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Resumen

El objetivo de este Trabajo Fin de Máster es mejorar el rendimiento del algoritmo

de seguimiento de objetos PKLTF (Point-based Kanade Lucas Tomasi colour-Filter).

Para ello, se ha diseñado un algoritmo mejorado en función de las carencias que se

han observado en el algoritmo base. Se han propuesto varias mejoras que se han ido

implementando sobre el algoritmo base.

Finalmente algunas de ellas se han incorporado al algoritmo propuesto SAPKLTF

(Scale Adaptive Point-based Kanade Lucas Tomasi colour-Filter). Estas mejoras im-

plementadas permiten mejorar el rendimiento frente a los cambios de escala y man-

tener el rendimiento en tiempo real. Por último, el algoritmo de seguimiento de

objetos propuesto se ha evaluado frente a una selección representativa de algoritmos

de seguimiento de objetos del Estado del Arte. El nuevo algoritmo de seguimiento de

objetos mejora el rendimiento del algoritmo base en la evaluación comparativa, asi

como su competitividad frente a los del Estado del Arte.

Palabras clave
Análisis de vídeo, seguimiento de objetos, algoritmos de seguimiento, evaluación

de rendimiento, métricas de evaluación, marco de evaluación.
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Abstract

The objective of this Master Thesis is to improve the performance of an existing

tracker, called PKLTF (Point-based Kanade Lucas Tomasi colour-Filter). A newly

improved tracker is designed considering the problems that a�ect the base tracker.

Several improvements are tested, some of which are integrated into the proposed

version SAPKLTF (Scale Adaptive Point-based Kanade Lucas Tomasi colour-Filter).

These improvements allow to deal with scale changes and maintain the real-time

performance. Finally, the proposed tracking algorithm is evaluated against a rep-

resentative selection of trackers of the state-of-the-art. The new tracker improves

the performance of the base tracker in the comparative evaluation, as well as this

competitiveness against the ones for the State-of-the-Art.

Keywords
Video analysis, video object tracking, tracking algorithms, performance evalua-

tion, evaluation metrics, evaluation framework.
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Chapter 1

Introduction

1.1. Motivation

In Computer Vision one of the most important �elds is video object tracking. The

application �eld of video object tracking is very extensive including, among others,

video surveillance, augmented reality, medical imaging, tra�c control, video editing,

etc. Video object tracking is, in general, a time-consuming process due to the huge

quantity of information that needs to be taken into account. Development of video

tracking algorithms is considered a complex task, with a huge diversity of approaches

having been developed in the last years. In this sense, each di�erent scenario has

di�erent approaches that have a better performance. Additionally, several di�culties

such as occlusions, clutter, illumination changes, and appearance changes, have to

be taken into account. All of this makes di�cult to obtain a unique algorithm that

achieves a perfect performance in all scenarios.

1.2. Objectives

This Master Thesis will study strategies for long-term video tracking based on

target update and re-identi�cation in order to improve an existing tracker ,namely,

the PKLTF (Point-based Kanade Lucas Tomasi colour-Filter) [1].

The work is divided in four main objectives.

An evaluation framework will be proposed.

A selection of video object tracking algorithms, extracted from the state of the

art, will be evaluated within the initial mentioned framework.

1



2 CHAPTER 1. INTRODUCTION

Some improvements will be proposed and tested with the aim of improving the

initial tracker results, resulting in an improved tracker.

The improved approach will be integrated in applications in order to demon-

strate the operation of the tracker in real situations.

1.3. Document Structure

The structure of the document is as follows:

Chapter 1: This chapter introduces the work and presents the motivation and

the objectives of the Master Thesis.

Chapter 2: This chapter presents an overview of the literature related to the

work presented in this Master Thesis and provides a comparative evaluation of

selected trackers in a rigorous evaluation framework.

Chapter 3: This chapter presents the proposed improvements and the proposed

�nal algorithm.

Chapter 4: This chapter presents the comparative evaluation results of the

proposed tracker.

Chapter 5: This chapter summarizes the main achievements of the work, dis-

cusses the obtained results and provides suggestions for future work..

References.

Appendix A: This Appendix contains the comparative evaluation results per

sequence of selected trackers.

Appendix B: This Appendix presents the comparative evaluation results per

sequence of the proposed tracker.



Chapter 2

State Of The Art

2.1. Introduction

Object tracking is one of the most important tasks in computer vision, many

applications �elds such as human-computer interaction, robotics, video-surveillance

or augmented reality, among many others, demand reliable and robust target location

estimation. Tracking can be de�ned [2] as �the analysis of video sequences for the

purpose of establishing the location of the target over a sequence of frames (time)

starting from the bounding box given in the �rst frame�. The performance of tracking

algorithms is a�ected by numerous factors such as illumination changes, fast object

motion changes, occlusions, background clutters, etc. These factors make object

tracking an open problem when trying to handle with di�erent scenarios using a

generic object tracking approach. Therefore, it is important to identify the strengths

and weaknesses of tracking algorithms to develop more robust algorithms.

We can divide the tracking approaches into two categories: short-term and long-

term tracking. Short-term tracking [3] assumes that the target is visible in the given

image and the tracking algorithm estimates the target position in the next image,

assuming not disappearance nor complete occlusion of the object. Furthermore, in

long-term tracking [4], the target can go away from the �eld of view and can su�er

complete occlusions. Additionally, long-term tracking [4] relates to tracking a target

in sequences with a duration larger than 2 minutes, ideally more than 10 minutes.

In the State-of-the-Art, there are many strategies to solve the problem of short-

term tracking, each of them focusing on the optimization of the di�erent aspects of

the process, such as, for example, speed, precision, and robustness [5]. Neverthe-

less, none of these methodologies directly addresses post-failure behavior or failure

recovery and consequently, can not be used straightforward for long-term tracking.

3



4 CHAPTER 2. STATE OF THE ART

Short-term trackers without recovery are not proper for long-term tracking problems.

Recovery strategies are critical to discover the target after complete occlusion or tar-

get disappearance. Short-term trackers, likewise, do not address, generally, the issue

of appearance change over the time.

According to [2], a typical short-term visual object tracking system is composed

by four modules:

1. Object Initialization.

2. Appearance Modeling.

3. Motion Estimation.

4. Object Localization.

Short-term approaches have, in general, rather poor performances in long-term situa-

tions, but are a key element in order to solve the issue of long-term tracking. To solve

the problem of long-term tracking, the algorithm must be adapted to appearance

changes and occlusions, and should also have the capability to re-identify the target

when the object reappears in the scene or occlusion ends.

In the long-term tracking State-of-the-Art, the number of references is very limited

in comparison to short-term tracking; this may be because the short-term tracking

is still an open problem, and the long-term approaches that have really good perfor-

mance in terms of accuracy of target tracking are not able to work in real-time.

The long-term situations are more close to real scenarios than short-term, here

lies the importance of this kind of approaches: to solve the problem of object tracking

in real situations.

2.2. Tracking algorithms

In the State-of-the-Art, there are many algorithms that try to solve the problem of

tracking. Most part of these algorithms are focused in short-term tracking. Generally,

the most reliable algorithms are those that have a good performance in the most recent

challenges: VOT 2015 and 20161 [6, 7].

Firstly, we brie�y introduce an overview of the basic (classic) tracking algorithms:

Lucas-Kanade tracker [8], Particle Filter [9], Kalman Filter [10] and Template Match-

ing [11]. Afterwards, we explain brie�y a reduced set of the top performance track-

15th Visual Object Tracking Challenge (VOT 2017) submission deadline was June 19th 2017. Our
tracker satis�es participation requirements and our results were submitted. For more information:
http://www.votchallenge.net/vot2017/index.html
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ers: Scale Adaptive Mean Shift (ASMS)[12], Edge Box Tracker (EBT) [13], Multi-

Domain Convolutional Neural Network Tracker (MDNeT) [14], Continuous Convolu-

tion Operator Tracker (C-COT) [15] and Tree-structured Convolutional Neural Net-

work Tracker (TCNN) [16]. Finally, we introduce a selection of long-term tracking

algorithms: Tracking-Learning Detection tracking (TLD) [17], Point-based Kanade

Lucas Tomasi color-Filter (PKLTF) [1] and Long-Term Featureless Object Tracker

(LT-FLO) [18].

2.2.1. Basic trackers

2.2.1.1. Lucas-Kanade tracker

The Lucas-Kanade [8] tracking algorithm is a single-target approach. Firstly, the

target model is de�ned as the image inside of the region of interest. After that,

the model is searched, performing a gradient descent, in the current frame: the

parameters of the plane that best aligns the transformed image with the image target

are found. This process is performed for each frame until the end of the sequence is

reached.

The Lucas-Kanade tracker performs well in situations with small variations, but

has problems with occlusions, illumination changes or complex movements.

2.2.1.2. Particle Filter

The Particle Filter [19] approach is used to estimate the state of a system that

changes with time. The tracking algorithm can be divided into the following steps:

Create a target model using the color histogram of the pixels belonging the target

region; Initialize the samples, in this step the Particle Filter generates a random

set of particles over the image, this random set can be created with the previous

knowledge or totally random; Prediction phase, the state of each sample of the

previous frame is slightly modi�ed, e.g., adding noise, to estimate the state of the

target in the current frame; Weighting phase, each particle in the current frame is

weighted according to the similarity of them with the target model; Sampling stage,

the particles with high weights are replicated, while ones with the low weights are

discarded. The steps from prediction to sampling are repeated for each frame of the

sequence.

This kind of approach has a good performance in complex scenarios.
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2.2.1.3. Kalman �lter

The Kalman �lter [10] tracker is a single-target tracking algorithm. This algo-

rithm has two phases: estimation and correction. Estimation uses the previous

knowledge of the state to estimate the current state. After that, Correction uses

the present measurement, such as target location, to correct the state.

The Kalman �lter tracker works well when the target is shifted with constant

velocity or constant acceleration.

2.2.1.4. Template Matching

The Template Matching [11] tracking algorithm is a single-target approach. The

main idea behind this approach is to model the target as the sub-image inside of

the region of interest, that will be used as a template. This template is searched in

each frame by comparing pixel intensities. The algorithm is divided into the following

steps: Selection of the target; Computation of the convolution or a sum-comparing

metric, as sum of squared di�erences (SSD), or cross-correlation, over the next frame;

Estimation of the target position that corresponds to the maximum value of the

convolution, this maximum corresponds to the center of the estimated target and the

estimated size of the target is the model size; Repetition of the loop to estimate the

target in the next frame.

This tracking algorithm is simple and has a good performance in low complexity

scenarios.

2.2.2. Short-term trackers

2.2.2.1. Scale Adaptive Mean Shift

ASMS tracker [12] is based on Mean Shift [20] introducing a modi�cation to deal

with the issue of scale adaptation with an innovative method to estimate the scale.

This method also introduces changes in the way to improve the robustness in the scale

estimation with background clutter. For this purpose, a forward-backward checking

and a weighted color histogram are used in the algorithm. This tracker is able to

work in real-time with a relatively good performance in terms of accuracy.

2.2.2.2. Edge Box Tracker

EBT [13] uses object proposals, based on edges in the detection process, to track

the target. With this approach based on contours, the computational cost of �nding

the target is reduced, allowing to perform the search in the whole image but also
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enables to focus on the best candidates to test and upgrade the model. The best

candidates are employed to split into positive and negative samples in order to improve

the tracking performance. This tracker uses the Structural Support Vector Machines

classi�er [21] that permits online updating. To describe the target, it employs 16-bin

RGB intensity histograms from a 5-levels spatial pyramid. This approach is faster

than CNN approximations, but still remains slow to work in real time.

2.2.2.3. Multi-Domain Convolutional Neural Network Tracker

MDNeT [14] uses a CNN to represent the target object. This CNN is pre-trained

with 80 sequences, and their corresponding ground-truths annotations, to generate a

general model that can deal with new di�erent sequences. The network is divided in

two kind of layers: shared layers and domain speci�c layers. In the shared layers, a

generic representation is obtained after training. The domains layers are associated

with the individual tracking sequences and every domain has a di�erent branch for

binary classi�cation. To track the target, the sample with the highest score among

the candidates obtained around the previous target is searched. This tracker has a

good performance in accuracy and robustness, but it is very expensive in time.

2.2.2.4. Continuous Convolution Operator Tracker

C-COT [15] is a single-target tracker based on discriminative correlation �lters

and introduces a novel approach for training continuous convolution �lters. This

tracker learns a discriminative continuous convolution operator as its tracking model.

The novel learning technique proposed by this work enables an e�cient fusion of

multi-resolution feature maps; in the case of this tracker, it is possible to use features

of pre-trained Convolutional Neural Networks. The tracker performs very well in

accuracy as well as robustness, but is far away from working in real-time.

2.2.2.5. Tree-structured Convolutional Neural Network Tracker

TCNN[16] is a single-target tracker based on Convolutional Neural Networks

(CNNs) and has two main steps: state estimation and model update. This tracker

uses CNNs with multiple target appearance models in a tree structure to maintain the

model consistency and handle with appearance changes e�ectively. The work�ow of

this tracker is the following: for each new frame, candidate samples are taken around

the target estimated in the previous frame, and the likelihood of each sample is de-

termined by the weighted average of the scores from manifold CNNs; for each CNN,

the weight is calculated according to the reliability of the path along which the tree
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structure has been updated; the maximum likelihood candidate sample is selected as

the new target state in the present frame; �nally, a new CNN is generated from the

previous ones after a �xed number of frames and it is assigned the greater weight in

the estimation of the state. As in the case of C-COT tracker, the performance is good

in terms of accuracy and robustness, but is heavy in computation time, which limits

its practical applicability.

2.2.3. Long-term trackers

2.2.3.1. Tracking-Learning Detection

TLD [17] is a single-object long-term tracker. This tracker is a combination of

tracking and detection with online model learning. Under the assumption that the

target is visible and the motion is limited along consecutive frames, the target position

is estimated. The detector searches exhaustively in every frame the target model.

With the combination of the tracking location and the detector, the samples, positive

and negative, are generated to learn the appearance of the model in order to avoid

false detections. The idea in the learning process is to be able to identify the errors

and correct them. This tracker has a good performance when it has time to learn

a correct model in the �rst frames. In terms of computational cost, it is relatively

moderate, but without getting real-time performance.

2.2.3.2. Point-based Kanade Lucas Tomasi color-Filter

PKLTF tracker [1] is a single-target tracker focused on long-term situations, that

is able to recover the target after a loss. This tracker is robust to occlusions and

appearance changes. The tracking process is divided into two main steps. The �rst

phase consists of using the Kanade Lucas Tomasi approach (KLT) to search the object

features, while the second one is the application of the Mean Shift gradient descent

approach to estimate the target position. The object model employed is based on the

combination of RGB and luminance gradient in the form of a histogram. It achieves

good results in long-term situations, with the advantage that this tracker is capable

of working in real-time.

2.2.3.3. Long-Term Featureless Object

LT-FLO [18] is a long-term tracking algorithm. This tracker uses edge points

and if the stability of the gradient in these points is not consistent between frames,

the tracker detects the object disappearance. The candidates are all correspondences

between the local maxima of the gradient magnitude and the tangent lines to the
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edges. After that, the candidates are used to compute a similarity transformation

with RANSAC, frame by frame. If the con�dence of the estimation is low, the tracker

resets the position estimated to the previously known position. Furthermore, the state

is learned if the con�dence is high for future recti�cations. The performance of this

tracker in short-term situations [6, 7] is not remarkable but has a decent throughput

in long-term scenarios. In terms of time-consuming, it is far away from real-time.

2.3. Datasets

This section introduces the most important datasets in the State-of-the-Art in

short-term and long-term tracking. These datasets have been used in the most im-

portant object tracking challenges.

The Visual Object Tracking (VOT) [3, 6, 7, 22] is the reference challenge in short-

term tracking; this competition started in the year 2013 and is celebrated each year

with a huge number of tracking algorithms submitted. Further important datasets

for short-term tracking scenarios are the Object Tracking Benchmark (OTB) [23] and

the NUS People and Rigid Objects (NUS-PRO) [24].

In long-term tracking, the Long-Term Detection and Tracking (LTDT) challenge

[4] celebrated in 2014 has a public dataset. The last dataset available, is also a

long-term dataset, the Teacher Tracking dataset (TTds) [1].

2.3.1. Visual Object Tracking 2016 dataset

The VOT 2016 [6] dataset has 60 sequences that are the same as the ones of the

VOT 2015 [6] dataset; each sequence is per-frame annotated and these annotations

have six di�erent visual attributes: camera motion, size change, illumination change,

occlusion, motion change or unassigned if the frame can not be included in any of

the previous categories. The ground-truth bounding boxes were generated with an

automatic tool that uses a segmentation mask. This bounding box contains the

maximum number of foreground pixels, with the lower number of background pixels.

2.3.2. Object Tracking Benchmark dataset

The OTB [23] dataset is another relevant dataset in the State-of-the-Art of short-

term tracking; this dataset has 100 sequences divided into two sub-sets of 50 se-

quences, most of them are included in the VOT 2016 [7] dataset. In this dataset,

the annotation classi�es the frames with 9 di�erent attributes, and has ground-truth

bounding boxes available for all sequences.
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2.3.3. NUS People and Rigid Objects dataset

The NUS-PRO[24] dataset is composed of 365 sequences taken from YouTube.

These videos are classi�ed into �ve di�erent classes: face, pedestrian, sportsman, rigid

object, and long sequences. The duration of the sequences is between 6 seconds to

2 minutes and 48 seconds. This dataset has ground-truth bounding boxes available

for all sequences, and also has annotated 12 categories including shadow change,

�ash, rotation, shape deformation, scale change, dim light, clutter background, fast

background change, partial occlusion, full occlusion, similar objects and camera shake.

2.3.4. Long-Term Detection and Tracking dataset

The LTDT [4] dataset has 6 sequences with a duration between 1 minute and

10 minutes. All the sequences have ground-truth bounding boxes; in this case, if

the object is occluded more than 50% or the object disappears from the �eld-of-view

bounding box are not annotated.

2.3.5. Teacher Tracking dataset

The TTds [1] is a dataset with 12 sequences, 2 of them have a duration of 30 min-

utes and the other 10 are shorter in duration, between 10 seconds and 1.10 minutes.

These shorter sequences are focused on more challenging situations. This dataset

doid not have ground-truth, therefore, it was generated in this work

2.4. Evaluation framework and metrics

2.4.1. Tracking-st

In order to evaluate the performance of the trackers we use the evaluation frame-

work, tracking-st [25] , developed in the VPU-Lab. In this framework, we can load

multiple datasets and trackers at the same time, and automatically compute di�erent

metrics to analyze the performance of the trackers.

The tracking-st framework [25] provides an easy and automatic evaluation of

single-object video trackers. This framework allows a simple testing of trackers in

batch or parallel mode, and also gives support for GPU-enabled trackers. Another

important feature is the standardization of the integration of new trackers. Lastly,

the framework is capable of automatically downloading the dataset to perform the

evaluation.
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2.4.2. Metrics

This subsection describes a selection of visual single-object tracking metrics. The

ground-truth annotation is de�ned as ΛG and the estimated target annotation as ΛT

.

2.4.2.1. Spatial overlap

The spatial overlap measures the percentage of overlap between the ground-truth

bounding box and the bounding box estimated by the tracker. The spacial overlap

Φ(ΛG, ΛT ) is de�ned [26, 27] with the following equation:

Φ(ΛG, ΛT ) =
RG

t ∩RT
t

RG
t ∪RT

t

=
TP

TP + FP + FN
(2.1)

where RG
t , R

T
t denotes, respectively, the region of the object at time t for the

ground-truth and the estimated target; TP are the true positive pixels; FP are the

false positive pixels; and FN are the false negative pixels.

Figure 2.1: Di�erent spatial overlap situations [27]

2.4.2.2. Center error

The center error (CE) [27] is de�ned as the di�erence in number of pixels between

the estimated center position of the bounding box predicted by the tracker and the

center of the ground-truth bounding box. The center error 4(ΛG, ΛT ) follows the

equation 2.2

4(ΛG, ΛT ) = {δt}Nt=1, δt = ||xGt − xTt ||. (2.2)

where xGt , x
T
t are, respectively, the center position at the time t for the ground-

truth and the predicted target; and N is the duration of the sequence.
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2.4.2.3. Sequence Frame Detection Accuracy

The sequence frame detection accuracy (SFDA) [26] is a metric that contains

information regarding the spatial overlap, missed detections, false positives and the

number of detected targets. The SFDA provides a ratio of the spatial intersection

and union between two object locations. The followings equations de�ne the SFDA

metric:

SFDA =

∑t=N
t=1 FDA(t)∑t=N

t=1 ∃(NG
t ORNT

t )
(2.3)

FDA(t) =
overlap_ratio

NG
t +NT

t
2

(2.4)

overlap_ratio =

Nmapped
t∑
i=1

|RG(i)
t ∩RT (i)

t |
|RG(i)

t ∪RT (i)
t |

(2.5)

where R
G(i)
t , R

T (i)
t denote, respectively, the i-th object in the frame t, for the

ground-truth and the detected object; Nmapped
t is the number of matched pairs of

ground-truth annotation and estimated target location in frame t; NG
t , N

T
t are the

number of the ground-truth and predicted targets in frame t; and N is the number

of frames in the sequence.

2.4.2.4. Average Tracking Accuracy

The average tracking accuracy (ATA) [26] measures the accuracy of the tracking,

penalizing fragmentation in both the spatial and the temporal domains. ATA is

de�ned by the following equations:

ATA =
STDA
NG+NT

2

(2.6)

STDA =
Nmapped∑

i=1

∑N
t=1

|RG(i)
t ∩RT (i)

t |
|RG(i)

t ∪RT (i)
t |

M(RG(i)∪RT (i) 6=0)

(2.7)

where R
G(i)
t , R

T (i)
t denote, respectively, the i-th object in the frame t, for the

ground-truth and the detected object; Nmapped is the number of matched pairs of

ground-truth annotation and estimated target location; NG, NT are the number of

the ground-truth and predicted targets; and N is the number of frames in the se-

quence.
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2.4.2.5. Track Completeness

The track completeness (TC) [26] measures the ratio between the time where the

overlap between the estimated and the ground-truth target is bigger than a threshold,

and the ground-truth duration. The following equation de�nes TC:

TC =

∑Nt
T

t=1O(RG
t , R

T
t )

NG
(2.8)

where O(RG
t , R

T
t ) is a binary value that is 0 when the overlap is less than a

threshold, and 1 otherwise; and N t
T , NG are, respectively, the track duration for the

estimated object and the ground-truth.

2.4.2.6. Combined Tracking Performance Score

The combined tracking performance score (CoTPS) [26, 27] combines the infor-

mation of tracking accuracy and tracking failure in a single score. CoTPS is de�ned

by the following equation:

CoTPS = 1− Φ− (1− λ0)λ0 (2.9)

where Φis the average overlap; and λ0 is the percentage of frames where the overlap

is 0.

2.5. Selected trackers, datasets and metrics:

a comparative evaluation of State-of-the-Art

In this section, we justify the selection of the trackers, dataset and metrics that

are used in our work and present a comparative evaluation of the selected trackers in

the datasets.

2.5.1. Trackers

The trackers selected for the comparative performance evaluation are the follow-

ings:

The C-COT [15] tracker is selected because it was the top performance tracker

in the VOT2016 challenge [7].

The MDNET [14] tracker is selected because was the top performance tracker

in VOT2015 challenge [6].
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The ASMS [12] tracker is used in our work because it has a relative good per-

formance and works in real-time.

The TLD [17] tracker is selected because it is a long-term tracker with a good

performance in both scenarios, short-term and long-term.

The LT-FLO [18] is included in the work to have another long-term tracking

comparative reference, despite its discreet performance.

The PKLTF [1] has a good performance in long-term scenarios and it works

close to real-time, for these reasons it is included in the comparative.

The trackers not included are: the TCNN [16] tracker and the EBT [13] tracker,

because the performance of these is worst than the other short-term trackers included

in the comparative.

2.5.2. Datasets

The comparative evaluation are performed with this selection of datsets:

The VOT 2016 [7] dataset is selected because it is the reference in short-term

tracking evaluation.

The LTDT 2014 [4] dataset is included because it is the only one available in

long-term tracking with ground-truth.

The TTds [1] dataset is selected because it is the dataset with longer sequences.

The OTB [23] dataset is excluded because a huge part of the sequences are included

in the VOT 2016 dataset, and the NUS-PRO [24] dataset is also excluded because

many of the situations included in this dataset are similar to the ones in VOT 2016.

2.5.3. Metrics

In the case of single-object tracking most of the metrics described before have

a big correlation between them, as the works [26, 27] demonstrated. The metrics

selected to perform the comparative evaluation are:

The Spatial Overlap Φ, because it is less correlated with the Center Error (CE)

than CoTPS as shown in Figure 2.2.

The Center Error is the least correlated with the other metrics.
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The processing time per frame is measured in the comparative evaluation, be-

cause real-time working is a key factor in this work.

The SFDA, ATA, TC and CoTPS are highly correlated with Φ(see Table 2.1), there-

fore we choose only this metric among all of them.

It must be noti�ed, that depending on the �nal application the selected metrics

may be more or less relevant. For example, if real-time is key, processing time is more

relevant, whilst for wide-range tracking CE is more important.

Figure 2.2: Correlation between CE, Φ and CoTPS [27]

Table 2.1: Correlation between the metrics [26]
SFDA ATA Φ TC CoTPSi

SFDA 1.00 0.99 0.96 0.89 0.88

ATA 0.99 1.00 0.96 0.89 0.88

Φ 0.96 0.96 1.00 0.89 0.92

TC 0.89 0.89 0.89 1.00 0.78

CoTPSi 0.88 0.88 0.92 0.78 1.00

2.5.4. Comparative evaluation results

2.5.4.1. VOT 2016

In the VOT 2016 [7] dataset, the top performance tracker is the MDNET [14],

this tracker outperforms the others in both metrics (see Figures 2.3 a) and b)). In

terms of execution time (see Figure 2.3 c)), only two trackers, ASMS [12] and PKLTF

[1], can perform in real-time, and the remaining trackers are far away from working

in real-time, with speeds close to 1 frame per second (fps). Between the two trackers

that can work in real-time, the ASMS [12] outperforms PKLTF [1]; this performance

gap is bigger in the Spatial Overlap than in Center Error, where the di�erence is

small. That is because the PKLTF [1] tracker does not perform a scale adaptation.

See Appendix A.1 for the detailed results.
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a)

b)

c)

Figure 2.3: VOT 2016 Performance Comparison. a) Spatial Overlap; b) Center Error;
c) Execution Time
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2.5.4.2. LTDT 2014

In the LTDT 2014 [4], the TLD [17] tracker has the best performance, the through-

put di�erence between the TLD and the others is bigger in the Center Error (see

Figure 2.4 b)), than in Spatial Overlap (Figure 2.4 b)). The fall of performance of

the C-COT [15] tracker is remarkable, the bigger between the short-term trackers. In

the execution time comparison (see Figure 2.4 c)), as in the VOT 2016 [7] dataset

only two trackers, ASMS [12] and PKLTF [1], are capable to work in real-time. The

TLD tracker is close to real-time performance, and the other three are far away from

it. Appendix A.2 shows the detailed results.

2.5.4.3. TTds

In the TTds [1] dataset, all trackers results are close, except LT-FLO [18] that

has the worst performance. In the Spatial Overlap and Center Error, the PKLTF [1],

ASMS [12] and C-COT [15] are the best (see Figure 2.5 a) and b)). Moreover, PKLTF

and ASMS trackers work in real time, it should be noted that ASMS performs close

to 60 fps (see Figure 2.5 c)). Like in the previous datasets, the others trackers are far

away from real-time. Detailed results can be found in Appendix A.3.

The comparative evaluation shows that not all the trackers are capable to work with

the same performance in short-term and long-term scenarios. For example, C-COT

[15] fails in long-term scenarios. Also these results show that the real-time execution

is only achieved by ASMS [12] and PKLTF [1] trackers.
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a)

b)

c)

Figure 2.4: LTDT 2014 Performance Comparison. a) Spatial Overlap; b) Center
Error; c) Execution Time
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a)

b)

c)

Figure 2.5: TTds Performance Comparison. a) Spatial Overlap; b) Center Error; c)
Execution Time
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2.6. Conclusions

This chapter has presented di�erent tracking approaches, for short-term and long-

term situations. Also, it has shown the datasets for both scenarios and the evaluation

metrics. Lastly, a performance comparison over the selected datasets with the chosen

algorithms has been presented. In this analysis, it is shown that each tracking algo-

rithm has its advantages and disadvantages, depending on the environment in which

it runs and its capacities of adaptation to di�erent scenarios.



Chapter 3

Design and development of the

SAPKLF tracker

3.1. Introduction

This chapter details the design and development of the Scale Adaptive Point-based

Kanade Lucas Tomasi color-Filter (SAPKLTF) tracker, based on the PKLTF one [1].

After a detailed description of PKLTF, the proposed enhancements are justi�ed and

described. Finally, the SAPKLTF is described in detail with the changes that we

have introduced with respect to the PKLTF tracker.

3.2. Base algorithm

PKLTF [1] is a tracker that supports high appearance changes in the target, oc-

clusions, and is also capable of recovering a target lost during the tracking process.

This tracker has an image stabilization module that extracts the feature points be-

tween consecutive frames and estimates a homography between them to compensate

possible small camera motion. After that, a two stages algorithm has been designed

for this single-target object tracker. The �rst phase is based on the Kanade Lukas

Tomasi approach (KLT) [28] to estimate the target position, allowing tracking rela-

tively big displacements. The second step performs a mean shift gradient descent [20]

in order to re�ne the estimation previously done by the KLT and places the target in

the correct location. The target model consists of a histogram including the values

of the color components RGB and an edge binary �ag. Besides, the color model is

updated adding weight to the pixels present in the original histogram. Figure 3.1

shows the block diagram of the algorithm.

21
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Previous frame

Current frame

Stabilization
Shi-Tomasi 
Features 

Extraction

KLT Tracking

Mean Shift
Estimated 

target

Model Update

Recovery Model

Motion Filtering

Figure 3.1: PKLTF Architecture

3.2.1. Initialization

The tracking algorithm is initialized only with the bounding box that de�nes the

target in the �rst frame. The target model is based on the RGB color and on the

edge information (RGBE). The model is a one-dimensional histogram that includes

the quantized values of the color components (16 bins per color) and the edge binary

�ag. This histogram is composed by the information of all pixels that are contained

inside the bounding box that de�nes the target in the �rst frame. The contribution of

these pixels are equal for all of them, independently of their position in the bounding

box.

3.2.2. Video stabilization

In order to reduce the e�ect of the possible camera movements, this tracker has

a stabilization module. To perform the stabilization, for each input frame the ho-

mography between two consecutive frames is estimated, using the Shi-Tomasi [28]

features also used for the target tracking in the KLT tracking step. The homography

is computed with the RANSAC method. After that, the current frame and the target

position are corrected using the homography.
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3.2.3. KLT tracking

The �rst stage of the tracking is performed using a KLT [28] feature tracking.

This technique is based on characteristic points tracking, using the optical �ow equa-

tions developed by Lucas-Kanade, and the iterative Newton-Raphson method for

searching the object position. In this case, the tracker uses the Shi-Tomasi corner

detector. These features present high repeatability and low computational cost, that

enable a quick tracking with a huge number of features. The Shi-Tomasi features

avoid the spurious corner points on smooth curves and are invariant to typical image

transformations. These features are also used in the stabilization module.

The work �ow in this stage is the following: Firstly, the extraction of the Shi-

Tomasi features are performed for each frame; Secondly, the movement is estimated

in the next frame computing the minimization error process with the features and

its displacements; After that, the features are classi�ed in foreground features or

background features depending on the motion map computed between the current

stabilized frame and the previous frame; Finally, the total displacement of the target

is computed with the weighted displacements obtained for each foreground point

feature, these weights are dependent on the distance of each point with respect to the

center.

In this approach, the KLT tracking method is applied in a pyramidal form; this

approach permits to deal with large displacements of the target.

3.2.4. Mean Shift

After the KLT tracking step, in order to re�ne the estimation of the target po-

sition, a Mean Shift [20] is computed. In the case of PKLTF, the Mean Shift is

performed using the target model that is built in the initialization step. The Mean

Shift technique �nds the maximum in the con�dence map resulting from comparing

the target model to a searching area around the location estimated with the KLT. To

compute the con�dence, the Bhattacharya distance between histograms is used.

3.2.5. Model update

This tracker updates the target model when the target is estimated, using the

location of the Shi-Tomasi features for this update. The histogram is updated in-

creasing in 1 the value of the bin (each bin is de�ned by the following four values: the

values of RGB components and the edge binary �ag) associated to each Shi-Tomasi

point.
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3.2.6. Recovery

The PKLTF tracker is able to recover the target after a loss. The recovery process

is activated after a �xed number of consecutive frames (30 frames in this implemen-

tation) where the algorithm does not match any characteristic point of the target

and the similarity between the histograms is below the de�ned threshold (0.6 in this

implementation). When the recovery process is activated, the Shi-Tomasi features of

the current frame are extracted, and over each feature point the similarity between

the target model and the histogram of this region is computed. After that, the ob-

ject is considered as recovered if the similarity between the candidate histogram and

the initial target model reach the determinate threshold (0.1 in this implementation),

and the tracking process continues with the recovered target. Conversely, the recovery

process continues in the following frame if the similarity is below the threshold for

all the candidates. This step has a heavy computational cost in comparison with the

tracking when the target is not considered lost.

3.3. Improvement proposals

3.3.1. Corrected Background Weighted Histogram

In the PKLTF tracker, the initialization of the object is done with a rectangular

bounding box. The problem with this kind of initialization is that it include informa-

tion of the scene background in the target model, and this increases the probability of

drifting during the tracking process. The Corrected Background Weighted Histogram

[29] (CBWH) method tries to minimize the impact of the background in the target

model.

The CBWH technique consists of: Firstly, the histogram of the bounding box

containing the target is calculated, that it is called foreground histogram; After that,

a second bounding box centered at the same point as the previous one is generated,

but with twice the size of the original; Finally, and in the same way, its histogram is

computed, which is denominated background histogram. Once the histograms are ob-

tained, the histogram of the foreground is corrected. To do this, the normalized back-

ground histogram is inverted and multiplied by the normalized foreground histogram,

so that the background components are reduced in the foreground histogram, main-

taining the information that represents the target. This is because the background

weight in the background histogram is much larger than that of the target. Therefore,

by multiplying by the inverse of the background histogram, the background zone in

the �nal foreground histogram is heavily reduced.
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3.3.2. Scale Adaptive

The PKLTF tracker is not able to deal with scale changes and after analyzing its

performance in the proposed evaluation framework the need of scale adaptation was

concluded. The approach adopted to deal with scale changes is the technique used by

the ASMS [12] tracker. In order to implement this technique in the proposed tracker,

the CBWH described in the previous section was replaced with the approximation,

share the same approach, that introduces the ASMS tracker, called Background Ratio

Weighting (BRW).

The BRW method is based on a ratio maximization. The background histogram

is calculated over the neighborhood of the target in the �rst frame as in the CBWH

method and the ratio (R) is de�ned as the Bhattacharya coe�cient of the candidate

target histogram and the model histogram, divided by the Bhattacharya coe�cient

of the candidate target histogram and the background histogram. With this ratio,

the weights of the background are computed using a gradient ascent method for

a maximization of log(R). Once the weights of the background are computed, the

process is the same as in the CBWH but using these weights to weight the background

histogram.

The scale factor is estimated during the Mean Shift process. The equations that

de�ne the scale factor process estimation are the following:

h1 =

(
1− wk

M0

)
h0 +

(
wg

ho·M0

)
+ rs+ rb (3.1)

h0 = 0.7h0 + 0.3h1 (3.2)

where wk is the sum of all weights of the candidate region multiplied by the

Epanechnikov Kernel; wg is the sum of all weights of the candidate region multiplied

by the �rst derivative of Epanechnikov Kernel and the distance respect to the cen-

ter; M0 is the sum of all weights of the candidate region by the �rst derivative of

Epanechnikov Kernel; and rs, rb are two regularization terms, the �rst is related to

not drastically change scale and the second one forces to include background pixels

in the search window. For the detailed formulation we refer the interested reader to

[12].

In addition, the ASMS approach has a process to check the scale estimation, that

is called Backward Scale Consistency Check. This consists on backward tracking to

validate the estimated scale; in case of scale inconsistency the object size is estimated

with a combination of the size in the previous frame, the estimated size and the size

in the �rst frame. In our implementation the parameters that weighting these sizes
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a) b)

Figure 3.2: Points features: a) without spatial �ltering and b) with spatial �ltering.

are the originals proposed for the ASMS tracker.

3.3.3. Spatial Filtering

Another problem detected in the base algorithm is related to the features used

to compute the KLT tracking. This features, as has been explained in the previous

section, are divided into foreground and background features depending on the motion

map (see Figure 3.2 a)). The problem arises when the camera motion can not be

stabilized correctly: in this case, many features from the background are classi�ed as

foreground features. Another problematic situation is when the target is static and

the features in the target region are classi�ed as background. In order to solve this

problem, the �ltering of the features depending on their distance to the center of the

target has been introduced, classifying only as foreground features those contained in

the circumference whose diameter is equal to the diagonal of the bounding box target

(see Figure 3.2 b)).

3.3.4. Constrained displacement

The constrained displacement is introduced in order to reduce large variations in

location estimation. The position variation can be assumed small between consecutive

frames. The displacement information in the previous frames can then be used to limit

the maximum displacement that can be produced in the estimation of the target

position in the current frame. This limitation is de�ned by the previous displacement

plus a margin of tolerance, this allows to handle speed and acceleration changes.

3.3.5. Adaptation to Orientation

The idea used to adapt to the orientation changes is the same that in the Con-

tinuously Adaptive Mean Shift (CAMSHIFT) algorithm [30]. This consists in the

computation of the second order moments of the mass center and use them to es-
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timate the orientation and the size of the target. The Mean Shift algorithm only

computes the zeroth moment, M00, and the �rst moment for x, M10 , and y, M01;

these moments are de�ned by the following equations:

M00 =
∑
x

∑
y

I(x, y) (3.3)

M10 =
∑
x

∑
y

xI(x, y) (3.4)

M01 =
∑
x

∑
y

yI(x, y) (3.5)

where I(x, y) is the probability value at position (x, y) in the image. With the

zeroth and the �rst order moments, the centroid can be computed as follow:

xc =
M10

M00
; yc =

M01

M00
(3.6)

The second order moments follow these equations:

M20 =
∑
x

∑
y

x2I(x, y) (3.7)

M02 =
∑
x

∑
y

y2I(x, y) (3.8)

M11 =
∑
x

∑
y

xyI(x, y) (3.9)

where I(x, y) is the probability value at position (x, y) in the image. With the

zeroth and the second order moments, the orientation of the major axis is computed

as follows:

θ =

arctan

(
2
(

M11
M00
−xcyc

)
(

M20
M00
−x2

c

)
−
(

M02
M00
−y2c

)
)

2
(3.10)

Furthermore, the size of the target can be estimated with an an-isotropic scale

variation. In this case, the length and the width are computed as follows:

l =

√
(a+ c) +

√
b2 + (a− c)2
2

(3.11)
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w =

√
(a+ c)−

√
b2 + (a− c)2
2

(3.12)

with a, b, and c de�ned as:

a =
M20

M00
− xc; b = 2

(
M11

M00
− xcyc

)
; c =

M02

M00
− yc (3.13)

With equations 3.6, 3.10, 3.11 and 3.12 the size and the position of the target

bounding box is estimated .

3.4. Improved algorithm

The SAPKLTF tracker is the improved version of PKLTF. The main changes

included in the �nal algorithm are: removing the video stabilization and motion

�ltering; inclusion of spatial �ltering, the constrained displacement, the scale adaptive

Mean Shift and the BRW, and the modi�cation of the model re-initialization (update).

Figure 3.3 shows the block diagram of the algorithm.

Previous frame

Current frame

Shi-Tomasi 
Features 

Extraction
KLT Tracking

Scale Adaptive 
Mean Shift

Estimated 
target

Model
Re-initialization

Recovery Model

Constrained 
Displacement

Spatial Filtering

Stabilization Mean Shift

Model Update

Motion Filtering

Figure 3.3: SAPKLTF architecture

The video stabilization is removed because is computationally expensive and the

problems that generate this module in the following phases when the stabilization is

not good.
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The motion �ltering is also removed because after the elimination of the video sta-

bilization this �ltering is noisy, producing incorrect classi�cation between foreground

and background features.

The spatial �ltering, that in the previous steps was designed to remove outlier

features, after removing the motion �ltering takes a capital importance because this

step realizes now the �ltering of features. Also, the constrained displacement plays

a relevant role, because it takes advantage of the motion knowledge and limits the

possible drifting situations in the Mean Shift re�nement step.

The most important change is the scale adaptation and the BRW; these improve-

ments make the estimation of the target more accurate, that also implies better

performance in robustness because in the updating step the target is better de�ned.

The model re-initialization (update) is performed in a di�erent way, but the condi-

tions to update the model are the same than in the base algorithm. The new updating

process consists in re-initializing the model with the target of the current frame.

Finally, the adaptive orientation is not included in the improved version because

this (expected) improvement performed quite di�erently in di�erent cases. Addition-

ally, this can not be evaluated with all the selected datasets (only the VOT 2016

dataset has rotated bounding boxes). For the VOT 2016 sequences, the proposed

improvement worked correctly for rigid objects, whilst for non-rigid object its perfor-

mance was worst and quite dependent on the ground-truth annotations.

3.5. SAPKLTF Applications

3.5.1. Demonstrator

The demonstrator application is developed in order to show the operation of the

tracker in real situations, to facilitate the understanding of the algorithm and the

in�uence of the parameters on the algorithm performance.

In this case, the PKLTF demonstrator developed in a previous work [31] is used

as starting point. This application has been updated with the SAPKLTF tracking

algorithm.

The application gives a simple way to interact with the algorithm. Firstly , the

user must choose the camera from which the application receives the video streaming;

it can be a local camera or an IP camera. Once the camera, is selected the user can

start running the demonstrator. To initialize the algorithm, the user must select the

bounding box that de�nes the target with the mouse.

Through the con�guration button, the user can change the parameters of the

tracker, as well as di�erent display options.
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TEC2014-53176-R – supported by:

Figure 3.4: Demonstrator application

Tracking system

SAPKLTF

Automatic production system

Automatic
logic

production

Control 
system with 
fixed camera

Control 
system with 
PTZ camera

Relative 
control

Absolute 
control

PTZ Control 
system

Acquisition 
system

Figure 3.5: PTZ Controller Architecture

3.5.2. PTZ Controller

For the PTZ controller application, another work done at the VPULab [32] is used

as starting point: the PTZ control rules of the original work [1] were updated and a

people detection module was introduced for automatic initialization of the tracker.

In this work, we have updated the tracker that is used, changing the original

PKLTF that was previously used by the new version, SAPKLTF, proposed in this

work.
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Evaluation

4.1. Datasets

4.1.1. VOT 2016

The VOT 2016 [6] dataset has 60 sequences. Figure 4.1 shows selected examples

of VOT sequences, one of each annotated with visual attributes: camera motion, size

change, illumination change, occlusion, and motion change. Rotated boxes can be

seen in Figure 4.1. The ground-truth bounding box has the following format the x

and y coordinates of each vertex of the rotated rectangle.

4.1.2. LTDTL 2014

The LTDT [4] is a dataset with 6 sequences (see Figure 4.2). In this case, the

bounding box is a rectangle without rotation. The format of this ground-truth is the

following: x and y coordinates of the left upper corner, and width and height of the

rectangle. If the target is out of scene, or the occlusion is bigger than the 50%, each

�eld is annotated with NaN values.

4.1.3. TTds

The TTds [1] dataset has 12 sequences (see Figure 4.3). This dataset did not have

ground-truth. In this work, the ground-truth is built with a per-frame annotation of

the rectangle that contains the target. The annotation is performed with Video Image

Annotation Tool1. The bounding box annotated is a rectangle without rotation, the

format of these ground-truth is the following: x and y coordinates of left upper corner,

1Video Image Annotation Tool. https://sourceforge.net/projects/via-tool/

31
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a) b)

c) d)

e)

Figure 4.1: VOT 2016 example sequences of each annotated visual attributes: a)
camera motion; b) size change; c) illumination change; d) occlusion; and e) motion
change
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a) b) c)

d) e) f)

Figure 4.2: LTDT 2014 sequences. a) 07_motocross; b) 08_volkswagen; c) 09_car-
chase; d) LiveRunCropped; e) NissanSkylineChaseCropped; and f) Sitcom

and width and height of the rectangle. If the target is out of scene, the annotation is

NaN values for each �eld.

4.2. Comparative Evaluation

In this section, the comparative evaluation between the PKLT; the proposed en-

hancements: the PKLTF with the CBWH method implemented (BASECBWH) and

the PKLTF with the CBWH and the spatial �ltering (BASECBWHOUT); and the

�nal SAPKLTF are presented over the selected datasets. Finally, the comparative

evaluation of SAPKLTF against State-of-the-Art trackers is presented, showing that

the SAPKLT tracker improves the performance of the previous tracker and outper-

forms State-of-the-Art trackers in determined situations.

4.2.1. VOT 2016

The SAPKLTF algorithm improves the performance of the original PKLTF (see

Table 4.1). The PKLTF with CBWH enhances the original algorithm in performance.

The spatial �ltering incorporated to the CBWH provides a slight enhancement, but

the improvement is remarkable only in execution time. In the SAPKLT, the main

improvement is produced in Spatial Overlap, mainly due to the introduction of the

scale adaptation; also the center error is reduced by the BRW method, although the

CBWH method o�ers better enhancement.

In the comparative with the State-of-the-Art (see Table 4.2),m the SAPKLTF is
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a) b) c)

d) e) f)

g) h) i)

j) k) l)

Figure 4.3: TTds sequences. a) L1; b) L2; c) C1; d) C2; e) C3; f) C4; g) C5; h) C6;
i) C7; j) C8; k) C9 and l) C10
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SO (%) Di�. (%) CE
(pixels)

Di�. (%) Speed
(ms)

Di�. (%)

PKLTF 33.16 - 106.1 - 52.47 -

+CBWH 35.73 7.19 96.52 9.93 44.77 17.20

+Spatial
Filtering

34.15 2.89 100.9 5.15 37.83 38.70

SAPKLTF 41.63 20.35 98.32 7.91 47.66 10.09

Table 4.1: VOT 2016 Improvements Comparison. The best in bold and the second
in cursive letters.

SO (%) Di�. (%) CE (pixels) Di�. (%) Speed (ms) Di�. (%)

C-COT 55.64 -14.18 59.99 -19.74 2784 -99.18

MDNET 64.83 - 48.14 - 1873 -98.78

ASMS 41.93 -35.32 95.93 -49.81 22.95 -

TLD 52.25 -19.41 64.47 -25.31 190.3 -87.94

LT-FLO 24.65 -61.97 124.40 -62.29 1143 -97.99

PKLTF 33.16 -48.85 106.10 -54.62 52.20 -56.03

SAPKLTF 41.63 -35.79 98.32 -51.03 47.66 -51.85

Table 4.2: VOT 2016 Comparison. The best in bold and the second in cursive letters.

close in the mean of Spatial Overlap to the ASMS, but in the median value of Spatial

Overlap the SAPKLTF outperforms the ASMS (see Figure B.13). The execution per-

formance of SAPKLTF is better than the original PKLTF. In general, the SAPKLTF

tracker obtains a good performance in , the VOT 2016 dataset. Detailed results can

be found in Appendix B.1.

4.2.2. LTDT 2014

In the LTDT 2014 dataset, the performance of SAPKLTF improves the original

PKLTF performance (see Table 4.3). In this case, the PKLTF with CBWH improves

the performance, but only the execution time enhancement is remarkable. Further-

more, the incorporation of the spatial �ltering provides a notable enhancement; the

performance in Center Error is the best of the proposed methods.

The SAPKLTF has an important improvement in performance, with a remarkable

enhancement in the Spatial Overlap.

These performance improvements put the SAPKLTF ahead the ASMS and C-

COT, and close to the LT-FLO tracker (see Table 4.4). See Appendix B.2 for the

detailed results.
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SO (%) Di�. (%) CE
(pixels)

Di�. (%) Speed
(ms)

Di�. (%)

PKLTF 10.64 - 93.98 - 49.40 -

+CBWH 10.93 2.65 92.65 1.44 38.64 27.85

+Spatial
Filtering

14.36 25.91 80.36 16.95 40.73 21.29

SAPKLTF 17.83 40.33 85.89 9.42 43.83 12.71

Table 4.3: LTDT 2014 Improvements Comparison. The best in bold and the second
in cursive letters.

SO (%) Di�. (%) CE (pixels) Di�. (%) Speed (ms) Di�. (%)

C-COT 15.71 -69.51 165.6 -81.83 6340 -99.82

MDNET 44.17 -14.28 65.85 -54.31 1592 -99.30

ASMS 14.12 -72.60 124.4 -75.81 11.19 -

TLD 51.53 - 30.09 - 90.86 -87.68

LT-FLO 23.98 -53.46 81.16 -62.92 502.3 -97.77

PKLTF 10.64 -79.35 93.98 -67.98 49.40 -77.35

SAPKLTF 17.83 -65.40 85.89 -64.97 43.83 -74.47

Table 4.4: LTDT 2014 Comparison. The best in bold and the second in cursive
letters.

4.2.3. TTds

The PKLTF has a good performance in the TTds dataset because this tracker

was designed speci�cally for this kind of situations and it is optimized for that. Table

4.5 shows that the CBWH and the spatial �ltering do not provide any improvement

in Spatial Overlap nor in Center Error, only the execution time is better in these

approaches. Nevertheless, the SAPKLTF slightly enhances the performance of the

original algorithm.

In the comparison with the State-of-the-Art trackers (see Table 4.6) , the SAP-

KLT performs at the level of the top performance trackers; in the average values the

performance is slightly below that of ASMS, but in the median value it is slightly

higher (see Figure B.21). See Appendix B.3 for the detailed results.

4.3. Conclusion

The performance of the SAPKLTF tracker improves, in general, the performance

of the original PKLTF. The SAPKLT performs better in short-term situation after

the changes, and preserve the good performance in long-term scenarios.

At individual sequence level (see Appendix B), in terms of Spatial Overlap, the
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SO (%) Di�. (%) CE
(pixels)

Di�. (%) Speed
(ms)

Di�. (%)

PKLTF 53.13 - 62.52 - 41.24 -

+CBWH 50.04 -6.17 73.71 -15.18 28.31 45.67

+Spatial
Filtering

47.30 -12.32 89.36 -30.04 27.45 50.24

SAPKLTF 53.31 0.34 60.29 3.70 35.71 15.49

Table 4.5: TTds Improvements Comparison. The best in bold and the second in
cursive letters.

SO (%) Di�. (%) CE (pixels) Di�. (%) Speed (ms) Di�. (%)

C-COT 54.96 - 77.54 -23.39 7178 -99.83

MDNET 50.48 -8.87 92.76 -35.96 1323 -99.10

ASMS 53.78 -2.19 59.4 - 11.86 -

TLD 47.73 -15.15 86.57 -31.39 215.90 -94.51

LT-FLO 29.46 -86.56 95.67 -37.91 1910 -99.37

PKLTF 53.13 -3.44 62.52 -4.99 41.24 -71.24

SAPKLTF 53.31 -3.09 60.29 -1.48 35.71 -66.78

Table 4.6: TTds Comparison. The best in bold and the second in cursive letters.

SAPKLTF is the top performer in 6 sequences of VOT 2016 and in 2 sequences of

TTds. In addition, in CE measures the SAPKLTF is the best in 10 sequences of VOT

2016 and in 3 sequences of TTds. Also, the proposed approach can work in real-time

constraints.
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Chapter 5

Conclusions and future work

5.1. Conclusions

First of all, an extensive analysis concerning the related work was done. It was

required to understand the video object tracking process, likewise to study existing

tracking approaches, as well as, metrics and datasets used for video tracking evalua-

tion.

Following this in-depth analysis, di�erent improvements were proposed. These im-

provements were implemented over the base algorithm, PKLTF (Point-based Kanade

Lucas Tomasi colour-Filter). After that, an improvement version of the approach,

SAPKLTF (Scale Adaptive Point-based Kanade Lucas Tomasi colour-Filter), was

presented. Once, the SAPKLTF was developed, this was integrated into two applica-

tions; a demonstrator and PTZ controller.

Finally, the performance of SAPKLTF was evaluated. For that purpose, a com-

parative evaluation with a selection of trackers and datasets was performed.

5.2. Future work

Results obtained in the work prove that the proposed algorithm performs better

than the base algorithm. However, it is important to notice that those results could

be improved since there are some limitations in di�erent scenarios.

We identify some main areas for future work:

Automatic initialization of the target: the study of di�erent initialization ap-

proaches based on object detection, saliency, or objectness proposals are pro-

posed.

39
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Re-identi�cation improvements: currently after loosing the target, the last

model is used for looking for the target object to be re-identi�ed as the target.

The feasibility study of an approach that uses multiples models is proposed.

Model update: currently, the model is re-initialized to perform the updating,

other update ways can be studied.

Adaptation of the tracker to other image domains such as infrared or depth

modalities.

Target model: Introduce more complexity to the model, e.g., introduce infor-

mation of other color spaces to the histogram.

Multi-target tracking: Introduce the capability to track multiple target.

.
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Appendix A

State-of-the-Art comparative

evaluation per sequence

A.1. VOT 2016
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Figure A.1: VOT 2016 Spatial Overlap per sequence (1-10)
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Figure A.2: VOT 2016 Spatial Overlap per sequence (11-20)
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Figure A.3: VOT 2016 Spatial Overlap per sequence (21-30)
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Figure A.4: VOT 2016 Spatial Overlap per sequence (31-40)
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Figure A.5: VOT 2016 Spatial Overlap per sequence (41-50)
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Figure A.6: VOT 2016 Spatial Overlap per sequence (51-60)
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Figure A.7: VOT 2016 Center Error per sequence (1-10)
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Figure A.8: VOT 2016 Center Error per sequence (11-20)
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Figure A.9: VOT 2016 Center Error per sequence (21-30)
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Figure A.10: VOT 2016 Center Error per sequence (31-40)
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Figure A.11: VOT 2016 Center Error per sequence (41-50)
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Figure A.12: VOT 2016 Center Error per sequence (51-60)

A.2. LTDT 2014
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Figure A.13: LTDT 2014 Spatial Overlap per sequence
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Figure A.14: LTDT 2014 Center Error per sequence

A.3. TTds
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Figure A.15: TTds Spatial Overlap per sequence
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Figure A.16: TTds Center Error per sequence
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Appendix B

Results comparison

B.1. VOT 2016
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Figure B.1: VOT 2016 Spatial Overlap per sequence (1-10)
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Figure B.2: VOT 2016 Spatial Overlap per sequence (11-20)
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Figure B.3: VOT 2016 Spatial Overlap per sequence (21-30)
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Figure B.4: VOT 2016 Spatial Overlap per sequence (31-40)
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Figure B.5: VOT 2016 Spatial Overlap per sequence (41-50)
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Figure B.6: VOT 2016 Spatial Overlap per sequence (51-60)
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Figure B.7: VOT 2016 Center Error per sequence (1-10)
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Figure B.8: VOT 2016 Center Error per sequence (11-20)
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Figure B.9: VOT 2016 Center Error per sequence (21-30)
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Figure B.10: VOT 2016 Center Error per sequence (31-40)
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Figure B.11: VOT 2016 Center Error per sequence (41-50)
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Figure B.12: VOT 2016 Center Error per sequence (51-60)
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a)

b)

c)

Figure B.13: VOT 2016 Comparison. a) Spatial Overlap; b) Center Error; and c)
Execution Time
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a)

b)

c)

Figure B.14: VOT 2016 Improvements Comparison. a) Spatial Overlap; b) Center
Error; and c) Execution Time
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B.2. LTDT 2014
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Figure B.15: LTDT 2014 Spatial Overlap per sequence
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Figure B.16: LTDT 2014 Center Error per sequence
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a)

b)

c)

Figure B.17: LTDT 2014 Comparison. a) Spatial Overlap; b) Center Error; and c)
Execution Time
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a)

b)

c)

Figure B.18: LTDT 2014 Improvements Comparison. a) Spatial Overlap; b) Center
Error; and c) Execution Time.
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B.3. TTds

0

0.2

0.4

0.6

0.8

1
Dataset TTds (12 sequences, 96722 frames)

Tr
ac

ki
ng

 p
er

fo
rm

an
ce

 (
sp

at
ia

l o
ve

rla
p)

C1 C1
0 C2 C3 C4 C5 C6 C7 C8 C9 L1 L2

CCOT
MDNET
ASMS
TLD
LT-FLO
PKLTF
SAPKLTF

Figure B.19: TTds Spatial Overlap per sequence
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Figure B.20: TTds Center Error per sequence



68 APPENDIX B. RESULTS COMPARISON

a)

b)

c)

Figure B.21: TTds Comparison. a) Spatial Overlap; b) Center Error; and c) Execu-
tion Time
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a)

b)

c)

Figure B.22: TTds Improvements Comparison. a) Spatial Overlap; b) Center Error;
and c) Execution Time
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