly amplified, mutations were identified in 13% (6/47): 1 *NF1* germline mutation in a clinically diagnosed *NF1* case, 3 *SDHD* and 1 *SDHAF2* germline mutations in patients with multiple HN-PGLs, and 1 *NF1* somatic mutation in a reported "double" PCC (out of 15 available tumors).

7.2.5 PEDIATRIC CASES

Regarding pediatric cases, a driver mutation was found in 41.7% (5/12): 3 *SDHB* germline mutations and 2 *VHL* somatic mutations (out of the 7 with tumors available, 28.6%). Only one case did not show properly amplified.

7.2.6 METASTATIC CASES

Finally, a driver mutation was detected in 30% (9/30) of metastatic cases well-amplified. Six harbored germline mutations in *SDHA* (2), *SDHB*, *SDHD*, *MAX* or *VHL* (1). Three out of the 16 available tumors (18.8%) harbored somatic mutation in *NF1* (2) and *HRAS* (1). No mutations were found in *MDH2* or *FH*.

GERMLINE MUTATIONS

SOMATIC MUTATIONS

- Patients previously studied using SS (partially) N=83 tumors
- Patients not previously studied using SS N=100 tumors

Figure 11. Comparison of the distribution of mutations depending on if the samples had been previously studied (partially) using Sanger sequencing or not.
SS: Sanger sequencing; WT: Wild Type; VUS: Variant of Unknown Significance; MUT. Mutation. Reason of having not considered the study of the gene found mutated in the cases previously studied using SS: 0: No predominant biochemical secretion data available; ∞: Opposite biochemical secretion data; □: No blood available previously to perform gross 6 deletions, only frozen tumor; ¥: Data from secretion received between SS-MiSeq.; ×: No data received*: Syndromic features; ⁼: Not previously studied using SS.

GERMLINE VUS

SOMATIC VUS

Patients not previously studied using SS N=100 tumors

Figure 12. Comparison of the distribution of VUS depending on if the samples had been previously studied (partially) using Sanger sequencing or not.
 SS: Sanger sequencing; WT: Wild Type; VUS: Variant of Unknown Significance; MUT. Mutation.

V. DISCUSSION

5.1 DRIVER GERMLINE AND SOMATIC MUTATIONS

5.1.1 GERMLINE MUTATIONS

Since 2002, several reports have been published on genetic screening in S-PPGLs, with the estimated prevalence of hereditary cases ranging from 11.3% to 24%^{36–40,115,174}. However, it is difficult to compare these findings because the criteria used to define S-PPGLs varied between studies; some included cases with multifocal⁴⁰ or bilateral^{36,40} tumors, or cases with family history⁴⁰, while others focused on benign tumors³⁹ or secreting tumors^{36,40}, or included cases diagnosed within a specific age range¹⁷⁴. Further, only germline mutations involving the PPGL-related genes known at the time (*RET, VHL, SDHB, SDHD* and *SDHC*) were considered.

That said, in our 2009 study, we found germline mutations in 19 (14%) of the 135 cases studied³⁸, and part I of this thesis shows the same percentage of hereditary cases (N=46, 14%), despite having increased the sample size to 329 patients and five additional genes having been included in the analysis (*SDHA, SDHAF2, TMEM127, MAX,* and *FH*), but these results were expected, as these "new" genes have a limited contribution in PPGL susceptibility. In fact, only were involved in three cases for *SDHA* (0.9%), one in *SDHAF2* (0.3%), two in *TMEM127* (0.6%), and no *MAX* or *FH* mutations were found.

TGPs detected germline mutations in 29 (7.2%) PPGL cases, despite we included six more PPGLrelated genes in the germline genetic screening (*NF1*, *MEN1*, *KIF1B*, *EGLN1*, *EGLN2*, and *MDH2*). This proportion was the expected, since 95% of the patients included in part II were not syndromic and had no family history, and similarly to part I, germline mutations involving the "minor" genes was similar to that reported (<1%)^{33,35}: three in *FH* (0.7%), two in *SDHA* (0.5%), and one in *MAX* and *SDHAF2* (0.25%), with no mutations found in *TMEM127*, *EGLN1*, *EGLN2*, *KIF1B*, *MDH2*, and *MEN1*. The 3 germline mutations in *NF1* were found in patients with previously known clinical features of NF1 syndrome (ID325, ID332 and ID357), as anticipated.

Moreover, if we consider the patients included in part II that accomplish with the criteria used in part I for S-PPGL (single tumors without syndromic features and absence of a family history of PPGL), we analyzed 335 S-PPGL using TGPs in part II. Among them, 18 germline mutations were found (5.4 %): 8 in WT^{ps} (3%) and 10 in WT^{notps} (11.1%), being the rate in WT^{notps} similar to that previously reported in non-syndromic cases¹⁷⁵ and part I.

These results confirm that all S-PPGL should be included in the study of germline mutations, as S-PPGL showed in both parts of this study a rate of germline mutation higher than 10%, the rate stablished by the American Society of Clinical Oncology (ASCO) to consider genetic screening.

In addition, our results confirm the limited contribution reported for "novel" PPGL-genes: *SDHA* (<1%)³³, *SDHAF2* (<1%)¹⁷⁰, *TMEM127* (0.9%)¹⁶⁹, *MAX* (1.1%)⁷⁸ and *FH* (0.83%)^{53,94,97,98}. Furthermore, cases related to the remaining relatively "new" genes can be considered anecdotic, as very few patients have been associated so far with germline mutations in them: *EGLN1* (N=2), *EGLN2* (N=1)⁵⁸, *KIF1B* (N=2)⁵⁹, and *MDH2* (N=1)⁷², and we did not discover any other case. To note, *MEN1* mutations have not been identified in S-PPGL⁹⁸.

However, despite mutations in these 10 "minor" genes are rare, genetic screening of them (comprising 89 exons) plus *NF1* (comprising 58 exons) by conventional methods would have delayed the diagnosis, which is especially critical for *NF1*^{74,176}, *MAX*⁷⁸, *FH*⁵⁴, *SDHA*, *SDHC*^{177,178}, and *MDH2*⁷² mutation carriers, as mutations in these genes have been associated with metastases and poor prognosis. Thus, these genes should not be excluded from a comprehensive genetic screening in PPGL cases.

5.1.2 SOMATIC MUTATIONS

In recent years, somatic mutations in S-PPGLs have also been reported, highlighting the importance of working with tumor samples to provide a genetic diagnosis^{73,74,78–80,95,96,98,99,117}.

In part I of this study, somatic mutations were found in 43.4% of the 99 tumors tested, showing a higher frequency of somatic mutations than the previously reported rate 36%⁷⁴, probably because we included the study of *HRAS* and *EPAS1*, which seems to be relevant to S-PPGL. A higher frequency of mutations was seen for *RET* (13.6%), *VHL* (13.8%) and *HRAS* (15.3%); as the previously reported prevalences were 5–5.1%, 8.5–9.2% and 6.9–10%, respectively^{73,74,79,95,117}. On the other hand, our study found a similar frequency of *EPAS1* mutations (6.1%) to that previously reported 7.9%⁸⁰.

Remarkably, although germline mutations in the *HRAS* and *EPAS1* genes have been reported to be associated with the 'Costello syndrome' and 'familial erythrocytosis type 4', respectively, no case with PPGL has been reported in families with those syndromes^{33,79,117,168}. However, elevated urine catecholamine metabolites have been described in some patients with Costello syndrome¹⁷⁹ and *EPAS1* mutations have been found as a mosaic in germline DNA extracted from leucocytes and buccal cells in two patients with polycythemia and PPGLs^{180,181}. Although we did not ruled out the presence of these mutations in germline DNA in part I, none of the cases with somatic mutations in *EPAS1* or *HRAS* showed any of the associated syndromic features.

Despite somatic mutations in *SDH* genes have been reported very rarely^{77,182–186}, we found a somatic mutation in *SDHB* and another one in *SDHD* in 2 S-PPGL.

In 2012, two independent studies found somatic *NF1* mutations in 24% and 41% of PPGL patients, predominantly in PCCs and one A-PGL^{74,96}. For three of the cases, the mutation was found to be in the germline, all had mild features and none had previously been identified as a syndromic NF1 patient⁷⁴. We found one somatic mutation in *NF1* among the five adrenergic frozen tumors available (20%). This lower percentage is probably due to the limited number of tumors analyzed for somatic *NF1* mutations, but studying *NF1* using Sanger sequencing is difficult due to large size, the absence of identified hot spots, and the high cost and time of delivery.

When using TGPs, somatic mutations were detected in 32% of the 183 tumors studied. If we consider the tumors without germline mutations in part II (N=167), as done in part I, we detected somatic mutations in 35%: 31% of WT^{ps} (25/82) and 39% of WT^{notps} (33/85).

To note, despite being *NF1* the gene most frequently somatically mutated^{74,96}, the use of TGPs revealed a relatively lower prevalence of somatic mutations in *NF1* (14%), as well as in the other genes somatically involved: *VHL* (6.6%), *HRAS* (5.5%), *RET* (4.4 %), and *EPAS1* (1.6%), in comparison with previously published data: 24-41% in *NF1*^{74,96}, 8.5–9.2% in *VHL*^{73,74,95}, 6.9–10% in *HRAS*^{79,117}, 5–5.1% in *RET*^{73,74,95}, and 7.9% in *EPAS1*⁸⁰. Although tumors from WT^{notps} showed a more similar percentages to previously reported (**Figure 11**), the lower percentages in general are probably caused by the fact that in previous studies, part I, and WT^{ps} of part II, somatic study was carried out in selected cases using different parameters (e.g. biochemical secretion)^{73,79,117,176}.

Finally, *MAX* was not somatically involved in our series, which is consistent with previous reports (1.65–2.5% frequency with only three cases reported previously)⁷⁸.

5.2 VARIANTS OF UNKNOWN SIGNIFICANCE

One of the main problems of NGS is the amount of data derived of their use, being the finding of numerous VUS a challenge for clinical diagnosis. In comparison with part I, in which only 6 different VUS were found (only one in a case with a pathogenic mutation (ID619)), TGPs elucidated 45 VUS (39 different VUS, being only three present in cases with pathogenic mutations (ID322, ID275, ID166)).

Among the 5 patients in which the only finding in part I was a VUS, four were included in part II (ID130, ID218, ID382, and ID395). ID382-patient presented a VUS in *MAX* in part I (p.Ser142Leu), that afterward was proven to be not pathogenic by our group through functional studies¹⁸⁷, and the inclusion in part II revealed a *NF1* pathogenic somatic mutation. No other mutations were found in the remaining cases, although only one tumor sample could be obtained. The fifth
patient of part I that was not included in part II, presented a missense *SDHB* variant in a highly conserved residue (ID163: p.Asp74Gly) and we requested a slide of FFPE tumor sample to perform SDHB-IHC to assess the pathogenicity of the variant to the corresponding physician. Other IHC previously mentioned can be further used to assess the pathogenicity of the VUS found, such as SDHA-IHC for *SDHA* VUS¹³⁸, 5-hmc and 2SC for *FH* VUS⁵⁴, MAX-IHC for novel *MAX* truncating variants^{51,78} among others.

Thus, to further characterize the pathogenicity of VUS, an optimal communication with treating physicians is required to obtain updated clinical information and/or tumor sample, as shown by the study of Burnichon et al. in which the re-examination and review of family history led to the classification of *NF1* germline variants as pathogenic⁷⁴. In other cases, the knowledge of the catecholamine phenotype can help to assess the pathogenicity of the genetic variant found⁸⁸.

Current knowledge suggests that mutations in driver genes in PPGL are mutually exclusive. Thus, multiplexing different genes in parallel in TGPs aids VUS classification⁹⁴, as shown by the finding of a *NF1* somatic mutation (ID166) in a case in which we simultaneously found a germline VUS in *MEN1* (c.-10G>A), suggesting the latter is not pathogenic.

Other VUS could be more challenging to classify, as shown previously with co-occurring *NF1*⁷⁴ and *EPAS1*^{98,110} variants. In our series, one patient harbored a double somatic mutation in *NF1* (ID434) and 2 cases double *EPAS1* variants (ID275: p.Pro531Thr and p.Leu400Pro; ID322: p.Asp539His and p.Gly537Gly). It is worthy to note that we only studied exon 9 of *EPAS1* in part II, but it seems that variants in exon 9 may be acting as modifier rather than causative of PPGL^{110,181}. It was not possible to rule out that these second variants were acting as modifiers through appropriated functional assays, as previously performed with other *EPAS1*⁹² or *MAX*¹⁸⁷.

In conclusion, VUS classification is a resource- and time-demanding task, and an international cooperative effort is required to update existing databases¹⁸⁸.

5.3 GENETIC STUDY AND CLINICAL DATA

5.3.1 GUIDED GENETIC STUDY USING CLINICAL DATA (PART I)

In part I, similarly to the COMETE cohort study, where somatic genetic assessment was guided by findings from genome-wide expression studies^{73,74}, our somatic study was, in part, guided by the fractionated biochemical profile observed for each tumor, highlighting the importance of having access to secretion data.

In addition to the predominant secretion, our study highlights the utility of differentiating tumor location to select not only the most appropriate DNA sample (germline or tumor), but also the

genes to be studied. Our analysis enabled us to conclude that the study of germline DNA should be prioritized in single HN-PGLs and T-PGLs, while the study of tumor DNA should be recommended in patients with single PCCs. Despite not finding statistically significant differences between the frequencies of somatic and germline mutations in A-PGLs, *SDH* genes were involved in 72% of mutated cases (being only two somatic mutations). In addition, 20% (3/15) of *HRAS*-mutated cases in this series were A-PGLs, compared with the 4.2% (1/24) previously reported^{79,95,117}, highlighting the relevance of *HRAS* somatic testing in tumors located outside the adrenal glands. Consequently, for A-PGLs, it seems appropriate to recommend a germline study (starting with the *SDH* genes) in cases with tumors negative or without SDHB-IHC and somatic screening (excluding the *SDH* genes) in those with positive SDHB-IHC staining.

5.3.2 "BLINDED" GENETIC STUDY USING TGPs (PART II)

TGPs genetic results made evident that some pitfalls could occur relying too much in clinical data to guide genetic testing.

Inevitably, the mutation detection rate in part II is dependent on the extent of previous conventional genetic screening using algorithms based on available clinical data. In a study by Rattenberry et al. NGS was shown to successfully detect mutations in previously unstudied cases⁹⁴; our data additionally demonstrates that TGPs can detect mutations in genes that have been previously disregarded due to discordant or missing clinical data. Driver mutations were found in 37 of the 289 Wt^{ps} (13%): germline mutations 13/289 (4.5%), and somatic mutations 24 of the 83 WT^{ps} tumors (29%). This finding highlights the risk of relying excessively on phenotypic features to guide mutation testing.

For instance, two patients older than 60 years with a single PCC were found to be carriers of a germline mutation in *VHL* (ID374; p.Arg200Trp) or *RET* (ID283; p.Phe776Leu). These mutations would probably had been overlooked if methods other than TGPs had been applied. These results are crucial for the management of both index cases and their relatives, as theses specific mutations have been related to polycythemia¹⁸⁹ and MTC¹⁹⁰, respectively. This approach also allowed us to detect *NF1* somatic mutation in 2 TA-PGL cases, despite this gene being mainly associated with PCCs^{73,176}.

Another confounding factor could be the biochemical secretion. In this regard, these data will help to guide screening, but there are incongruous values due to variation in sample collection procedures or interfering drugs or foods¹¹⁸. Of note, in this study 1 *VHL* and 1 *FH* mutation were detected in adrenergic-secreting tumors, and 3 *RET*-mutated cases were noradrenergic. Furthermore, 9 cases with a *NF1* somatic mutations presented noradrenergic secretion. While

NF1 has been classically associated with an adrenergic secretion, the heterogeneous profile of *NF1* tumors had been pointed out before⁷⁵.

A remarkable finding was a *NF1* somatic mutation in a patient with multiple PCC (ID357). After reviewing the pathological report, the tumor was reclassified as a single multi-lobulated PCC.

5.4 AGE AT ONSET

Although there is no agreement on the upper age limit to apply for genetic testing^{8,11,36–38,42,191}, 45 years resulted in a better identification of mutation-positive cases in the study of Erlic et al., where various clinical parameters were assessed using multiple logistic regression¹⁹².

Taking into account this limit of age in part I (**Figure 5**), we analyzed the possible consequences of limiting genetic studies depending on the age at presentation.

Thus, if germline screening had not been performed in index cases older than 45 years in our series, we would have missed 11.1% hereditary cases of HN-PGLs, 25% of T-PGLs, 8% of A-PGLs and 3.2% of PCCs. Conversely, younger patients tend to be excluded from somatic studies. Thus, if the somatic screening had not been performed in index cases younger than 45 years, we would have missed the genetic diagnosis of 42.9% A-PGLs, and even more importantly, 53.3% of PCCs.

Therefore, we recommend that a germline and somatic genetic diagnosis be carried out for all S-PPGLs, regardless of the age of diagnosis.

Historically, pediatric age has been considered a predictor of the presence of germline mutations in PPGL-related genes. In fact, previous pediatric series have shown rates of germline mutation of around 80%⁴¹. The results from part I in bona fide cases showed that at least half of pediatric S-PPGL presented a germline mutation, and a quarter of S-PPGLs could be explained by a somatic mutation.

In part II, 12 out 13 pediatric patients included in the study show enough amplified to be evaluated, being able to detect a germline mutation in 25% and a somatic mutation in 29%. Among them, 7 (58%) had been previously studied using Sanger, and a somatic mutation in *VHL* (ID153) and a gross deletion in *SDHB* (ID152) could be detected.

In conclusion, both parts of this thesis highlight that it is also important to study somatic mutations in young patients, being *VHL* the main player (100% of somatic were located in this gene in both parts of this thesis). On the other hand, *SDHB* represented 75% and 100% of the germline mutations found in pediatric patients in part I and part II, supporting that this gene

should be the first one to be studied if NGS is not available, not only for the prevalence, but also for the metastatic rate associated to this gene^{4,15–17}.

Moreover, pediatric cases with somatic mutations should be assessed with caution, as it is especially important to rule out the presence of mosaicism. In this regard, NGS has been proven useful as a diagnostic tool to accurately quantify the level of mosaicism through the study of different embryological lineage cells¹⁸⁰. To note, *VHL* somatic mutations in part II were detected using TGPs in a frequency of reads of the altered variant around 28% and 29% in tumor DNA from patient ID190 and ID153, respectively, which could be an indicator of the presence of mosaicism, among other factors previously mentioned (e.g. normal tissue contamination). Thus, if a somatic mutation is found in a pediatric case, a search for the mutation in multiple tissues is encouraged to better evaluate the extension of the disease, as well as to improve the management and follow-up of the patient and their offspring¹⁸⁰.

5.5 METASTATIC BEHAVIOUR

As expected, *SDHB* was the main gene involved in metastatic S-PPGLs, even in cases with PCC (40% of metastatic PCC with a driver mutations identified). It was the most commonly mutated gene among metastatic T-PGLs (80%). Somatic mutations in *VHL*, *RET*, *EPAS1*, *HRAS* and *SDHD* were detected in one case each. Thus, because knowing the driver mutation is especially important in the determination of the most appropriate therapeutic intervention³⁵, metastatic cases should not be excluded from comprehensive testing for somatic mutations.

NGS allowed us to detect mutations in *SDHA*, *VHL*, *NF1* and *HRAS* among metastatic cases in which *SDHB* involvement had been ruled out, as 20 (67%) had been previously studied using Sanger sequencing. These genes would likely had been ignored and the diagnosis delayed due to the low prevalence of metastatic cases reported with mutations in these genes, as well as the large size of some of them. Of note, we found the second malignant case related to a *HRAS* mutation (ID376).

5.6 SINGULAR FEATURES IN CLINICAL DATA

Surprisingly, despite black PPGL being rare, the two cases in our series were related to *RET* variants. Patient ID164 has been reported¹⁹³ and case ID429 harbored a germline synonymous *RET* variant in exon 11 previously demonstrated to alter the splicing of the gene in HD¹⁷³. The co-occurrence of MEN2 and HD is intriguing, since the latter is caused by *RET* inactivating mutations, and MEN2 to activating ones. However, MTC incidence among HD patients varies between 2.5 and 5%, with all activating mutations located in exon 10¹⁹⁴. As it was not possible

to perform functional studies to assess the pathogenicity of this specific variant, it was classified as a VUS and the recommendation for this case would be to follow it as a potential MEN2 case.

5.7 SEQUENCING APPROACHES

Nowadays TGPs are broadly used due to its cost-effectiveness and ease of management. Several groups have already used this technology for PPGL genetic testing^{94,98,195,196}. While it is difficult to compare these studies, mainly due to their different design¹⁹⁶, it is clear that an optimal and uniform multiplexing of all regions of interest is yet to be established.

Rattenberry et al. suggested near equal quality of TGPs to Sanger sequencing in PPGL, and a significant reduction in both cost and time consumption⁹⁴. Similar performance of diagnostic TGPs has been reported by an accumulating number of observations in other diseases using different enrichment assays and sequencing platforms^{94,197–200}. However, current guidelines for the diagnostic use of NGS state that the validity of the selected bioinformatic software needs to be ensured by the local investigator before clinical application²⁰¹. Thus, the local laboratory should select, validate and maintain a robust bioinformatics pipeline, a process that will require trained and experienced personnel. These investments and the running costs of bioinformatic processing will inevitably increase cost of TGPs²⁰².

The momentum of NGS in a clinical setting was recently strengthened by demonstrating equal quality of generated results compared to Sanger sequencing²⁰³. In a study of Crona et al. in PPGL tumor samples, Targeted NGS was performed using Truseq custom amplicon enrichment sequenced with a double strand design (such as panel II of part II of this Thesis) on an Illumina MiSeq instrument. Results were analysed in parallel using 3 bioinformatics pipelines (Commercially available MiSeq Reporter 2.1.43 (MSR), CLC GenomicsWorkbench 5.51 (CLC) and the in-house custom pipeline (ICP), and compared to results from traditional Sanger sequencing. Compared to Sanger sequencing, variant calling revealed a sensitivity ranging from 83 to 100% and a specificity of 99.9-100%, demonstrating that TGPs show equal performance and comparable quality to Sanger Sequencing runs detected by Sanger Sequencing²⁰⁴, this is the main reason why we used it in part II.

Herein, we designed a comprehensive TGPs for PPGL, including for the first time *EGLN1/PHD2*, *EGLN2/PHD1*, *MEN1* and *MDH2*, and screened a large international multicenter series of patients using germline and tumor DNA. In addition, we performed a stringent process of validation and a multi-step workflow analysis to confirm this platform as an efficient and accurate alternative to conventional sequencing in the diagnosis setting. We used MiSeq

reporter, and our pipeline allowed us to rescue pool biased variants, as well as indels such as the *NF1* frameshift variant (c.7269_7270delCA) in ID445, as troubles regarding these types of variants had been previously reported with Illumina's platform^{98,204}. Consistent with previous reports^{94,98,195,196}, the sensitivity of the TGPs was extremely high (99.5%).

As this platform is not able to multiplex all the regions designed with a well coverage and it is not able to detect gross deletions, the workflow of this study included in a second step the conventional sequencing of the regions with low coverage and the study of gross deletions. In this regard, even applying a stringent threshold of 50-fold coverage, we did not find any additional variants in the Sanger sequencing of these regions, suggesting that the 30-fold coverage threshold used in the study of Rattenberry et al. is appropriated⁹⁴. The MLPA/Multiplex analysis of TGPs negative patients diagnosed an additional case (0.3%, 1/291 germline DNA available), highlighting that gross deletions are rare events (<1%)³⁵. Further, performing an MLPA/Multiplex study on selected cases as a second step reduces cost and processing time, and the protocol can be even more focused using SDHB, 2SC, and MAX- IHC^{54,60,177}.

In comparison with previous TGPs studies, we used the variant filtering threshold to prioritize variants for validation, instead of using it for filtering them out. Applying fixed thresholds can significantly reduce the detection sensitivity for heterozygous variants due to normal tissue contamination³⁰, intra-tumor heterogeneity¹³⁹ and mosaicism^{47,81–83}. Three cases showed potential mosaicism, as the variants were detected in around 20% of reads, 2 affecting *VHL* in pediatric cases previously mentioned (ID153 and ID190), and 1 involving *SDHD* (ID296), the latter not previously described.

5.8 DNA SAMPLES

5.8.1 FFPE TUMOR SAMPLES

The prevalence of mutations in the *SDH* genes in A-PGLs, metastatic cases, as well as pediatric S-PPGLs cases stresses the importance of using SDHB-IHC as a filter to optimize genetic screening in part I, and therefore highlights the importance of having access to FFPE tumor material^{35,137}. A good example of utility of performing IHC to guide the genetic study using Sanger sequencing was the case with a somatic mutation in *SDHD*, as *SDH* genes mutations are scarce and rarely analyzed.

When FFPE tumor material is unavailable, at a minimum *SDHB* germline mutations should be tested for, given the higher associated risk of developing metastases¹⁵, and the presence of a founder effect, at least in the Spanish population³⁷.

In part II, FFPE tumor samples to perform IHC studies was used in the filtering process to select the genetic variants that should be validated by Sanger sequencing, but also to test the pathogenicity of VUS found in these genes^{94,95,97}.

5.8.2 SOURCE AND QUALITY OF DNA SAMPLES

Frozen and blood DNA samples have optimal quality for molecular diagnosis. However, their use is not always feasible, as saliva, GenomiPhi or FFPE tumor samples are sometimes the only available DNA source.

In part I we used germline DNA derived from blood and tumor DNA from FFPE and frozen samples. In part II, we tried to analyze all the patients with the available DNA source, independently of the type of sample. Saliva DNA samples performed well, as the germline mosaicism in *SDHD* was detected in a similar percentage of reads to that in the blood DNA of the same patient (ID296). Additionally, samples amplified by GenomiPhi were found to be useful for diagnostic purpose as our panel detected all SNPs previously identified by Sanger sequencing.

A common problem with FFPE samples is the high number of false-positive variants resulting from deamination (C:G>T:A); this was the main reason why *NF1* was not tested in FFPE samples in part I of this thesis. In part II, this circumstance was resolved by applying doubled stranded-TGP. In addition, the use of Covaris system in part II improved the DNA extraction efficiency and the percentage of cases diagnosed, in comparison with part I in which we used Qiagen extraction, since the FFPE samples in which DNA was extracted with the Covaris system showed a higher number of reads/amplicon. In fact, the amplification failed in less FFPE samples than in blood or frozen tissue DNA. Thus, in part II we were able to study all types of DNA samples with similar performance.

We therefore consider critical the access to the tumor sample for a complete PPGL genetic screening and diagnosis. The study of DNA from tumor sample as the first step allows "to kill three birds with one stone", as allows the detection of germline, somatic and mosaic mutations.

In our series, the frequency of somatic mutations (43.4% and 32%, in part I and II, respectively) was in agreement with previous reports, even in cases highly likely to carry a germline mutation. Thus, a somatic was found in 60% and 28.6% of pediatric cases, 29% and 19% of malignant in part I and II, respectively, and 7% of multiple tumor cases studied in part II. Furthermore, studying the tumor DNA of apparently familial cases can reveal phenocopies.

5.9 FUTURE OUTCOMES

Despite using TGPs, a comprehensive clinical record is still useful when performing genetic diagnosis, as demonstrated by findings for case ID79. This patient was diagnosed with a GIST and multiple noradrenergic PGLs. The tumor showed negative SDHB-IHC, TGPs did not detect any *SDH* variant and gross deletions were also ruled out. Our workflow allowed us to select this case to be further studied using multi-omics platforms, to finally detect a functional epimutation in *SDHC*, which is an event recently described as causing the disease ¹⁰⁴.

As the list of new PPGL genes is growing constantly, their inclusion to already designed panels is not a cost-effective process, as it requires the generation of new libraries and their validation. Our workflow allowed us to select the specific cases that would benefit from further genetic screening. Examples of this point are the implementation of the study of *MERTK*⁵⁸ and exon 7 of *RET*¹⁶³ in patients with PCC and MTC, despite no mutation being found, or the selection of WT composite tumors to further study *ATRX* (35 exons), which has not only been related to composite PCC, but also to metastatic PPGL¹⁰⁶.

5.10 REASONS TO CONSIDER GENETIC SCREENING IN ALL PPGL CASES

Genetic screening is expensive and time-consuming, especially if NGS is not available, but there are important implications of having a genetic diagnosis in S-PPGLs. According to the American Society of Clinical Oncology (ASCO)'s general recommendations for genetic screening, all patients with a risk of at least 10% of carrying a genetic mutation should be offered genetic testing, especially when the results would aid in diagnosis or influence the management of the patient or family members at hereditary risk of cancer^{116,205}.

The identification of germline or mosaic mutations allow the early diagnosis of multiple tumors or additional syndromic neoplasias in the proband, as well as in relatives at risk. On the other hand, the identification of a somatic mutation benefits: (1) family screening, as it frees relatives from the need for genetic screening and clinical follow-up (more caution has to be taken in the case of 'somatic mutations' in pediatric cases since the possibility of a germline mosaicism cannot be excluded); (2) diagnosis, making unjustified the exhaustive follow-up required for patients harboring germline mutations associated with a high risk of developing multiple tumors and different cancer types; (3) prognosis, as it is known that mutations in some genes have a well-known high risk of metastatic behavior, and; (4) therapeutic opportunities, since the identification of the mutated gene and the corresponding pathway opens up the possibility of new therapeutic approaches if surgery is not curative. Regarding this latter point, it has been proposed that mutations involving cluster 1 genes could be targeted using an antiangiogenic approach, mutations in cluster 2 genes could be treated by targeting the mTOR and the RAS— RAF pathway and, specifically, for *FH*-related and *SDH*-related malignant PPGLs, drugs targeting epigenetic pathways could be an option^{1,24,35,84}.

Finally, the identification of a somatic mutation avoids additional germline genetic screening as new susceptibility genes are discovered, which is associated with considerable anxiety and psychological ill health, especially in relatives of pediatric and metastatic cases^{33,35,97,206,207}.

In conclusion, the results of this study should bring to an end years of controversy and debate, as it brings new evidence that highlights the need to recommend genetic testing for all patients with PPGL, regardless of the apparent sporadic presentation, or the age at first PPGL diagnosis.

In summary, Sanger sequencing of the appropriated gene in syndromic cases, as well as *SDHB* in pediatric, multiple and metastatic cases is still an effective first step approach, with TGPs as the most reasonable second step. In the case of S-PPGL, for laboratories where TGPs is not available or not optimized, we propose a genetic testing algorithm based on tumor location for sporadic single PPGL based on the present and previous findings^{5,35,94–99,112,116,208} (**Figure 13**). Where NGS can be used, the sample type that should be tested is tumor DNA for PCCs and germline DNA for HN-PGLs and T-PGLs. For A-PGLs, it seems crucial to have a FFPE tumor sample available in order to perform SDHB-IHC, the findings from which can be used to determine the ideal source of DNA sample to study.

On the other hand, before applying TGPs in clinical setting, it is critical to ensure: adequate library preparation; high accuracy; and avoidance of false positive and negative results through the implementation of alternative techniques. Thus, this technology should be performed in specialized and accredited laboratories with expertise in PPGL⁸.

Here, we have demonstrated the effectiveness and feasibility of this diagnostic tool, able to detect low-coverage, pool biased and indel variants. We conclude that our TGPs workflow enables the study of the main driver PPGL genes in different DNA sources, and improves the clinical management of index cases and their relatives at risk. In addition, TGPs is the optimal method to select cases that will benefit from further investigation in a research setting, as the etiology of one third of PPGL cases remains in the darkness.

Figure 13. Proposed genetic testing algorithm for patients with sporadic-pheochromocytoma and paraganglioma (S-PPGL) based on SDHBimmunohistochemistry (IHC) in formalin-fixed paraffin-embedded tissue (if available) and biochemical phenotype.

This algorithm has been elaborated considering previous reports' findings^{5,35,94–99,112,116,208} and the current series. (g), germline DNA; HN-PGL, head and neck-paraganglioma; PCC, pheochromocytoma; PGL, paraganglioma; (t), tumour DNA; TA-PGL, thoracic plus abdominal-paraganglioma. *Test if possible.

VI. CONCLUSIONS

- **6.1** The results of this study bring new evidence regarding the need to recommend genetic testing for all patients with PPGL, regardless of the apparent sporadic presentation, or the age at diagnosis.
- **6.2** It is also important to study somatic mutations in young patients, metastatic, and multiple cases. Furthermore, studying the tumor DNA of apparently familial cases can reveal phenocopies. Identifying a somatic mutation not only benefits family screening, diagnosis, prognosis, therapeutic opportunities, but also avoids additional germline genetic screening as new susceptibility genes are discovered, which is associated with considerable anxiety and psychological ill health.
- **6.3** In S-PPGL, in addition to the predominant secretion and SDHB-IHC staining, our study highlights the utility of differentiating tumor location to select not only the most appropriate DNA sample (germline or tumor), but also the genes to be studied. For laboratories where TGPs are not available or not optimized, we have proposed a genetic testing algorithm using Sanger sequencing. Where NGS is available, the study of germline DNA should be prioritized in HN-PGLs and T-PGLs, while the study of tumor DNA should be recommended in PCCs. For A-PGLs, it seems appropriate to recommend germline study (starting with the *SDH* genes) in cases with tumors negative or without SDHB-IHC, and somatic screening (excluding the *SDH* genes) in those with positive SDHB-IHC staining.
- **6.4** Sanger sequencing of the appropriated gene in syndromic cases, as well as *SDHB* in pediatric, multiple and metastatic cases is still an effective first step approach, being TGPs the most reasonable second step in the genetic diagnosis of PPGL.
- **6.5** We have demonstrated the effectiveness and feasibility of two TGPs as diagnostic tools in the clinical setting, able to detect low-coverage, pool biased and indel variants. In addition, our TGPs-workflow enables the study of the main driver PPGL genes in different DNA sources with similar performance, and improves the clinical management of index cases and their relatives at risk. Furthermore, TGPs are the optimal methods to select cases that will benefit from further investigation in a research setting, as the etiology of one third of PPGL cases remains unknown.
- **6.6** The access to the tumor sample is critical for a complete PPGL genetic screening and diagnosis. The study of tumor DNA as the first step allows "to kill three birds with one stone", as allows the detection of germline, somatic and mosaic mutations. To note, FFPE tumor sample is very useful, as SDHB-IHC is not only used to guide the genetic study using Sanger

sequencing in S-PPGL, but also in TGPs in the filtering process, as well as to test the pathogenicity of VUS.

VI. CONCLUSIONES

- 6.1 Los resultados de este estudio aportan nuevas evidencias sobre la necesidad de recomendar el estudio genético en todos los pacientes con feocromocitomas y paragangliomas (FPGL), independientemente de si la presentación es aparentemente esporádica (FPGL-E) o la edad en el momento del diagnóstico.
- **6.2** Es importante estudiar la presencia de mutaciones somáticas en los pacientes jóvenes y/o con tumores metastásicos y/o múltiples. Además, el estudio del ADN tumoral de casos aparentemente familiares puede revelar la presencia de fenocopias. La identificación de una mutación somática, no sólo beneficia el consejo familiar, el diagnóstico, seguimiento y el planteamiento de las posible opciones terapéuticas, sino que también evita continuar insistiendo en el estudios genéticos del ADN germinal a medida que se descubren nuevos genes de susceptibilidad, que se asocia a la presencia de ansiedad considerable e inestabilidad emocional.
- **6.3** Nuestro estudio pone de relieve que en los FPGL-E, además de la secreción predominante y el resultado de la inmunohistoquímica de SDHB (IHC-SDHB), es útil tener en cuenta la localización del tumor primario no sólo para determinar la muestra de ADN más apropiada (germinal o tumoral), sino también los genes a estudiar. En los laboratorios en los que los paneles de genes no están disponibles o no se han puesto a punto, hemos propuesto un algoritmo de diagnóstico genético utilizando la secuenciación por Sanger. En los laboratorios en los que los paneles de genes de genes están disponibles, el estudio del ADN germinal debe ser priorizado en el caso de paragangliomas de cabeza, cuello y torácicos, y el estudio del ADN tumoral en el caso de feocromocitomas. En el caso de paragangliomas abdominales, recomendamos el estudio del ADN germinal (empezando por los genes *SDH*) en caso de tumores con el resultado de la IHC-SDHB negativo o no disponible, y el estudio del ADN tumoral (excluyendo el estudio de los genes *SDH*) en los casos con IHC-SDHB positiva.
- **6.4** El primer paso más eficaz en el diagnóstico genético es el estudio mediante secuenciación por Sanger del gen apropiado en los casos sindrómicos, así como el de *SDHB* en los pacientes pediátricos y en aquellos con tumores múltiples y/o metastásicos, siendo los paneles de genes el segundo paso más razonable.
- 6.5 Hemos demostrado la eficacia y viabilidad de dos paneles de genes como una herramienta de diagnóstico genético útil en la práctica clínica, capaces de detectar variantes con baja cobertura, variantes con sesgo de cobertura entre los dos diseños de amplicones y variantes de inserción y/o deleción. Además, nuestro algoritmo de trabajo basado en el uso de los

paneles de genes permite el estudio de los principales genes de FPGL en ADN de distinto origen con un rendimiento similar y mejora el manejo clínico de los casos índice y sus familiares. Además, los paneles de genes son el método óptimo para seleccionar los casos que se beneficiarán de ser incluidos en proyectos de investigación, dado que la causa de un tercio de los FPGL aún es desconocida.

6.6 La accesibilidad a la muestra tumoral es fundamental para completar el cribado genético y diagnóstico de los FPGL. El estudio primario del ADN tumoral permite "matar tres pájaros de un tiro", ya que permite la detección de mutaciones germinales, somáticas y de mosaico. Lo óptimo es disponer de la muestra tumoral parafinada. El resultado de la IHC-SDHB se puede utilizar no sólo para orientar el estudio genético mediante secuenciación por Sanger en FPGL esporádicos, sino también cuando se utilizan paneles de genes durante el proceso de filtrado de las variantes y para estudiar la patogenicidad de las variantes de significado desconocido encontradas.

VII. REFERENCES

1 Castro-Vega LJ, Lepoutre-Lussey C, Gimenez-Roqueplo A-P, Favier J. Rethinking pheochromocytomas and paragangliomas from a genomic perspective. Oncogene 2016;35:1080– 9.

2 Chen H, Sippel RS, O'Dorisio MS, Vinik AI, Lloyd RV PK. The NANETS Consensus Guideline for the Diagnosis and Management of Neuroendocrine Tumors: Pheochromocytoma, Paraganglioma & Medullary Thyroid Cancer. Pancreas 2010;39(6):775–83.

3 Kantorovich V, Pacak K. Pheochromocytoma and paraganglioma. Prog Brain Res 2010;6123:343–73.

4 Taïeb D, Kaliski A, Boedeker CC, Martucci V, Fojo T, Adler JR, Pacak K. Current approaches and recent developments in the management of head and neck paragangliomas. Endocr Rev. 2014;35(5):795-819.

5 Welander J, Söderkvist P, Gimm O. Genetics and clinical characteristics of hereditary pheochromocytomas and paragangliomas. Endocr Relat Cancer. 2011;18(6):R253-76.

6 Waguespack SG, Rich T, Grubbs E, Ying AK, Perrier ND, Ayala-Ramirez M, Jimenez
C. A current review of the etiology, diagnosis, and treatment of pediatric pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2010;95(5):2023-37.

7 Pacak K, Lenders JWM, Eisenhofer G. Pheochromocytoma: Diagnosis, Localization, and Treatment. 2007. Published by Blackwell Publishing.

Lenders JW, Duh QY, Eisenhofer G, Gimenez-Roqueplo AP, Grebe SK, Murad MH,
 Naruse M, Pacak K, Young WF Jr; Endocrine Society. Pheochromocytoma and paraganglioma: an
 endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014;99(6):1915-42.

9 Fernández-Calvet L G-MR. Incidence of pheochromocytoma in South Galicia, Spain. J Intern Med 1994;236(6):675–7.

10 Cascón A, Inglada-Pérez L, Comino-Méndez I, de Cubas AA, Letón R MJ, Marazuela M, Galofré JC, Quesada-Charneco M RM. Genetics of pheochromocytoma and paraganglioma in Spanish patients. Endocr Relat Cancer 2013;20:L1–6.

11 Mannelli M, Castellano M, Schiavi F, Filetti S, Giacchè M, Mori L, Pignataro V, Bernini G, Giachè V, Bacca A, Biondi B, Corona G, Di Trapani G, Grossrubatscher E, Reimondo G, Arnaldi G, Giacchetti G, Veglio F, Loli P, Colao A, Ambrosio MR, Terzolo M, Letizia C, Ercolino T, Opocher G. Clinically guided genetic screening in a large cohort of Italian patients with pheochromocytomas and/or functional or nonfunctional paragangliomas. J Clin Endocrinol Metab.2009;94:1541–7.

John H, Ziegler WH, Hauri D JP. Pheochromocytomas: can malignant potential be predicted? Urology 1999;53:679–83.

13 Peitzsch M, Prejbisz A, Kroiß M, Beuschlein F, Arlt W, Januszewicz A, Siegert G, Eisenhofer G. Analysis of plasma 3-methoxytyramine , normetanephrine and metanephrine by

ultraperformance liquid chromatography – tandem mass spectrometry : utility for diagnosis of dopamine- producing metastatic phaeochromocytoma. Ann Clin Biochem 2013;50(Pt 2):147–55.

Eisenhofer G, Lenders JWM, Siegert G, Bornstein SR, Friberg P, Milosevic D, Mannelli M, Linehan WM, Adams K, Timmers HJ, Pacak K. Plasma methoxytyramine : A novel biomarker of metastatic pheochromocytoma and paraganglioma in relation to established risk factors of tumour size, location and SDHB mutation status 5. Eur J Cancer. 2012;48(11):1739-49.

Gimenez-Roqueplo AP, Favier J, Rustin P, Rieubland C, Crespin M, Nau V K, Van Kien P, Corvol P, Plouin PF JXCN. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res 2003;63:5615–21.

Amar L, Baudin E, Burnichon N, Peyrard S, Silvera S, Bertherat J, Bertagna X, Schlumberger M, Jeunemaitre X, Gimenez-Roqueplo A-P, Plouin P-F. Succinate dehydrogenase B gene mutations predict survival in patients with malignant pheochromocytomas or paragangliomas. J Clin Endocrinol Metab. 2007;92(10):3822-8.

17 Parenti G, Zampetti B, Rapizzi E, Ercolino T, Giachè V MM. Updated and new perspectives on diagnosis, prognosis, and therapy of malignant pheochromocytoma/paraganglioma. J Oncol 2012;872713.

Amar L, Fassnacht M, Gimenez-Roqueplo AP, Januszewicz A, Prejbisz A T, H PP. Longterm postoperative follow-up in patients with apparently benign pheochromocytoma and paraganglioma. Horm Metab Res 2012;44(5):385–9.

Lee JH, Barich F, Ph D, Karnell LH, Ph D, Robinson RA, Zhen WK, Gantz BJ, Hoffman HT, Head M, Paraganglioma N. National Cancer Data Base Report on Malignant Paragangliomas of the Head and Neck. Cancer 2002;94:730–7.

20 Chrisoulidou A, Kaltsas G, Ilias I, Grossman AB. The diagnosis and management of malignant phaeochromocytoma and paraganglioma. Endocr Relat Cancer 2007;14:569–85.

Gimm O, DeMicco C, Perren A, Giammarile F, Walz MK BL. Malignant pheochromocytomas and paragangliomas: a diagnostic challenge. Langenbecks Arch Surg 2012;397(2):155–77.

22 Plouin PF, Amar L, Dekkers OM, Fassnacht M, Gimenez-Roqueplo AP, Lenders JW, Lussey-Lepoutre C, Steichen O; Guideline Working Group. European Society of Endocrinology Clinical Practice Guideline for long-term follow-up of patients operated on for a phaeochromocytoma or a paraganglioma. Eur J Endocrinol. 2016;174(5):G1-G10.

Baudin E, Habra MA, Deschamps F, Cote G, Dumont F, Cabanillas M A-RJ, Berdelou A, Moon B, Al Ghuzlan A, Patel S, Leboulleux S JC. Therapy of endocrine disease: Treatment of malignant pheochromocytoma and paraganglioma. Eur J Endocrinol. 2014;171(3):R111-22.

Jimenez C, Rohren E, Habra MA, Rich T, Jimenez P, Ayala-Ramirez M, Baudin E. Current and future treatments for malignant pheochromocytoma and sympathetic paraganglioma. Curr Oncol Rep. 2013;15(4):356-71.

Taïeb D, Timmers HJ, Hindié E, Guillet BA, Neumann HP, Walz MK, Opocher G, de Herder WW, Boedeker CC, de Krijger RR, Chiti A, Al-Nahhas A, Pacak K, Rubello D; European Association of Nuclear Medicine.. EANM 2012 guidelines for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. 2012;39(12):1977-95.

de Wailly P, Oragano L, Radé F, Beaulieu A, Arnault V, Levillain P, Kraimps JL. Malignant pheochromocytoma: new malignancy criteria. Langenbecks Arch Surg. 2012;397(2):239-46.

27 Pinato DJ, Ramachandran R, Toussi ST, Vergine M, Ngo N, Sharma R, Lloyd T, Meeran K, Palazzo F, Martin N, Khoo B, Dina R, Tan TM. Immunohistochemical markers of the hypoxic response can identify malignancy in phaeochromocytomas and paragangliomas and optimize the detection of tumours with VHL germline mutations. Br J Cancer. 2013;108(2):429-37.

Span PN, Rao JU, Oude Ophuis SB, Lenders JW, Sweep FC, Wesseling P, Kusters B, van Nederveen FH, de Krijger RR, Hermus AR, Timmers HJ. Overexpression of the natural antisense hypoxia-inducible factor-1alpha transcript is associated with malignant pheochromocytoma/paraganglioma. Endocr Relat Cancer. 2011;18(3):323-31.

29 Murthy SR, Pacak K, Loh YP. Carboxypeptidase E: elevated expression correlated with tumor growth and metastasis in pheochromocytomas and other cancers. Cell Mol Neurobiol. 2010;30(8):1377-81.

Castro-Vega LJ, Letouze E, Burnichon N, Buffet a, Disderot PH, Khalifa E, Loriot C, Elarouci N, Morin a, Menara M, Lepoutre-Lussey C, Badoual C, Sibony M, Dousset B, Libe R, Zinzindohoue F, Plouin PF, Bertherat J, Amar L, de Reynies a, Favier J, Gimenez-Roqueplo a P. Multi-omics analysis defines core genomic alterations in pheochromocytomas and paragangliomas. Nat Commun 2015;6:6044.

De Cubas AA, Leandro-García LJ, Schiavi F, Mancikova V C-MI, Inglada-Pérez L, Perez-Martinez M, Ibarz N, Ximénez-Embún P L-JE, Maliszewska A, Letón R, Gómez Graña A, Bernal C A-EC, Rodríguez-Antona C, Opocher G, Muñoz J, Megias D, Cascón A RM. Integrative analysis of miRNA and mRNA expression profiles in pheochromocytoma and paraganglioma identifies genotype-specific markers and potentially regulated pathways. Endocr Relat Cancer 2013;20:477– 93.

22 De Cubas AA, Korpershoek E, Inglada-Pérez L, Letouzé E C-FM, Fernández AF, Comino-Méndez I, Schiavi F, Mancikova V, Eisenhofer G MM, Opocher G, Timmers H, Beuschlein F, de Krijger R, Cascon A R-AC, Fraga MF, Favier J, Gimenez-Roqueplo AP RM. DNA Methylation Profiling

in Pheochromocytoma and Paraganglioma Reveals Diagnostic and Prognostic Markers. Clin Cancer Res 2015;21:3020–30.

33 Dahia PLM. Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nature reviews Cancer 2014;14:108–19.

34 Buffet A, Venisse A, Nau V, Roncellin I, Boccio V, Le Pottier N BM, Travers C, Simian C, Burnichon N, Abermil N, Favier J JX, AP. G-R. A decade (2001-2010) of genetic testing for pheochromocytoma and paraganglioma. Horm Metab Res 2012;44:359–66.

35 Favier J, Amar L, Gimenez-Roqueplo A-P. Paraganglioma and phaeochromocytoma: from genetics to personalized medicine. Nature Reviews Endocrinology 2015;11:101–11.

Amar L, Bertherat J, Baudin E, Ajzenberg C, Bressac-de Paillerets B, Chabre O, Chamontin B, Delemer B, Giraud S, Murat A, Niccoli-Sire P, Richard S, Rohmer V, Sadoul JL, Strompf L, Schlumberger M, Bertagna X, Plouin PF, Jeunemaitre X, Gimenez-Roqueplo AP. Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol. 2005;23(34):8812-8.

37 Cascón A, Pita G, Burnichon N, Landa I, López-Jiménez E, Montero-Conde C, Leskelä S, Leandro-García LJ, Letón R, Rodríguez-Antona C, Díaz JA, López-Vidriero E, González-Neira A, Velasco A, Matias-Guiu X, Gimenez-Roqueplo AP, Robledo M. Genetics of pheochromocytoma and paraganglioma in Spanish patients. J Clin Endocrinol Metab. 2009;94(5):1701-5.

Cascón A, López-Jiménez E, Landa I, Leskelä S, Leandro-García LJ, Maliszewska A, Letón R, de la Vega L, García-Barcina MJ, Sanabria C, Alvarez-Escolá C, Rodríguez-Antona C, Robledo M. Rationalization of genetic testing in patients with apparently sporadic pheochromocytoma/paraganglioma. Horm Metab Res. 2009 ;41(9):672-5.

39 Brito JP, Asi N, Bancos I, Gionfriddo MR, Zeballos-Palacios CL, Leppin AL U, C, Wang Z, Domecq JP, Prustsky G, Elraiyah TA, Prokop LJ, Montori VM M, MH. Testing for germline mutations in sporadic pheochromocytoma/paraganglioma: a systematic review. Clin Endocrinol (Oxf) 2015; 82(3):338-45.

40 Neumann HP, Bausch B, McWhinney SR, Bender BU, Gimm O, Franke G, Schipper J, Klisch J, Altehoefer C, Zerres K, Januszewicz A, Eng C, Smith WM, Munk R, Manz T, Glaesker S, Apel TW, Treier M, Reineke M, Walz MK, Hoang-Vu C, Brauckhoff M, Klein-Franke A, Klose P, Schmidt H, Maier-Woelfle M, Peçzkowska M, Szmigielski C, Eng C; Freiburg-Warsaw-Columbus Pheochromocytoma Study Group.. Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med. 2002;346(19):1459-66.

41 Bausch B, Wellner U, Bausch D, Schiavi F, Barontini M, Sanso G WM, Peczkowska M, Weryha G, Dall'igna P, Cecchetto G, Bisogno G ML, Bockenhauer D, Patocs A, Rácz K, Zabolotnyi D, Yaremchuk S D-KI, Castinetti F, Taieb D, Malinoc A, von Dobschuetz E, Roessler J SK, Opocher

G, Eng C NH. Long-term prognosis of patients with pediatric pheochromocytoma. Endocr Relat Cancer 2013;21:17–25.

42 Cascón A, Inglada-Pérez L, Comino-Méndez I, de Cubas AA, Letón R, Mora JMarazuela M, Galofré JC, Quesada-Charneco M RM. Genetics of pheochromocytoma and paraganglioma in Spanish pediatric patients. Endocr Relat Cancer 2013;20:L1–6.

43 Stratakis CA CJ. The triad of paragangliomas, gastric stromal tumours and pulmonary chondromas (Carney triad), and the dyad of paragangliomas and gastric stromal sarcomas (Carney-Stratakis syndrome): molecular genetics and clinical implications. J Intern Med 2009;266:43–52.

Haller F, Moskalev EA, Faucz FR, Barthelmeß S, Wiemann S, Bieg M AG, Bertherat J, Schaefer IM, Otto C, Rattenberry E, Maher ER, Ströbel P WM, Carney JA, Hartmann A, Stratakis CA AA. Aberrant DNA hypermethylation of SDHC: a novel mechanism of tumor development in Carney triad. Endocr Relat Cancer 2014;21:567–77.

Pasini B, McWhinney SR, Bei T, Matyakhina L, Stergiopoulos S, Muchow M B, SA, Ferrando B, Pacak K, Assie G, Baudin E, Chompret A, Ellison JW BJ, Rustin P, Gimenez-Roqueplo AP, Eng C, Carney JA SC. Clinical and molecular genetics of patients with the Carney-Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur J Hum Genet 2008;16:79–88.

Képénékian L, Mognetti T, Lifante JC, Giraudet AL, Houzard C PS, Borson-Chazot F CP.
 Interest of systematic screening of pheochromocytoma in patients with neurofibromatosis type
 Eur J Endocrinol 2016;175:335–44.

Zhuang Z, Yang C, Lorenzo F, Merino M, Fojo T, Kebebew E, Popovic V, Stratakis
CA, Prchal JT, Pacak K. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N Engl J Med. 2012;367(10):922-30.

Letouzé E, Martinelli C, Loriot C, Burnichon N, Abermil N, Ottolenghi C, Janin M, Menara M, Nguyen A, Benit P, Buffet A, Marcaillou C, Bertherat J, Amar L, Rustin P, DeReyniès A, Gimenez-Roqueplo AP, Favier J. SDH Mutations Establish a Hypermethylator Phenotype in Paraganglioma. Cancer Cell 2013;23:739–52.

49 Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D BA, van der Mey A, Taschner PE, Rubinstein WS, Myers EN, Richard CW 3rd C, CJ, Devilee P DB. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 2000;287:848–51.

50 Hao HX, Khalimonchuk O, Schraders M, Dephoure N, Bayley JP, Kunst H D, P, Cremers CW, Schiffman JD, Bentz BG, Gygi SP, Winge DR, Kremer H RJ. SDH5, a Gene Required for Flavination. Science 2009;325:1139–42.

51 Comino-Méndez I, Gracia-Aznárez FJ, Schiavi F, Landa I, Leandro-García LJ, Letón R, Honrado E, Ramos-Medina R, Caronia D, Pita G, Gómez-Graña A, de Cubas AA, Inglada-Pérez L, Maliszewska A, Taschin E, Bobisse S, Pica G, Loli P, Hernández-Lavado R, Díaz JA, Gómez-Morales M, González-Neira A, Roncador G, Rodríguez-Antona C, Benítez J, Mannelli M, Opocher G, Robledo M, Cascón A. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet. 2011;43(7):663-7.

52 Mroch AR, Laudenschlager M, Flanagan JD. Detection of a novel FH whole gene deletion in the propositus leading to subsequent prenatal diagnosis in a sibship with fumarase deficiency. Am J Med Genet A. 2012;158A(1):155-8.

53 Castro-Vega LJ, Buffet A, De Cubas AA, Cascón A, Menara M, Khalifa E, Amar L, Azriel S, Bourdeau I, Chabre O, Currás-Freixes M, Franco-Vidal V, Guillaud-Bataille M, Simian C, Morin A, Letón R, Gómez-Graña A, Pollard PJ, Rustin P, Robledo M, Favier J, Gimenez-Roqueplo AP. Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum Mol Genet. 2014;23(9):2440-6.

54 Castro-Vega LJ, Buffet A, De Cubas AA, Cascón A, Menara M, Khalifa E, Amar L,

Azriel S, Bourdeau I, Chabre O, Currás-Freixes M, Franco-Vidal V, Guillaud-Bataille M, Simian C, Morin A, Letón R, Gómez-Graña A, Pollard PJ, Rustin P, Robledo M, Favier J, Gimenez-Roqueplo AP. Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum Mol Genet. 2014;23(9):2440-6.

55 Gaal J, Burnichon N, Korpershoek E, Roncelin I, Bertherat J, Plouin PF, de Krijger RR, Gimenez-Roqueplo AP, Dinjens WN. Isocitrate dehydrogenase mutations are rare in pheochromocytomas and paragangliomas. J Clin Endocrinol Metab. 2010;95(3):1274-8.

Ait-El-Mkadem S, Dayem-Quere M, Gusic M, Chaussenot A, Bannwarth S, François B, Genin EC, Fragaki K, Volker-Touw CL, Vasnier C, Serre V, van Gassen KL, Lespinasse F, Richter S, Eisenhofer G, Rouzier C, Mochel F, De Saint-Martin A, Abi Warde MT, de Sain-van der Velde MG, Jans JJ, Amiel J, Avsec Z, Mertes C, Haack TB, Strom T, Meitinger T, Bonnen PE, Taylor RW, Gagneur J, van Hasselt PM, Rötig A, Delahodde A, Prokisch H, Fuchs SA, Paquis-Flucklinger V. Mutations in MDH2, Encoding a Krebs Cycle Enzyme, Cause Early-Onset Severe Encephalopathy. Am J Hum Genet. 2017;100(1):151-159.

57 Niemeijer ND, Papathomas TG, Korpershoek E, de Krijger RR, Oudijk L, Morreau H, Bayley JP, Hes FJ, Jansen JC, Dinjens WN, Corssmit EP. Succinate Dehydrogenase (SDH)-Deficient Pancreatic Neuroendocrine Tumor Expands the SDH-Related Tumor Spectrum. J Clin Endocrinol Metab. 2015;100(10):E1386-93.

58 Yang C, Zhuang Z, Fliedner SM, Shankavaram U, Sun MG, Bullova P, Zhu R, Elkahloun AG, Kourlas PJ, Merino M, Kebebew E, Pacak K. Germ-line PHD1 and PHD2 mutations detected in patients with pheochromocytoma/paraganglioma-polycythemia.

J Mol Med (Berl). 2015;93(1):93-104.

59 Yeh IT, Lenci RE, Qin Y, Buddavarapu K, Ligon AH, Leteurtre E, Do Cao C, Cardot-Bauters C, Pigny P, Dahia PL. A germline mutation of the KIF1B beta gene on 1p36 in a family with neural and nonneural tumors. Hum Genet. 2008;124(3):279-85.

60 Korpershoek E, Koffy D, Eussen BH, Oudijk L, Papathomas TG van NF, Belt EJ, Franssen GJ, Restuccia DF, Krol NM, van der Luijt RB FR, Oldenburg RA, van Ijcken WF, de Klein A, de Herder WW, de Krijger RR DW. Complex MAX Rearrangement in a Family with Malignant Pheochromocytoma, Renal Oncocytoma, and Erythrocytosis. J Clin Endocrinol Metab 2016;101(2):453–60.

Toledo RA, Qin Y, Cheng ZM, Gao Q, Iwata S, Silva GM, Prasad ML, Ocal IT, Rao S, Aronin N, Barontini M, Bruder J, Reddick RL, Chen Y, Aguiar RC, Dahia PL. Recurrent Mutations of Chromatin-Remodeling Genes and Kinase Receptors in Pheochromocytomas and Paragangliomas. Clin Cancer Res. 2016;22(9):2301-10.

Wadt K, Choi J, Chung JY, Kiilgaard J, Heegaard S, Drzewiecki KT, Trent JM, Hewitt SM, Hayward NK, Gerdes AM, Brown KM. A cryptic BAP1 splice mutation in a family with uveal and cutaneous melanoma, and paraganglioma. Pigment Cell Melanoma Res. 2012;25(6):815-8.

Juhlin CC, Stenman A, Haglund F, Clark VE, Brown TC, Baranoski J, Bilguvar K, Goh G, Welander J, Svahn F, Rubinstein JC, Caramuta S, Yasuno K, Günel M, Bäckdahl M, Gimm O, Söderkvist P, Prasad ML, Korah R, Lifton RP, Carling T. Whole-exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT2D as a recurrently mutated gene. Genes Chromosomes Cancer. 2015;54(9):542-54.

64 Owens M, Ellard S VB. Analysis of gross deletions in the MEN1 gene in 2008, patients with multiple endocrine neoplasia type 1. Clin Endocrinol (Oxf) 2008;68(3):350–4.

Castro-Vega LJ, Kiando SR, Burnichon N, Buffet A, Amar L, Simian C, Berdelou
 A, Galan P, Schlumberger M, Bouatia-Naji N, Favier J, Bressac-de Paillerets B, Gimenez-Roqueplo
 AP. The MITF, p.E318K Variant, as a Risk Factor for Pheochromocytoma and Paraganglioma. J Clin
 Endocrinol Metab. 2016;101(12):4764-4768.

66 Martucci VL, Pacak K. Pheochromocytoma and paraganglioma: diagnosis, genetics, management, and treatment. Curr Probl Cancer. 2014;38(1):7-41.

Pigny P, Vincent A, Cardot Bauters C, Bertrand M, de Montpreville VT, Crepin M, Porchet
 N, Caron P. Paraganglioma after maternal transmission of a succinate dehydrogenase gene
 mutation. J Clin Endocrinol Metab. 2008;93(5):1609-15.

68 Hensen EF, Jordanova ES, van Minderhout IJ, Hogendoorn PC, Taschner PE, van der Mey AG, Devilee P, Cornelisse CJ. Somatic loss of maternal chromosome 11 causes parent-oforigin-dependent inheritance in SDHD-linked paraganglioma and phaeochromocytoma families. Oncogene. 2004;23(23):4076-83.

69 Benn DE, Robinson BG C-BR. 15 YEARS OF PARAGANGLIOMA: Clinical manifestations of paraganglioma syndromes types 1-5. Endocr Relat Cancer 2015;22(4):T91–103.

70 Schiavi F, Milne RL, Anda E, Blay P, Castellano M, Opocher G RM, A. C. Are we overestimating the penetrance of mutations in SDHB? Hum Mutat 2010;31:761–2.

Toledo SP, Lourenço DM Jr, Sekiya T, Lucon AM, Baena ME, Castro CC B, LA, Zerbini MC, Siqueira SA, Toledo RA DP. Penetrance and clinical Germline, features of pheochromocytoma in a six-generation family carrying a TMEM127 mutation. J Clin Endocrinol Metab 2015;100(2):E308– 18.

Cascón A, Comino-Méndez I, Currás-Freixes M, De Cubas A a., Contreras L, Richter S, Peitzsch M, Mancikova V, Inglada-Pérez L, Pérez-Barrios A, Calatayud M, Azriel S, Villar-Vicente R, Aller J, Setién F, Moran S, Garcia JF, Río-Machín A, Letón R, Gómez-Graña Á, Apellániz-Ruiz M, Roncador G, Esteller M, Rodríguez-Antona C, Satrústegui J, Eisenhofer G, Urioste M, Robledo M. Whole-exome sequencing identifies MDH2 as a new familial paraganglioma gene. Journal of the National Cancer Institute 2015;107:1–5.

Burnichon N, Vescovo L, Amar L, Libé R, de Reynies A, Venisse A, Jouanno E, Laurendeau I, Parfait B, Bertherat J, Plouin PF, Jeunemaitre X, Favier J, Gimenez-Roqueplo AP. Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. Hum Mol Genet. 2011;20(20):3974-85.

Burnichon N, Buffet A, Parfait B, Letouzé E, Laurendeau I, Loriot C, Pasmant E, Abermil N, Valeyrie-Allanore L, Bertherat J, Amar L, Vidaud D, Favier J, Gimenez-Roqueplo AP. Somatic NF1 inactivation is a frequent event in sporadic pheochromocytoma. Hum Mol Genet. 2012;21(26):5397-405.

75 Welander J, Söderkvist P, Gimm O. The NF1 gene: a frequent mutational target in sporadic pheochromocytomas and beyond. Endocr Relat Cancer. 2013;20(4):C13-7.

van Nederveen FH, Korpershoek E, Lenders JW, de Krijger RR, Dinjens WN. Somatic SDHB mutation in an extraadrenal pheochromocytoma. N Engl J Med. 2007;357(3):306-8.

Gimm O, Armanios M, Dziema H, Neumann HP, Eng C. Somatic and occult germ-line mutations in SDHD, a mitochondrial complex II gene, in nonfamilial pheochromocytoma. Cancer Res. 2000;60(24):6822-5.

78 Burnichon N, Cascón A, Schiavi F, Morales NP, Comino-Méndez I, Abermil N, Inglada-Pérez L, de Cubas AA, Amar L, Barontini M, de Quirós SB, Bertherat J, Bignon YJ, Blok MJ, Bobisse

S, Borrego S, Castellano M, Chanson P, Chiara MD, Corssmit EP, Giacchè M, de Krijger RR, Ercolino T, Girerd X, Gómez-García EB, Gómez-Graña A, Guilhem I, Hes FJ, Honrado E, Korpershoek E, Lenders JW, Letón R, Mensenkamp AR, Merlo A, Mori L, Murat A, Pierre P, Plouin PF, Prodanov T, Quesada-Charneco M, Qin N, Rapizzi E, Raymond V, Reisch N, Roncador G, Ruiz-Ferrer M, Schillo F, Stegmann AP, Suarez C, Taschin E, Timmers HJ, Tops CM, Urioste M, Beuschlein F, Pacak K, Mannelli M, Dahia PL, Opocher G, Eisenhofer G, Gimenez-Roqueplo AP, Robledo M. MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin Cancer Res. 2012;18(10):2828-37.

Crona J, Delgado Verdugo A, Maharjan R, Stålberg P, Granberg D, Hellman P, Björklund
 P. Somatic mutations in H-RAS in sporadic pheochromocytoma and paraganglioma identified by
 exome sequencing. J Clin Endocrinol Metab. 2013;98(7):E1266-71.

Comino-Méndez I, de Cubas AA, Bernal C, Álvarez-Escolá C, Sánchez-Malo C, Ramírez-Tortosa CL, Pedrinaci S, Rapizzi E, Ercolino T, Bernini G, Bacca A, Letón R, Pita G, Alonso MR, Leandro-García LJ, Gómez-Graña A, Inglada-Pérez L, Mancikova V, Rodríguez-Antona C, Mannelli M, Robledo M, Cascón A. Tumoral EPAS1 (HIF2A) mutations explain sporadic pheochromocytoma and paraganglioma in the absence of erythrocytosis. Hum Mol Genet. 2013;22(11):2169-76.

81 Buffet A, Smati S, Mansuy L, Ménara M, Lebras M, Heymann MF, Simian C, Favier J, Murat A, Cariou B, Gimenez-Roqueplo AP. Mosaicism in HIF2A-related polycythemiaparaganglioma syndrome. J Clin Endocrinol Metab. 2014;99(2):E369-73.

Tinschert S, Naumann I, Stegmann E, Buske A, Kaufmann D, Thiel G, Jenne DE. Segmental neurofibromatosis is caused by somatic mutation of the neurofibromatosis type 1 (NF1) gene. Eur J Hum Genet. 2000;8(6):455-9.

83 Coppin L, Grutzmacher C, Crépin M, Destailleur E, Giraud S, Cardot-Bauters C, Porchet N, Pigny P. VHL mosaicism can be detected by clinical next-generation sequencing and is not restricted to patients with a mild phenotype. Eur J Hum Genet. 2014;22(9):1149-52.

Björklund P, Pacak K, Crona J. Precision medicine in pheochromocytoma and paraganglioma: current and future concepts. J Intern Med. 2016;280(6):559-573.

Tong Z, Gold L, Karl E, Dorward H, Lee E, Bondy CA, Dean J, Nelson LM. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Science 2000;26:268–70.

Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E SF, Husebye ES, Eng C ME. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 2001;69:49–54.

87 Burnichon N, Brière JJ, Libé R, Vescovo L, Rivière J, Tissier F, Jouanno E, Jeunemaitre X, Bénit P, Tzagoloff A, Rustin P, Bertherat J, Favier J, Gimenez-Roqueplo AP. SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet. 2010;19(15):3011-20.

88 Eisenhofer G, Huynh TT, Pacak K, Brouwers FM, Walther MM, Linehan WM, Munson PJ, Mannelli M, Goldstein DS, Elkahloun AG. Distinct gene expression profiles in norepinephrine- and epinephrine-producing hereditary and sporadic pheochromocytomas: activation of hypoxiadriven angiogenic pathways in von Hippel-Lindau syndrome. Endocr Relat Cancer. 2004;11(4):897-911.

Dahia PL, Ross KN, Wright ME, Hayashida CY, Santagata S, Barontini M, Kung AL, Sanso G, Powers JF, Tischler AS, Hodin R, Heitritter S, Moore F, Dluhy R, Sosa JA, Ocal IT, Benn DE, Marsh DJ, Robinson BG, Schneider K, Garber J, Arum SM, Korbonits M, Grossman A, Pigny P, Toledo SP, Nosé V, Li C, Stiles CD. A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet. 2005;1(1):72-80.

90 Favier J, Brière JJ, Burnichon N, Rivière J, Vescovo L, Benit P, Giscos-Douriez I, De Reyniès A, Bertherat J, Badoual C, Tissier F, Amar L, Libé R, Plouin PF, Jeunemaitre X, Rustin P, Gimenez-Roqueplo AP. The Warburg effect is genetically determined in inherited pheochromocytomas. PLoS One. 2009;4(9):e7094.

López-Jiménez E, Gómez-López G, Leandro-García LJ, Muñoz I SF, Montero-Conde C, de Cubas AA, Ramires R, Landa I, Leskelä S MA, Inglada-Pérez L, de la Vega L, Rodríguez-Antona C, Letón R, Bernal C de C, JM, Diez-Tascón C, Fraga MF, Boullosa C, Pisano DG, Opocher G, Robledo M C, A. Research resource: Transcriptional profiling reveals different pseudohypoxic signatures in SDHB and VHL-related pheochromocytomas. Mol Endocrinol 2010;24:2382–91.

Toledo RA, Qin Y, Srikantan S, Morales NP, Li Q, Deng Y, Kim SW, Pereira MA, Toledo SP, Su X, Aguiar RC, Dahia PL. In vivo and in vitro oncogenic effects of HIF2A mutations in pheochromocytomas and paragangliomas. Endocr Relat Cancer. 2013;20(3):349-59.

Toledo RA, Qin Y, Cheng ZM, Gao Q, Iwata S, Silva GM, Prasad ML, Ocal IT, Rao S, Aronin N, Barontini M, Bruder J, Reddick RL, Chen Y, Aguiar RC, Dahia PL. Recurrent Mutations of Chromatin-Remodeling Genes and Kinase Receptors in Pheochromocytomas and Paragangliomas. Clin Cancer Res. 2016;22(9):2301-10.

Rattenberry E, Vialard L, Yeung A, Bair H, McKay K, Jafri M, Canham N, Cole TR, Denes J, Hodgson SV, Irving R, Izatt L, Korbonits M, Kumar AV, Lalloo F, Morrison PJ, Woodward ER, Macdonald F, Wallis Y, Maher ER. A comprehensive next generation sequencing-based genetic testing strategy to improve diagnosis of inherited pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2013;98(7):E1248-56.

Luchetti A, Walsh D, Rodger F, Clark G, Martin T, Irving R, Sanna M, Yao M, Robledo M, Neumann HP, Woodward ER, Latif F, Abbs S, Martin H, Maher ER. Profiling of somatic mutations in phaeochromocytoma and paraganglioma by targeted next generation sequencing analysis. Int J Endocrinol. 2015;2015:138573.

Welander J, Larsson C, Bäckdahl M, Hareni N, Sivlér T, Brauckhoff M, Söderkvist P, Gimm
O. Integrative genomics reveals frequent somatic NF1 mutations in sporadic pheochromocytomas. Hum Mol Genet. 2012;21(26):5406-16.

97 Casey R, Garrahy A, Tuthill A, O'Halloran D, Joyce C, Casey MB, O'Shea P, Bell M. Universal genetic screening uncovers a novel presentation of an SDHAF2 mutation. J Clin Endocrinol Metab. 2014;99(7):E1392-6.

98 Welander J, Andreasson A, Juhlin CC, Wiseman RW, Bäckdahl M, Höög A, Larsson C, Gimm O, Söderkvist P. Rare germline mutations identified by targeted next-generation sequencing of susceptibility genes in pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2014;99(7):E1352-60.

99 Crona J, Nordling M, Maharjan R, Granberg D, Stålberg P, Hellman P, Björklund
P. Integrative genetic characterization and phenotype correlations in pheochromocytoma and paraganglioma tumours. PLoS One. 2014;9(1):e86756.

Qin Y, Yao L, King EE, Buddavarapu K, Lenci RE, Chocron ES, Lechleiter JD, Sass M, Aronin N, Schiavi F, Boaretto F, Opocher G, Toledo RA, Toledo SP, Stiles C, Aguiar RC, Dahia PL. Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat Genet. 2010;42(3):229-33.

101 Zhuang Z, Yang C, Lorenzo F, Merino M, Fojo T, Kebebew E, Popovic V, Stratakis

CA, Prchal JT, Pacak K. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N Engl J Med. 2012;367(10):922-30.

102 Fishbein L, Khare S, Wubbenhorst B, DeSloover D, D'Andrea K, Merrill S, Cho NW, Greenberg RA, Else T, Montone K, LiVolsi V, Fraker D, Daber R, Cohen DL, Nathanson KL. Wholeexome sequencing identifies somatic ATRX mutations in pheochromocytomas and paragangliomas. Nat Commun. 2015;6:6140.

Liu T, Brown TC, Juhlin CC, Andreasson A, Wang N, Bäckdahl M, Healy JM, Prasad ML, Korah R, Carling T, Xu D, Larsson C. The activating TERT promoter mutation C228T is recurrent in subsets of adrenal tumors. Endocr Relat Cancer. 2014;21(3):427-34.

104 Richter S, Klink B, Nacke B, AA de C, A M, Rapizzi E MM, Skondra C, Mannelli M, Robledo M, Menschikowski M EG. Epigenetic Mutation of the Succinate Dehydrogenase C Promoter in a Patient With Two Paragangliomas. J Clin Endocrinol Metab 2016;101(2):359–63.

105 Castro-Vega LJ, Kiando SR, Burnichon N, Buffet A, Amar L, Simian C, Berdelou A, Galan P, Schlumberger M, Bouatia-Naji N, Favier J, Bressac-de Paillerets B, Gimenez-Roqueplo AP. The MITF, p.E318K Variant, as a Risk Factor for Pheochromocytoma and Paraganglioma. J Clin Endocrinol Metab. 2016;101(12):4764-4768.

Pollard PJ, Brière JJ, Alam NA, Barwell J, Barclay E, Wortham NC, Hunt T, Mitchell M, Olpin S, Moat SJ, Hargreaves IP, Heales SJ, Chung YL, Griffiths JR, Dalgleish A, McGrath JA, Gleeson MJ, Hodgson SV, Poulsom R, Rustin P, Tomlinson IP. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet. 2005;14(15):2231-9.

107 Brière JJ, Favier J, Bénit P, El Ghouzzi V, Lorenzato A, Rabier D, Di Renzo MF, Gimenez-Roqueplo AP, Rustin P. Mitochondrial succinate is instrumental for HIF1alpha nuclear translocation in SDHA-mutant fibroblasts under normoxic conditions. Hum Mol Genet. 2005;14(21):3263-9.

Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB, Gottlieb E. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005;7(1):77-85.

109 Comino-Méndez I, Tejera ÁM, Currás-Freixes M, Remacha L, Gonzalvo P, Tonda R, Letón R, Blasco MA, Robledo M, Cascón A. ATRX driver mutation in a composite malignant pheochromocytoma. Cancer Genet. 2016;209(6):272-7.

Welander J, Andreasson A, Brauckhoff M, Bäckdahl M, Larsson C, Gimm O, Söderkvist P.
 Frequent EPAS1/HIF2α exons 9 and 12 mutations in non-familial pheochromocytoma. Endocr
 Relat Cancer. 2014;21(3):495-504.

Lenders JW, Duh QY, Eisenhofer G, Gimenez-Roqueplo AP, Grebe SK, Murad MH, Naruse M, Pacak K, Young WF Jr; Endocrine Society. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014;99(6):1915-42.

112 Martucci VL, Pacak K. Pheochromocytoma and paraganglioma: diagnosis, genetics, management, and treatment. Curr Probl Cancer. 2014;38(1):7-41.

113 Bausch B, Koschker AC, Fassnacht M, Stoevesandt J, Hoffmann MM, Eng C, Allolio B, Neumann HP. Comprehensive mutation scanning of NF1 in apparently sporadic cases of pheochromocytoma. J Clin Endocrinol Metab. 2006;91(9):3478-81.

Erlic Z, Rybicki L, Peczkowska M, Golcher H, Kann PH, Brauckhoff M, Müssig K, Muresan M, Schäffler A, Reisch N, Schott M, Fassnacht M, Opocher G, Klose S, Fottner C, Forrer F, Plöckinger U, Petersenn S, Zabolotny D, Kollukch O, Yaremchuk S, Januszewicz A, Walz MK, Eng C, Neumann HP; European-American Pheochromocytoma Study Group.. Clinical predictors and algorithm for the genetic diagnosis of pheochromocytoma patients. Clin Cancer Res. 2009;15(20):6378-85.

Mannelli M, Castellano M, Schiavi F, Filetti S, Giacchè M, Mori L, Pignataro V, Bernini G, Giachè V, Bacca A, Biondi B, Corona G, Di Trapani G, Grossrubatscher E, Reimondo G, Arnaldi G, Giacchetti G, Veglio F, Loli P, Colao A, Ambrosio MR, Terzolo M, Letizia C, Ercolino T, Opocher G; Italian Pheochromocytoma/Paraganglioma Network. Clinically guided genetic screening in a large

cohort of italian patients with pheochromocytomas and/or functional or nonfunctional paragangliomas. J Clin Endocrinol Metab. 2009;94(5):1541-7.

116 Martins R, Bugalho MJ. Paragangliomas/Pheochromocytomas: clinically oriented genetic testing. Int J Endocrinol. 2014;2014:794187.

117 Oudijk L, de Krijger RR, Rapa I, Beuschlein F, de Cubas AA, Dei Tos AP, Dinjens WN, Korpershoek E, Mancikova V, Mannelli M, Papotti M, Vatrano S, Robledo M, Volante M. H-RAS mutations are restricted to sporadic pheochromocytomas lacking specific clinical or pathological features: data from a multi-institutional series. J Clin Endocrinol Metab. 2014;99(7):E1376-80.

118 Eisenhofer G, Peitzsch M. Laboratory evaluation of pheochromocytoma and paraganglioma. Clin Chem. 2014;60(12):1486-99.

de Jong WH, Eisenhofer G, Post WJ, Muskiet FA, de Vries EG, Kema IP. Dietary influences on plasma and urinary metanephrines: implications for diagnosis of catecholamine-producing tumors. J Clin Endocrinol Metab. 2009;94(8):2841-9.

120 Timmers HJLM, Pacak K, Huynh TT, Abu-asab M, Tsokos M, Merino MJ, Baysal BE, Adams KT, Eisenhofer G. Biochemically Silent Abdominal Paragangliomas in Patients with Mutations in the Succinate Dehydrogenase Subunit B Gene. J Clin Endocrinol Metab 2008;93:4826–32.

Eisenhofer G, Lenders JWM, Goldstein DS, Mannelli M, Csako G, Walther MM, Brouwers FM, Pacak K. Pheochromocytoma Catecholamine Phenotypes and Prediction of Tumor Size and Location by Use of Plasma Free Metanephrines. Clinical Chemistry 2005;51:4:735–44.

Eisenhofer G, Goldstein DS, Sullivan P, Csako G, Brouwers FM, Lai EW, Adams KT, Pacak K. Biochemical and Clinical Manifestations of Dopamine-Producing Paragangliomas : Utility of Plasma Methoxytyramine. J Clin Endocrinol Metab 2005;90 (4):2068–75.

Sue M, Martucci V, Frey F, Lenders JWM, Prejbisz A, Swantje B, Robledo M, Pacak K, Eisenhofer G. Lack of utility of SDHB mutation testing in adrenergic metastatic phaeochromocytoma. 2015;172(2):89–95.

Därr R, Lenders JW, Hofbauer LC, Naumann B, Bornstein SR, Eisenhofer G. Pheochromocytoma - update on disease management. Ther Adv Endocrinol Metab. 2012;3(1):11-26.

125 Timmers HJ, Taieb D, Pacak K. Current and future anatomical and functional imaging approaches to pheochromocytoma and paraganglioma. Horm Metab Res. 2012 ;44(5):367-72.

126 Shulkin BL, Wieland DM, Schwaiger M, Thompson NW, Francis IR, Haka MS, Rosenspire KC, Shapiro B, Sisson JC, Kuhl DE. PET scanning with hydroxyephedrine: an approach to the localization of pheochromocytoma. J Nucl Med. 1992;33(6):1125-31.

127 Mann GN, Link JM, Pham P, Pickett CA, Byrd DR, Kinahan PE, Krohn KA, Mankoff

DA. [11C]metahydroxyephedrine and [18F]fluorodeoxyglucose positron emission tomography improve clinical decision making in suspected pheochromocytoma. Ann Surg Oncol. 2006;13(2):187-97.

128 Elston MS, Meyer-Rochow GY, Conaglen HM, Clarkson A, Clifton-Bligh RJ, Conaglen JV, Gill AJ. Increased SSTR2A and SSTR3 expression in succinate dehydrogenase-deficient pheochromocytomas and paragangliomas. Hum Pathol. 2015

;46(3):390-6.

Reubi JC, Schär JC, Waser B, Wenger S, Heppeler A, Schmitt JS, Mäcke HR. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000 ;27(3):273-82.

Janssen I, Blanchet EM, Adams K, Chen CC, Millo CM, Herscovitch P, Taieb D, Kebebew E, Lehnert H, Fojo AT, Pacak K. Superiority of [68Ga]-DOTATATE PET/CT to Other Functional Imaging Modalities in the Localization of SDHB-Associated Metastatic Pheochromocytoma and Paraganglioma. Clin Cancer Res. 2015;21(17):3888-95.

Timmers HJ, Chen CC, Carrasquillo JA, Whatley M, Ling A, Havekes B, Eisenhofer G, Martiniova L, Adams KT, Pacak K. Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2009;94(12):4757-67.

Timmers HJ, Kozupa A, Chen CC, Carrasquillo JA, Ling A, Eisenhofer G, Adams KT, Solis D, Lenders JW, Pacak K. Superiority of fluorodeoxyglucose positron emission tomography to other functional imaging techniques in the evaluation of metastatic SDHB-associated pheochromocytoma and paraganglioma. J Clin Oncol. 2007;25(16):2262-9.

133 Timmers HJ, Chen CC, Carrasquillo JA, Whatley M, Ling A, Eisenhofer G, King KS, Rao JU, Wesley RA, Adams KT, Pacak K. Staging and functional characterization of pheochromocytoma and paraganglioma by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography. J Natl Cancer Inst. 2012;104(9):700-8.

King KS, Chen CC, Alexopoulos DK, Whatley MA, Reynolds JC, Patronas N, Ling A, Adams KT, Xekouki P, Lando H, Stratakis CA, Pacak K. Functional imaging of SDHx-related head and neck paragangliomas: comparison of 18F-fluorodihydroxyphenylalanine, 18Ffluorodopamine, 18F-fluoro-2-deoxy-D-glucose PET, 123I-metaiodobenzylguanidine scintigraphy, and 111In-pentetreotide scintigraphy. J Clin Endocrinol Metab. 2011;96(9):2779-85.

Lussey-Lepoutre C, Bellucci A, Morin A, Buffet A, Amar L, Janin M, Ottolenghi C, Zinzindohoué F, Autret G, Burnichon N, Robidel E, Banting B, Fontaine S, Cuenod CA, Benit P, Rustin P, Halimi P, Fournier L, Gimenez-Roqueplo AP, Favier J, Tavitian B. In Vivo Detection of

Succinate by Magnetic Resonance Spectroscopy as a Hallmark of SDHx Mutations in Paraganglioma. Clin Cancer Res. 2016;22(5):1120-9.

136 Varoquaux A, le Fur Y, Imperiale A, Reyre A, Montava M, Fakhry N, Namer IJ, Moulin G, Pacak K, Guye M, Taïeb D. Magnetic resonance spectroscopy of paragangliomas: new insights into in vivo metabolomics. Endocr Relat Cancer. 2015;22(4):M1-8.

137 van Nederveen FH, Gaal J, Favier J, Korpershoek E, Oldenburg RA, de Bruyn EM,

Sleddens HF, Derkx P, Rivière J, Dannenberg H, Petri BJ, Komminoth P, Pacak K, Hop WC, Pollard PJ, Mannelli M, Bayley JP, Perren A, Niemann S, Verhofstad AA, de Bruïne AP, Maher ER, Tissier F, Méatchi T, Badoual C, Bertherat J, Amar L, Alataki D, Van Marck E, Ferrau F, François J, de Herder WW, Peeters MP, van Linge A, Lenders JW, Gimenez-Roqueplo AP, de Krijger RR, Dinjens WN. An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncol. 2009 ;10(8):764-71.

138 Korpershoek E, Favier J, Gaal J, Burnichon N, van Gessel B, Oudijk L, Badoual C, Gadessaud N, Venisse A, Bayley JP, van Dooren MF, de Herder WW, Tissier F, Plouin PF, van Nederveen FH, Dinjens WN, Gimenez-Roqueplo AP, de Krijger RR. SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic

paragangliomas and pheochromocytomas. J Clin Endocrinol Metab. 2011;96(9):E1472-6.

139 Crona J, Backman S, Maharjan R, Mayrhofer M, Stålberg P, Isaksson A, Hellman P, Björklund P. Spatiotemporal Heterogeneity Characterizes the Genetic Landscape of Pheochromocytoma and Defines Early Events in Tumorigenesis. Clin Cancer Res. 2015;21(19):4451-60.

140 Sisson JC, Shapiro B, Beierwaltes WH, Glowniak JV, Nakajo M, Mangner TJ, Carey JE, Swanson DP, Copp JE, Satterlee WG, et al. Radiopharmaceutical treatment of malignant pheochromocytoma. J Nucl Med. 1984;25(2):197-206.

141 Gulenchyn KY, Yao X, Asa SL, Singh S, Law C. Radionuclide therapy in neuroendocrine tumours: a systematic review. Clin Oncol (R Coll Radiol). 2012;24(4):294-308.

142 van Hulsteijn LT, Niemeijer ND, Dekkers OM, Corssmit EP. (131)I-MIBG therapy for malignant paraganglioma and phaeochromocytoma: systematic review and meta-analysis. Clin Endocrinol (Oxf). 2014;80(4):487-501.

Martiniova L, Perera SM, Brouwers FM, Alesci S, Abu-Asab M, Marvelle AF, Kiesewetter DO, Thomasson D, Morris JC, Kvetnansky R, Tischler AS, Reynolds JC, Fojo AT, Pacak K. Increased uptake of [¹²³I]meta-iodobenzylguanidine, [¹⁸F]fluorodopamine, and [³H]norepinephrine in mouse pheochromocytoma cells and tumors after treatment with the histone deacetylase inhibitors. Endocr Relat Cancer. 2011;18(1):143-57.

144 van Essen M, Krenning EP, Kooij PP, Bakker WH, Feelders RA, de Herder WW, Wolbers JG, Kwekkeboom DJ. Effects of therapy with [177Lu-DOTA0, Tyr3]octreotate in patients with paraganglioma, meningioma, small cell lung carcinoma, and melanoma. J Nucl Med. 2006;47(10):1599-606.

Forrer F, Riedweg I, Maecke HR, Mueller-Brand J. Radiolabeled DOTATOC in patients with advanced paraganglioma and pheochromocytoma. Q J Nucl Med Mol Imaging. 2008;52(4):334-40.

Menda Y, O'Dorisio MS, Kao S, Khanna G, Michael S, Connolly M, Babich J, O'Dorisio T, Bushnell D, Madsen M. Phase I trial of 90Y-DOTATOC therapy in children and young adults with refractory solid tumors that express somatostatin receptors. J Nucl Med. 2010;51(10):1524-31.

147Zovato S, Kumanova A, Demattè S, Sansovini M, Bodei L, Di Sarra D, CasagrandaE, Severi S, Ambrosetti A, Schiavi F, Opocher G, Paganelli G. Peptide receptor radionuclide therapy(PRRT) with 177Lu-DOTATATE in individuals with neck or mediastinal paraganglioma (PGL). HormMetab Res. 2012;44(5):411-4.

Puranik AD, Kulkarni HR, Singh A, Baum RP. Peptide receptor radionuclide therapy with (90)Y/ (177)Lu-labelled peptides for inoperable head and neck paragangliomas (glomus tumours). Eur J Nucl Med Mol Imaging. 2015;42(8):1223-30.

149 Keiser HR, Goldstein DS, Wade JL, Douglas FL, Averbuch SD. Treatment of malignant pheochromocytoma with combination chemotherapy. Hypertension. 1985;7(3 Pt 2):118-24.

Niemeijer ND, Alblas G, van Hulsteijn LT, Dekkers OM, Corssmit EP. Chemotherapy with cyclophosphamide, vincristine and dacarbazine for malignant paraganglioma and pheochromocytoma: systematic review and meta-analysis. Clin Endocrinol (Oxf). 2014;81(5):642-51.

Gillon P, Godbert Y, Dupin C, Bubien V, Italiano A, Roubaud G. Long clinical benefit achieved in two patients with malignant paraganglioma treated by metronomic cyclophosphamide. Future Oncol. 2014;10(14):2121-5.

Druce MR, Kaltsas GA, Fraenkel M, Gross DJ, Grossman AB. Novel and evolving therapies in the treatment of malignant phaeochromocytoma: experience with the mTOR inhibitor everolimus (RAD001). Horm Metab Res. 2009;41(9):697-702.

153 Oh DY, Kim TW, Park YS, Shin SJ, Shin SH, Song EK, Lee HJ, Lee KW, Bang YJ. Phase 2 study of everolimus monotherapy in patients with nonfunctioning neuroendocrine tumors or pheochromocytomas/paragangliomas. Cancer. 2012;118(24):6162-70.

154 Kulke MH, Stuart K, Enzinger PC, Ryan DP, Clark JW, Muzikansky A, Vincitore M, Michelini A, Fuchs CS. Phase II study of temozolomide and thalidomide in patients with metastatic neuroendocrine tumors. J Clin Oncol. 2006;24(3):401-6.

Hadoux J, Favier J, Scoazec JY, Leboulleux S, Al Ghuzlan A, Caramella C, Déandreis D, Borget I, Loriot C, Chougnet C, Letouzé E, Young J, Amar L, Bertherat J, Libé R, Dumont F, Deschamps F, Schlumberger M, Gimenez-Roqueplo AP, Baudin E. SDHB mutations are associated with response to temozolomide in patients with metastatic pheochromocytoma or paraganglioma. Int J Cancer. 2014;135(11):2711-20.

Gross DJ, Munter G, Bitan M, Siegal T, Gabizon A, Weitzen R, Merimsky O, Ackerstein A, Salmon A, Sella A, Slavin S; Israel Glivec in Solid Tumors Study Group. The role of imatinib mesylate (Glivec) for treatment of patients with malignant endocrine tumors positive for c-kit or PDGF-R. Endocr Relat Cancer. 2006;13(2):535-40.

Jimenez C, Cabanillas ME, Santarpia L, Jonasch E, Kyle KL, Lano EA, Matin SF, Nunez RF, Perrier ND, Phan A, Rich TA, Shah B, Williams MD, Waguespack SG. Use of the tyrosine kinase inhibitor sunitinib in a patient with von Hippel-Lindau disease: targeting angiogenic factors in pheochromocytoma and other von Hippel-Lindau disease-related tumors. J Clin Endocrinol Metab. 2009;94(2):386-91.

Joshua AM, Ezzat S, Asa SL, Evans A, Broom R, Freeman M, Knox JJ. Rationale and evidence for sunitinib in the treatment of malignant paraganglioma/pheochromocytoma. J Clin Endocrinol Metab. 2009;94(1):5-9.

159 Hahn NM, Reckova M, Cheng L, Baldridge LA, Cummings OW, Sweeney CJ. Patient with malignant paraganglioma responding to the multikinase inhibitor sunitinib malate. J Clin Oncol. 2009;27(3):460-3.

Ayala-Ramirez M, Chougnet CN, Habra MA, Palmer JL, Leboulleux S, Cabanillas ME, Caramella C, Anderson P, Al Ghuzlan A, Waguespack SG, Deandreis D, Baudin E, Jimenez C. Treatment with sunitinib for patients with progressive metastatic pheochromocytomas and sympathetic paragangliomas. J Clin Endocrinol Metab. 2012;97(11):4040-50.

Pasquali D, Rossi V, Conzo G, Pannone G, Bufo P, De Bellis A, Renzullo A, Bellastella G, Colao A, Vallone G, Bellastella A, Sinisi AA. Effects of somatostatin analog SOM230 on cell proliferation, apoptosis, and catecholamine levels in cultured pheochromocytoma cells. J Mol Endocrinol. 2008;40(6):263-71.

162 Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual, Third Edition. Cold Spring Harbour Laboratory Press 2001;1-3.http://www.ncbi.nlm.nih.gov/pubmed/7557476

Yao L, Schiavi F, Cascon A, Qin Y, Inglada-Pérez L, King EE, Toledo RA, Ercolino T, Rapizzi E, Ricketts CJ, Mori L, Giacchè M, Mendola A, Taschin E, Boaretto F, Loli P, Iacobone M, Rossi GP, Biondi B, Lima-Junior JV, Kater CE, Bex M, Vikkula M, Grossman AB, Gruber SB, Barontini M, Persu A, Castellano M, Toledo SP, Maher ER, Mannelli M, Opocher G, Robledo M, Dahia PL. Spectrum

and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas. JAMA. 2010;304(23):2611-9.

164 Cascón A, Montero-Conde C, Ruiz-Llorente S, Mercadillo F, Letón R, Rodríguez-Antona C, Martínez-Delgado B, Delgado M, Díez A, Rovira A, Díaz JA, Robledo M. Gross SDHB deletions in patients with paraganglioma detected by multiplex PCR: a possible hot spot? Genes Chromosomes Cancer. 2006;45(3):213-9.

Pasmant E, Sabbagh A, Masliah-Planchon J, Ortonne N, Laurendeau I, Melin L, Ferkal S, Hernandez L, Leroy K, Valeyrie-Allanore L, Parfait B, Vidaud D, Bièche I, Lantieri L, Wolkenstein P, Vidaud M; NF France Network.. Role of noncoding RNA ANRIL in genesis of plexiform neurofibromas in neurofibromatosis type 1. J Natl Cancer Inst. 2011;103(22):1713-22.

Latteyer S, Klein-Hitpass L, Khandanpour C, Zwanziger D, Poeppel TD, Schmid KW, Führer D, Moeller LC. A 6-Base Pair in Frame Germline Deletion in Exon 7 Of RET Leads to Increased RET Phosphorylation, ERK Activation, and MEN2A. J Clin Endocrinol Metab. 2016;101(3):1016-22.

167 Capatina C, Ntali G, Karavitaki N, Grossman AB. The management of head-and-neck paragangliomas. Endocr Relat Cancer. 2013;20(5):R291-305.

168 Dahia PL. The genetic landscape of pheochromocytomas and paragangliomas: somatic mutations take center stage. J Clin Endocrinol Metab. 2013;98(7):2679-81.

Abermil N, Guillaud-Bataille M, Burnichon N, Venisse A, Manivet P, Guignat L, Drui D, Chupin M, Josseaume C, Affres H, Plouin PF, Bertherat J, Jeunemaître X, Gimenez-Roqueplo AP. TMEM127 screening in a large cohort of patients with pheochromocytoma and/or paraganglioma. J Clin Endocrinol Metab. 2012;97(5):E805-9.

Bayley JP, Kunst HP, Cascon A, Sampietro ML, Gaal J, Korpershoek E, Hinojar-Gutierrez A, Timmers HJ, Hoefsloot LH, Hermsen MA, Suárez C, Hussain AK, Vriends AH, Hes FJ, Jansen JC, Tops CM, Corssmit EP, de Knijff P, Lenders JW, Cremers CW, Devilee P, Dinjens WN, de Krijger RR, Robledo M. SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol. 2010;11(4):366-72.

171 Comino-Méndez I, de Cubas AA, Bernal C, Álvarez-Escolá C, Sánchez-Malo C, Ramírez-Tortosa CL, Pedrinaci S, Rapizzi E, Ercolino T, Bernini G, Bacca A, Letón R, Pita G, Alonso MR, Leandro-García LJ, Gómez-Graña A, Inglada-Pérez L, Mancikova V, Rodríguez-Antona C, Mannelli M, Robledo M, Cascón A. Tumoral EPAS1 (HIF2A) mutations explain sporadic pheochromocytoma and paraganglioma in the absence of erythrocytosis. Hum Mol Genet. 2013;22(11):2169-76.

Li X, Buckton AJ, Wilkinson SL, John S, Walsh R, Novotny T, Valaskova I, Gupta M, Game L, Barton PJ, Cook SA, Ware JS. Towards clinical molecular diagnosis of inherited cardiac conditions: a comparison of bench-top genome DNA sequencers. PLoS One. 2013;8(7):e67744.

173 Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet. 2002;3(4):285-98.

Jiménez C, Cote G, Arnold A, Gagel RF. Review: Should patients with apparently sporadic pheochromocytomas or paragangliomas be screened for hereditary syndromes? J Clin Endocrinol Metab. 2006;91(8):2851-8.

175 Currás-Freixes M, Inglada-Pérez L, Mancikova V, Montero-Conde C, Letón R, Comino-Méndez I, Apellániz-Ruiz M, Sánchez-Barroso L, Aguirre Sánchez-Covisa M, Alcázar V, Aller J, Álvarez-Escolá C, Andía-Melero VM, Azriel-Mira S, Calatayud-Gutiérrez M, Díaz JÁ, Díez-Hernández A, Lamas-Oliveira C, Marazuela M, Matias-Guiu X, Meoro-Avilés A, Patiño-García A, Pedrinaci S, Riesco-Eizaguirre G, Sábado-Álvarez C, Sáez-Villaverde R, Sainz de Los Terreros A, Sanz Guadarrama Ó, Sastre-Marcos J, Scolá-Yurrita B, Segura-Huerta Á, Serrano-Corredor Mde L, Villar-Vicente MR, Rodríguez-Antona C, Korpershoek E, Cascón A, Robledo M. Recommendations for somatic and germline genetic testing of single pheochromocytoma and paraganglioma based on findings from a series of 329 patients. J Med Genet. 2015;52(10):647-56.

176 Welander J, Söderkvist P, Gimm O. The NF1 gene: a frequent mutational target in sporadic pheochromocytomas and beyond. Endocr Relat Cancer. 2013;20(4):C13-7. 177

Papathomas TG, Oudijk L, Persu A, Gill AJ, van Nederveen F, Tischler AS, Tissier F, Volante M, Matias-Guiu X, Smid M, Favier J, Rapizzi E, Libe R, Currás-Freixes M, Aydin S, Huynh T, Lichtenauer U, van Berkel A, Canu L, Domingues R, Clifton-Bligh RJ, Bialas M, Vikkula M, Baretton G, Papotti M, Nesi G, Badoual C, Pacak K, Eisenhofer G, Timmers HJ, Beuschlein F, Bertherat J, Mannelli M, Robledo M, Gimenez-Roqueplo AP, Dinjens WN, Korpershoek E, de Krijger RR. SDHB/SDHA immunohistochemistry in pheochromocytomas and paragangliomas: a multicenter interobserver variation analysis using virtual microscopy: a Multinational Study of the European Network for the Study of Adrenal Tumors (ENS@T). Mod Pathol. 2015;28(6):807-21.

178 Rich T, Jackson M, Roman-Gonzalez A, Shah K, Cote GJ, Jimenez C. Metastatic sympathetic paraganglioma in a patient with loss of the SDHC gene. Fam Cancer. 2015 Dec;14(4):615-9.

179 Gripp KW, Kawame H, Viskochil DH, Nicholson L. Elevated catecholamine metabolites in patients with Costello syndrome. Am J Med Genet A. 2004;128A(1):48-51.

Buffet A, Smati S, Mansuy L, Ménara M, Lebras M, Heymann MF, Simian C, Favier J, Murat A, Cariou B, Gimenez-Roqueplo AP. Mosaicism in HIF2A-related polycythemia-paraganglioma syndrome. J Clin Endocrinol Metab. 2014;99(2):E369-73.

Lorenzo FR, Yang C, Ng Tang Fui M, Vankayalapati H, Zhuang Z, Huynh T, Grossmann M, Pacak K, Prchal JT. A novel EPAS1/HIF2A germline mutation in a congenital polycythemia with paraganglioma. J Mol Med (Berl). 2013;91(4):507-12.
182 van Nederveen FH, Korpershoek E, Lenders JW, de Krijger RR, Dinjens WN. Somatic SDHB mutation in an extraadrenal pheochromocytoma. N Engl J Med. 2007;357(3):306-8.

183 Weber A, Hoffmann MM, Neumann HP, Erlic Z. Somatic mutation analysis of the SDHB, SDHC, SDHD, and RET genes in the clinical assessment of sporadic and hereditary pheochromocytoma. Horm Cancer. 2012;3(4):187-92.

Qin Y, Deng Y, Ricketts CJ, Srikantan S, Wang E, Maher ER, Dahia PL. The tumor susceptibility gene TMEM127 is mutated in renal cell carcinomas and modulates endolysosomal function. Hum Mol Genet. 2014;23(9):2428-39.

Pasini B SC. SDH mutations in tumorigenesis and inherited endocrine tumours: lesson from the phaeochromocytoma-paraganglioma syndromes. J Intern Med 2009;266(1):19–42.

Braun S, Riemann K, Kupka S, Leistenschneider P, Sotlar K, Schmid H, Blin N. Active succinate dehydrogenase (SDH) and lack of SDHD mutations in sporadic paragangliomas. Anticancer Res. 2005;25(4):2809-14.

187 Comino-Méndez I, Leandro-García LJ, Montoya G, Inglada-Pérez L, de Cubas AA, Currás-Freixes M, Tysoe C, Izatt L, Letón R, Gómez-Graña Á, Mancikova V, Apellániz-Ruiz M, Mannelli M, Schiavi F, Favier J, Gimenez-Roqueplo AP, Timmers HJ, Roncador G, Garcia JF, Rodríguez-Antona C, Robledo M, Cascón A. Functional and in silico assessment of MAX variants of unknown significance. J Mol Med (Berl). 2015;93(11):1247-55.

188 NGS in PPGL (NGSnPPGL) Study Group., Toledo RA, Burnichon N, Cascon A, Benn DE, Bayley JP, Welander J, Tops CM, Firth H, Dwight T, Ercolino T, Mannelli M, Opocher G, Clifton-Bligh R, Gimm O, Maher ER, Robledo M, Gimenez-Roqueplo AP, Dahia PL. Consensus Statement on next-generation-sequencing-based diagnostic testing of hereditary phaeochromocytomas and paragangliomas. Nat Rev Endocrinol. 2016 Nov 18.

189 Nordstrom-O'Brien M, van der Luijt RB, van Rooijen E van den OA, Majoor-Krakauer DF, Lolkema MP, van Brussel A, Voest EE GR. Genetic analysis of von Hippel-Lindau disease. Hum Mutat 2010;31(5):521–37.

190 Wells SA Jr, Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF, Lee N, Machens A, Moley JF, Pacini F, Raue F, Frank-Raue K, Robinson B, Rosenthal MS, Santoro M, Schlumberger M, Shah M, Waguespack SG; American Thyroid Association Guidelines Task Force on Medullary Thyroid Carcinoma.Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567-610.

Erlic Z, Rybicki L, Peczkowska M, Golcher H, Kann PH, Brauckhoff M, Müssig K, Muresan M, Schäffler A, Reisch N, Schott M, Fassnacht M, Opocher G, Klose S, Fottner C, Forrer F, Plöckinger U, Petersenn S, Zabolotny D, Kollukch O, Yaremchuk S, Januszewicz A, Walz MK, Eng C, Neumann

134

HP; European-American Pheochromocytoma Study Group.. Clinical predictors and algorithm for the genetic diagnosis of pheochromocytoma patients. Clin Cancer Res. 2009;15(20):6378-85.

192 Neumann HP, Erlic Z, Boedeker CC, Rybicki LA, Robledo M, Hermsen M, Schiavi F, Falcioni M, Kwok P, Bauters C, Lampe K, Fischer M, Edelman E, Benn DE, Robinson BG, Wiegand S, Rasp G, Stuck BA, Hoffmann MM, Sullivan M, Sevilla MA, Weiss MM, Peczkowska M, Kubaszek A, Pigny P, Ward RL, Learoyd D, Croxson M, Zabolotny D, Yaremchuk S, Draf W, Muresan M, Lorenz RR, Knipping S, Strohm M, Dyckhoff G, Matthias C, Reisch N, Preuss SF, Esser D, Walter MA, Kaftan H, Stöver T, Fottner C, Gorgulla H, Malekpour M, Zarandy MM, Schipper J, Brase C, Glien A, Kühnemund M, Koscielny S, Schwerdtfeger P, Välimäki M, Szyfter W, Finckh U, Zerres K, Cascon A, Opocher G, Ridder GJ, Januszewicz A, Suarez C, Eng C. Clinical predictors for germline mutations in head and neck paraganglioma patients: cost reduction strategy in genetic diagnostic process as fall-out. Cancer Res. 2009;69(8):3650-6.

Maison N, Korpershoek E, Eisenhofer G, Robledo M, de Krijger R, Beuschlein F. Somatic RET mutation in a patient with pigmented adrenal pheochromocytoma. Endocrinol Diabetes Metab Case Rep. 2016;2016:150117.

194 Virtanen VB, Pukkala E, Kivisaari R, Salo PP, Koivusalo A, Arola J, Miettinen PJ, Rintala RJ, Perola M, Pakarinen MP. Thyroid cancer and co-occurring RET mutations in Hirschsprung disease. Endocr Relat Cancer. 2013;20(4):595-602.

Flynn A, Benn D, Clifton-Bligh R, Robinson B, Trainer AH, James P, Hogg A, Waldeck K, George J, Li J, Fox SB, Gill AJ, McArthur G, Hicks RJ, Tothill RW. The genomic landscape of phaeochromocytoma. J Pathol. 2015;236(1):78-89.

Toledo RA, Dahia PL. Next-generation sequencing for the diagnosis of hereditary pheochromocytoma and paraganglioma syndromes. Curr Opin Endocrinol Diabetes Obes. 2015;22(3):169-79.

197 Chan M, Ji SM, Yeo ZX, Gan L, Yap E, Yap YS, Ng R, Tan PH, Ho GH, Ang P L, AS. Development of a next-generation sequencing method for BRCA mutation screening: a comparison between a high-throughput and a benchtop platform. J Mol Diagn 2012;14(6):602–12.

198 Pritchard CC, Smith C, Salipante SJ, Lee MK, Thornton AM, Nord AS GC, Kupfer SS, Swisher EM, Bennett RL, Novetsky AP, Jarvik GP, Olopade OI G, PJ, King MC, Tait JF WT. ColoSeq provides comprehensive lynch and polyposis syndrome mutational analysis using massively parallel sequencing. J Mol Diagn 2012;14(4):357–66.

199 Feliubadaló L, Lopez-Doriga A, Castellsagué E, del Valle J MM, Tornero E, Montes E, Cuesta R, Gómez C, Campos O, Pineda M, González S M V, Brunet J, Blanco I, Serra E, Capellá G

135

LC. Next-generation sequencing meets genetic diagnostics: development of a comprehensive workflow for the analysis of BRCA1 and BRCA2 genes. Eur J Hum Genet 2013;21(8):864–70.

Halbritter J, Diaz K, Chaki M, Porath JD, Tarrier B, Fu C, Innis JL AS, Lyons RH, Stefanidis CJ, Omran H, Soliman NA OE. High-throughput mutation analysis in patients with a nephronophthisis-associated ciliopathy applying multiplexed barcoded array-based PCR amplification and next-generation sequencing. J Med Genet 2012;49(12):756–67.

Gargis AS, Kalman L, Berry MW, Bick DP, Dimmock DP, Hambuch T, Lu F LE, Voelkerding KV, Zehnbauer BA, Agarwala R, Bennett SF, Chen B, Chin EL C, JG, Das S, Farkas DH, Ferber MJ, Funke BH, Furtado MR G-RL, Geigenmüller U, Gunselman SJ, Hegde MR, Johnson PL, Kasarskis A, Kulkarni S L, T, Liu CS, Manion M, Manolio TA, Mardis ER, Merker JD, Rajeevan MS RM, Rehm HL, Simen BB, Yeakley JM, Zook JM LI. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat Biotechnol 2012;30(11):1033–6.

202 Sboner A, Mu XJ, Greenbaum D, Auerbach RK GM. The real cost of sequencing: higher than you think! Genome Biol 2011;12(8):125.

203 Sikkema-Raddatz B, Johansson LF, de Boer EN, Almomani R, Boven LG, van den Berg MP, van Spaendonck-Zwarts KY, van Tintelen JP, Sijmons RH, Jongbloed JD, Sinke RJ. Targeted next-generation sequencing can replace Sanger sequencing in clinical diagnostics. Hum Mutat. 2013;34(7):1035-42.

Crona J, Ljungström V, Welin S, Walz MK, Hellman P, Björklund P. Bioinformatic
 Challenges in Clinical Diagnostic Application of Targeted Next Generation Sequencing: Experience
 from Pheochromocytoma. PLoS One. 2015;10(7):e0133210.

205 American Society of Clinical Oncology.. American Society of Clinical Oncology policy statement update: genetic testing for cancer susceptibility. J Clin Oncol. 2003;21(12):2397-406

Gimenez-Roqueplo AP, Favier J, Rustin P, Rieubland C, Crespin M, Nau V, Khau Van Kien P, Corvol P, Plouin PF, Jeunemaitre X; COMETE Network.. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas.

Cancer Res. 2003;63(17):5615-21.

207 Fishbein L, Merrill S, Fraker DL, Cohen DL, Nathanson KL. Inherited mutations in pheochromocytoma and paraganglioma: why all patients should be offered genetic testing. Ann Surg Oncol. 2013;20(5):1444-50.

Iacobone M, Schiavi F, Bottussi M, Taschin E, Bobisse S, Fassina A, Opocher G, Favia G.
 Is genetic screening indicated in apparently sporadic pheochromocytomas and paragangliomas?
 Surgery. 2011 Dec;150(6):1194-201.

209 Korpershoek E, Favier J, Gaal J, Burnichon N, van Gessel B, Oudijk L, Badoual C, Gadessaud N, Venisse A, Bayley JP, van Dooren MF, de Herder WW, Tissier F, Plouin PF, van

136

Nederveen FH, Dinjens WN, Gimenez-Roqueplo AP, de Krijger RR. SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. J Clin Endocrinol Metab. 2011;96(9):E1472-6.

VIII. APPENDIX I: SUPPLEMENTAL MATERIAL

CUESTIONARIO CLÍNICO

DE	N / I	TC	AIT	-
ĸr	Ινι		IN I	-
				_

Hospital	l:
Médico	responsable: Servicio:
Email de	e contacto: Teléfono contacto:
Fecha re	egistro (día/mes/año):
PACIEN	ITE
Nombre	y apellidos:
Fecha na	acimiento (día/mes/año):
Sexo: Ho	ombre Mujer Lugar de nacimiento:
Etnia: Ca	aucásica 🗌 Africana 🗌 Oriental 🗌 Sud-Americana 🗌
Peso:	kg Talla: cm (en la cita en la que se firma consentimiento)
ANTEC	EDENTES PERSONALES
Sospech	a diagnóstica inicial: Incidentaloma Síntomas Screening*
*Screeni	ing por diagnóstico de CMT, por ser portador de mutación
Diabetes	s mellitus: Si No ; Año de diagnóstico de DM:
Tensión	arterial (TA):
1. 1	Normotensión Hipotensión HTA
2. 1	En caso de HTA: persistente paroxística persistente con paroxismos
3. /	Año de diagnóstico de HTA:
4.	TA en momento consentimiento(mmHg): Sistólica Diastólica

Otros síntomas de presentación: Marcar en caso afirmativo:
Palpitaciones Cefalea Sudoración Dolor abdominal Dolor lumbar
Otro:
Enfermedad genética o síndrome: En caso afirmativo, indicar cuál:
MEN 2 VHL NF 1 FEO/PGL familiar Otro:
Mutación:
Historia de tumores diferentes a feocromocitoma o paraganglioma: Si No
Año de diagnóstico, localización y tipo:
ANTECEDENTES FAMILIARES
En caso afirmativo: Edad de diagnóstico, número, tipo y localización
– FEO/PGL:
 Otro tumor diferente a FEO/PGL:
DIAGNÓSTICO
Año de diagnóstico del primer feocromocitoma/paraganglioma:
Número de tumores: Metástasis: Si No
Múltiples tumores primarios: Si No
SI 1 TUMOR O EL QUE PROPICIA EL DIAGNÓSTICO:
LOCALIZACIÓN:
Adrenal izda dcha Torácica Abdominal Cervical cuerpo carotídeo

Comentario:

TAMAÑO (mm):
BIOPSIA: Si No FECHA (día/mes/año):
EMBOLIZACIÓN PREVIA: Si No FECHA (día/mes/año):
CIRUGÍA: Si No FECHA (día/mes/año):
Vía: Abierta 🗌 Laparoscópica 🗌 Reconversión*
Descripción cirugía:
- Invasión loco-regional: Si No
- Múltiples primarios: Si No En caso de respuesta afirmativa: Rellenar apartado Si > 1 tumor.
- Metástasis: Si 🔲 No 🗌 En caso de respuesta afirmativa: Localización y número:
- Resultado: Resección completa 🗌 Tejido residual 🗌
- En caso de tejido residual, especificar: Microscópico 🗌 Macroscópico 🗌
- Comentario:
Complicaciones intra-operatorias: Si No En caso de respuesta afirmativa:
Hipotensión Crisis HTA Hipoglucemia Arritmia Otra:
Complicaciones post-operatorias:
INFORME ANATOMO-PATOLÓGICO:
Diámetro máximo: X
Ki67 (%): Índice de proliferación:
Número de mitosis por 10 campos de gran aumento: Número de células contadas:
Necrosis: Si No

Invasión: Capsular: Si 🗌 No 🗌 Adiposa: Si 🗌 No 🗌
Vascular: Si No Órganos adyacentes: Si No
SI > 1 TUMOR:
Método diagnóstico:
Fecha diagnóstico:
LOCALIZACIÓN:
Adrenal izda dcha Torácica Abdominal Cervical glomus carotídeo glomus timpánico glomus supraaórtico glomus yugular/vagal Otra:
TAMAÑO (cm):
BIOPSIA: Si No FECHA (día/mes/año):
EMBOLIZACIÓN PREVIA: Si No FECHA (día/mes/año):
CIRUGÍA: Si No FECHA (día/mes/año):
Vía: Abierta 🗌 Laparoscópica 🗌 Reconversión*
Descripción cirugía:
- Invasión loco-regional: Si No
- Múltiples primarios: Si 💭 No 💭 En caso de respuesta afirmativa: Localización:
- Metástasis: Si 💭 No 🗌 En caso de respuesta afirmativa: Localización:
- Resultado: Resección completa 🗌 Tejido residual 🗌
- En caso de tejido residual, especificar: Microscópico 🗌 Macroscópico 🗌
- Comentario:

Medicación utilizada para la preparación pre-quirúrgica:

Complicaciones intra-operatorias: Si No No En caso de respuesta afirmativa:											
Hipotensión Crisis HTA Hipoglucemia Arritmia Otra:											
Complicaciones post-operatorias/secuelas:											
INFORME ANATOMO-PATOLÓGICO:											
Ki67 (%):	Índice de proliferación:										
Número de mitosis por	10 campos de gran aumento: Número de células contadas:										
Necrosis: Si No											
Invasión: Capsular: Si	No Adiposa: Si No										
Vascular: Si	No Órganos adyacentes: Si No										
DIAGNÓSTICO BIOQUÍ	ΜΙCΟ										
PLASMA											
Unidades plasmáticas: p	og/mL ng/L nmol/L										
Fecha extracción (día/mes/año):											
Adrenalina plasmática:											
Noradrenalina plasmática:	Noradrenalina plasmática:										
Dopamina plasmática:											
Catecolaminas plasmáticas: totales											

Metanefrina libre plasmática:			
Normetanefrina libre plasmática:			
Metoxitiramina libre plasmática:			
Metanefrinas plasmáticas:			
totales fraccionadas			
Cromogranina A suero:			
ORINA	L		
24h Muest	tra aislada 🗌		
Unidades urinarias: μg/	′día 🗌 mg/día 🗌	μmol/día	
Fecha extracción (día/mes/año):			
Adrenalina libre urinaria:			
Noradrenalina libre urinaria:			
Dopamina urinaria:			
Catecolaminas totales urinarias: totales fraccionadas			
Ácido vanilmandélico/Ácido homovalínico:			
Metanefrina urinaria:			
Normetanefrina urinaria:			
Metanefrinas urinarias: totales fraccionadas			

OTRAS DETERMINACIONES REALIZADAS (Indicar unidades y rango)									
– Cortisol		ACTH							
 Andrógenos 									
– Calcitonina									
 Ca plasmático 	C	Fósforo plasmáti	со	Calciuria					
PTH		vitamina D	vitamina D						
– Hematíes		hemoglobina		EPO					
DIAGNÓSTICO DE IN	AGEN/EXTEN	SIÓN							
Ecografía:	Positiva	Negativa	Metástasis: Si	No					
Fecha (día/mes/año):	:	U U							
TAC:	Positiva	Negativa	Metástasis: Si] _{No}					
Fecha (día/mes/año):									
	Positiva	Negativa	Metástasis: Si	No					
Fecha (día/mes/año):	:								
	Positiva	Negativa	Metástasis: Si	No					
Fecha (día/mes/año):	:								
RMN:	Positiva	Negativa	Metástasis: Si	No					
Fecha (día/mes/año):	:								
	Positiva	Negativa	Metástasis: Si	No					
Fecha (dia/mes/ano):									
	Positiva	Negativa	Metástasis: Si	No					
Fecha (día/mes/año):	:								
MIBG:	Positiva	Negativa	Metástasis: Si	No					
Fecha (día/mes/año):	:								
Octreoscan:	Positivo	Negativo	Metástasis: Si	No					
Fecha (día/mes/año):	:								
FDG-PET:	Positiva	Negativa	Metástasis: Si	No					
Fecha (día/mes/año):									

18F-DOPA-PET: Positiva Negativa	Metástasis: Si 🗌 No 🗌										
Fecha (día/mes/año):											
Arteriografía: Positiva Negativa											
Fecha (día/mes/año):											
Fecha (día/mes/año):											
Otra: Positiva Negativa											
Fecha (día/mes/año):											
TRATAMIENTOS NO QUIRURGICOS: Marcar en caso atirm	ativo										
MIBG:	Dosis:										
5. Ciclos recibidos:											
6. Fecha (día/mes/año) inicio-final:											
Quimioterania: Agente/s utilizados:	Dosis:										
7. Ciclos recibidos:											
8. Fecha (día/mes/año) inicio-final:											
9 Fecha (día/mes/año) inicio-final											
10. Localización:											
Radioterapia externa:	Dosis:										
11. Ciclos recibidos:											
12. Fecha (dia/mes/ano) inicio-iniai.											
Radionúclidos: Agente utilizado:	Dosis:										
 Ciclos recibidos: 											
 Fecha (día/mes/año) inicio-final: 											
– Localizacion:											
Quimioembolización: Agente utilizado:											
14. Fecha (día/mes/año):											

15. Localización:

Tratamiento molecular: Agente utilizado:	Dosis:

16. Fecha (día/mes/año) inicio-final:

SEGUIMIENTO

Fecha última revisión (día/mes/año):

Estado actual:

Fallecimiento: Fecha (día/mes/año):

Causa:

Vivo con enfermedad residual

Vivo libre de enfermedad

Comentario:

MUESTRA REMITIDA
TUMOR: Congelado En parafina DNA tisular
Fecha extracción (día/mes/año):
TEJIDO NORMAL: Congelado En parafina DNA tisular
Fecha extracción (día/mes/año):
SANGRE: ENTERA SUERO PLASMA
En caso de plasma, especificar si: PLASMA EDTA 🛛 PLASMA HEPARINIZADO 🗌
Fecha extracción (día/mes/año):
DNA leucocitos
Fecha extracción (día/mes/año):

Supplementary table S1. Clinical and genetic data from the 329 patients included in the study.

N	º ID	Se x	Age	Tumor	Behaviou r	Diagnosis	BC secretio n	Tumor sampl e	SDHB-IHC	Mutation	Gene	Mutation	Date ressection primary tumor (or diagnosis if no ressection)	Last follow- up date	Last follow- up status	Met. locatio n	Met. time	Met. diagnosis
1	3	м	59	HN-PGL	Benign	sympt.	NS	Froze n and	ND	Germline	SDHC A	c.253_255du pTTT.	09/2003	04/2006	Alive, disease			
-	Ū				208	(local mass)		FFPE		••••		p.Phe85dup	00,2000	0.,2000	free			
2	62	м	64	PCC	Benign	sympt. (adrenergic)	No sec.	FFPE	Positive	Somatic	HRAS	c.37G>C, p.Gly13Arg	01/1995	02/2014	Alive, disease free			
3	78	М	11	PCC	Benign	sympt. (adrenergic)	Nad.	FFPE	Not available	No			06/1999	02/2006	Alive, disease free			
4	91	F	52	PCC	Benign	sympt. (adrenergic)	Nad.	FFPE	Positive	No			12/2002	03/2014	Alive, disease free			
5	11 8†	F	64	PCC	Benign	inc. (surgery)	NS	FFPE	Positive	Somatic	HRAS	c.182A>G, p.Gln61Arg	01/2004 (necropsy)	01/2004	Decease d (necrops y after cardiova scular shock)			
6	13 0	м	74	PCC	Benign	sympt. (adrenergic)	Nad.	FFPE	Positive	No			10/2006	02/2014	Alive, disease free			
7	16 7	м	51	PCC	Benign	sympt. (adrenergic)	А	FFPE	Positive	Somatic	HRAS	c.181C>A, p.Gln61Lys	06/2002	01/2012	Alive, disease free			
8	17 8	F	22	PCC	Benign	sympt. (adrenergic)	Nad.	FFPE	Positive	No			03/1997	01/2014	Alive, disease free			
9	66 †	F	19	A-PGL	Malignan t	sympt. (adrenergic)	Nad.	FFPE	ND	Germline	SDHB- GD Δ	exon 1 gross deletion	04/1997	01/2002	Decease d (no respons e to chemot herapy)	Bone, liver and pituitar y	Metac. , 15 month s after first	Image (MR, MIBG) and BC study.

																	surger y	
10	23 5	м	76	PCC	Benign	inc. (surgery)	No sec.	FFPE	Positive	No			01/2004	02/2014	Alive, disease free			
11	28 7	F	68	HN-PGL	Benign	sympt. (local mass)	NS	FFPE	Not available	No			02/2006	02/2006	Alive, post- surgery			
12	29 9	F	32	A-PGL	Malignan t	sympt. (adrenergic)	Nad.	FFPE	Positive	No			04/2006	02/2013	Alive, disease free	Local lymph node	Sync.	AP study
13	33 5	F	62	A-PGL	Benign	inc. (image)	Nad.	FFPE	Positive	Somatic	EPAS1	c.1592C>T, p.Pro531Leu	04/2008	05/2011	Alive, disease free			
14	34 4	F	52	РСС	Malignan t	NS	NS	FFPE	Positive	Somatic	EPAS1	c.1606C>A, p.Asp536Tyr	08/2001	05/2009	Alive, met.	Local lymph node	Metac. , 36 month s after first surger y	Image (MIBG)
15	37 9	F	51	A-PGL	Benign	inc. (surgery)	NS	FFPE	Positive	Somatic	HRAS	c.181C>A, p.Gln61Lys	04/2005	11/2009	Alive, disease free			
16	39 6	F	53	A-PGL	Benign	sympt. (local mass)	No sec.	FFPE	Positive	Somatic	HRAS	c.37G>C, p.Gly13Arg	05/2010	11/2010	Alive, disease free			
17	41 9	F	59	HN-PGL	Benign	NS	NS	FFPE	Positive	No			11/2006	11/2006	Alive, post- surgery			
18	45 0	F	51	HN-PGL	Benign	sympt. (adrenergic)	No sec.	FFPE	Positive	No			11/2011	05/2014	Alive, disease free			
19	45 2	F	50	A-PGL	Benign	sympt. (adrenergic)	Nad.	FFPE	Positive	No			01/2011	01/2013	Alive, disease free			
20	46 0	F	62	PCC	Malignan t	sympt. (adrenergic)	A	FFPE	Positive	Somatic	HRAS	c.182A>G, p.Gln61Arg	05/2009	01/2013	Alive, disease free	Local lymph node	Sync.	AP study
21	10 3	М	70	PCC	Benign	NS	NS	Froze n	ND	Somatic	RET	c.1900T>C, p.Cys634Arg	01/2000	06/2003	Alive, disease free			

22	47 0	Μ	51	PCC	Benign	inc. (image)	Nad.	FFPE	Positive	No			11/2011	07/2012	Alive, disease free			
23	47 8	М	47	A-PGL	Benign	inc. (image)	Nad.	FFPE	Positive	No			06/2012	06/2012	Alive, post- surgery			
24	48 2	F	76	T-PGL	Benign	NS	NS	FFPE	Positive	No			06/2011	06/2014	Alive, disease free			
25	48 4	М	45	A-PGL	Benign	NS	Nad.	FFPE	Positive	No			07/2012	01/2013	Alive, disease free			
26	49 3	М	52	HN-PGL	Benign	sympt. (local mass)	No sec.	FFPE	Positive	No			10/2012	10/2012	Alive, post- surgery			
27	50 7	F	70	PCC	Malignan t	sympt. (adrenergic)	NS	FFPE	Positive	No			08/2011	02/2013	Alive, met.	Bone and liver	Sync.	Image (CT, MR, Octreoscan) and BC study
28	50 8	F	62	HN-PGL	Malignan t	sympt. (local mass)	Nad.	FFPE	Positive	No			01/2014	02/2014	Alive, post- surgery	Local lymph node	Sync.	AP study
29	51 2	F	46	PCC	Benign	inc. (image)	Nad.	FFPE	Positive	No			10/2009	01/2014	Alive, disease free			
30	24 2	Μ	25	PCC	Benign	sympt. (adrenergic)	Nad.	Froze n and FFPE	Positive	Somatic	VHL	c.250G>C, p.Val84Leu	12/2002	01/2006	Alive, disease free			
31	58 7†	Μ	81	A-PGL	Benign	sympt. (adrenergic)	A	FFPE	Positive	Somatic	HRAS	c.181C>A, p.Gln61Lys	05/2007	01/2012	Decease d (heart attack, disease free)			
32	59 1	F	26	PCC	Benign	sympt. (adrenergic)	Nad.	FFPE	Positive	No			04/2007	02/2013	Alive, disease free			

_

33	59 4	F	45	PCC	Benign	sympt. (adrenergic)	Nad.	FFPE	Positive	No			08/2006	06/2013	Alive, disease free		
34	59 9	М	74	PCC	Benign	inc. (image)	Nad.	FFPE	Positive	No			02/2007	06/2012	Alive, disease free		
35	60 0	F	47	PCC	Benign	sympt. (adrenergic)	Nad.	FFPE	Positive	No			03/2007	11/2011	Alive, disease free		
36	61 2	М	56	PCC	Benign	inc. (image)	Nad.	FFPE	Positive	No			06/2007	02/2014	Alive, disease free		
37	62 1	М	29	PCC	Benign	inc. (image)	А	FFPE	Positive	No			04/2009	01/2014	Alive, disease free		
38	63 0	М	42	PCC	Benign	sympt. (adrenergic)	А	FFPE	Positive	No			04/2010	12/2012	Alive, disease free		
39	63 6	М	42	PCC	Benign	inc. (image)	NS	FFPE	Positive	Somatic	HRAS	c.182A>G, p.Gln61Arg	07/1996	07/2010	Alive, disease free		
40	63 7	F	9	PCC	Benign	sympt. (adrenergic)	Nad.	FFPE	Positive	No			10/2009	01/2013	Alive, disease free		
41	64 1	М	57	PCC	Benign	sympt. (adrenergic)	Nad.	FFPE	Positive	No			03/2008	04/2001 4	Alive, disease free		
42	15 7	М	30	A-PGL	Benign	sympt. (adrenergic)	Nad.	No	ND	Germline	<i>SDHB-</i> GD Δ	exon 1 gross deletion	02/2001	07/2001	Alive, disease free		
43	64 7	F	28	PCC	Benign	sympt. (adrenergic)	А	FFPE	Positive	Somatic	HRAS	c.182A>G, p.Gln61Arg	01/2001	11/2010	Alive, disease free		
44	64 9	М	14	PCC	Benign	sympt. (adrenergic)	Nad.	FFPE	Positive	Somatic	VHL	c.260T>C, p.Val87Ala	07/2011	03/2013	Alive, disease free		
45	65 3	М	NS	PCC	Benign	NS	NS	FFPE	Positive	Somatic	RET	c.2753T>C, p.Met918Thr	01/2013	01/2013	Alive, post- surgery		
46	65 7†	F	75	PCC	Benign	sympt. (adrenergic)	Nad.	FFPE	Positive	Somatic	EPAS1	c.1592C>T, p.Pro531Leu	11/1996	09/2013	Decease d (unknow n cause, but		

															PPGL free			
4	7 17 5	F	36	T-PGL	Malignan t	inc. (surgery)	Nad.	FFPE	ND	Germline	SDHB Δ	c.278G>A, p.Cys93Tyr	01/2001 (palliative surgery)	05/2013	Alive, met. (palliativ e surgery)	Bone and lung	Metac. , 24 month s after palliati ve surger y	Image (MR, MIBG) and BC study
4	8 65 8†	F	75	PCC	Benign	NS	NS	FFPE	Positive	Somatic	HRAS ◊	c.182A>G, p.Gln61Arg	01/1998	03/1999	Decease d (unknow n)			
4	9 65 9	F	27	PCC	Benign	sympt. (adrenergic)	A	FFPE	Positive	Somatic	HRAS	c.182A>G, p.Gln61Arg	02/1999	01/2003	Alive, disease free			
5	0 88	м	57	PCC	Benign	inc. (image)	A	FFPE	Positive	No			02/2013	06/2013	Alive, disease free			
5	1 88 9	F	43	PCC	Benign	sympt. (adrenergic)	А	FFPE	Positive	Somatic	RET	c.2753T>C, p.Met918Thr	04/2013	02/2014	Alive, disease free			
5	2 89 0	F	49	PCC	Benign	sympt. (adrenergic)	Nad.	FFPE	Positive	No			01/2013	04/2013	Alive, disease free			
5	3 97 1	М	20	PCC	Malignan t	sympt. (adrenergic)	Nad.	FFPE	Positive	No			09/2007	02/2013	Alive, disease free	Local lymph node, bona and liver	Sync. (local lymph node) and Metac. (bone and liver, 36 month s after the first surger y)	Image (MR, MIBG, FDG- PET) and BC study
54	4 10 04	F	45	A-PGL	Malignan t	sympt. (local mass)	NS	FFPE	Negative and	Somatic	SDHD	c.112C>T, p.Arg38*	05/2010	06/2014	Alive, met.	Bone, lung	Sync. (bone)	Image (MR, MIBG,

									positive							and	and Metac	Octreoscan)
									IIIC JDIA							iivei	(lung	study
																	and	
																	liver)	
1	10		60	DCC	Denieu	NC	NG	FEDE	Desitives	N -			01/2014	01/2014	Alive,			
55 0	70	IVI	68	PCC	венівн	INS	INS	FFPE	Positive	NO			01/2014	01/2014	post-			
															Alive.			
L 1	10	N 4	42		Denien	NC	NC	FEDE	Desitive	Na			11/2012	07/2014	local			
50 1	10	IVI	42	A-PGL	Benign	INS .	IN S	FFPE	Positive	INO			11/2013	07/2014	residual			
															disease			
4	46	-	4.5		Deview	sympt.	Nl	FEDE	Desitives	Constin		c.191G>C,	07/2011	00/2011	Alive,			
5/ 5	5	F	15	A-PGL	венівн	(local mass)	Naŭ.	FFPE	Positive	Somatic	VHL	p.Arg64Pro	07/2011	08/2011	post-			
						sympt.									Alive.			
58 6	53	F	35	PCC	Benign	(adrenergic	NS	Froze	ND	Somatic	RET	c.2753T>C,	04/1999	04/1999	post-			
)		n				p.Met918Thr			surgery			
1	13							Froze				c.182A>G.			Alive,			
59 3	3	F	38	PCC	Benign	NS	NS	n	ND	Somatic	HRAS	p.Gln61Arg	01/2009	10/2009	disease			
	_														Tree Alive			
60 1	14	F	51	PCC	Benign	sympt.	А	Froze	ND	Somatic	NF1	c.6855C>A,	11/2010	11/2010	post-			
5	5				208	(local mass)		n		•••••••		p.Tyr2285*	,	,-010	surgery			
1	15					sympt.		Frozo							Alive,			
61 0)	М	26	PCC	Benign	(adrenergic	А	n	ND	No			10/2011	01/2013	disease			
)									free			
62 1	17	E	27	PCC	Bonign	sympt. (adrenergic	High,	Froze		No			01/2002	02/2014	Alive, disease			
02 7	7	•	57	FCC	Defingi)	but NS	n	ND	NO			01/2002	02/2014	free			
												c.166 170del						
62 2	24	N/	16		Ponign	sympt. (adronorgic	High,	EEDE		Cormlino	כחעם	CCTCA,	06/2005	04/2012	Alive,			
3	3	IVI	10	A-PGL	Delligi	(aurenergic	but NS	FFFE	ND	Germine	зипь	p.Pro56delTy	00/2003	04/2015	free			
						,						rfs*5						
61 1	18	c C	10		Ponign	inc.	NIC	Froze		No			01/2002	02/2006	Alive,			
04 3	3	Г	40	A-FGL	Defingi	(surgery)	NJ	n	ND	NO			01/2002	02/2000	free			
												c.334 337del						
65 2	25	N/	52		Bonign	NS	NS	No		Germline	รกษก	ACTG,	01/2001	06/2008	Alive,			
05 1	1	IVI	55	TIN-FOL	Defingi	NJ		NO	ND	Germine	50110	p.Asp113Met	01/2001	00/2008	free			
												ts*21						
66 2	20	F	63	PCC	Benign	sympt. (adrenergic	Nad	Froze	ND	No			03/2003	01/2006	Alive, disease			
5 5	5	•	55		Semen)		n					00,2000	51,2000	free			

67	28 6	м	61	A-PGL	Benign	inc. (surgery)	NS	Froze n	ND	No			11/2005	02/2006	Alive, disease free	
68	28 8	м	59	A-PGL	Benign	inc. (surgery)	NS	Froze n	ND	No			01/2003	01/2006	Alive, disease free	
69	30 5	м	75	A-PGL	Benign	inc. (image)	A	Froze n	ND	No			04/2007	12/2009	Alive, disease free	
70	40 3	м	56	A-PGL	Benign	inc. (image)	Nad.	Froze n	ND	Somatic	SDHB	c.464C>G, p.Pro155Arg	10/2010	07/2013	Alive, disease free	
71	27 8	М	12	A-PGL	Benign	NS	NS	No	ND	Germline	SDHB ‡∕∆	c.166_170del CCTCA, p.Pro56delTy rfs*5	11/2005	11/2005	Alive, post- surgery	
72	46 4	F	24	A-PGL	Benign	sympt. (adrenergic)	Nad.	Froze n	ND	No			03/2012	08/2013	Alive, disease free	
73	47 5	F	78	PCC	Benign	inc. (image)	High <i>,</i> but NS	Froze n	ND	Somatic	HRAS	c.182A>G, p.Gln61Arg	06/2012	03/2013	Alive, disease free	
74	48 0	F	51	PCC	Benign	sympt. (adrenergic)	Nad.	Froze n	ND	Somatic	VHL	c.389T>G, p.Val130Gly	07/2012	11/2012	Alive, disease free	
75	60 1	F	65	PCC	Benign	sympt. (adrenergic)	А	Froze n	ND	No			06/2007	09/2008	Alive, unknow n	
76	51 3	м	19	PCC	Benign	inc. (image)	High <i>,</i> but NS	FFPE	Positive	Somatic	VHL	c.475A>G, p.Lys159Glu	10/2012	05/2013	Alive, disease free	
77	62 8	м	52	PCC	Benign	sympt. (adrenergic)	High <i>,</i> but NS	Froze n	ND	No			01/2010	01/2010	Alive, post- surgery	
78	61 9	М	14	РСС	Benign	sympt. (adrenergic)	Nad.	Froze n	ND	Somatic	VHL	c.496G>T, p.Val166Phe	03/2009	03/2009	Alive, post- surgery	
79	75 1	F	48	РСС	Benign	NS	NS	Froze n	ND	Somatic	RET	c.2753T>C, p.Met918Thr	01/2003	11/2008	Alive, disease free	
80	76 4	F	68	PCC	Benign	inc. (image)	No sec.	Froze n	ND	Somatic	HRAS ◊	c.182A>G, p.Gln61Arg	03/2010	05/2013	Alive, disease free	

81	89 3	F	63	PCC	Benign	sympt. (adrenergic)	A	Froze n (finish ed)	ND	No			07/2013	09/2013	Alive, disease free			
82	28 5	м	59	HN-PGL	Benign	NS	NS	Froze n	ND	No			07/2005	07/2005	Alive, post- surgery			
83	40 7	F	29	HN-PGL	Benign	sympt. (local mass)	NS	Froze n	ND	No			10/2010	03/2012	Alive, disease free			
84	30 1	М	27	HN-PGL	Malignan t	inc. (surgery)	No sec.	No	ND	Germline	SDHB	c.166_170del CCTCA, p.Pro56delTy rfs*5	10/2001	11/2012	Alive, disease free	Local lymph node	Sync.	AP study
85	10 0	F	56	PCC	Benign	sympt. (adrenergic)	High, but NS	Froze n and FFPE	Positive	No			07/2002	02/2014	Alive, disease free			
86	13 6	F	42	PCC	Benign	sympt. (adrenergic)	Nad.	Froze n and FFPE	Positive	No			06/2009	01/2014	Alive, disease free			
87	30 7	М	40	HN-PGL	Benign	NS	No sec.	No	ND	Germline	SDHD ∆	c.168_169del TT, p.Ser57Trpfs *11	08/2007 diagnosis, surgery unknown	08/2007	Alive, unknow n			
88	15 2	F	54	PCC	Benign	inc. (surgery)	А	Froze n and FFPE	Positive	No			09/2011	07/2013	Alive, disease free			
89	31 1	F	22	A-PGL	Malignan t	sympt. (local mass)	No sec.	No	ND	Germline	SDHD 🛆	c.210G>T, p.Arg70Ser	02/2006	09/2013	Alive, met.	Local lymph nodes and lung	Sync.	AP study
90	31 2	F	32	T-PGL	Malignan t	sympt. (adrenergic)	Nad.	Froze n	ND	Germline	SDHB ∆	c.166_170del CCTCA, p.Pro56delTy rfs*5	10/2007	11/2011	Alive ,met.	Bone	Sync.	AP study
91	16 5	F	69	HN-PGL	Benign	sympt. (local mass)	NS	Froze n and FFPE	Positive	No			06/2002	06/2002	Alive, post- surgery			
92	32 7	М	14	A-PGL	Benign	sympt. (adrenergic)	NS	Froze n	ND	Germline	<i>SDHB-</i> GD ‡	exon 1 gross deletion	03/2007	07/2008	Alive, disease free			

93	63 1	М	35	PCC	Benign	inc. (image)	Nad.	Froze n and FFPE	Positive	Somatic	VHL	c.260T>C, p.Val87Ala	01/2010	08/2010	Alive, disease free			
94	33 0	м	40	A-PGL	Benign	sympt. (local mass)	NS	FFPE	ND	Germline	SDHB ∆	c.424-3C>G	04/2008	06/2008	Alive, disease free			
95	26 8	F	53	A-PGL	Benign	sympt. (adrenergic)	High <i>,</i> but NS	Froze n and FFPE	Positive	No			07/2004	09/2006	Alive, disease free			
96	41 8	м	64	A-PGL	Malignan t	inc. (image)	Nad.	Froze n and FFPE	Positive	No			12/2010	03/2014	Alive, met.	Local lymph node	Sync.	AP study
97	53 8	м	46	PCC	Benign	sympt. (adrenergic)	Nad.	Froze n and FFPE	Positive	No			03/2004	12/2004	Alive, disease free			
98	34 0	F	38	HN-PGL	Benign	NS	NS	No	ND	Germline	SDHD	c.2T>C, p.Met1?	01/2008	11/2008	Alive, unknow n			
99	55 0	м	45	PCC	Benign	sympt. (adrenergic)	А	Froze n and FFPE	Positive	Somatic	HRAS ◊	c.182A>G, p.Gln61Arg	04/2004	07/2014	Alive, disease free			
10 0	55 3	м	57	PCC	Benign	NS	NS	Froze n and FFPE	Positive	Somatic	RET	c.2753T>C, p.Met918Thr	10/2004	01/2005	Alive, disease free			
10 1	58 1	М	36	PCC	Benign	sympt. (adrenergic)	Nad.	Froze n and FFPE	Positive	Somatic	VHL	c.482G>A, p.Arg161Gln	01/2006	02/2014	Alive, disease free			
10 2	63 5	F	30	PCC	Benign	sympt. (adrenergic)	High <i>,</i> but NS	Froze n and FFPE	Positive	Somatic	VHL	c.491A>G, p.Gln164Arg	01/2002	01/2005	Alive, disease free			
10 3	72 8	F	46	PCC	Benign	NS	NS	Froze n	ND	Somatic	EPAS1*	c.1599_1604 delCCCCAT, p.lle533_Pro 534del	01/2003	10/2010	Alive, disease free			
10 4	64 3	F	27	PCC	Benign	sympt. (adrenergic)	Nad.	Froze n and FFPE	Positive	No			02/2011	11/2011	Alive, disease free			
10 5	72 7	F	78	A-PGL	Benign	NS	NS	Froze n and FFPE	Positive	Somatic	EPAS1*	c.1615G>T, p.Asp539Tyr	07/2003	07/2003	Alive, post- surgery			
10 6	75 9	F	42	PCC	Benign	sympt. (adrenergic)	Nad.	Froze n and FFPE	Positive	No			12/2012	12/2012	Alive, post- surgery			

10 7	35 2	F	46	A-PGL	Malignan t	inc. (image)	NS	No	ND	Germline	SDHB	c.725G>A, p.Arg242His	No surgery, 06/2008 (only biopsy)	03/2009	Alive, met. (no surgery)	Liver and local lymph node	Sync.	AP study
10 8	35 3	М	32	HN-PGL	Malignan t	sympt. (local mass)	No sec.	No	ND	Germline	SDHB	c.269G>A, p.Arg90Gln	02/2008	04/2008	Alive, disease free	Bone	Sync.	AP study
10 9	76 0	м	58	PCC	Benign	NS	А	Froze n and FFPE	Positive	Somatic	RET	c.2753T>C, p.Met918Thr	01/2013	01/2013	Alive, post- surgery			
11 0	36 4	F	67	HN-PGL	Benign	sympt. (adrenergic)	No sec.	No	ND	Germline	SDHB	c.557G>A, p.Cys186Tyr	No surgery, diagnosis 02/2009	09/2009	Alive, stable disease (no surgery)			
11 1	36 5	м	25	HN-PGL	Benign	NS	No sec.	No	ND	Germline	SDHB	c.166_170del CCTCA, p.Pro56delTy rfs*5	01/2009	10/2009	Alive, disease free			
11 2	36 8	М	23	A-PGL	Benign	sympt. (adrenergic)	Nad.	No	ND	Germline	SDHB	c.166_170del CCTCA, p.Pro56delTy rfs*5	06/2006	11/2009	Alive, disease free			
11 3	96 7	F	38	A-PGL	Benign	sympt. (adrenergic)	Nad.	Froze n and FFPE	Positive	Somatic	EPAS1	c.1592C>T, p.Pro531Leu	10/2013	10/2013	Alive, post- surgery			
11 4	10 05	м	65	PCC	Benign	NS	NS	Froze n and FFPE	Positive	No			11/2010	11/2010	Alive, post- surgery			
11 5	40 5	F	48	HN-PGL	Benign	sympt. (local mass)	No sec.	No	ND	No			10/2009	10/2010	Alive, local recurren ce			
11 6	49 8	F	27	PCC	Benign	inc. (image)	Nad.	FFPE	Positive	Somatic	VHL	c.227T>A, p.Phe76Tyr	06/2012	01/2013	Alive, disease free			
11 7	50 1	F	78	PCC	Benign	inc. (image)	Nad.	No	ND	No			07/2014	07/2014	Alive, post- surgery			
11 8	10 15	м	51	PCC	Benign	inc. (image)	Nad.	No	ND	No			12/2010	03/2014	Alive, disease free			

11 9	10 20	F	53	PCC	Benign	inc. (image)	Nad.	No	ND	No			05/2014	06/2014	Alive, post-		
12 0	10 23	м	78	A-PGL	Benign	inc. (image)	Nad.	No	ND	No			02/2014	02/2014	Alive, post- surgery		
12 1	10 24	F	35	PCC	Benign	NS	Nad.	No	ND	No			01/2012	04/2014	Alive, disease free		
12 2	5	F	56	A-PGL	Benign	inc. (surgery)	NS	No	ND	No			12/2005	11/2006	Alive, disease free		
12 3	35	F	62	PCC	Benign	sympt. (adrenergic)	High <i>,</i> but NS	No	ND	No			12/1994	01/2006	Alive, disease free		
12 4	40 0	F	42	HN-PGL	Benign	NS	NS	No	ND	Germline	<i>SDHB-</i> GD	exon 1 gross deletion	No surgery, diagnosis 01/2010	09/2010	Alive, stable disease (no surgery)		
12 5	56 †	F	56	PCC	Benign	sympt. (adrenergic)	Nad.	No	ND	No			11/1998	01/2010	Decease d (liposarc oma, but PPGL free)		
12 6	64	F	34	PCC	Benign	sympt. (local mass)	А	No	ND	No			04/1999	03/2014	Alive, disease free		
12 7	65	F	62	A-PGL	Benign	inc. (image)	High <i>,</i> but NS	No	ND	No			07/1999	01/2013	Alive, disease free		
12 8	77	F	37	PCC	Benign	sympt. (adrenergic)	NS	No	ND	No			12/1992	02/2014	Alive, disease free		
12 9	79	F	42	PCC	Benign	NS	NS	No	ND	No			01/2000	01/2000	Alive, post- surgery		
13 0	80	м	40	PCC	Benign	NS	NS	No	ND	No			01/2000	01/2000	Alive, post- surgery		

13 1	82	М	23	PCC	Benign	inc. (image)	А	No	ND	No			01/1998	01/2006	Alive, disease free		
13 2	41 3	F	44	HN-PGL	Benign	NS	NS	No	ND	Germline	SDHB	c.544_550del GGGCTCT, p.Gly182Thrf s*36	12/2010 diagnosis, surgery unknown	12/2010	Alive, unknow n		
13 3	92	F	42	PCC	Benign	NS	NS	No	ND	No			01/2002	01/2002	Alive, post- surgery		
13 4	97	F	48	PCC	Benign	inc. (surgery)	NS	No	ND	No			01/1997	01/2006	Alive, disease free		
13 5	98	м	31	PCC	Benign	NS	NS	No	ND	No			11/2002	11/2002	Alive, post- surgery		
13 6	99	F	59	PCC	Benign	NS	Nad.	No	ND	No			01/1987	03/2012	Alive, disease free		
13 7	10 7	F	NS	PCC	Benign	NS	NS	No	ND	No			01/2004	01/2004	Alive, post- surgery		
13 8	10 8	F	63	PCC	Benign	NS	NS	No	ND	No			01/2004	01/2004	Alive, post- surgery		
13 9	12 1	F	39	PCC	Benign	sympt. (adrenergic)	А	No	ND	No			11/2004	09/2005	Alive, disease free		
14 0	42 4	F	26	A-PGL	Benign	sympt. (adrenergic)	Nad.	FFPE	Negative and negative SDHA-IHC	Germline	SDHA	c.1754G>A, p.Arg585Gln	12/2007	03/2012	Alive, disease free		
14 1	42 5	F	53	HN-PGL	Benign	inc. (image)	Nad.	No	ND	No			No surgery, 12/2009 (only biopsy)	03/2012	Alive, increasi ng disease (no surgery)		
14 2	12 3	F	34	PCC	Benign	NS	NS	No	ND	No			01/2007	06/2007	Alive, disease free		
14 3	12 9	F	55	PCC	Benign	NS	NS	No	ND	No			01/2007	02/2008	Alive, disease free		

14 4	43 0	м	37	A-PGL	Benign	NS	NS	No	ND	Germline	<i>SDHB-</i> GD	exon 1 gross deletion	01/2010	04/2011	Alive, disease free			
14 5	13 1	F	21	PCC	Benign	sympt. (adrenergic)	NS	No	ND	No			01/1994	04/2009	Alive, disease free			
14 6	13 4	F	59	PCC	Benign	sympt. (adrenergic)	Nad.	No	ND	No			11/1994	01/2010	Alive, disease free			
14 7	43 3	м	60	T-PGL	Malignan t	inc. (image)	Nad.	FFPE	ND	Germline	SDHB	c.287-3C>G	No surgery, 12/2010 (only biopsy)	01/2011	Alive, met. (no surgery)	Bone and local lymph node	Sync.	AP study
14 8	13 5	м	36	PCC	Benign	sympt. (adrenergic)	A	No	ND	No			11/2007	07/2010	Alive, disease free			
14 9	13 9	F	28	PCC	Benign	sympt. (adrenergic)	NS	No	ND	No			02/2002	03/2010	Alive, disease free			
15 0	44 1	м	28	HN-PGL	Benign	NS	NS	No	ND	Germline	SDHD	c.191_192del TC, p.Leu64Profs *4	No surgery, diagnosis 01/2010	06/2011	Alive, stable disease (no surgery)			
15 1	44 2	м	20	A-PGL	Benign	sympt. (adrenergic)	Nad.	Froze n	ND	Germline	SDHB	c.423+1G>A	01/2011	06/2011	Alive, local residual disease			
15 2	44 4	F	40	HN-PGL	Benign	NS	A	FFPE	Negative	Germline	SDHAF2	c.362G>A, p.Trp121*	02/2007	02/2012	Alive, disease free			
15 3	14 6	м	45	PCC	Benign	NS	NS	No	ND	No			01/2009	10/2010	Alive, disease free			
15 4	14 7	м	67	PCC	Benign	sympt. (local mass)	NS	No	ND	No			01/2008	03/2011	Alive, disease free			
15 5	44 9	F	15	A-PGL	Benign	sympt. (adrenergic)	Nad.	Froze n	ND	Germline	SDHA	c.457-1A>G	11/2011	12/2011	Alive, post- surgery			
15 6	14 8	F	64	PCC	Benign	sympt. (adrenergic)	А	No	ND	No			02/2011	03/2011	Alive, post- surgery			

15 7	14 9	м	36	PCC	Benign	inc. (image)	Nad.	No	ND	No		02/2011	10/2014	Alive, disease free		
15 8	15 8	F	36	HN-PGL	Benign	inc. (surgery)	No sec.	No	ND	No		11/2000	11/2006	Alive, disease free		
15 9	16 8	F	43	PCC	Benign	sympt. (adrenergic)	Nad.	No	ND	No		01/1998	04/2006	Alive, disease free		
16 0	17 9	F	69	PCC	Benign	sympt. (adrenergic)	Nad.	No	ND	No		12/2002	12/2002	Alive, post- surgery		
16 1	18 0	F	51	PCC	Benign	sympt. (adrenergic)	High <i>,</i> but NS	No	ND	No		02/2002	02/2006	Alive, disease free		
16 2	18 9	м	72	A-PGL	Benign	inc. (image)	A	No	ND	No		02/2001	12/2003	Alive, disease free		
16 3	19 0	м	40	PCC	Benign	inc. (image)	Nad.	No	ND	No		03/2002	01/2013	Alive, disease free		
16 4	19 1	F	50	T-PGL	Benign	NS	NS	No	ND	No		01/1997	01/2003	Alive, disease free		
16 5	19 2	F	27	PCC	Benign	NS	NS	No	ND	No		06/1988	01/2002	Alive, disease free		
16 6	20 3	м	48	PCC	Benign	sympt. (adrenergic)	NS	No	ND	No		03/1997	09/2003	Alive, disease free		
16 7	20 6	F	45	PCC	Benign	sympt. (adrenergic)	А	No	ND	No		04/2003	05/2013	Alive, disease free		
16 8	23 8	F	68	PCC	Benign	inc. (image)	Nad.	No	ND	No		04/2001	03/2014	Alive, disease free		
16 9	25 0	F	21	A-PGL	Benign	sympt. (adrenergic)	Nad.	No	ND	No		10/2004	10/2004	Alive, post- surgery		
17 0	26 6	F	37	HN-PGL	Benign	NS	Nad.	No	ND	No		01/1999 diagnosis, surgery unknown	06/2005	Alive, unknow n		

17 1	26 7	F	28	HN-PGL	Benign	sympt. (local mass)	No sec.	No	ND	No			09/2004	09/2004	Alive, post- surgery			
17 2	27 0	F	47	PCC	Benign	inc. (image)	А	No	ND	No			07/2005	07/2005	Alive, post- surgery			
17 3	27 1	F	26	A-PGL	Benign	NS	High <i>,</i> but NS	No	ND	No			07/2005	07/2005	Alive, post- surgery			
17 4	28 2	м	32	PCC	Benign	NS	NS	No	ND	No			11/2004	09/2005	Alive, disease free			
17 5	47 9	F	33	HN-PGL	Benign	NS	No sec.	No	ND	Germline	SDHB	c.419T>A, p.Val140Asp	01/2012	07/2012	Alive, disease free			
17 6	28 4	F	72	T-PGL	Benign	inc. (image)	No sec.	No	ND	No			No surgery, 09/2005 (only biopsy)	03/2014	Alive, stable disease (no surgery)			
17 7	28 9	F	65	HN-PGL	Benign	NS	NS	No	ND	No			01/1997	01/1997	Alive, post- surgery			
17 8	48 3	F	50	T-PGL	Malignan t	inc. (surgery)	No sec.	No	ND	Germline	SDHC	c.43C>T, p.Arg15*	05/2012	05/2013	Alive, disease free	Bone	Sync.	AP study
17 9	29 0	F	46	PCC	Benign	sympt. (adrenergic)	Nad.	No	ND	No			01/2005	06/2006	Alive, disease free			
18 0	48 5	F	14	A-PGL	Benign	sympt. (adrenergic)	Nad.	No	ND	Germline	<i>SDHB-</i> GD ‡	exon 1 gross deletion	12/2009	02/2012	Alive, disease free			
18 1	48 7	м	22	A-PGL	Benign	sympt. (adrenergic)	Nad.	No	ND	Germline	<i>SDHB-</i> GD	exon 1 gross deletion	05/2012	09/2012	Alive, disease free			
18 2	29 2	F	60	HN-PGL	Benign	NS	No sec.	No	ND	No			No surgery, diagnosis 01/1985	06/2006	Alive, stable disease (no surgery)			
18 3	29 3†	F	72	T-PGL	Benign	NS	NS	No	ND	No			01/2002	03/2014	Decease d (unknow n cause,			

															but PPGL			
															free)			
18 4	29 8	F	37	HN-PGL	Benign	sympt. (local mass)	No sec.	No	ND	No			01/2007	01/2007	Alive, post- surgery			
18 5	30 6	F	36	HN-PGL	Benign	inc. (surgery)	NS	No	ND	No			07/2006	07/2006	Alive, post- surgery			
18 6	49 7	F	23	T-PGL	Benign	NS	No sec.	No	ND	Germline	SDHB ∆	c.643-2A>C	01/2011	11/2012	Alive, disease free			
18 7	31 0†	М	57	PCC	Benign	inc. (surgery)	NS	No	ND	No			02/2007	08/2012	Decease d (adverse effects to chemot herapy)			
18 8	50 0	м	46	HN-PGL	Benign	NS	NS	No	ND	Germline	SDHB	c.127G>C, p.Ala43Pro	09/2012 diagnosis, surgery unknown	09/2012	Alive, unknow n			
18 9	31 4	F	29	HN-PGL	Benign	NS	NS	No	ND	No			01/2007	12/2007	Alive, disease free			
19 0	32 9	F	16	A-PGL	Benign	sympt. (adrenergic)	Nad.	No	ND	No			01/2007	11/2008	Alive, disease free			
19 1	33 6	М	31	T-PGL	Benign	sympt. (adrenergic)	High <i>,</i> but NS	No	ND	No			01/2006	01/2006	Alive, post- surgery			
19 2	33 8	М	50	PCC	Benign	sympt. (adrenergic)	Nad.	No	ND	No			01/2007	02/2014	Alive, disease free			
19 3	34 2	F	43	HN-PGL	Benign	sympt. (local mass)	A	No	ND	No			11/2008	07/2013	Alive, disease free			
19 4	34 5	F	59	PCC	Benign	NS	NS	No	ND	No			11/2006	12/2008	Alive, disease free			
19 5	51 0†	М	71	A-PGL	Malignan t	sympt. (local mass)	Nad.	FFPE	Negative and	Germline	SDHA	c.457-1A>G	04/2013	12/2013	Decease d (radioth	Bone	Sync.	AP study

									negative IHC SDHA						erapy bone met)		
19 6	34 6	F	NS	PCC	Benign	NS	NS	No	ND	No			12/2008	12/2008	Alive, post- surgery		
19 7	34 7	м	59	РСС	Benign	NS	NS	No	ND	No			01/2008	11/2008	Alive, disease free		
19 8	34 8	F	35	PCC	Benign	NS	NS	No	ND	No			01/2003	12/2008	Alive, disease free		
19 9	34 9	F	NS	PCC	Benign	NS	NS	No	ND	No			12/2008	12/2008	Alive, post- surgery		
20 0	35 0	М	NS	PCC	Benign	NS	NS	No	ND	No			12/2008	09/2013	Alive, disease free		
20 1	35 9	F	62	T-PGL	Benign	NS	No sec.	No	ND	No			01/2009	05/2009	Alive, post- surgery		
20 2	37 0	F	57	HN-PGL	Benign	sympt. (local mass)	No sec.	No	ND	No			01/2010	05/2014	Alive, disease free		
20 3	37 3	F	54	PCC	Benign	sympt. (adrenergic)	Nad.	No	ND	No			11/2009	03/2010	Alive, disease free		
20 4	54 1	F	65	PCC	Benign	inc. (image)	Nad.	No	ND	Germline	SDHB ∆	c.725G>A, p.Arg242His	08/2004	10/2004	Alive, disease free		
20 5	37 6	F	77	HN-PGL	Benign	NS	NS	No	ND	No			12/2009	03/2010	Alive, disease free		
20 6	38 5	М	43	HN-PGL	Benign	NS	No sec.	No	ND	No			06/2010	05/2014	Alive, disease free		
20 7	38 6	F	38	HN-PGL	Benign	sympt. (local mass)	No sec.	No	ND	No			01/1997	05/2014	Alive, disease free		
20 8	38 7	М	69	HN-PGL	Benign	NS	NS	No	ND	No			01/2010 diagnosis, surgery unknown	06/2010	Alive, unknow n		

20 9	38 9	м	15	PCC	Benign	NS	NS	No	ND	No		01/2007	06/2010	Alive, disease free			
21 0	39 3	м	32	PCC	Benign	NS	NS	No	ND	No		01/2009	07/2010	Alive, disease free			
21 1	39 4†	М	47	PCC	Malignan t	sympt. (adrenergic)	No sec.	No	ND	No		02/2010	07/2010	Decease d (met.)	Liver and local lymph node	Sync.	AP study
21 2	40 1	F	78	HN-PGL	Benign	NS	NS	No	ND	No		08/2010 diagnosis, surgery unknown	08/2010	Alive, unknow n			
21 3	40 2	F	60	HN-PGL	Benign	NS	High, but NS	No	ND	No		10/2010 diagnosis, surgery unknown	10/2010	Alive, unknow n			
21 4	41 0	F	45	HN-PGL	Benign	sympt. (local mass)	No sec.	No	ND	No		11/2010	05/2014	Alive, disease free			
21 5	41 2	F	68	HN-PGL	Benign	NS	NS	No	ND	No		01/2007 diagnosis, surgery unknown	12/2010	Alive, unknow n			
21 6	41 7	F	70	HN-PGL	Benign	sympt. (local mass)	No sec.	No	ND	No		01/2011 (palliative surgery)	05/2014	Alive, stable disease (palliativ e surgery)			
21 7	42 0	F	53	HN-PGL	Benign	sympt. (local mass)	No sec.	No	ND	No		03/2011	05/2014	Alive, disease free			
21 8	42 1	F	41	РСС	Malignan t	sympt. (local mass)	A	No	ND	No		01/1993	04/2011	Alive,me t.	Bone and Iung	Metac. , 120 month s after first surger y	Image (CT) and BC study

21 9	42 2	F	25	A-PGL	Benign	sympt. (local mass)	Nad.	No	ND	No		01/2010	02/2011	Alive, disease free	
22 0	57 8	F	26	PCC	Benign	sympt. (adrenergic)	А	FFPE	Not available	No		06/2006	06/2006	Alive, post- surgery	
22 1	42 3	F	26	A-PGL	Benign	sympt. (adrenergic)	Nad.	No	ND	No		05/2006	03/2011	Alive, disease free	
22 2	42 7	F	41	РСС	Benign	inc. (image)	Nad.	No	ND	No		02/2011	03/2011	Alive, disease free	
22 3	42 8	М	38	PCC	Benign	NS	А	No	ND	No		10/2010	08/2011	Alive, disease free	
22 4	43 1	М	38	A-PGL	Benign	NS	NS	No	ND	No		01/2011	01/2011	Alive, post- surgery	
22 5	43 2	F	38	A-PGL	Benign	NS	NS	No	ND	No		11/2010	05/2011	Alive, disease free	
22 6	43 8	F	46	T-PGL	Benign	sympt. (adrenergic)	Nad.	No	ND	No		06/2001	06/2013	Alive, disease free	
22 7	43 9	F	64	HN-PGL	Benign	sympt. (local mass)	No sec.	No	ND	No		06/2011	05/2014	Alive, disease free	
22 8	44 5	F	58	A-PGL	Benign	inc. (surgery)	NS	No	ND	No		07/2011	07/2013	Alive, disease free	
22 9	44 8	М	42	HN-PGL	Benign	sympt. (local mass)	No sec.	No	ND	No		10/2011	01/2012	Alive, disease free	
23 0	45 1	М	54	HN-PGL	Benign	sympt. (local mass)	No sec.	No	ND	No		12/2011	05/2014	Alive, disease free	
23 1	45 7	F	43	РСС	Benign	sympt. (adrenergic)	NS	No	ND	No		02/2012	02/2012	Alive, post- surgery	
23 2	45 8	F	NS	HN-PGL	Benign	sympt. (local mass)	No sec.	No	ND	No		02/2012	02/2012	Alive, post- surgery	

23 3	45 9	F	46	HN-PGL	Benign	NS	NS	No	ND	No			11/2011	02/2012	Alive, disease free		
23 4	46 3	М	45	PCC	Benign	sympt. (adrenergic)	Nad.	No	ND	No			01/2007	03/2012	Alive, disease free		
23 5	46 6	F	50	PCC	Benign	NS	NS	No	ND	No			01/2011	01/2012	Alive, disease free		
23 6	46 9	F	52	HN-PGL	Benign	sympt. (local mass)	No sec.	No	ND	No			05/2012	05/2014	Alive, disease free		
23 7	47 2	F	63	HN-PGL	Benign	NS	NS	No	ND	No			05/2012 diagnosis, surgery unkown	05/2012	Alive, unknow n		
23 8	47 3	М	54	HN-PGL	Benign	NS	NS	No	ND	No			12/2011	03/2012	Alive, disease free		
23 9	47 4	М	49	HN-PGL	Benign	sympt. (local mass)	No sec.	No	ND	No			06/2012	05/2014	Alive, disease free		
24 0	47 6	М	70	PCC	Benign	sympt. (adrenergic)	High, but NS	No	ND	No			No surgery, diagnosis 01/2011	05/2012	Alive, stable disease (no surgery)		
24 1	48 9	М	59	HN-PGL	Benign	sympt. (local mass)	No sec.	No	ND	No			09/2012	05/2014	Alive, disease free		
24 2	49 1	М	60	A-PGL	Benign	sympt. (local mass)	Nad.	No	ND	No			03/2011	03/2014	Alive, disease free		
24 3	49 5	F	55	HN-PGL	Benign	sympt. (local mass)	NS	No	ND	No			11/2012	12/2012	Alive, post- surgery		
24 4	61 5	М	70	PCC	Benign	inc. (image)	A	No	ND	Germline	RET	c.2410G>T, p.Val804Leu	05/2008	03/2013	Alive, disease free		
24 5	61 6	F	18	PCC	Benign	NS	Nad.	No	ND	Germline	VHL ‡	c.482G>A, p.Arg161Gln	01/1997	10/2008	Alive, disease free		

24 6	50 2	F	50	HN-PGL	Benign	sympt. (local mass)	No sec.	No	ND	No			01/2013	05/2014	Alive, disease free	
24 7	50 6	М	64	PCC	Benign	inc. (image)	A	No	ND	No			08/2012	08/2012	Alive, post- surgery	
24 8	50 9	F	39	HN-PGL	Benign	sympt. (local mass)	No sec.	No	ND	No			07/2012	03/2013	Alive, disease free	
24 9	51 1	М	63	HN-PGL	Benign	inc. (image)	Nad.	No	ND	No			03/2013	03/2013	Alive, post- surgery	
25 0	51 5	F	65	PCC	Benign	sympt. (adrenergic)	Nad.	No	ND	No			04/2013	06/2013	Alive, disease free	
25 1	53 7†	М	62	PCC	Benign	, sympt. (adrenergic)	NS	No	ND	No			07/2003	09/2011	Decease d (pancrea tic adenoca rcinoma)	
25 2	53 9	F	43	PCC	Benign	sympt. (adrenergic)	A	No	ND	No			01/2004	01/2004	, Alive, post- surgery	
25 3	54 0	М	37	PCC	Benign	NS	NS	No	ND	No			07/2003	04/2004	Alive, disease free	
25 4	55 2	F	80	PCC	Benign	NS	NS	No	ND	No			01/2001	01/2001	Alive, post- surgery	
25 5	62 6	F	26	PCC	Benign	sympt. (adrenergic)	A	FFPE	ND	Germline	TMEM1 27	c.115_118del CTGT, p.lle41Argfs* 39	01/2008	07/2010	Alive, disease free	
25 6	55 5	F	71	PCC	Benign	sympt. (adrenergic)	Nad.	No	ND	No			03/2005	12/2005	Alive, disease free	
25 7	55 7	F	31	PCC	Benign	NS	NS	No	ND	No			03/1998	04/2005	Alive, disease free	
25 8	55 8	F	35	PCC	Benign	NS	NS	No	ND	No			01/1997	01/2005	Alive, disease free	

25 9	63 3	м	35	PCC	Benign	sympt. (adrenergic)	Nad.	FFPE	Positive	Germline	ТМЕМ1 27	c.221A>C, p.Tyr74Ser	11/2009	12/2012	Alive, disease free			
26 0	55 9	м	48	PCC	Benign	sympt. (adrenergic)	High <i>,</i> but NS	No	ND	No			02/2005	03/2005	Alive, post- surgery			
26 1	56 0	F	74	PCC	Benign	inc. (image)	Nad.	No	ND	No			07/2005	06/2013	Alive, disease free			
26 2	56 2	F	43	PCC	Benign	sympt. (adrenergic)	NS	No	ND	No			12/2002	10/2005	Alive, disease free			
26 3	56 3	F	33	PCC	Benign	NS	NS	No	ND	No			09/1993	12/2005	Alive, disease free			
26 4	56 9	м	36	PCC	Benign	inc. (image)	Nad.	No	ND	No			12/2005	05/2011	Alive, disease free			
26 5	64 0	м	26	PCC	Malignan t	NS	Nad.	No	ND	Germline	<i>SDHB-</i> GD	exon 1 gross deletion	03/2010	04/2010	Alive, post- surgery	Bone	Sync.	AP study
26 6	57 0	М	40	PCC	Malignan t	NS	Nad.	No	ND	No			01/1972	01/2012	Alive, met.	Bone	Metac. , 168 month s after first surger y	Image (MIBG) and BC study
26 7	57 1	F	47	PCC	Benign	inc. (image)	High <i>,</i> but NS	No	ND	No			11/1999	02/2006	Alive, disease free			
26 8	57 5	м	56	PCC	Benign	sympt. (adrenergic)	А	No	ND	No			02/2006	01/2013	Alive, disease free			
26 9	57 7	F	66	PCC	Benign	NS	NS	No	ND	No			01/2004	01/2006	Alive, disease free			
27 0	57 9	М	44	PCC	Benign	NS	NS	No	ND	No			11/2006	12/2006	Alive, disease free			
27 1	58 0	М	47	A-PGL	Benign	sympt. (adrenergic)	Nad.	No	ND	No			03/2007	05/2007	Alive, disease free			
27 2	58 8	М	33	PCC	Benign	NS	NS	No	ND	No			01/2006	04/2007	Alive, disease free			
---------	----------	---	----	--------	---------------	----------------------------	-------------------------	------	----	----------	------	---	---------	---------	-------------------------------	----------------------	--	---------------------------------
27 3	59 0	м	41	PCC	Benign	sympt. (adrenergic)	High <i>,</i> but NS	No	ND	No			01/2006	11/2007	Alive, disease free			
27 4	59 3	F	46	PCC	Benign	inc. (image)	NS	No	ND	No			11/2006	05/2007	Alive, disease free			
27 5	59 5	F	51	PCC	Benign	NS	NS	No	ND	No			01/2007	06/2007	Alive, disease free			
27 6	59 6	F	62	PCC	Benign	NS	NS	No	ND	No			01/2007	07/2007	Alive, disease free			
27 7	59 8	F	44	PCC	Benign	sympt. (adrenergic)	Nad.	No	ND	No			01/2007	07/2007	Alive, disease free			
27 8	60 3	м	61	PCC	Benign	NS	NS	No	ND	No			01/2007	11/2007	Alive, disease free			
27 9	60 4	м	24	PCC	Benign	sympt. (adrenergic)	NS	No	ND	No			04/2007	01/2010	Alive, disease free			
28 0	67 1†	м	46	РСС	Malignan t	NS	Nad.	FFPE	ND	Germline	SDHB	c.112C>T, p.Arg38*	01/2000	01/2000	Decease d (unknow n)	Liver and lung	Metac. , 28 month s after first surger y	Image (MIBG) and BC study
28 1	71 5	м	29	HN-PGL	Malignan t	NS	NS	FFPE	ND	Germline	SDHD	c.334_337del ACTG, p.Asp113Met fs*21	03/2001	07/2011	Alive, disease free	Bone	Sync.	AP study
28 2	60 5	М	55	PCC	Benign	sympt. (adrenergic)	High <i>,</i> but NS	No	ND	No			03/2007	05/2008	Alive, disease free			
28 3	60 7	М	44	PCC	Benign	sympt. (adrenergic)	Nad.	No	ND	No			02/2006	07/2011	Alive, disease free			
28 4	60 8	F	54	PCC	Benign	NS	NS	No	ND	No			01/2008	01/2008	Alive, post- surgery			

28 5	60 9	F	39	PCC	Benign	sympt. (adrenergic)	Nad.	No	ND	No			06/2007	02/2014	Alive, disease free			
28 6	61 0†	М	54	PCC	Benign	inc. (image)	NS	No	ND	No			05/2008	08/2008	Decease d (recurre nce of the gallblad der adenoca with liver met)			
28 7	75 7	М	16	T-PGL	Malignan t	sympt. (local mass)	No sec.	No	ND	Germline	<i>SDHB-</i> GD	exon 1 gross deletion	No surgery, 05/2013 (only biopsy)	06/2013	Alive, met. (no surgery)	Bone	Sync.	AP study
28 8	61 7	F	41	PCC	Benign	inc. (image)	Nad.	No	ND	No			01/2008	01/2008	Alive, post- surgery			
28 9	61 8	М	48	PCC	Benign	inc. (image)	Nad.	No	ND	No			09/2008	02/2012	Alive, disease free			
29 0	62 0	М	44	PCC	Benign	sympt. (adrenergic)	Nad.	No	ND	No			03/2009	06/2009	Alive, disease free			
29 1	62 2	М	43	PCC	Benign	NS	NS	No	ND	No			01/2009	01/2009	Alive, post- surgery			
29 2	62 3	М	21	PCC	Benign	sympt. (adrenergic)	Nad.	No	ND	No			07/2009	08/2009	Alive, post- surgery			
29 3	62 4	F	19	PCC	Benign	NS	NS	No	ND	No			01/1997	01/2009	Alive, disease free			
29 4	81 5	М	13	PCC	Benign	sympt. (adrenergic)	NS	Froze n and FFPE	ND	Germline	SDHB ‡	c.540G>C, p.Leu180Leu	01/1985	05/2005	Alive, disease free			
29 5	62 5	М	47	PCC	Benign	sympt. (adrenergic)	Nad.	No	ND	No			01/2010	03/2011	Alive, disease free			
29 6	63 8	F	32	PCC	Benign	sympt. (adrenergic)	Nad.	No	ND	No			01/2002	08/2010	Alive, disease free			

29 7	63 9	М	44	PCC	Benign	sympt. (adrenergic)	Nad.	No	ND	No			11/2010	10/2012	Alive, disease free			
29 8	64 2	F	62	PCC	Benign	NS	Nad.	No	ND	No			01/2009	04/2011	Alive, disease free			
29 9	64 4	М	40	PCC	Benign	sympt. (adrenergic)	NS	No	ND	No			01/2011	01/2011	Alive, post- surgery			
30 0	64 5	Μ	35	PCC	Benign	sympt. (adrenergic)	Nad.	No	ND	No			07/2010	10/2012	Alive, disease free			
30 1	65 0	F	74	PCC	Benign	NS	NS	No	ND	No			01/2011	07/2011	Alive, disease free			
30 2	89 4	M	32	PCC	Benign	sympt. (adrenergic)	A	Froze n	ND	Germline	RET	c.1998G>C, p.Lys666Asn	07/2013	09/2013	Alive, disease free (only 2 months post- surgery)			
30 3	65 1	F	47	PCC	Benign	sympt. (adrenergic)	NS	No	ND	No			04/2008	12/2012	Alive, disease free			
30 4	65 2	Μ	NS	PCC	Benign	NS	NS	No	ND	No			01/2012	01/2012	Alive, post- surgery			
30 5	96 5	Μ	42	PCC	Malignan t	inc. (image)	High <i>,</i> but NS	FFPE	Positive	Somatic	RET	c.2753T>C, p.Met918Thr	07/2012	08/2013	Alive, disease free	Local lymph node	Sync.	AP study
30 6	75 5	М	42	PCC	Benign	sympt. (adrenergic)	А	No	ND	No			01/2012	04/2013	Alive, disease free			
30 7	75 6	F	34	A-PGL	Benign	sympt. (adrenergic)	А	No	ND	No			06/2013	06/2013	Alive, post- surgery			
30 8	80 3	F	NS	PCC	Benign	NS	NS	No	ND	No			04/1999	04/1999	Alive, post- surgery			
30 9	80 4	F	42	PCC	Benign	NS	NS	No	ND	No			01/2000	01/2000	Alive, post- surgery			

31 0	80 6†	м	65	A-PGL	Benign	NS	NS	No	ND	No		01/2001	03/2001	Decease d (met. medulla ry thyroid carcino ma)			
31 1	88 1	м	59	PCC	Benign	inc. (image)	А	No	ND	No		06/2012	01/2013	Alive, disease free			
31 2	88 7	F	44	PCC	Benign	sympt. (adrenergic)	А	No	ND	No		02/2013	02/2013	Alive, post- surgery			
31 3	88 8	F	42	PCC	Benign	sympt. (adrenergic)	А	No	ND	No		02/2012	04/2013	Alive, disease free			
31 4	95 9	м	64	A-PGL	Benign	NS	А	No	ND	No		07/2012	11/2012	Alive, disease free			
31 5	96 0	м	68	HN-PGL	Benign	NS	NS	No	ND	No		01/2001	06/2013	Alive, disease free			
31 6	96 6	F	62	NS PGL	Malignan t	NS	NS	No	ND	No		06/2013	09/2013	Alive, disease free (only 3 months post- surgery)	Not specifie d	Sync.	AP study
31 7	96 8	F	67	PCC	Benign	inc. (image)	No sec.	No	ND	No		02/2012	10/2013	Alive, disease free			
31 8	96 9	м	48	PCC	Benign	sympt. (adrenergic)	А	No	ND	No		11/2007	12/2013	Alive, disease free			
31 9	10 01	М	39	PCC	Malignan t	sympt. (adrenergic)	Nad.	No	ND	No		01/1993	05/2014	Alive, met.	Bone and liver	Metac. , 240 month s after first surger y	AP study

32 0	10 02	F	31	PCC	Benign	sympt. (adrenergic)	Nad.	No	ND	No			12/2013	02/2014	Alive, disease free			
32 1	10 03	F	43	PCC	Benign	inc. (image)	А	No	ND	No			01/2013	05/2014	Alive, disease free			
32 2	10 06	F	NS	PCC	Benign	NS	NS	No	ND	No			02/2014	02/2014	Alive, post- surgery			
32 3	10 12	м	45	PCC	Benign	sympt. (adrenergic)	Nad.	No	ND	No			11/2012	01/2014	Alive, disease free			
32 4	10 13	м	44	PCC	Benign	NS	NS	No	ND	No			08/2011	07/2014	Alive, disease free			
32 5	10 14	F	52	PCC	Benign	sympt. (adrenergic)	A	No	ND	No			01/2011	07/2014	Alive, disease free			
32 6	10 17	F	23	PCC	Benign	sympt. (adrenergic)	Nad.	No	ND	No			01/2014 diagnosis, surgery unknown	01/2014	Alive <i>,</i> unknow n			
32 7	10 19	F	43	PCC	Benign	sympt. (adrenergic)	Dopa.	No	ND	No			10/2013	02/2014	Alive, disease free			
32 8	10 22	F	48	PCC	Benign	inc. (image)	NS	No	ND	No			01/2012	04/2014	Alive, disease free			
32 9	10 25	М	74	HN-PGL	Malignan t	sympt. (local mass)	NS	FFPE	Positive	Somatic	VHL	c.197_211del insCTCGTG, p.Val66_Pro7 1delinsAlaAr gAla	01/2014	06/2014	Alive, met.	Bone	Sync.	AP study

Supplementary table S2. Variant interpretation.

Gene	Variant	ID patient	Coding	Pathogenicity	Public Databases:	Methodology to assess mutations as pathogenic:
			effect		- ExAC	- Pubmed
					- COSMIC	- In silico analysis: SIFT, Mutation Taster and Polyphen2
EPAS1	c.1592C>T,	335 (S), 657 (S)	Missense	Mutation	Not reported	- Previously reported in a case with multiple PGL and
	p.Pro531Leu	and 967 (S)			Not reported	erythrocytosis [1].
						- SIFT: deleterious (score 0.02).
						- Mutation Taster: Disease causing (p-value 1)
						- Polyphen 2: Probably damaging with a score of 1.000
EPAS1	c.1606C>A,	344 (S)	Missense	Mutation	Not reported	- Previously reported: Hidroxilation point described [1].
	p.Asp536Tyr				Not reported	- SIFT: deleterious (score 0.02).
						- Mutation Taster: Disease causing (p-value 1)
						- Polyphen 2: Probably damaging with a score of 1.000
EPAS1	c.1599_1604delCCCCA	728 (S)	In-frame	Mutation	Not reported	- Previously reported: Hidroxilation point described [1].
	T, p.lle533_Pro534del				Not reported	
EPAS1	c.1615G>T,	727 (S)	Missense	Mutation	Not reported	- Previously reported: Hidroxilation point described [1].
	p.Asp539Tyr				Not reported	- SIFT: deleterious (score 0.02).
						- Mutation Taster: Disease causing (p-value 1)
						- Polyphen 2: Probably damaging with a score of 1.000
HRAS	c.181C>A,	167 (S), 379	Missense	Mutation	Not reported	- Reported 2 times [2, 3].
	p.Gln61Lys	(S), 587 (S)			COSM496 and	- SIFT: deleterious (score 0).
					COSM123649.	- Mutation Taster: Disease causing (p-value 1)
						- Polyphen 2: Benign with a score of 0.012
HRAS	c.182A>G,	118 (S), 133	Missense	Mutation	Not reported	- Reported 2 times [2, 3].
	p.Gln61Arg	(S), 460 (S),			COSM244958 and	- SIFT: deleterious (score 0).
		475 (S), 636			COSM499	- Mutation Taster: Disease causing (p-value 1)
		(S), 647 (S),				- Polyphen 2: Benign with a score of 0.008
		659 (S) 550 (S),				
		658 (S), 764 (S)				
HRAS	c.37G>C,	62 (S), 396 (S)	Missense	Mutation	Not reported	- Reported 2 times [2, 3].
	p.Gly13Arg				COSM486 and	- SIFT: deleterious (score 0).
					COSM99938	- Mutation Taster: Disease causing (p-value 1)
						- Polyphen 2: Probably damaging with a score of 0.997
NF1	c.6855C>A,	145 (S)	Nonsense	Mutation	0.000008251/0 hom	
	p.Tyr2285*				COSM33676 and	
					COSM705652.	
RET	c.1900T>C,	103 (S)	Missense	Mutation	0.000008274/0 hom	- Described in MEN2 syndrome. First reported 1993 [4, 5].

	p.Cys634Arg				COSM 966	- SIFT: deleterious (score 0).
						- Mutation Taster: Disease causing (p-value 1)
						- Polyphen 2: Probably damaging with a score of 1.000
RET	c.1998G>C,	894 (G)	Missense	Mutation	0.000008242/0 hom	- Described mutations in the same amino acid residue in
	p.Lys666Asn				Not reported.	MEN2 syndrome [5].
						- Functional studies have demonstrated that p.K666N
						mutation is associated with a high level of RET and ERK
						phosphorylation and a high transforming potential [6].
						- It has been described in medullary thyroid carcinoma
						patients [7].
						- SIFT: deleterious (score 0).
						- Mutation Taster: Disease causing (p-value 1)
						- Polyphen 2: Probably damaging with a score of 0.999
RET	c.2410G>T,	615 (G)	Missense	Mutation	0.00001569/0 hom	- Described in MEN2 syndrome [5]. First described in 1995
	p.Val804Leu				Not reported	[8].
						- SIFT: deleterious (score 0.05).
						- Mutation Taster: Disease causing (p-value 1)
						- Polyphen 2: Probably damaging with a score of 1.000
RET	c.2753T>C,	889 (S), 965	Missense	Mutation	Not reported	- Described in MEN2 syndrome [5]. First described in 1994
	p.Met918Thr	(S), 63 (S), 553			COSM965	[9].
		(S), 653 (S),				- SIFT: deleterious (score 0).
		751 (S), 760 (S)				- Mutation Taster: Disease causing (p-value 1)
						- Polyphen 2: Probably damaging with a score of 0.999
SDHA	c.1754G>A,	424 (G)	Missense	Mutation	0.000008282/0 hom	 Negative SDHB- and SDHA-IHC
	p.Arg585Gln				COSM1067147	- LOVD: not reported
						- SIFT: deleterious (score 0).
						- Mutation Taster: Disease causing (p-value 1)
						- Polyphen 2: Probably damaging with a score of 1.000
SDHA	c.457-1G>A,	510 (G), 449	Splice	Mutation	Not reported	- Negative SDHB- and SDHA-IHC (ID 510)
	p?	(G)	acceptor		Not reported	- LOVD: not reported.
			variant			
SDHAF2	c.362G>A,	444 (G)	Nonsense	Mutation	Not reported	- Negative SDHB-IHC
	p.Trp121*				Not reported	- LOVD: not reported.
SDHB	c.166_170delCCTCA,	243 (G), 365	Frameshift	Mutation	Not reported	- LOVD: Reported 9 times: First time at 2004 [10].
	p.Pro56delTyrfs*5	(G), 368 (G),			Not reported	
		301 (G), 312				
		(G), 278 (G)				
SDHB	c.112C>T,	671 (G)	Nonsense	Mutation	Not reported	- LOVD: not described.
	p.Arg38*				Not reported	
SDHB	c.127G>C,	500 (G)	Missense	Mutation	Not reported	- LOVD: Reported 3 times: First report at 2003 [11].

	p.Ala43Pro				Not reported	- SIFT: Tolerated (score 0.19).
						- Mutation Taster: Disease causing (p-value 0.999)
						- Polyphen 2: Benign with a score of 0.356
SDHB	c.269G>A,	353 (G)	Missense	Mutation	0.000008315/0 hom	- LOVD: Reported 3 times: First report at 2006 [12].
	p.Arg90Gln				Not reported	- SIFT: Deleterious (score 0).
						- Mutation Taster: Disease causing (p-value 1)
						- Polyphen 2: Probably damaging with a score of 1.000
SDHB	c.287-3C>G,	433 (G)	Splice site	Mutation	-	- LOVD: Not reported.
	p?				Not reported	- Reported 1 time [13].
						- We demonstrated the effect on splicing (data not shown).
SDHB	c.423+1G>A,	442 (G)	Splice site	Mutation	-	- LOVD: Reported 9 times: First report at 2003 [14]
	p?				Not reported	
SDHB	c.464C>G,	403 (S)	Missense	Mutation	Not reported	- LOVD: Not reported.
	p.Pro155Arg				Not reported	- FFPE tumor not available to perform SDHB-IHC.
						- The second hit was found using SNP array: loss of 1p (data
						not shown).
						- SIFT: Deleterious (score 0).
						- Mutation Taster: Disease causing (p-value 1)
						- Polyphen 2: Probably damaging with a score of 1.000
SDHB	c.544_550delGGGCTC	413 (G)	Frameshift	Mutation	Not reported	- LOVD: Not reported.
	T, p.Gly182Thrfs*36				Not reported	
					Not ensembl.	
SDHB	c.557G>A,	364 (G)	Missense	Mutation	Not reported	- LOVD: Reported 4 times. First time at 2007[15].
	p.Cys186Tyr				Not reported	- SIFT: Deleterious (score 0).
						- Mutation Taster: Disease causing (p-value 1)
						- Polyphen 2: Probably damaging with a score of 1.000
SDHB	c.725G>A,	352 (G), 541	Missense	Mutation	0.00002471/0 hom	- LOVD: Reported 12 times: First time at 2002 [16].
	p.Arg242His	(G)			Not reported	- SIFT: Deleterious (score 0.01).
						- Mutation Taster: Disease causing (p-value 1)
						- Polyphen 2: Probably damaging with a score of 1.000
SDHB	c.419T>A,	479 (G)	Missense	Mutation	Not reported	- LOVD: Not reported.
	p.Val140Asp			(VUS)	Not reported	- A variant in the same amino acid residue has been
					Not ensembl.	described 7 times in LOVD: c.418G>T, p.Val140Phe.
						- SIFT: Deleterious (score 0).
						- Mutation Taster: Disease causing (p-value 1)
	2700.4					- Polyphen 2: Probably damaging with a score of 1.000
SDHB	c.278G>A,	175 (G)	Missense	Mutation	Not reported.	- LOVD: Reported 1 time. First time at 2009: [17].
	p.Cys93Tyr				COSM1664073	- SIFT: Deleterious (score U).
						- Mutation Taster: Disease causing (p-value 1).
						- Polyphen 2: Probably damaging with a score of 1.000

SDHB	c.424-3C>G,	330 (G)	Splice site	Mutation	-	- LOVD: Reported 3 times: First time at 2005 [18].
	p?				Not reported	
SDHB	c.643-2A>C,	497 (G)	Splice site	Mutation	-	- LOVD: Reported 1 time [17].
	p?				Not reported	
SDHB	c.540G>C,	815 (G)	Synonymo	Mutation	0.000008237/0 hom	- LOVD: Not reported.
	p.Leu180Leu		us		Not reported	- In silico tools (ESE-finder) predicted this variant affected
						splicing. We demonstrated by sequencing cDNA the lack of
						mutant allele (data not shown).
SDHB	exon 1 deletion	400 (G), 430	Deletion	Mutation	-	- Previously reported in familial paraganglioma syndrome
		(G), 487 (G),			-	[19].
		640 (G), 757				
		(G), 66 (G), 157				
		(G), 327 (G),				
		485 (G).				
SDHC	c.43C>T,	483 (G)	Nonsense	Mutation	Not reported	- LOVD: Reported 4 times: First time at 2007 [20].
	p.Arg15*				Not reported	
SDHC	c.253-255dupTTT,	3 (G)	In-frame	Mutation	Not reported	- LOVD: Reported 2 times. First time at 2008 [21].
	p.Phe85dup				Not reported	
SDHD	c.334_337delACTG,	251 (G), 715	Frameshift	Mutation	Not reported	- LOVD: Reported 2 times: First time at 2005 [22].
	p.Asp113Metfs*21	(G)			Not reported	
SDHD	c.191_192delTC,	441 (G)	Frameshift	Mutation	Not reported	- LOVD: Reported 3 times: First time at 2001 [23].
	p.Leu64Profs*4				Not reported	
SDHD	c.2T>C,	340 (G)	Missense	Mutation	Not reported	- LOVD: Not reported.
	p.Met1?				Not reported	- This mutation affects the first methionine and thus the
						correct processing of the gene.
						- Start loss
SDHD	c.168_169delTT,	307 (G)	Frameshift	Mutation	Not reported	- LOVD: Reported 2 times. First time at 2005 [17].
	p.Ser57Trpfs*11				Not reported	
SDHD	c.210G>T,	311 (G)	Missense	Mutation	Not reported	- LOVD. Reported 1 time. First time at 2009 [17].
	p.Arg70Ser				Not reported	- LOVD: Mutations affecting the same codon (p.Arg70Met;
						p.Arg70Gly) have been described. Changes affecting this
						codon destroy hemo interaction and affect the function of
						the protein.
						- SIFT: Deleterious (score 0).
						- Mutation Taster: Disease causing (p-value 1)
						- Polyphen 2: Probably damaging with a score of 1.000
SDHD	c.112C>T,	1004 (S)	Non-sense	Mutation	Not reported	- LOVD: Reported 8 times. First time at 2000 [24].
	p.Arg38*				Not reported	

TMEM127	c.115_118delCTGT,	626 (G)	Frameshift	Mutation	Not reported	
	p.lle41Argfs*39				Not reported	
TMEM127	c.221A>C,	633 (G)	Missense	Mutation	Not reported	- We found LOH involving wild-type allele in the
	p.Tyr74Ser				Not reported	corresponding tumor DNA.
						- SIFT: Deleterious (score 0.03).
						- Mutation Taster: Disease causing (p-value 1)
						- Polyphen 2: Benign with a score of 0.058
VHL	c.191G>C,	465 (S)	Missense	Mutation	Not reported	- The UMD-VHL mutations: Request ID: 190515141147-33
	p.Arg64Pro				Not reported	- SIFT: Tolerated (score 0.13).
						- Mutation Taster: Disease causing (p-value0.999)
						- Polyphen 2: Probably damaging with a score of 1.000
VHL	c.197_211delinsCTCGT	1025 (S)	In-frame	Mutation	Not reported	- UMD-VHL not reported.
	p.Val66_Pro71delinsAl				Not reported	
	aArgAla					
VHL	c.227T>A, p.Phe76Tyr	498 (S)	Missense	Mutation	Not reported	- UMD-VHL not reported.
					COSM14321	- SIFT: Deleterious (score: 0)
						- Mutation Taster: Disease causing (p-value: 0.974)
						- Polyphen 2: Probably damaging with a score of 0.935
VHL	c.250G>C,	242 (S)	Missense	Mutation	Not reported	- The UMD-VHL mutations: Request ID: 190515142416-21
	p.Val84Leu				COSM236660	- SIFT: Deleterious (score 0).
						- Mutation Taster: Disease causing (p-value0.549)
						- Polyphen 2: Benign with a score of 0.017
VHL	c.260T>C,	631 (S), 649 (S)	Missense	Mutation	Not reported	- UMD-VHL not reported.
	p.Val87Ala				Not reported	- SIFT: Deleterious (score 0.04).
						- Mutation Taster: Polymorphism (p-value0.996)
						- Polyphen 2: Possibly damaging with a score of 0.573
VHL	c.389T>G,	480 (S)	Missense	Mutation	Not reported	- UMD-VHL not reported.
	p.Val130Gly				COSM100047	- SIFT: Deleterious (score 0).
						- Mutation Taster: Disease causing (p-value 1)
						- Polyphen 2: Probably damaging with a score of 1.000
VHL	c.475A>G,	513 (S)	Missense	Mutation	Not reported	- The UMD-VHL mutations: Request ID: 190515142532-25
	p.Lys159Glu				COSM144975	- SIFT: Deleterious (score 0.03).
						- Mutation Taster: Disease causing (p-value 0.996)
						- Polyphen 2: Probably damaging with a score of 0.999
VHL	c.482G>A,	616 (G), 581	Missense	Mutation	Not reported	- The UMD-VHL mutations: Request ID: 190515142607-149
	p.Arg161Gln	(S)			COSM18097	- SIFT: Deleterious (score 0).
						- Mutation Taster: Disease causing (p-value 0.999)
						- Polyphen 2: Probably damaging with a score of 1.000
VHL	c.491A>G,	635 (S)	Missense	Mutation	Not reported	- The UMD-VHL mutations: Request ID: 190515142653-45
	p.Gln164Arg				COSM14283	- SIFT: Tolerated (score 0.13).

						 Mutation Taster: Disease causing (p-value 0.999) Polyphen 2: Probably damaging with a score of 0.998
VHL	c.496G>T, p.Val166Phe	619 (S)	Missense	Mutation	Not reported COSM17982	- The UMD-VHL mutations: Request ID: 190515142746-49 - SIFT: Deleterious (score 0.03).
						 Mutation Taster: Disease causing (p-value 0.999) Polyphen 2: Probably damaging with a score of 0.989
ΜΑΧ	c.425C>T, p.Ser142Leu	578 (G)	Missense	VUS	0.00001647/0 hom COSM4577970	 Probably non-pathogenic. Although it has been reported two times [25, 26], this variant did not show functional effect on MYC regulation and the aminoacid is located outside the basic helix-loop-helix leucine zipper domain of the MAX protein [27] SIFT: tolerated (score 0.33). Mutation Taster: Disease causing (p-value 1) Polyphen 2: Probably damaging with a score of 0.999
SDHC	c.*90T>C, p?	1017 (G)	Intronic	VUS	Not reported Not reported	- LOVD: Not reported.
SDHB	c.455C>T, p.Ser152Phe	425 (G)	Missense	VUS	0.00005767/0 hom Not reported	 - LOVD: Not reported. - FFPE tumor not available to perform SDHB-IHC. - SIFT: Deleterious (score 0). - Mutation Taster: Disease causing (p-value 1) - Polyphen 2: Benign with a score of 0.167
SDHB	c.49A>G, p.Thr17Ala	619 (G)	Missense	VUS	Not reported Not reported Not ensembl	 - LOVD: Reported 1 time: Probably no pathogenicity. - SIFT: Tolerated (score 0.59) -Mutation Taster: Polymorphism (p-value 1) - Polyphen 2: Benign with a score of 0.000
SDHAF2	c.451C>G, p.Gln151Glu	405 (G)	Missense	VUS	Not reported Not reported	 - LOVD: not reported. This change affects a highly conserved residue in the phylogenetic tree. According to bioinformatic prediction tools, this version is considered as probably pathogenic PolyPhen-probably damaging, and it can affect splicing according to ESEfinder tool. However, two other tools (AGVGD and SIFT-tolerated) classified as a benign variant. Therefore, until we cannot show the effect of the change it should be considered as a VUS. The patient left the follow-up and it was not possible to obtain a new blood sample to retain RNA extract and analyze the potential effect on splicing or FFPE tumor to analyze SDHB-IHC. SIFT: Tolerated (score 0.37). Mutation Taster: Disease causing (p-value 1) Polyphen 2: Probably damaging with a score of 0.982

Supplementary table S3. Clinical characteristics of the 21 patients with no amplification of the sample analyzed. FFPE: formalin fixed paraffin-embedded; NA: Not amplified per amplicon (< 20 reads); PCC:pheochromocytoma; PGL: paraganglioma; HN: head and neck; A: abdominal; SDHB-IHC: SDHB immunohistochemistry; ND: no data; WT: Wild type; GM: germline mutation.

Number of patients	ID	Excluded	Sample	Amplicon coverage	Previously studied	Number	Tumor	Sex	Age (years)	Behaviour	Predominant secretion	SDHB-IHC	Type of sample
1	56	Yes	Blood	NA	Yes	Multiple	Multiple PGL (HN)	Female	63	Benign	No secretion	ND	WT
2	66	Yes	Frozen	NA	Yes	Single	PCC	Male	66	Benign	Adrenergic	ND	WT
3	158	Yes	Frozen	NA	Yes	Single	PCC	Female	54	Benign	Adrenergic	Positive	WT
4	159	Yes	Frozen	NA	Yes	Single	PCC	Female	42	Benign	Noradrenergic	Positive	WT
5	160	Yes	Frozen	NA	Yes	Single	PCC	Male	65	Benign	Adrenergic	Positive	WT
6	174	Yes	Frozen	NA	Yes	Single	PCC	Female	58	Benign	Unknown	ND	WT
7	178	Yes	Frozen	NA	Yes	Single	PCC	Male	51	Benign	No data	ND	WT
8	197	Yes	Blood	NA	Yes	Single	PCC	Female	37	Benign	Unknown	ND	WT
9	199	Yes	Blood	NA	Yes	Multiple	Bilateral PCC	Male	11	Benign	Noradrenergic	ND	WT
10	246	Yes	Blood	NA	Yes	Single	PCC	Female	62	Benign	No data	ND	WT
11	250	Yes	Blood	NA	Yes	Single	PCC	Male	41	Benign	No data	ND	WT
12	263	Yes	Blood	NA	Yes	Single	PCC	Female	41	Benign	Noradrenergic	ND	WT
13	271	Yes	Blood	NA	Yes	Single	PCC	Female	62	Benign	Noradrenergic	ND	WT
14	306	Yes	Blood	NA	Yes	Single	PCC (composite)	Female	51	Benign	Unknown	ND	WT
15	324	Yes	Frozen	NA	No	Single	PCC	Male	43	Benign	Adrenergic	ND	WT
16	337	Yes	Frozen	NA	No	Single	PCC	Female	75	Benign	Adrenergic	ND	WT
17	341	Yes	Blood	NA	Yes	Single	PCC (hyperplasia)	Female	No data	Benign	No data	ND	WT
18	415	Yes	FFPE	NA	Yes	Single	A-PGL	Female	50	Benign	Noradrenergic	Positive	WT
19	418	Yes	FFPE	NA	No	Multiple	Multiple PGL (HN)	Female	14	Benign	No secretion	Negative	Control GM SDHB
20	442	Yes	FFPE	NA	No	Single	A-PGL	Female	33	Malignant	No data	Negative	WT
21	444	Yes	FFPE	NA	No	Single	A-PGL	Female	19	Benign	Noradrenergic	Negative	WT

Supplementary table S4. Characteristics of the TGPs designed.

		Panel I	Panel II
Variants used as posit (unique variants)	ive controls	534 (73)	337 (56)
	Mutation	17 (16)	13
Pathogenic category	vus	3	1
	Polymorphism	514 (54)	323 (42)
	SDHB	10	4
	SDHA	28	24
	SDHD	5	3
	SDHAF2	2	2
	SDHC and FH	2	1
	MDH2	5	6
Carro	ТМЕМ127	4	1
Gene	HRAS	1	2
	RET	8	6
	MAX	1	1
	MEN1	2	0
	NF1	3	0
	VHL	0	4
	EPAS1	0	1
	Single base substitution	65	51
	Small deletion	5	2
Type of variant	Small duplication	1	2
	Insertion	2	0
	Indel	0	1
Low coverage regions	(≤ 50 reads)	SDHA (E1), SDHC (E2), MDH2 NF1	(E1), <i>FH</i> (E1), <i>TMEM127</i> (E2), (E1).
		SDHA (E10), SDHAF2 (E1), RET (E8), MAX (E1), EGLN1 (E1), KIF1B (E1, E9), NF1 (E7, E40), MEN1 (E2).	MAX (E5), NF1 (E13, E23, E37, E46).

VUS: Variant of Unknown Significance; E: exon; bp: base pairs.

Supplementary table S5. Control variants previously found by Sanger sequencing used in panel I and II. Hom: Number of patients homozygotes described.

PANEL-I

MUTATIONS

MUT.	ID	Type of sample	Final	Gene	Alt Read Depth	Read Depth	Alt Variant Freq	Consequence	cDNA	Protein
1	72	Blood	Control germline mutation SDHA	SDHA	1919	3927	48.87	splice_acceptor	c.457-1G>A	
2	111	Blood	Control germline mutation SDHA	SDHA	1210	2297	52.68	splice_acceptor	c.457-1G>A	
3	78	Blood	Control germline mutation SDHA	SDHA	987	2028	48.67	missense	c.1754G>A	p.Arg585Gln
4	356	Frozen	Control somatic mutation HRAS	HRAS	68	202	33.7	missense	c.37G>C	p.Gly13Arg
5	300	Blood	Control germline mutation SDHB	SDHB	182	434	42.4	missense	c.725G>A	p.Arg242His
6	12	Frozen	Control SDHB (tumor, no blood)	SDHB	501	711	70.5	frameshift	c.591delC	p.Ser198Alafs*22
7	168	Frozen	Control NF1 (tumor, no blood)	NF1	999	1194	83.7	splice_donor	c.1062+2T>C	
8	363	Frozen	Control NF1 (tumor, no blood)	NF1	142	199	71.4	frameshift	c.4239delT	p.Phe1413Leufs*15
9	171	Frozen	Control NF1 (tumor, no blood)	NF1	493	601	82.4	frameshift	c.7798_7799insA	p.Ser2601llefs*7
10	367	Frozen	Control RET (tumor, no blood)	RET	106	198	53.5	missense	c.1901G>A	p.Cys634Tyr
11	297	Blood	Control germline mutation SDHAF2	SDHAF2	270	518	52.3	stop_gained	c.362G>A	p.Trp121*
12	303	Blood	Control germline mutation MEN1	MEN1	24	81	30.8	missense	c.124G>A	p.Gly42Ser
13	298	Blood	Control germline mutation MAX	MAX	410	753	54.7	stop_gained	c.97C>T	p.Arg33*
14	373	Blood	Control germline mutation SDHD	SDHD	254	514	49.5	splice_acceptor	c.53-2A>G	
15	299	Blood	Control germline mutation SDHD	SDHD	296	581	50.9	missense	c.242C>T	p.Pro81Leu
16	277	Blood	Control germline mutation SDHC	SDHC	350	838	41.8	stop_gained	c.43C>T	p.Arg15*
17	302	Blood	Control germline mutation FH	FH	788	1604	49.3	missense	c.575C>T	p.Pro192Leu

VARIANTS OF UNKNOWN SIGNIFICANCE (VUS)

vus	ID	Type of sample	Final	Gene	Alt Read Depth	Read Depth	Alt Variant Freq	Consequence	cDNA	Protein
			Control VUS germline SDHB, probably non							
1	218	Blood	pathogenic	SDHB	1279	2633	48.6	missense	c.455C>T	p.Ser152Phe
2	179	Frozen	Control VUS TMEM127 in tumor, no blood	TMEM127	998	1089	92.2	missense	c.448G>C	p.Ala150Pro
			Control VUS germline TMEM127, probably non		Not detected: Low					
3	251	Blood	pathogenic	TMEM127	coverage region (E2)			synonymous	c.267A>G	p.Thr89Thr

POLYMORPHISMS (SNPs)

SNPs	Unique SNPs	dbSNP ID	Gene	HGVSc HGVSp	Allele Freq	Allele Freq Amr	Allele Freq Asn	Allele Freq Af	Allele Freq Eur	Allele Freq ExAC	ID	Sample		Alt Read Depth	Read Depth	Alt Variant Freq
1	1	rs377134185	SDHA	c4A>G	0	0	0	0	0	0.4656% 8 hom	62	Blood	Low coverage region (E1-SDHA)	9	15	60
2	2	rc2462E677		c.113A>T	1	1	0	0	2	3.529%	255	Blood		1143	2258	50.8
3	2	1834035077	SURA	p.Asp38Val	Ţ	L	0	0	5	103 hom	109	Blood		467	844	55.3
4											227	Blood		520	1068	49.2
5	2	rc1120424		c.309A>G	17	20	4	12	0	15.29%	291	Blood		693	1425	48.7
6	3	151139424	SURA	p.Ala103Ala	1/	20	4	42	9	hom	62	Blood		114	225	50.67
7											175	Frozen		438	838	52.6
8											35	Blood		456	927	49.4
9											58	Blood		980	2353	41.9
10											100	Blood		270	618	43.8
11	-										107	Blood		627	1617	38.9
12										15.68 %	118	Blood		518	1175	44.3
13	4	rs6555055	SDHA	c.619A>C	22	23	5	56	11	2372	291	Blood		600	1210	49.8
14				p., 18207718						hom	88	Blood		513	1152	44.6
15											3	Blood		633	1408	45.1
16											122	Blood		192	515	37.4
17											62	Blood		432	1005	43.4
18											175	Frozen		427	1225	34.9
19											249	Blood		959	1950	49.4
20											35	Blood		537	1179	45.7
21											88	Blood		531	1096	48.5
22	5 rs2115		CDUA	c.684T>C	22	22	-	FC	11	15.65 %	100	Blood		489	989	49.5
23		152115272	SDHA	p.Asn228Asn	22	23	5	50	11	2368 hom	118	Blood		499	1062	47.1
24											291	Blood		927	2018	46.2
25	1										107	Blood		1066	2208	48.5
26	1										122	Blood		474	973	48.7

27											62	Blood	561	1059	53.1
28											3	Blood	2003	4040	49.9
29											262	Blood	963	1958	49.6
30											175	Frozen	658	1463	45.2
31											14	Blood	662	656	100
32											31	Blood	707	707	100
33											24	Blood	488	951	52.7
34	_										62	Blood	819	820	100
35											109	Blood	427	427	100
36											118	Blood	387	1005	38.7
37											122	Blood	509	511	99.6
38											128	Blood	410	410	100
39											129	Blood	467	467	100
40	6	rs7788/61	SDHA	c 771-11ASG	86	99	60	00	00	88.10 %	167	Blood	38	38	100
41	0	132200401	JUIA	0.771-114-0	80	00	09	55	00	hom	224	Blood	527	1077	49.7
42											255	Blood	1538	1557	99.7
43											291	Blood	951	963	99.7
44											292	Blood	1609	1614	99.9
45											297	Blood	596	1146	52.8
46											117	Blood	622	245	39.5
47											107	Blood	1052	1065	99.7
48	_										100	Blood	693	693	100
49											88	Blood	529	529	100
50											3	Blood	565	575	100
51	7	rs34771391	SDHA	c.822C>T p.Gly274Gly	1	1	0	2	0.13	0.4620% 3 hom	128	Blood	409	410	99.8
52											35	Blood	893	1886	47.3
53	-										3	Blood	575	577	100
54										70.78%	24	Blood	488	953	51.3
55	8	rs1126417	SDHA	c.891T>C	63	70	33	73	75	31200	100	Blood	623	1307	47.7
56				p.110237110						hom	31	Blood	903	1778	50.8
57											109	Blood	 1774	1778	99.9
58											 122	Blood	851	855	99.5

59											224	Blood	529	1076	49.3
60											255	Blood	726	1557	46.8
61											291	Blood	958	962	99.9
62											292	Blood	1609	1611	100
63											297	Blood	584	1144	51.2
64											128	Blood	1681	1685	99.9
65]										129	Blood	701	1397	50.3
66]										167	Blood	1290	1292	99.8
67											107	Blood	492	1065	46.3
68											118	Blood	864	1861	46.5
69											117	Blood	1575	737	46.9
70]										88	Blood	1950	1956	99.9
71											14	Blood	659	662	100
72											62	Blood	800	1708	46.8
73											169	Frozen	920	1778	51.8
74											88	Blood	360	798	45.1
75											291	Blood	326	701	47.2
76		rc7710005		a 806 2045 C	22	22	-		11	15.66%	118	Blood	590	1050	56.2
77	9	157710005	SURA	C.890-20A>G	22	23	5	55	11	hom	122	Blood	337	692	48.8
78											107	Blood	299	616	49.3
79											62	Blood	563	1071	52.6
80	10	rs142849100	SDHA	c.969C>T p.Gly323Gly	0.23	1	0	0	0.4	0.7017% 12 hom	255	Blood	530	1112	48
81	11	rs144252500	SDHA	c.1002G>A p.Ala334Ala	0.09	0	0	0	0.26	0.07907 % 1 hom	169	Frozen	209	412	50.7
82	12	rs34779890	SDHA	c.1413C>T p.lle471lle	0.14	0.28	0	0.2	0.13	0.2199% 1 hom	128	Blood	415	422	98.3
83							1				3	Blood	135	317	42.6
84]										62	Blood	172	338	50.9
85				c.1038C>G	22	24		50		15.97 %	107	Blood	291	616	47.3
86	13	rs1041949	SDHA	p.Ser346Ser	22	24	5	59		2574 hom	100	Blood	188	394	47.7
87	1										118	Blood	280	537	52.3
88	1										122	Blood	 177	342	51.8

89												291	Blood	325	701	46.4
90												88	Blood	505	505	100
91												35	Blood	236	466	50.6
92												237	Blood	235	472	49.9
93	14	rs35277230	SDHA	c.1170C>T	9	3	0	36	0.13	3.240%		100	Blood	561	1185	47.3
94				p.rnessorne						575110111		3	Blood	219	412	53.2
95												62	Blood	603	2358	25.6
96												88	Blood	710	3289	21.6
97												175	Frozen	332	1436	23.3
98										15.27 %		291	Blood	573	1961	29.6
99	15	rs10039029	SDHA	c.1680G>A	21	23	4	53	11	1873		122	Blood	201	397	50.6
100				p.m.500m						hom		118	Blood	769	3815	20.2
101												107	Blood	556	2049	27.5
102												3	Blood	456	1518	30.4
103												35	Blood	613	2653	23.1
104												35	Blood	95	278	34.2
105												88	Blood	110	382	28.9
106												100	Blood	75	215	35.2
107												291	Blood	642	1239	52
108	16			c.1752A>G						15.59%		107	Blood	714	1414	50.7
109	16	rs//210621	SDHA	p.Ala584Ala	22	23	4	56	11	2311 hom		118	Blood	104	318	32.7
110										nom		122	Blood	201	397	50.9
111												62	Blood	120	373	32.3
112												3	Blood	493	1015	48.9
113												175	Frozen	593	1154	51.7
114	17	rs150831951	SDHA	c.1305G>T p.Leu435Leu	1	2	0	0.2	3	1.927% 40 hom		128	Blood	960	1044	92.1
115												55	Blood	85	210	40.9
116	18	rs6960	SDHA	c.1886A>T	0	0	0	0	0	15.15%		175	Frozen	359	673	53.7
117				p.Tyroz9Phe						500 110111		216	Blood	389	848	46.1
118	19	rs372662724	SDHA	c.1909-14_1909- 13delCT	0	0	0	0	0	0.000825 5% 0 hom	Positive SDHB-IHC confirms as a SNP	291	Blood	339	1445	23.5

119											211	Blood	329	688	48.1
120											216	Blood	444	848	52.4
121											122	Blood	205	260	79.2
122		25540244	60114	1000 150 T	_	_	0.47			Not	297	Blood	51	81	63
123	20	rs35549341	SDHA	c.1908+15C>1	5	/	0.17	1	11	describe d	167	Blood	674	1411	47.8
124										с.	109	Blood	441	829	53.2
125											268	Blood	172	366	47.1
126											177	Frozen	590	1196	49.4
127											35	Blood	1190	1851	64.3
128											50	Blood	1265	2043	62.1
129											3	Blood	1203	2211	54.7
130											31	Blood	875	2223	39.4
131											62	Blood	779	1486	52.6
132											100	Blood	1360	1884	72.2
133											224	Blood	922	2499	36.9
134											255	Blood	563	2362	23.9
135											291	Blood	880	1443	61
136											292	Blood	871	2604	33.5
137										17.16%	297	Blood	482	1933	25
138	21	rs6961	SDHA	c.1932G>A	34	32	33	58	20	2406	107	Blood	249	524	48
139				p.val044val						hom	118	Blood	1438	2258	63.7
140											122	Blood	983	1523	64.5
141											128	Blood	362	1361	26.7
142											129	Blood	639	1683	38
143											167	Blood	735	2145	34.3
144											109	Blood	724	1971	36.8
145											88	Blood	958	1500	63.9
146											24	Blood	760	2093	36.4
147											14	Blood	679	1900	35.9
148	1										58	Blood	2173	3208	67.9
149	1										175	Frozen	384	524	73.3
150	22			c.1944_1945delTT	2	2	6	2		1.35 %	122	Blood	435	1523	28.6
151	22	rs14862/12/	SDHA	p.Leu649Glufs*4	3	3	6	3		0 hom	297	Blood	483	1935	25

152												100	Blood	511	1886	27.1
153	-											35	Blood	749	1851	40.6
154	-											3	Blood	1210	2213	54.7
155	-											107	Blood	251	524	48
156	-			c 1969G>A						12 08%		122	Blood	548	1523	36
157	23	rs6962	SDHA	p.Val657lle	16	20	4	35	11	796 hom		291	Blood	540	1445	37.4
158	-											118	Blood	888	2260	39.3
159	-											100	Blood	533	1886	28.3
160	-											50	Blood	797	2049	38.9
161												175	Frozen	184	526	35
162	-											24	Blood	758	2090	36.3
163	-											88	Blood	440	1496	29.4
164	-											109	Blood	724	1966	36.9
165	-											224	Blood	926	2497	37.2
166	-											255	Blood	553	2360	23.5
167	-											291	Blood	343	1445	23.8
168	-											292	Blood	866	2598	33.4
169	24	rs1042446	SDHA	c.1974G>C	0	0	0	0	0	2.348 %		297	Blood	481	1933	25
170		151012110	001111	p.Pro658Pro	Ũ	Ů	Ũ	Ũ	Ū	0 hom		122	Blood	430	1518	28.4
171	-											128	Blood	359	1355	26.6
172	-											129	Blood	632	1681	37.7
173	-											167	Blood	718	2133	33.8
174	-											118	Blood	547	2256	24.3
175	-											100	Blood	830	1879	44.2
176	-											31	Blood	890	2223	40.1
177												14	Blood	665	1895	35.2
178	-										Positive	24	Blood	746	2093	36.1
179										0.2000%	SDHB-IHC	100	Blood	837	1886	44.5
180	25	rs1042476	SDHA	c.*13T>C	0	0	0	0	0	0.2999% 0 hom	samples	122	Blood	435	1523	28.6
181											with ID	128	Blood	363	1361	26.7
182											14,24, 88,	224	Blood	937	2505	37.4

183											128,129	255	Blood	568	2362	24.1
184											and 291.	291	Blood	344	1445	23.8
185												297	Blood	486	1933	25.2
186												167	Blood	738	2147	34.5
187												109	Blood	729	1971	37.1
188												88	Blood	449	1500	30
189												31	Blood	890	2223	40.1
190												14	Blood	670	1901	35.7
191												24	Blood	758	2091	36.3
192											Positive	109	Blood	724	3215	22.6
193											SDHB-IHC	224	Blood	925	2502	37.1
194											in samples	255	Blood	561	2358	23.8
195											with ID	292	Blood	869	2598	33.5
196				****						0.2982%	14,24,31,	297	Blood	482	1933	25
197	26	rs200769995	SDHA	c.*14G>A	0	0	0	0	0	0 hom	100,109,1	129	Blood	636	2846	22.4
198											7,224,291	167	Blood	737	3669	20.1
199											,292 and	122	Blood	437	2592	16.9
200											297 confirms	100	Blood	827	3083	26.8
201											as a SNP	31	Blood	877	3681	23.9
202												14	Blood	674	1901	35.6
203												27	Blood	2570	5000	51.6
204												28	Blood	25	38	65.8
205				c.487T>C						1.254%		109	Blood	1202	1210	99.8
206	27	rs33927012	SDHB	p.Ser163Pro	1	1	0	0.2	2	21 hom		107	Blood	713	1457	49
207												118	Blood	914	914	100
208												114	Blood	277	539	51.4
209										Not	LARRIBA: POP-FT	122	Blood	258	758	37.1
210	28	rs34261028	SDHB	c.424-19_424- 14delTTCTTC	0	0	0	0	0	describe d	(ensembl) : 1/92 (1,1%)	11	Blood	588	1118	53.9
211										Not	Previously	35	Blood	347	949	38.9
212	29	rs386134266	SDHB	c.424-19_424-	0	0	0	0	0	describe	reported	79	Blood	182	560	34.8
213]			THOOPTICITC						d	in LOVD-	130	Blood	205	585	38.4

											Alrashdi (2010)					
214				c.24C>T	_	_				0.4299%	()	150	Frozen	499	560	89.1
215	30	rs148738139	SDHB	p.Ser8Ser	0	0	0	0	0	1 hom		344	Blood	269	599	45.1
216	31	rs147815442	SDHB	c.21C>T p.Leu7Leu	0.05	0	0	0	0.13	0.05238 % 0 hom	Previously reported as an SNP in LOVD- Cascon (2002)	90	Blood	513	1018	50.5
217												298	Blood	86	89	100
218												230	Blood	626	736	85.5
219												10	Genomip hi	418	699	60.1
220												11	Blood	971	1126	86.6
221												16	Blood	328	620	53.1
222												243	Blood	888	1270	70.4
223												40	Blood	756	894	85.1
224												117	Blood	1169	1157	99.9
225												100	Blood	407	407	100
226	-											107	Blood	696	713	98.6
227	-											122	Blood	737	740	100
228					<u>.</u>	. -				97.21 %		128	Blood	1124	1130	99.8
229	32	rs2/46462	SDHB	c.18C>A p.Ala6Ala	95	97	99	87	96	53297 hom		129	Blood	902	909	99.9
230	-											167	Blood	1866	1877	99.9
231	-											31	Blood	1120	1122	100
232	-											224	Blood	504	507	99.8
233	-											255	Blood	1458	1473	99.5
234	-											291	Blood	845	859	99.4
235												292	Blood	1806	1814	99.8
236												297	Blood	689	701	99.7
237												52	Blood	468	842	55.8
238												14	Blood	684	694	99
239												88	Blood	1226	1230	99.7
240												3	Blood	287	292	99
241												62	Blood	1451	1451	100

242												218	Blood	589	715	82.4
243												24	Blood	1031	1046	99.3
244												86	Frozen	346	558	62.5
245												112	Blood	600	886	67.8
246												130	Blood	479	559	86.2
247												319	Blood	1001	1016	98.7
248	33	rs11203289	SDHB	c.8C>G p.Ala3Gly	1	0	0	4	0.13	0.436% 8 hom		33	Blood	24	50	48
249	34	rs77711105	RET	c.1942G>A p.Val648lle	0	0	0	0	0	0.009076 % 0 hom	Previously reported as non pathogeni c in ARUP- Cosci B (2011)	304	Genomip hi	268	521	51.8
250	_			c.1946C>T						0.03217	Previously reported	116	Frozen	690	1316	52.5
251	35	rs148935214	RET	p.Ser649Leu	0.09	0.28	0	0	0.13	% 0 hom	as an SNP in Erlic Z (2010)	345	Blood	182	337	54.3
252												2	Blood	179	381	47
253												223	Blood	23	62	37.1
254												308	Blood	490	496	98.8
255												230	Blood	88	193	45.6
256												14	Blood	82	156	52.6
257												200	Blood	280	574	49
258												17	Blood	571	1176	48.6
259	26	rc1700020	DET	c.2071G>A	15	22	10	0	20	20.33%		239	Blood	251	571	44
260	50	121/99929	RE I	p.Gly691Ser	15	25	10	9	20	hom		20	Blood	150	306	49.5
261]											241	Blood	233	597	39.2
262]											242	Blood	26	46	56.5
263]											243	Blood	276	560	49.7
264]											24	Blood	151	270	56.1
265]											291	Blood	70	153	45.8
266]											245	Blood	204	421	48.8
267]											247	Blood	462	466	99.1

268											249	Blood	39	90	43.3
269											256	Genomip hi	78	202	38.6
270											266	Blood	104	209	50.2
271											267	Blood	184	393	46.8
272											31	Blood	426	428	99.5
273											57	Blood	154	288	53.8
274											62	Blood	377	758	49.8
275											215	Blood	258	518	50
276											269	Blood	100	255	39.5
277											176	Frozen	93	201	46.3
278											179	Frozen	36	79	46.2
279											183	Frozen	57	227	25.1
280											184	Frozen	124	256	48.6
281											86	Frozen	534	1145	46.8
282											279	Blood	247	454	54.4
283											129	Blood	309	578	53.5
284											167	Blood	260	543	48.1
285											282	Blood	142	333	42.9
286											108	Blood	95	175	54.3
287											287	Blood	190	372	51.1
288											116	Frozen	445	949	47
289											344	Blood	125	264	47.9
290											345	Blood	122	278	44.4
291											349	Blood	154	326	47.2
292											 350	Blood	160	310	52.1
293											304	Genomip hi	574	1135	50.9
294											305	Blood	654	1351	48.6
295				c.2307G>T						74.19%	4	Blood	201	384	53
296	37	rs1800861	RET	p.Leu769Leu	72	77	49	90	76	33769	225	Blood	 341	737	46.5
297											5	Blood	 262	476	55
298											6	Blood	78	141	55.3
299											11	Blood	290	575	50.6

300						13	Frozen	165	283	58.7
301						237	Blood	240	509	47.5
302						20	Blood	739	1457	50.8
303						24	Blood	1230	1260	98.5
304						244	Blood	529	997	53.5
305						245	Blood	613	1281	48.1
306						29	Blood	167	305	55.3
307						29	Frozen	152	258	58.9
308						248	Blood	773	1554	49.9
309						203	Blood	637	1245	51.2
310						251	Blood	724	1537	47.4
311						3	Blood	625	642	97.8
312						31	Blood	363	365	100
313						14	Blood	747	757	99.5
314						257	Blood	625	1229	51.3
315						262	Blood	435	896	48.9
316						62	Blood	432	434	100
317						100	Blood	257	257	100
318						266	Blood	573	1235	46.6
319						122	Blood	225	464	48.7
320						128	Blood	390	390	100
321						129	Blood	280	280	100
322						167	Blood	357	359	100
323						172	Blood	910	1846	49.6
324						109	Blood	180	341	52.9
325						57	Blood	170	340	50.3
326						117	Blood	234	112	47.9
327						224	Blood	502	502	100
328						255	Blood	913	929	99.1
329						291	Blood	897	913	98.9
330						297	Blood	550	564	98.4
331						107	Blood	671	1441	46.8
332						215	Blood	624	1182	52.8

_

333												270	Blood	910	1847	49.5
334												279	Blood	733	1528	48.2
335												282	Blood	287	638	45.3
336												118	Blood	419	419	100
337												88	Blood	417	418	99.8
338												288	Blood	758	1558	49
339												130	Blood	155	313	49.5
340												292	Blood	875	1725	50.9
341												294	Blood	111	227	49.3
342												352	Blood	840	1707	49.6
343	38	rs77724903	RET	c.2372A>T p.Tyr791Phe	0	0	0	0	0	0.1803% 1 hom	Toledo RA (2015) discarded pathogeni city of the variant	130	Blood	50,8	313	158
344												221	Blood	948	961	99.3
345												11	Blood	644	1086	59.3
346												237	Blood	82	148	55.4
347												19	Blood	12	50	24
348												122	Blood	335	549	61.1
349	39	rs1800862	RET	c.2508C>T	3	5	0	2	5	4.666%		244	Blood	513	1064	48.4
350				p.5e10505e1						100 110111		172	Blood	679	1548	44
351												270	Blood	661	1392	47.6
352												181	Frozen	369	777	47.6
353												278	Blood	14	44	31.8
354												279	Blood	456	956	47.7
355												2	Blood	218	459	47.5
356												223	Blood	95	195	48.7
357												230	Blood	246	543	45.6
358		1000053	DET	c.2712C>G	10	22	10		20	0.003383		14	Blood	174	337	51.9
359	40	rs1800863	KEI	p.Ser904Ser	16	22	10		20	% 0 hom		17	Blood	502	1032	48.8
360												239	Blood	355	700	50.9
361												20	Blood	240	499	48.5
362												241	Blood	367	837	44.1

363							242	Blood	101	193	52.3
364	-						24	Blood	290	564	51.5
365	-						245	Blood	269	520	51.9
366	-						247	Blood	552	557	99.5
367	-						249	Blood	81	186	43.5
368							204	Blood	265	544	48.7
369							256	Genomip hi	94	159	59.1
370							44	Blood	215	419	51.3
371							266	Blood	289	521	55.7
372							267	Blood	320	674	47.5
373							172	Blood	292	606	48.3
374							62	Blood	472	1023	46.2
375	-						215	Blood	373	765	48.8
376							291	Blood	167	338	49.4
377	-						31	Blood	845	845	100
378							269	Blood	185	386	48.1
379							176	Frozen	562	977	57.6
380	-						179	Frozen	309	592	52.2
381							129	Blood	337	708	47.6
382							167	Blood	244	460	53
383							183	Frozen	94	357	26.3
384							184	Frozen	377	735	51.3
385							86	Frozen	494	1012	48.8
386							279	Blood	275	557	49.8
387							282	Blood	204	436	46.9
388							287	Blood	211	470	45.2
389							116	Frozen	 783	1512	51.8
390							344	Blood	 162	292	55.5
391							345	Blood	262	531	49.3
392							349	Blood	243	431	56.4
393							350	Blood	 199	373	53.8

394	41	rs201389647	SDHA F2	c.37+17 T>C	0.23	0.28	0	1	0	Not describe d	218	Blood		16	33	48.5
395	40	****	MEN	c.1269C>T	21	22	10	-	40	39.34%	129	Blood		147	329	44.7
396	42	1820/1313	1	p.Asp423Asp	31	33	40	5	40	hom	252	Blood		38	65	58.5
397											72	Blood		518	992	52.22
398											116	Frozen		72	89	80.9
399											129	Blood	Low coverage region (E1- MDH2)	12	12	100
400											258	Blood		51	131	39.2
401											208	Blood	Low coverage region (E1- MDH2)	8	8	100
402	42	rs17849553,	MDH	c.26C>T	54	11	62	72	22	44.54 %	215	Blood	Low coverage region (E1- MDH2)	9	9	100
403	43	rs6720	2	p.Ala9Val	51	41	62	/2	33	1657 hom	280	Blood		88	275	32.2
404											3	Blood	Low coverage region (E1- MDH2)	2	4	50
405											62	Blood		76	141	54.3
406											109	Blood		23	23	100
407											107	Blood		273	278	99.6
408											292	Blood		87	203	44.4
409											297	Blood	Low coverage region (E1- MDH2)	5	17	31.3
410											128	Blood		22	22	100

411											129	Blood	Low coverage region (E1- MDH2)	12	12	100
412											88	Blood		23	42	54.8
413											285	Blood		212	477	44.9
414											295	Blood	Low coverage region (E1- MDH2)	4	5	80
415											222	Blood	Low coverage region (E1- MDH2)			
416											254	Blood		1537	3149	48.8
417											258	Blood		919	1868	49.3
418											270	Blood		1204	2461	49.1
419										0.015.0/	297	Blood		1145	2349	48.9
420	44	rs79663210	2	c.235+10G>A	7	5	2	5	11	8.615 % 528 hom	109	Blood		1000	1008	99.6
421											128	Blood		960	964	99.6
422											280	Blood		1039	2008	51.9
423											127	Blood		370	808	45.8
424											129	Blood		385	745	51.7
425											4	Blood		831	1604	51.9
426											64	Blood		736	1366	53.9
427	45	rc11528801	MDH	c.429G>A	1	0.28	0	0.41	2	1.866%	107	Blood		485	1106	44.2
428	45	1311338801	2	p.Pro143Pro	1	0.20	0	0.41	2	38 hom	77	Blood		1103	2127	52
429											285	Blood		845	1939	44.1
430											133	Frozen		891	1758	50.8
431											11	Blood		454	953	47.6
432]									40.59%	16	Blood		215	446	48.3
433	46	rs1637037	2 MDH	c.633+17C>T	53	40	62	81	33	11189	258	Blood		311	630	49.4
434										hom	208	Blood		278	519	53.7
435											62	Blood		385	765	50.3

436											215	Blood	 306	600	51
437											72	Blood	 1239	2487	49.82
438											292	Blood	416	811	51.4
439											297	Blood	251	511	49.2
440											76	Blood	365	754	48.7
441											88	Blood	805	806	99.9
442											280	Blood	296	588	50.6
443											103	Blood	201	315	63.8
444											3	Blood	128	228	56.1
445											100	Blood	665	666	100
446											117	Blood	585	278	47.5
447											107	Blood	441	449	98.7
448											109	Blood	784	790	99.5
449											285	Blood	486	985	49.4
450											116	Frozen	736	1364	54.1
451											127	Blood	499	1031	48.4
452											128	Blood	645	647	99.7
453											129	Blood	274	528	52
454											133	Frozen	760	1714	44.4
455											295	Blood	168	280	60.4
456											231	Blood	604	1204	50.5
457											262	Blood	355	742	47.9
458											291	Blood	387	800	48.5
459	47	rc10256	MDH	c.902A>G	2	1	0	0.2	5	3.704 %	285	Blood	672	1507	44.7
460	47	1310230	2	p.Lys301Arg	Z	4	0	0.2	5	103 hom	117	Blood	752	395	52.6
461											122	Blood	258	473	54.5
462											112	Blood	303	653	46.5
463											 220	Blood	455	837	54.6
464											1	Genomip hi	335	660	51
465	48	rs3852673	TME M127	c.621G>A p.Ala207Ala	11	13	8	5	18	16.34 % 1938	8	Genomip hi	102	229	44.7
466				I						hom	8	Blood	 244	545	44.9
467											19	Blood	 175	293	59.7

468											261	Blood	 389	850	46
469											207	Blood	348	693	50.2
470											172	Blood	358	726	49.4
471											214	Blood	1157	1165	99.8
472											71	Blood	28	46	63.6
473											75	Blood	169	240	70.4
474											109	Blood	275	500	55
475											272	Blood	92	168	54.8
476											175	Frozen	43	209	20.6
477											177	Frozen	188	383	49.6
478											278	Blood	65	98	66.3
479											24	Blood	268	608	44.4
480											255	Blood	294	623	47.4
481											291	Blood	272	623	43.7
482											292	Blood	590	1200	49.5
483											92	Blood	65	73	89
484											117	Blood	411	229	55.9
485											94	Blood	292	458	64.2
486											116	Frozen	561	881	63.8
487											342	Blood	274	530	51.9
488											345	Blood	340	735	46.3
489											348	Blood	321	645	49.8
490											351	Blood	222	456	48.8
491	49	rs189327749	TME M127	c.409+7C>T p.Ala207Ala	0.46	1	0	0	1	0.5177% 1 hom	230	Blood	767	1631	47.2
492											32	Blood	33	82	40.2
493	50	rs34677591	SDHD	c.34G>A	1	2	0	0.2	1	0.7268 %	69	Blood	582	1136	51.4
494				p.Gly123el						5 110111	182	Frozen	265	709	37.5
495											3	Blood	762	1623	47.1
496				c.149A>G						0.6515 %	224	Blood	711	1503	47.4
497	51	rs11214077	SDHD	p.His50Arg		2	0	U	1	6 hom	224	Blood	711	1503	47.4
498											60	Blood	1236	2403	51.5

499											237	Blood	509	1149	44.6
500											21	Blood	325	838	38.8
501	52	****		c.204C>T	10	2	0	20	1	3.976%	32	Blood	467	1081	43.3
502	52	129919225	טחעכ	p.Ser68Ser	10	3	0	39	L L	622 hom	69	Blood	301	663	45.7
503											83	Blood	238	575	41.8
504											100	Blood	282	600	47.1
505	F.2	rs35215598,	SDUC	c 2010 20110incCT	1.4	0	22	22	-	10.53 %	100	Blood	73	125	58.4
506	55	rs75726722	SDHC	C.20+9_20+10InsG1	14	ŏ	22	23	Э	891 hom	134	Frozen	186	330	56.4
507											1	Genomip hi	1018	1998	51.3
508											9	Blood	951	1972	48.3
509											201	Blood	679	1327	51.2
510	54	rs61737760	FH	c.927G>A	3	2	4	2	3	3.489 %	239	Blood	808	1572	51.5
511				p.Pro309Pro						104 hom	264	Blood	938	1812	52.1
512											267	Blood	757	1559	48.7
513											70	Blood	750	1544	49.1
514											98	Blood	784	1520	51.8

PANEL-II

MUTATIONS

MUT.	ID	Type of sample	Final	Gene	Alt Read Depth	Read Depth	Alt Variant Freq	Consequence	cDNA	Protein
1	78	FFPE	Control germline mutation SDHA	SDHA	30	32	93.75	missense	c.1754G>A	p.Arg585Gln
2	411	FFPE	Control somatic mutation HRAS	HRAS	638	2266	28.16	missense	c.182A>G	p.Gln61Arg
3	419	FFPE	Control somatic mutation HRAS	HRAS	1248	3063	40.74	missense	c.37G>C	p.Gly13Arg
4	206		Control comption withtion V/III	VIII	19	71	26.76	missense	c.227T>A	p.Phe76Tyr
4	390	FFPE		VIL	18	67	26.87	synonymous	c.228C>T	p.Phe76Phe
5	422	FFPE	Control somatic mutation VHL	VHL	50	338	14.79	missense	c.260T>C	p.Val87Ala
6	454	FFPE	Control somatic mutation VHL	VHL	196	851	23.03	missense	c.482G>A	p.Arg161Gln
	453 FFPE				393	1391	28.25	frameshift	c.605delA	p.Asn202Thrfs*18
7		Control germline mutation SDHB	CDUD	403	1129	35.7	frameshift	c.601_604delTGGA	p.Trp201Thrfs*18	
′		(c.595delTACTGGTGGAinsGG; p.Tyr199Glyfs*19)	2DHR	390	1322	29.5	frameshift	c.595_601delTACTGGT	p.Tyr199Glyfs*19	
					410	1331	30.8	frameshift	c.595_598delTACT	p.Tyr199Glyfs*20

8	380	FFPE	Control germline mutation RET	RET	45	81	55.56	missense	c.1900T>C	p.Cys634Arg
9	386	FFPE	Control somatic mutation RET	RET	29	106	27.36	missense	c.2753T>C	p.Met918Thr
10	122	FFPE	Control somatic mutation EPAS1	EPAS1	1666	6262	26.6	missense	c.1591C>G	p.Pro531Ala
11	297	FFPE	Control germline mutation SDHAF2	SDHAF2	7526	12709	59.22	stop_gained	c.362G>A	p.Trp121*
12	416	FFPE	Control germline mutation MDH2	MDH2	195	359	54.32	splice_donor	c.429+1G>T	
13	117	FFPE	Control somatic mutation SDHD (VUS SDHD)	SDHD	1188	1802	65.93	stop_gained	c.112C>T	p.Arg38*

VARIANTS OF UNKNOWN SIGNIFICANCE (VUS)

vus	ID	Type of sample	Final	Gene	Alt Read Depth	Read Depth	Alt Variant Freq	Consequence	cDNA	Protein
1	382	FFPE	Control VUS germline MAX	MAX	67	126	53.17	missense	c.425C>T	p.Ser142Leu

POLYMORPHISMS (SNPs)

rs	Unique rs	dbSNP ID	Gene	HGVSc HGVSp	Allele Freq	Allele Freq Amr	Allele Freq Asn	Allele Freq Af	Allele Freq Eur	Allele Freq ExAC		ID	Alt Read Depth	Read Depth	Alt Variant Freq
1		rs346356		c.113A>T p.Asp38Val		1	0	0	3	3.529% 103 hom		109	1342	2759	48.64
2	1	77	SDHA		1							255	503	939	53.57
3		rs113942		c.309A>G p.Ala103Ala	17	20	4	42	9	15.29% 2023 hom		62	306	681	44.93
4	2 4	4	SDHA									291	253	691	36.61
5		rs655505	SDHA	c.619A>C p.Arg103Arg	22	23	5	56	11	15.68% 2372 hom	%	100	1079	2698	39.99
6												62	1526	3549	43
7												122	1621	3979	40.74
8	2											291	1217	2804	43.4
9	5	5										3	1245	2511	49.58
10												107	1369	2711	50.5
11												118	2024	5649	35.83
12												88	639	1267	50.43
13	4	rs211527	CDUA	c.684T>C p.Asn228Asn	22	22	5	56	11			100	688	1556	44.22
14	14 4	2	SDHA		22	23						62	598	1075	55.63

15												122	642	1320	48.64
16										15.65% 2368 hom		291	711	1172	60.67
17												3	466	914	50.98
18												107	477	1094	43.6
19												118	247	847	29.16
20												88	219	463	47.3
21												100	527	527	100
22									88			62	819	843	97.15
23												117	282	1024	27.54
24								99				122	754	758	99.47
25						88	69					109	294	294	100
26					86							129	514	514	100
27												31	1278	1284	99.53
28												291	423	423	100
29		222246								88.10 % 47377		3	479	487	98.36
30				c.771-11A>G								297	1087	2562	42.43
31	5	rs228846 1	SDHA									108	1118	1125	99.38
32		-								hom		24	82	224	36.61
33	1											107	735	738	99.59
34												118	481	1647	29.2
35												128	561	561	100
36												14	110	110	100
37												167	1194	1198	99.67
38												88	227	227	100
39												224	567	1435	39.51
40												255	399	399	100
41												292	90	103	87.38
42	6	rs347713 91	SDHA	c.822C>T p.Gly274Gly	1	1	0	2	0.13	0.4620% 3 hom		128	561	565	99.29
43				c.891T>C p.Pro297Pro			33					100	1282	3190	40.19
44	7	rs112641				70		73	75	70.78%	%	62	3016	6336	47.6
45	/	7	SDHA		63				/5	31200 hom		117	2377	4769	49.84
46												122	6787	6816	99.57

47												109	4175	4294	97.23
48												129	723	2669	27.09
49												31	3582	6981	51.31
50												291	4131	4272	96.7
51												3	4929	4996	98.66
52												297	5887	11684	50.39
53												108	5980	5984	99.93
54												24	1084	2325	46.62
55												107	2080	4045	51.42
56												118	2406	7321	32.86
57												128	5439	5493	99.02
58												14	1342	1404	95.58
59												167	6283	6323	99.37
60												88	3326	3337	99.67
61												224	4731	9334	50.69
62												255	2386	4502	53
63												292	1449	1605	90.28
64												62	3484	6020	57.87
65		rs771000 5	SDHA	c.896-20A>G				55				122	3591	7128	50.38
66	0				22	23	5		11	15.66%		291	2313	4541	50.94
67	0				22				11	hom		107	3848	8360	46.03
68												118	2119	6691	31.67
69												88	2381	5063	47.03
70	9	rs142849 100	SDHA	c.969C>T p.Gly323Gly	0.23	1	0	0	0.4	0.7017% 12 hom		255	256	598	42.81
71												100	521	1004	51.89
72	-											62	532	1205	44.15
73												122	795	1536	51.76
74		rs104194		c.1038C>G			_			15.97 %		291	465	1089	42.7
75	10	9	SDHA	p.Ser346Ser	22	24	5	59		2574 hom		3	348	838	41.53
76	1											107	631	1197	52.72
77	1											118	486	1361	35.71
78	1											88	229	413	55.45

79	11	rs352772	SDHA	c.1170C>T	9	3	0	36	0.13	3.24% 579		100	239	415	57.59
80		30		p.Phe390Phe						hom		3	 414	746	55.5
81	12	rs150831 951	SDHA	c.1305G>T p.Leu435Leu	1	2	0	0.2	3	1.927% 40 hom		128	4339	6185	70.15
82	13	rs347798 90	SDHA	c.1413C>T p.lle471lle	0.14	0.28	0	0.2	0.13	0.2199% 1 hom		128	6814	6831	99.75
83												62	396	1697	23.34
84	-								11	15.27 % 1873 hom		122	701	3379	20.75
85												291	694	2814	24.66
86	14	rs100390 29	SDHA	c.1680G>A	21	23	4	53				3	551	2335	23.6
87	-	25		p.111560111								107	404	1901	21.25
88	-											118	703	4637	15.16
89	-											88	236	1221	19.33
90	rs772106										100	1094	2411	45.38	
91		rs772106 21		c.1752A>G p.Ala584Ala	22	23	4	56	11			62	2190	3977	55.07
92												122	1511	2968	50.91
93			SDHA							15.59 %		291	2110	4106	51.39
94	12									hom		3	1208	2634	45.86
95												107	1341	2525	53.11
96												118	1454	4030	36.08
97												88	628	1272	49.37
98				c.1908+15C> T			0.17	1				122	476	484	98.35
99	16	rs355493			E	_			11	Not		109	287	613	46.82
100	10	41	SDHA		5	/			11	d		297	951	1909	49.82
101												167	700	1319	53.07
102	17	rs372662 724	SDHA	c.1909- 14_1909- 13delCT	0	0	0	0	0	0.00082 55% 0 hom	Positive SDHB-IHC confirms as a SNP	291	164	717	22.87
103			SDHA									100	1402	1817	77.16
104	10	rc6061		c.1932G>A p.Val644Val	24	32	33	FO	20	17.16%		62	410	793	51.7
105	81	rs6961			34			Sõ	20	2406 hom		122	1561	2319	67.31
106	06											109	 615	1566	39.27
107											129	815	1408	57.88	
-------------------	----	-----------------	------	--------------------------------------	----	----	---	----	----	------------------	-------------------	-------------------	----------------------	-------------------------	
108											31	595	1546	38.49	
109											291	568	719	79	
110											3	442	753	58.7	
111											297	690	3046	22.65	
112											24	263	648	40.59	
113											107	455	1130	40.27	
114											118	713	1293	55.14	
115											128	221	1369	16.14	
116											14	168	506	33.2	
117											167	958	2606	36.76	
118											88	375	574	65.33	
119											224	708	2381	29.74	
120											255	201	719	27.96	
121											 292	81	425	19.06	
122	19	rs148627 127	SDHA	c.1944_1945 delTT p.Leu649Gluf	3	3	6	3	1	1.35 % 0 hom	100	360	1829	19.68	
123				5 4							122	475	2329	20.4	
124											297	683	3085	22.14	
125											100	718	1821	39.43	
126											122	1063	2324	45.74	
127	20	rc6062		c.1969G>A	16	20	Λ	25	11	12.98 %	291	369	726	50.83	
128	20	130902	JUNA	p.Val657Ile	10	20	4	55	11	hom	3	444	751	59.12	
129											107	460	1141	40.32	
130											118	296	1288	22.98	
131											100	657	1818	36.14	
132	-			- 10740: 0						2 2 4 9 %	122	492	2327	21.14	
132 133	21	rs104244 6	SDHA	c.1974G>C p.Pro658Pro	0	0	0	0	0	2.348 % 0 hom	122 109	492 612	2327 1574	21.14 38.88	
132 133 134	21	rs104244 6	SDHA	c.1974G>C p.Pro658Pro	0	0	0	0	0	2.348 % 0 hom	122 109 129	492 612 794	2327 1574 1390	21.14 38.88 57.12	

136												291		187	723	25.86
137												297		670	3072	21.81
138												24		256	650	39.38
139												118		388	1279	30.34
140												128		221	1372	16.11
141												14		158	507	31.16
142												167		938	2595	36.15
143												88		79	575	13.74
144												224		705	2383	29.58
145												255		191	721	26.49
146												292		55	419	13.13
147											Positivo	291		20	112	17.86
148											SDHB-IHC	24		93	288	32.29
149	22	rs104247 6	SDHA	c.*13T>C	0	0	0	0	0	0.2999% 0 hom	in samples with ID	128	Low coverage region (E1-SDHA)	12	162	7.41
150	_										14,24, 88,	14		61	238	25.63
151	_										128,129	88		28	279	10.04
152											anu 291.	255		77	340	22.65
153												100	Low coverage region (E1-SDHA)	193	4089	4.72
154											Positive	109	Low coverage region (E1-SDHA)	254	4263	5.96
155											in samples	129	Low coverage region (E1-SDHA)	252	3396	7.42
156											with ID	31		806	5197	15.51
157	23	rs200769 995	SDHA	c.*14G>A	0	0	0	0	0	0.2982% 0 hom	14,24,31, 100,109,1 28,129,16	297	Low coverage region (E1-SDHA)	453	8968	5.05
158											7,224,291	24		258	1810	14.25
159											,292 and 297	14		183	1162	15.75
160											confirms as a SNP	167	Low coverage region (E1-SDHA)	530	5356	9.9
161												224	Low coverage region (E1-SDHA)	610	6414	9.51

162												255	Low coverage region (E1-SDHA)	187	2717	6.88
163												292	Low coverage region (E1-SDHA)	76	1415	5.37
164											Positive	100		651	1806	36.05
165											SDHB-IHC	122		417	2289	18.22
166	22	rs104247		*42 *44:						Not	samples	109		581	1556	37.34
167	22 and 23	6 and rs200769	SDHA	C.*13_*14inv TG	0	0	0	0	0	describe	31,100,10	31		565	1542	36.64
168	20	995								d	9,122,167	297		255	1487	17.15
169											confirms	167		361	1209	29.86
170											as a SNP.	224		275	1127	24.4
171	24	rs636508 60	VHL	c.183C>G p.Pro61Pro	0	0	0	0	0.05	0.2542% 0 hom	Previously reported as a SNP in Gallou (1999)	412		275	358	76.82
172	25	rs339270 12	SDHB	c.487T>C p.Ser163Pro	1	0	0.2	2	0.95	1.254 % 21 hom		107		318	689	46.15
173	26	rs386134 266	SDHB	c.424- 19_424- 14dupTTCTTC	0	0	0	0	0	Not describe d	Previously reported as a SNP in Rattenber ry (2013)	122	Positive SDHB-IHC	316	1625	19.45
174												100		1220	1225	99.59
175												62		1192	1215	98.11
176												117		952	954	99.79
177												122		1447	1476	98.04
178		***		c 19C> A						97.21 %		109		1858	1866	99.57
179	27	2	SDHB	p.Ala6Ala	97	99	87	96	95.15	53297		129		578	578	100
180										hom		31		1248	1248	100
181												291		1255	1263	99.37
182												3		536	538	99.63
183												297		1626	1636	99.39
184												108		960	963	99.69

185											24	207	207	100
186											107	462	462	100
187											118	1494	1506	99.2
188											128	1016	1051	96.67
189											14	238	240	99.17
190											167	1256	1258	99.84
191											88	164	164	100
192											224	746	748	99.73
193											255	368	408	90.2
194											292	177	177	100
195											379	552	1151	47.96
196											381	666	1480	45
197											385	313	728	42.99
198											62	674	1346	50.07
199											404	307	766	40.08
200											410	713	1366	52.2
201											129	360	763	47.18
202											413	427	968	44.11
203	28	rs179993	RET	c.2071G>A	23	10	٩	20	15 7	2033% 2840	31	1409	1415	99.58
204	20	9		p.Gly691Ser	25	10	5	20	15.7	hom	428	554	897	61.76
205											291	467	1105	42.26
206											451	313	434	72.12
207											382	201	405	49.63
208											108	783	1433	54.64
209											399	321	668	48.05
210											24	177	324	54.63
211											14	121	210	57.62
212											167	795	1071	74.23
213											 379	1406	2917	48.2
214		100000		22070 -						74.19 %	100	2319	2327	99.66
215	29	rs180086 1	RET	c.230/G>T p.Leu769Leu	77	49	90	76	80.26	33769	62	2191	2227	98.38
216		-		P.2007 05200						hom	117	1291	2163	59.69
217											122	2404	4835	49.72

218											410	1907	3467	55
219											109	1628	3311	49.17
220											411	1077	2100	51.29
221											129	2158	2169	99.49
222											412	1097	3304	33.2
223	-										419	1000	2207	45.31
224											31	3028	3041	99.57
225	-										291	2942	3033	97
226	-										434	1135	2227	50.97
227	-										3	2584	2588	99.85
228	-										297	4331	4343	99.72
229	-										108	3333	3344	99.67
230	-										24	1395	1436	97.14
231											405	600	1097	54.69
232											107	1153	2285	50.46
233											118	4521	4531	99.78
234											128	2429	2475	98.14
235											14	1069	1114	95.96
236											416	2328	4373	53.24
237											167	2428	2457	98.82
238											88	1112	1142	97.37
239											224	3440	3448	99.77
240											255	1623	1752	92.64
241											292	246	805	30.56
242											379	2116	4346	48.69
243											122	1809	3541	51.09
244	20	rs180086	DET	c.2508C>T	5	0	2	E	1 74	4.666%	410	2060	3963	51.98
245	50	2	RE I	p.Ser836Ser	5	0	2	5	4.24	hom	412	1012	1937	52.25
246											414	951	2043	46.55
247											 416	 3639	7029	51.77
248		100005								20.57 %	379	 491	1021	48.09
249	31	rs180086 3	RET	c.2712C>G n Ser904Ser	22	10	11	20	16.09	2745	381	817	1591	51.35
250				p.50150-501						hom	62	367	806	45.53

251												404		198	491	40.33
252												410		636	1326	47.96
253												129		473	912	51.86
254												413		408	909	44.88
255												31		1033	1038	99.52
256												291		274	642	42.68
257												451		371	805	46.09
258												382		201	257	78.21
259												108		690	1430	48.25
260												399		421	770	54.68
261												24		153	233	65.67
262												14		57	168	33.93
263												167		960	1309	73.34
264												421		410	655	62.6
265	32	rs370174 263	SDHAF2	c.451C>G p.Gln151Glu	0	0	0	0	0.01	Not describe d	Positive SDHB-IHC confirms as a SNP.	395		296	835	35.45
266	-											292		144	213	67.61
267	-											451		122	361	33.8
268	-											3		303	703	43.1
269	_											297		422	968	43.6
270	-											385		460	1018	45.19
271	_											62		626	1121	55.84
272	_									44.54%		107		316	316	100
273	33	rs178495 53 rs6720	MDH2	c.26C>T n Ala9Val	41	62	72	33	39.15	1657		109		2402	2458	97.72
274	_	55,150720		p., 105 V 01						hom		129		333	636	52.36
275	-											128		1175	1193	98.49
276												88		112	204	54.9
277												377	Low coverage region (E1-MDH2)			
278												412	Low coverage region (E1-MDH2)			

279											297	1756	3250	54.03
280										8.615%	385	889	1494	59.5
281	34	rs/96632	MDH2	c.235+10G>A	5	2	5	11	8.99	528	109	1779	1781	99.89
282		10								hom	129	720	1254	57.42
283											128	1599	1627	98.28
284	25	rs115388		c.429G>A	0.29	0	0.41	2	1 1 6	1.866%	107	65	111	58.56
285	35	01	IVIDE2	p.Pro143Pro	0.28	0	0.41	2	1.10	38 hom	412	88	158	55.7
286											3	2460	4798	51.27
287											297	5726	12555	45.61
288											385	1692	3365	50.28
289											100	2629	2699	97.41
290											62	1938	3806	50.92
291											396	965	1982	48.69
292										40.59%	117	2148	4110	52.26
293	36	rs163703 7	MDH2	c.633+17C>T	40	62	81	33	44.02	11189	107	3770	3782	99.68
294		,								hom	109	4032	4052	99.51
295											129	1562	3005	51.98
296											412	2952	7192	41.05
297											128	4638	4714	98.39
298											88	1684	3194	52.72
299											292	636	1484	42.86
300											451	1772	3478	50.95
301											389	544	1205	45.15
302	27	rc102E6		c.902A>G	4	0	0.2	E	26	3.704%	117	808	1631	49.54
303	57	1810250	IVIDE2	p.Lys301Arg	4	0	0.2	Э	3.0	hom	122	891	1453	61.32
304											291	688	1383	49.75
305											381	897	1739	51.58
306											117	754	1251	60.27
307										16.34%	410	902	1883	47.9
308	38	rs385267	1011 FMEM1	c.621G>A	13	8	5	18	13.87	1938	109	390	870	44.83
309				P.7.10207710						hom	291	660	1083	60.94
310											24	148	294	50.34
311											405	143	279	51.25

312											255	134	398	33.67
313											292	147	373	39.41
314											378	520	1271	40.91
315											389	643	1282	50.16
316	39	rs112140	SDHD	c.149A>G n His50Arg	2	0	0	1	0.63	0.6515%	3	757	1522	49.74
317		,,		p.11350A16						0 110111	405	319	621	51.37
318											224	337	1684	20.01
319		rs991955		c.204C>T	_	_		_		3.976%	384	181	482	37.55
320	40	2	SDHD	p.Ser68Ser	3	0	39	1	12.01	622 hom	100	422	878	48.06
321		rs352155								10.53%	100	335	923	36.29
322	41	98, rs757267 22	SDHC	c.20+11_20+ 12dupTG	8	22	23	5	11.22	891 hom	411	296	653	45.33
323	42	rs617377 60	FH	c.927G>A p.Pro309Pro	2	4	2	3	2.21	3.489 % 104 hom	108	1279	2490	51.37

Supplementary table S6. Variants (mutations and VUS) found by TGPs and validated by Sanger sequencing. Mut.:Mutation; Mut^{u:} Unique mutation; IHC: SDHB-immunohistochemistry; M or VUS: mutation or Variant of Unknown Significance; ExAC database: Prevalence described in the The Exome Aggregation Consortium (ExAC); LOVD: Presence described in the Leiden Open (source) Variation Database; ND: not described; Pubmed: Previously published; Alt.: Altered; FFPE: Formalin fixed paraffin-embedded tumor tissue; Neg.: Negative SDHB-IHC; Pos: Positive SDHB-IHC; SM: Somatic mutations, GM: Germline mutation; Tumor, no blood: Mutation found in tumor DNA sample, and no germline DNA available to check if the variant is somatic or germline; SIFT/Polyphen: protein functional prediction in SIFT and Polyphen 2; tol.: tolerated; del.:deleterious; COSMIC: prevalence in COSMIC: Catalogue of Somatic Mutations in Cancer; AF: Allele Frequency; Amr: Americans; Asn: Asian; Eur: European population; LOHLoss Of Heterozygosity; qPCR: quantitative PCR; RBP1: Retinol Binding Protein 1; 5hmC: 5-hydroxymethylcytosine; 2SC: 2-Succinocysteine.

Mut	Mut ^u	M or VUS	Gene	cDNA	Protein	ExAC database	LOVD	Pubmed	ID	Sample	IHC	Alt Read Depth	Read Depth	Alt Variant Freq	Туре
1	1	м	SDHA	c.91C>T	p.Arg31*	20 of 121408 allele count. 0 homozygotes. 0.0001647 allele frequency.	Reported 2 times as pathogenic (r.1065_1260del (exon 9 skipping)) in Netherlands: Nijmegen	Previously reported Korpershoek (2011) as pathogenic (Neg. SDHB/SDHA-IHC)	368	Blood	Neg.	754	1643	46.1	GM
2	2	м	SDHA	c.1334C >T	p.Ser445Leu	ND	ND	Previously reported Papathomas (2015) as pathogenic (Neg. SDHB/SDHA-IHC)	124	Blood	Neg.	834	1538	54.3	GM
			HRAS	c.182A> G	p.Gln61Arg	ND	ND	Previously reported Crona (2013)	88	FFPE	Pos.	425	934	45.5	SM
3		М								Blood					
4		м	HRAS	c.182A> G	p.Gln61Arg	ND	ND	Previously reported Crona (2013)	151	Frozen	Pos.	15	24	62.5	SM
5		м	HRAS	c.182A> G	p.Gln61Arg	ND	ND	Previously reported Crona (2013)	359	Frozen	ND	116	313	37.1	SM
6	-3	м	HRAS	c.182A> G	p.Gln61Arg	ND	ND	Previously reported Crona (2013)	360	Frozen	ND	55	185	29.9	SM
7		м	HRAS	c.182A> G	p.Gln61Arg	ND	ND	Previously reported Crona (2013)	376	Frozen	ND	25	210	11.9	SM
8		м	HRAS	c.182A> G	p.Gln61Arg	ND	ND	Previously reported Crona (2013)	433	FFPE	Pos.	470	1961	23.97	SM
9		м	HRAS	c.182A> G	p.Gln61Arg	ND	ND	Previously reported Crona (2013)	436	FFPE	Pos.	1006	2266	44.4	SM
10	4	м	HRAS	c.182A> T	p.Gln61Leu	ND	ND	ND. but reported p.Gln61Arg in Crona (2013) and p.Gln61Lys in Oudijk (2013)	449	FFPE	Pos.	222	1272	17.45	SM
11	5	м	HRAS	c.37G>C	p.Gly13Arg	ND	ND	Previously reported Crona (2013)	320	Frozen	ND	353	911	38.8	SM

12		м	HRAS	c.37G>C	p.Gly13Arg	ND	ND	Previously reported Crona (2013)	375	Frozen	ND	55	345	16.1	SM
13		м	VHL	c.193T> G	p.Ser65Ala	ND	ND	VHL alliance database: Previously reported in Neumann (2002) in VHL disease and in Burnichon (2011) in PPGL; UMD-VHL: ND. but reported p.Ser65Pro; p.Ser65Trp and p.Ser65Leu	148	Frozen	Pos.	81	192	44.8	SM
14	6	М	VHL	c.193T> G	p.Ser65Ala	ND	ND	VHL alliance database: Previously reported in Neumann (2002) in VHL disease and in Burnichon (2011) in PPGL; UMD-VHL: ND. but reported p.Ser65Pro; p.Ser65Trp and p.Ser65Leu	153	Frozen	Pos.	48	172	29.1	SM
16		м	VHL	c.193T> G	p.Ser65Ala	ND	ND	VHL alliance database: Previously reported in Neumann (2002) in VHL disease and in Burnichon (2011) in PPGL; UMD-VHL: ND. but reported p.Ser65Pro; p.Ser65Trp and p.Ser65Leu	372	Frozen	ND	9	67	13.6	?
15	7	M	VHL	c.193T> A	p.Ser65Thr	ND	ND	Previously reported in Crona (2014); UMD-VHL: ND. but reported p.Ser65Pro; p.Ser65Trp and p.Ser65Leu	190	Frozen	ND	36	135	27.7	SM
15	7									Blood					
17	8	м	VHL	c.233A> G	p.Asn78Ser	ND	ND	VHL alliance database: Previously reported in Chen (1995); UMD-VHL: Reported 6 times	326	Frozen	ND	30	52	57.7	SM
18	9	м	VHL	c.244C> G	p.Arg82Gly	ND	ND	Previously reported in Burnichon (2011); UMD-VHL: ND. but described p.Arg82Cys and p.Arg82Pro	291	FFPE	Pos.	194	283	68.55	SM
										Blood					
19	10	м	VHL	c.376G> A	p.Asp126Asn	ND	ND	VHL alliance database: Previously reported in Brauch (2004); UMD-VHL: ND. but reported p.Asp126Gly	355	Frozen	ND	577	885	65.6	?
20	11	м	VHL	c.407T> G	p.Phe136Cys	ND	ND	VHL alliance database: Previously reported in Whaley (1994); UMD-VHL: Reported 1 time	323	Frozen	ND	255	1892	13.6	SM
21	12	м	VHL	c.414A> G	p.Pro138Pro	ND	ND	Previously reported in A. Giménez Roqueplo P11.242 European-society-of-human-genetics Meeting; UMD-VHL: ND	182	Frozen	Pos.	239	913	26.4	SM
22	12	м	VHL	c.414A> G	p.Pro138Pro	ND	ND	Previously reported in A. Giménez Roqueplo P11.242 European-society-of-human-genetics Meeting; UMD-VHL: ND	353	Frozen)	ND	227	716	31.7	SM
23	13	м	VHL	c.464T> G	p.Val155Gly	ND	ND	UMD-VHL: ND. but reported p.Val155Met and p.Val155Leu	274	Frozen	ND	25	179	14	SM
24	14	м	VHL	c.494T> G	p.Val165Gly	ND	ND	VHL alliance database: Previously reported in Baker (2000); UMD-VHL: ND	100	FFPE	Pos.	58	1240	4.68	SM
										Blood					
25	15	м	VHL	c.500G> A	p.Arg167Gln	ND	ND	VHL alliance database: Previously reported in Crossey (1994); UMD-VHL: Reported 28 times	327	Frozen	ND	194	458	42.5	SM

26	16	м	VHL	с.598C> Т	p.Arg200Trp	ND	Reported 2 times as pathogenic	VHL alliance database: Previously reported in Kishida. Stackhouse et al. (1995); UMD-VHL: Reported 3 times	374	Blood	ND	253	515	49.1	GM
									125	Blood	Pos.				SM
27	17	м	VHL	c.284C> G	p.Pro95Arg	ND	ND	VHL alliance database: Previously reported in Gallou (1999)		FFPE		123	256	48.0	
28	10	м	SDHB	с.649C> Т	p.Arg217Cys	ND	Reported 2 times (somatic mutation in 1)	Previously described Burnichon (2009)	149	Frozen	Neg.	315	404	78	GM
29	18	м	SDHB	c.649C> T	p.Arg217Cys	ND	Reported 2 times (somatic mutation in 1)	Previously described Burnichon (2009)	334	Frozen	ND	241	375	64.4	GM
30	19	М	SDHB	c.591del C	p.Ser198Alafs*22	ND	Reported 2 times	Previously described Burnichon (2009)	162	Blood	Neg.	252	607	41.7	GM
31	20	м	SDHB	c.503du pA	p.Gln169Alafs*10	ND	ND		329	Frozen	ND	1158	1452	80.2	GM
32	20	М	SDHB	c.503du pA	p.Gln169Alafs*10	ND	ND		331	Frozen	ND	769	971	79.6	GM
33	21	м	SDHB	c.424- 3C>G		ND	Reported 1 time: Proven splice defect: United States. exon 5 skipping and truncation at 248aa. Spain	Previously reported Papathomas (2015) as pathogenic (Neg. SDHB/SDHA-IHC)	2	Blood	Neg.	345	738	46.7	GM
34	22	м	SDHB	c.393du pA	p.His132Thrfs*23	ND	ND	ND, but previously reported Maier-Woelfle (2004) as pathogenic c.395A>C; p.His132Pro	441	Blood	Neg.	2591	5000	52.0	GM
35	23	м	SDHB	c.380T> G	p.Ile127Ser	ND	Reported 1 time: concluded pathogenicity: unknown	Previously reported Papathomas (2015) as pathogenic (Neg. SDHB/SDHA-IHC)	371	Frozen	ND	1003	1667	60.3	? (probably GM)
36	24	GD	SDHB	exon 1 deletion		ND	Reported 2 times	Previously reported in Cascon (2006)	152	Frozen	ND				GM
37	25	м	NF1	c.349del A	p.lle117Serfs*48	ND	ND	Previously reported in Pros (2008) in NF1 patient	365	Frozen	ND	264	365	72.3	? (probably SM. LOH)
	26		NF1	c.517G> C	p.Asp173His	ND	ND		434	FFPE	Pos.	410	893	45.91	SM
38	27	M(X2)	NF1	c.519del T	p.Asp173Glufs*5	ND	ND					410	892	45.96	
39	28	м	NF1	c.574C> T	p.Arg192*	1 of 119128 allele count. 0 homozygotes. 0.000008394 allele frequency.	Reported 23 times as pathogenic	Previously described in Messiaen (2000)	135	Frozen	Pos.	339	522	64.9	SM
40	29	м	NF1	c.654+1 G>A		ND	Reported 2 times as pathogenic	ND, but previously reported in Laycock-van Spyk (2011) in a case with NF1 the variant c.654+1G>T as pathogenic	330	Frozen	ND	898	1070	83.9	SM
41	30	м	NF1	c.889- 1G>T		ND	ND, but c.889- 1G>C reported as pathogenic in Netherlands: Rotterdam	ND, but reported in Laycock-van Spyk (2011) as pathogenic in NF1 c.889-2A>G	385	FFPE	Pos.	659	1094	60.24	SM
42	31	м	NF1	c.901_9 09delG ACAGTC TA	p.Asp301_leu303del	ND	ND		407	FFPE	Pos.	758	1519	49.9	SM

43	32	м	NF1	c.980del T	p.Leu327Argfs*49	ND	ND		409	FFPE	Pos.	1117	1996	55.96	SM
44		м	NF1	c.1607C >G	p.Ser536*	ND	Reported as pathogenic in Netherlands: Rotterdam	ND, but previously reported in Messiaen (2000) as pathogenic the variant c.1607 C>A; P.Ser536*	194	Frozen	ND	1505	1725	87.4	SM
										Blood					
45	33	м	NF1	c.1607C >G	p.Ser536*	ND	Reported as pathogenic in Netherlands: Rotterdam	ND, but previously reported in Messiaen (2000) as pathogenic the variant c.1607 C>A; P.Ser536*	195	Frozen	ND	808	830	97.6	SM
										Blood					
46	34	м	NF1	c.1642- 1G>A		ND	Reported as pathogenic in Netherlands: Rotterdam		313	Frozen	ND	148	221	67.6	SM
47	35	м	NF1	c.1706_ 1707ins AT	p.Phe570Tyrfs*17	ND	ND		325	Frozen	ND	108	179	61	GM
48	36	м	NF1	c.2125T >C	p.Cys709Arg	ND	Reported as pathogenic in Netherlands: Rotterdam		388	FFPE	Pos.	73	343	21.28	SM
49	37	м	NF1	c.2364_ 2385del AAAGCT AATCCT TAACTA TCCA	p.Leu790Profs*24	ND	ND		381	FFPE	Pos.	764	889	85.94	SM
50	38	м	NF1	c.2464G >T	p.Gly822*	ND	Reported as pathogenic in Netherlands: Rotterdam	Previously reported in Bausch (2007) in patients with NF1 and PCC	357	Blood	ND	220	485	45.5	GM
51	39	м	NF1	c.2592_ 2593del CC	p.Pro865Thrfs*7	ND	ND		447	FFPE	Pos.	1401	2048	68.41	? (probably SM. LOH)
52	40	м	NF1	c.2666d elC	p.Thr889Asnfs*13	ND	ND	Previously reported in Fahsold (2000) in NF1	404	FFPE	Pos.	1628	2774	58.69	SM
53	41	м	NF1	c.2703d elA	p.Met902Trpfs*22	ND	ND		430	FFPE	Pos.	6147	7940	77.42	? (probably SM. LOH)
E 4	42	M	NF1	c.3114- 1delG	p.Asn1039llefs*4	ND	ND		129	FFPE	Pos.	1001	2010	49.8	SM
54	42	IVI								Blood					
55	43	м	NF1	c.3132C >A	p.Tyr1044*	ND	ND		176	Frozen	ND	146	151	98.6	SM
56	44	М	NF1	c.3783_ 3787del TTCTA	p.Phe1261Leufs*21	ND	ND		133	Frozen	Pos.	860	1145	75.2	SM
57	45	м	NF1	c.5609+ 1G>A		ND	ND		424	FFPE	Pos.	842	2131	39.51	SM

58	46	м	NF1	c.6236d elC	p.Ala2079Valfs*3	ND	ND		332	Frozen	ND	769	931	82.6	GM
59	47	м	NF1	c.6585_ 6586du pGA	p.Thr2196Argfs*5	1 (Latino) of 121402 allele count. 0 homozygotes. 0.000008237 allele frequency.	ND		392	FFPE	Pos.	659	2035	32.38	SM
60	48	м	NF1	c.6854_ 6855ins T	p.Asn2286GInfs*21	ND	ND		437	FFPE	Pos.	4493	8490	52.92	SM
61	49	м	NF1	c.7199A >G	p.His2400Arg	ND	ND		394	FFPE	Pos.	1274	3909	32.59	SM
62	50	м	NF1	c.7909C >T	p.Arg2637*	ND	ND	Previously described in Toledo (2015)	431	FFPE	Pos.	890	1770	50.28	SM
63	51	м	NF1	c.3974G >T	p.Arg1325Met	ND	ND, but c.3974G>C reported as pathogenic in Netherlands: Rotterdam and France: Paris		382	FFPE	Pos.	807	1622	49.75	SM
		VUS	MAX	c.425C> T	p.Ser142Leu	2 of 121410 allele count. 0 homozygotes. 0.00001647 allele frequency.	ND	Previously described in Comino (2015) as nonpathogenic				67	126	53.17	GM
<i></i>	52	м	NF1	c.6350d elC	p.Arg2119Glufs*31	ND	ND		166	Frozen	Pos.	404	851	47.5	SM
64		VUS	MEN1	c 10G>A		ND	ND	UMD-MEN1: Reported 3 times: likely neutral				115	368	31.3	GM (no LOH)
65	53	м	RET	c.2326T >C	p.Phe776Leu	ND	ND	Previously reported in Niederle (2014) in MTC	283	Blood	ND	650	1240	52.8	GM
66	54	м	RET	c.2647G >T	p.Ala883Ser	ND	ND	Previously reported in Gimm O (1997)	354	Frozen	ND	136	427	31.9	? (probably SM)
			RET	c.2648C >T	p.Ala883Val	ND	ND	Previously reported in Gimm O (1997)				137	427	32.2	
67		м	RET	c.2753T >C	p.Met918Thr	ND	ND	ARUP: First reference: Hofstra (1994)	116	Frozen	Pos.	638	1629	39.4	SM
68		М	RET	c.2753T >C	p.Met918Thr	ND	ND	ARUP: First reference: Hofstra (1994)	138	Frozen	Pos.	188	662	28.4	SM
69		м	RET	c.2753T >C	p.Met918Thr	ND	ND	ARUP: First reference: Hofstra (1994)	164	Frozen	Pos.	178	832	21.4	SM
70	55	м	RET	c.2753T >C	p.Met918Thr	ND	ND	ARUP: First reference: Hofstra (1994)	340	Frozen	Pos.	255	622	41.2	SM
71		м	RET	c.2753T >C	p.Met918Thr	ND	ND	ARUP: First reference: Hofstra (1994)	369	Frozen	ND	553	1378	40.4	? (probably SM)
72		м	RET	c.2753T >C	p.Met918Thr	ND	ND	ARUP: First reference: Hofstra (1994)	370	Frozen	ND	247	649	38.1	? (probably SM)

73		м	RET	c.2753T >C	p.Met918Thr	ND	ND	ARUP: First reference Hofstra (1994)	393	FFPE	Pos.	1454	3580	40.61	SM
		VUS	EPAS1	c.1199T >C	p.Leu400Pro	ND	ND		275	Frozen	Pos.	179	353	50.9	? (probably SM)
74	56	м	EPAS1	c.1591C >A	p.Pro531Thr	ND	ND	Previously reported Toledo (2013) as pathogenic				253	1040	24.4	
75	57	м	EPAS1	c.1592C >T	p.Pro531Leu	ND	ND	Previously reported Comino (2013)	154	Frozen	Pos.	211	555	38	SM
		vus	EPAS1	c.1611G >C	p.Gly537Gly	ND	ND		322	Frozen	ND	323	934	34.6	SM
76	58	м	EPAS1	c.1615G >C	p.Asp539His	ND	ND	ND. but reported p.Asp539Tyr in Comino (2013)				323	934	34.7	
77	59	м	SDHAF2	c.232G> A	p.Gly78Arg	ND	Reported 2 times: Dutch Founder mutation. Spanish recurrent mutation	Previously reported in Hao (2009) as pathogenic	145	Frozen	Neg.	491	822	60	GM
78	60	м	МАХ	c.1A>G	p.Met1Val	ND	Reported 2 times in Spain	Previously reported in Comino (2011)	191	Blood	Pos.	61	103	60.4	GM
79	61	м	SDHD	c.49C>T	p.Arg17*	ND	Reported 2 times	Previously reported in Neumann (2009)	147	Frozen	Neg.	176	331	53.2	GM
80	62	м	SDHD	c.169+5 G>T		ND	ND, but reported 1 time c.169+5G>A. Netherlands. France. Splicesite mutation? cDNA: SDHD exon 2 skipping	Previously described Burnichon (2009)	336	Frozen	ND	461	574	80.5	? (probably GM)
81	63	м	SDHD	c.239T> G	p.Leu80Arg	ND	ND	Previously described Burnichon (2009)	328	Frozen	ND	463	888	52.4	GM
82	64	М	SDHD	c.334_3 37delAC TG	p.Asp113Metfs*21	ND	ND	Previously described Burnichon (2009)	50	Blood	Neg.	439	806	54.5	GM
02	65		SDHD	c.443G> A	p.Gly148Asp	ND	Reported 1 time in France	Previously described Burnichon (2009)	296	Blood	Neg.	198	1055	18.8	GM
83	5	IVI	SDHD	c.443G> A	p.Gly148Asp	ND	Reported 1 time in France	Previously described Burnichon (2009)		Saliva		201	1042	19.3	
84	66	м	SDHC	c.43C>T	p.Arg15*	ND	Reported 2 times as pathogenic	Previously described Burnichon (2009)	67	Blood	ND	729	1504	48.5	GM
85	67	м	SDHC	c.214C> T	p.Arg72Cys	1 (East Asian) of 121412 allele count. 0 homozygotes. 0.000008236 allele frequency.	Reported 2 times as probably pathogenic: functional domain. conserved residue. 0/164 controls	Previously described Burnichon (2009)	106	Blood	Neg.	839	1635	51.4	GM
86	68	м	SDHC	c.379C> T	p.His127Tyr	ND	ND	Previously reported in Buffet (2012)	141	Frozen	Neg.	492	1062	46.3	GM

87	69	м	FH	c.1431_ 1433du pAAA	p.Lys477dup	110 of 121266 allele count. 0 homozygous. 0.0009071.	Reported 9 times	Previously described in Coughlin (1998)	114	Blood	Pos.	193	497	40	GМ
88	70	м	FH	c.580G> A	p.Ala194Thr	10 of 120820 allel count. 0 homozygotes. 0.00008277 allele frequency	ND	Previously described in Castro (2014)	358	Frozen	ND	736	1314	56.1	GМ
89	71	м	FH	c.555+1 G>A		ND	Reported 2 times as probably pathogenic	Previously described in Gardie (2011) in HLRCC	247	Blood	Pos.	745	1426	52.3	GМ

vus	V U S ^u	Gene	cDNA	Protein	Sift	PolyPhen	dbSNP ID	COSMIC ID	AF	AF Amr	AF Asn	AF Af	AF Eur	LOVD	Pubmed	ExAC database	ID ALL	Sampl e	Alt Read Depth	Read Depth	Alt Var. Freq	Type VUS	Additio nal studies	Final decision
1	1	SDHA	c.125G>A	p.Arg42Ly	tol	benign			0	0	0	0	0	ND		1 (Latino) of 121410 allele count. 0 homozygotes.	310	Blood	412	885	47.1	G	Negativ e SDHB- IHC;	Probably non
_				s												0.000008237 allele frequency.		FFPE	446	1058	42.16		Positive SDHA- IHC.	pathogenic
2	2	SDHA	c.155C>T	p.Ser52Ph e	del.	possibly_ damaging			0	0	0	0	0	ND		15 of 121302 allele count. 0 homozygotes. 0.0001237 allele frequency.	165	Frozen	89	160	55.6	G	Positive SDHB- IHC	Probably non pathogenic
3	3	SDHA	c.354C>T	p.Asn118 Asn										ND		ND	362	Frozen	530	1136	46.9	Tumor. no blood	FFPE slide to perfor m SDHB/S DHA- IHC request ed	Probably non pathogenic
4	4	SDHA	c.456+6G>T				rs371735 891							ND		34 of 119486 allele count. 0 homozygotes. 0.0002846 allele frequency.	361	Blood	735	1433	51.7	G	FFPE slide to perfor m SDHB/S DHA- IHC request ed	Probably non pathogenic
5	5	SDHA	c.723C>T	p.Asp241 Asp			rs146653 693		0	0	0	0	0	ND		59 of 121404 allele count. 0 homozygotes. 0.0004860 allele frequency.	253	Blood	1833	3596	51.2	G	FFPE slide to perfor m SDHB/S DHA- IHC request ed	Probably non pathogenic

6	6	SDHA	c.770+12A> G				rs201245 536		0	0	0	0	0	ND		5 of 120462 allele count. 0 homozygotes. 0.00004151 allele frequency.	65	Frozen	850	1552	54.9	G	FFPE slide to perfor m SDHB/S DHA- IHC request ed	Probably non pathogenic
7	7	SDHA	c.1432+16A >G						0	0	0	0	0	ND		2 of 121330 allele count. 0 homozygotes. 0.00001648 alelel frequency.	90	Blood	234	429	54.8	G	FFPE slide to perfor m SDHB/S DHA- IHC request ed	Probably non pathogenic
8	8	SDHA	c.1456C>A	p.Pro486T hr	tol.	benign	rs138190 937		0	0	0	0	0	ND		ND	89	Blood	489	894	54.8	G	FFPE slide to perfor m SDHB/S DHA- IHC request ed	Probably non pathogenic
																2 (European non- Finnish) of 121394		Blood	550	1200	45.9		FFPE slide to perfor	
9	9	SDHA	c.1644C>T	p.His548H is			rs112642 7		0	0	0	0	0	ND		allele count. 0 homozygotes. 0.00001648 allele frequency.	192	Frozen	613	1125	54.7	G	SDHB/S DHA- IHC request ed	Probably non pathogenic
10	10	KIF1B	c.146C>A	p.Ser49Ty r	del	possibly_ damaging	rs143654 307	COSM347 0408.COS M347040 9						ND	ND	10 of 121406 allele count. 0 homozygotes. 0.00008237.	170	Blood	1358	2505	54.3	G		Unknown
11	11	KIF1B	c.635A>C	p.Glu212A la	tol.	probably _damagin g			0	0	0	0	0	ND	ND	ND	110	Blood	932	1845	50.7	G		Unknown
12						0											26	Frozen	719	1365	52.8	G		Unknown
13	12	KIF1B	c.1456C>G	p.Pro486A la	del.	possibly_ damaging	rs201500 946		0.05	0	0	0	0.13	ND	ND	ND	86	Frozen	508	1624	31.4	G	Positive SDHB- IHC	Unknown
14	1																270	Blood	1016	1925	53.3	G		Unknown
15	13	SDHB	c.455C>T	p.Ser152P he	del.	Benign	rs200414 835		0	0	0	0	0	ND		7 (African) of 121370 allele count. 0 homozygotes. 0.00005767 allele frequency.	218	Blood	1279	2633	48.6	G	FFPE slide to perfor m SDHB/S DHA- IHC request ed	Probably nonpathogenic (patient origin in Africa)

16	14	SDHB	c.221A>G	p.Asp74Gl y	del.	probably _damagin g		0	0	0	0	0	ND		ND	163	Blood	83	196	42.6	G	FFPE slide to perfor m SDHB/S DHA- IHC request ed	Posible pathogenic
17	15	NF1	c.4118G>T	p.Cys1373 Phe	del.	possibly_ damaging		0	0	0	0	0	ND		ND	68	Blood	330	718	46	G	No NF1 phenot ypic feature s	Probably non pathogenic
18	16	NF1	c.4430+1G> T					0	0	0	0	0	ND		ND	180	Frozen	858	1086	79.2	G	No NF1 phenot ypic feature s	Probably non pathogenic
19	17	NF1	c.4796C>T	p.Ser1599 Phe	del.	probably _damagin g		0	0	0	0	0	ND		ND	397	FFPE	118	658	17.93	Tumor. no blood	No NF1 phenot ypic feature s. Positive SDHB-	Probably non pathogenic
20	18	NF1	c.5477A>G	p.His1826 Arg	del.	possibly_ damaging		0	0	0	0	0	ND		ND	139	Frozen	335	738	45.4	G	No NF1 phenot ypic feature s	Probably non pathogenic
21	19	NF1	c.7269_727 0delCA	p.His2423 Glnfs*4									ND		ND	445	FFPE	249	519	47.98	G	No NF1 phenot ypic feature s. Positive SDHB- IHC	Probably non pathogenic
22	20	NF1	c.7971- 7C>A					0	0	0	0	0	ND		ND	287	Blood	1036	2110	49.3	G	No NF1 phenot ypic feature s	Probably non pathogenic
23	21	NF1	c.7985_798 6delAC	p.Asp266 2Valfs*2									ND		ND	366	Frozen	758	1705	44.6	Tumor. no blood	No LOH and no phenot ypic feature s	Probably non pathogenic
24	22	RET	c.1941C>T	p.lle647lle			rs752251 91	0	0	0	0	0	ND	Previous ly reporte d in Auricchi o (1999) in Hirschsp rung's disease as	11 of 121202 allele count. 0 homozygotes. 0.00009076 allele frequency.	429	FFPE	271	538	50.37	G	More blood request ed to perfor m splicing study. Positive SDHB- IHC	Posible pathogenic

														pathoge nic									
25	23	SDHC	c.24C>T	p.His8His				0	0	0	0	0	ND	Previous ly reporte d in Bayley (2006) as a polymor phism in Duth populati on (1%)	ND	278	Blood	905	1911	47.4	G	FFPE slide to perfor m SDHB/S DHA- IHC request ed	Probably non pathogenic
26														Previous ly reporte d:	14 of 121324 allele	405	FFPE	1020	1964	51.93	G	Positive SDHB- IHC	Probably non pathogenic
27	24	EPAS1	c.1700T>C	p.Met567 Thr	tol.	benign		0	0	0	0	0	ND	Comino (2013): probabl y non pathoge nic	homozygotes. 0.0001154 allele frequency.	450	FFPE	1587	3744	42.39	G	Positive SDHB- IHC	Probably non pathogenic
				p.Thr559A							_	_				123	Blood	Not detect	ed in bloo	d			Probably non
28	25	EPAS1	c.1675A>G	la	tol.	benign		0	0	0	0	0	ND		ND	123	FFPE	No amplifie detected b	ed (previo y SS)	usly	5	Positive SDHB- IHC	pathogenic
29	26	MEN1	c.628G>A	p.Asp210 Asn	del.	probably _damagin g		0	0	0	0	0	ND	UMD- MEN1: ND	ND	118	Blood	967	1936	50	G	No LOH in the tumor. Positive SDHB- IHC	Probably non pathogenic
30	27	MDH2	c.8C>T	p.Ser3Phe	del.	unknown		0	0	0	0	0	ND		ND	137	Frozen	54	98	55.1	G	qPCR RBP1: High levels	Probably non pathogenic
31	28	MDH2	c.45C>T	p.Arg15Ar g			rs782800 852	0	0	0	0	0	ND		7 of 14064 allele count. 0 homozygotes. 0.0004977 allele frequency.	257	Blood	137	223	62	G	Tumor to perfor me RBP1/ MDH2 qPCR request ed	Unknown
32	29	MDH2	c.389A>G	p.Gln130A rg	tol.	benign		0	0	0	0	0	ND		ND	61	Blood	576	1207	47.8	G	Tumor to perfor me RBP1/	Unknown

																						MDH2 qPCR request ed	
33	30	MDH2	c 478G>A	p.Val160	del	possibly_	rs138541	0	0	0	0	0	ND		20 of 121274 allele count. 0 homozygotes	255	Blood	129	229	56.3	6	Negativ e SDHB- IHC	Probably non
55	50	MDTL	e.4700777	Met		damaging	865	Ū	Ū	0	Ū	Ū			0.0001649 allele frequency.	233	FFPE	135	285	47.37	5		pathogenic
34	31	MDH2	c.555+8C>T				rs200420 048	0.09	0.28	0	0	0.13	ND		ND	335	Frozen	117	201	58.2	Tumor. no blood	Tumor to perfor me RBP1/ MDH2 qPCR request ed	Unknown
35	32	MDH2	c.999C>T	p.Phe333 Phe			rs146761 624	0	0	0	0	0	ND		60 of 120964 allele count. 0 homozygotes. 0.0004960.	51	Blood	418	852	49.2	G	Tumor to perfor me RBP1/ MDH2 qPCR request ed	Unknown
36	33	TMEM 127	c.448G>C	p.Ala150P ro	tol.	probably _damagin g		0	0	0	0	0	ND		ND	179	Frozen	998	1089	92.2	Tumor. no blood		Unknown
37	34	TMEM 127	c.267A>G	p.Thr89Th r			rs773384 410	0	0	0	0	0	ND		1 of 121216 allele count. 0 homozygotes. 0.000008250.	251	Blood	Not detectoregion)	ed (low cc	overage	G		Probably non pathogenic
38	35	FH	c.1237-9C>T					0	0	0	0	0	ND		6 of 119660 allele count. 0 homozygotes. 0.00005014.	294	Blood	182	609	29.9	G	Reques ted blood (RNA) and FFPE slide to perfor m 5hmC/ 2SC	Probably non pathogenic
39	36	FH	c.952C>A	p.His318A sn	tol.	benign		0	0	0	0	0	ND. but reporte d 4 times the variant :c.952C> T p.H318Y as	ND. but reporte d as pathoge nic the variant c.952C> T (FH enzymat ic	ND	400	FFPE	6901	11778	58.59	Tumor. no blood	IHC 5hmC negativ e. FFPE slide to perfor m 2SC request ed. Positive	Possible pathogenic

													pathoge nic	activity reduced)								SDHB- IHC.	
40	37	FH	c.700A>G	p.Thr234A la	del.	probably _damagin g							ND		ND	364	Frozen	640	752	85.2	Tumor. no blood	Reques ted blood and FFPE slide to perfor m 5hmC/ 2SC	Unknown
41	38	FH	c.555+4A>G					0	0	0	0	0	ND		3 of 121390 (European Non- Finnish) allele count. 0 homozygotes. 0.00002471.	312	Blood	692	1398	49.7	G	Reques ted blood (RNA) and FFPE slide to perfor m 5hmC/ 2SC	Probably non pathogenic
42	39	FH	c9C>T				rs200159 437	0	0	0	0	0	ND	Previous ly reporte d in Castro (2015) as a SNP	1 (South Asia) of 14190 allele count. 0 homozygotes. 0.00007047.	210	Blood	39	64	60.9	G	Reques ted blood (RNA) and FFPE slide to perfor m 5hmC/ 2SC	Probably non pathogenic

Supplementary table S7. Variants reported by TGPs and not validated by Sanger sequencing. FFPE: formalin fixed paraffin-embedded tumor tissue; Alt: Altered; Freq: frequency; Low coverage: low coverage of the altered variant.

ID	Reason	Sample	Gene	cDNA	Protein	Alt Read Depth	Read Depth	Alt Variant Freq
229	Homopolymeric	Blood	KIF1B	c.1905-8A>T		137	614	23.1
23	Homopolymeric	Blood	KIF1B	c.1905-4C>T		116	554	21.2
105	Low coverage	Blood	MAX	c.296-4T>C		4	20	20
259	Low coverage	Blood	FH	c.1237-8A>T		69	678	10.5

ID	Reason	Sample	Gene	cDNA	Protein	Alt Read Depth	Read Depth	Alt Variant Freq
355	Low coverage	Frozen	VHL	c.269A>G	p.Asn90Ser	3	15	20.0
139	Low coverage	Frozen	SDHB	c.490C>A	p.Gln164Lys	6	60	10
338	Low coverage	Frozen	NF1	c.5789G>T	p.Cys1930Phe	13	115	11.4
137	Low coverage	Frozen	SDHC	c.158C>A	p.Ser53Tyr	10	62	16.1

ID	Reason	Sample	Gene	cDNA	Protein	Alt Read Depth	Read Depth	Alt Variant Freq
291	Low coverage	FFPE	HRAS	c.179G>A	p.Gly60Asp	75	1453	5.16
451	Low coverage	FFPE	HRAS	c.175G>A	p.Ala59Thr	78	2286	3.41
378	Low coverage	FFPE	VHL	c.231C>A	p.Cys77*	22	494	4.45
398	Low coverage	FFPE	NF1	c.227delA	p.Asn78llefs*7	91	2302	3.95
403	Low coverage	FFPE	NF1	c.2834T>C	p.Phe945Ser	56	1538	3.64
412	Low coverage	FFPE	NF1	c.5806delA	p.Lys1936Asnfs*6	150	4753	3.16
398	Low coverage	FFPE	NF1	c.6535C>T	p.Arg2179Cys	507	9128	5.55
450	Low coverage	FFPE	NF1	c.7195A>G	p.Arg2399Gly	41	1289	3.18
292	Low coverage	FFPE	EPAS1	c.1734C>T	p.Ala578Ala	95	2916	3.26
413	Low coverage	FFPE	MAX	c.247C>T	p.Gln83*	47	1467	3.2
395	Low coverage	FFPE	TMEM127	c.480_482delGCA	p.Gln160del	248	2726	9.1
420	Low coverage	FFPE	FH	c.1219G>A	p.Val407Ile	46	794	5.79
395	Low coverage	FFPE	FH	c.952C>T	p.His318Tyr	321	6534	4.91
432	Low coverage	FFPE	FH	c.679C>T	p.Gln227*	187	2872	6.51
421	Low coverage	FFPE	FH	c.578C>T	p.Thr193lle	37	765	4.84
	Low coverage	FFPE	FH	c.7C>T	p.Arg3*	44	447	9.84

IX- APPENDIX II: ARTICLES RELATED TO THE THESIS

J Med Genet. 2015 Oct;52(10):647-56.

Recommendations for somatic and germline genetic testing of single pheochromocytoma and paraganglioma based on findings from a series of 329 patients.

Currás-Freixes M(1), Inglada-Pérez L(2), Mancikova V(1), Montero-Conde C(1), Letón R(1), Comino-Méndez I(1), Apellániz-Ruiz M(1), Sánchez-Barroso L(1), Aguirre Sánchez-Covisa M(3), Alcázar V(4), Aller J(5), Álvarez-Escolá C(6), Andía-Melero VM(7), Azriel-Mira S(8), Calatayud-Gutiérrez M(9), Díaz JÁ(10), Díez-Hernández A(11), Lamas-Oliveira C(12), Marazuela M(13), Matias-Guiu X(14), Meoro-Avilés A(15), Patiño-García A(16), Pedrinaci S(17), Riesco-Eizaguirre G(18), Sábado-Álvarez C(19), Sáez-Villaverde R(20), Sainz de Los Terreros A(21), Sanz Guadarrama Ó(22), Sastre-Marcos J(23), Scolá-Yurrita B(24), Segura-Huerta Á(25), Serrano-Corredor Mde L(26), Villar-Vicente MR(27), Rodríguez-Antona C(2), Korpershoek E(28), Cascón A(2), Robledo M(2).

Author information: (1)Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Spain. (2)Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Spain Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain. (3)Department of Endocrinology, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain. (4)Department of Endocrinology, Hospital Universitario Severo Ochoa, Madrid, Spain. (5)Department of Endocrinology, Hospital Universitario Puerta de Hierro, Madrid, Spain. (6)Department of Endocrinology, Hospital Universitario La Paz, Madrid, Spain. (7)Department of Endocrinology, Hospital General Universitario Gregorio Marañón, Madrid, Spain. (8) Department of Endocrinology, Hospital Infanta Sofía, San Sebastián de los Reyes, Spain. (9)Department of Endocrinology, Hospital Universitario 12 de Octubre, Madrid, Spain. (10)Department of Endocrinology, Hospital Clínico San Carlos, Madrid, Spain. (11)Department of Endocrinology, Hospital El Bierzo, León, Spain. (12)Department of Endocrinology, Complejo Hospitalario Universitario de Albacete, Albacete, Spain. (13)Department of Endocrinology, Hospital Universitario de La Princesa, Instituto Princesa, Madrid, Spain. (14)Oncologic Pathology Group, Institut de Recerca Biomèdica de Lleida, Lleida, Spain. (15)Department of Endocrinology, Hospital General Universitario Reina Sofía, Murcia, Spain. (16)Department of Pediatrics and Clinical Genetics Unit, Clínica Universidad de Navarra, Navarra, Spain. (17)Department of Genetics, Hospital Universitario Virgen de las Nieves, Granada, Spain. (18)Department of Endocrinology, Hospital Universitario de Móstoles, Madrid, Spain. (19) Department of Pediatric Oncology and Hematology, Hospital Universitari Vall d'Hebron, Barcelona, Spain. (20)Department of Genetics, Hospital Universitario Donostia, Gipuzkoa, Spain. (21)Department of Endocrinology, Complejo Hospitalario de Navarra, Navarra, Spain. (22)Department of General Surgery and Digestive Tract, Complejo Asistencial de León, León, Spain. (23)Department of Endocrinology, Hospital Virgen de la Salud-Complejo Hospitalario de Toledo, Toledo, Spain. (24)Department of Otorhinolaryngology, Hospital General Universitario Gregorio Marañón, Madrid, Spain. (25)Genetic Counselling Cancer Unit, Hospital Universitari i Politecnic La Fe, Valencia, Spain. (26)Department of Endocrinology, Hospital General Universitario de Alicante, Alicante, Spain. (27)Department of Endocrinology, Hospital Universitario de Fuenlabrada, Madrid, Spain. (28) Erasmus Universitair Medisch Centrum Rotterdam, Rotterdam, The Netherlands.

ABSTRACT:

BACKGROUND: Nowadays, 65-80% of pheochromocytoma and paraganglioma (PPGL) cases are explained by germline or somatic mutations in one of 22 genes. Several genetic testing algorithms have been proposed, but they usually exclude sporadic-PPGLs (S-PPGLs) and none include somatic testing. We aimed to genetically characterise S-PPGL cases and propose an evidence-based algorithm for genetic testing, prioritising DNA source.

METHODS: The study included 329 probands fitting three criteria: single PPGL, no syndromic and no PPGL family history. Germline DNA was tested for point mutations in RET and for both point mutation and gross deletions in VHL, the SDH genes, TMEM127, MAX and FH. 99 tumours from patients negative for germline screening were available and tested for RET, VHL, HRAS, EPAS1, MAX and SDHB.

RESULTS: Germline mutations were found in 46 (14.0%) patients, being more prevalent in paragangliomas (PGLs) (28.7%) than in pheochromocytomas (PCCs) (4.5%) (p= $6.62 \times 10(-10)$). Somatic mutations were found in 43% of those tested, being more prevalent in PCCs (48.5%) than in PGLs (32.3%) (p=0.13). A quarter of S-PPGLs had a somatic mutation, regardless of age at presentation. Head and neck PGLs (HN-PGLs) and thoracic-PGLs (T-PGLs) more commonly had germline mutations (p= $2.0 \times 10(-4)$ and p=0.027, respectively). Five of the 29 metastatic cases harboured a somatic mutation, one in HRAS.

CONCLUSIONS: We recommend prioritising testing for germline mutations in patients with HN-PGLs and T-PGLs, and for somatic mutations in those with PCC. Biochemical secretion and SDHBimmunohistochemistry should guide genetic screening in abdominal-PGLs. Paediatric and metastatic cases should not be excluded from somatic screening.

J Mol Diagn.

PheoSeq: A Targeted Next-Generation Sequencing Assay for Pheochromocytoma and Paraganglioma Diagnostics. Practical Experience in 453 Patients.

Maria Currás-Freixes1, Elena Piñeiro-Yañez2, Cristina Montero-Conde1, María Apellániz-Ruiz1, Bruna Calsina1, Veronika Mancikova1, Laura Remacha1, Susan Richter3, Tonino Ercolino4, Natalie Rogowski-Lehmann⁵, Timo Deutschbein⁶, María Calatayud⁷, Sonsoles Guadalix⁷, Cristina Álvarez-Escolá⁸, Cristina Lamas⁹, Javier Aller¹⁰, Julia Sastre-Marcos¹¹, Conxi Lázaro¹², Juan Carlos Galofré¹³, Ana Patiño-García¹⁴, Amparo Meoro-Avilés¹⁵, Judith Balmaña-Gelpi¹⁶, Paz De Miguel-Novoa¹⁷, Milagros Balbín¹⁸, Xavier Matías-Guiu¹⁹, Rocío Letón¹, Lucía Inglada-Pérez^{1,20}, Rafael Torres-Pérez¹, Juan María Roldán-Romero¹, Cristina Rodríguez-Antona^{1,20}, Stephanie M.J. Fliedner²¹, Giuseppe Opocher²², Karel Pacak²³, Esther Korpershoek²⁴, Ronald R. de Krijger²⁵, Laurent Vroonen²⁶, Massimo Mannelli⁴, Martin Fassnacht⁶, Felix Beuschlein⁵, Graeme Eisenhofer³, Alberto Cascón^{1,20}, Fátima Al-Shahrour², Mercedes Robledo^{1,20}.

Author information: 1Hereditary Endocrine Cancer Group, Spanish National Cancer Research centre, Madrid, Spain; 2Translational Bioinformatics Unit, Spanish National Cancer Research Centre, Madrid, Spain; 3Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universitat Dresden, Dresden, Germany; 4Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence and Istituto Toscano Tumori, Florence, Italy; 5Department of Internal Medicine IV Campus Innenstadt, University-Hospital, Ludwig-Maximilians-University of Munich, Germany. 6Department of Internal Medicine I, University Hospital Würzburg, Germany; 7Department of Endocrinology and Nutrition Service, Hospital Universitario 12 de Octubre, Madrid, Spain; 8Department of Endocrinology, Hospital Universitario La Paz, Madrid, Spain; 9Department of Endocrinology, Complejo Hospitalario Universitario de Albacete, Albacete, Spain; 10Department of Endocrinology, Hospital Universitario Puerta de Hierro, Madrid, Spain; 11Department of Endocrinology, Hospital Virgen de la Salud—Complejo Hospitalario de Toledo, Toledo, Spain; 12Molecular Diagnostics Units of the Hereditary Cancer Program at the Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain; 13Department of Endocrinology, Clínica Universidad de Navarra, Navarra, Spain; 14Department of Pediatrics and Clinical Genetics Unit, Clínica Universidad de Navarra, Navarra, Spain; 15Department of Endocrinology, Hospital General Universitario Reina Sofía, Murcia, Spain; 16High Risk and Cancer Prevention Group, Medical Oncology Department, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Barcelona, Spain; 17Department of Endocrinology, Hospital Clínico San Carlos, Madrid, Spain; 18Department of Molecular Oncology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain; 19Department of Endocrinology and Nutrition, University Hospital Arnau de Vilanova, IRBLLEIDA, Lleida, Spain and Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, Barcelona; 20Centro de Investigacion Biomedica en Red de Enfermedades Raras, Madrid, Spain; 211st Department of Medicine, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany 22Department of Endocrinology, Department of Medical and Surgical Sciences University of Padova, Padova, Italy; 23Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA; 24Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands; 25Department of Pathology, Reinier de Graaf Hospital, Delft, The Netherlands; 26Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Belgium.

ABSTRACT:

Background: Genetic diagnosis is recommended for all pheochromocytoma and paraganglioma (PPGL) cases, as driver mutations are identified approximately 80%. As the list of related genes expands, genetic diagnosis becomes more time-consuming, and targeted next generation sequencing (NGS) has emerged as a cost-effective tool. This study aimed to optimize targeted-NGS in PPGL genetic diagnostics.

Methodology: A workflow based on 2 customized targeted-NGS assays was validated to study the 18 main PPGL genes in germline and frozen tumor DNA, being one of them specifically directed towards formalin-fixed paraffin-embedded tissue. The series involved 453 unrelated PPGL patients, of which 30 had known mutations and were used as controls. Partial screening using Sanger had been performed in 275 (WTPS). NGS results were complemented with a study of gross deletions

Results: NGS assay sensitivity was ≥99.4%, regardless of DNA source. We identified 45 variants of unknown significance and 89 pathogenic mutations, the latter being germline in 29 (7.2%) and somatic in 58 (31.7%) of the 183 tumors studied. In 13 WTPS the causal mutation could be identified.

Conclusions: We demonstrated that both assays are an efficient and accurate alternative to conventional sequencing. Their application facilitates the study of minor PPGL genes, and enables genetic diagnoses in patients with incongruent or missing clinical data, that would otherwise be missed.

IX- APPENDIX II: OTHER ARTICLES

Cancer Genet. 2016 Jun;209(6):272-7.

ATRX driver mutation in a composite malignant pheochromocytoma.

Comino-Méndez I(1), Tejera ÁM(2), Currás-Freixes M(1), Remacha L(1), Gonzalvo P(3), Tonda R(4), Letón R(1), Blasco MA(2), Robledo M(5), Cascón A(6).

Author information: (1)Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. (2)Telomeres and Telomerase Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. (3)Department of Anatomical Pathology, Cabueñes Hospital, Gijón, Spain. (4)CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain. (5)Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain. (6)Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain. Electronic address: acascon@cnio.es.

ABSTRACT:

Pheochromocytomas (PCCs) and paragangliomas (PGLs) are tumors arising from the adrenal medulla and sympathetic/parasympathetic paraganglia, respectively.

Approximately 40% of PCCs/PGLs are due to germline mutations in one of 16 susceptibility genes, and a further 30% are due to somatic alterations in 5 main genes. Recently, somatic ATRX mutations have been found in succinate dehydrogenase (SDH)-associated hereditary PCCs/PGLs. In the present study we applied whole-exome sequencing to the germline and tumor DNA of a patient with metastatic composite PCC and no alterations in known PCC/PGL susceptibility genes. A somatic loss-of-function mutation affecting ATRX was identified in tumor DNA. Transcriptional profiling analysis classified the tumor within cluster 2 of PCCs/PGLs (without SDH gene mutations) and identified downregulation of genes involved in neuronal development and homeostasis (NLGN4, CD99 and CSF2RA) as well as upregulation of Drosha, an important gene involved in miRNA and Rrna processing. CpG island methylator phenotype typical of SDH genemutated tumors was ruled out, and SNP array data revealed a unique profile of gains and losses.

Finally, we demonstrated the presence of alternative lengthening of telomeres in the tumor, probably associated with the failure of ATRX functions. In conclusion, somatic variants affecting ATRX may play a driver role in sporadic PCC/PGL.

J Mol Med (Berl). 2015 Nov;93(11):1247-55.

Functional and in silico assessment of MAX variants of unknown significance.

Comino-Méndez I(1), Leandro-García LJ(1), Montoya G(2,)(3), Inglada-Pérez L(1,)(4), de Cubas AA(1), **Currás-Freixes M(1)**, Tysoe C(5), Izatt L(6), Letón R(1), Gómez-Graña Á(1), Mancikova V(1), Apellániz-Ruiz M(1), Mannelli M(7), Schiavi F(8), Favier J(9), Gimenez-Roqueplo AP(9), Timmers HJ(10), Roncador G(11), Garcia JF(12), Rodríguez-Antona C(1,)(4), Robledo M(1,)(4), Cascón A(13,)(14).

Author information: (1)Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain. (2)Macromolecular Crystallography Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. (3)Structural Biology Group, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. (4)ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Valencia, Spain. (5)Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK. (6)Department of Clinical Genetics, Guy's and St Thomas' Foundation Trust, Guy's Hospital, London, UK. (7)Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy. (8) Familial Cancer Clinic and Oncoendocrinology, Veneto Institute of Oncology IRCCS, Padova, Italy. (9) INSERM, UMR970, Paris-Cardiovascular Research Center, and Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. (10)Department of Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Nijmegen, The Netherlands. (11)Monoclonal Antibodies Unit, Biotechnology Centre, Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. (12)Department of Pathology, M D Anderson Cancer Center Madrid, Madrid, Spain. (13)Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain. acascon@cnio.es. (14)ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Valencia, Spain. acascon@cnio.es.

ABSTRACT:

The presence of germline mutations affecting the MYC-associated protein X (MAX) gene has recently been identified as one of the now 11 major genetic predisposition factors for the development of hereditary pheochromocytoma and/or paraganglioma. Little is known regarding how missense variants of unknown significance (VUS) in MAX affect its pivotal role in the regulation of the MYC/MAX/MXD axis. In the present study, we propose a consensus computational prediction based on five "state-of-the-art" algorithms. We also describe a PC12-based functional assay to assess the effects that 12 MAX VUS may have on MYC's E-box transcriptional activation. For all but two of these 12 VUS, the functional assay and the consensus computational prediction gave consistent results; we classified seven variants as pathogenic and three as nonpathogenic.

The introduction of wild-type MAX cDNA into PC12 cells significantly decreased MYC's ability to bind to canonical E-boxes, while pathogenic MAX proteins were not able to fully repress MYC activity. Further clinical and molecular evaluation of variant carriers corroborated the results obtained with our functional assessment. In the absence of clear heritability, clinical information, and molecular data, consensus computational predictions and functional models are able to correctly classify VUS affecting MAX.KEY

MESSAGES: A functional assay assesses the effects of MAX VUS over MYC transcriptional activity. A consensus computational prediction and the functional assay show high concordance. Variant carriers' clinical and molecular data support the functional assessment.

Clin Cancer Res. 2015 Jul 1;21(13):3020-30.

DNA Methylation Profiling in Pheochromocytoma and Paraganglioma Reveals Diagnostic and Prognostic Markers.

de Cubas AA(1), Korpershoek E(2), Inglada-Pérez L(3), Letouzé E(4), Currás-Freixes M(1), Fernández AF(5), Comino-Méndez I(1), Schiavi F(6), Mancikova V(1), Eisenhofer G(7), Mannelli M(8), Opocher G(9), Timmers H(10), Beuschlein F(11), de Krijger R(12), Cascon A(3), Rodríguez-Antona C(3), Fraga MF(13), Favier J(14), Gimenez-Roqueplo AP(15), Robledo M(16).

Author information: (1)Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. (2)Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands. (3)Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain. (4)Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre Le Cancer, Paris, France. (5)Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, University of Oviedo, Asturias, Spain. (6)Familial Cancer Clinic, Veneto Institute of Oncology, Padova, Italy. (7)Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany. Medical Clinic III, Technische Universität Dresden, Dresden, Germany. (8)Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy. (9)Familial Cancer Clinic, Veneto Institute of Oncology, Padova, Italy. Department of Medicine, University of Padova, Padova, Italy. (10)Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands. (11)Department of Internal Medicine IV Campus Innenstadt, Ludwig-Maximilians-University University-Hospital, of Munich, Munich, Germany. (12)Department of Pathology, Josephine Nefkens Institute, Erasmus MC University Medical Center, Rotterdam, the Netherlands. (13)Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, University of Oviedo, Asturias, Spain. Department of Immunology and Oncology, National Center for Biotechnology, CNB-CSIC, Cantoblanco, Madrid, Spain. (14)INSERM, UMR970, Paris-Cardiovascular Research Center (PARCC), Paris, France. Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France. (15)INSERM, UMR970, Paris-Cardiovascular Research Center (PARCC), Paris, France. Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France. Service de Génétique, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France. Rare Adrenal Cancer Network-Cortico Médullosurrénale Tumeur Endocrine, Institut National du Cancer, Paris, France. (16)Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER),

Madrid, Spain. mrobledo@cnio.es.

ABSTRACT:

PURPOSE: Pheochromocytoma and paraganglioma (PPGL) are rare neuroendocrine tumors, associated with highly variable postoperative evolution. The scarcity of reliable PPGL prognostic markers continues to complicate patient management. In this study, we explored genome-wide DNA methylation patterns in the context of PPGL malignancy to identify novel prognostic markers.

EXPERIMENTAL DESIGN: We retrospectively investigated DNA methylation patterns in PPGL with and without metastases using high-throughput DNA methylation profiling data (Illumina 27K)

from two large, well-characterized discovery (n = 123; 24 metastatic) and primary validation (n = 154; 24 metastatic) series. Additional validation of candidate CpGs was performed by bisulfite pyrosequencing in a second independent set of 33 paraffin-embedded PPGLs (19 metastatic).

RESULTS: Of the initial 86 candidate CpGs, we successfully replicated 52 (47 genes), associated with metastatic PPGL. Of these, 48 CpGs showed significant associations with time to progression even after correcting for SDHB genotype, suggesting their value as prognostic markers independent of genetic background. Hypermethylation of RDBP (negative elongation factor complex member E) in metastatic tumors was further validated by bisulfite pyrosequencing [$\Delta\beta$ metastatic-benign = 0.29, P = 0.003; HR, 1.4; 95% confidence interval (CI), 1.1-2.0; P = 0.018] and may alter transcriptional networks involving (RERG, GPX3, and PDZK1) apoptosis, invasion, and maintenance of DNA integrity.

CONCLUSIONS: This is the first large-scale study of DNA methylation in metastatic PPGL that identifies and validates prognostic markers, which could be used for stratifying patients according to risk of developing metastasis. Of the three CpGs selected for further validation, one (RDBP) was clearly confirmed and could be used for stratifying patients according to the risk of developing metastases.

Mod Pathol. 2015 Jun;28(6):807-21.

SDHB/SDHA immunohistochemistry in pheochromocytomas and paragangliomas: a multicenter interobserver variation analysis using virtual microscopy: a Multinational Study of the European Network for the Study of Adrenal Tumors (ENS@T).

Papathomas TG(1), Oudijk L(2), Persu A(3), Gill AJ(4), van Nederveen F(5), Tischler AS(6), Tissier F(7), Volante M(8), Matias-Guiu X(9), Smid M(10), Favier J(11), Rapizzi E(12), Libe R(13), **Currás-Freixes M(**14), Aydin S(15), Huynh T(16), Lichtenauer U(17), van Berkel A(18), Canu L(12), Domingues R(19), Clifton-Bligh RJ(20), Bialas M(21), Vikkula M(22), Baretton G(23), Papotti M(8), Nesi G(24), Badoual C(25), Pacak K(16), Eisenhofer G(26), Timmers HJ(18), Beuschlein F(17), Bertherat J(27), Mannelli M(28), Robledo M(29), Gimenez-Roqueplo AP(11), Dinjens WN(2), Korpershoek E(2), de Krijger RR(30).

Author information: (1)1] Department of Histopathology, King's College Hospital, London, UK [2] Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands. (2)Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands. (3)Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique and Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium. (4)1] Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia [2] Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia. (5)Laboratory for Pathology, PAL Dordrecht, Dordrecht, The Netherlands. (6)Department of Pathology and Laboratory Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA. (7)1] Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Centre National de la Recherche Scientifique UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Rare Adrenal Cancer Network COMETE, Paris, France [2] Department of Pathology, Hôpital Pitié-Salpêtrière, Université Pierre et Marie Curie, Paris, France. (8)Department of Oncology, University of Turin at San Luigi Hospital, Turin, Italy. (9)Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, IRBLLEIDA, University of Lleida, Lleida, Spain. (10)Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands. (11)1] Paris-Centre de Recherche Cardiovasculaire (PARCC), Inserm UMR970, Hôpital Européen Georges Pompidou, Paris, France [2] Université Paris Descartes, Faculté de Médecine, Paris Cité Sorbonne, France. (12)Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy. (13)Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Centre National de la Recherche Scientifique UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Rare Adrenal Cancer Network COMETE, Paris, France. (14)Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. (15)Department of Pathology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Brussels, Belgium. (16)Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA. (17)Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany. (18)Department of Internal Medicine, Section of Endocrinology, Radboud University Medical Centre, Nijmegen, The Netherlands. (19)Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal. (20)Cancer Genetics, Kolling Institute of Medical Research,

Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia. (21)Department of Pathomorphology, Jagiellonian University Medical College, Krakow, Poland. (22)Laboratory of Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium. (23)Department of Pathology, Technische Universität Dresden, Dresden, Germany. (24) Division of Pathological Anatomy, University of Florence, Florence, Italy. (25)1] Paris-Centre de Recherche Cardiovasculaire (PARCC), Inserm UMR970, Hôpital Européen Georges Pompidou, Paris, France [2] Université Paris Descartes, Faculté de Médecine, Paris Cité Sorbonne, France [3] Service d'Anatomie Pathologique, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France. (26)Institute of Clinical Chemistry and Laboratory Medicine and Department of Medicine III, University Hospital, Technische Universität Dresden, Dresden, Germany. (27)1] Institut Cochin, Université Paris Descartes, INSERM U1016, CNRS UMR8104, Paris, France [2] Department of Endocrinology, Referral Center for Rare Adrenal Diseases, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France. (28)1] Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy [2] Istituto Toscano Tumori (ITT), Florence, Italy. (29)1] Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain [2] Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain. (30)1] Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands [2] Department of Pathology, Reinier de Graaf Hospital, Delft, The Netherlands [3] Department of Pathology, University Medical Center Utrecht, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.

ABSTRACT:

Despite the established role of SDHB/SDHA immunohistochemistry as a valuable tool to identify patients at risk for familial succinate dehydrogenase-related pheochromocytoma /paraganglioma syndromes, the reproducibility of the assessment methods has not as yet been determined. The aim of this study was to investigate interobserver variability among seven expert endocrine pathologists using a web-based virtual microscopy approach in a large multicenter pheochromocytoma/paraganglioma cohort (n=351): (1) 73 SDH mutated, (2) 105 non-SDH mutated, (3) 128 samples without identified SDH-x mutations, and (4) 45 with incomplete SDH molecular genetic analysis. Substantial agreement among all the reviewers was observed either with a two-tiered classification (SDHB κ =0.7338; SDHA κ =0.6707) or a threetiered classification approach (SDHB κ=0.6543; SDHA κ=0.7516). Consensus was achieved in 315 cases (89.74%) for SDHB immunohistochemistry and in 348 cases (99.15%) for SDHA immunohistochemistry. Among the concordant cases, 62 of 69 (~90%) SDHB-/C-/D-/AF2mutated cases displayed SDHB immunonegativity and SDHA immunopositivity, 3 of 4 (75%) with SDHA mutations showed loss of SDHA/SDHB protein expression, whereas 98 of 105 (93%) non-SDH-x-mutated counterparts demonstrated retention of SDHA/SDHB protein expression. Two SDHD-mutated extra-adrenal paragangliomas were scored as SDHB immunopositive, whereas 9 of 128 (7%) tumors without identified SDH-x mutations, 6 of 37 (~16%) VHL-mutated, as well as 1 of 21 (~5%) NF1-mutated tumors were evaluated as SDHB immunonegative. Although 14 out of those 16 SDHB-immunonegative cases were nonmetastatic, an overall significant correlation between SDHB immunonegativity and malignancy was observed (P=0.00019). We conclude that SDHB/SDHA immunohistochemistry is a reliable tool to identify patients with SDH-x mutations with an additional value in the assessment of genetic variants of unknown significance. If SDH molecular genetic analysis fails to detect a mutation in SDHB-immunonegative tumor, SDHC promoter methylation and/or VHL/NF1 testing with the use of targeted next-generation sequencing is advisable.

J Natl Cancer Inst. 2015 Mar 11;107(5).

Whole-exome sequencing identifies MDH2 as a new familial paraganglioma gene.

Cascón A(1), Comino-Méndez I(1), **Currás-Freixes M(1)**, de Cubas AA(1), Contreras L(1), Richter S(1), Peitzsch M(1), Mancikova V(1), Inglada-Pérez L(1), Pérez-Barrios A(1), Calatayud M(1), Azriel S(1), Villar-Vicente R(1), Aller J(1), Setién F(1), Moran S(1), Garcia JF(1), Río-Machín A(1), Letón R(1), Gómez-Graña Á(1), Apellániz-Ruiz M(1), Roncador G(1), Esteller M(1), Rodríguez-Antona C(1), Satrústegui J(1), Eisenhofer G(1), Urioste M(1), Robledo M(2).

Author information: (1): Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Spain (AC, ICM, MCF, AAdC, VM, LIP, RL, AGG, MAR, CRA, MR); Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain (AC, LC, LIP, CRA, JS, MU, MR); Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid and Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain (LC, JS); Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (SR, MP, GE); Departments of Pathology (APB) and Endocrinology and Nutrition Service (MC), Hospital 12 de Octubre, Madrid, Spain; Endocrinology Service, Hospital Infanta Sofía, San Sebastián de los Reyes, Spain (SA); Department of Endocrinology and Nutrition Service, Hospital de Fuenlabrada, Madrid, Spain (RVV); Endocrinology Service, Hospital Puerta de Hierro, Majadahonda, Madrid, Spain (JA); Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet, Barcelona, Spain (FS, SM, ME); Department of Pathology, MD Anderson Cancer Center Madrid, Madrid, Spain (JFG); Molecular Cytogenetics Group (ARM), Monoclonal Antibodies Unit, Biotechnology Programme (GR), and Familial Cancer Clinical Unit (MU), Spanish National Cancer Research Centre, Madrid, Spain. (2): Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Spain (AC, ICM, MCF, AAdC, VM, LIP, RL, AGG, MAR, CRA, MR); Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain (AC, LC, LIP, CRA, JS, MU, MR); Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid and Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain (LC, JS); Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (SR, MP, GE); Departments of Pathology (APB) and Endocrinology and Nutrition Service (MC), Hospital 12 de Octubre, Madrid, Spain; Endocrinology Service, Hospital Infanta Sofía, San Sebastián de los Reyes, Spain (SA); Department of Endocrinology and Nutrition Service, Hospital de Fuenlabrada, Madrid, Spain (RVV); Endocrinology Service, Hospital Puerta de Hierro, Majadahonda, Madrid, Spain (JA); Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet, Barcelona, Spain (FS, SM, ME); Department of Pathology, MD Anderson Cancer Center Madrid, Madrid, Spain (JFG); Molecular Cytogenetics Group (ARM), Monoclonal Antibodies Unit, Biotechnology Programme (GR), and Familial Cancer Clinical Unit (MU), Spanish National Cancer Research Centre, Madrid, Spain. acascon@cnio.es mrobledo@cnio.es.

ABSTRACT: Disruption of the Krebs cycle is a hallmark of cancer. IDH1 and IDH2 mutations are found in many neoplasms, and germline alterations in SDH genes and FH predispose to pheochromocytoma/paraganglioma and other cancers. We describe a paraganglioma family carrying a germline mutation in MDH2, which encodes a Krebs cycle enzyme. Whole-exome sequencing was applied to tumor DNA obtained from a man age 55 years diagnosed with multiple malignant paragangliomas. Data were analyzed with the two-sided Student's t and

Mann-Whitney U tests with Bonferroni correction for multiple comparisons. Between six- and 14-fold lower levels of MDH2 expression were observed in MDH2-mutated tumors compared with control patients. Knockdown (KD) of MDH2 in HeLa cells by shRNA triggered the accumulation of both malate (mean \pm SD: wild-type [WT] = 1 \pm 0.18; KD = 2.24 \pm 0.17, P = .043) and fumarate (WT = 1 \pm 0.06; KD = 2.6 \pm 0.25, P = .033), which was reversed by transient introduction of WT MDH2 cDNA. Segregation of the mutation with disease and absence of MDH2 in mutated tumors revealed MDH2 as a novel pheochromocytoma/paraganglioma susceptibility gene.J Mol Med (Berl). 2015 Nov;93(11):1247-55.
Hum Mol Genet. 2014 May 1;23(9):2440-6.

Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas.

Castro-Vega LJ(1), Buffet A, De Cubas AA, Cascón A, Menara M, Khalifa E, Amar L, Azriel S, Bourdeau I, Chabre O, **Currás-Freixes M,** Franco-Vidal V, Guillaud-Bataille M, Simian C, Morin A, Letón R, Gómez-Graña A, Pollard PJ, Rustin P, Robledo M, Favier J, Gimenez-Roqueplo AP.

Author information: (1)INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015, Paris, France.

ABSTRACT:

Malignant pheochromocytoma (PCC) and paraganglioma (PGL) are mostly caused by germline mutations of SDHB, encoding a subunit of succinate dehydrogenase. Using whole-exome sequencing, we recently identified a mutation in the FH gene encoding fumarate hydratase, in a PCC with an 'SDH-like' molecular phenotype. Here, we investigated the role of FH in PCC/PGL predisposition, by screening for germline FH mutations in a large international cohort of patients. We screened 598 patients with PCC/PGL without mutations in known PCC/PGL susceptibility genes. We searched for FH germline mutations and large deletions, by direct sequencing and multiplex ligation-dependent probe amplification methods. Global alterations in DNA methylation and protein succination were assessed by immunohistochemical staining for 5-hydroxymethylcytosine (5-hmC) and S-(2-succinyl) cysteine (2SC), respectively. We identified five pathogenic germline FH mutations (four missense and one splice mutation) in five patients. Somatic inactivation of the second allele, resulting in a loss of fumarate hydratase activity, was demonstrated in tumors with FH mutations. Low tumor levels of 5-hmC, resembling those in SDHB-deficient tumors, and positive 2SC staining were detected in tumors with FH mutations. Clinically, metastatic phenotype (P = 0.007) and multiple tumors (P = 0.02) were significantly more frequent in patients with FH mutations than those without such mutations. This study reveals a new role for FH in susceptibility to malignant and/or multiple PCC/PGL. Remarkably, FH-deficient PCC/PGLs display the same pattern of epigenetic deregulation as SDHB-mutated malignant PCC/PGL.

Therefore, we propose that mutation screening for FH should be included in PCC/PGL genetic testing, at least for tumors with malignant behavior.

Clin Cancer Res. 2016 Aug 31.

Targeted Sequencing Reveals Low-Frequency Variants in EPHA Genes as Markers of Paclitaxel-Induced Peripheral Neuropathy.

Apellániz-Ruiz M(1), Tejero H(2), Inglada-Pérez L(1,)(3), Sánchez-Barroso L(1), Gutiérrez-Gutiérrez G(4), Calvo I(5,)(6), Castelo B(7), Redondo A(7), García-Donás J(8), Romero-Laorden N(8), Sereno M(9), Merino M(9), **Currás-Freixes M(1),** Montero-Conde **C**(1), Mancikova V(1), Åvall-Lundqvist E(10), Green H(11,)(12), Al-Shahrour F(2), Cascón A(1,)(3), Robledo M(1,)(3), Rodríguez-Antona C(13,)(3).

Author information: (1)Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. (2)Translational Bioinformatics Unit, Spanish National Cancer Research Centre, Madrid, Spain. (3)ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain. (4)Neurology Section, Hospital Universitario Infanta Sofía, Madrid, Spain. (5)Medical Oncology Department, Hospital Montepríncipe, Madrid, Spain. (6)Medical Oncology Department, Centro Integral Oncológico Clara Campal, Madrid, Spain. (7)Medical Oncology Department, Hospital Universitario La Paz, Madrid, Spain. (8)Gynecological and Genitourinary Tumors Programme, Centro Integral Oncológico Clara Campal, Madrid, Spain. (9)Medical Oncology Department, Hospital Universitario Infanta Sofía, Madrid, Spain. (10)Department of Oncology and Department of Clinical and Experimental Medicine, Linköpings Universitet, Linköping, Sweden. (11)Clinical Pharmacology, Division of Drug Research, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköpings Universitet, Linköping, Sweden. (12)Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden. (13)Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. crodriguez@cnio.es.

ABSTRACT:

PURPOSE: Neuropathy is the dose-limiting toxicity of paclitaxel and a major cause for decreased quality of life. Genetic factors have been shown to contribute to paclitaxel neuropathy susceptibility; however, the major causes for interindividual differences remain unexplained. In this study, we identified genetic markers associated with paclitaxel-induced neuropathy through massive sequencing of candidate genes.

EXPERIMENTAL DESIGN: We sequenced the coding region of 4 EPHA genes, 5 genes involved in paclitaxel pharmacokinetics, and 30 Charcot-Marie-Tooth genes, in 228 cancer patients with no/low neuropathy or high-grade neuropathy during paclitaxel treatment. An independent validation series included 202 paclitaxel-treated patients. Variation-/gene-based analyses were used to compare variant frequencies among neuropathy groups, and Cox regression models were used to analyze neuropathy along treatment.

RESULTS: Gene-based analysis identified EPHA6 as the gene most significantly associated with paclitaxel-induced neuropathy. Low-frequency nonsynonymous variants in EPHA6 were present exclusively in patients with high neuropathy, and all affected the ligand-binding domain of the protein. Accumulated dose analysis in the discovery series showed a significantly higher neuropathy risk for EPHA5/6/8 low-frequency nonsynonymous variant carriers [HR, 14.60; 95% confidence interval (CI), 2.33-91.62; P = 0.0042], and an independent cohort confirmed an increased neuropathy risk (HR, 2.07; 95% CI, 1.14-3.77; P = 0.017). Combining the series gave an estimated 2.5-fold higher risk of neuropathy (95% CI, 1.46-4.31; P = $9.1 \times 10(-4)$).

CONCLUSIONS: This first study sequencing EPHA genes revealed that low-frequency variants in EPHA6, EPHA5, and EPHA8 contribute to the susceptibility to paclitaxel-induced neuropathy. Furthermore, EPHA's neuronal injury repair function suggests that these genes might constitute important neuropathy markers for many neurotoxic drugs. Clin Cancer Res; 1-9. ©2016 AACR.

Pharmacogenomics J. 2015 Jun;15(3):288-92.

High frequency and founder effect of the CYP3A4*20 loss-of-function allele in the Spanish population classifies CYP3A4 as a polymorphic enzyme.

Apellániz-Ruiz M(1), Inglada-Pérez L(2), Naranjo ME(3), Sánchez L(1), Mancikova V(1), **Currás-Freixes M(1)**, de Cubas AA(1), Comino-Méndez I(1), Triki S(4), Rebai A(4), Rasool M(5), Moya G(6), Grazina M(7), Opocher G(8), Cascón A(2), Taboada-Echalar P(9), Ingelman-Sundberg M(10), Carracedo A(11), Robledo M(2), Llerena A(3), Rodríguez-Antona C(2).

Author information: (1)Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. (2)1] Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain [2] ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain. (3)CICAB Clinical Research Centre at Extremadura University Hospital and Medical School, Badajoz, Spain. (4)Research Group on Molecular and Cellular Screening Processes, Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax, Sfax, Tunisia. (5)Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia. (6)Pontificia Universidad Católica Argentina and Genos Laboratory, Buenos Aires, Argentina. (7) Faculty of Medicine CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. (8)Familial Cancer Clinic and Oncoendocrinology, Veneto Institute of Oncology, Padova, Italy. (9)Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile. (10)Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden. (11)1] Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia [2] Fundación Pública de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica, CIBERER, IDIS, Santiago de Compostela, Spain.

ABSTRACT:

Cytochrome P450 3A4 (CYP3A4) is a key drug-metabolizing enzyme. Loss-of-function variants have been reported as rare events, and the first demonstration of a CYP3A4 protein lacking functional activity is caused by CYP3A4*20 allele. Here we characterized the world distribution and origin of CYP3A4*20 mutation. CYP3A4*20 was determined in more than 4000 individuals representing different populations, and haplotype analysis was performed using CYP3A polymorphisms and microsatellite markers. CYP3A4*20 allele was present in 1.2% of the Spanish population (up to 3.8% in specific regions), and all CYP3A4*20 carriers had a common haplotype.

This is compatible with a Spanish founder effect and classifies CYP3A4 as a polymorphic enzyme. This constitutes the first description of a CYP3A4 loss-of-function variant with high frequency in a population. CYP3A4*20 results together with the key role of CYP3A4 in drug metabolism support screening for rare CYP3A4 functional alleles among subjects with adverse drug events in certain populations.

Thyroid. 2014 Aug;24(8):1251-5.

VEGF, VEGFR3, and PDGFRB protein expression is influenced by RAS mutations in medullary thyroid carcinoma.

Mancikova V(1), Inglada-Pérez L, **Curras-Freixes M**, de Cubas AA, Gómez Á, Letón R, Kersten I, Leandro-García LJ, Comino-Méndez I, Apellaniz-Ruiz M, Sánchez L, Cascón A, Sastre-Marcos J, García JF, Rodríguez-Antona C, Robledo M.

Author information: (1)1 Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre , Madrid, Spain .

ABSTRACT:

BACKGROUND: Tyrosine kinase inhibitors (TKIs) have achieved remarkable clinical results in medullary thyroid carcinoma (MTC) patients. However, the considerable variability in patient response to treatment with TKIs remains largely unexplained. There is evidence that it could be due, at least in part, to alterations in genes associated with the disease via their effect on the expression of TKI targets. The objective of this study was to evaluate the influence of RAS mutations on the expression levels in MTC tumors of eight key TKI target proteins.

METHODS: We assessed by immunohistochemistry the expression of EGFR, KIT, MET, PDGFRB, VEGF, VEGFR1, VEGFR2, and VEGFR3 in a series of 84 primary MTC tumors that had previously been molecularly characterized, including 14 RAS-positive, 18 RET(M918T)-positive, and 24 RET(C634)-positive tumors, as well as 15 wild-type tumors with no mutations in the RET or RAS genes.

RESULTS: In contrast to RET-positive tumors, RAS-positive tumors expressed neither PDGFRB nor MET (p=0.0060 and 0.047, respectively). Similarly, fewer RAS-positive than RET-related tumors expressed VEGFR3 (p=0.00062). Finally, wild-type tumors expressed VEGF more often than both RAS- and RET-positive tumors (p=0.0082 and 0.011, respectively).

CONCLUSIONS: This is the first study identifying that the expression of TKI targets differs according to the presence of RAS mutations in MTC. This information could potentially be used to select the most beneficial TKI treatment for these patients.

Int J Cancer. 2014 Aug 1;135(3):598-610.

DNA methylation profiling of well-differentiated thyroid cancer uncovers markers of recurrence free survival.

Mancikova V(1), Buj R, Castelblanco E, Inglada-Pérez L, Diez A, de Cubas AA, **Curras-Freixes M**, Maravall FX, Mauricio D, Matias-Guiu X, Puig-Domingo M, Capel I, Bella MR, Lerma E, Castella E, Reverter JL, Peinado MÁ, Jorda M, Robledo M.

Author information: (1)Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.

ABSTRACT:

Thyroid cancer is a heterogeneous disease with several subtypes characterized by cytological, histological and genetic alterations, but the involvement of epigenetics is not well understood. Here, we investigated the role of aberrant DNA methylation in the development of well-differentiated thyroid tumors. We performed genome-wide DNA methylation profiling in the largest well-differentiated thyroid tumor series reported to date, comprising 83 primary tumors as well as 8 samples of adjacent normal tissue. The epigenetic profiles were closely related to not only tumor histology but also the underlying driver mutation; we found that follicular tumors had higher levels of methylation, which seemed to accumulate in a progressive manner along the tumorigenic process from adenomas to carcinomas. Furthermore, tumors harboring a BRAF or RAS mutation had a larger number of hypo- or hypermethylation events, respectively. The aberrant methylation of several candidate genes potentially related to thyroid carcinogenesis was validated in an independent series of 52 samples.

Furthermore, through the integration of methylation and transcriptional expression data, we identified genes whose expression is associated with the methylation status of their promoters. Finally, by integrating clinical follow-up information with methylation levels we propose etoposide-induced 2.4 and Wilms tumor 1 as novel prognostic markers related to recurrence-free survival. This comprehensive study provides insights into the role of DNA methylation in well-differentiated thyroid cancer development and identifies novel markers associated with recurrence-free survival.